WO2015040950A1 - Ocular refractive power measuring apparatus and optometry apparatus - Google Patents

Ocular refractive power measuring apparatus and optometry apparatus Download PDF

Info

Publication number
WO2015040950A1
WO2015040950A1 PCT/JP2014/069187 JP2014069187W WO2015040950A1 WO 2015040950 A1 WO2015040950 A1 WO 2015040950A1 JP 2014069187 W JP2014069187 W JP 2014069187W WO 2015040950 A1 WO2015040950 A1 WO 2015040950A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
refractive power
measurement
optical system
chart
Prior art date
Application number
PCT/JP2014/069187
Other languages
French (fr)
Japanese (ja)
Inventor
睦隆 石原
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to JP2015537590A priority Critical patent/JP6351606B2/en
Publication of WO2015040950A1 publication Critical patent/WO2015040950A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/0285Phoropters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors

Definitions

  • the present invention relates to an eye refractive power measuring apparatus and an optometric apparatus for measuring the eye refractive power of an eye to be examined.
  • ophthalmic examination or eye refraction examination it is known to measure the eye refractive power of an eye to be examined using an eye refractive power measuring apparatus (optometry apparatus).
  • the ophthalmic examination and eye refraction examination there is one that confirms the possibility of a disease including the center of the retina (macular region) such as macular degeneration or the surrounding disease, and the Amsler chart is used as the method. It is known (see, for example, Patent Document 1).
  • This Amsler chart is a grid pattern, and it makes the subject gaze at the center position and performs what is called a subjective measurement to make the subject check how the grid pattern looks. It is. In subjective measurement using an Amsler chart, if the lattice pattern appears distorted, partially missing, or partially blurred, the center of the retina (the macula) ) Or any of the surrounding diseases.
  • the Amsler chart when performing the above-described subjective measurement, the Amsler chart is in a state where the subject eye (subject) is directly opposed at a predetermined distance (for example, 30 to 40 cm) from the subject eye. It is necessary to make the subject gaze at the center position while completely covering the other eye of the person.
  • the Amsler chart is formed of paper, an electronic medium, or the like. For this reason, in the Amsler chart, it is not easy to perform the above-described subjective measurement in a state presented to the subject eye while making the distance from the subject eye and the posture with respect to the subject eye appropriate, and the subjective measurement cannot be performed appropriately. There is a fear.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an eye refractive power measurement apparatus (optometry apparatus) capable of easily and appropriately performing subjective measurement using an Amsler chart. .
  • an eye refractive power measurement apparatus includes a reflex measurement projection optical system that projects measurement light on the main optical axis toward the fundus of the subject's eye, and the main optical axis.
  • a reflex measurement light receiving optical system that receives reflected light from the fundus of the measurement light passing through the eye, and the eye refractive power that measures the eye refractive power of the eye based on the light received by the reflex measurement light reception optical system
  • a measuring apparatus comprising: an optotype presenting optical system for presenting an Amsler chart made of a lattice pattern as a subjective target to be watched by a subject for subjective measurement on the subject's eye on the main optical axis It is characterized by that.
  • the eye refractive power measuring device is the eye refractive power measuring device according to claim 1, wherein the target presentation optical system has a predetermined size and a predetermined size from the eye to be examined. It is characterized in that it is presented to the eye to be examined in a state equal to that provided at a distance position.
  • the eye refractive power measurement device is the eye refractive power measurement device according to claim 1 or 2, wherein the target presentation optical system is based on light reception by the reflex measurement light receiving optical system.
  • the Amsler chart is moved to a position that is suitable when looking far away in the eye or a position that is suitable when looking near.
  • the eye refractive power measurement device is the eye refractive power measurement device according to any one of claims 1 to 3, wherein the optotype presenting optical system is a center of a retina in the eye to be examined.
  • the Amsler chart is presented to the eye to be examined within a range corresponding to.
  • the eye refractive power measuring device is the eye refractive power measuring device according to any one of claims 1 to 4, wherein a central gazing point is provided at a central position in the Amsler chart. And a plurality of peripheral gazing points are provided around the central gazing point.
  • the eye refractive power measurement apparatus is the eye refractive power measurement apparatus according to claim 5, wherein each of the peripheral gazing points is the Amsler chart presented by the target presentation optical system. It is provided in the peripheral part of the visual field from the eye to be examined.
  • the eye refractive power measuring device is the eye refractive power measuring device according to claim 5 or 6, wherein the Amsler chart has a square shape, and the peripheral gaze point is the Amsler chart. , And provided at respective center positions in four divided areas when divided into four by a vertical line and a horizontal line including the central gazing point.
  • the eye refractive power measurement device is the eye refractive power measurement device according to any one of claims 1 to 7, wherein the optotype presenting optical system has a lattice shape in the Amsler chart. A line segment for drawing a pattern is presented to the eye to be examined as a predetermined color.
  • the eye refractive power measurement device is the eye refractive power measurement device according to any one of claims 1 to 8, wherein the visual target presenting optical system includes a visual target light source,
  • the Amsler chart is formed of a member that transmits light emitted from the target light source in the target presentation optical system.
  • the eye refractive power measuring apparatus is the eye refractive power measuring apparatus according to claim 9, wherein the target presentation optical system has another target different from the Amsler chart, and the Amsler The chart and the other target are switched and positioned on the optical axis along which the light emitted from the target light source travels.
  • the eye refractive power measurement device is the eye refractive power measurement device according to any one of claims 1 to 8, wherein the Amsler chart is an image forming device in the target presentation optical system. It is characterized by being displayed on the display screen.
  • the eye refractive power measurement device is the eye refractive power measurement device according to any one of claims 1 to 11, further comprising an eye on the main optical axis toward the eye to be examined.
  • An eye characteristic measurement projection optical system for projecting other measurement light for measuring other optical characteristics of the subject eye different from refractive power, and the other measurement light passing through the main optical axis from the subject eye.
  • an eye characteristic measurement light receiving optical system for receiving reflected light.
  • the optometry apparatus is an optometry apparatus that measures the eye refractive power of the subject's eye, and uses an Amsler chart made of a lattice pattern as a subjective target for the subject to gaze for subjective measurement. It comprises an optotype presenting optical system to be presented in
  • the optometry apparatus is the optometry apparatus according to claim 13, wherein the optotype presenting optical system is provided at a position where the Amsler chart has a predetermined size and a predetermined distance from the eye to be examined. It presents to the eye to be examined in a state equal to that obtained.
  • the subjective measurement using the Amsler chart can be easily and appropriately performed.
  • the optotype presenting optical system presents the Amsler chart to the eye to be examined in a state equal to that provided at a position having a predetermined size and a predetermined distance from the eye to be examined. Then, the subjective measurement (Amsler chart test) using the Amsler chart can be performed while presenting the Amsler chart to the eye to be examined in a more appropriate state. Thereby, the said subjective measurement (Amsler chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
  • the optotype presenting optical system moves the Amsler chart farther away from the subject eye according to the eye refractive power of the subject eye measured based on the light received by the reflex measurement light-receiving optical system. If you move to a position that is suitable for viewing or a position that is suitable for close viewing, the Amsler chart will be displayed on the subject (eye) without using binocular-corrected glasses. Can show. At this time, it is possible to confirm the appearance while showing the Amsler chart in a state close to the correction value of only one eye in the eye to be examined.
  • the awareness measurement (Amsler chart test) can be performed more appropriately, and the disease can be more appropriately observed. It is possible to confirm whether or not there is a possibility.
  • each of the peripheral gazing points is provided at a peripheral portion of the visual field from the eye to be examined on the Amsler chart presented by the optotype presenting optical system.
  • the Amsler chart in the field of view that can be shown to the (subject) it is possible to confirm whether or not there is a possibility of the disease in the largest range.
  • the Amsler chart has a square shape, and the peripheral gaze point is divided into four divided areas when the Amsler chart is divided into four by a vertical line and a horizontal line including the central gaze point, respectively. Assuming that it is provided at the center position of each, Amsler is four times as large as the square area defined by each peripheral gaze point by checking each of the four gaze points. It is possible to confirm whether or not there is a possibility of a disease on the chart, and the subjective measurement using the Amsler chart can be performed more efficiently.
  • the visual target presenting optical system presents a line segment that draws a lattice-like pattern in the Amsler chart as a predetermined color to the eye to be examined, for example, a reaction (subject) It is possible to determine whether or not there is a possibility of a disease appropriately including these even when the appearance of the image is different.
  • the target presentation optical system includes a target light source
  • the Amsler chart is formed of a member that transmits light emitted from the target light source in the target presentation optical system.
  • the optotype presenting optical system has another optotype different from the Amsler chart, and is emitted from the optotype light source by switching between the Amsler chart and the other optotype. If it is located on the optical axis where light travels, various indices can be presented to the eye to be examined, and usability can be improved.
  • the Amsler chart can be configured more simply if it is displayed and formed on the display screen of the image forming apparatus in the visual target presenting optical system. Moreover, even if it is a case where the color of an Amsler chart is changed as mentioned above, it can respond easily. Furthermore, since each peripheral gazing point can be provided freely, usability can be further improved.
  • an eye characteristic measurement for projecting other measurement light for measuring another optical characteristic of the subject eye different from the eye refractive power on the main optical axis toward the subject eye Usability can be further improved by including a projection optical system and an eye characteristic measurement light receiving optical system that receives reflected light from the subject eye of the other measurement light passing through the main optical axis.
  • An optometry apparatus for measuring an eye refractive power of an eye to be examined and an optotype presenting optical system for presenting an Amsler chart having a lattice pattern as a subjective target to be observed by a subject for subjective measurement If this is included, the subjective measurement using the Amsler chart can be easily and appropriately performed.
  • the optotype presenting optical system presents the Amsler chart to the eye to be examined in a state equal to that provided at a position having a predetermined size and a predetermined distance from the eye to be examined. Then, the subjective measurement (Amsler chart test) using the Amsler chart can be performed while presenting the Amsler chart to the eye to be examined in a more appropriate state. Thereby, the said subjective measurement (Amsler chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
  • FIG. 3 is a block diagram illustrating a configuration of a control system of the eye refractive power measurement apparatus 10.
  • FIG. 3 is an explanatory diagram for explaining an optical configuration of the eye refractive power measurement apparatus 10.
  • FIG. It is explanatory drawing for demonstrating the structure of the grid chart 31v (Amsler chart).
  • 4 is an explanatory diagram for explaining a configuration of a kerato ring pattern 37.
  • FIG. FIG. 10 is an explanatory diagram for explaining display contents displayed on the display surface 14a of the display unit 14 in a scene where subjective measurement is performed.
  • (B) shows a state in which the state of (a) is replaced with a state in which the central gazing point D1 is gazed with the grid chart 31v. It is explanatory drawing for demonstrating that the same judgment as the case where the whole grid chart 31v is shown by making each peripheral gaze point look is shown, (a) gazes the peripheral gaze point D4 within the visual field Vf. (B) shows a state in which the state of (a) is replaced with a state in which the central gazing point D1 is gazed with the grid chart 31v. It is explanatory drawing for demonstrating that the same judgment as the case where the whole grid chart 31v is shown by making each peripheral gaze point look is shown, (a) gazes the peripheral gaze point D5 within the visual field Vf.
  • FIG. 7 is an explanatory view similar to FIG. 7 schematically showing the visual field Vf from the eye E when a grid chart 31v ′ (Amsler chart) as another example is presented by the target projection optical system 31. It is explanatory drawing which shows typically the structure of the subjective optometry apparatus 60 of Example 2 as an example of the optometry apparatus which concerns on this invention. It is explanatory drawing which shows the structure of each rotating disk 73 accommodated in both the phoropters 71 of the subjective optometry apparatus 60.
  • FIG. 7 is an explanatory view similar to FIG. 7 schematically showing the visual field Vf from the eye E when a grid chart 31v ′ (Amsler chart) as another example is presented by the target projection optical system 31. It is explanatory drawing which shows typically the structure of the subjective optometry apparatus 60 of Example 2 as an example of the optometry apparatus which concerns on this invention. It is explanatory drawing which shows the structure of each rotating disk 73 accommodated in both the phoropters 71 of the subjective optometry apparatus
  • FIG. 3 is a block diagram illustrating a configuration of a control system of the subjective optometry apparatus 60.
  • FIG. It is explanatory drawing for demonstrating the display content displayed on the display part 75 (display screen 75b) in a 1st display mode. It is explanatory drawing for demonstrating the display content displayed on the display part 75 (display screen 75b) in a 2nd display mode. It is explanatory drawing which shows a mode that a distance test
  • FIG. 1 An eye refractive power measuring apparatus 10 as an embodiment 1 of an eye refractive power measuring apparatus (optometry apparatus) according to the present invention will be described with reference to FIGS.
  • the eye refractive power measuring apparatus 10 shown in FIG. 1 basically measures the eye refractive power of the eye E (see FIG. 3 and the like).
  • the eye refractive power measuring apparatus 10 has an objective measurement function for measuring optical characteristics (eye characteristics) including the eye refractive power of the eye E by objective measurement and an eye of the eye E by subjective measurement. And a subjective measurement function for measuring optical characteristics (eye characteristics) including refractive power.
  • FIG. 3 schematically shows a fundus (retina) Ef and a cornea (anterior eye portion) Ec.
  • This eye refractive power measurement device 10 is configured by a device body 13 being movably provided on a base 11 via a drive unit 12 (see FIG. 2).
  • the device main body 13 is provided with an optical system (see FIG. 3) of an eye refractive power measuring device 10 described later on the inside, and a display unit 14, a chin rest 15 and a forehead support 16 on the outside. ing.
  • the display unit 14 is formed of a liquid crystal display, and is an image (anterior segment image E ′) of the anterior segment (cornea Ec) of the eye E under the control of a control unit 21 (see FIG. 2) described later. And various operation screens, measurement results, and the like are displayed on the display surface 14a (see FIG. 6).
  • the display unit 14 is equipped with a touch panel function, and performs operations for measuring optical characteristics (eye characteristics) including eye refractive power and for photographing the anterior eye part (cornea Ec). It is possible to perform an operation, an operation for moving the apparatus main body 13, an operation for switching between subjective measurement and objective measurement, an operation for switching a target for objective measurement, and the like.
  • the display part 14 displays the various symbols (refer FIG.
  • the operation for performing the measurement may be performed by providing a measurement switch on the periphery of the base 11, the apparatus main body 13 or the display unit 14 and operating the measurement switch. Further, the operation for moving the apparatus main body 13 is performed by providing a control lever or a movement operation switch on the periphery of the base 11, the apparatus main body 13 or the display unit 14, and operating the control lever or the movement operation switch. You may do it.
  • the chin rest 15 and the forehead support 16 fix the face of the subject (patient), that is, the position of the eye E to be measured with respect to the apparatus main body 13, and are fixed to the base 11. ing.
  • the chin receiving portion 15 is a place where the subject places his chin
  • the forehead holding portion 16 is a place where the subject places the forehead.
  • the subject's eye E has a keratring pattern 37 (described later) and an objective lens 31 q positioned at the center thereof. (See FIGS. 3 and 5). For this reason, appropriate measurement (objective measurement and subjective measurement) of the eye E to be examined by the optical system of the eye refractive power measuring apparatus 10 becomes possible.
  • the display unit 14, the chin rest 15 and the forehead support 16 are provided on both sides of the apparatus main body 13, and in normal use (see FIG. 1).
  • the display unit 14 (the display surface 14a) is on the examiner side, and the chin rest 15 and the forehead support unit 16 are on the subject side.
  • the display unit 14 is rotatably supported by the apparatus main body unit 13 to change the orientation of the display surface 14a, for example, to direct the display surface 14a toward the subject,
  • the surface 14a can be directed to the side (X-axis direction).
  • the apparatus main body 13 moves with respect to the base 11 by the drive unit 12, that is, moves with respect to the eye E (face of the subject) fixed by the jaw holder 15 and the forehead support 16. It is possible to do.
  • the drive unit 12 is configured such that the apparatus main body 13 with respect to the base 11 in the vertical direction (Y-axis direction) and the front-rear direction (Z-axis direction (display unit 14, chin rest 15 and forehead portion during normal use). 16) and a horizontal direction (X-axis direction) perpendicular to them.
  • the upper side in the vertical direction is the positive side in the Y-axis direction
  • the subject side in the front-rear direction (the left back side when viewed from the front in FIG. 1) is the positive side in the Z-axis direction
  • 1 in front view the left front side is the positive side in the X-axis direction (see arrow in FIG. 1).
  • the drive unit 12 includes an X motor 12a, a Y motor 12b, and a Z motor 12c, and an X driver 12d, a Y driver 12e, and a Z driver 12f for driving each of them. And have.
  • the X motor 12 a moves (displaces) the apparatus main body 13 in the X axis direction (left and right direction) with respect to the base 11.
  • the X motor 12a is configured to move the apparatus main body 13 in the X-axis direction (left-right direction) in the drive unit 12.
  • the X motor 12a is appropriately driven when the control unit 21 controls the X driver 12d.
  • the Y motor 12b moves (displaces) the device main body 13 in the Y axis direction (vertical direction) with respect to the base 11.
  • the Y motor 12b is a location for moving the apparatus main body 13 in the Y-axis direction (vertical direction) in the drive unit 12.
  • the Y motor 12b is appropriately driven by controlling the Y driver 12e by the control unit 21.
  • the Z motor 12c moves (displaces) the apparatus main body 13 in the Z-axis direction (front-rear direction) with respect to the base 11.
  • the Z motor 12 c is a location for moving the apparatus main body 13 in the Z-axis direction (front-rear direction) in the drive unit 12.
  • the Z motor 12c is appropriately driven when the control unit 21 controls the Z driver 12f.
  • the drive unit 12 appropriately drives the X motor 12a, the Y motor 12b, and the Z motor 12c to move the apparatus main body unit 13 in the vertical direction (Y-axis direction) and the front-rear direction (Z-axis direction). Direction) and right and left direction (X-axis direction).
  • the control unit 21 appropriately controls the drive unit 12, that is, appropriately drives the X motor 12a, the Y motor 12b, and the Z motor 12c via the X driver 12d, the Y driver 12e, and the Z driver 12f.
  • the apparatus main body 13 can be appropriately moved relative to the chin rest 15 and the forehead support 16 fixed to the base 11.
  • the control unit 21 constitutes an electric control system in the eye refractive power measuring apparatus 10 and controls the respective units of the eye refractive power measuring apparatus 10 in a centralized manner by a program stored in a built-in storage unit 21a. As will be described later, the control unit 21 appropriately drives and controls the drive unit 12 based on the detection result (the signal) from the focus determination circuit 22 and the detection result (the signal) from the alignment determination circuit 23. 11 is adjusted. Moreover, the control part 21 displays the image on the display part 14 (the display surface 14a) based on the image which the image sensor 32g of the anterior ocular segment observation optical system 32 (refer FIG. 3) mentioned later acquires.
  • control unit 21 includes a target light source 31a, a glare light source 31w, an anterior ocular segment illumination light source 32a, a reflex measurement light source 33a, an XY direction detection light source 35a, a kerato-ring-shaped index projection light source 36, and a Z direction detection.
  • the light source 38a is connected via a driver (drive mechanism) for performing lighting control corresponding to each light source 38a, and the light emission of each of these light sources is appropriately controlled.
  • control unit 21 is connected to a switching drive unit 31s of an index switching unit 31d (see FIG. 3), which will be described later, and the visual target held in the turret unit 31r (see FIG. 3) of the index switching unit 31d.
  • the switching drive unit 31s is controlled to be switched.
  • control unit 21 drives and controls the target focusing mechanism 31D to appropriately move a focusing lens 31h (see FIG. 3) to be described later, and moves the index to appropriately move the index unit 33U (see FIG. 3).
  • the mechanism 33D is driven and controlled, and the index focusing mechanism 34D is driven and controlled to appropriately move the focusing lens 34e (see FIG. 3).
  • control unit 21 drives and controls a drive unit (not shown) in order to adjust the relative posture and the integral posture of a pair of lenses in a VCC lens 31k (see FIG. 3) described later. Further, the control unit 21 drives and controls the shutter 32c so that a shutter 32c (see FIG. 3) described later is switched between an open state and a closed state.
  • the eye refractive power measurement apparatus 10 includes a focus determination circuit 22 and an alignment determination circuit 23 in addition to the control unit 21 described above.
  • An imaging device 32g is connected to the control unit 21, and a signal based on light reception of the imaging device 32g, that is, an anterior eye image E ′ (see FIG. 6) of the eye E to be examined, or eye refractive power measurement described later.
  • (Ref measurement) ring-shaped index image (its image), kerato-ring-shaped index image (its image), XY alignment index light bright spot image (its image), Z direction detection bright spot image (its image) As a signal is transmitted.
  • control part 21 is connected to the display part 14, produces
  • the control unit 21 is connected to the shutter 32c and drives and controls the shutter 32c as described above.
  • the control unit 21 is connected to the drive unit 12 (the X driver 12d, the Y driver 12e, and the Z driver 12f), and appropriately controls the drive unit 12 as described above to control the base body 11 with respect to the apparatus main body unit. 13 is moved appropriately.
  • the control unit 21 appropriately executes each operation described above based on an operation on the display unit 14 or according to a program stored in the storage unit 21a.
  • the focusing determination circuit 22 Based on the detection signal from the image sensor 32g, the focusing determination circuit 22 causes the optical configuration (device main body 13) of the eye refractive power measurement device 10 to be described later to the fundus oculi Ef (see FIG. 3) of the eye E to be examined. It is detected whether or not it is in focus, that is, whether or not the amount of deviation in the front-rear direction (Z-axis direction) is within an allowable range.
  • this focus determination circuit 22 for determining the focus (deviation amount), a keratling index image (its image) formed by a later-described keratling index projection light source 36 acquired by the image sensor 32g, and a later-described The Z direction detection bright point mark (image thereof) formed by the Z direction detection parallel projection system 38 is used. Then, the focus determination circuit 22 outputs the detection result (the signal) to the control unit 21. Then, the control unit 21 moves the apparatus main body 13 in the Z-axis direction (front-rear direction) with respect to the base 11 based on the detection result (the signal) from the focus determination circuit 22, and the focus determination circuit 22.
  • the Z alignment can be automatically performed by performing the movement until the signal indicating the completion of focusing (indicating that the amount of deviation is within the allowable range) is received.
  • the alignment determination circuit 23 determines the relationship between the main optical axis O1 of the optical configuration (apparatus main body 13) of the eye refractive power measuring apparatus 10 described later and the optical axis of the eye E to be examined. This is to detect whether or not the amount of deviation in the XY direction is within an allowable range.
  • the amount of deviation can be represented by, for example, the amount of deviation in the left-right direction (X-axis direction) and its direction, and the amount of deviation in the up-down direction (Y-axis direction) and its direction.
  • This alignment determination circuit 23 uses a signal of an XY alignment index image (bright spot image) (its image) formed by an XY alignment light projection optical system 35 (described later) acquired by the image pickup device 32g to determine the shift amount. Then, the alignment determination circuit 23 outputs the detection result (the signal) to the control unit 21. Then, the control unit 21 moves the apparatus main body 13 in the X-axis direction (left-right direction) and the Y-axis direction (up-down direction) with respect to the base 11 based on the detection result (the signal) from the alignment determination circuit 23. XY alignment can be automatically performed by performing the movement until a signal indicating that the amount of deviation is within the allowable range is received from the alignment determination circuit 23.
  • XY alignment can be automatically performed by performing the movement until a signal indicating that the amount of deviation is within the allowable range is received from the alignment determination circuit 23.
  • the apparatus main body 13 is provided with the configuration of the optical system in the eye refractive power measuring apparatus 10 inside the housing 13a that forms the outer shape.
  • the eye refractive power measuring apparatus 10 is capable of measuring the optical characteristics (eye characteristics) of the eye E.
  • the eye refractive power spherical power, astigmatism power, astigmatism
  • Axial angle etc. and the shape of the cornea Ec of the eye E to be examined can be measured.
  • the eye refractive power measuring apparatus 10 can measure the eye refractive power of the eye E and the shape of the cornea Ec by objective measurement (objective measurement function), and can also measure the eye refractive power of the eye E. It is possible to measure by awareness measurement (awareness measurement function).
  • the subjective measurement is based on what the subject himself / herself felt by asking the subject how he / she looks, etc., and the objective measurement is based on what the subject felt It is to measure without. And in the eye refractive power measuring apparatus 10, the above-described measurement is made possible by the configuration of the optical system in the apparatus main body 13 (the housing 13a).
  • the eye refractive power measuring apparatus 10 includes a target projection optical system 31, an anterior ocular segment observation optical system 32, a reflex measurement projection optical system 33, a reflex measurement light receiving optical system 34, and an XY alignment light projection optical system. 35.
  • the target projection optical system 31 projects a target (fixed target) for fixation on the fundus oculi Ef of the subject eye E in order to fixate and cloud the subject eye E. Further, the target projection optical system 31 projects a target (a subjective target) for gazing at the subject on the fundus oculi Ef of the eye E in order to ask the subject how to look in order to perform subjective measurement. To do.
  • the anterior ocular segment observation optical system 32 observes the anterior ocular segment (cornea Ec) of the eye E to be examined.
  • the reflex measurement projection optical system 33 uses a pattern light beam (measurement light) as a ring-shaped index for eye refractive power measurement (ref measurement) and a fundus oculi Ef of the eye E to be examined. Project to.
  • the reflex measurement light receiving optical system 34 causes the imaging element 32g to receive the eye refractive power measurement (reflective measurement) ring index reflected from the fundus oculi Ef of the eye E.
  • the reflex measurement projection optical system 33 and the reflex measurement light receiving optical system 34 together with the anterior ocular segment observation optical system 32 and the later-described keratring-shaped index projection light source 36 constitute a corneal shape / eye refractive power measurement optical system.
  • the XY alignment light projection optical system 35 projects the index light toward the eye E to detect the alignment state in the XY direction.
  • the target projection optical system 31 includes a target light source 31a, a color correction filter 31b, a collimator lens 31c, an index switching unit 31d, a half mirror 31e, a relay lens 31f, a mirror 31g, a focusing lens 31h, and a relay on the optical axis O2.
  • the index switching unit 31d switches the target to be projected onto the fundus oculi Ef of the eye E to be examined (presented on the eye E) by the target projection optical system 31, and in the first embodiment, the turret unit 31r and the switching drive unit. 31s.
  • the turret portion 31r is provided so as to be rotatable about a rotation shaft 31t, and supports a plurality of targets when viewed in the rotation direction. And the turret part 31r can position any one of a plurality of supported targets on the optical axis O2 by rotating around the rotation axis 31t.
  • the switching drive unit 31s is driven under the control of the control unit 21 (see FIG.
  • each target is transmitted through the light (light beam) emitted from the target light source 31a and corrected by the color correction filter 31b, so that the eye E of the eye E to be examined by the target projection optical system 31 to be described later is transmitted. Presentation to the fundus oculi Ef is possible.
  • the turret unit 31r is a landscape chart 31u as a target for fixation (fixation target) and a target (a subjective target) for causing the subject to gaze for subjective measurement.
  • the grid chart 31v is supported.
  • the landscape chart 31u is a visual target (fixed visual target) for causing the subject to gaze for fixation, and indicates a landscape including a portion that is easy to gaze.
  • the grid chart 31v is a so-called Amsler chart having a grid pattern as shown in FIG. 4, and is a grid as a subjective measurement that allows the subject to check how the grid pattern looks.
  • a chart test (Amsler chart test) is performed.
  • the grid chart 31v (Amsler chart) transmits light (light flux) emitted from the target light source 31a and corrected by the color correction filter 31b at a lattice pattern.
  • the lattice-shaped pattern portions are bright and the other portions are dark.
  • the grid chart 31v (Amsler chart) transmits the light described above at a place other than the lattice-like pattern so that the place of the lattice-like pattern is dark and the other places are bright. It may be.
  • the grid chart 31v is configured by arranging 20 grids (squares) in the vertical and horizontal directions.
  • one central gazing point D1 is provided at the center position, and four peripheral gazing points (D2 to D5) are provided so as to surround the central gazing point D1.
  • the four peripheral gazing points are provided at positions shifted by five grids (5 squares) in the vertical and horizontal directions from the central gazing point D1 (center position).
  • the upper right one is the peripheral gazing point D3
  • the lower left one is the peripheral gazing point D4
  • the lower right one is the peripheral gazing point D5.
  • the peripheral gaze point D2 is located at the center position of the upper left divided area.
  • the peripheral gazing point D3 is located at the center position of the upper right divided area
  • the peripheral gazing point D4 is located at the center position of the lower left divided area
  • the peripheral gazing point D5 is located at the center position of the lower right divided area. positioned.
  • the lattice-like pattern looks distorted, partially missing, or partially blurred. If it is determined that there is a possibility of a disease including the center (macular region) of the retina (fundus) Ef in the eye E to be watched or a surrounding disease.
  • the turret unit 31r supports a VA (Visual Accuracy) chart as a visual target (a subjective visual target) for making the subject gaze for the subjective measurement.
  • VA chart is a subjective optotype for performing visual acuity tests by asking the subject how to look (subjective measurement), and letters such as alphabets and hiragana, etc. that have a prescribed size for each visual acuity, Rings etc. are written.
  • the turret unit 31r includes a polarization red green (R & D) test chart, a precision stereoscopic test chart, a stereoscopic test chart, a cross oblique test chart, an unequal image test chart, It is possible to support one or more of the rotating oblique test charts and the like.
  • the landscape chart 31u indicating the landscape is used as the fixation target.
  • the target chart may be any target that allows the subject to gaze for fixation, and is limited to the configuration of the first embodiment. Is not to be done.
  • the target light source 31a is a light source for projecting a target supported by the turret unit 31r and positioned on the optical axis O2 onto the eye E.
  • the target light source 31a is a white light source. LEDs are used.
  • the focusing lens 31h is movable along the optical axis O2 of the target projection optical system 31 by the target focusing mechanism 31D so as to fixate and cloud the eye E.
  • the target focusing mechanism 31D is driven under the control of the control unit 21 (see FIG. 2) to move the focusing lens 31h to an arbitrary position on the optical axis O2.
  • a pair of lenses can rotate independently, and both lenses rotate in opposite directions to change the astigmatism power, and both lenses are integrated in the same direction. Astigmatism axis angle is changed by being rotated.
  • the VCC lens 31k is driven by a drive unit (not shown) under the control of the control unit 21 (see FIG. 2), thereby adjusting the astigmatism power and the astigmatic axis angle in the astigmatism examination.
  • the positions where the dichroic filter 31p and the objective lens 31q are provided are on the main optical axis O1 in the anterior ocular segment observation optical system 32 (optical configuration of the eye refractive power measurement device 10). . For this reason, in the eye refractive power measuring apparatus 10, when performing the measurement, the eye E of the subject whose face is fixed by the chin rest 15 and the forehead holder 16 is positioned on the main optical axis O1. It becomes.
  • a glare light source 31w is provided on the optical axis O2 ′.
  • the optical axis O2 ′ is obtained by extending the optical axis O2 from the half mirror 31e in the target projection optical system 31 from the half mirror 31e through the relay lens 31f to the mirror 31g.
  • the glare light source 31w is for projecting glare light onto the eye E to which the visual target is presented by the visual target projection optical system 31, and an LED is used in the first embodiment.
  • the glare light source 31w is turned on under the control of the control unit 21 (see FIG. 2) when performing a glare test for determining whether or not the eye E has a cataract.
  • the glare luminous flux emitted from the glare light source 31w passes through the half mirror 31e and travels on the optical axis O2 of the target projection optical system 31, and the eye to be examined is similar to the target luminous flux described later. Proceed to E.
  • the target projection optical system 31 white light is emitted from the target light source 31a, and the white light is changed to a desired color by the color correction filter 31b, and then converted into a parallel light beam by the collimator lens 31c. Then, the target light beam) is transmitted through the optical target O2 and the target luminous flux. In the target projection optical system 31, the target light beam is reflected by the half mirror 31e, passed through the relay lens 31f, then reflected by the mirror 31g and advanced to the focusing lens 31h.
  • the target light beam passes through the focusing lens 31h, the relay lens 31i, the field lens 31j, and the VCC lens 31k, is reflected by the mirror 31m, passes through the dichroic filter 31n, and passes to the dichroic filter 31p. And proceed. Then, in the target projection optical system 31, the target light flux is reflected by the dichroic filter 31p onto the main optical axis O1 in the anterior ocular segment observation optical system 32, and is advanced to the eye E through the objective lens 31q.
  • the target positioned on the optical axis O2 by the index switching unit 31d is used as the main in the anterior ocular segment observation optical system 32 (optical configuration of the eye refractive power measurement apparatus 10). It can be presented (projected) to the eye E on the optical axis O1.
  • the grid chart 31v when the grid chart 31v (see FIG. 4) is positioned on the optical axis O2 of the target projection optical system 31, the grid chart 31v has a predetermined size and the eye to be examined.
  • the grid chart 31v is presented to the subject eye E in a state equivalent to that provided at a position 30 to 40 cm away from E. Further, in the target projection optical system 31, the size of the grid chart 31v presented to the eye E can be reduced. In this target projection optical system 31, the size of the grid chart 31v to be presented is reduced by detachably providing a mask member on the optical path or on the turret part 31r of the index switching part 31d.
  • a plurality of grid charts 31v having different sizes may be provided in advance in the turret part 31r of the index switching part 31d.
  • the optotype projection optical system 31 presents an optotype presenting optical system that presents an Amsler chart (grid chart 31v) composed of a lattice pattern as a subjective target to be gazed at the eye E for subjective measurement. Function as.
  • the target projection optical system 31 fixes the subject's line of sight by causing the subject to gaze at the target luminous flux as the fixation target projected on the eye E through the landscape chart 31u as the fixation target. .
  • the target projection optical system 31 moves the focusing lens 31h from a state in which the subject is gazing as a fixation target to a position where focus is not achieved, thereby bringing the eye E into a cloudy state.
  • the target projection optical system 31 causes the subject to pay attention to the target luminous flux as the subjective target projected onto the eye E through the chart (grid chart 31v, etc.) as the subjective target. Performs subjective measurement according to the subjective target.
  • the case where the grid chart 31v is used in the awareness measurement will be described in detail later.
  • the anterior ocular segment observation optical system 32 includes an anterior ocular segment illumination light source 32a, and a half mirror 32b, a shutter 32c, a relay lens 32d, a dichroic filter 32e, an imaging lens 32f, and an image sensor 32g on the main optical axis O1.
  • the objective projection optical system 31, the objective lens 31q, and the dichroic filter 31p are shared.
  • the image pickup device 32g is a two-dimensional solid-state image pickup device, and a CCD (charge coupled device) image sensor is used in the first embodiment.
  • the anterior ocular segment illumination light source 32a is a light source for illuminating the anterior segment (cornea Ec) of the eye E to be examined.
  • a plurality of anterior ocular segment illumination light sources 32a are provided so as to surround a later-described kerat ring pattern 37 at the end of the apparatus main body 13 on the subject side in the front-rear direction (positive side in the Z-axis direction). (Only two are shown).
  • Each anterior segment illumination light source 32a is lit to directly illuminate the anterior segment (cornea Ec) of the eye E to be examined.
  • the anterior ocular segment observation optical system 32 illuminates the anterior ocular segment (cornea Ec) of the eye E with the illumination luminous flux emitted from each anterior ocular segment illumination light source 32a, and the illumination luminous flux reflected by the anterior ocular segment. Obtained with the objective lens 31q. At this time, in the anterior ocular segment observation optical system 32, the optical path on the main optical axis O1 is opened with the shutter 32c opened. In the anterior ocular segment observation optical system 32, the reflected illumination light beam passes through the objective lens 31q, passes through the dichroic filter 31p and the half mirror 32b, passes through the relay lens 32d and the dichroic filter 32e, and then forms an image pickup element 32g ( An image is formed on the light receiving surface.
  • the imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2).
  • the control unit 21 displays an image of the anterior segment (cornea Ec) on the display unit 14 (see FIG. 1) based on the input image signal (see FIG. 6). Therefore, in the anterior ocular segment observation optical system 32, an image of the anterior ocular segment (cornea Ec) can be formed on the image sensor 32g (its light receiving surface), and an image of the anterior ocular segment (the anterior segment) is displayed on the display unit 14.
  • the eye image E ′) can be displayed.
  • the reflex measurement projection optical system 33 includes a reflex measurement light source 33a, a collimator lens 33b, a conical prism 33c, a reflex measurement ring 33d, a relay lens 33e, a pupil ring 33f, a field lens 33g, and a perforated prism 33h on the optical axis O3. It has a rotary prism 33i and shares the target projection optical system 31, the dichroic filter 31n, the dichroic filter 31p, and the objective lens 31q.
  • the reflex measurement light source 33a and the pupil ring 33f are disposed at an optically conjugate position, and the reflex measurement ring 33d and the fundus oculi Ef of the eye E are disposed at an optically conjugate position.
  • the reflex measurement light source 33a, the collimator lens 33b, the conical prism 33c, and the reflex measurement ring 33d constitute an index unit 33U.
  • This index unit 33U is optical axis O3 of the reflex measurement projection optical system 33 by the index movement mechanism 33D. It is possible to move integrally along.
  • the light beam emitted from the reflex measurement light source 33a is converted into a parallel light beam by the collimator lens 33b, and proceeds to the reflex measurement ring 33d via the conical prism 33c.
  • the luminous flux passes through a ring-shaped pattern portion formed on the reflex measurement ring 33d and becomes a pattern luminous flux as a ring-shaped index for eye refractive power measurement (reflective measurement).
  • the pattern light beam travels through the relay lens 33e, the pupil ring 33f, and the field lens 33g to the perforated prism 33h, and is reflected by the reflecting surface of the perforated prism 33h to be a rotary prism.
  • the reflex measurement projection optical system 33 the pattern light flux is reflected by the dichroic filter 31n and then by the dichroic filter 31p, so that the anterior ocular segment observation optical system 32 (the optical configuration of the eye refractive power measurement device 10) is reflected. It advances on the main optical axis O1.
  • the pattern light beam is imaged on the fundus oculi Ef of the eye E by the objective lens 31q.
  • the reflex measurement projection optical system 33 measures the eye refractive power (reflective measurement) as the measurement light on the main optical axis O1 in the anterior ocular segment observation optical system 32 (the optical configuration of the eye refractive power measurement apparatus 10).
  • the pattern luminous flux of the ring-shaped index can be projected toward the fundus oculi Ef of the eye E to be examined.
  • the reflex measurement projection optical system 33 is provided with a kerato-ring type index projection light source 36 on the front side of the objective lens 31q.
  • the kerato-ring-shaped index projection light source 36 is set to a predetermined distance from the eye E (cornea Ec) on the kerato-ring (corneal shape measurement ring) pattern 37, and is the main optical axis O1 of the anterior ocular segment observation optical system 32. Concentric with respect to. As shown in FIG.
  • the kerato ring pattern 37 has a plate-like shape as a whole, a center hole 37a centered on the main optical axis O1, and a plurality of slits 37b presenting an annular shape at a concentric position with respect to the main optical axis O1. And a transmission hole 37c paired at the same position from the main optical axis O1.
  • the center position of the center hole 37a coincides with the main optical axis O1, and the objective lens 31q is exposed from the center hole 37a.
  • the kerato-ring index projection light source 36 is provided corresponding to the slit 37b of the kerat ring pattern 37, and passes through the corresponding slit 37b to the eye E (cornea Ec) as a light beam (measurement light) as a kerat-ring index. ).
  • the luminous flux is projected onto the cornea Ec of the eye E, thereby forming a kerato-ring index on the cornea Ec.
  • the kerato-ring-like index (its luminous flux) is reflected by the cornea Ec of the eye E to be imaged on the image sensor 32g by the anterior ocular segment observation optical system 32 described above. For this reason, in the anterior ocular segment observation optical system 32, the display unit 14 can display an image (image) of the kerato-ring-like index so as to overlap the image of the anterior ocular segment (cornea Ec).
  • the reflex measurement projection optical system 33 is provided with a Z direction detection parallel projection system 38 on the rear side of the kerato ring pattern 37.
  • a Z-direction detection light source 38a and a condenser lens 38b are provided corresponding to a pair of transmission holes 37c (see FIG. 5) of the kerato ring pattern 37.
  • the Z-direction detection parallel projection system 38 condenses the luminous flux emitted from each Z-direction detection light source 38a by the corresponding condenser lens 38b, and passes through the corresponding transmission hole 37c (see FIG. 5) of the kerato ring pattern 37.
  • This Z-direction detection parallel projection system 38 uses the formed Z-direction detection luminescent spot in combination with the above-described kerato-ring-like index formed by the kerato-ring-like index projection light source 36 so that it can be used in the front-back direction (Z-axis direction). Adjustment of the position of the lens, so-called Z-direction alignment is possible. For this reason, the examiner can perform the Z alignment by moving the apparatus main body 13 so that the relative positional relationship between the Z-direction detection luminescent spot and the kerato-ring-like index is appropriate. .
  • the focus determination circuit 22 uses the signal from the image sensor 32g based on the Z-direction detection luminescent spot and the kerato-ring-like index, so that the eye E The amount of misalignment in the Z-axis direction of the apparatus main body 13 is obtained, and the control unit 21 controls the Z driver 12f in accordance with the amount of misalignment so that the apparatus main body 13 is appropriately moved in the Z-axis direction to perform XY alignment. .
  • the ref measurement light receiving optical system 34 includes, on the optical axis O4, a hole 34a of the perforated prism 33h, a field lens 34b, a mirror 34c, a relay lens 34d, a focusing lens 34e, and a mirror 34f.
  • the system 31, the objective lens 31q, the dichroic filter 31p and the dichroic filter 31n are shared, the reflex measurement projection optical system 33 and the rotary prism 33i are shared, and the anterior ocular segment observation optical system 32, the dichroic filter 32e, and the imaging lens 32f And the image sensor 32g is shared.
  • the focusing lens 34e is movable along the optical axis O4 of the reflex measurement light receiving optical system 34 by an index focusing mechanism 34D.
  • the index focusing mechanism 34D appropriately moves the focusing lens 34e to focus on the anterior segment (cornea Ec) of the eye E under the control of the control unit 21 (see FIG. 2).
  • the pattern reflected light beam guided to the fundus oculi Ef by the reflex measurement projection optical system 33 and reflected by the fundus oculi Ef is collected by the objective lens 31q, reflected by the dichroic filter 31p, and then dichroic.
  • the light is reflected by the filter 31n and travels to the rotary prism 33i.
  • the reflected pattern reflected light beam travels through the rotary prism 33i to the hole 34a of the holed prism 33h and passes through the hole 34a.
  • the pattern reflected light beam that has passed through the hole 34a is reflected by the mirror 34c after passing through the field lens 34b, and is advanced to the focusing lens 34e via the relay lens 34d.
  • the pattern reflected light beam that is, the image formation position of the reflex measurement ring-shaped index is on the image sensor 32g (its light receiving surface) on the optical axis O4 of the focusing lens 34e. The position is adjusted.
  • the pattern reflected light beam passes through the focusing lens 34e, is reflected by the mirror 34f, and is reflected by the dichroic filter 32e, whereby the anterior ocular segment observation optical system 32 (eye refractive power measurement).
  • the optical axis of the apparatus 10 In the reflex measurement light receiving optical system 34, a pattern reflected light beam, that is, a reflex measurement ring-shaped index is imaged on the image sensor 32g (its light receiving surface) by the imaging lens 32f.
  • the imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2).
  • the control unit 21 causes the display unit 14 (see FIG. 1) to display an image of the ring index for reflex measurement based on the input image signal.
  • the reflex measurement light receiving optical system 34 can form an image of a reflex measurement ring-shaped index on the image sensor 32g (its light receiving surface), and the image sensor 32g can acquire the image data.
  • An image of the ref measurement ring-shaped index can be displayed on the display unit 14.
  • the XY alignment light projection optical system 35 includes an XY direction detection light source 35a and a condensing lens 35b.
  • the XY alignment light projection optical system 35 shares the anterior ocular segment observation optical system 32 and half mirror 32b, and the target projection optical system 31 and dichroic filter. 31p and the objective lens 31q are shared.
  • the XY direction detection light source 35a is a spot-like light source that forms an XY alignment index light beam, and an LED is used.
  • the XY alignment index light beam from the XY direction detection light source 35 a is condensed by the condenser lens 35 b and then reflected by the half mirror 32 b, so that the anterior ocular segment observation optical system 32 ( It advances on the main optical axis O1 of the optical configuration of the eye refractive power measuring apparatus 10).
  • the XY alignment index light beam travels to the objective lens 31q through the dichroic filter 31p, and is projected as an XY alignment index light beam toward the cornea Ec of the eye E through the objective lens 31q. To do.
  • the XY alignment index light beam projected toward the eye E (cornea Ec) is reflected by the cornea Ec of the eye E, and is used as an XY alignment index image on the image sensor 32g by the anterior ocular segment observation optical system 32. A bright spot image is projected.
  • the XY alignment light projection optical system 35 enables adjustment of the position in the XY direction, so-called XY alignment, by using the bright spot image as the formed XY alignment index image. Therefore, the examiner can perform the XY alignment by moving the apparatus main body 13 so that the bright spot image as the XY alignment index image is positioned within the set alignment mark.
  • the alignment determination circuit 23 obtains the amount of deviation in the X axis direction and the Y axis direction of the apparatus main body 13 with respect to the eye E from the position of the XY alignment index image,
  • the control unit 21 controls the X driver 12d and the Y driver 12e according to the amount of deviation, thereby moving the apparatus main body 13 in the XY direction to perform XY alignment.
  • the anterior ocular segment illumination light source 32a is turned on and an image of the anterior ocular segment (cornea Ec) is displayed on the display unit 14.
  • the apparatus main body 13 is appropriately moved with respect to the base 11, and the vertical direction (Y-axis direction), left-right direction (X-axis direction), and front-back direction (Z Axial alignment).
  • the eye refractive power measuring device 10 turns on the light source 33a for the reflex measurement projection optical system 33, and the pattern light flux of the ring-shaped index for the eye refraction power measurement (reflective measurement) is received on the main optical axis O1.
  • the reflex measurement ring-shaped index reflected by the fundus oculi Ef is imaged on the image sensor 32 g by the reflex measurement light receiving optical system 34.
  • the imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2).
  • the control unit 21 causes the display unit 14 (see FIG.
  • the control unit 21 based on the image displayed on the display unit 14 (image signal from the image sensor 32 g), the spherical power as the eye refractive power from the image of the ring index for reflex measurement projected onto the fundus oculi Ef. Measure cylinder power and shaft angle. The details of the measurement of the spherical power, the cylindrical power, and the shaft angle as the eye refractive power are well known and will not be described.
  • the keratring index projection light source 36 of the reflex measurement projection optical system 33 is turned on, and the keratling index is projected onto the cornea Ec of the eye E with the main optical axis O1.
  • the keratoling index reflected by the cornea Ec of the eye E is imaged on the image sensor 32 g by the anterior ocular segment observation optical system 32.
  • the imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2).
  • the control unit 21 causes the display unit 14 (see FIG. 1) to display an image of the keratoling index based on the input image signal.
  • the control unit 21 measures the shape of the cornea Ec from the image of the kerato-ring index projected on the cornea Ec based on the image displayed on the display unit 14 (image signal from the imaging element 32g). Since the details of the measurement of the shape of the cornea Ec are known, the description thereof is omitted. For this reason, in the eye refractive power measuring apparatus 10, the kerato-ring type index projection light source 36 of the reflex measurement projection optical system 33 directs another measurement light different from the measurement light for measuring the eye refractive power toward the eye E to be examined.
  • the anterior eye portion observation optical system 32 functions as an eye characteristic measurement light receiving optical system that receives reflected light from the eye E of other measurement light.
  • the control unit 21 performs measurement of the eye refractive power and measurement of the corneal shape.
  • the control part 21 stores a calculation result etc. in a memory
  • the eye refractive power measuring apparatus 10 can measure the eye refractive power (spherical power, astigmatism power, astigmatism axis angle, etc.) of the eye E and the shape of the cornea Ec of the eye E.
  • the eye refractive power measuring apparatus 10 the above-described operation is performed on both eyes of the subject so that the eye refractive power (spherical power, astigmatic power, astigmatic axis angle, etc.) of both eyes and the cornea.
  • the shape of Ec can be measured.
  • the eye refractive power measuring apparatus 10 performs the above-described measurement of the eye E without covering the eye on the opposite side of the eye E to which the subject is performing measurement or meditating the eye. It can be carried out.
  • the target projection optical system 31 causes the subject to pay attention to the target light beam as the subjective target projected onto the subject's eye E, thereby responding to the subjective target. Awareness measurement can be performed.
  • the eye refractive power measurement apparatus 10 can cause the subject to gaze at the target light flux that has passed through the grid chart 31v (Amsler chart) (see FIG. 4) as a chart as a subjective visual target, and uses this grid chart 31v. Can perform subjective measurement (grid chart test).
  • FIG. 6 shows the display contents on the display unit 14 (display surface 14a) in the scene where the subjective measurement using the grid chart 31v is performed after the objective measurement is performed.
  • the anterior eye part of the eye E is displayed on the display surface 14a of the display unit 14 as shown in FIG.
  • various symbols are displayed as icons that enable a selection (switching) operation by touching using the function of the touch panel in the display unit 14.
  • the measurement result 41 shows a reflex measurement result 41a indicating each value related to the measured eye refractive power, a kerato measurement result 41b indicating each value related to the shape of the measured cornea Ec, and a visual target.
  • a visual target power 41c indicating the power of the eye and a visual acuity 41d indicating each numerical value relating to the visual acuity of the eye E to be examined are shown.
  • one measurement result 41 is displayed on each of the left and right sides, but the measurement result 41 shows the measurement result of the right eye E when viewed from the front, and the right side when viewed from the front. Shows the measurement result of the left eye E.
  • the objective awareness switching symbol 42 As the various symbols to be displayed, in the first embodiment, the objective awareness switching symbol 42, the measurement mode selection symbol 43, the chart switching symbol 44, the result display symbol 45, and the print execution symbol 46 are set. ing.
  • the other consciousness switching symbol 42 is used to switch between performing the above-mentioned consciousness measurement and performing consciousness measurement.
  • the objective awareness switching symbol 42 is a scene where subjective measurement is being performed. Therefore, when touched, the subjective awareness switching symbol 42 switches from subjective measurement to objective measurement.
  • the measurement mode selection symbol 43 is used to select one of a reflex mode for measuring eye refractive power, a kerato mode for measuring the shape of the cornea Ec, and a reflex kerato mode for measuring both in objective measurement. is there. Since the measurement mode selection symbol 43 is used to select a measurement to be performed in the objective measurement, the measurement mode selection symbol 43 has no particular function in the scene shown in FIG.
  • the chart switching symbol 44 is used to switch the subjective visual target to be projected onto the eye E.
  • the grid chart 31v Amsler chart
  • the VA chart (not shown) are prepared as subjective visual targets. Therefore, the grid chart 31v and the VA chart are switched.
  • the chart switching symbol 44 indicates that the grid chart 31v is selected in the scene shown in FIG. 6, and is switched from the grid chart 31v to the VA chart (not shown) when touched. Become.
  • the result display symbol 45 is used to select whether or not to display the measurement result 41 by the objective measurement. Since the result display symbol 45 displays the measurement result 41 in the scene shown in FIG. 6, the display of the measurement result 41 is stopped when touched.
  • the print execution symbol 46 prints and outputs the screen displayed on the display surface 14a of the display unit 14 or the display content (measurement result) displayed as the measurement result 41.
  • the symbol 47 is displayed.
  • the grid auxiliary symbol 47 includes five gaze points (D1 to D5 (see FIG. 4)) provided on the grid chart 31v (Amsler chart) on a grid symbol imitating the grid chart 31v (Amsler chart). ), Five check marks 47a to 47e are provided.
  • the check mark 47a corresponds to the central gazing point D1
  • the check mark 47b corresponds to the peripheral gazing point D2
  • the check mark 47c corresponds to the peripheral gazing point D3
  • the check mark 47d corresponds to the peripheral gazing point D4.
  • the mark 47e corresponds to the peripheral gazing point D5.
  • Each of the check marks 47a to 47e changes the display form when touched so that it can be identified whether or not it has been touched. In the first embodiment, the color changes.
  • the eye refractive power measuring apparatus 10 performs alignment of the apparatus main body 13 with respect to the eye E as in the case of measuring the shape of the cornea Ec and the eye refractive power of the eye E. This alignment may not be performed because the grid chart test (objective measurement) is performed after the measurement of the eye refractive power of the eye E or the shape of the cornea Ec. Good. Then, in the eye refractive power measuring apparatus 10, the grid chart 31v is changed to the optical axis O2 of the target projection optical system 31 by driving the switching drive unit 31s of the index switching unit 31d and appropriately changing the rotational posture of the turret unit 31r. Position on top.
  • the target lens 31h is projected by the target focusing mechanism 31D using the measurement result. Focus adjustment is performed by appropriately moving the optical system 31 along the optical axis O2.
  • the grid chart 31v is simulated at a position where the power is suitable when looking far away in the eye E, or at a position where the power is suitable when looking near in the eye E. Move on.
  • the target lens 31h is detected by the target focusing mechanism 31D using the measurement result.
  • Focus adjustment is performed by appropriately moving the projection optical system 31 along the optical axis O2.
  • the target light source 31a is turned on in the target projection optical system 31, and the target light beam as the grid chart 31v is projected onto the eye E, and the grid chart 31v is used as the main optical axis.
  • the subject can see only a certain range from the center of the grid chart 31v.
  • the grid chart 31v when the grid chart 31v (see FIG. 4) is positioned on the optical axis O2 of the target projection optical system 31, the grid chart 31v has a predetermined size. The state is the same as that provided at a position 30 to 40 cm away from the eye E. Then, in the target projection optical system 31, the visual field Vf from the eye E is limited, and it becomes difficult to make the subject see (recognize) the entire grid chart 31v.
  • the subject can see only a certain range from the center of the grid chart 31v. It becomes.
  • a certain range (field of view Vf) from the center is a range corresponding to the center (macular portion) of the retina (fundus) Ef of the eye E to be inspected with the central gazing point D1.
  • the visual field Vf is surrounded by a circle and is a region indicated by the solid line of the grid chart 31v.
  • FIG. 7 schematically shows how the grid chart 31v can be seen using the eye refractive power measuring apparatus 10, and does not necessarily match the actual appearance.
  • a plurality of peripheral gazing points D2 to D5 are positioned at the peripheral edge of the visual field Vf in the target projection optical system 31. Then, the eye E (subject) recognizes the outside of the visual field Vf as completely dark (shown with hatching in FIG. 7).
  • the eye projection optical system 31 presents to the eye E a range corresponding to the center (macular region) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). Therefore, there is a possibility of a disease in the center (macular region) of the retina (fundus) Ef in the eye E by performing the above-described confirmation of the appearance with the central gazing point D1 as the fixation target. It can be confirmed whether or not.
  • the center of the center position is displayed on the grid chart 31v in order to enable the above-described appearance to be confirmed in a range other than a certain range from the center.
  • Four peripheral gazing points (D2 to D5) are provided so as to surround the gazing point D1.
  • the grid-like pattern looks distorted or partially missing with each peripheral gaze point (D2 to D5) gaze as a fixation target.
  • the four peripheral gazing points (D2 to D5) are provided at the center positions of the divided areas obtained by dividing the grid chart 31v into four by the vertical and horizontal lines including the central gazing point D1 (center position) as described above. ing.
  • the peripheral gazing points (D2 to D5) are located at the peripheral edge of the visual field Vf in the target projection optical system 31, the peripheral gazing point D2 is as shown in FIG. In addition, it is located at the upper left peripheral edge in the visual field Vf. Therefore, when the peripheral gaze point D2 is gazeed as a fixation target and the above-described appearance is confirmed, there is a grid chart 31v located in the lower right of the visual field Vf with respect to the peripheral gaze point D2. It will be.
  • the central gazing point D1 is positioned at the position of the peripheral gazing point D2 inward of the visual field Vf, thereby replacing the central gazing point D1 with the grid chart 31v. it can.
  • the state in which the peripheral gazing point D2 is watched is the state in which the central gazing point D1 is gazed using the grid chart 31v, and the visual field Vf is viewed with respect to the grid chart 31v. It can be considered that it is equivalent to the case of shifting to the lower right.
  • the entire lower right divided region (the portion shown with hatching) of the entire grid chart 31v is located inside the visual field Vf at that time.
  • the lower right divided region (within the visual field Vf including the same) of the entire grid chart 31v when the central gazing point D1 is gazed It can be considered that the appearance was confirmed in (). Thereby, it is possible to confirm whether or not there is a possibility of a disease in the region of the lower right region of the eye E (lower left region when the eye E is viewed from the front).
  • the peripheral gazing point D3 is gazed as a fixation target, and the above-described appearance is confirmed, thereby gazing at the central gazing point D1 as shown in FIG. 9 (b). It can be considered that the appearance of the lower left divided region (in the visual field Vf including the grid region 31v) in the entire grid chart 31v at the time of confirmation is confirmed. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the lower left region of the eye E (the lower right region when the eye E is viewed from the front).
  • the peripheral gazing point D4 is gazed as a fixation target, and the above-described appearance confirmation is performed, so that the central gazing point D1 is gazed as shown in FIG. 10 (b).
  • the appearance in the upper right divided area (within the visual field Vf including the grid area 31v) of the entire grid chart 31v at the time of checking is confirmed. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the upper right region of the eye E (the upper left region when the eye E is viewed from the front).
  • the peripheral gazing point D5 is gazed as a fixation target, and the above-described appearance is confirmed, so that the central gazing point D1 is gazed as shown in FIG. 11B.
  • the appearance in the upper left divided region (in the visual field Vf including the grid region 31v) of the entire grid chart 31v at the time of confirmation is confirmed. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the upper left region of the eye E (the upper right region when the eye E is viewed from the front).
  • the central gaze point D1 is shown while showing the entire grid chart 31v by gazing each of the four peripheral gaze points (D2 to D5) as fixation targets and confirming the appearance. It is possible to make the same determination as when the appearance is confirmed by gazing. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the entire region of the eye E, and to individually confirm which part of the eye E is likely to be a disease. it can.
  • the change of each gazing point (D1 to D5) to be gazed as the fixation target is performed according to an instruction from the examiner. That is, the examiner instructs the subject to watch one of the gazing points (D1 to D5), and the subject gazing at the gazing point (D1 to D5) instructed, The above changes are made.
  • this eye refractive power measurement device 10 when the subject gazes at the central gazing point D1, the subject feels abnormal in appearance (the lattice pattern appears distorted or partially missing).
  • the examiner touches the check mark 47a (see FIG. 6) in the grid auxiliary symbol 47, the display form is changed.
  • the check mark 47b is used when the peripheral gaze point D2 is watched
  • the check mark 47c is used when the peripheral gaze point D3 is watched. 6
  • touch the check mark 47d (see FIG. 6) when the peripheral gaze point D4 is watched, and change the display form by touching the check mark 47e (see FIG. 6) when the gaze point is the peripheral gaze point D5.
  • the eye refractive power measurement apparatus 10 when the display form of each check mark (47a to 47e) is changed, the corresponding gazing point (D1 to D5) is gazed as a fixation target and the above-described appearance It is possible to indicate that an abnormality was observed in the appearance when the confirmation was performed. For this reason, in the eye refractive power measuring apparatus 10, it is easy to confirm in which region (near the center or each divided region) of the entire grid chart 31v that the subject feels abnormal. Thus, it is possible to easily confirm which part of the eye E has a possibility of disease.
  • the grid chart test (consciousness measurement) using the grid chart 31v can be performed with respect to the right and left eye E to be examined.
  • an anterior ocular segment observation optical system 32 (eye refractive power measuring apparatus 10) is provided by a target projection optical system 31.
  • the grid chart 31v (Amsler chart) is presented (projected) to the eye E on the main optical axis O1 in the optical configuration.
  • the grid chart 31v (Amsler chart) with respect to the eye E is set to have a predetermined distance and posture as in the case of measuring the eye refractive power as objective measurement, while the grid A subjective measurement (grid chart test) using the chart 31v can be performed.
  • the said subjective measurement (grid chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
  • the grid chart 31v (on the main optical axis O1 in the anterior ocular segment observation optical system 32 (optical configuration of the eye refractive power measuring apparatus 10) is caused by the target projection optical system 31. (Amsler chart) is presented (projected) to the eye E.
  • the subject covers the eye opposite to the eye E to be measured, or the eye Awareness measurement (grid chart test) using the grid chart 31v can be performed without meditating.
  • the eye refractive power measuring apparatus 10 it can prevent that a subject becomes a hindrance to gaze, the said subjective measurement (grid chart test) can be performed appropriately, and a disease can be appropriately detected. It can be confirmed whether or not there is a possibility.
  • the grid chart 31v is provided by the target projection optical system 31 at a predetermined distance and a predetermined distance from the eye E (30 to 40 cm in the first embodiment).
  • the grid chart 31v is presented to the eye E as a state equal to the above.
  • the eye refractive power measurement apparatus 10 can perform subjective measurement (grid chart test) using the grid chart 31v while presenting the grid chart 31v (Amsler chart) to the eye E in a more appropriate state. .
  • the said subjective measurement can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
  • the target projection optical system 31 is set to a state equivalent to that in which the grid chart 31v is provided at a position having a predetermined size and a predetermined distance (30 to 40 cm) from the eye E.
  • the grid chart 31v (Amsler chart) is presented (projected) to the eye E on the main optical axis O1.
  • the subject himself / herself holds or installs it so that the distance to the Amsler chart formed of paper or electronic media is a predetermined distance. Check the appearance. For this reason, there is a possibility that individual differences may be born in the presentation distance of the Amsler chart, or that the wrong method may be used.
  • the eye projection optical system 31 moves the focusing lens 31h by the target focusing mechanism 31D using the measurement result.
  • the focus is adjusted by appropriately moving along the optical axis O2
  • the grid chart 31v is a frequency suitable for looking far away in the eye E or when looking close in the eye E
  • the subjective measurement using the grid chart 31v is performed.
  • the grid chart 31v (Amsler chart) can be used without using binocular corrected glasses. It can be shown to a subject (eye E). At this time, the eye refractive power measuring apparatus 10 can confirm the appearance while showing the grid chart 31v (Amsler chart) in a state close to the correction value of only one eye in the eye E.
  • the grid chart 31v (Amsler chart) can be shown without using glasses with binocular vision correction.
  • glasses with binocular vision correction are used, they are affected by distortion due to astigmatism and distortion of the glasses lens.
  • the eye refractive power measurement apparatus 10 can perform subjective measurement using the grid chart 31v (Amsler chart) in a state in which such other influences are excluded, and thus the subjective measurement (grid chart test). Can be performed more appropriately, and whether or not there is a possibility of a disease can be confirmed more appropriately.
  • the eye refractive power measuring apparatus 10 presents to the eye E a range corresponding to the center (macular area) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). For this reason, in the eye refractive power measuring apparatus 10, the subject's attention can be directed only to a range corresponding to the center (macular portion) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). Thereby, in the eye refractive power measuring apparatus 10, whether there is a possibility of a disease in the range corresponding to the center (macular region) of the retina (fundus) Ef in the eye E using the grid chart 31v (Amsler chart). Can be confirmed more appropriately.
  • a plurality of peripheral gazing points are provided on the grid chart 31v so as to surround the central gazing point D1 at the center position. For this reason, in the eye refractive power measuring apparatus 10, even if the grid chart 31v (Amsler chart) that can be shown to the eye E (subject) by the target projection optical system 31 is small, each peripheral note By checking the appearance while gazing at the viewpoint as a fixation target, it is possible to confirm whether or not there is a possibility of a disease in a larger range than the grid chart 31v that is actually shown.
  • a plurality of peripheral gazing points are provided at the peripheral edge of the visual field Vf in the target projection optical system 31. Therefore, in the eye refractive power measurement apparatus 10, whether or not there is a possibility of a disease in the largest range using the grid chart 31v (Amsler chart) in the visual field Vf that can be shown to the eye E (subject). Can be confirmed.
  • the grid chart 31v (Amsler chart) is formed in a square shape, and the grid chart 31v is divided into four centers by vertical and horizontal lines including the central gazing point D1 (center position).
  • Four peripheral gazing points (D2 to D5) are provided at the position. Therefore, in the eye refractive power measurement device 10, the four peripheral gazing points (D2 to D5) are gazed as fixation targets, respectively, and the appearance is confirmed to confirm the square shape defined by each peripheral gazing point. It can be confirmed whether or not there is a possibility of a disease on the grid chart 31v having an area four times as large as the region. Thereby, in the eye refractive power measuring apparatus 10, the subjective measurement using the grid chart 31v (Amsler chart) can be performed more efficiently.
  • a plurality of peripheral gazing points are provided. For this reason, in the eye refractive power measuring apparatus 10, each peripheral gazing point is gazeed as a fixation target, and subjective measurement using the grid chart 31 v (Amsler chart) is performed, so that any part of the eye E can be affected. It can be confirmed whether there is sex.
  • each gaze point (D1 to D5) is gazeed as a fixation target, and subjective measurement is performed using the grid chart 31v (Amsler chart). It is possible to check individually whether or not there is a possibility. That is, in the eye refractive power measuring apparatus 10, in the eye E to be examined, if the center gazing point D1 is gazed, the center (macular portion) portion of the retina (fundus) Ef and the peripheral gazing point D2 are gazeed, the lower right region ( When the eye E is viewed from the front, the lower left area) and the peripheral gazing point D3 are gazed, and the lower left area (lower right area when the eye E is viewed from the front) is gazed.
  • the center gazing point D1 is gazed
  • the center (macular portion) portion of the retina (fundus) Ef and the peripheral gazing point D2 are gazeed
  • the lower right region When the eye E is viewed from the front, the lower left area
  • the peripheral gazing point D3 are gazed, and
  • the eye refractive power measurement apparatus 10 confirms the presence or absence of a disease for each region (region) in the eye E according to the position and the number of gazing points provided on the grid chart 31v (Amsler chart). can do. In other words, the eye refractive power measurement apparatus 10 can perform subjective measurement using the grid chart 31v (Amsler chart) for each part (region) in the eye E according to the position and number of each gazing point.
  • the eye refractive power measuring apparatus 10 in addition to being able to confirm whether or not there is a possibility of a disease in the entire region of the eye E, in which part of the eye E there is a possibility of a disease. It can be confirmed individually.
  • the examiner responds with the grid auxiliary symbol 47.
  • the examiner By touching each of the check marks (47a to 47e) and changing the display form, it is possible to easily record which gazing point (D1 to D5) is felt abnormal when viewed. .
  • the eye refractive power measuring apparatus 10 it is easy to confirm in which region (near the center or each divided region) of the entire grid chart 31v that the subject feels abnormal.
  • the grid chart 31v (Amsler chart) transmits the light (light flux) from the target light source 31a at the location of the lattice pattern, thereby presenting the grid chart 31v to the eye E. ing. For this reason, the eye refractive power measuring apparatus 10 can present the grid chart 31v to the eye E with a simple configuration.
  • the portion of the lattice pattern is brightened by transmitting the light (light beam) from the target light source 31a, the other portion is darkened, and the outside of the visual field Vf is outside.
  • the grid chart 31v (Amsler chart) is presented to the eye E (subject) as darkness. For this reason, in the eye refractive power measuring apparatus 10, since the grid chart 31v (Amsler chart) can be shown more clearly to the eye E (subject), subjective measurement using the grid chart 31v (Amsler chart) (grid chart) Test) can be performed more appropriately, and whether or not there is a possibility of disease can be confirmed more appropriately.
  • the grid chart 31v is presented to the eye E by making the grid chart 31v transmit light (light flux) from the target light source 31a. For this reason, in the eye refractive power measuring apparatus 10, in the target projection optical system 31, another target that transmits the light (light beam) from the target light source 31a can be exchanged with the grid chart 31v. An index can be presented to the eye E. Thereby, in the eye refractive power measuring apparatus 10, usability can be improved.
  • the grid chart 31v and other targets are provided in the turret unit 31r of the index switching unit 31d, and the turret unit 31r rotates.
  • the target to be positioned on the optical axis O2 is changed by appropriately changing the posture. For this reason, in the eye refractive power measuring apparatus 10, various indexes can be presented to the eye E with a simple configuration, and usability can be improved.
  • the focus lens 31h is moved by the visual target focusing mechanism 31D using the measurement result.
  • the focus is adjusted by appropriately moving along the optical axis O2.
  • the subjective measurement using the grid chart 31v Amsler chart
  • the subjective measurement grid chart test
  • the shape of the cornea Ec of the eye E as another optical characteristic of the eye E different from the eye E can be measured. For this reason, in the eye refractive power measuring apparatus 10, usability can be improved more.
  • the subject's attention can be directed only to a narrower region. Therefore, the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) can be performed more appropriately, and it can be confirmed whether or not there is a possibility of a disease more appropriately.
  • the eye refractive power measuring apparatus 10 of Example 1 as an example of the eye refractive power measuring apparatus (optometry apparatus) according to the present invention, subjective measurement using an Amsler chart can be easily and appropriately performed. .
  • the refraction measurement projection optical system 33 and the reflex measurement light receiving optical system 34 measure the refractive power of the eye E by objective measurement.
  • An eye refractive power measuring apparatus capable of measuring the eye refractive power of the eye E regardless of measurement, and an optotype presenting optical system for presenting an Amsler chart (grid chart 31v) to the eye E
  • Any eye refractive power measuring device (optometry device) provided with the (target projection optical system 31) may be used, and the configuration of the first embodiment is not limited thereto.
  • the grid chart 31v provided in the target projection optical system 31 is larger than the visual field Vf from the eye E in the target projection optical system 31. I used it.
  • the grid chart 31v ′ As shown in FIG. 12, a grid chart having a size that can be positioned inward of the visual field Vf in advance may be used.
  • FIG. 12 shows a grid chart 31v ′ as an example of a grid chart having a size that can be positioned inside the visual field Vf.
  • the grid chart 31v ′ is positioned inside the four peripheral gazing points (D2 to D5) in the grid chart 31v of the first embodiment (see FIG. 4) so as to have a size dimension positioned inward of the visual field Vf. It has a square shape with a corresponding size, and is composed of 10 grids (cells) arranged in the vertical and horizontal directions.
  • one central gazing point D1 ′ is provided at the central position as in the grid chart 31v.
  • each peripheral gazing point (D2 to D5) is not provided. .
  • the locations corresponding to the respective peripheral gazing points (D2 to D5) in the grid chart 31v are the four corners in the lattice pattern, and thus each corner is referred to as the peripheral gazing point (D2 ′ to D5 ′).
  • the peripheral gazing points (D2 ′ to D5 ′) can be set.
  • the grid chart 31v ′ provided in the index switching unit 31d (its turret unit 31r) can be made smaller, so that the size of the entire eye refractive power measuring apparatus 10 can be reduced. It is possible to obtain the same effect as in the first embodiment.
  • the grid chart 31v ′ may be provided with peripheral gaze points (D2 to D5) similar to those of the grid chart 31v, or may be provided with a peripheral gaze point appropriately at a different position.
  • each of the peripheral gazing points and the central gazing point is formed by a plurality of light sources (such as LEDs) as long as the same effects as those of the gazing points (D1 to D5) described above can be obtained.
  • each gaze point is easy for the examiner to guide as a fixation target, or easy for the subject to easily understand and gaze as the fixation target.
  • the grid chart 31v (Amsler chart) transmits the light (light beam) from the target light source 31a at the location of the lattice pattern.
  • the grid chart 31v is presented to the eye E.
  • the grid chart (Amsler chart) is displayed on a display screen of an image forming apparatus such as a liquid crystal panel. It may be present and is not limited to the first embodiment described above.
  • the eye refractive power measurement device 10 can be configured more simply. Moreover, even if it is a case where the color of a grid chart (Amsler chart) is changed as mentioned above, it can respond easily. Furthermore, since each peripheral gazing point can be provided freely, usability can be further improved.
  • an image forming apparatus such as a liquid crystal panel in the target projection optical system 31 instead of the target light source 31a, the color correction filter 31b, the collimator lens 31c, and the index switching unit 31d.
  • the eye refractive power measurement device 10 can be configured more simply. Moreover, even if it is a case where the color of a grid chart (Amsler chart) is changed as mentioned above, it can respond easily. Furthermore, since each peripheral gazing point can be provided freely, usability can be further improved.
  • the grid chart 31v (Amsler chart) transmits the light (light beam) from the target light source 31a at the location of the lattice pattern. It is assumed that the grid chart 31v and other targets (in the first embodiment described above, the fixation target and the VA chart) can be switched by the turret unit 31r of the index switching unit 31d. However, it is only necessary to be able to switch between the grid chart 31v and another target, and is not limited to the first embodiment described above.
  • Example 1 when performing subjective measurement (grid chart test) using the grid chart 31v (Amsler chart), the screen (display content) shown in FIG. 6 is displayed on the display surface 14a of the display unit 14. .
  • the embodiment is not limited to the above-described first embodiment as long as it can perform the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart).
  • the reflex measurement projection optical system 33 and the reflex measurement light receiving optical system 34 are provided to measure the eye refractive power of the eye E by objective measurement.
  • the reflected light from the eye E is reflected.
  • the optical configuration, the arrangement of the optical members and the measurement principle may be different, and the present invention is limited to the first embodiment described above. It is not something.
  • the check mark 47b corresponds to the peripheral gazing point D2
  • the check mark 47c corresponds to the peripheral gazing point D3
  • the check mark 47d corresponds to the peripheral gaze point D4
  • the check mark 47e corresponds to the peripheral gaze point D5.
  • the check mark and the peripheral note may be set as appropriate, and is not limited to the first embodiment.
  • Example 1 the shape of the cornea Ec of the eye E can be measured, but any other optical characteristic of the eye E different from the eye refractive power can be measured. What is necessary is just and it is not limited to above-mentioned Example 1.
  • FIG. 1 the shape of the cornea Ec of the eye E can be measured, but any other optical characteristic of the eye E different from the eye refractive power can be measured. What is necessary is just and it is not limited to above-mentioned Example 1.
  • the shape of the cornea Ec of the eye E can be measured, but the eye refractive power is measured, and the Amsler chart (grid chart 31v) is used as the main optical axis.
  • Any target projection optical system (optometry apparatus) including a target presentation optical system (target projection optical system 31) to be presented to the eye E on O1 may be used, and is limited to the configuration of the first embodiment described above. is not.
  • the subjective optometry apparatus 60 of Example 2 is another example of the optometry apparatus of the present invention, and performs subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) of the present invention. It is something that can be done.
  • the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) to be executed is basically the same as the eye refractive power measurement apparatus 10 of the first embodiment.
  • the same reference numerals are used for the same components and process parts, and detailed description thereof is omitted.
  • the subjective optometry apparatus 60 can present a grid chart 31v (see FIGS. 4, 7, 12, etc.) as one of the targets 65 to the subject 101 (eye to be examined).
  • the configuration of the grid chart 31v to be presented is the same as that of the eye refractive power measuring apparatus 10 of the first embodiment, and the same reference numerals are given to the same configuration and process parts, and detailed description thereof is omitted.
  • the subjective optometry apparatus 60 can execute the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) of the present invention as described above, and also when creating glasses. It can be used to determine the refractive power of the lens. As shown in FIG. 13, the subjective optometry apparatus 60 includes an optotype presenting unit 61, a correction mechanism unit 62, a controller 63, and an optometry table 64.
  • the visual target presenting unit 61 presents various visual targets 65 to the subject's eye of the subject 101, and is supported by the column 61a so that the height position can be changed.
  • the target 65 is presented to the subject's eye for various visual function tests of the subject's eye, and the target 65 for subjective measurement is basically the eye refraction of the first embodiment.
  • FIG. 13 shows an example in which a grid chart 31v (Amsler chart) is presented, which is equivalent to a chart as a subjective visual target provided in the force measuring device 10.
  • the optotype presenting unit 61 is provided with a display screen 66 for displaying the optotype 65. On the display screen 66, as will be described later, each image including the target 65 is appropriately displayed under the control of the arithmetic control circuit 76 (see FIG. 16) (see FIGS. 17 and 18). These types can be selected by operating the controller 63.
  • the optometry table 64 is arranged between the optotype presenting unit 61 and the subject 101.
  • the optometry table 64 can be placed with a controller 63.
  • the optometry table 64 is provided with a support column 67 that can be expanded and contracted in the vertical direction, and a support arm 68 is rotatably provided on the support column 67.
  • the support arm 68 is provided so as to extend in the horizontal direction from the upper part of the support column 67, and the correction mechanism 62 is attached to the horizontal portion.
  • the correction mechanism unit 62 is provided to correct the visual function of the subject's eye of the subject 101, and the subject 101 (the subject's eye) and the optotype presenting unit 61 are connected by the support 67 and the support arm 68. It can be arranged between them (see FIG. 19 and the like).
  • the correction mechanism unit 62 includes a pair of phoropters 71 that are symmetrical on the left and right. Each phoropter 71 has a housing 71a that houses an optical member for correcting the visual function of the eye to be examined, and an optometry window 72 is provided in each housing 71a.
  • the both optometry windows 72 are provided for the subject 101 to look into the optotype presenting unit 61 (its display screen 66) through the optical member accommodated in each phoropter 71. It corresponds to the left and right eye to be examined.
  • the pair of phoropters 71 are adjustable in distance from each other, that is, can be moved closer to each other and separated from each other. For this reason, in the correction mechanism unit 62, the distance between the optical axes of the pair of optometry windows 72 can be matched to the distance between the pupils of the left and right eyes of the subject 101. Since the pair of phoropters 71 have a bilaterally symmetric structure, the structure is simply described as the phoropter 71 below.
  • each rotating disk 73 is provided with circular openings 73b at equal intervals in the circumferential direction, and gears 731G to 735G are provided on the outer peripheral portion of each rotating disk 73 (731 to 735). Is formed.
  • Each of the gears 731G to 735G is engaged with a drive gear (not shown) that is rotationally driven by a pulse motor that is driven under the control of an arithmetic control circuit 76 (see FIG. 16) described later.
  • Each rotating disk 73 is arranged in the optometry window 72 (see FIG. 13) by appropriately combining corrective lenses provided in each circular opening 73b.
  • a plurality of spherical power lenses (not shown) each having a different spherical power, for example, by 0.25 D, are fitted into the circular openings 73 b one by one.
  • a plurality of spherical power lenses (not shown) having different spherical powers 3D are fitted into the circular openings 73b one by one.
  • an astigmatic lens (not shown) is fitted into each circular opening 73b as an inspection optical element.
  • a horizontal prism for horizontal oblique inspection, a vertical prism for vertical oblique inspection, and an inspection prism which is an inspection optical element for horizontal oblique inspection with different correction powers are provided in each circular opening 73b. , Is provided.
  • the horizontal prism separates the presented target in the horizontal direction
  • the vertical prism separates the presented target in the vertical direction.
  • an inspection prism optical member: inspection vertical prism
  • a Madox rod lens or the like for oblique inspection by light is fitted and provided.
  • each rotating disk 73 at least one circular opening 73b is made transparent for performing an optometry in a state where no correction force is applied.
  • one circular opening 73b indicated by reference numeral 73bA is passed through.
  • a shielding plate 73c for preventing the subject 101 from visually recognizing each target 65 is provided in the circular opening 73b adjacent to the transparent circular opening 73bA.
  • the correction mechanism unit 62 appropriately drives the pulse motor under the control of an arithmetic control circuit 76 (see FIG. 16) described later in each phoropter 71 to rotate each rotary disk 73 appropriately.
  • an appropriately selected correction lens is arranged in each optometry window 72.
  • the arithmetic control circuit 76 adjusts the correction force in the correction mechanism unit 62 based on the operation performed by the controller 63.
  • the controller 63 is placed on the optometry table 64. As shown in FIG. 15, the controller 63 includes an operation unit 74 operated by the examiner 102 (see FIG. 13) and a display unit 75 that displays operation images indicating operation contents. In the controller 63, the lower edge 75a of the display unit 75 is rotatably attached to the edge 74a of the operation unit 74 via a shaft member.
  • the operation unit 74 is provided with various switches for operations such as setting and execution of inspection such as the dial 74b and the display changeover switch 74c.
  • the dial 74b is used to select a correction lens to be disposed in the optometry window 72 of each phoropter 71.
  • the display changeover switch 74c displays the display contents on the display unit 75 in a first display mode (see FIG. 17) for a distance inspection described later and a second display mode (see FIG. 18) for a near inspection described later. And switching).
  • a mouse 74d is connected to the operation unit 74, and operations such as setting and execution of examinations can be performed as in the case of various switches.
  • the display unit 75 is provided with a display screen 75b for displaying details of operations performed on the operation unit 74, a target 65, data relating to an inspection, and the like.
  • a first display mode for a distance inspection described later
  • a second display mode for a near inspection described later are appropriately switched. Displayed.
  • the display screen 75b has a touch panel function. By using the touch panel function, various symbols for various operations described later in the first display mode and the second display mode are used. Allows operation by touching.
  • the controller 63 includes an arithmetic control circuit 76 in addition to the operation unit 74 and the display unit 75 as shown in FIG.
  • the arithmetic control circuit 76 includes a CPU 77 and a memory unit 78.
  • the CPU 77 comprehensively controls each unit of the subjective optometry apparatus 60 by a program stored in the memory unit 78.
  • the CPU 77 (the subjective optometry apparatus 60) is connected to the operation unit 74 and the display unit 75.
  • the display unit 75 (there The operation (display) of the display screen 75b) is controlled.
  • the CPU 77 (a subjective optometry apparatus 60) is connected to the drive control unit of the optotype presenting unit 61 and the drive control unit (its pulse motor) of the correction mechanism unit 62, and the optotype presenting unit 61 and the correction mechanism unit. The operation of 62 is controlled. Further, the CPU 77 (a subjective optometry apparatus 60) is connected to a lens meter CL as an optical inspection apparatus as another optical inspection apparatus and an objective inspection apparatus RM, and measurement data from these other optical inspection apparatuses. Can be captured as optical characteristic data.
  • the measurement data in addition to the optical characteristic data of the eye of the subject and the optical characteristic data of the spectacle lens, other data related to the examination, for example, the instrument ID, the subject ID, the name of the subject, Items such as data number and measurement time are also included.
  • the memory unit 78 includes various visual targets 65 used during a distance test for examining the visual function of the subject's eye in a far-viewed state (far vision state), and a near-viewed state (near vision state).
  • the visual target data indicating each of the various visual targets 65 used in the near-field examination for examining the visual function of the eye to be examined in (1) is stored.
  • the CPU 77 displays various targets 65 in the target display unit 61 (display screen 66) and the display unit 75 (target display column 91 (see FIG. 18) described later on the display screen 75b). Is displayed as appropriate.
  • the memory unit 78 stores operation image data indicating an operation image (including a first display mode (see FIG. 17) and a second display mode (see FIG. 18) described later).
  • the memory unit 78 includes lens data DL (see FIGS. 17 and 18) indicating refractive powers such as spherical power, astigmatism power, axial angle, horizontal prism amount, and vertical prism amount of each correction lens. , Is stored.
  • the CPU 77 When the dial 74b (see FIG. 15) of the operation unit 74 is operated, the CPU 77 extracts lens data DL indicating the refractive power according to the operation position from the memory unit 78. Then, the CPU 77 sends a control signal indicating that the correcting lens having the refractive power indicated by the extracted lens data DL is arranged in the optometry window 72 (see FIG. 13) of each phoropter 71 to the drive control unit ( To the pulse motor). Thereby, in each phoropter 71 of the correction mechanism unit 62, a correction lens having a refractive power selected by operating the dial 74b is arranged in the optometry window 72. Further, the CPU 77 sends a signal indicating the lens data DL extracted from the memory unit 78 to the display unit 75 to display the lens data DL on the display screen 75b (see FIGS. 17 and 18).
  • the CPU 77 performs an operation to switch the display mode of the display unit 75 between the first display mode and the second display mode on the display changeover switch 74c (see FIG. 15) of the operation unit 74. Then, operation image data corresponding to each display mode is extracted from the memory unit 78. Then, the CPU 77 sends a signal indicating the extracted operation image data of each display mode to the display unit 75, and displays an operation image corresponding to each display mode on the display screen 75b.
  • the first display mode is a distance test for inspecting the visual function of the subject's eye in the far vision state, that is, the visual displayed on the optotype presenting unit 61 (its display screen 66) via the correction mechanism unit 62. It is displayed on the display part 75 (the display screen 75b) when inspecting by looking at the mark 65 (see FIG. 13).
  • an inspection type display field 81, an inspection details display field 82, a refractive power display field 83, a reference display field 84, and a list are displayed on the display unit 75 (its display screen 75b).
  • a display field 85, a target display field 86, an operation symbol display field 87, a dial display field 88, and an interpupillary distance display field 89 are displayed.
  • Each of these fields is stored in the memory unit 78 as image data.
  • Each of these fields also functions as various symbols as icons that enable a selection (switching) operation by touching using the function of the touch panel on the display screen 75b (display unit 75). For this reason, when the CPU 77 (arithmetic control circuit 76) receives a detection signal touched by each column displayed on the display screen 75b from the display unit 75, it extracts data corresponding to the detection signal from the memory unit 78, A signal indicating the extracted data is appropriately sent to the display unit 75 and the optotype presenting unit 61.
  • the examination type display field 81 displays the name of the examination being executed. In the example shown in FIG. 17, the chart (target) is used in the sphericity test for the distance examination.
  • the examination detailed content display field 82 displays the name of the detailed content of the examination, and in the example shown in FIG. 17, the character “right” indicating the right eye at the left end and the left eye at the right end. “Left” indicating that the data (measurement result) has been acquired by the distance measurement of subjective measurement in the middle.
  • the refractive power display field 83 includes lens data DL of the correction lens set by the correction mechanism unit 62 (each of the phoropters 71), that is, the spherical power, astigmatism power of the lens as an optical element set in each optometry window 72, and Displays optical characteristic data such as shaft angle. Since the correction lens is set by being selected by operating the dial 74b of the operation unit 74 as described above, the refractive power display field 83 displays the result of the operation performed on the dial 74b. It will be. Therefore, the CPU 77 (arithmetic control circuit 76) controls the correction mechanism unit 62 so that the optical element corresponding to the optical characteristic data displayed in the refractive power display field 83 is set in each optometry window 72.
  • the refractive power display field 83 displays items of spherical power, astigmatic power, axial angle, and addition of the refractive power of the lens as lens data DL, and the right eye of the subject 101.
  • the numerical values of the optical characteristic data set in each optometry window 72 corresponding to the left eye and the left eye are displayed for each item.
  • the reference display field 84 displays optical characteristic data that can be compared with the optical characteristic data displayed in the refractive power display field 83, and is intended to make the work of the subjective examination by the examiner 102 more efficient.
  • the reference display column 84 is provided on each of the left and right sides of the refractive power display column 83, and each displays various optical characteristic data corresponding to the right eye and the left eye of the subject 101.
  • the reference display column 84 on the left side displays measurement data taken from the objective test device RM (see FIG. 16). Is displayed below and each numerical value of the measured data is displayed for each item.
  • the reference display column 84 on the right side displays measurement data taken from the lens meter CL (see FIG. 16), and the characters “glasses” indicating the title of the measurement data are displayed on the upper row. It is displayed and the numerical values of the measurement data are displayed for each item below.
  • the list display field 85 displays a list of targets 65 that can be used in the subjective optometry apparatus 60, displays a display switching button for switching items to be displayed in the upper stage, and displays switching below the button.
  • a list of visual targets 65 in the item selected by the button is displayed.
  • the display switching button includes characters “Chart 1” and “Chart 2” as items for displaying the list of targets 65 in order from the left side, and a view that requires automatic and manual operations. Characters “manual vs. automatic” as items for displaying a list of marks 65, places where nothing is set, and targets 65 used in a near vision examination for examining the visual function of the subject's eye in the near vision state "Nearly use" as an item for displaying a list of.
  • the operation symbol display column 87 displays symbols for various operations, and is displayed at the bottom of the display screen 75b.
  • the letters “S: 0.25” as a step feed button for changing the lens power by 0.25 diopters in order from the left side, and the shielding plate are shown.
  • Characters of “shielding plate” to be set on the optometry window 72, characters of “data display” to display various data, characters of “prescription: record” to record prescription data, awareness data, objective data, prescription Data, “preset data”, “data set” characters for setting data such as naked eye data, and the like are displayed.
  • the dial display column 88 displays a dial image indicating the state of operation on the dial 74b (see FIG. 15) of the operation unit 74.
  • the interpupillary distance display column 89 displays the distance between the optical axes of the pair of optometry windows 72 (see FIG. 13) that is the distance between the pupils of the left and right eyes of the subject 101.
  • the second display mode is a visual target displayed on the display screen 75b (see FIG. 15) at the time of near vision examination for examining the visual function of the eye to be examined in the near vision state, that is, through the correction mechanism unit 62. It is displayed on the display part 75 (its display screen 75b) in order to see 65 and to perform an inspection.
  • the display unit 75 (the display screen 75b) includes an optotype presenting column 91 for presenting the optotype 65 and a correction mechanism unit 62 (the respective phoropters 71).
  • a refracting power display field 92 for displaying the lens data DL of the set correction lens is displayed. Each of these fields is stored in the memory unit 78 (see FIG. 16) as image data.
  • the optotype presenting column 91 is a place where the optotype 65 is displayed to be shown to the subject 101 (examined eye) at the time of the near examination, and displays the optotype 65 selected for the near examination. .
  • the refractive power display column 92 displays the lens data DL of the correction lens set by the left and right phoropters 71 in the correction mechanism unit 62 separately on the left and right, and as an item indicating whether it corresponds to the left or right in the upper stage. “Right” and “Left” characters are displayed. Further, the refractive power display column 92 is provided with a location indicating which of the lens data DL is displayed below the item, and a location indicating data corresponding to the location. In the example shown in FIG. 18, the refractive power display column 92 includes, in order from the outside, each lens data DL, the addition (“addition” character), the axis angle (“axis” character), and the astigmatism power (“astigmatism”). ), Spherical power (character “spherical”), horizontal prism amount H (character “prism H”), and vertical prism amount V (character “prism V”). .
  • the CPU 77 (arithmetic control circuit 76) is configured to display each target 65 (grid) in the target display unit 61 (display screen 66) and the display unit 75 of the controller 63 (target display column 91 on the display screen 75b). Chart 31v and the like) can be presented. Presentation of each target 65 (grid chart 31v, etc.) is easy because the target display unit 61 (display screen 66) and the display unit 75 (display screen 75b) are formed by a display device such as a display. It can be carried out. For this reason, the subjective optometry apparatus 60 can present the selected target 65 (grid chart 31v (Amsler chart)) in the same manner as the eye refractive power measurement apparatus 10 of the first embodiment.
  • the examiner 102 operates the display changeover switch 74c (see FIG. 15) provided in the operation unit 74 to perform the distance inspection, thereby causing the display unit 75 (the display screen 75b) to be in the first display mode. Switch to. Then, the subjective optometry apparatus 60 displays the operation image (see FIG. 17) in the first display mode on the display screen 75b (display unit 75) under the control of the CPU 77 (arithmetic control circuit 76).
  • the examiner 102 selects the distance test target 65 used for the test from the list display field 85 in the operation image in the first display mode. Then, in the subjective optometry apparatus 60, under the control of the CPU 77 (arithmetic control circuit 76), the target display column 86 (see FIG. 17) of the display unit 75 and the display screen 66 of the target presentation unit 61 (see FIG. 13). And the selected visual target 65 is displayed on each of. Therefore, the examiner 102 visually recognizes the target 65 displayed in the target display column 86, so that the target 65 displayed in the display screen 66 and the target display column 86 becomes the selected target 65. It can be confirmed whether or not they match.
  • the optotype 65 displayed on the display screen 66 of the optotype presenting unit 61 through each optometry window 72 of each phoropter 71 of the correction mechanism unit 62.
  • the examiner 102 asks the subject 101 about the appearance of the optotype 65, and operates the dial 74b of the operation unit 74 with a correction lens to be placed in each phoropter 71 (in each optometry window 72) based on the response. Switch with.
  • the examiner 102 operates the dial 74b while viewing the lens data DL. can do.
  • the visual target 65 looks good, it is possible to determine the refractive power of the lens of the spectacles to be created that appropriately corrects the visual function of the eye to be examined.
  • the subjective optometry apparatus 60 can measure the eye refractive power of the eye to be examined (the refractive power of the lens of the glasses) in the distance vision state.
  • the examiner 102 When examining the visual function of the subject's eye in the near vision state, the examiner 102 arranges the controller 63 in front of the subject 101 on the optometry table 64 as shown in FIG.
  • the display screen 75b is made to face each phoropter 71. Then, the examiner 102 selects the near vision inspection target 65 to be used for the examination from the list display column 85 to perform the near vision examination, and presses the display changeover switch 74c (see FIG. 15) provided on the operation unit 74. By operating, the display unit 75 (the display screen 75b) is switched to the second display mode. Then, the subjective optometry apparatus 60 displays the operation image (see FIG.
  • the CPU 77 calculates the distance between each phoropter 71 and the display screen 75b, and based on the distance, the size of the visual target 65 is the subject to be examined 101 (the eye to be examined). Is adjusted to a size corresponding to the visual acuity value and displayed on the display screen 75b.
  • the examiner 102 sees the visual target 65 displayed on the display unit 75 (display screen 75b) of the controller 63 through the optometry windows 72 of the phoropters 71 of the correction mechanism unit 62. Let Then, as in the distance examination, the examiner 102 asks the subject 101 about the appearance of the optotype 65 and, based on the response, arranges a correction lens to be placed in each phoropter 71 (in each optometry window 72). Switching is performed by operating the dial 74b of the operation unit 74. By repeating this until the visual target 65 looks good, it is possible to determine the refractive power of the lens of the spectacles to be created that appropriately corrects the visual function of the eye to be examined. Therefore, the subjective optometry apparatus 60 can measure the eye refractive power of the eye to be examined (the refractive power of the lens of the glasses) in the near vision state.
  • the subjective optometry apparatus 60 can perform an oblique examination for measuring the oblique degree of the eye to be examined by using a polarizing plate, a red / green filter, and a liquid crystal filter. These various inspections are the same as in the past.
  • the subjective optometry apparatus 60 can perform subjective measurement (grid chart test) using the grid chart 31v (Amsler chart). That is, in the subjective optometry apparatus 60, when performing a distance examination, the grid chart 31v (Amsler) as the target 65 is displayed on the display screen 66 of the target presenting unit 61 under the control of the CPU 77 (arithmetic control circuit 76). (Chart) is displayed. The presentation (display) of the grid chart 31v (Amsler chart) on the display screen 66 is performed by using a target light beam as a grid chart 31v (Amsler chart) whose display mode is positioned on the optical axis O2 in the target projection optical system 31.
  • the optotype presenting unit 61 cooperates with the correction mechanism unit 62 to provide a grid chart 31v (Amsler chart) as a subjective chart that causes the eye E to be watched for subjective measurement. It functions as a presentation optical system.
  • a grid as a target 65 is displayed in the target display column 91 of the display screen 75b of the display unit 75 under the control of the CPU 77 (calculation control circuit 76).
  • Chart 31v (Amsler chart) is displayed.
  • the display of the grid chart 31v (Amsler chart) on the display screen 75b (target presentation column 91) is a grid chart 31v (Amsler chart) in which the display mode is positioned on the optical axis O2 in the target projection optical system 31.
  • the target luminous flux is projected onto the eye E and the grid chart 31v is presented (projected) on the eye E on the main optical axis O1, so that the display unit 75 (the display screen 75b (target display column 91)) Therefore, it can be carried out in the same manner as in the first embodiment.
  • the display unit 75 of the controller 63 cooperates with the correction mechanism unit 62 to present a grid chart 31v (Amsler chart) as a subjective visual target that causes the eye E to be watched for subjective measurement. It functions as a sign presentation optical system.
  • the CPU 77 (calculation control circuit 76) controls the presentation of the grid chart 31v (Amsler chart) (target 65) in the target presenting optical system (the target presenting unit 61, the display unit 75 of the controller 63). Function as.
  • the grid chart 31v (Amsler chart) is basically configured in the same manner as the eye refractive power measurement apparatus 10 according to the first embodiment. The same effect can be obtained.
  • the grid chart 31v (Amsler chart) is displayed on the display screen 66 of the target presentation unit 61, or the grid in the target presentation column 91 of the display unit 75 (display screen 75b).
  • the chart 31v (Amsler chart) is displayed under the control of the CPU 77 (arithmetic control circuit 76). Therefore, the subjective optometry apparatus 60 can perform subjective measurement using a grid chart 31v (Amsler chart) with a simple configuration, whether it is a distance test or a near test.
  • the subjective optometry apparatus 60 of the second embodiment as another example of the optometry apparatus according to the present invention can easily and appropriately perform the subjective measurement using the Amsler chart.
  • an example of an image displayed on the display screen 75b in the first display mode (see FIG. 17) and the second display mode (see FIG. 18) is shown. It is only necessary to be displayed for the purpose inspection, and the latter may be displayed for the near purpose inspection, and is not limited to the above example.
  • the eye refractive power measurement device 10 as an embodiment of the eye refractive power measurement device (optometry device) according to the present invention has been described. However, on the main optical axis toward the fundus of the eye to be examined. A reflex measurement projection optical system for projecting measurement light, and a reflex measurement light reception optical system for receiving reflected light from the fundus of the measurement light passing through the main optical axis, and receiving light by the reflex measurement light reception optical system.
  • An eye refractive power measurement device for measuring the eye refractive power of the subject's eye based on an Amsler chart composed of a lattice pattern as a subjective visual target that causes the subject to gaze for subjective measurement
  • Any eye refractive power measurement device provided with a visual target presenting optical system to be presented to the eye to be examined on the main optical axis may be used, and the present invention is not limited to the above-described embodiments.
  • the eye refractive power measurement device 10 and the subjective optometry device 60 as examples of the optometry apparatus (eye refractive power measurement device) according to the present invention have been described.
  • Optometry apparatus comprising an optotype presenting optical system for presenting an Amsler chart composed of a lattice pattern as a subjective target to be watched by a subject for subjective measurement. (Refractive power measuring device), and is not limited to the above-described embodiments.
  • each peripheral gaze point is a case where the grid chart 31v (Amsler chart) that can be shown to the eye E (subject) by the target projection optical system 31 by gazing at them is small.
  • the position and the number to be provided may be set as appropriate. It is not limited to examples.
  • each gazing point (D1 to D5) is provided in advance in the grid chart 31v.
  • each target projection optical system 31 is provided with each gazing point (D1 to D5).
  • a plurality of light sources (LEDs, etc.) may be provided corresponding to the positions of the gazing points (D1 to D5), and the respective peripheral gazing points may be formed by the light sources, and the corners of the grid chart (lattice pattern) It may be formed by or other configurations, and is not limited to the above-described embodiments.
  • each gaze point is easy for the examiner to guide as a fixation target, or easy for the subject to easily understand and gaze as the fixation target.
  • each gazing point (D1 to D5) is formed by each light source
  • each check mark (47a to 47e (see FIG. 6)) of the grid auxiliary symbol 47 is touched, the corresponding light source is turned on and the other
  • By providing a function for turning off the light source it is possible to switch each gazing point (D1 to D5) as a fixation target by touching the check mark.
  • the eye E is presented with the grid chart 31v in which the grid pattern portion is white.
  • the grid chart 31v is to be presented to the eye E, for example, the color of the location of the grid pattern, such as presenting the location of the grid pattern as a red, green, or blue color as appropriate. It is good also as what can change suitably.
  • the eye refractive power measuring apparatus 10 includes a plurality of color correction filters corresponding to various colors as the color correction filter 31b in the target projection optical system 31, and among the color correction filters. This can be realized by adopting a configuration in which any one of the above can be positioned on the optical axis O2.
  • the light source which can be changed to the target light source 31a can radiate
  • a light source that emits light (luminous flux) of various colors can be realized by preparing a plurality of light sources and appropriately switching the light sources to be lit, and preparing red, green, and blue light sources. If so, light of many colors (light flux) can be emitted by appropriately combining them.
  • a liquid crystal display capable of color display is used as the optotype presenting unit 61 (display screen 66) and the display unit 75 (display screen 75b) of the controller 63. Can be realized.
  • the grid chart 31v (Amsler chart) can be shown to the eye E (subject) in various colors, for example, even if the reaction (how the subject feels) differs depending on the color It is possible to determine whether or not there is a possibility of a disease appropriately. That is, by showing the grid chart 31v (Amsler chart) of various colors to the eye E (subject), it is possible to confirm the difference in the response (how the subject feels) according to the color. In addition, by showing the grid chart 31v (Amsler chart) presented in the most highly visible color in the eye E (subject), it becomes possible to more accurately grasp the appearance felt by the subject, and more appropriately It can be determined whether or not there is a possibility of a disease.
  • the grid chart 31v (Amsler chart) is configured by arranging 20 grids (cells) in the vertical direction and the horizontal direction, respectively. If the above-mentioned objective measurement (grid chart test (Amsler chart test)) is possible, the size, the number of grids (the squares) and the overall shape should be set appropriately. What is necessary is just and it is not limited to each above-mentioned Example.
  • Eye refractive power measurement device 31 (as an example of an eye refractive power measurement device and an optometry device) 31
  • Target projection optical system 31a (as an example of a target presentation optical system)
  • Target light source 31u (As an example of another target)
  • Scene chart 31v Grid chart (as an example of an Amsler chart)
  • Anterior eye observation optical system (as an example of an eye characteristic measurement light receiving optical system)
  • Ref measurement projection optical system 34
  • Ref measurement light receiving optical system 36 (Ocular characteristics) Keratring-shaped index projection light source 60 (as an example of a measurement projection optical system) 60
  • a subjective optometry apparatus (as an example of an optometry apparatus)
  • 61 (As an example of a target presentation optical system)
  • a target presentation unit 75 (Target presentation optics) Display unit (as an example of the system)
  • E Eye to be examined Ef Fund

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

The purpose of the present invention is to provide an apparatus for measuring ocular refractive power, whereby a subjective measurement using an Amsler chart can be easily and appropriately performed. An ocular refractive power measuring apparatus (10) provided with a reflex measurement projection optical system (33) for projecting a measurement light on a main optical axis (O1) toward a fundus (Ef) of a subject eye (E), and a reflex measurement light-receiving optical system (34) for receiving light reflected by the fundus (Ef) from the measurement light traveling along the main optical axis (O1), the ocular refractive power measuring apparatus (10) measuring the ocular refractive power of the subject eye (E) on the basis of the light received by the reflex measurement light-receiving optical system (34). A visual target presentation optical system (31) is provided for presenting, to the subject eye (E) on the main optical axis (O1), an Amsler chart (31v) comprising a grid-shaped pattern as a subjective visual target to be gazed at by a subject to perform a subjective measurement.

Description

眼屈折力測定装置、検眼装置Eye refractive power measurement device, optometry device
 本発明は、被検眼の眼屈折力を測定する眼屈折力測定装置および検眼装置に関する。 The present invention relates to an eye refractive power measuring apparatus and an optometric apparatus for measuring the eye refractive power of an eye to be examined.
 一般的な眼科検査や眼屈折検査として、眼屈折力測定装置(検眼装置)を用いて被検眼の眼屈折力を測定することが知られている。その眼科検査や眼屈折検査としては、黄斑変性症等のような網膜の中心(黄斑部)を含めた疾患もしくはその周辺の疾患の可能性を確認するものがあり、その方法としてアムスラーチャートを用いることが知られている(例えば、特許文献1参照)。このアムスラーチャートは、格子状のパターンとされており、被検者に中心位置を注視させて、その格子状のパターンがどのように見えるのかを当該被検者に確認させる所謂自覚測定を行うものである。アムスラーチャートを用いた自覚測定では、格子状のパターンが歪んで見えたり一部が欠けて見えたり一部がぼやけて見えたりしている場合、注視している被検眼に網膜の中心(黄斑部)を含めた疾患もしくはその周辺の疾患の可能性があるものと判断する。 As a general ophthalmic examination or eye refraction examination, it is known to measure the eye refractive power of an eye to be examined using an eye refractive power measuring apparatus (optometry apparatus). As the ophthalmic examination and eye refraction examination, there is one that confirms the possibility of a disease including the center of the retina (macular region) such as macular degeneration or the surrounding disease, and the Amsler chart is used as the method. It is known (see, for example, Patent Document 1). This Amsler chart is a grid pattern, and it makes the subject gaze at the center position and performs what is called a subjective measurement to make the subject check how the grid pattern looks. It is. In subjective measurement using an Amsler chart, if the lattice pattern appears distorted, partially missing, or partially blurred, the center of the retina (the macula) ) Or any of the surrounding diseases.
特開2003-265412号公報Japanese Patent Laid-Open No. 2003-265412
 ところで、アムスラーチャートは、上記した自覚測定を行う場合、被検眼からの所定の距離(例えば、30~40cm)となる位置で当該被検眼(被検者)と正対させた状態で、被検者の他方の眼を完全に覆いつつ当該被検者に中心位置を注視させる必要がある。そして、このアムスラーチャートは、紙や電子媒体等で形成されている。このため、アムスラーチャートでは、被検眼からの距離および被検眼に対する姿勢の適切なものとしつつ被検眼に呈示した状態で上記した自覚測定を行うことが容易ではなく、当該自覚測定を適切に行えない虞がある。また、アムスラーチャートでは、被検者の他方の眼を完全に覆う必要があることから、被検者によっては注視することの妨げとなり、上記した自覚測定を適切に行えない虞がある。これらのことから、アムスラーチャートを用いて上記した自覚測定を行うことには改善の余地がある。 By the way, when performing the above-described subjective measurement, the Amsler chart is in a state where the subject eye (subject) is directly opposed at a predetermined distance (for example, 30 to 40 cm) from the subject eye. It is necessary to make the subject gaze at the center position while completely covering the other eye of the person. The Amsler chart is formed of paper, an electronic medium, or the like. For this reason, in the Amsler chart, it is not easy to perform the above-described subjective measurement in a state presented to the subject eye while making the distance from the subject eye and the posture with respect to the subject eye appropriate, and the subjective measurement cannot be performed appropriately. There is a fear. Further, in the Amsler chart, it is necessary to completely cover the other eye of the subject, which may hinder gaze depending on the subject, and there is a possibility that the above-described subjective measurement cannot be appropriately performed. For these reasons, there is room for improvement in performing the above-described awareness measurement using the Amsler chart.
 本発明は、上記の事情に鑑みて為されたもので、アムスラーチャートを用いた自覚測定を容易にかつ適切に行うことのできる眼屈折力測定装置(検眼装置)を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an eye refractive power measurement apparatus (optometry apparatus) capable of easily and appropriately performing subjective measurement using an Amsler chart. .
 上記した課題を解決するために、請求項1に記載の眼屈折力測定装置は、被検眼の眼底に向けて主光軸上で測定光を投影するレフ測定投影光学系と、前記主光軸を通る前記測定光の前記眼底での反射光を受光するレフ測定受光光学系と、を備え、前記レフ測定受光光学系での受光に基づいて前記被検眼の眼屈折力を測定する眼屈折力測定装置であって、自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを、前記主光軸上で前記被検眼に呈示する視標呈示光学系を備えることを特徴とする。 In order to solve the above-described problem, an eye refractive power measurement apparatus according to claim 1 includes a reflex measurement projection optical system that projects measurement light on the main optical axis toward the fundus of the subject's eye, and the main optical axis. A reflex measurement light receiving optical system that receives reflected light from the fundus of the measurement light passing through the eye, and the eye refractive power that measures the eye refractive power of the eye based on the light received by the reflex measurement light reception optical system A measuring apparatus, comprising: an optotype presenting optical system for presenting an Amsler chart made of a lattice pattern as a subjective target to be watched by a subject for subjective measurement on the subject's eye on the main optical axis It is characterized by that.
 請求項2の眼屈折力測定装置は、請求項1に記載の眼屈折力測定装置であって、前記視標呈示光学系は、前記アムスラーチャートが所定の大きさ寸法で前記被検眼から所定の距離となる位置に設けられたものと等しい状態で前記被検眼に呈示することを特徴とする。 The eye refractive power measuring device according to claim 2 is the eye refractive power measuring device according to claim 1, wherein the target presentation optical system has a predetermined size and a predetermined size from the eye to be examined. It is characterized in that it is presented to the eye to be examined in a state equal to that provided at a distance position.
 請求項3の眼屈折力測定装置は、請求項1または請求項2に記載の眼屈折力測定装置であって、前記視標呈示光学系は、前記レフ測定受光光学系での受光に基づいて測定した前記被検眼の眼屈折力に応じて、前記アムスラーチャートを前記被検眼において遠くを見るときに適した度数となる位置または近くを見るときに適した度数となる位置に移動することを特徴とする。 The eye refractive power measurement device according to claim 3 is the eye refractive power measurement device according to claim 1 or 2, wherein the target presentation optical system is based on light reception by the reflex measurement light receiving optical system. In accordance with the measured eye refractive power of the eye, the Amsler chart is moved to a position that is suitable when looking far away in the eye or a position that is suitable when looking near. And
 請求項4の眼屈折力測定装置は、請求項1から請求項3のいずれか1項に記載の眼屈折力測定装置であって、前記視標呈示光学系は、前記被検眼における網膜の中心に対応する範囲で前記アムスラーチャートを前記被検眼に呈示することを特徴とする。 The eye refractive power measurement device according to claim 4 is the eye refractive power measurement device according to any one of claims 1 to 3, wherein the optotype presenting optical system is a center of a retina in the eye to be examined. The Amsler chart is presented to the eye to be examined within a range corresponding to.
 請求項5の眼屈折力測定装置は、請求項1から請求項4のいずれか1項に記載の眼屈折力測定装置であって、前記アムスラーチャートでは、中心位置に中心注視点が設けられているとともに、前記中心注視点を取り巻いて複数の周辺注視点が設けられていることを特徴とする。 The eye refractive power measuring device according to claim 5 is the eye refractive power measuring device according to any one of claims 1 to 4, wherein a central gazing point is provided at a central position in the Amsler chart. And a plurality of peripheral gazing points are provided around the central gazing point.
 請求項6の眼屈折力測定装置は、請求項5に記載の眼屈折力測定装置であって、前記各周辺注視点は、前記視標呈示光学系により呈示された前記アムスラーチャート上での前記被検眼からの視野の周縁部に設けられていることを特徴とする。 The eye refractive power measurement apparatus according to claim 6 is the eye refractive power measurement apparatus according to claim 5, wherein each of the peripheral gazing points is the Amsler chart presented by the target presentation optical system. It is provided in the peripheral part of the visual field from the eye to be examined.
 請求項7の眼屈折力測定装置は、請求項5または請求項6に記載の眼屈折力測定装置であって、前記アムスラーチャートは、正方形状を呈し、前記周辺注視点は、前記アムスラーチャートを、前記中心注視点を含む縦線および横線により4分割した際の4つの分割領域におけるそれぞれの中心位置に設けられていることを特徴とする。 The eye refractive power measuring device according to claim 7 is the eye refractive power measuring device according to claim 5 or 6, wherein the Amsler chart has a square shape, and the peripheral gaze point is the Amsler chart. , And provided at respective center positions in four divided areas when divided into four by a vertical line and a horizontal line including the central gazing point.
 請求項8の眼屈折力測定装置は、請求項1から請求項7のいずれか1項に記載の眼屈折力測定装置であって、前記視標呈示光学系は、前記アムスラーチャートにおける格子状のパターンを描く線分を所定の色として前記被検眼に呈示すること特徴とする。 The eye refractive power measurement device according to claim 8 is the eye refractive power measurement device according to any one of claims 1 to 7, wherein the optotype presenting optical system has a lattice shape in the Amsler chart. A line segment for drawing a pattern is presented to the eye to be examined as a predetermined color.
 請求項9の眼屈折力測定装置は、請求項1から請求項8のいずれか1項に記載の眼屈折力測定装置であって、前記視標呈示光学系は、視標光源を有し、前記アムスラーチャートは、前記視標呈示光学系において前記視標光源から出射された光を透過させる部材で形成されていることを特徴とする。 The eye refractive power measurement device according to claim 9 is the eye refractive power measurement device according to any one of claims 1 to 8, wherein the visual target presenting optical system includes a visual target light source, The Amsler chart is formed of a member that transmits light emitted from the target light source in the target presentation optical system.
 請求項10の眼屈折力測定装置は、請求項9に記載の眼屈折力測定装置であって、前記視標呈示光学系は、前記アムスラーチャートとは異なる他の視標を有し、前記アムスラーチャートと前記他の視標とを切り替えて前記視標光源から出射された光が進行する光軸上に位置させることを特徴とする。 The eye refractive power measuring apparatus according to claim 10 is the eye refractive power measuring apparatus according to claim 9, wherein the target presentation optical system has another target different from the Amsler chart, and the Amsler The chart and the other target are switched and positioned on the optical axis along which the light emitted from the target light source travels.
 請求項11の眼屈折力測定装置は、請求項1から請求項8のいずれか1項に記載の眼屈折力測定装置であって、前記アムスラーチャートは、前記視標呈示光学系において画像形成装置の表示画面上に表示されて形成されていることを特徴とする。 The eye refractive power measurement device according to claim 11 is the eye refractive power measurement device according to any one of claims 1 to 8, wherein the Amsler chart is an image forming device in the target presentation optical system. It is characterized by being displayed on the display screen.
 請求項12の眼屈折力測定装置は、請求項1から請求項11のいずれか1項に記載の眼屈折力測定装置であって、さらに、前記被検眼に向けて前記主光軸上で眼屈折力とは異なる前記被検眼の他の光学特性を測定するための他の測定光を投影する眼特性測定投影光学系と、前記主光軸を通る前記他の測定光の前記被検眼からの反射光を受光する眼特性測定受光光学系と、を備えることを特徴とする。 The eye refractive power measurement device according to claim 12 is the eye refractive power measurement device according to any one of claims 1 to 11, further comprising an eye on the main optical axis toward the eye to be examined. An eye characteristic measurement projection optical system for projecting other measurement light for measuring other optical characteristics of the subject eye different from refractive power, and the other measurement light passing through the main optical axis from the subject eye. And an eye characteristic measurement light receiving optical system for receiving reflected light.
 請求項13の検眼装置は、被検眼の眼屈折力を測定する検眼装置であって、自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを前記被検眼に呈示する視標呈示光学系を備えることを特徴とする。 The optometry apparatus according to claim 13 is an optometry apparatus that measures the eye refractive power of the subject's eye, and uses an Amsler chart made of a lattice pattern as a subjective target for the subject to gaze for subjective measurement. It comprises an optotype presenting optical system to be presented in
 請求項14の検眼装置は、請求項13に記載の検眼装置であって、前記視標呈示光学系は、前記アムスラーチャートが所定の大きさ寸法で前記被検眼から所定の距離となる位置に設けられたものと等しい状態で前記被検眼に呈示することを特徴とする。 The optometry apparatus according to claim 14 is the optometry apparatus according to claim 13, wherein the optotype presenting optical system is provided at a position where the Amsler chart has a predetermined size and a predetermined distance from the eye to be examined. It presents to the eye to be examined in a state equal to that obtained.
 本発明の眼屈折力測定装置によれば、アムスラーチャートを用いた自覚測定を容易にかつ適切に行うことができる。 According to the eye refractive power measuring apparatus of the present invention, the subjective measurement using the Amsler chart can be easily and appropriately performed.
 上記した構成に加えて、前記視標呈示光学系は、前記アムスラーチャートが所定の大きさ寸法で前記被検眼から所定の距離となる位置に設けられたものと等しい状態で前記被検眼に呈示することとすると、アムスラーチャートをより適切な状態で被検眼に呈示しつつ当該アムスラーチャートを用いた自覚測定(アムスラーチャートテスト)を行うことができる。これにより、当該自覚測定(アムスラーチャートテスト)を適切に行うことができ、適切に疾患の可能性があるか否かを確認することができる。 In addition to the above-described configuration, the optotype presenting optical system presents the Amsler chart to the eye to be examined in a state equal to that provided at a position having a predetermined size and a predetermined distance from the eye to be examined. Then, the subjective measurement (Amsler chart test) using the Amsler chart can be performed while presenting the Amsler chart to the eye to be examined in a more appropriate state. Thereby, the said subjective measurement (Amsler chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
 上記した構成に加えて、前記視標呈示光学系は、前記レフ測定受光光学系での受光に基づいて測定した前記被検眼の眼屈折力に応じて、前記アムスラーチャートを前記被検眼において遠くを見るときに適した度数となる位置または近くを見るときに適した度数となる位置に移動することとすると、両眼視補正をしたメガネを用いることなく、アムスラーチャートを被検者(被検眼)に見せることができる。このとき、被検眼における片眼のみの矯正値に近い状態でアムスラーチャートを見せつつ、その見え方の確認を行うことができる。このため、被検者がよりはっきりとアムスラーチャートが見える状態で、その見え方の確認を行うこととなるので、当該自覚測定(アムスラーチャートテスト)をより適切に行うことができ、より適切に疾患の可能性があるか否かを確認することができる。 In addition to the above-described configuration, the optotype presenting optical system moves the Amsler chart farther away from the subject eye according to the eye refractive power of the subject eye measured based on the light received by the reflex measurement light-receiving optical system. If you move to a position that is suitable for viewing or a position that is suitable for close viewing, the Amsler chart will be displayed on the subject (eye) without using binocular-corrected glasses. Can show. At this time, it is possible to confirm the appearance while showing the Amsler chart in a state close to the correction value of only one eye in the eye to be examined. For this reason, since the subject will be able to see the Amsler chart more clearly and confirm the appearance, the awareness measurement (Amsler chart test) can be performed more appropriately, and the disease can be more appropriately observed. It is possible to confirm whether or not there is a possibility.
 上記した構成に加えて、前記視標呈示光学系は、前記被検眼における網膜の中心に対応する範囲で前記アムスラーチャートを前記被検眼に呈示することとすると、その中心位置を固視目標として注視させた状態でアムスラーチャートの見え方の確認を行うことで、被検眼における網膜(眼底)の中心(黄斑部)に疾患の可能性があるか否かの確認をより適切に行うことができる。 In addition to the configuration described above, the optotype presenting optical system gazes at the center position as a fixation target when the Amsler chart is presented to the eye to be examined in a range corresponding to the center of the retina in the eye to be examined. By confirming the appearance of the Amsler chart in the state in which it has been made, it is possible to more appropriately confirm whether or not there is a possibility of a disease in the center (macular region) of the retina (fundus) in the eye to be examined.
 上記した構成に加えて、前記アムスラーチャートでは、中心位置に中心注視点が設けられているとともに、前記中心注視点を取り巻いて複数の周辺注視点が設けられていることとすると、視標呈示光学系により被検眼(被験者)に見せることのできるアムスラーチャートが小さなものとなる場合であっても、各周辺注視点を注視させつつ見え方の確認を行うことで、実際に見せているアムスラーチャートよりも大きな範囲で疾患の可能性があるか否かを確認することができる。 In addition to the above-described configuration, in the Amsler chart, it is assumed that a central gazing point is provided at a central position and a plurality of peripheral gazing points are provided around the central gazing point. Even if the Amsler chart that can be shown to the subject's eye (subject) by the system is small, by checking the appearance while gazing at each peripheral gaze point, it can be seen from the actual Amsler chart It is possible to confirm whether or not there is a possibility of a disease in a large range.
 上記した構成に加えて、前記各周辺注視点は、前記視標呈示光学系により呈示された前記アムスラーチャート上での前記被検眼からの視野の周縁部に設けられていることとすると、被検眼(被験者)に見せることのできる視野内のアムスラーチャートを用いて、最も大きな範囲で疾患の可能性があるか否かを確認することができる。 In addition to the above-described configuration, each of the peripheral gazing points is provided at a peripheral portion of the visual field from the eye to be examined on the Amsler chart presented by the optotype presenting optical system. Using the Amsler chart in the field of view that can be shown to the (subject), it is possible to confirm whether or not there is a possibility of the disease in the largest range.
 上記した構成に加えて、前記アムスラーチャートは、正方形状を呈し、前記周辺注視点は、前記アムスラーチャートを、前記中心注視点を含む縦線および横線により4分割した際の4つの分割領域におけるそれぞれの中心位置に設けられていることとすると、4つの周辺注視点をそれぞれ注視させて見え方の確認を行うことにより、当該各周辺注視点で規定される正方形の領域の4倍の面積のアムスラーチャート上での疾患の可能性があるか否かを確認することができ、より効率良くアムスラーチャートを用いた自覚測定を行うことができる。 In addition to the above-described configuration, the Amsler chart has a square shape, and the peripheral gaze point is divided into four divided areas when the Amsler chart is divided into four by a vertical line and a horizontal line including the central gaze point, respectively. Assuming that it is provided at the center position of each, Amsler is four times as large as the square area defined by each peripheral gaze point by checking each of the four gaze points. It is possible to confirm whether or not there is a possibility of a disease on the chart, and the subjective measurement using the Amsler chart can be performed more efficiently.
 上記した構成に加えて、前記視標呈示光学系は、前記アムスラーチャートにおける格子状のパターンを描く線分を所定の色として前記被検眼に呈示することとすると、例えば色に応じて反応(被験者が感じ取った見え方)が異なる場合であってもそれらも含めて適切に疾患の可能性があるか否かを判断することができる。 In addition to the above-described configuration, when the visual target presenting optical system presents a line segment that draws a lattice-like pattern in the Amsler chart as a predetermined color to the eye to be examined, for example, a reaction (subject) It is possible to determine whether or not there is a possibility of a disease appropriately including these even when the appearance of the image is different.
 上記した構成に加えて、前記視標呈示光学系は、視標光源を有し、前記アムスラーチャートは、前記視標呈示光学系において前記視標光源から出射された光を透過させる部材で形成されていることとすると、簡易な構成でアムスラーチャートを被検眼に呈示することができる。 In addition to the configuration described above, the target presentation optical system includes a target light source, and the Amsler chart is formed of a member that transmits light emitted from the target light source in the target presentation optical system. As a result, the Amsler chart can be presented to the eye to be examined with a simple configuration.
 上記した構成に加えて、前記視標呈示光学系は、前記アムスラーチャートとは異なる他の視標を有し、前記アムスラーチャートと前記他の視標とを切り替えて前記視標光源から出射された光が進行する光軸上に位置させることとすると、様々な指標を被検眼に呈示することができ、使い勝手を向上させることができる。 In addition to the configuration described above, the optotype presenting optical system has another optotype different from the Amsler chart, and is emitted from the optotype light source by switching between the Amsler chart and the other optotype. If it is located on the optical axis where light travels, various indices can be presented to the eye to be examined, and usability can be improved.
 上記した構成に加えて、前記アムスラーチャートは、前記視標呈示光学系において画像形成装置の表示画面上に表示されて形成されていることとすると、より簡易な構成とすることができる。また、上述したようにアムスラーチャートの色を変化させる場合であっても、容易に対応することができる。さらに、各周辺注視点を自在に設けることができるので、使い勝手をより向上させることができる。 In addition to the above-described configuration, the Amsler chart can be configured more simply if it is displayed and formed on the display screen of the image forming apparatus in the visual target presenting optical system. Moreover, even if it is a case where the color of an Amsler chart is changed as mentioned above, it can respond easily. Furthermore, since each peripheral gazing point can be provided freely, usability can be further improved.
 上記した構成に加えて、さらに、前記被検眼に向けて前記主光軸上で眼屈折力とは異なる前記被検眼の他の光学特性を測定するための他の測定光を投影する眼特性測定投影光学系と、前記主光軸を通る前記他の測定光の前記被検眼からの反射光を受光する眼特性測定受光光学系と、を備えることとすると、より使い勝手を向上させることができる。 In addition to the above-described configuration, an eye characteristic measurement for projecting other measurement light for measuring another optical characteristic of the subject eye different from the eye refractive power on the main optical axis toward the subject eye Usability can be further improved by including a projection optical system and an eye characteristic measurement light receiving optical system that receives reflected light from the subject eye of the other measurement light passing through the main optical axis.
 被検眼の眼屈折力を測定する検眼装置であって、自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを前記被検眼に呈示する視標呈示光学系を備えることとすると、アムスラーチャートを用いた自覚測定を容易にかつ適切に行うことができる。 An optometry apparatus for measuring an eye refractive power of an eye to be examined, and an optotype presenting optical system for presenting an Amsler chart having a lattice pattern as a subjective target to be observed by a subject for subjective measurement If this is included, the subjective measurement using the Amsler chart can be easily and appropriately performed.
 上記した構成に加えて、前記視標呈示光学系は、前記アムスラーチャートが所定の大きさ寸法で前記被検眼から所定の距離となる位置に設けられたものと等しい状態で前記被検眼に呈示することとすると、アムスラーチャートをより適切な状態で被検眼に呈示しつつ当該アムスラーチャートを用いた自覚測定(アムスラーチャートテスト)を行うことができる。これにより、当該自覚測定(アムスラーチャートテスト)を適切に行うことができ、適切に疾患の可能性があるか否かを確認することができる。 In addition to the above-described configuration, the optotype presenting optical system presents the Amsler chart to the eye to be examined in a state equal to that provided at a position having a predetermined size and a predetermined distance from the eye to be examined. Then, the subjective measurement (Amsler chart test) using the Amsler chart can be performed while presenting the Amsler chart to the eye to be examined in a more appropriate state. Thereby, the said subjective measurement (Amsler chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
本発明に係る眼屈折力測定装置(検眼装置)の一例としての実施例1の眼屈折力測定装置10の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the eye refractive power measuring apparatus 10 of Example 1 as an example of the eye refractive power measuring apparatus (optometry apparatus) which concerns on this invention. 眼屈折力測定装置10の制御系の構成を示したブロック図である。3 is a block diagram illustrating a configuration of a control system of the eye refractive power measurement apparatus 10. FIG. 眼屈折力測定装置10の光学的な構成を説明するための説明図である。3 is an explanatory diagram for explaining an optical configuration of the eye refractive power measurement apparatus 10. FIG. グリッドチャート31v(アムスラーチャート)の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the grid chart 31v (Amsler chart). ケラトリングパターン37の構成を説明するための説明図である。4 is an explanatory diagram for explaining a configuration of a kerato ring pattern 37. FIG. 自覚測定を行う場面において、表示部14の表示面14aに表示される表示内容を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining display contents displayed on the display surface 14a of the display unit 14 in a scene where subjective measurement is performed. 視標投影光学系31により呈示されたグリッドチャート31v(アムスラーチャート)上での被検眼Eからの視野Vfを模式的に示す説明図である。It is explanatory drawing which shows typically the visual field Vf from the eye E to be examined on the grid chart 31v (Amsler chart) presented by the target projection optical system 31. 各周辺注視点を注視させることによりグリッドチャート31v全体を見せた場合と同様の判断が可能となることを説明するための説明図であり、(a)は視野Vf内で周辺注視点D2を注視させた様子を示し、(b)は(a)の状態をグリッドチャート31vで中心注視点D1を注視させた状態に置き換えた様子を示す。It is explanatory drawing for demonstrating that the same judgment as the case where the whole grid chart 31v is shown by making each peripheral gaze point look is shown, (a) gazes the peripheral gaze point D2 within the visual field Vf. (B) shows a state in which the state of (a) is replaced with a state in which the central gazing point D1 is gazed with the grid chart 31v. 各周辺注視点を注視させることによりグリッドチャート31v全体を見せた場合と同様の判断が可能となることを説明するための説明図であり、(a)は視野Vf内で周辺注視点D3を注視させた様子を示し、(b)は(a)の状態をグリッドチャート31vで中心注視点D1を注視させた状態に置き換えた様子を示す。It is explanatory drawing for demonstrating that the same judgment as the case where the whole grid chart 31v is shown by making each peripheral gaze point look is shown, (a) gazes the peripheral gaze point D3 within the visual field Vf. (B) shows a state in which the state of (a) is replaced with a state in which the central gazing point D1 is gazed with the grid chart 31v. 各周辺注視点を注視させることによりグリッドチャート31v全体を見せた場合と同様の判断が可能となることを説明するための説明図であり、(a)は視野Vf内で周辺注視点D4を注視させた様子を示し、(b)は(a)の状態をグリッドチャート31vで中心注視点D1を注視させた状態に置き換えた様子を示す。It is explanatory drawing for demonstrating that the same judgment as the case where the whole grid chart 31v is shown by making each peripheral gaze point look is shown, (a) gazes the peripheral gaze point D4 within the visual field Vf. (B) shows a state in which the state of (a) is replaced with a state in which the central gazing point D1 is gazed with the grid chart 31v. 各周辺注視点を注視させることによりグリッドチャート31v全体を見せた場合と同様の判断が可能となることを説明するための説明図であり、(a)は視野Vf内で周辺注視点D5を注視させた様子を示し、(b)は(a)の状態をグリッドチャート31vで中心注視点D1を注視させた状態に置き換えた様子を示す。It is explanatory drawing for demonstrating that the same judgment as the case where the whole grid chart 31v is shown by making each peripheral gaze point look is shown, (a) gazes the peripheral gaze point D5 within the visual field Vf. (B) shows a state in which the state of (a) is replaced with a state in which the central gazing point D1 is gazed with the grid chart 31v. 他の一例としてのグリッドチャート31v´(アムスラーチャート)が、視標投影光学系31により呈示された際の被検眼Eからの視野Vfを模式的に示す図7と同様の説明図である。FIG. 7 is an explanatory view similar to FIG. 7 schematically showing the visual field Vf from the eye E when a grid chart 31v ′ (Amsler chart) as another example is presented by the target projection optical system 31. 本発明に係る検眼装置の一例としての実施例2の自覚式検眼装置60の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the subjective optometry apparatus 60 of Example 2 as an example of the optometry apparatus which concerns on this invention. 自覚式検眼装置60の両フォロプタ71に収容された各回転ディスク73の構成を示す説明図である。It is explanatory drawing which shows the structure of each rotating disk 73 accommodated in both the phoropters 71 of the subjective optometry apparatus 60. FIG. 自覚式検眼装置60のコントローラ63の構成を示す説明図である。It is explanatory drawing which shows the structure of the controller 63 of the subjective optometry apparatus 60. FIG. 自覚式検眼装置60の制御系の構成を示したブロック図である。3 is a block diagram illustrating a configuration of a control system of the subjective optometry apparatus 60. FIG. 第一の表示モードにおいて表示部75(表示画面75b)に表示される表示内容を説明するための説明図である。It is explanatory drawing for demonstrating the display content displayed on the display part 75 (display screen 75b) in a 1st display mode. 第二の表示モードにおいて表示部75(表示画面75b)に表示される表示内容を説明するための説明図である。It is explanatory drawing for demonstrating the display content displayed on the display part 75 (display screen 75b) in a 2nd display mode. 自覚式検眼装置60により遠用検査を行う様子を示す説明図である。It is explanatory drawing which shows a mode that a distance test | inspection is performed by the subjective optometry apparatus. 自覚式検眼装置60により近用検査を行う様子を示す説明図である。It is explanatory drawing which shows a mode that a near vision test | inspection is performed by the subjective optometry apparatus 60. FIG.
 以下に、本願発明に係る眼屈折力測定装置(検眼装置)の発明の実施の形態について図面を参照しつつ説明する。 Hereinafter, embodiments of an eye refractive power measuring apparatus (optometry apparatus) according to the present invention will be described with reference to the drawings.
 本発明に係る眼屈折力測定装置(検眼装置)の一実施例1としての眼屈折力測定装置10を、図1から図11を用いて説明する。図1に示す眼屈折力測定装置10は、基本的に被検眼E(図3等参照)の眼屈折力を測定するものである。この眼屈折力測定装置10は、実施例1では、他覚測定により被検眼Eの眼屈折力を含む光学特性(眼特性)を測定する他覚測定機能と、自覚測定により被検眼Eの眼屈折力を含む光学特性(眼特性)を測定する自覚測定機能と、を有するものとされている。その被検眼Eについては、図3において、眼底(網膜)Efおよび角膜(前眼部)Ecを模式的に示している。 An eye refractive power measuring apparatus 10 as an embodiment 1 of an eye refractive power measuring apparatus (optometry apparatus) according to the present invention will be described with reference to FIGS. The eye refractive power measuring apparatus 10 shown in FIG. 1 basically measures the eye refractive power of the eye E (see FIG. 3 and the like). In Example 1, the eye refractive power measuring apparatus 10 has an objective measurement function for measuring optical characteristics (eye characteristics) including the eye refractive power of the eye E by objective measurement and an eye of the eye E by subjective measurement. And a subjective measurement function for measuring optical characteristics (eye characteristics) including refractive power. For the eye E, FIG. 3 schematically shows a fundus (retina) Ef and a cornea (anterior eye portion) Ec.
 この眼屈折力測定装置10は、ベース11に駆動部12(図2参照)を介して装置本体部13が移動可能に設けられて構成されている。その装置本体部13には、内方に後述する眼屈折力測定装置10の光学系(図3参照)が設けられ、外方に表示部14、顎受部15および額当部16が設けられている。 This eye refractive power measurement device 10 is configured by a device body 13 being movably provided on a base 11 via a drive unit 12 (see FIG. 2). The device main body 13 is provided with an optical system (see FIG. 3) of an eye refractive power measuring device 10 described later on the inside, and a display unit 14, a chin rest 15 and a forehead support 16 on the outside. ing.
 その表示部14は、液晶ディスプレイで形成されており、後述する制御部21(図2参照)の制御下で、被検眼Eの前眼部(角膜Ec)の画像(前眼部像E´)や各種の操作画面や測定結果等を表示面14aに表示させる(図6参照)。表示部14は、実施例1では、タッチパネルの機能を搭載しており、眼屈折力を含む光学特性(眼特性)を測定するための操作や、前眼部(角膜Ec)を撮影するための操作や、装置本体部13を移動するための操作や、自覚測定と他覚測定との切り替えの操作や、他覚測定のための視標を切り替える操作等を行うことが可能とされている。また、表示部14は、タッチパネルの機能を利用して、上述した各操作のためのアイコンとしての各種の記号(図6参照)を表示し、当該各記号に触れることによる操作を可能としている。なお、測定を行うための操作は、ベース11や装置本体部13や表示部14の周縁部に測定スイッチを設けて、当該測定スイッチの操作により行うものであってもよい。また、装置本体部13を移動するための操作は、ベース11や装置本体部13や表示部14の周縁部にコントロールレバーや移動操作スイッチを設けて、当該コントロールレバーや当該移動操作スイッチの操作により行うものであってもよい。 The display unit 14 is formed of a liquid crystal display, and is an image (anterior segment image E ′) of the anterior segment (cornea Ec) of the eye E under the control of a control unit 21 (see FIG. 2) described later. And various operation screens, measurement results, and the like are displayed on the display surface 14a (see FIG. 6). In the first embodiment, the display unit 14 is equipped with a touch panel function, and performs operations for measuring optical characteristics (eye characteristics) including eye refractive power and for photographing the anterior eye part (cornea Ec). It is possible to perform an operation, an operation for moving the apparatus main body 13, an operation for switching between subjective measurement and objective measurement, an operation for switching a target for objective measurement, and the like. Moreover, the display part 14 displays the various symbols (refer FIG. 6) as an icon for each operation mentioned above using the function of a touch panel, and enables operation by touching each said symbol. The operation for performing the measurement may be performed by providing a measurement switch on the periphery of the base 11, the apparatus main body 13 or the display unit 14 and operating the measurement switch. Further, the operation for moving the apparatus main body 13 is performed by providing a control lever or a movement operation switch on the periphery of the base 11, the apparatus main body 13 or the display unit 14, and operating the control lever or the movement operation switch. You may do it.
 顎受部15および額当部16は、測定時に装置本体部13に対して被検者(患者)の顔、すなわち被検眼Eの位置を固定するものであり、ベース11に固定されて設けられている。その顎受部15は、被検者が顎を載せる箇所となり、額当部16は、当該被検者が額を宛がう箇所となる。装置本体部13では、顎受部15と額当部16とにより被検者の顔を固定すると、当該被検者の被検眼Eが後述するケラトリングパターン37およびその中心に位置する対物レンズ31q(図3および図5参照)に対向される。このため、眼屈折力測定装置10の光学系による被検眼Eの適切な測定(他覚測定および自覚測定)が可能となる。 The chin rest 15 and the forehead support 16 fix the face of the subject (patient), that is, the position of the eye E to be measured with respect to the apparatus main body 13, and are fixed to the base 11. ing. The chin receiving portion 15 is a place where the subject places his chin, and the forehead holding portion 16 is a place where the subject places the forehead. In the apparatus main body 13, when the subject's face is fixed by the chin rest 15 and the forehead support 16, the subject's eye E has a keratring pattern 37 (described later) and an objective lens 31 q positioned at the center thereof. (See FIGS. 3 and 5). For this reason, appropriate measurement (objective measurement and subjective measurement) of the eye E to be examined by the optical system of the eye refractive power measuring apparatus 10 becomes possible.
 この眼屈折力測定装置10では、表示部14と、顎受部15および額当部16と、が、装置本体部13を挟んで両側に設けられており、通常の使用時(図1参照)において、表示部14(その表示面14a)が検者の側となり、顎受部15および額当部16が被検者の側となる。その表示部14は、図示は略すが、装置本体部13に回転自在に支持されており、表示面14aの向きを変更すること、例えば、表示面14aを被検者側に向けることや、表示面14aを側方(X軸方向)に向けることが可能とされている。その装置本体部13は、駆動部12により、ベース11に対して移動すること、すなわち顎受部15と額当部16とにより固定された被検眼E(被検者の顔)に対して移動することが可能とされている。 In this eye refractive power measuring apparatus 10, the display unit 14, the chin rest 15 and the forehead support 16 are provided on both sides of the apparatus main body 13, and in normal use (see FIG. 1). The display unit 14 (the display surface 14a) is on the examiner side, and the chin rest 15 and the forehead support unit 16 are on the subject side. Although the illustration of the display unit 14 is omitted, the display unit 14 is rotatably supported by the apparatus main body unit 13 to change the orientation of the display surface 14a, for example, to direct the display surface 14a toward the subject, The surface 14a can be directed to the side (X-axis direction). The apparatus main body 13 moves with respect to the base 11 by the drive unit 12, that is, moves with respect to the eye E (face of the subject) fixed by the jaw holder 15 and the forehead support 16. It is possible to do.
 その駆動部12は、装置本体部13をベース11に対して、上下方向(Y軸方向)と、前後方向(Z軸方向(通常の使用時に表示部14と、顎受部15および額当部16と、が並ぶ方向))と、それらに直交する左右方向(X軸方向)と、に移動させる。なお、この実施例1では、上下方向の上側をY軸方向の正側とし、前後方向の被検者側(図1を正面視して左奥側)をZ軸方向の正側とし、左右方向において図1を正面視して左手前側をX軸方向の正側とする(図1の矢印参照)。実施例1では、駆動部12は、図2に示すように、Xモータ12aとYモータ12bとZモータ12cとを有し、それぞれを駆動させるためのXドライバ12dとYドライバ12eとZドライバ12fとを有する。 The drive unit 12 is configured such that the apparatus main body 13 with respect to the base 11 in the vertical direction (Y-axis direction) and the front-rear direction (Z-axis direction (display unit 14, chin rest 15 and forehead portion during normal use). 16) and a horizontal direction (X-axis direction) perpendicular to them. In Example 1, the upper side in the vertical direction is the positive side in the Y-axis direction, the subject side in the front-rear direction (the left back side when viewed from the front in FIG. 1) is the positive side in the Z-axis direction, 1 in front view, the left front side is the positive side in the X-axis direction (see arrow in FIG. 1). In the first embodiment, as shown in FIG. 2, the drive unit 12 includes an X motor 12a, a Y motor 12b, and a Z motor 12c, and an X driver 12d, a Y driver 12e, and a Z driver 12f for driving each of them. And have.
 Xモータ12aは、ベース11に対して装置本体部13をX軸方向(左右方向)へと移動(変位)させる。換言すると、Xモータ12aは、駆動部12において、装置本体部13をX軸方向(左右方向)への移動させるための構成となる。このXモータ12aは、制御部21によりXドライバ12dが制御されることで適宜駆動される。 The X motor 12 a moves (displaces) the apparatus main body 13 in the X axis direction (left and right direction) with respect to the base 11. In other words, the X motor 12a is configured to move the apparatus main body 13 in the X-axis direction (left-right direction) in the drive unit 12. The X motor 12a is appropriately driven when the control unit 21 controls the X driver 12d.
 Yモータ12bは、ベース11に対して装置本体部13をY軸方向(上下方向)へと移動(変位)させる。換言すると、Yモータ12bは、駆動部12において、装置本体部13をY軸方向(上下方向)への移動させるための箇所となる。このYモータ12bは、制御部21によりYドライバ12eが制御されることで適宜駆動される。 The Y motor 12b moves (displaces) the device main body 13 in the Y axis direction (vertical direction) with respect to the base 11. In other words, the Y motor 12b is a location for moving the apparatus main body 13 in the Y-axis direction (vertical direction) in the drive unit 12. The Y motor 12b is appropriately driven by controlling the Y driver 12e by the control unit 21.
 Zモータ12cは、ベース11に対して装置本体部13をZ軸方向(前後方向)へと移動(変位)させる。換言すると、Zモータ12cは、駆動部12において、装置本体部13をZ軸方向(前後方向)への移動させるための箇所となる。このZモータ12cは、制御部21によりZドライバ12fが制御されることで適宜駆動される。 The Z motor 12c moves (displaces) the apparatus main body 13 in the Z-axis direction (front-rear direction) with respect to the base 11. In other words, the Z motor 12 c is a location for moving the apparatus main body 13 in the Z-axis direction (front-rear direction) in the drive unit 12. The Z motor 12c is appropriately driven when the control unit 21 controls the Z driver 12f.
 このため、駆動部12は、Xモータ12aとYモータ12bとZモータ12cとを適宜駆動することにより、ベース11に対して装置本体部13を上下方向(Y軸方向)、前後方向(Z軸方向)、および左右方向(X軸方向)に適宜移動させる。換言すると、制御部21は、駆動部12を適宜駆動制御する、すなわちXドライバ12dとYドライバ12eとZドライバ12fとを介してXモータ12aとYモータ12bとZモータ12cとを適宜駆動することにより、ベース11に固定された顎受部15および額当部16に対して装置本体部13を適宜移動させることができる。 For this reason, the drive unit 12 appropriately drives the X motor 12a, the Y motor 12b, and the Z motor 12c to move the apparatus main body unit 13 in the vertical direction (Y-axis direction) and the front-rear direction (Z-axis direction). Direction) and right and left direction (X-axis direction). In other words, the control unit 21 appropriately controls the drive unit 12, that is, appropriately drives the X motor 12a, the Y motor 12b, and the Z motor 12c via the X driver 12d, the Y driver 12e, and the Z driver 12f. Thus, the apparatus main body 13 can be appropriately moved relative to the chin rest 15 and the forehead support 16 fixed to the base 11.
 その制御部21は、眼屈折力測定装置10における電気制御系を構成するものであり、内蔵する記憶部21aに格納されたプログラムにより眼屈折力測定装置10の各部を統括的に制御する。制御部21は、後述するように、合焦判断回路22からの検出結果(その信号)やアライメント判定回路23からの検出結果(その信号)に基づいて、駆動部12を適宜駆動制御してベース11に対する装置本体部13の位置を調整する。また、制御部21は、後述する前眼部観察光学系32(図3参照)の撮像素子32gが取得した画像に基づいて表示部14(その表示面14a)にその画像を表示させる。さらに、制御部21は、後述する視標光源31a、グレア用光源31w、前眼部照明光源32a、レフ測定用光源33a、XY方向検出用光源35a、ケラトリング状指標投影光源36、Z方向検出用光源38aに、それぞれに対応する点灯制御を行うためのドライバ(駆動機構)を介して接続されており、これらの各光源の発光を適宜制御する。 The control unit 21 constitutes an electric control system in the eye refractive power measuring apparatus 10 and controls the respective units of the eye refractive power measuring apparatus 10 in a centralized manner by a program stored in a built-in storage unit 21a. As will be described later, the control unit 21 appropriately drives and controls the drive unit 12 based on the detection result (the signal) from the focus determination circuit 22 and the detection result (the signal) from the alignment determination circuit 23. 11 is adjusted. Moreover, the control part 21 displays the image on the display part 14 (the display surface 14a) based on the image which the image sensor 32g of the anterior ocular segment observation optical system 32 (refer FIG. 3) mentioned later acquires. Further, the control unit 21 includes a target light source 31a, a glare light source 31w, an anterior ocular segment illumination light source 32a, a reflex measurement light source 33a, an XY direction detection light source 35a, a kerato-ring-shaped index projection light source 36, and a Z direction detection. The light source 38a is connected via a driver (drive mechanism) for performing lighting control corresponding to each light source 38a, and the light emission of each of these light sources is appropriately controlled.
 ついで、制御部21は、後述する指標切替部31d(図3参照)の切替駆動部31sに接続されており、当該指標切替部31dのターレット部31r(図3参照)に保持された視標を切り替えるべく切替駆動部31sを駆動制御する。加えて、制御部21は、後述する合焦レンズ31h(図3参照)を適宜移動させるべく視標合焦機構31Dを駆動制御し、指標ユニット33U(図3参照)を適宜移動させるべく指標移動機構33Dを駆動制御し、合焦レンズ34e(図3参照)を適宜移動させるべく指標合焦機構34Dを駆動制御する。また、制御部21は、後述するVCCレンズ31k(図3参照)における1対のレンズの相対的な姿勢および一体的な姿勢を調整すべくその駆動部(図示せず)を駆動制御する。さらに、制御部21は、後述するシャッター32c(図3参照)を開いた状態と閉じた状態とで切り替えるべく当該シャッター32cを駆動制御する。 Next, the control unit 21 is connected to a switching drive unit 31s of an index switching unit 31d (see FIG. 3), which will be described later, and the visual target held in the turret unit 31r (see FIG. 3) of the index switching unit 31d. The switching drive unit 31s is controlled to be switched. In addition, the control unit 21 drives and controls the target focusing mechanism 31D to appropriately move a focusing lens 31h (see FIG. 3) to be described later, and moves the index to appropriately move the index unit 33U (see FIG. 3). The mechanism 33D is driven and controlled, and the index focusing mechanism 34D is driven and controlled to appropriately move the focusing lens 34e (see FIG. 3). Further, the control unit 21 drives and controls a drive unit (not shown) in order to adjust the relative posture and the integral posture of a pair of lenses in a VCC lens 31k (see FIG. 3) described later. Further, the control unit 21 drives and controls the shutter 32c so that a shutter 32c (see FIG. 3) described later is switched between an open state and a closed state.
 次に、眼屈折力測定装置10の制御系の構成を、図2を用いて説明する。眼屈折力測定装置10は、図2に示すように、上述した制御部21に加えて、合焦判断回路22とアライメント判定回路23とを有する。その制御部21には、撮像素子32gが接続されており、その撮像素子32gの受光に基づく信号、すなわち被検眼Eの前眼部像E´(図6参照)や、後述する眼屈折力測定(レフ測定)用リング状指標像(その画像)や、ケラトリング状指標像(その画像)や、XYアライメント指標光の輝点像(その画像)や、Z方向検出輝点像(その画像)としての信号が伝送される。そして、制御部21は、表示部14に接続されており、撮像素子32gからの受光信号に基づいて適宜画像信号を生成し、撮像素子32gからの受光信号に基づく画像を表示部14(その表示面14a)に適宜表示させる(図6等参照)。制御部21は、シャッター32cに接続されており、上述したように当該シャッター32cを駆動制御する。制御部21は、駆動部12(そのXドライバ12d、Yドライバ12eおよびZドライバ12f)に接続されており、上述したように駆動部12を適宜駆動制御することによりベース11に対して装置本体部13を適宜移動させる。制御部21は、表示部14への操作に基づいて、あるいは記憶部21aに格納されたプログラムに従って、上述した各動作を適宜実行する。 Next, the configuration of the control system of the eye refractive power measuring apparatus 10 will be described with reference to FIG. As shown in FIG. 2, the eye refractive power measurement apparatus 10 includes a focus determination circuit 22 and an alignment determination circuit 23 in addition to the control unit 21 described above. An imaging device 32g is connected to the control unit 21, and a signal based on light reception of the imaging device 32g, that is, an anterior eye image E ′ (see FIG. 6) of the eye E to be examined, or eye refractive power measurement described later. (Ref measurement) ring-shaped index image (its image), kerato-ring-shaped index image (its image), XY alignment index light bright spot image (its image), Z direction detection bright spot image (its image) As a signal is transmitted. And the control part 21 is connected to the display part 14, produces | generates an image signal suitably based on the light reception signal from the image pick-up element 32g, and displays the image based on the light reception signal from the image pick-up element 32g on the display part 14 (its display). Displayed appropriately on the surface 14a) (see FIG. 6 etc.). The control unit 21 is connected to the shutter 32c and drives and controls the shutter 32c as described above. The control unit 21 is connected to the drive unit 12 (the X driver 12d, the Y driver 12e, and the Z driver 12f), and appropriately controls the drive unit 12 as described above to control the base body 11 with respect to the apparatus main body unit. 13 is moved appropriately. The control unit 21 appropriately executes each operation described above based on an operation on the display unit 14 or according to a program stored in the storage unit 21a.
 合焦判断回路22は、撮像素子32gからの検出信号に基づいて、後述する眼屈折力測定装置10の光学的な構成(装置本体部13)が被検眼Eの眼底Ef(図3参照)に合焦しているか否か、すなわち前後方向(Z軸方向)のズレ量が許容範囲内であるか否かを検出する。この合焦判断回路22では、その合焦(ズレ量)の判断に、撮像素子32gで取得した後述するケラトリング状指標投影光源36により形成されるケラトリング状指標像(その画像)と、後述するZ方向検出平行投影系38により形成されるZ方向検出輝点標(その画像)と、の信号を用いる。そして、合焦判断回路22は、その検出結果(その信号)を制御部21に出力する。すると、制御部21は、合焦判断回路22からの検出結果(その信号)に基づいて装置本体部13をベース11に対してZ軸方向(前後方向)に移動させ、当該合焦判断回路22から合焦完了(ズレ量が許容範囲内である旨)を示す信号を受けるまでその移動を行うことにより、Zアライメントを自動で行うことができる。 Based on the detection signal from the image sensor 32g, the focusing determination circuit 22 causes the optical configuration (device main body 13) of the eye refractive power measurement device 10 to be described later to the fundus oculi Ef (see FIG. 3) of the eye E to be examined. It is detected whether or not it is in focus, that is, whether or not the amount of deviation in the front-rear direction (Z-axis direction) is within an allowable range. In this focus determination circuit 22, for determining the focus (deviation amount), a keratling index image (its image) formed by a later-described keratling index projection light source 36 acquired by the image sensor 32g, and a later-described The Z direction detection bright point mark (image thereof) formed by the Z direction detection parallel projection system 38 is used. Then, the focus determination circuit 22 outputs the detection result (the signal) to the control unit 21. Then, the control unit 21 moves the apparatus main body 13 in the Z-axis direction (front-rear direction) with respect to the base 11 based on the detection result (the signal) from the focus determination circuit 22, and the focus determination circuit 22. The Z alignment can be automatically performed by performing the movement until the signal indicating the completion of focusing (indicating that the amount of deviation is within the allowable range) is received.
 アライメント判定回路23は、撮像素子32gからの検出信号に基づいて、後述する眼屈折力測定装置10の光学的な構成(装置本体部13)の主光軸O1と被検眼Eの光軸とのX-Y方向のズレ量が許容範囲内であるか否かを検出するものである。そのズレ量は、例えば、左右方向(X軸方向)でのズレ量およびその方向と、上下方向(Y軸方向)でのズレ量およびその方向と、で表すことができる。このアライメント判定回路23では、そのズレ量の判断に、撮像素子32gで取得した後述するXYアライメント光投影光学系35で形成したXYアライメント指標像(輝点像)(その画像)の信号を用いる。そして、アライメント判定回路23は、その検出結果(その信号)を制御部21に出力する。すると、制御部21は、アライメント判定回路23からの検出結果(その信号)に基づいて装置本体部13をベース11に対してX軸方向(左右方向)およびY軸方向(上下方向)に移動させ、当該アライメント判定回路23からズレ量が許容範囲内である旨を示す信号を受けるまでその移動を行うことにより、X-Yアライメントを自動で行うことができる。 Based on the detection signal from the image sensor 32g, the alignment determination circuit 23 determines the relationship between the main optical axis O1 of the optical configuration (apparatus main body 13) of the eye refractive power measuring apparatus 10 described later and the optical axis of the eye E to be examined. This is to detect whether or not the amount of deviation in the XY direction is within an allowable range. The amount of deviation can be represented by, for example, the amount of deviation in the left-right direction (X-axis direction) and its direction, and the amount of deviation in the up-down direction (Y-axis direction) and its direction. This alignment determination circuit 23 uses a signal of an XY alignment index image (bright spot image) (its image) formed by an XY alignment light projection optical system 35 (described later) acquired by the image pickup device 32g to determine the shift amount. Then, the alignment determination circuit 23 outputs the detection result (the signal) to the control unit 21. Then, the control unit 21 moves the apparatus main body 13 in the X-axis direction (left-right direction) and the Y-axis direction (up-down direction) with respect to the base 11 based on the detection result (the signal) from the alignment determination circuit 23. XY alignment can be automatically performed by performing the movement until a signal indicating that the amount of deviation is within the allowable range is received from the alignment determination circuit 23.
 その装置本体部13には、上述したように、外形形状を形作る筐体13aの内方に眼屈折力測定装置10における光学系の構成が設けられている。この眼屈折力測定装置10は、被検眼Eの光学特性(眼特性)を測定することが可能とされており、実施例1では、被検眼Eの眼屈折力(球面度数、乱視度数、乱視軸角度等)と、被検眼Eの角膜Ecの形状と、を測定することが可能とされている。眼屈折力測定装置10は、被検眼Eの眼屈折力および角膜Ecの形状を他覚測定により測定することが可能とされているとともに(他覚測定機能)、被検眼Eの眼屈折力を自覚測定により測定することが可能とされている(自覚測定機能)。その自覚測定とは、見え方を被検者に問う等により被検者自身が感じ取ったことに基づいて測定を行うものであり、他覚測定とは、被検者が感じ取ったことに基づくことなく測定を行うものである。そして、眼屈折力測定装置10では、装置本体部13(その筐体13a)内の光学系の構成により、上記した測定が可能とされている。 As described above, the apparatus main body 13 is provided with the configuration of the optical system in the eye refractive power measuring apparatus 10 inside the housing 13a that forms the outer shape. The eye refractive power measuring apparatus 10 is capable of measuring the optical characteristics (eye characteristics) of the eye E. In Example 1, the eye refractive power (spherical power, astigmatism power, astigmatism) of the eye E is measured. Axial angle etc.) and the shape of the cornea Ec of the eye E to be examined can be measured. The eye refractive power measuring apparatus 10 can measure the eye refractive power of the eye E and the shape of the cornea Ec by objective measurement (objective measurement function), and can also measure the eye refractive power of the eye E. It is possible to measure by awareness measurement (awareness measurement function). The subjective measurement is based on what the subject himself / herself felt by asking the subject how he / she looks, etc., and the objective measurement is based on what the subject felt It is to measure without. And in the eye refractive power measuring apparatus 10, the above-described measurement is made possible by the configuration of the optical system in the apparatus main body 13 (the housing 13a).
 次に、図3を用いて、眼屈折力測定装置10の光学的な構成を説明する。眼屈折力測定装置10は、図3に示すように、視標投影光学系31と前眼部観察光学系32とレフ測定投影光学系33とレフ測定受光光学系34とXYアライメント光投影光学系35とを備える。 Next, the optical configuration of the eye refractive power measurement apparatus 10 will be described with reference to FIG. As shown in FIG. 3, the eye refractive power measuring apparatus 10 includes a target projection optical system 31, an anterior ocular segment observation optical system 32, a reflex measurement projection optical system 33, a reflex measurement light receiving optical system 34, and an XY alignment light projection optical system. 35.
 その視標投影光学系31は、被検眼Eを固視・雲霧させるために、その被検眼Eの眼底Efに固視のための視標(固視標)を投影する。また、視標投影光学系31は、自覚測定を行うために、被検者に見え方を問うべく被検眼Eの眼底Efに被検者に注視させるための視標(自覚視標)を投影する。前眼部観察光学系32は、被検眼Eの前眼部(角膜Ec)を観察する。レフ測定投影光学系33は、被検眼Eの眼屈折力を測定するために、眼屈折力測定(レフ測定)用リング状指標としてのパターン光束(測定光)を、その被検眼Eの眼底Efに投影する。レフ測定受光光学系34は、被検眼Eの眼底Efから反射された眼屈折力測定(レフ測定)用リング状指標を撮像素子32gに受光させる。このレフ測定投影光学系33およびレフ測定受光光学系34は、前眼部観察光学系32および後述するケラトリング状指標投影光源36とともに、角膜形状・眼屈折力測定光学系を構成する。XYアライメント光投影光学系35は、X-Y方向でのアライメント状態を検出するために、指標光を被検眼Eに向けて投影する。 The target projection optical system 31 projects a target (fixed target) for fixation on the fundus oculi Ef of the subject eye E in order to fixate and cloud the subject eye E. Further, the target projection optical system 31 projects a target (a subjective target) for gazing at the subject on the fundus oculi Ef of the eye E in order to ask the subject how to look in order to perform subjective measurement. To do. The anterior ocular segment observation optical system 32 observes the anterior ocular segment (cornea Ec) of the eye E to be examined. In order to measure the eye refractive power of the eye E, the reflex measurement projection optical system 33 uses a pattern light beam (measurement light) as a ring-shaped index for eye refractive power measurement (ref measurement) and a fundus oculi Ef of the eye E to be examined. Project to. The reflex measurement light receiving optical system 34 causes the imaging element 32g to receive the eye refractive power measurement (reflective measurement) ring index reflected from the fundus oculi Ef of the eye E. The reflex measurement projection optical system 33 and the reflex measurement light receiving optical system 34 together with the anterior ocular segment observation optical system 32 and the later-described keratring-shaped index projection light source 36 constitute a corneal shape / eye refractive power measurement optical system. The XY alignment light projection optical system 35 projects the index light toward the eye E to detect the alignment state in the XY direction.
 視標投影光学系31は、光軸O2上に、視標光源31aと色補正フィルタ31bとコリメータレンズ31cと指標切替部31dとハーフミラー31eとリレーレンズ31fとミラー31gと合焦レンズ31hとリレーレンズ31iとフィールドレンズ31jとバリアブルクロスシリンダレンズ31k(以下では、VCCレンズ31kともいう)とミラー31mとダイクロイックフィルター31nとダイクロイックフィルター31pと対物レンズ31qとを有する。 The target projection optical system 31 includes a target light source 31a, a color correction filter 31b, a collimator lens 31c, an index switching unit 31d, a half mirror 31e, a relay lens 31f, a mirror 31g, a focusing lens 31h, and a relay on the optical axis O2. A lens 31i, a field lens 31j, a variable cross cylinder lens 31k (hereinafter also referred to as a VCC lens 31k), a mirror 31m, a dichroic filter 31n, a dichroic filter 31p, and an objective lens 31q.
 その指標切替部31dは、視標投影光学系31により被検眼Eの眼底Efに投影(被検眼Eに呈示)する視標を切り替えるものであり、実施例1では、ターレット部31rと切替駆動部31sとで構成されている。そのターレット部31rは、回転軸31tを回転中心として回転可能に設けられており、その回転方向で見て複数の視標を支持するものとされている。そして、ターレット部31rは、回転軸31tを中心として回転することにより、支持する複数の視標のうちのいずれか1つを光軸O2上に位置させることが可能とされている。切替駆動部31sは、制御部21(図2参照)の制御下で駆動されることにより、回転軸31tを介してターレット部31rを回転させ、ターレット部31rの回転姿勢を変化させる。このため、指標切替部31dでは、制御部21の制御下で、ターレット部31rで支持する複数の視標のうちのいずれか1つを光軸O2上に位置させる。その各視標は、実施例1では、視標光源31aから出射されて色補正フィルタ31bにより補正された光(光束)を透過させることにより、後述する視標投影光学系31による被検眼Eの眼底Efへの呈示を可能としている。 The index switching unit 31d switches the target to be projected onto the fundus oculi Ef of the eye E to be examined (presented on the eye E) by the target projection optical system 31, and in the first embodiment, the turret unit 31r and the switching drive unit. 31s. The turret portion 31r is provided so as to be rotatable about a rotation shaft 31t, and supports a plurality of targets when viewed in the rotation direction. And the turret part 31r can position any one of a plurality of supported targets on the optical axis O2 by rotating around the rotation axis 31t. The switching drive unit 31s is driven under the control of the control unit 21 (see FIG. 2), thereby rotating the turret unit 31r via the rotation shaft 31t and changing the rotation posture of the turret unit 31r. For this reason, in the index switching unit 31d, under the control of the control unit 21, any one of a plurality of targets supported by the turret unit 31r is positioned on the optical axis O2. In the first embodiment, each target is transmitted through the light (light beam) emitted from the target light source 31a and corrected by the color correction filter 31b, so that the eye E of the eye E to be examined by the target projection optical system 31 to be described later is transmitted. Presentation to the fundus oculi Ef is possible.
 ターレット部31rは、実施例1では、固視のための視標(固視標)としての風景チャート31uと、自覚測定のために被検者に注視させるための視標(自覚視標)としてのグリッドチャート31vと、を支持している。その風景チャート31uは、固視のために被検者に注視させるための視標(固視標)であり、注視し易い箇所を含む風景を示すものとされている。 In the first embodiment, the turret unit 31r is a landscape chart 31u as a target for fixation (fixation target) and a target (a subjective target) for causing the subject to gaze for subjective measurement. The grid chart 31v is supported. The landscape chart 31u is a visual target (fixed visual target) for causing the subject to gaze for fixation, and indicates a landscape including a portion that is easy to gaze.
 また、グリッドチャート31vは、図4に示すように、格子状のパターンとされた所謂アムスラーチャートであり、格子状のパターンがどのように見えるのかを当該被検者に確認させる自覚測定としてのグリッドチャートテスト(アムスラーチャートテスト)を行うものである。このグリッドチャート31v(アムスラーチャート)は、実施例1では、格子状のパターンの箇所で、視標光源31aから出射されて色補正フィルタ31bにより補正された光(光束)を透過させるものとされており、格子状のパターンの箇所が明るいものとされるとともに、それ以外の箇所が暗いものとされている。なお、グリッドチャート31v(アムスラーチャート)は、格子状のパターン以外の箇所で上述した光を透過させて、格子状のパターンの箇所が暗いものとされるとともに、それ以外の箇所が明るいものとされているものであってもよい。 In addition, the grid chart 31v is a so-called Amsler chart having a grid pattern as shown in FIG. 4, and is a grid as a subjective measurement that allows the subject to check how the grid pattern looks. A chart test (Amsler chart test) is performed. In the first embodiment, the grid chart 31v (Amsler chart) transmits light (light flux) emitted from the target light source 31a and corrected by the color correction filter 31b at a lattice pattern. In addition, the lattice-shaped pattern portions are bright and the other portions are dark. In addition, the grid chart 31v (Amsler chart) transmits the light described above at a place other than the lattice-like pattern so that the place of the lattice-like pattern is dark and the other places are bright. It may be.
 グリッドチャート31vは、実施例1では、縦方向および横方向にそれぞれ20個のグリッド(マス目)が並べられて構成されている。そして、実施例1のグリッドチャート31vでは、中心位置に1つの中心注視点D1が設けられているとともに、それを取り巻くように4つの周辺注視点(D2~D5)が設けられている。その4つの周辺注視点は、中心注視点D1(中心位置)から縦方向および横方向にグリッド5つ分(5マス分)だけずれた位置に設けられており、左上のものを周辺注視点D2とし、右上のものを周辺注視点D3とし、左下のものを周辺注視点D4とし、右下のものを周辺注視点D5としている。すなわち、4つの周辺注視点(D2~D5)は、中心注視点D1(中心位置)を含む縦線および横線でグリッドチャート31vを4分割した際、左上の分割領域の中心位置に周辺注視点D2が位置し、右上の分割領域の中心位置に周辺注視点D3が位置し、左下の分割領域の中心位置に周辺注視点D4が位置し、右下の分割領域の中心位置に周辺注視点D5が位置している。このグリッドチャート31v(アムスラーチャート)を用いた自覚測定、すなわちグリッドチャートテスト(アムスラーチャートテスト)では、格子状のパターンが歪んで見えたり一部が欠けて見えたり一部がぼやけて見えたりしている場合、注視している被検眼Eに網膜(眼底)Efの中心(黄斑部)を含めた疾患もしくはその周辺の疾患の可能性があるものと判断する。 In the first embodiment, the grid chart 31v is configured by arranging 20 grids (squares) in the vertical and horizontal directions. In the grid chart 31v of the first embodiment, one central gazing point D1 is provided at the center position, and four peripheral gazing points (D2 to D5) are provided so as to surround the central gazing point D1. The four peripheral gazing points are provided at positions shifted by five grids (5 squares) in the vertical and horizontal directions from the central gazing point D1 (center position). The upper right one is the peripheral gazing point D3, the lower left one is the peripheral gazing point D4, and the lower right one is the peripheral gazing point D5. That is, when the grid chart 31v is divided into four peripheral gaze points (D2 to D5) by the vertical and horizontal lines including the central gaze point D1 (center position), the peripheral gaze point D2 is located at the center position of the upper left divided area. , The peripheral gazing point D3 is located at the center position of the upper right divided area, the peripheral gazing point D4 is located at the center position of the lower left divided area, and the peripheral gazing point D5 is located at the center position of the lower right divided area. positioned. In the subjective measurement using the grid chart 31v (Amsler chart test), that is, the grid chart test (Amsler chart test), the lattice-like pattern looks distorted, partially missing, or partially blurred. If it is determined that there is a possibility of a disease including the center (macular region) of the retina (fundus) Ef in the eye E to be watched or a surrounding disease.
 加えて、ターレット部31rは、図示は略すが、自覚測定のために被検者に注視させるための視標(自覚視標)としてのVA(Visual Acuity)チャートを支持している。そのVAチャートは、被検者に見え方を問うこと(自覚測定)により視力検査を行うための自覚視標であり、視力毎に規定の大きさ寸法とされたアルファベットや平仮名等の文字やランドルト環等が表記されている。 In addition, although not shown, the turret unit 31r supports a VA (Visual Accuracy) chart as a visual target (a subjective visual target) for making the subject gaze for the subjective measurement. The VA chart is a subjective optotype for performing visual acuity tests by asking the subject how to look (subjective measurement), and letters such as alphabets and hiragana, etc. that have a prescribed size for each visual acuity, Rings etc. are written.
 さらに、ターレット部31rは、図示は略すが、自覚視標として、偏光レッドグリーン(R&D)テストチャート、精密立体視テストチャート、立体視テストチャート、十字斜位テストチャート、不等像視テストチャート、回旋斜位テストチャート等の中から、1つもしくは複数を支持するものとすることができる。なお、実施例1では、固視標として風景を示す風景チャート31uを用いていたが、固視のために被検者に注視させるための視標であればよく、実施例1の構成に限定されるものではない。 Furthermore, although not shown, the turret unit 31r includes a polarization red green (R & D) test chart, a precision stereoscopic test chart, a stereoscopic test chart, a cross oblique test chart, an unequal image test chart, It is possible to support one or more of the rotating oblique test charts and the like. In the first embodiment, the landscape chart 31u indicating the landscape is used as the fixation target. However, the target chart may be any target that allows the subject to gaze for fixation, and is limited to the configuration of the first embodiment. Is not to be done.
 視標光源31aは、図3に示すように、ターレット部31rにより支持されて光軸O2上に位置された視標を被検眼Eに投影するための光源であり、実施例1では、白色のLEDが用いられている。合焦レンズ31hは、被検眼Eを固視・雲霧させるべく、視標合焦機構31Dにより視標投影光学系31の光軸O2に沿って移動可能とされている。その視標合焦機構31Dは、制御部21(図2参照)の制御下で駆動されることにより、合焦レンズ31hを光軸O2上の任意の位置に移動させる。VCCレンズ31kは、1対のレンズがそれぞれ独立して回転することが可能とされており、両レンズが互いに逆方向に回転されることにより乱視度数を変更させ、両レンズが同じ方向に一体的に回転されることにより乱視軸角度を変更させる。このVCCレンズ31kは、図示を略す駆動部が制御部21(図2参照)の制御下で駆動されることにより、乱視検査において乱視度数および乱視軸角度が調整される。なお、ダイクロイックフィルター31pと対物レンズ31qとは、それらが設けられた位置が、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)における主光軸O1上とされている。このため、眼屈折力測定装置10では、測定を行う際に、顎受部15および額当部16により顔が固定された被検者の被検眼Eが主光軸O1上に位置されることとなる。 As shown in FIG. 3, the target light source 31a is a light source for projecting a target supported by the turret unit 31r and positioned on the optical axis O2 onto the eye E. In Example 1, the target light source 31a is a white light source. LEDs are used. The focusing lens 31h is movable along the optical axis O2 of the target projection optical system 31 by the target focusing mechanism 31D so as to fixate and cloud the eye E. The target focusing mechanism 31D is driven under the control of the control unit 21 (see FIG. 2) to move the focusing lens 31h to an arbitrary position on the optical axis O2. In the VCC lens 31k, a pair of lenses can rotate independently, and both lenses rotate in opposite directions to change the astigmatism power, and both lenses are integrated in the same direction. Astigmatism axis angle is changed by being rotated. The VCC lens 31k is driven by a drive unit (not shown) under the control of the control unit 21 (see FIG. 2), thereby adjusting the astigmatism power and the astigmatic axis angle in the astigmatism examination. Note that the positions where the dichroic filter 31p and the objective lens 31q are provided are on the main optical axis O1 in the anterior ocular segment observation optical system 32 (optical configuration of the eye refractive power measurement device 10). . For this reason, in the eye refractive power measuring apparatus 10, when performing the measurement, the eye E of the subject whose face is fixed by the chin rest 15 and the forehead holder 16 is positioned on the main optical axis O1. It becomes.
 加えて、視標投影光学系31では、光軸O2´上に、グレア用光源31wが設けられている。その光軸O2´は、視標投影光学系31において、ハーフミラー31eからリレーレンズ31fを経てミラー31gに至るまでの間における光軸O2をハーフミラー31eから延長させたものとされている。グレア用光源31wは、視標投影光学系31により視標を呈示された被検眼Eに対してグレア光を投影させるものであり、実施例1ではLEDが用いられている。このグレア用光源31wは、被検眼Eに白内障があるか否かを判別するグレアテストを行う際に制御部21(図2参照)の制御下で点灯される。すると、そのグレア用光源31wから出射されたグレア用の光束は、ハーフミラー31eを透過して視標投影光学系31の光軸O2上を進行することとなり、後述するターゲット光束と同様に被検眼Eへと進行する。 In addition, in the target projection optical system 31, a glare light source 31w is provided on the optical axis O2 ′. The optical axis O2 ′ is obtained by extending the optical axis O2 from the half mirror 31e in the target projection optical system 31 from the half mirror 31e through the relay lens 31f to the mirror 31g. The glare light source 31w is for projecting glare light onto the eye E to which the visual target is presented by the visual target projection optical system 31, and an LED is used in the first embodiment. The glare light source 31w is turned on under the control of the control unit 21 (see FIG. 2) when performing a glare test for determining whether or not the eye E has a cataract. Then, the glare luminous flux emitted from the glare light source 31w passes through the half mirror 31e and travels on the optical axis O2 of the target projection optical system 31, and the eye to be examined is similar to the target luminous flux described later. Proceed to E.
 この視標投影光学系31では、視標光源31aから白色光を出射し、その白色光を色補正フィルタ31bで所望の色とした後にコリメータレンズ31cにより平行光束とし、指標切替部31d(そこで支持されて光軸O2上に位置された視標)を透過させてターゲット光束とする。そして、視標投影光学系31では、ターゲット光束を、ハーフミラー31eで反射してリレーレンズ31fを通した後にミラー31gで反射して合焦レンズ31hへと進行させる。視標投影光学系31では、ターゲット光束を、合焦レンズ31h、リレーレンズ31i、フィールドレンズ31jおよびVCCレンズ31kを通した後、ミラー31mにより反射し、ダイクロイックフィルター31nを通過させてダイクロイックフィルター31pへと進行させる。そして、視標投影光学系31では、そのターゲット光束をダイクロイックフィルター31pで前眼部観察光学系32における主光軸O1上へと反射して、対物レンズ31qを経て被検眼Eへと進行させる。これにより、視標投影光学系31では、指標切替部31dにより光軸O2上に位置させた視標を、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)における主光軸O1上で、被検眼Eに呈示(投影)することができる。 In the target projection optical system 31, white light is emitted from the target light source 31a, and the white light is changed to a desired color by the color correction filter 31b, and then converted into a parallel light beam by the collimator lens 31c. Then, the target light beam) is transmitted through the optical target O2 and the target luminous flux. In the target projection optical system 31, the target light beam is reflected by the half mirror 31e, passed through the relay lens 31f, then reflected by the mirror 31g and advanced to the focusing lens 31h. In the target projection optical system 31, the target light beam passes through the focusing lens 31h, the relay lens 31i, the field lens 31j, and the VCC lens 31k, is reflected by the mirror 31m, passes through the dichroic filter 31n, and passes to the dichroic filter 31p. And proceed. Then, in the target projection optical system 31, the target light flux is reflected by the dichroic filter 31p onto the main optical axis O1 in the anterior ocular segment observation optical system 32, and is advanced to the eye E through the objective lens 31q. Thereby, in the target projection optical system 31, the target positioned on the optical axis O2 by the index switching unit 31d is used as the main in the anterior ocular segment observation optical system 32 (optical configuration of the eye refractive power measurement apparatus 10). It can be presented (projected) to the eye E on the optical axis O1.
 このとき、視標投影光学系31では、グリッドチャート31v(図4参照)を視標投影光学系31の光軸O2上に位置させた場合、当該グリッドチャート31vが所定の大きさ寸法で被検眼Eから30~40cmの距離となる位置に設けられたものと等しい状態として、当該被検眼Eにグリッドチャート31vを呈示する。さらに、視標投影光学系31では、被検眼Eに呈示するグリッドチャート31vの大きさ寸法を小さくすることが可能とされている。この視標投影光学系31では、光路上や指標切替部31dのターレット部31r上にマスク部材を着脱自在に設けることにより、呈示するグリッドチャート31vの大きさ寸法を小さくする。なお、指標切替部31dのターレット部31rに、予め異なる大きさ寸法の複数のグリッドチャート31vを設けるものとしてもよい。このため、視標投影光学系31は、被検眼Eに対して自覚測定のために注視させる自覚視標としての格子状のパターンからなるアムスラーチャート(グリッドチャート31v)を呈示する視標呈示光学系として機能する。 At this time, in the target projection optical system 31, when the grid chart 31v (see FIG. 4) is positioned on the optical axis O2 of the target projection optical system 31, the grid chart 31v has a predetermined size and the eye to be examined. The grid chart 31v is presented to the subject eye E in a state equivalent to that provided at a position 30 to 40 cm away from E. Further, in the target projection optical system 31, the size of the grid chart 31v presented to the eye E can be reduced. In this target projection optical system 31, the size of the grid chart 31v to be presented is reduced by detachably providing a mask member on the optical path or on the turret part 31r of the index switching part 31d. A plurality of grid charts 31v having different sizes may be provided in advance in the turret part 31r of the index switching part 31d. For this reason, the optotype projection optical system 31 presents an optotype presenting optical system that presents an Amsler chart (grid chart 31v) composed of a lattice pattern as a subjective target to be gazed at the eye E for subjective measurement. Function as.
 視標投影光学系31は、風景チャート31uを経て被検眼Eに投影した固視標としてのターゲット光束を、被検者に固視目標として注視させることにより、当該被検者の視線を固定する。また、視標投影光学系31は、被検者に固視目標として注視させた状態から、ピントが合わない位置まで合焦レンズ31hを移動させることにより、被検眼Eを雲霧状態とする。加えて、視標投影光学系31は、自覚視標としてのチャート(グリッドチャート31v等)を経て被検眼Eに投影した自覚視標としてのターゲット光束を、被検者に注視させることにより、当該自覚視標に応じた自覚測定を行う。その自覚測定においてグリッドチャート31vを用いた場合については、後に詳細に説明する。また、VAチャートを用いた場合、視力検査を行うことができ、他のチャートを用いた場合、当該チャートに則ったテストを行うことができる。 The target projection optical system 31 fixes the subject's line of sight by causing the subject to gaze at the target luminous flux as the fixation target projected on the eye E through the landscape chart 31u as the fixation target. . The target projection optical system 31 moves the focusing lens 31h from a state in which the subject is gazing as a fixation target to a position where focus is not achieved, thereby bringing the eye E into a cloudy state. In addition, the target projection optical system 31 causes the subject to pay attention to the target luminous flux as the subjective target projected onto the eye E through the chart (grid chart 31v, etc.) as the subjective target. Performs subjective measurement according to the subjective target. The case where the grid chart 31v is used in the awareness measurement will be described in detail later. When a VA chart is used, a visual acuity test can be performed, and when another chart is used, a test according to the chart can be performed.
 前眼部観察光学系32は、前眼部照明光源32aを有するとともに、主光軸O1上に、ハーフミラー32bとシャッター32cとリレーレンズ32dとダイクロイックフィルター32eと結像レンズ32fと撮像素子32gとを有し、視標投影光学系31と対物レンズ31qおよびダイクロイックフィルター31pを共用する。撮像素子32gは、二次元固体撮像素子であり、実施例1ではCCD(電荷結合素子)イメージセンサを用いている。 The anterior ocular segment observation optical system 32 includes an anterior ocular segment illumination light source 32a, and a half mirror 32b, a shutter 32c, a relay lens 32d, a dichroic filter 32e, an imaging lens 32f, and an image sensor 32g on the main optical axis O1. The objective projection optical system 31, the objective lens 31q, and the dichroic filter 31p are shared. The image pickup device 32g is a two-dimensional solid-state image pickup device, and a CCD (charge coupled device) image sensor is used in the first embodiment.
 前眼部照明光源32aは、被検眼Eの前眼部(角膜Ec)を照明するための光源である。この前眼部照明光源32aは、装置本体部13における前後方向の被検者側(Z軸方向の正側)の端部において、後述するケラトリングパターン37を取り囲むように複数個(図3には2つのみ示す)設けられている。各前眼部照明光源32aは、点灯されることで被検眼Eの前眼部(角膜Ec)を直接照明する。 The anterior ocular segment illumination light source 32a is a light source for illuminating the anterior segment (cornea Ec) of the eye E to be examined. A plurality of anterior ocular segment illumination light sources 32a are provided so as to surround a later-described kerat ring pattern 37 at the end of the apparatus main body 13 on the subject side in the front-rear direction (positive side in the Z-axis direction). (Only two are shown). Each anterior segment illumination light source 32a is lit to directly illuminate the anterior segment (cornea Ec) of the eye E to be examined.
 この前眼部観察光学系32では、各前眼部照明光源32aから出射した照明光束で被検眼Eの前眼部(角膜Ec)を照明して、その前眼部で反射された照明光束を対物レンズ31qで取得する。このとき、前眼部観察光学系32では、シャッター32cを開いた状態として、主光軸O1上の光路を開けておく。前眼部観察光学系32では、その反射された照明光束を、対物レンズ31qを経て、ダイクロイックフィルター31pおよびハーフミラー32bを通して、リレーレンズ32dおよびダイクロイックフィルター32eを経て結像レンズ32fにより撮像素子32g(その受光面)上に結像させる。その撮像素子32gは、取得した画像に基づく画像信号を制御部21(図2参照)に出力する。その制御部21は、入力された画像信号に基づいて、前眼部(角膜Ec)の画像を表示部14(図1参照)に表示させる(図6参照)。このため、前眼部観察光学系32では、撮像素子32g(その受光面)上に前眼部(角膜Ec)の像を形成することができ、表示部14に当該前眼部の画像(前眼部像E´)を表示させることができる。なお、アライメント完了後の屈折力測定時には、前眼部観察光学系32の前眼部照明光源32aは消灯され、シャッター32cを閉じた状態とされて主光軸O1上の光路が閉じるものとすることができる。 The anterior ocular segment observation optical system 32 illuminates the anterior ocular segment (cornea Ec) of the eye E with the illumination luminous flux emitted from each anterior ocular segment illumination light source 32a, and the illumination luminous flux reflected by the anterior ocular segment. Obtained with the objective lens 31q. At this time, in the anterior ocular segment observation optical system 32, the optical path on the main optical axis O1 is opened with the shutter 32c opened. In the anterior ocular segment observation optical system 32, the reflected illumination light beam passes through the objective lens 31q, passes through the dichroic filter 31p and the half mirror 32b, passes through the relay lens 32d and the dichroic filter 32e, and then forms an image pickup element 32g ( An image is formed on the light receiving surface. The imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2). The control unit 21 displays an image of the anterior segment (cornea Ec) on the display unit 14 (see FIG. 1) based on the input image signal (see FIG. 6). Therefore, in the anterior ocular segment observation optical system 32, an image of the anterior ocular segment (cornea Ec) can be formed on the image sensor 32g (its light receiving surface), and an image of the anterior ocular segment (the anterior segment) is displayed on the display unit 14. The eye image E ′) can be displayed. When measuring the refractive power after the alignment is completed, the anterior segment illumination light source 32a of the anterior segment observation optical system 32 is turned off, the shutter 32c is closed, and the optical path on the main optical axis O1 is closed. be able to.
 レフ測定投影光学系33は、光軸O3上に、レフ測定用光源33aとコリメータレンズ33bと円錐プリズム33cとレフ測定リング33dとリレーレンズ33eと瞳リング33fとフィールドレンズ33gと穴開きプリズム33hとロータリープリズム33iとを有し、視標投影光学系31とダイクロイックフィルター31n、ダイクロイックフィルター31pおよび対物レンズ31qを共用する。そのレフ測定用光源33aと瞳リング33fとは光学的に共役な位置に配置し、レフ測定リング33dと被検眼Eの眼底Efとは光学的に共役な位置に配置している。また、レフ測定用光源33a、コリメータレンズ33b、円錐プリズム33cおよびレフ測定リング33dは、指標ユニット33Uを構成し、この指標ユニット33Uは、指標移動機構33Dによりレフ測定投影光学系33の光軸O3に沿って一体に移動可能とされている。 The reflex measurement projection optical system 33 includes a reflex measurement light source 33a, a collimator lens 33b, a conical prism 33c, a reflex measurement ring 33d, a relay lens 33e, a pupil ring 33f, a field lens 33g, and a perforated prism 33h on the optical axis O3. It has a rotary prism 33i and shares the target projection optical system 31, the dichroic filter 31n, the dichroic filter 31p, and the objective lens 31q. The reflex measurement light source 33a and the pupil ring 33f are disposed at an optically conjugate position, and the reflex measurement ring 33d and the fundus oculi Ef of the eye E are disposed at an optically conjugate position. The reflex measurement light source 33a, the collimator lens 33b, the conical prism 33c, and the reflex measurement ring 33d constitute an index unit 33U. This index unit 33U is optical axis O3 of the reflex measurement projection optical system 33 by the index movement mechanism 33D. It is possible to move integrally along.
 レフ測定投影光学系33では、レフ測定用光源33aから出射した光束をコリメータレンズ33bで平行光束とし、円錐プリズム33cを経てレフ測定リング33dへと進行させる。その光束は、レフ測定リング33dに形成されたリング状のパターン部分を透過して眼屈折力測定(レフ測定)用リング状指標としてのパターン光束とされる。このレフ測定投影光学系33では、そのパターン光束をリレーレンズ33e、瞳リング33fおよびフィールドレンズ33gを経て穴開きプリズム33hへと進行させ、その穴開きプリズム33hの反射面により反射して、ロータリープリズム33iを経てダイクロイックフィルター31nへと進行させる。そして、レフ測定投影光学系33では、パターン光束をダイクロイックフィルター31nで反射した後にダイクロイックフィルター31pで反射することで、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)の主光軸O1上に進行させる。そして、レフ測定投影光学系33では、パターン光束を、対物レンズ31qにより被検眼Eの眼底Efに結像させる。これにより、レフ測定投影光学系33では、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)における主光軸O1上で、測定光としての眼屈折力測定(レフ測定)用リング状指標のパターン光束を、被検眼Eの眼底Efに向けて投影することができる。 In the reflex measurement projection optical system 33, the light beam emitted from the reflex measurement light source 33a is converted into a parallel light beam by the collimator lens 33b, and proceeds to the reflex measurement ring 33d via the conical prism 33c. The luminous flux passes through a ring-shaped pattern portion formed on the reflex measurement ring 33d and becomes a pattern luminous flux as a ring-shaped index for eye refractive power measurement (reflective measurement). In the reflex measurement projection optical system 33, the pattern light beam travels through the relay lens 33e, the pupil ring 33f, and the field lens 33g to the perforated prism 33h, and is reflected by the reflecting surface of the perforated prism 33h to be a rotary prism. It advances to the dichroic filter 31n through 33i. In the reflex measurement projection optical system 33, the pattern light flux is reflected by the dichroic filter 31n and then by the dichroic filter 31p, so that the anterior ocular segment observation optical system 32 (the optical configuration of the eye refractive power measurement device 10) is reflected. It advances on the main optical axis O1. In the reflex measurement projection optical system 33, the pattern light beam is imaged on the fundus oculi Ef of the eye E by the objective lens 31q. Thereby, the reflex measurement projection optical system 33 measures the eye refractive power (reflective measurement) as the measurement light on the main optical axis O1 in the anterior ocular segment observation optical system 32 (the optical configuration of the eye refractive power measurement apparatus 10). ) The pattern luminous flux of the ring-shaped index can be projected toward the fundus oculi Ef of the eye E to be examined.
 このレフ測定投影光学系33には、対物レンズ31qの前方側にケラトリング状指標投影光源36が設けられている。このケラトリング状指標投影光源36は、ケラトリング(角膜形状測定用リング)パターン37上において被検眼E(角膜Ec)から所定の距離とされて、前眼部観察光学系32の主光軸O1に関して同心状に設けられている。そのケラトリングパターン37は、図5に示すように、全体に板状を呈し、主光軸O1を中心とする中心穴37aと、主光軸O1に関する同心位置で環状を呈する複数のスリット37bと、主光軸O1から等しい位置で対を為す透過穴37cと、を有する。ケラトリングパターン37は、中心穴37aの中心位置が主光軸O1と一致されており、当該中心穴37aから対物レンズ31qを露呈させている。ケラトリング状指標投影光源36は、ケラトリングパターン37のスリット37bに対応して設けられており、その対応するスリット37bを経て被検眼E(角膜Ec)にケラトリング状指標としての光束(測定光)を投影する。その光束は、被検眼Eの角膜Ecに投影されることで、その角膜Ecにケラトリング状指標を形成する。ケラトリング状指標(その光束)は、被検眼Eの角膜Ecで反射されることで、上記した前眼部観察光学系32により撮像素子32g上に結像される。このため、前眼部観察光学系32では、表示部14において、前眼部(角膜Ec)の画像に重ねてケラトリング状指標の像(画像)を表示させることができる。 The reflex measurement projection optical system 33 is provided with a kerato-ring type index projection light source 36 on the front side of the objective lens 31q. The kerato-ring-shaped index projection light source 36 is set to a predetermined distance from the eye E (cornea Ec) on the kerato-ring (corneal shape measurement ring) pattern 37, and is the main optical axis O1 of the anterior ocular segment observation optical system 32. Concentric with respect to. As shown in FIG. 5, the kerato ring pattern 37 has a plate-like shape as a whole, a center hole 37a centered on the main optical axis O1, and a plurality of slits 37b presenting an annular shape at a concentric position with respect to the main optical axis O1. And a transmission hole 37c paired at the same position from the main optical axis O1. In the kerato ring pattern 37, the center position of the center hole 37a coincides with the main optical axis O1, and the objective lens 31q is exposed from the center hole 37a. The kerato-ring index projection light source 36 is provided corresponding to the slit 37b of the kerat ring pattern 37, and passes through the corresponding slit 37b to the eye E (cornea Ec) as a light beam (measurement light) as a kerat-ring index. ). The luminous flux is projected onto the cornea Ec of the eye E, thereby forming a kerato-ring index on the cornea Ec. The kerato-ring-like index (its luminous flux) is reflected by the cornea Ec of the eye E to be imaged on the image sensor 32g by the anterior ocular segment observation optical system 32 described above. For this reason, in the anterior ocular segment observation optical system 32, the display unit 14 can display an image (image) of the kerato-ring-like index so as to overlap the image of the anterior ocular segment (cornea Ec).
 また、レフ測定投影光学系33には、図3に示すように、ケラトリングパターン37の後方側に、Z方向検出平行投影系38が設けられている。そのZ方向検出平行投影系38では、Z方向検出用光源38aと集光レンズ38bとが、ケラトリングパターン37の一対の透過穴37c(図5参照)に対応して設けられている。Z方向検出平行投影系38は、各Z方向検出用光源38aから出射した光束を対応する集光レンズ38bで集光し、ケラトリングパターン37の対応する透過穴37c(図5参照)を経て被検眼Eへと進行させてZ方向検出輝点を形成する。このZ方向検出平行投影系38は、形成したZ方向検出輝点を、上述したケラトリング状指標投影光源36が形成するケラトリング状指標と併せて用いることで、前後方向(Z軸方向)での位置の調節、いわゆるZ方向のアライメントを可能とする。このため、検者は、このZ方向検出輝点とケラトリング状指標との相対的な位置関係を適切なものとするように装置本体部13を移動させることで、Zアライメントを行うことができる。また、オートアライメントモードの場合には、上述したように、合焦判断回路22が、このZ方向検出輝点とケラトリング状指標とに基づく撮像素子32gからの信号を用いることで、被検眼Eに対する装置本体部13のZ軸方向のズレ量を求め、このズレ量に応じて制御部21がZドライバ12fを制御することで装置本体部13を適宜Z軸方向へ移動させてXYアライメントを行う。 Further, as shown in FIG. 3, the reflex measurement projection optical system 33 is provided with a Z direction detection parallel projection system 38 on the rear side of the kerato ring pattern 37. In the Z-direction detection parallel projection system 38, a Z-direction detection light source 38a and a condenser lens 38b are provided corresponding to a pair of transmission holes 37c (see FIG. 5) of the kerato ring pattern 37. The Z-direction detection parallel projection system 38 condenses the luminous flux emitted from each Z-direction detection light source 38a by the corresponding condenser lens 38b, and passes through the corresponding transmission hole 37c (see FIG. 5) of the kerato ring pattern 37. Advancing to the optometry E to form a Z direction detection luminescent spot. This Z-direction detection parallel projection system 38 uses the formed Z-direction detection luminescent spot in combination with the above-described kerato-ring-like index formed by the kerato-ring-like index projection light source 36 so that it can be used in the front-back direction (Z-axis direction). Adjustment of the position of the lens, so-called Z-direction alignment is possible. For this reason, the examiner can perform the Z alignment by moving the apparatus main body 13 so that the relative positional relationship between the Z-direction detection luminescent spot and the kerato-ring-like index is appropriate. . In the case of the auto alignment mode, as described above, the focus determination circuit 22 uses the signal from the image sensor 32g based on the Z-direction detection luminescent spot and the kerato-ring-like index, so that the eye E The amount of misalignment in the Z-axis direction of the apparatus main body 13 is obtained, and the control unit 21 controls the Z driver 12f in accordance with the amount of misalignment so that the apparatus main body 13 is appropriately moved in the Z-axis direction to perform XY alignment. .
 レフ測定受光光学系34は、光軸O4上に、穴開きプリズム33hの穴部34aとフィールドレンズ34bとミラー34cとリレーレンズ34dと合焦レンズ34eとミラー34fとを有し、視標投影光学系31と対物レンズ31q、ダイクロイックフィルター31pおよびダイクロイックフィルター31nを共用し、かつレフ測定投影光学系33とロータリープリズム33iを共用し、しかも前眼部観察光学系32とダイクロイックフィルター32e、結像レンズ32fおよび撮像素子32gを共用する。その合焦レンズ34eは、指標合焦機構34Dにより、レフ測定受光光学系34の光軸O4に沿って移動可能とされている。その指標合焦機構34Dは、制御部21(図2参照)の制御下で、被検眼Eの前眼部(角膜Ec)にピントを合わせるべく合焦レンズ34eを適宜移動させる。 The ref measurement light receiving optical system 34 includes, on the optical axis O4, a hole 34a of the perforated prism 33h, a field lens 34b, a mirror 34c, a relay lens 34d, a focusing lens 34e, and a mirror 34f. The system 31, the objective lens 31q, the dichroic filter 31p and the dichroic filter 31n are shared, the reflex measurement projection optical system 33 and the rotary prism 33i are shared, and the anterior ocular segment observation optical system 32, the dichroic filter 32e, and the imaging lens 32f And the image sensor 32g is shared. The focusing lens 34e is movable along the optical axis O4 of the reflex measurement light receiving optical system 34 by an index focusing mechanism 34D. The index focusing mechanism 34D appropriately moves the focusing lens 34e to focus on the anterior segment (cornea Ec) of the eye E under the control of the control unit 21 (see FIG. 2).
 レフ測定受光光学系34では、レフ測定投影光学系33によって眼底Efに導かれ、かつ当該眼底Efで反射されたパターン反射光束を、対物レンズ31qにより集光し、ダイクロイックフィルター31pで反射した後にダイクロイックフィルター31nで反射して、ロータリープリズム33iへと進行させる。そして、レフ測定受光光学系34では、反射されたパターン反射光束を、ロータリープリズム33iを経て穴開きプリズム33hの穴部34aへと進行させて、この穴部34aを通過させる。レフ測定受光光学系34では、穴部34aを通過したパターン反射光束を、フィールドレンズ34bを経た後にミラー34cによって反射し、リレーレンズ34dを経て合焦レンズ34eへと進行させる。このとき、レフ測定受光光学系34では、パターン反射光束すなわちレフ測定用リング状指標の結像位置が撮像素子32g(その受光面)上となるように合焦レンズ34eの光軸O4上での位置が調整される。そして、レフ測定受光光学系34では、パターン反射光束を、その合焦レンズ34eを経た後にミラー34fによって反射し、ダイクロイックフィルター32eで反射することで、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)の主光軸O1上に進行させる。レフ測定受光光学系34では、結像レンズ32fにより撮像素子32g(その受光面)上に、パターン反射光束すなわちレフ測定用リング状指標を結像させる。その撮像素子32gは、取得した画像に基づく画像信号を制御部21(図2参照)に出力する。その制御部21は、入力された画像信号に基づいて、レフ測定用リング状指標の画像を表示部14(図1参照)に表示させる。このため、レフ測定受光光学系34では、撮像素子32g(その受光面)上にレフ測定用リング状指標の像を形成することができ、その画像データを撮像素子32gに取得させることができ、表示部14に当該レフ測定用リング状指標の画像を表示させることができる。 In the reflex measurement light receiving optical system 34, the pattern reflected light beam guided to the fundus oculi Ef by the reflex measurement projection optical system 33 and reflected by the fundus oculi Ef is collected by the objective lens 31q, reflected by the dichroic filter 31p, and then dichroic. The light is reflected by the filter 31n and travels to the rotary prism 33i. In the reflex measurement light receiving optical system 34, the reflected pattern reflected light beam travels through the rotary prism 33i to the hole 34a of the holed prism 33h and passes through the hole 34a. In the reflex measurement light receiving optical system 34, the pattern reflected light beam that has passed through the hole 34a is reflected by the mirror 34c after passing through the field lens 34b, and is advanced to the focusing lens 34e via the relay lens 34d. At this time, in the reflex measurement light receiving optical system 34, the pattern reflected light beam, that is, the image formation position of the reflex measurement ring-shaped index is on the image sensor 32g (its light receiving surface) on the optical axis O4 of the focusing lens 34e. The position is adjusted. In the reflex measurement light receiving optical system 34, the pattern reflected light beam passes through the focusing lens 34e, is reflected by the mirror 34f, and is reflected by the dichroic filter 32e, whereby the anterior ocular segment observation optical system 32 (eye refractive power measurement). The optical axis of the apparatus 10). In the reflex measurement light receiving optical system 34, a pattern reflected light beam, that is, a reflex measurement ring-shaped index is imaged on the image sensor 32g (its light receiving surface) by the imaging lens 32f. The imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2). The control unit 21 causes the display unit 14 (see FIG. 1) to display an image of the ring index for reflex measurement based on the input image signal. For this reason, the reflex measurement light receiving optical system 34 can form an image of a reflex measurement ring-shaped index on the image sensor 32g (its light receiving surface), and the image sensor 32g can acquire the image data. An image of the ref measurement ring-shaped index can be displayed on the display unit 14.
 XYアライメント光投影光学系35は、XY方向検出用光源35aと集光レンズ35bとを有し、前眼部観察光学系32とハーフミラー32bを共用し、かつ視標投影光学系31とダイクロイックフィルター31pおよび対物レンズ31qを共用する。そのXY方向検出用光源35aは、XYアライメント指標光束を形成するスポット状の光源であり、LEDが用いられている。 The XY alignment light projection optical system 35 includes an XY direction detection light source 35a and a condensing lens 35b. The XY alignment light projection optical system 35 shares the anterior ocular segment observation optical system 32 and half mirror 32b, and the target projection optical system 31 and dichroic filter. 31p and the objective lens 31q are shared. The XY direction detection light source 35a is a spot-like light source that forms an XY alignment index light beam, and an LED is used.
 このXYアライメント光投影光学系35では、XY方向検出用光源35aからのXYアライメント指標光束を、集光レンズ35bで集光した後にハーフミラー32bで反射することで、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)の主光軸O1上に進行させる。そして、XYアライメント光投影光学系35では、XYアライメント指標光束を、ダイクロイックフィルター31pを通して対物レンズ31qへと進行させ、その対物レンズ31qを経て被検眼Eの角膜Ecに向けてXYアライメント指標光束として投影する。その被検眼E(角膜Ec)に向けて投影されたXYアライメント指標光束は、その被検眼Eの角膜Ecにおいて反射され、前眼部観察光学系32により撮像素子32g上にXYアライメント指標像としての輝点像が投影される。XYアライメント光投影光学系35は、形成したXYアライメント指標像としての輝点像を用いることで、X-Y方向での位置の調節、いわゆるXYアライメントを可能とする。このため、検者は、XYアライメント指標像としての輝点像を設定されたアライメントマーク内に位置させるように装置本体部13を移動させることで、XYアライメントを行うことができる。また、オートアライメントモードの場合には、上述したように、アライメント判定回路23が、XYアライメント指標像の位置から被検眼Eに対する装置本体部13のX軸方向およびY軸方向のズレ量を求め、このズレ量に応じて制御部21がXドライバ12dおよびYドライバ12eを制御することで装置本体部13をX-Y方向へ移動させてXYアライメントを行う。 In the XY alignment light projection optical system 35, the XY alignment index light beam from the XY direction detection light source 35 a is condensed by the condenser lens 35 b and then reflected by the half mirror 32 b, so that the anterior ocular segment observation optical system 32 ( It advances on the main optical axis O1 of the optical configuration of the eye refractive power measuring apparatus 10). In the XY alignment light projection optical system 35, the XY alignment index light beam travels to the objective lens 31q through the dichroic filter 31p, and is projected as an XY alignment index light beam toward the cornea Ec of the eye E through the objective lens 31q. To do. The XY alignment index light beam projected toward the eye E (cornea Ec) is reflected by the cornea Ec of the eye E, and is used as an XY alignment index image on the image sensor 32g by the anterior ocular segment observation optical system 32. A bright spot image is projected. The XY alignment light projection optical system 35 enables adjustment of the position in the XY direction, so-called XY alignment, by using the bright spot image as the formed XY alignment index image. Therefore, the examiner can perform the XY alignment by moving the apparatus main body 13 so that the bright spot image as the XY alignment index image is positioned within the set alignment mark. In the case of the auto alignment mode, as described above, the alignment determination circuit 23 obtains the amount of deviation in the X axis direction and the Y axis direction of the apparatus main body 13 with respect to the eye E from the position of the XY alignment index image, The control unit 21 controls the X driver 12d and the Y driver 12e according to the amount of deviation, thereby moving the apparatus main body 13 in the XY direction to perform XY alignment.
 次に、上述した眼屈折力測定装置10を用いて、被検眼Eの眼屈折力(球面度数、乱視度数、乱視軸角度等)と被検眼Eの角膜Ecの形状とを測定する際の概略的な動作について説明する。なお、眼屈折力測定装置10における下記の動作は、制御部21(図2参照)の制御下で実行される。先ず、眼屈折力測定装置10の電源スイッチを投入し、表示部14に他覚測定を行う旨の操作を行う。すると、眼屈折力測定装置10では、前眼部観察光学系32において、前眼部照明光源32aを点灯させて、表示部14に前眼部(角膜Ec)の画像を表示させる。そして、眼屈折力測定装置10では、上述したように、ベース11に対して装置本体部13を適宜移動させて、上下方向(Y軸方向)、左右方向(X軸方向)および前後方向(Z軸方向)のアライメントを行う。 Next, an outline of measuring the eye refractive power (spherical power, astigmatism power, astigmatic axis angle, etc.) of the eye E and the shape of the cornea Ec of the eye E using the eye refractive power measuring apparatus 10 described above. A typical operation will be described. In addition, the following operation | movement in the eye refractive power measuring apparatus 10 is performed under control of the control part 21 (refer FIG. 2). First, the power switch of the eye refractive power measurement apparatus 10 is turned on, and an operation for performing objective measurement is performed on the display unit 14. Then, in the eye refractive power measuring apparatus 10, in the anterior ocular segment observation optical system 32, the anterior ocular segment illumination light source 32a is turned on and an image of the anterior ocular segment (cornea Ec) is displayed on the display unit 14. Then, in the eye refractive power measuring apparatus 10, as described above, the apparatus main body 13 is appropriately moved with respect to the base 11, and the vertical direction (Y-axis direction), left-right direction (X-axis direction), and front-back direction (Z Axial alignment).
 すると、眼屈折力測定装置10では、レフ測定投影光学系33のレフ測定用光源33aを点灯して、眼屈折力測定(レフ測定)用リング状指標のパターン光束を、主光軸O1で被検眼Eの眼底Efに投影する。そして、眼屈折力測定装置10では、眼底Efで反射されたレフ測定用リング状指標を、レフ測定受光光学系34により撮像素子32g上に結像させる。その撮像素子32gは、取得した画像に基づく画像信号を制御部21(図2参照)に出力する。その制御部21は、入力された画像信号に基づいて、レフ測定用リング状指標の画像を表示部14(図1参照)に表示させる。そして、制御部21では、表示部14に表示させた画像(撮像素子32gからの画像信号)に基づいて、眼底Efに投影されたレフ測定用リング状指標の像から眼屈折力としての球面度数、円柱度数、軸角度を測定する。この眼屈折力としての球面度数、円柱度数、軸角度の測定の詳細については、公知であるのでその説明は省略する。 Then, the eye refractive power measuring device 10 turns on the light source 33a for the reflex measurement projection optical system 33, and the pattern light flux of the ring-shaped index for the eye refraction power measurement (reflective measurement) is received on the main optical axis O1. Project onto the fundus oculi Ef of the optometry E. In the eye refractive power measurement device 10, the reflex measurement ring-shaped index reflected by the fundus oculi Ef is imaged on the image sensor 32 g by the reflex measurement light receiving optical system 34. The imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2). The control unit 21 causes the display unit 14 (see FIG. 1) to display an image of the ring index for reflex measurement based on the input image signal. Then, in the control unit 21, based on the image displayed on the display unit 14 (image signal from the image sensor 32 g), the spherical power as the eye refractive power from the image of the ring index for reflex measurement projected onto the fundus oculi Ef. Measure cylinder power and shaft angle. The details of the measurement of the spherical power, the cylindrical power, and the shaft angle as the eye refractive power are well known and will not be described.
 また、眼屈折力測定装置10では、レフ測定投影光学系33のケラトリング状指標投影光源36を点灯して、ケラトリング状指標を主光軸O1で被検眼Eの角膜Ecに投影する。そして、眼屈折力測定装置10では、被検眼Eの角膜Ecで反射されたケラトリング状指標を、前眼部観察光学系32により撮像素子32g上に結像させる。その撮像素子32gは、取得した画像に基づく画像信号を制御部21(図2参照)に出力する。その制御部21は、入力された画像信号に基づいて、ケラトリング状指標の画像を表示部14(図1参照)に表示させる。そして、制御部21では、表示部14に表示させた画像(撮像素子32gからの画像信号)に基づいて、角膜Ecに投影されたケラトリング状指標の像から角膜Ecの形状を測定する。この角膜Ecの形状の測定の詳細については、公知であるのでその説明は省略する。このため、眼屈折力測定装置10では、レフ測定投影光学系33のケラトリング状指標投影光源36が、眼屈折力を測定するための測定光とは異なる他の測定光を被検眼Eに向けて投影する眼特性測定投影光学系として機能し、前眼部観察光学系32が、他の測定光の被検眼Eからの反射光を受光する眼特性測定受光光学系として機能する。 Further, in the eye refractive power measuring apparatus 10, the keratring index projection light source 36 of the reflex measurement projection optical system 33 is turned on, and the keratling index is projected onto the cornea Ec of the eye E with the main optical axis O1. In the eye refractive power measurement device 10, the keratoling index reflected by the cornea Ec of the eye E is imaged on the image sensor 32 g by the anterior ocular segment observation optical system 32. The imaging device 32g outputs an image signal based on the acquired image to the control unit 21 (see FIG. 2). The control unit 21 causes the display unit 14 (see FIG. 1) to display an image of the keratoling index based on the input image signal. Then, the control unit 21 measures the shape of the cornea Ec from the image of the kerato-ring index projected on the cornea Ec based on the image displayed on the display unit 14 (image signal from the imaging element 32g). Since the details of the measurement of the shape of the cornea Ec are known, the description thereof is omitted. For this reason, in the eye refractive power measuring apparatus 10, the kerato-ring type index projection light source 36 of the reflex measurement projection optical system 33 directs another measurement light different from the measurement light for measuring the eye refractive power toward the eye E to be examined. The anterior eye portion observation optical system 32 functions as an eye characteristic measurement light receiving optical system that receives reflected light from the eye E of other measurement light.
 このように、制御部21は、眼屈折力の測定を実行するとともに、角膜形状の測定を実行する。なお、制御部21は、演算結果等を記憶部(図示を略す)に適宜格納する。これにより、眼屈折力測定装置10では、被検眼Eの眼屈折力(球面度数、乱視度数、乱視軸角度等)と、被検眼Eの角膜Ecの形状と、を測定することができる。そして、眼屈折力測定装置10では、上記した動作を被検者の双方の眼に対して実行することにより、双方の眼の眼屈折力(球面度数、乱視度数、乱視軸角度等)と角膜Ecの形状とを測定することができる。このとき、眼屈折力測定装置10では、被検者が測定を実行している被検眼Eとは反対側の眼を覆ったり当該眼を瞑ったりすることなく、被検眼Eの上記した測定を行うことができる。 Thus, the control unit 21 performs measurement of the eye refractive power and measurement of the corneal shape. In addition, the control part 21 stores a calculation result etc. in a memory | storage part (illustration is abbreviate | omitted) suitably. Thereby, the eye refractive power measuring apparatus 10 can measure the eye refractive power (spherical power, astigmatism power, astigmatism axis angle, etc.) of the eye E and the shape of the cornea Ec of the eye E. In the eye refractive power measuring apparatus 10, the above-described operation is performed on both eyes of the subject so that the eye refractive power (spherical power, astigmatic power, astigmatic axis angle, etc.) of both eyes and the cornea. The shape of Ec can be measured. At this time, the eye refractive power measuring apparatus 10 performs the above-described measurement of the eye E without covering the eye on the opposite side of the eye E to which the subject is performing measurement or meditating the eye. It can be carried out.
 次に、本発明に係る眼屈折力測定装置(検眼装置)の一実施例としての実施例1の眼屈折力測定装置10の特徴的な構成について、図6から図11を用いて説明する。この眼屈折力測定装置10では、上述したように、視標投影光学系31が被検眼Eに投影した自覚視標としてのターゲット光束を被検者に注視させることにより、当該自覚視標に応じた自覚測定を行うことができる。そして、眼屈折力測定装置10では、自覚視標としてのチャートとしてグリッドチャート31v(アムスラーチャート)(図4参照)を経たターゲット光束を被検者に注視させることができ、このグリッドチャート31vを用いて自覚測定(グリッドチャートテスト)を行うことができる。なお、図6は、他覚測定を実行した後であって、グリッドチャート31vを用いた自覚測定を行う場面における表示部14(表示面14a)での表示内容を示している。 Next, a characteristic configuration of the eye refractive power measurement apparatus 10 of Example 1 as an example of an eye refractive power measurement apparatus (optometry apparatus) according to the present invention will be described with reference to FIGS. In the eye refractive power measuring device 10, as described above, the target projection optical system 31 causes the subject to pay attention to the target light beam as the subjective target projected onto the subject's eye E, thereby responding to the subjective target. Awareness measurement can be performed. The eye refractive power measurement apparatus 10 can cause the subject to gaze at the target light flux that has passed through the grid chart 31v (Amsler chart) (see FIG. 4) as a chart as a subjective visual target, and uses this grid chart 31v. Can perform subjective measurement (grid chart test). FIG. 6 shows the display contents on the display unit 14 (display surface 14a) in the scene where the subjective measurement using the grid chart 31v is performed after the objective measurement is performed.
 これに伴って、眼屈折力測定装置10では、制御部21(図2参照)の制御下で、表示部14の表示面14aに、図6に示すように、被検眼Eの前眼部(前眼部像E´)と他覚測定による測定結果41とに加えて、表示部14におけるタッチパネルの機能を利用して触れることによる選択(切替)操作を可能するアイコンとしての各種記号を表示させる。その測定結果41は、実施例1では、測定した眼屈折力に関する各数値を示すレフ測定結果41aと、測定した角膜Ecの形状に関する各数値を示すケラト測定結果41bと、視標を呈示している度数を示す呈示視標度数41cと、被検眼Eの視力に関する各数値を示す視力値41dと、を示している。測定結果41は、この図6に示す例では、左右の双方に1つずつ表示されているが、正面視して左側が右側の被検眼Eの測定結果を示しており、正面視して右側が左側の被検眼Eの測定結果を示している。 Along with this, in the eye refractive power measurement apparatus 10, under the control of the control unit 21 (see FIG. 2), the anterior eye part of the eye E (see FIG. 6) is displayed on the display surface 14a of the display unit 14 as shown in FIG. In addition to the anterior eye image E ′) and the measurement result 41 by objective measurement, various symbols are displayed as icons that enable a selection (switching) operation by touching using the function of the touch panel in the display unit 14. . In Example 1, the measurement result 41 shows a reflex measurement result 41a indicating each value related to the measured eye refractive power, a kerato measurement result 41b indicating each value related to the shape of the measured cornea Ec, and a visual target. A visual target power 41c indicating the power of the eye and a visual acuity 41d indicating each numerical value relating to the visual acuity of the eye E to be examined are shown. In the example shown in FIG. 6, one measurement result 41 is displayed on each of the left and right sides, but the measurement result 41 shows the measurement result of the right eye E when viewed from the front, and the right side when viewed from the front. Shows the measurement result of the left eye E.
 上記した表示させる各種記号としては、実施例1では、他覚自覚切替記号42と、測定モード選択記号43と、チャート切替記号44と、結果表示記号45と、印刷実行記号46と、が設定されている。 As the various symbols to be displayed, in the first embodiment, the objective awareness switching symbol 42, the measurement mode selection symbol 43, the chart switching symbol 44, the result display symbol 45, and the print execution symbol 46 are set. ing.
 その他覚自覚切替記号42は、上述した他覚測定を行うことと、自覚測定を行うことと、を切り替えるものである。他覚自覚切替記号42は、この図6に示す場面では、自覚測定を行っている場面であることから、触れられることにより、自覚測定から他覚測定へと切り替えることとなる。 The other consciousness switching symbol 42 is used to switch between performing the above-mentioned consciousness measurement and performing consciousness measurement. In the scene shown in FIG. 6, the objective awareness switching symbol 42 is a scene where subjective measurement is being performed. Therefore, when touched, the subjective awareness switching symbol 42 switches from subjective measurement to objective measurement.
 測定モード選択記号43は、他覚測定において、眼屈折力を測定するレフモードと、角膜Ecの形状を測定するケラトモードと、双方を測定するレフ・ケラトモードと、の中からいずれかを選択するものである。この測定モード選択記号43は、他覚測定において実行する測定を選択するものであることから、この図6に示す場面では、特に機能を有するものではない。 The measurement mode selection symbol 43 is used to select one of a reflex mode for measuring eye refractive power, a kerato mode for measuring the shape of the cornea Ec, and a reflex kerato mode for measuring both in objective measurement. is there. Since the measurement mode selection symbol 43 is used to select a measurement to be performed in the objective measurement, the measurement mode selection symbol 43 has no particular function in the scene shown in FIG.
 チャート切替記号44は、被検眼Eに投影する自覚視標を切り替えるものである。実施例1の眼屈折力測定装置10では、上述したように、自覚視標としてグリッドチャート31v(アムスラーチャート)(図3および図4参照)とVAチャート(図示せず)とが用意されていることから、グリッドチャート31vとVAチャートとを切り替えるものとなる。そして、チャート切替記号44は、この図6に示す場面では、グリッドチャート31vが選択されていることを示しており、触れられることによりグリッドチャート31vからVAチャート(図示せず)へと切り替えることとなる。 The chart switching symbol 44 is used to switch the subjective visual target to be projected onto the eye E. In the eye refractive power measuring apparatus 10 of the first embodiment, as described above, the grid chart 31v (Amsler chart) (see FIGS. 3 and 4) and the VA chart (not shown) are prepared as subjective visual targets. Therefore, the grid chart 31v and the VA chart are switched. The chart switching symbol 44 indicates that the grid chart 31v is selected in the scene shown in FIG. 6, and is switched from the grid chart 31v to the VA chart (not shown) when touched. Become.
 結果表示記号45は、他覚測定による測定結果41の表示の有無を選択するものである。この結果表示記号45は、この図6に示す場面では、測定結果41を表示させていることから、触れられることにより測定結果41の表示を止めることとなる。 The result display symbol 45 is used to select whether or not to display the measurement result 41 by the objective measurement. Since the result display symbol 45 displays the measurement result 41 in the scene shown in FIG. 6, the display of the measurement result 41 is stopped when touched.
 印刷実行記号46は、表示部14の表示面14aに表示させている画面、もしくは測定結果41として表示させている表示内容(測定結果)を、印刷して出力させるものである。 The print execution symbol 46 prints and outputs the screen displayed on the display surface 14a of the display unit 14 or the display content (measurement result) displayed as the measurement result 41.
 さらに、眼屈折力測定装置10では、制御部21(図2参照)の制御下で、表示部14の表示面14aに、グリッドチャート31vを用いた自覚測定としてのグリッドチャートテストを補助するグリッド補助記号47を表示させる。そのグリッド補助記号47は、グリッドチャート31v(アムスラーチャート)を模した格子状の記号の上に、当該グリッドチャート31v(アムスラーチャート)に設けられた5つの注視点(D1~D5(図4参照))に対応して5つのチェックマーク47a~47eが設けられて構成されている。そのチェックマーク47aは中心注視点D1に対応し、チェックマーク47bは周辺注視点D2に対応し、チェックマーク47cは周辺注視点D3に対応し、チェックマーク47dは周辺注視点D4に対応し、チェックマーク47eは周辺注視点D5に対応している。この各チェックマーク47a~47eは、触れられたか否かの識別を可能とすべく触れられると表示形態を変化させるものとされており、実施例1では色が変化するものとされている。 Furthermore, in the eye refractive power measuring apparatus 10, under the control of the control unit 21 (see FIG. 2), the grid auxiliary for assisting the grid chart test as the subjective measurement using the grid chart 31v on the display surface 14a of the display unit 14. The symbol 47 is displayed. The grid auxiliary symbol 47 includes five gaze points (D1 to D5 (see FIG. 4)) provided on the grid chart 31v (Amsler chart) on a grid symbol imitating the grid chart 31v (Amsler chart). ), Five check marks 47a to 47e are provided. The check mark 47a corresponds to the central gazing point D1, the check mark 47b corresponds to the peripheral gazing point D2, the check mark 47c corresponds to the peripheral gazing point D3, and the check mark 47d corresponds to the peripheral gazing point D4. The mark 47e corresponds to the peripheral gazing point D5. Each of the check marks 47a to 47e changes the display form when touched so that it can be identified whether or not it has been touched. In the first embodiment, the color changes.
 次に、本発明に係る実施例1の眼屈折力測定装置10により、グリッドチャート31v(アムスラーチャート)を用いて自覚測定としてのグリッドチャートテストを行う際の動作について説明する。なお、眼屈折力測定装置10における下記の動作は、制御部21(図2参照)の制御下で実行される。先ず、表示部14において、他覚自覚切替記号42に触れることにより他覚測定を行う旨の操作を行う。そして、表示部14において、チャート切替記号44に触れることによりグリッドチャート31v(アムスラーチャート)を用いる旨の操作を行う。 Next, an operation when performing a grid chart test as a subjective measurement using the grid chart 31v (Amsler chart) by the eye refractive power measurement apparatus 10 according to the first embodiment of the present invention will be described. In addition, the following operation | movement in the eye refractive power measuring apparatus 10 is performed under control of the control part 21 (refer FIG. 2). First, on the display unit 14, an operation for performing an objective measurement is performed by touching the objective awareness switching symbol 42. Then, by touching the chart switching symbol 44 on the display unit 14, an operation for using the grid chart 31 v (Amsler chart) is performed.
 すると、眼屈折力測定装置10では、上述した角膜Ecの形状や被検眼Eの眼屈折力を測定するときと同様に、被検眼Eに対する装置本体部13のアライメントを行う。なお、このアライメントは、当該グリッドチャートテスト(他覚測定)が被検眼Eの眼屈折力や角膜Ecの形状の測定の後に行われるものである場合、既に実行されているので行わないものとしてもよい。そして、眼屈折力測定装置10では、指標切替部31dの切替駆動部31sを駆動してターレット部31rの回転姿勢を適宜変化させることにより、グリッドチャート31vを視標投影光学系31の光軸O2上に位置させる。また、眼屈折力測定装置10では、先に当該被検眼Eの眼屈折力の測定を行っている場合、その測定結果を用いて、視標合焦機構31Dにより合焦レンズ31hを視標投影光学系31の光軸O2に沿って適宜移動させてピント調節を行う。これにより、眼屈折力測定装置10では、グリッドチャート31vを、被検眼Eにおいて遠くを見るときに適した度数となる位置、または被検眼Eにおいて近くを見るときに適した度数となる位置に疑似的に移動する。加えて、眼屈折力測定装置10では、先にVAチャートを用いて自覚測定により視力検査を行っている場合、その測定結果を用いて、視標合焦機構31Dにより合焦レンズ31hを視標投影光学系31の光軸O2に沿って適宜移動させてピント調節を行う。そして、眼屈折力測定装置10では、視標投影光学系31において、視標光源31aを点灯させて、被検眼Eにグリッドチャート31vとしてのターゲット光束を投影して、グリッドチャート31vを主光軸O1上で被検眼Eに呈示(投影)する。 Then, the eye refractive power measuring apparatus 10 performs alignment of the apparatus main body 13 with respect to the eye E as in the case of measuring the shape of the cornea Ec and the eye refractive power of the eye E. This alignment may not be performed because the grid chart test (objective measurement) is performed after the measurement of the eye refractive power of the eye E or the shape of the cornea Ec. Good. Then, in the eye refractive power measuring apparatus 10, the grid chart 31v is changed to the optical axis O2 of the target projection optical system 31 by driving the switching drive unit 31s of the index switching unit 31d and appropriately changing the rotational posture of the turret unit 31r. Position on top. Moreover, in the eye refractive power measuring apparatus 10, when the eye refractive power of the eye E to be examined is previously measured, the target lens 31h is projected by the target focusing mechanism 31D using the measurement result. Focus adjustment is performed by appropriately moving the optical system 31 along the optical axis O2. Thereby, in the eye refractive power measuring apparatus 10, the grid chart 31v is simulated at a position where the power is suitable when looking far away in the eye E, or at a position where the power is suitable when looking near in the eye E. Move on. In addition, in the eye refractive power measuring apparatus 10, when the visual acuity test is performed by subjective measurement using the VA chart, the target lens 31h is detected by the target focusing mechanism 31D using the measurement result. Focus adjustment is performed by appropriately moving the projection optical system 31 along the optical axis O2. In the eye refractive power measuring apparatus 10, the target light source 31a is turned on in the target projection optical system 31, and the target light beam as the grid chart 31v is projected onto the eye E, and the grid chart 31v is used as the main optical axis. Present (project) to the eye E on O1.
 すると、被検者は、図7に示すように、グリッドチャート31vのうち中心から一定の範囲のみが見えることとなる。これは、以下のことによる。視標投影光学系31では、上述したように、グリッドチャート31v(図4参照)を視標投影光学系31の光軸O2上に位置させた場合、当該グリッドチャート31vが所定の大きさ寸法で被検眼Eから30~40cmの距離となる位置に設けられたものと等しい状態としている。すると、視標投影光学系31では、被検眼Eからの視野Vfに制限が生じてしまい、グリッドチャート31v全体を被検者に見せる(認識させる)ことが困難となってしまう。このため、被検者は、眼屈折力測定装置10の視標投影光学系31によりグリッドチャート31v(アムスラーチャート)が呈示されると、そのグリッドチャート31vのうち中心から一定の範囲のみが見えることとなる。そして、このグリッドチャート31vのうち中心から一定の範囲(視野Vf)は、中心注視点D1を注視した被検眼Eにおける網膜(眼底)Efの中心(黄斑部)に対応する範囲としている。この視野Vfは、図7に示す例では、円で囲まれてグリッドチャート31vを実線で示した領域としている。なお、この図7は、理解容易のために、眼屈折力測定装置10を用いてグリッドチャート31vが見える様子を模式的示すものであり、必ずしも実際に見える様子を合致するものではない。加えて、グリッドチャート31vでは、複数の周辺注視点(D2~D5)が、視標投影光学系31における視野Vfの周縁部に位置されている。そして、被検眼E(被験者)は、当該視野Vfの外方を真っ暗闇(図7ではハッチを付して示している)として認識する。 Then, as shown in FIG. 7, the subject can see only a certain range from the center of the grid chart 31v. This is due to the following. In the target projection optical system 31, as described above, when the grid chart 31v (see FIG. 4) is positioned on the optical axis O2 of the target projection optical system 31, the grid chart 31v has a predetermined size. The state is the same as that provided at a position 30 to 40 cm away from the eye E. Then, in the target projection optical system 31, the visual field Vf from the eye E is limited, and it becomes difficult to make the subject see (recognize) the entire grid chart 31v. Therefore, when the grid chart 31v (Amsler chart) is presented by the target projection optical system 31 of the eye refractive power measurement apparatus 10, the subject can see only a certain range from the center of the grid chart 31v. It becomes. In the grid chart 31v, a certain range (field of view Vf) from the center is a range corresponding to the center (macular portion) of the retina (fundus) Ef of the eye E to be inspected with the central gazing point D1. In the example shown in FIG. 7, the visual field Vf is surrounded by a circle and is a region indicated by the solid line of the grid chart 31v. For the sake of easy understanding, FIG. 7 schematically shows how the grid chart 31v can be seen using the eye refractive power measuring apparatus 10, and does not necessarily match the actual appearance. In addition, in the grid chart 31v, a plurality of peripheral gazing points (D2 to D5) are positioned at the peripheral edge of the visual field Vf in the target projection optical system 31. Then, the eye E (subject) recognizes the outside of the visual field Vf as completely dark (shown with hatching in FIG. 7).
 ここで、グリッドチャート31v(アムスラーチャート)を用いた自覚測定すなわちグリッドチャートテストでは、格子状のパターンが歪んで見えたり一部が欠けて見えたり一部がぼやけて見えたりしている場合、注視している被検眼Eに網膜(眼底)Efの中心(黄斑部)を含めた疾患もしくはその周辺の疾患の可能性があるものと判断する。このグリッドチャートテストでは、歪みや欠けやぼやけは視界の中央近傍、すなわち被検眼Eにおける網膜(眼底)Efの中心(黄斑部)に生じることが多い。このことから、グリッドチャートテストでは、被検者がグリッドチャート31vのうち中心から一定の範囲(網膜(眼底)Efの中心(黄斑部)に対応する範囲)のみが見えるものであっても、この判断に支障が出る可能性は極めて低いものと考えられる。 Here, in the subjective measurement using the grid chart 31v (Amsler chart), that is, the grid chart test, when the lattice-like pattern looks distorted, partly looks missing, or partly looks blurred, attention is paid. It is determined that there is a possibility of a disease including the center (macular region) of the retina (fundus) Ef in the eye E to be examined or a surrounding disease. In this grid chart test, distortion, chipping, and blurring often occur near the center of the field of view, that is, in the center (macular area) of the retina (fundus) Ef of the eye E to be examined. From this, in the grid chart test, even if the subject can only see a certain range from the center of the grid chart 31v (a range corresponding to the center (macular area) of the retina (fundus) Ef), It is considered very unlikely that the judgment will be hindered.
 このため、眼屈折力測定装置10では、視標投影光学系31によりグリッドチャート31v(アムスラーチャート)における網膜(眼底)Efの中心(黄斑部)に対応する範囲を被検眼Eに呈示することができるので、中心注視点D1を固視目標として注視させた状態で上記した見え方の確認を行うことで、被検眼Eにおける網膜(眼底)Efの中心(黄斑部)に疾患の可能性があるか否かの確認を行うことができる。 For this reason, in the eye refractive power measuring apparatus 10, the eye projection optical system 31 presents to the eye E a range corresponding to the center (macular region) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). Therefore, there is a possibility of a disease in the center (macular region) of the retina (fundus) Ef in the eye E by performing the above-described confirmation of the appearance with the central gazing point D1 as the fixation target. It can be confirmed whether or not.
 加えて、本発明に係る実施例1の眼屈折力測定装置10では、中心から一定の範囲以外の範囲での上記した見え方の確認を可能とするために、グリッドチャート31vに中心位置の中心注視点D1を取り巻くように4つの周辺注視点(D2~D5)を設けている。このため、グリッドチャート31vを用いたグリッドチャートテストでは、各周辺注視点(D2~D5)をそれぞれ固視目標として注視させた状態で、格子状のパターンが歪んで見えたり一部が欠けて見えたり一部がぼやけて見えたりしているかを、被検者に確認する。これにより、眼屈折力測定装置10では、グリッドチャート31vのうち中心から一定の範囲のみしか見えなくても、当該グリッドチャート31v全体を見せた場合と同様の判断が可能となる。これは、以下のことによる。 In addition, in the eye refractive power measurement apparatus 10 according to the first embodiment of the present invention, the center of the center position is displayed on the grid chart 31v in order to enable the above-described appearance to be confirmed in a range other than a certain range from the center. Four peripheral gazing points (D2 to D5) are provided so as to surround the gazing point D1. For this reason, in the grid chart test using the grid chart 31v, the grid-like pattern looks distorted or partially missing with each peripheral gaze point (D2 to D5) gaze as a fixation target. Check with the subject to see if some of them appear blurry. Thereby, in the eye refractive power measuring apparatus 10, even if only a certain range from the center of the grid chart 31v is visible, it is possible to make the same determination as when the entire grid chart 31v is shown. This is due to the following.
 先ず、4つの周辺注視点(D2~D5)は、上述したように、中心注視点D1(中心位置)を含む縦線および横線でグリッドチャート31vを4分割した各分割領域の中心位置に設けられている。そして、上述したように各周辺注視点(D2~D5)が視標投影光学系31における視野Vfの周縁部に位置されていることから、周辺注視点D2は、図8(a)に示すように、視野Vfの内方において、左上の周縁部に位置することとなる。このことから、周辺注視点D2を固視目標として注視させて上記した見え方の確認を行うと、周辺注視点D2に対して右下に視野Vfの内方に位置するグリッドチャート31vが存在することとなる。その視野Vfを基準として、当該視野Vfの内方における周辺注視点D2の位置に中心注視点D1を位置させることで、グリッドチャート31vを用いて中心注視点D1を注視させた状態に置き換えることができる。このため、周辺注視点D2を注視させた状態は、図8(b)に示すように、グリッドチャート31vを用いて中心注視点D1を注視させた状態において、視野Vfを当該グリッドチャート31vに対して右下へと変位させた場合と等しいものと見做すことができる。そのときの視野Vfの内方には、グリッドチャート31v全体のうちの右下の分割領域(ハッチを付して示した箇所)の全体が位置することとなる。よって、周辺注視点D2を注視させて上記した見え方の確認を行うことで、中心注視点D1を注視させた際のグリッドチャート31v全体のうちの右下の分割領域(それを含む視野Vf内)における見え方の確認を行ったことと見做すことができる。これにより、被検眼Eにおける右下の領域(被検眼Eを正面から見ると左下の領域)の部位において疾患の可能性があるか否かを確認することができる。 First, the four peripheral gazing points (D2 to D5) are provided at the center positions of the divided areas obtained by dividing the grid chart 31v into four by the vertical and horizontal lines including the central gazing point D1 (center position) as described above. ing. As described above, since the peripheral gazing points (D2 to D5) are located at the peripheral edge of the visual field Vf in the target projection optical system 31, the peripheral gazing point D2 is as shown in FIG. In addition, it is located at the upper left peripheral edge in the visual field Vf. Therefore, when the peripheral gaze point D2 is gazeed as a fixation target and the above-described appearance is confirmed, there is a grid chart 31v located in the lower right of the visual field Vf with respect to the peripheral gaze point D2. It will be. With the visual field Vf as a reference, the central gazing point D1 is positioned at the position of the peripheral gazing point D2 inward of the visual field Vf, thereby replacing the central gazing point D1 with the grid chart 31v. it can. For this reason, as shown in FIG. 8B, the state in which the peripheral gazing point D2 is watched is the state in which the central gazing point D1 is gazed using the grid chart 31v, and the visual field Vf is viewed with respect to the grid chart 31v. It can be considered that it is equivalent to the case of shifting to the lower right. The entire lower right divided region (the portion shown with hatching) of the entire grid chart 31v is located inside the visual field Vf at that time. Therefore, by confirming the above-mentioned appearance by gazing at the peripheral gazing point D2, the lower right divided region (within the visual field Vf including the same) of the entire grid chart 31v when the central gazing point D1 is gazed. It can be considered that the appearance was confirmed in (). Thereby, it is possible to confirm whether or not there is a possibility of a disease in the region of the lower right region of the eye E (lower left region when the eye E is viewed from the front).
 同様に、図9(a)に示すように周辺注視点D3を固視目標として注視させて上記した見え方の確認を行うことで、図9(b)に示すように中心注視点D1を注視させた際のグリッドチャート31v全体のうちの左下の分割領域(それを含む視野Vf内)における見え方の確認を行ったことと見做すことができる。これにより、被検眼Eにおける左下の領域(被検眼Eを正面から見ると右下の領域)の部位において疾患の可能性があるか否かを確認することができる。 Similarly, as shown in FIG. 9 (a), the peripheral gazing point D3 is gazed as a fixation target, and the above-described appearance is confirmed, thereby gazing at the central gazing point D1 as shown in FIG. 9 (b). It can be considered that the appearance of the lower left divided region (in the visual field Vf including the grid region 31v) in the entire grid chart 31v at the time of confirmation is confirmed. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the lower left region of the eye E (the lower right region when the eye E is viewed from the front).
 同様に、図10(a)に示すように周辺注視点D4を固視目標として注視させて上記した見え方の確認を行うことで、図10(b)に示すように中心注視点D1を注視させた際のグリッドチャート31v全体のうちの右上の分割領域(それを含む視野Vf内)における見え方の確認を行ったことと見做すことができる。これにより、被検眼Eにおける右上の領域(被検眼Eを正面から見ると左上の領域)の部位において疾患の可能性があるか否かを確認することができる。 Similarly, as shown in FIG. 10 (a), the peripheral gazing point D4 is gazed as a fixation target, and the above-described appearance confirmation is performed, so that the central gazing point D1 is gazed as shown in FIG. 10 (b). It can be considered that the appearance in the upper right divided area (within the visual field Vf including the grid area 31v) of the entire grid chart 31v at the time of checking is confirmed. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the upper right region of the eye E (the upper left region when the eye E is viewed from the front).
 同様に、図11(a)に示すように周辺注視点D5を固視目標として注視させて上記した見え方の確認を行うことで、図11(b)に示すように中心注視点D1を注視させた際のグリッドチャート31v全体のうちの左上の分割領域(それを含む視野Vf内)における見え方の確認を行ったことと見做すことができる。これにより、被検眼Eにおける左上の領域(被検眼Eを正面から見ると右上の領域)の部位において疾患の可能性があるか否かを確認することができる。 Similarly, as shown in FIG. 11A, the peripheral gazing point D5 is gazed as a fixation target, and the above-described appearance is confirmed, so that the central gazing point D1 is gazed as shown in FIG. 11B. It can be considered that the appearance in the upper left divided region (in the visual field Vf including the grid region 31v) of the entire grid chart 31v at the time of confirmation is confirmed. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the upper left region of the eye E (the upper right region when the eye E is viewed from the front).
 このため、眼屈折力測定装置10では、4つの周辺注視点(D2~D5)をそれぞれ固視目標として注視させて見え方の確認を行うことにより、グリッドチャート31v全体を見せつつ中心注視点D1を注視させて見え方の確認を行った場合と同様の判断を可能とすることができる。これにより、被検眼Eにおける全領域において疾患の可能性があるか否かを確認することができるとともに、被検眼Eにおけるどの部位に疾患の可能性があるか否かを個別に確認することができる。なお、上記した固視目標として注視させる各注視点(D1~D5)の変更は、検者の指示により行われる。すなわち、検者が、いずれか1つの注視点(D1~D5)を注視するように被検者に指示し、当該被検者が指示された注視点(D1~D5)を注視することにより、上記した変更が行われる。 Therefore, in the eye refractive power measuring apparatus 10, the central gaze point D1 is shown while showing the entire grid chart 31v by gazing each of the four peripheral gaze points (D2 to D5) as fixation targets and confirming the appearance. It is possible to make the same determination as when the appearance is confirmed by gazing. Thereby, it is possible to confirm whether or not there is a possibility of a disease in the entire region of the eye E, and to individually confirm which part of the eye E is likely to be a disease. it can. Note that the change of each gazing point (D1 to D5) to be gazed as the fixation target is performed according to an instruction from the examiner. That is, the examiner instructs the subject to watch one of the gazing points (D1 to D5), and the subject gazing at the gazing point (D1 to D5) instructed, The above changes are made.
 この眼屈折力測定装置10では、被検者に中心注視点D1を注視させた結果、当該被検者が見え方に異常を感じた場合(格子状のパターンが歪んで見えたり一部が欠けて見えたり一部がぼやけて見えたりした場合)、検者はグリッド補助記号47におけるチェックマーク47a(図6参照)に触れて表示形態を変化させる。同様に、被検者が見え方に異常を感じた場合、周辺注視点D2を注視させた場面ではチェックマーク47b(図6参照)、周辺注視点D3を注視させた場面ではチェックマーク47c(図6参照)、周辺注視点D4を注視させた場面ではチェックマーク47d(図6参照)、周辺注視点D5を注視させた場面ではチェックマーク47e(図6参照)、にそれぞれ触れて表示形態を変化させる。これにより、眼屈折力測定装置10では、各チェックマーク(47a~47e)における表示形態が変化されていると、対応する注視点(D1~D5)を固視目標として注視させて上記した見え方の確認を行った際に見え方に異常を感じたことを示すものとすることができる。このため、眼屈折力測定装置10では、グリッドチャート31v全体のうちのいずれの領域(中心近傍もしくは各分割領域)で、被検者が見え方に異常を感じたかの確認を容易なものとすることができ、被検眼Eにおけるどの部位に疾患の可能性があるとの確認を容易なものとすることができる。 In this eye refractive power measurement device 10, when the subject gazes at the central gazing point D1, the subject feels abnormal in appearance (the lattice pattern appears distorted or partially missing). When the examiner touches the check mark 47a (see FIG. 6) in the grid auxiliary symbol 47, the display form is changed. Similarly, when the subject feels an abnormality in the appearance, the check mark 47b (see FIG. 6) is used when the peripheral gaze point D2 is watched, and the check mark 47c (see FIG. 6) is used when the peripheral gaze point D3 is watched. 6), touch the check mark 47d (see FIG. 6) when the peripheral gaze point D4 is watched, and change the display form by touching the check mark 47e (see FIG. 6) when the gaze point is the peripheral gaze point D5. Let As a result, in the eye refractive power measurement apparatus 10, when the display form of each check mark (47a to 47e) is changed, the corresponding gazing point (D1 to D5) is gazed as a fixation target and the above-described appearance It is possible to indicate that an abnormality was observed in the appearance when the confirmation was performed. For this reason, in the eye refractive power measuring apparatus 10, it is easy to confirm in which region (near the center or each divided region) of the entire grid chart 31v that the subject feels abnormal. Thus, it is possible to easily confirm which part of the eye E has a possibility of disease.
 眼屈折力測定装置10では、上記した他覚測定(グリッドチャートテスト)を両眼に対して行うことにより、被検者の両眼におけるどの部位に疾患の可能性があるとの確認を行うことができる。これにより、眼屈折力測定装置10では、グリッドチャート31vを用いたグリッドチャートテスト(自覚測定)を左右の被検眼Eに対して実行することができる。 In the eye refractive power measuring apparatus 10, by performing the above-described objective measurement (grid chart test) on both eyes, it is confirmed that there is a possibility of disease in any part of both eyes of the subject. Can do. Thereby, in the eye refractive power measuring apparatus 10, the grid chart test (consciousness measurement) using the grid chart 31v can be performed with respect to the right and left eye E to be examined.
 本発明に係る眼屈折力測定装置(検眼装置)の一実施例1としての眼屈折力測定装置10では、視標投影光学系31により、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)における主光軸O1上で、グリッドチャート31v(アムスラーチャート)を被検眼Eに呈示(投影)する。このため、眼屈折力測定装置10では、他覚測定として眼屈折力を測定する際と同様に、被検眼Eに対するグリッドチャート31v(アムスラーチャート)の距離および姿勢を所定のものとしつつ、当該グリッドチャート31vを用いた自覚測定(グリッドチャートテスト)を行うことができる。これにより、眼屈折力測定装置10では、当該自覚測定(グリッドチャートテスト)を適切に行うことができ、適切に疾患の可能性があるか否かを確認することができる。 In an eye refractive power measuring apparatus 10 as an embodiment 1 of an eye refractive power measuring apparatus (optometry apparatus) according to the present invention, an anterior ocular segment observation optical system 32 (eye refractive power measuring apparatus 10) is provided by a target projection optical system 31. The grid chart 31v (Amsler chart) is presented (projected) to the eye E on the main optical axis O1 in the optical configuration. For this reason, in the eye refractive power measuring apparatus 10, the grid chart 31v (Amsler chart) with respect to the eye E is set to have a predetermined distance and posture as in the case of measuring the eye refractive power as objective measurement, while the grid A subjective measurement (grid chart test) using the chart 31v can be performed. Thereby, in the eye refractive power measuring apparatus 10, the said subjective measurement (grid chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
 また、眼屈折力測定装置10では、視標投影光学系31により、前眼部観察光学系32(眼屈折力測定装置10の光学的な構成)における主光軸O1上で、グリッドチャート31v(アムスラーチャート)を被検眼Eに呈示(投影)する。このため、眼屈折力測定装置10では、他覚測定として眼屈折力を測定する際と同様に、被検者が測定を実行している被検眼Eとは反対側の眼を覆ったり当該眼を瞑ったりすることなく、グリッドチャート31vを用いた自覚測定(グリッドチャートテスト)を行うことができる。これにより、眼屈折力測定装置10では、被検者が注視することの妨げとなることを防止することができ、当該自覚測定(グリッドチャートテスト)を適切に行うことができ、適切に疾患の可能性があるか否かを確認することができる。 Further, in the eye refractive power measuring apparatus 10, the grid chart 31v (on the main optical axis O1 in the anterior ocular segment observation optical system 32 (optical configuration of the eye refractive power measuring apparatus 10) is caused by the target projection optical system 31. (Amsler chart) is presented (projected) to the eye E. For this reason, in the eye refractive power measuring apparatus 10, as in the case of measuring the eye refractive power as an objective measurement, the subject covers the eye opposite to the eye E to be measured, or the eye Awareness measurement (grid chart test) using the grid chart 31v can be performed without meditating. Thereby, in the eye refractive power measuring apparatus 10, it can prevent that a subject becomes a hindrance to gaze, the said subjective measurement (grid chart test) can be performed appropriately, and a disease can be appropriately detected. It can be confirmed whether or not there is a possibility.
 さらに、眼屈折力測定装置10では、視標投影光学系31により、グリッドチャート31vが所定の大きさ寸法で被検眼Eから所定の距離(実施例1では30~40cm)となる位置に設けられたものと等しい状態として、当該被検眼Eにグリッドチャート31vを呈示する。このため、眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)をより適切な状態で被検眼Eに呈示しつつ当該グリッドチャート31vを用いた自覚測定(グリッドチャートテスト)を行うことができる。これにより、眼屈折力測定装置10では、当該自覚測定(グリッドチャートテスト)を適切に行うことができ、適切に疾患の可能性があるか否かを確認することができる。 Furthermore, in the eye refractive power measuring apparatus 10, the grid chart 31v is provided by the target projection optical system 31 at a predetermined distance and a predetermined distance from the eye E (30 to 40 cm in the first embodiment). The grid chart 31v is presented to the eye E as a state equal to the above. For this reason, the eye refractive power measurement apparatus 10 can perform subjective measurement (grid chart test) using the grid chart 31v while presenting the grid chart 31v (Amsler chart) to the eye E in a more appropriate state. . Thereby, in the eye refractive power measuring apparatus 10, the said subjective measurement (grid chart test) can be performed appropriately, and it can be confirmed whether there is a possibility of a disease appropriately.
 眼屈折力測定装置10では、視標投影光学系31により、グリッドチャート31vが所定の大きさ寸法で被検眼Eから所定の距離(30~40cm)となる位置に設けられたものと等しい状態として、主光軸O1上で当該グリッドチャート31v(アムスラーチャート)を被検眼Eに呈示(投影)する。ここで、一般的に、アムスラーチャートを用いた自覚測定では、紙や電子媒体等で形成されたアムスラーチャートまでの間隔が所定の距離となるように、被検者自身が手に持ったり設置したりして、見え方の確認を行う。このため、アムスラーチャートの呈示距離に個人差が生まれてしまったり、誤った方法で行ったりしてしまう虞がある。これに対し、眼屈折力測定装置10では、被検者に拘わらずグリッドチャート31v(アムスラーチャート)を所定の距離で呈示させつつ適切な方法で、グリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことができる。 In the eye refractive power measuring apparatus 10, the target projection optical system 31 is set to a state equivalent to that in which the grid chart 31v is provided at a position having a predetermined size and a predetermined distance (30 to 40 cm) from the eye E. The grid chart 31v (Amsler chart) is presented (projected) to the eye E on the main optical axis O1. Here, in general, in subjective measurement using an Amsler chart, the subject himself / herself holds or installs it so that the distance to the Amsler chart formed of paper or electronic media is a predetermined distance. Check the appearance. For this reason, there is a possibility that individual differences may be born in the presentation distance of the Amsler chart, or that the wrong method may be used. On the other hand, in the eye refractive power measuring apparatus 10, the subjective measurement using the grid chart 31v (Amsler chart) by an appropriate method while presenting the grid chart 31v (Amsler chart) at a predetermined distance regardless of the subject. It can be performed.
 眼屈折力測定装置10では、先に被検眼Eの眼屈折力の測定を行っている場合、その測定結果を用いて、視標合焦機構31Dにより合焦レンズ31hを視標投影光学系31の光軸O2に沿って適宜移動させてピント調節を行った状態で、すなわちグリッドチャート31vを被検眼Eにおいて遠くを見るときに適した度数となる位置または被検眼Eにおいて近くを見るときに適した度数となる位置に疑似的に移動させた状態で、グリッドチャート31v(アムスラーチャート)を用いた自覚測定を行う。ここで、一般的に、アムスラーチャートを用いた自覚測定では、被検者が視力に応じて両眼視補正をしたメガネを用いる必要があり、適切に格子状のパターンがどのように見えるのかを適切に確認できない虞がある。これに対し、眼屈折力測定装置10では、上記したようにピント調節を行った状態で自覚測定を行うことから、両眼視補正をしたメガネを用いることなく、グリッドチャート31v(アムスラーチャート)を被検者(被検眼E)に見せることができる。このとき、眼屈折力測定装置10では、被検眼Eにおける片眼のみの矯正値に近い状態でグリッドチャート31v(アムスラーチャート)を見せつつ、その見え方の確認を行うことができる。このため、眼屈折力測定装置10では、被検者がよりはっきりとグリッドチャート31v(アムスラーチャート)が見える状態で、その見え方の確認を行うこととなるので、当該自覚測定(グリッドチャートテスト)をより適切に行うことができ、より適切に疾患の可能性があるか否かを確認することができる。 When the eye refractive power measuring apparatus 10 has previously measured the eye refractive power of the eye E, the eye projection optical system 31 moves the focusing lens 31h by the target focusing mechanism 31D using the measurement result. In a state in which the focus is adjusted by appropriately moving along the optical axis O2, that is, when the grid chart 31v is a frequency suitable for looking far away in the eye E or when looking close in the eye E In the state where it is pseudo-moved to a position where the frequency becomes a frequency, the subjective measurement using the grid chart 31v (Amsler chart) is performed. Here, in general, in subjective measurement using the Amsler chart, it is necessary for the subject to use glasses corrected for binocular vision according to visual acuity, and how the grid pattern looks appropriately There is a possibility that it cannot be confirmed properly. On the other hand, since the eye refractive power measurement apparatus 10 performs subjective measurement with the focus adjusted as described above, the grid chart 31v (Amsler chart) can be used without using binocular corrected glasses. It can be shown to a subject (eye E). At this time, the eye refractive power measuring apparatus 10 can confirm the appearance while showing the grid chart 31v (Amsler chart) in a state close to the correction value of only one eye in the eye E. For this reason, in the eye refractive power measuring apparatus 10, since the subject can confirm the appearance of the grid chart 31v (Amsler chart) more clearly, the subjective measurement (grid chart test). Can be performed more appropriately, and whether or not there is a possibility of a disease can be confirmed more appropriately.
 眼屈折力測定装置10では、上記したようにピント調節を行った状態で自覚測定を行うことから、両眼視補正をしたメガネを用いることなく、グリッドチャート31v(アムスラーチャート)を見せることができる。ここで、両眼視補正をしたメガネを用いた場合、乱視による歪みや当該メガネレンズの歪みの影響を受けてしまう。このため、眼屈折力測定装置10では、そのような他の影響を排除した状態で、グリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことができるので、当該自覚測定(グリッドチャートテスト)をより適切に行うことができ、より適切に疾患の可能性があるか否かを確認することができる。 Since the eye refractive power measurement device 10 performs subjective measurement with the focus adjusted as described above, the grid chart 31v (Amsler chart) can be shown without using glasses with binocular vision correction. . Here, when glasses with binocular vision correction are used, they are affected by distortion due to astigmatism and distortion of the glasses lens. For this reason, the eye refractive power measurement apparatus 10 can perform subjective measurement using the grid chart 31v (Amsler chart) in a state in which such other influences are excluded, and thus the subjective measurement (grid chart test). Can be performed more appropriately, and whether or not there is a possibility of a disease can be confirmed more appropriately.
 眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)における網膜(眼底)Efの中心(黄斑部)に対応する範囲を被検眼Eに呈示する。このため、眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)における網膜(眼底)Efの中心(黄斑部)に対応する範囲のみに被検者の注意を向けさせることができる。これにより、眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)を用いて、被検眼Eにおける網膜(眼底)Efの中心(黄斑部)に対応する範囲に疾患の可能性があるか否かをより適切に確認することができる。 The eye refractive power measuring apparatus 10 presents to the eye E a range corresponding to the center (macular area) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). For this reason, in the eye refractive power measuring apparatus 10, the subject's attention can be directed only to a range corresponding to the center (macular portion) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). Thereby, in the eye refractive power measuring apparatus 10, whether there is a possibility of a disease in the range corresponding to the center (macular region) of the retina (fundus) Ef in the eye E using the grid chart 31v (Amsler chart). Can be confirmed more appropriately.
 眼屈折力測定装置10では、グリッドチャート31vに中心位置の中心注視点D1を取り巻くように複数の周辺注視点(実施例1では4つ)を設けている。このため、眼屈折力測定装置10では、視標投影光学系31により被検眼E(被験者)に見せることのできるグリッドチャート31v(アムスラーチャート)が小さなものとなる場合であっても、各周辺注視点を固視目標として注視させつつ見え方の確認を行うことで、実際に見せているグリッドチャート31vよりも大きな範囲で疾患の可能性があるか否かを確認することができる。 In the eye refractive power measuring apparatus 10, a plurality of peripheral gazing points (four in the first embodiment) are provided on the grid chart 31v so as to surround the central gazing point D1 at the center position. For this reason, in the eye refractive power measuring apparatus 10, even if the grid chart 31v (Amsler chart) that can be shown to the eye E (subject) by the target projection optical system 31 is small, each peripheral note By checking the appearance while gazing at the viewpoint as a fixation target, it is possible to confirm whether or not there is a possibility of a disease in a larger range than the grid chart 31v that is actually shown.
 眼屈折力測定装置10では、複数の周辺注視点(実施例1では4つ)を、視標投影光学系31における視野Vfの周縁部に設けている。このため、眼屈折力測定装置10では、被検眼E(被験者)に見せることのできる視野Vf内のグリッドチャート31v(アムスラーチャート)を用いて、最も大きな範囲で疾患の可能性があるか否かを確認することができる。 In the eye refractive power measurement apparatus 10, a plurality of peripheral gazing points (four in the first embodiment) are provided at the peripheral edge of the visual field Vf in the target projection optical system 31. Therefore, in the eye refractive power measurement apparatus 10, whether or not there is a possibility of a disease in the largest range using the grid chart 31v (Amsler chart) in the visual field Vf that can be shown to the eye E (subject). Can be confirmed.
 眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)を正方形状とするとともに、そのグリッドチャート31vを中心注視点D1(中心位置)を含む縦線および横線で4分割した各分割領域の中心位置に4つの周辺注視点(D2~D5)を設けている。このため、眼屈折力測定装置10では、4つの周辺注視点(D2~D5)をそれぞれ固視目標として注視させて見え方の確認を行うことにより、当該各周辺注視点で規定される正方形の領域の4倍の面積のグリッドチャート31v上での疾患の可能性があるか否かを確認することができる。これにより、眼屈折力測定装置10では、より効率良くグリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことができる。 In the eye refractive power measurement apparatus 10, the grid chart 31v (Amsler chart) is formed in a square shape, and the grid chart 31v is divided into four centers by vertical and horizontal lines including the central gazing point D1 (center position). Four peripheral gazing points (D2 to D5) are provided at the position. Therefore, in the eye refractive power measurement device 10, the four peripheral gazing points (D2 to D5) are gazed as fixation targets, respectively, and the appearance is confirmed to confirm the square shape defined by each peripheral gazing point. It can be confirmed whether or not there is a possibility of a disease on the grid chart 31v having an area four times as large as the region. Thereby, in the eye refractive power measuring apparatus 10, the subjective measurement using the grid chart 31v (Amsler chart) can be performed more efficiently.
 眼屈折力測定装置10では、視標投影光学系31における視野Vfの周縁部であって、グリッドチャート31v(アムスラーチャート)における網膜(眼底)Efの中心(黄斑部)に対応する範囲の周縁部に、複数の周辺注視点(実施例1では4つ)を設けている。このため、眼屈折力測定装置10では、各周辺注視点を固視目標として注視させてグリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことにより、被検眼Eにおけるどの部位に疾患の可能性があるか否かを確認することができる。 In the eye refractive power measuring apparatus 10, the peripheral portion of the visual field Vf in the target projection optical system 31, and the peripheral portion in a range corresponding to the center (macular portion) of the retina (fundus) Ef in the grid chart 31v (Amsler chart). In addition, a plurality of peripheral gazing points (four in the first embodiment) are provided. For this reason, in the eye refractive power measuring apparatus 10, each peripheral gazing point is gazeed as a fixation target, and subjective measurement using the grid chart 31 v (Amsler chart) is performed, so that any part of the eye E can be affected. It can be confirmed whether there is sex.
 眼屈折力測定装置10では、各注視点(D1~D5)を固視目標として注視させてグリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことから、被検眼Eにおけるどの部位に疾患の可能性があるか否かを個別に確認することができる。すなわち、眼屈折力測定装置10では、被検眼Eにおいて、中心注視点D1を注視させると網膜(眼底)Efの中心(黄斑部)の部位、周辺注視点D2を注視させると右下の領域(被検眼Eを正面から見ると左下の領域)の部位、周辺注視点D3を注視させると左下の領域(被検眼Eを正面から見ると右下の領域)の部位、周辺注視点D4を注視させると右上の領域(被検眼Eを正面から見ると左上の領域)の部位、周辺注視点D5を注視させると左上の領域(被検眼Eを正面から見ると右上の領域)の部位、に疾患の可能性があるか否かを確認することができる。このように、眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)に設けた注視点の位置および個数に応じて、被検眼Eにおける部位(領域)毎に疾患の可能性の有無を確認することができる。換言すると、眼屈折力測定装置10では、各注視点の位置および個数に応じた被検眼Eにおける部位(領域)毎にグリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことができるので、従来のアムスラーチャートを用いた自覚測定では困難であった被検眼Eにおけるどの部位(領域)に疾患の可能性があるのかを適切に把握することができる。このため、眼屈折力測定装置10では、被検眼Eにおける全領域において疾患の可能性があるか否かを確認することができることに加えて、被検眼Eにおけるどの部位に疾患の可能性があるか否かを個別に確認することができる。 In the eye refractive power measurement device 10, each gaze point (D1 to D5) is gazeed as a fixation target, and subjective measurement is performed using the grid chart 31v (Amsler chart). It is possible to check individually whether or not there is a possibility. That is, in the eye refractive power measuring apparatus 10, in the eye E to be examined, if the center gazing point D1 is gazed, the center (macular portion) portion of the retina (fundus) Ef and the peripheral gazing point D2 are gazeed, the lower right region ( When the eye E is viewed from the front, the lower left area) and the peripheral gazing point D3 are gazed, and the lower left area (lower right area when the eye E is viewed from the front) is gazed. And the upper right area (upper left area when the subject eye E is viewed from the front), and the upper left area (upper right area when the eye E is viewed from the front) when the peripheral gazing point D5 is watched. It can be confirmed whether or not there is a possibility. As described above, the eye refractive power measurement apparatus 10 confirms the presence or absence of a disease for each region (region) in the eye E according to the position and the number of gazing points provided on the grid chart 31v (Amsler chart). can do. In other words, the eye refractive power measurement apparatus 10 can perform subjective measurement using the grid chart 31v (Amsler chart) for each part (region) in the eye E according to the position and number of each gazing point. It is possible to appropriately grasp which part (region) in the eye E to be examined has a possibility of a disease, which has been difficult by the subjective measurement using the conventional Amsler chart. For this reason, in the eye refractive power measuring apparatus 10, in addition to being able to confirm whether or not there is a possibility of a disease in the entire region of the eye E, in which part of the eye E there is a possibility of a disease. It can be confirmed individually.
 眼屈折力測定装置10では、被検者に各注視点(D1~D5)を注視させた結果、当該被検者が見え方に異常を感じた場合、検者はグリッド補助記号47における対応するチェックマーク(47a~47e)にそれぞれ触れて表示形態を変化させることで、いずれの注視点(D1~D5)を注視させた際に見え方に異常を感じたのかを容易に記録することができる。このため、眼屈折力測定装置10では、グリッドチャート31v全体のうちのいずれの領域(中心近傍もしくは各分割領域)で、被検者が見え方に異常を感じたかの確認を容易なものとすることができ、被検眼Eにおけるどの部位に疾患の可能性があるかの確認を容易なものとすることができる。 In the eye refractive power measurement device 10, when the subject feels abnormal as a result of gazing at each gazing point (D 1 to D 5), the examiner responds with the grid auxiliary symbol 47. By touching each of the check marks (47a to 47e) and changing the display form, it is possible to easily record which gazing point (D1 to D5) is felt abnormal when viewed. . For this reason, in the eye refractive power measuring apparatus 10, it is easy to confirm in which region (near the center or each divided region) of the entire grid chart 31v that the subject feels abnormal. Thus, it is possible to easily confirm which part of the eye E is likely to have a disease.
 眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)が格子状のパターンの箇所で視標光源31aからの光(光束)を透過させることにより、当該グリッドチャート31vを被検眼Eに呈示している。このため、眼屈折力測定装置10では、簡易な構成でグリッドチャート31vを被検眼Eに呈示することができる。 In the eye refractive power measurement apparatus 10, the grid chart 31v (Amsler chart) transmits the light (light flux) from the target light source 31a at the location of the lattice pattern, thereby presenting the grid chart 31v to the eye E. ing. For this reason, the eye refractive power measuring apparatus 10 can present the grid chart 31v to the eye E with a simple configuration.
 眼屈折力測定装置10では、格子状のパターンの箇所を視標光源31aからの光(光束)を透過させて明るいものとするとともにそれ以外の箇所を暗いものとし、かつ視野Vfの外方を真っ暗闇として、グリッドチャート31v(アムスラーチャート)を被検眼E(被験者)に呈示する。このため、眼屈折力測定装置10では、グリッドチャート31v(アムスラーチャート)をよりはっきりと被検眼E(被験者)に見せることができるので、グリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)をより適切に行うことができ、より適切に疾患の可能性があるか否かを確認することができる。 In the eye refractive power measuring apparatus 10, the portion of the lattice pattern is brightened by transmitting the light (light beam) from the target light source 31a, the other portion is darkened, and the outside of the visual field Vf is outside. The grid chart 31v (Amsler chart) is presented to the eye E (subject) as darkness. For this reason, in the eye refractive power measuring apparatus 10, since the grid chart 31v (Amsler chart) can be shown more clearly to the eye E (subject), subjective measurement using the grid chart 31v (Amsler chart) (grid chart) Test) can be performed more appropriately, and whether or not there is a possibility of disease can be confirmed more appropriately.
 眼屈折力測定装置10では、グリッドチャート31vを視標光源31aからの光(光束)を透過させるものとすることにより、当該グリッドチャート31vを被検眼Eに呈示している。このため、眼屈折力測定装置10では、視標投影光学系31において、視標光源31aからの光(光束)を透過させる他の視標をグリッドチャート31vと交換可能に設けることにより、様々な指標を被検眼Eに呈示することができる。これにより、眼屈折力測定装置10では、使い勝手を向上させることができる。 In the eye refractive power measuring apparatus 10, the grid chart 31v is presented to the eye E by making the grid chart 31v transmit light (light flux) from the target light source 31a. For this reason, in the eye refractive power measuring apparatus 10, in the target projection optical system 31, another target that transmits the light (light beam) from the target light source 31a can be exchanged with the grid chart 31v. An index can be presented to the eye E. Thereby, in the eye refractive power measuring apparatus 10, usability can be improved.
 眼屈折力測定装置10では、指標切替部31dのターレット部31rに、グリッドチャート31vと他の視標(上記した実施例1では固視標とVAチャート)とを設け、そのターレット部31rの回転姿勢を適宜変化させて光軸O2上に位置させる視標を変更する。このため、眼屈折力測定装置10では、簡易な構成としつつ様々な指標を被検眼Eに呈示することができ、使い勝手を向上させることができる。 In the eye refractive power measuring apparatus 10, the grid chart 31v and other targets (fixed target and VA chart in the first embodiment described above) are provided in the turret unit 31r of the index switching unit 31d, and the turret unit 31r rotates. The target to be positioned on the optical axis O2 is changed by appropriately changing the posture. For this reason, in the eye refractive power measuring apparatus 10, various indexes can be presented to the eye E with a simple configuration, and usability can be improved.
 眼屈折力測定装置10では、先にVAチャートを用いて自覚測定により視力検査を行っている場合、その測定結果を用いて、視標合焦機構31Dにより合焦レンズ31hを視標投影光学系31の光軸O2に沿って適宜移動させてピント調節を行う。このため、眼屈折力測定装置10では、さらに屈折矯正をした状態でグリッドチャート31v(アムスラーチャート)を用いた自覚測定を行うことができるので、当該自覚測定(グリッドチャートテスト)をより適切に行うことができ、より適切に疾患の可能性があるか否かを確認することができる。 In the eye refractive power measurement device 10, when the visual acuity test is performed by subjective measurement using the VA chart, the focus lens 31h is moved by the visual target focusing mechanism 31D using the measurement result. The focus is adjusted by appropriately moving along the optical axis O2. For this reason, in the eye refractive power measuring apparatus 10, since the subjective measurement using the grid chart 31v (Amsler chart) can be performed with further refractive correction, the subjective measurement (grid chart test) is more appropriately performed. It is possible to confirm whether or not there is a possibility of the disease more appropriately.
 眼屈折力測定装置10では、被検眼Eの眼屈折力に加えて、それとは異なる被検眼Eの他の光学特性としての被検眼Eの角膜Ecの形状も測定することができる。このため、眼屈折力測定装置10では、より使い勝手を向上させることができる。 In the eye refractive power measuring apparatus 10, in addition to the eye refractive power of the eye E, the shape of the cornea Ec of the eye E as another optical characteristic of the eye E different from the eye E can be measured. For this reason, in the eye refractive power measuring apparatus 10, usability can be improved more.
 眼屈折力測定装置10では、被検眼Eに呈示するグリッドチャート31vの大きさ寸法を小さくすることが可能とされていることから、より狭い領域のみに被検者の注意を向けさせることができるので、グリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)をより適切に行うことができ、より適切に疾患の可能性があるか否かを確認することができる。 In the eye refractive power measurement apparatus 10, since the size of the grid chart 31v presented to the eye E can be reduced, the subject's attention can be directed only to a narrower region. Therefore, the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) can be performed more appropriately, and it can be confirmed whether or not there is a possibility of a disease more appropriately.
 したがって、本発明に係る眼屈折力測定装置(検眼装置)の一実施例としての実施例1の眼屈折力測定装置10では、アムスラーチャートを用いた自覚測定を容易にかつ適切に行うことができる。 Therefore, in the eye refractive power measuring apparatus 10 of Example 1 as an example of the eye refractive power measuring apparatus (optometry apparatus) according to the present invention, subjective measurement using an Amsler chart can be easily and appropriately performed. .
 なお、上記した実施例1では、レフ測定投影光学系33とレフ測定受光光学系34とで他覚測定により被検眼Eの眼屈折力を測定するものとされていたが、他覚測定か自覚測定かに拘わらず被検眼Eの眼屈折力を測定することのできる眼屈折力測定装置(検眼装置)であって、アムスラーチャート(グリッドチャート31v)を被検眼Eに呈示する視標呈示光学系(視標投影光学系31)を備える眼屈折力測定装置(検眼装置)であればよく、上記した実施例1の構成に限定されるものではない。 In Example 1 described above, the refraction measurement projection optical system 33 and the reflex measurement light receiving optical system 34 measure the refractive power of the eye E by objective measurement. An eye refractive power measuring apparatus (optometry apparatus) capable of measuring the eye refractive power of the eye E regardless of measurement, and an optotype presenting optical system for presenting an Amsler chart (grid chart 31v) to the eye E Any eye refractive power measuring device (optometry device) provided with the (target projection optical system 31) may be used, and the configuration of the first embodiment is not limited thereto.
 また、上記した実施例1では、視標投影光学系31(視標呈示光学系)に設けたグリッドチャート31vを、当該視標投影光学系31における被検眼Eからの視野Vfよりも大きなものを用いていた。しかしながら、視標投影光学系31では、上述したように、グリッドチャート31vにおける視野Vfの外方に位置する箇所を被検者に見せる(認識させる)ことができないので、例えば、グリッドチャート31v´(図12参照)のように予め視野Vfの内方に位置させることができる大きさ寸法のグリッドチャートを用いるものとしてもよい。その視野Vfの内方に位置させることができる大きさ寸法のグリッドチャートの一例としてのグリッドチャート31v´を図12に示す。そのグリッドチャート31v´は、視野Vfの内方に位置させる大きさ寸法とすべく、上記した実施例1のグリッドチャート31v(図4参照)における4つの周辺注視点(D2~D5)の内側に相当する大きさ寸法の正方形状とされており、縦方向および横方向にそれぞれ10個のグリッド(マス目)が並べられて構成されている。そして、グリッドチャート31v´では、グリッドチャート31vと同様に中心位置に1つの中心注視点D1´が設けられており、グリッドチャート31vとは異なり各周辺注視点(D2~D5)が設けられていない。しかしながら、グリッドチャート31v´では、グリッドチャート31vにおける各周辺注視点(D2~D5)に相当する箇所が、格子状のパターンにおける4角となるので、各角を周辺注視点(D2´~D5´)として利用することができる。すなわち、グリッドチャート31v´では、格子状のパターンの4角が、検者が固視目標として誘導し易いものであり、被検者が固視目標として理解し易く注視し易いものとされているので、それぞれ周辺注視点(D2´~D5´)とすることができる。このような構成とすると、指標切替部31d(そのターレット部31r)に設けるグリッドチャート31v´をより小さなものとすることができるので、眼屈折力測定装置10全体の大きさ寸法の低減を図ることを可能としつつ、上記した実施例1と同様の効果を得ることができる。なお、このグリッドチャート31v´では、グリッドチャート31vと同様の各周辺注視点(D2~D5)を設けるものであってもよく、それらとは異なる位置に適宜周辺注視点を設けるものであってもよく、この図12に示す例に限定されるものではない。また、その各周辺注視点および中心注視点は、上記した各注視点(D1~D5)と同様の効果を得ることができるものであれば、複数の光源(LED等)で形成するものであってもよく、他の構成であってもよく、上記した実施例1(図12に示す例も含む)に限定されるものではない。このとき、各注視点は、検者が固視目標として誘導し易いものであることや、被検者が固視目標として理解し易く注視し易いものであることが望ましい。 In Example 1 described above, the grid chart 31v provided in the target projection optical system 31 (target presentation optical system) is larger than the visual field Vf from the eye E in the target projection optical system 31. I used it. However, since the target projection optical system 31 cannot show (recognize) the position of the grid chart 31v located outside the visual field Vf as described above, for example, the grid chart 31v ′ ( As shown in FIG. 12, a grid chart having a size that can be positioned inward of the visual field Vf in advance may be used. FIG. 12 shows a grid chart 31v ′ as an example of a grid chart having a size that can be positioned inside the visual field Vf. The grid chart 31v ′ is positioned inside the four peripheral gazing points (D2 to D5) in the grid chart 31v of the first embodiment (see FIG. 4) so as to have a size dimension positioned inward of the visual field Vf. It has a square shape with a corresponding size, and is composed of 10 grids (cells) arranged in the vertical and horizontal directions. In the grid chart 31v ′, one central gazing point D1 ′ is provided at the central position as in the grid chart 31v. Unlike the grid chart 31v, each peripheral gazing point (D2 to D5) is not provided. . However, in the grid chart 31v ′, the locations corresponding to the respective peripheral gazing points (D2 to D5) in the grid chart 31v are the four corners in the lattice pattern, and thus each corner is referred to as the peripheral gazing point (D2 ′ to D5 ′). ) Can be used. That is, in the grid chart 31v ′, the four corners of the grid pattern are easy to guide as a fixation target, and the subject can easily understand and focus as the fixation target. Therefore, the peripheral gazing points (D2 ′ to D5 ′) can be set. With such a configuration, the grid chart 31v ′ provided in the index switching unit 31d (its turret unit 31r) can be made smaller, so that the size of the entire eye refractive power measuring apparatus 10 can be reduced. It is possible to obtain the same effect as in the first embodiment. The grid chart 31v ′ may be provided with peripheral gaze points (D2 to D5) similar to those of the grid chart 31v, or may be provided with a peripheral gaze point appropriately at a different position. Well, it is not limited to the example shown in FIG. Further, each of the peripheral gazing points and the central gazing point is formed by a plurality of light sources (such as LEDs) as long as the same effects as those of the gazing points (D1 to D5) described above can be obtained. Alternatively, other configurations may be used, and the present invention is not limited to the first embodiment described above (including the example shown in FIG. 12). At this time, it is desirable that each gaze point is easy for the examiner to guide as a fixation target, or easy for the subject to easily understand and gaze as the fixation target.
 上記した実施例1では、視標投影光学系31(視標呈示光学系)において、グリッドチャート31v(アムスラーチャート)が格子状のパターンの箇所で視標光源31aからの光(光束)を透過させることにより、当該グリッドチャート31vを被検眼Eに呈示している。しかしながら、視標投影光学系31によりグリッドチャート31vを被検眼Eに呈示するものであれば、グリッドチャート(アムスラーチャート)を液晶パネル等の画像形成装置の表示画面上に表示して形成するものであってもよく、上記した実施例1に限定されるものではない。このようなことは、視標投影光学系31において、視標光源31a、色補正フィルタ31b、コリメータレンズ31cおよび指標切替部31dに替えて、液晶パネル等の画像形成装置を用いることにより実現することができる。この場合、眼屈折力測定装置10をより簡易な構成とすることができる。また、上述したようにグリッドチャート(アムスラーチャート)の色を変化させる場合であっても、容易に対応することができる。さらに、各周辺注視点を自在に設けることができるので、使い勝手をより向上させることができる。 In the first embodiment described above, in the target projection optical system 31 (target presentation optical system), the grid chart 31v (Amsler chart) transmits the light (light beam) from the target light source 31a at the location of the lattice pattern. Thus, the grid chart 31v is presented to the eye E. However, if the target chart optical system 31 presents the grid chart 31v to the eye E, the grid chart (Amsler chart) is displayed on a display screen of an image forming apparatus such as a liquid crystal panel. It may be present and is not limited to the first embodiment described above. This can be realized by using an image forming apparatus such as a liquid crystal panel in the target projection optical system 31 instead of the target light source 31a, the color correction filter 31b, the collimator lens 31c, and the index switching unit 31d. Can do. In this case, the eye refractive power measurement device 10 can be configured more simply. Moreover, even if it is a case where the color of a grid chart (Amsler chart) is changed as mentioned above, it can respond easily. Furthermore, since each peripheral gazing point can be provided freely, usability can be further improved.
 上記した実施例1では、視標投影光学系31(視標呈示光学系)において、グリッドチャート31v(アムスラーチャート)が格子状のパターンの箇所で視標光源31aからの光(光束)を透過させるものとし、指標切替部31dのターレット部31rによりグリッドチャート31vと他の視標(上記した実施例1では固視標とVAチャート)との切り替えを可能としていた。しかしながら、グリッドチャート31vと他の視標との切り替えを可能とするものであればよく、上記した実施例1に限定されるものではない。 In the first embodiment described above, in the target projection optical system 31 (target presentation optical system), the grid chart 31v (Amsler chart) transmits the light (light beam) from the target light source 31a at the location of the lattice pattern. It is assumed that the grid chart 31v and other targets (in the first embodiment described above, the fixation target and the VA chart) can be switched by the turret unit 31r of the index switching unit 31d. However, it is only necessary to be able to switch between the grid chart 31v and another target, and is not limited to the first embodiment described above.
 上記した実施例1では、グリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)を行う際、図6に示す画面(表示内容)を表示部14の表示面14aに表示させていた。しかしながら、グリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)を行うことを可能とするものであればよく、上記した実施例1に限定されるものではない。 In Example 1 described above, when performing subjective measurement (grid chart test) using the grid chart 31v (Amsler chart), the screen (display content) shown in FIG. 6 is displayed on the display surface 14a of the display unit 14. . However, the embodiment is not limited to the above-described first embodiment as long as it can perform the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart).
 上記した実施例1では、他覚測定により被検眼Eの眼屈折力を測定するためにレフ測定投影光学系33とレフ測定受光光学系34とを設けていたが、被検眼Eからの反射光を受光して当該被検眼Eの眼屈折力を測定するものであれば、光学的な構成、各光学部材の配置および測定原理が異なるものであってもよく、上記した実施例1に限定されるものではない。 In the first embodiment described above, the reflex measurement projection optical system 33 and the reflex measurement light receiving optical system 34 are provided to measure the eye refractive power of the eye E by objective measurement. However, the reflected light from the eye E is reflected. As long as the optical power of the eye E is measured and the refractive power of the subject eye E is measured, the optical configuration, the arrangement of the optical members and the measurement principle may be different, and the present invention is limited to the first embodiment described above. It is not something.
 上記した実施例1では、表示部14の表示面14aに表示させるグリッド補助記号47において、チェックマーク47bを周辺注視点D2に対応させ、チェックマーク47cを周辺注視点D3に対応させ、チェックマーク47dを周辺注視点D4に対応させ、チェックマーク47eを周辺注視点D5に対応させている。しかしながら、グリッドチャート31v全体のうちのいずれの場所(中心近傍もしくは各分割領域)で、被検者が見え方に異常を感じたかの確認を容易なものとするものであれば、チェックマークと周辺注視点との対応関係は適宜設定すればよく、上記した実施例1に限定されるものではない。 In the first embodiment described above, in the grid auxiliary symbol 47 displayed on the display surface 14a of the display unit 14, the check mark 47b corresponds to the peripheral gazing point D2, the check mark 47c corresponds to the peripheral gazing point D3, and the check mark 47d. Corresponds to the peripheral gaze point D4, and the check mark 47e corresponds to the peripheral gaze point D5. However, if it is easy to confirm in any place (near the center or each divided area) of the grid chart 31v that the subject feels an abnormality, the check mark and the peripheral note The correspondence relationship with the viewpoint may be set as appropriate, and is not limited to the first embodiment.
 上記した実施例1では、被検眼Eの角膜Ecの形状も測定することが可能とされていたが、眼屈折力とは異なる被検眼Eの他の光学特性を測定することができるものであればよく、上記した実施例1に限定されるものではない。 In Example 1 described above, the shape of the cornea Ec of the eye E can be measured, but any other optical characteristic of the eye E different from the eye refractive power can be measured. What is necessary is just and it is not limited to above-mentioned Example 1. FIG.
 上記した実施例1では、被検眼Eの角膜Ecの形状も測定することが可能とされていたが、眼屈折力を測定するものであって、アムスラーチャート(グリッドチャート31v)を、主光軸O1上で被検眼Eに呈示する視標呈示光学系(視標投影光学系31)を備える視標投影光学系(検眼装置)であればよく、上記した実施例1の構成に限定されるものではない。 In the first embodiment described above, the shape of the cornea Ec of the eye E can be measured, but the eye refractive power is measured, and the Amsler chart (grid chart 31v) is used as the main optical axis. Any target projection optical system (optometry apparatus) including a target presentation optical system (target projection optical system 31) to be presented to the eye E on O1 may be used, and is limited to the configuration of the first embodiment described above. is not.
 次に、本発明の検眼装置の他の一例としての実施例2の自覚式検眼装置60について、図13から図20を用いて説明する。この実施例2の自覚式検眼装置60は、本発明の検眼装置の他の一例を示すものであり、本発明のグリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)を行うことができるものである。この実施例2の自覚式検眼装置60は、実行するグリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)が基本的に実施例1の眼屈折力測定装置10と同様とされており、等しい構成および工程の個所には同じ符号を付し、その詳細な説明は省略する。また、自覚式検眼装置60は、視標65の1つとしてグリッドチャート31v(図4、図7、図12等参照)を被検者101(被検眼)に呈示することができる。その呈示するグリッドチャート31vの構成に関しては、実施例1の眼屈折力測定装置10と同様とされており、等しい構成および工程の個所には同じ符号を付し、その詳細な説明は省略する。 Next, a subjective optometry apparatus 60 of Example 2 as another example of the optometry apparatus of the present invention will be described with reference to FIGS. The subjective optometry apparatus 60 of the second embodiment is another example of the optometry apparatus of the present invention, and performs subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) of the present invention. It is something that can be done. In the subjective optometry apparatus 60 of the second embodiment, the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) to be executed is basically the same as the eye refractive power measurement apparatus 10 of the first embodiment. The same reference numerals are used for the same components and process parts, and detailed description thereof is omitted. In addition, the subjective optometry apparatus 60 can present a grid chart 31v (see FIGS. 4, 7, 12, etc.) as one of the targets 65 to the subject 101 (eye to be examined). The configuration of the grid chart 31v to be presented is the same as that of the eye refractive power measuring apparatus 10 of the first embodiment, and the same reference numerals are given to the same configuration and process parts, and detailed description thereof is omitted.
 この実施例2の自覚式検眼装置60は、上述したように本発明のグリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)を実行することができるとともに、眼鏡を作成する際にレンズの屈折度数を定めるために用いることができる。この自覚式検眼装置60は、図13に示すように、視標呈示部61と矯正機構部62とコントローラ63と検眼テーブル64とを備える。 The subjective optometry apparatus 60 according to the second embodiment can execute the subjective measurement (grid chart test) using the grid chart 31v (Amsler chart) of the present invention as described above, and also when creating glasses. It can be used to determine the refractive power of the lens. As shown in FIG. 13, the subjective optometry apparatus 60 includes an optotype presenting unit 61, a correction mechanism unit 62, a controller 63, and an optometry table 64.
 その視標呈示部61は、被検者101の被検眼に各種の視標65を呈示するものであり、支柱61aにより高さ位置を変更可能に支持されている。その視標65は、被検眼の各種の視機能検査のために被検眼に呈示するものであり、各種の視標65のうちの自覚測定のためのものは基本的に実施例1の眼屈折力測定装置10で設けた自覚視標としてのチャートと等しく、図13にはグリッドチャート31v(アムスラーチャート)が呈示された例を示している。視標呈示部61には、視標65を表示するための表示画面66が設けられている。この表示画面66では、後述するように、演算制御回路76(図16参照)の制御下で視標65を含む各画像が適宜表示され(図17、図18参照)、その表示する視標65の種類はコントローラ63への操作により選択可能とされている。 The visual target presenting unit 61 presents various visual targets 65 to the subject's eye of the subject 101, and is supported by the column 61a so that the height position can be changed. The target 65 is presented to the subject's eye for various visual function tests of the subject's eye, and the target 65 for subjective measurement is basically the eye refraction of the first embodiment. FIG. 13 shows an example in which a grid chart 31v (Amsler chart) is presented, which is equivalent to a chart as a subjective visual target provided in the force measuring device 10. The optotype presenting unit 61 is provided with a display screen 66 for displaying the optotype 65. On the display screen 66, as will be described later, each image including the target 65 is appropriately displayed under the control of the arithmetic control circuit 76 (see FIG. 16) (see FIGS. 17 and 18). These types can be selected by operating the controller 63.
 その視標呈示部61と被検者101との間に検眼テーブル64が配置される。その検眼テーブル64は、コントローラ63を置くことが可能とされている。検眼テーブル64には、支柱67が上下方向に伸縮可能に設けられており、その支柱67に支持アーム68が回転自在に設けられている。その支持アーム68は、支柱67の上部から水平方向に伸びて設けられており、その水平箇所に矯正機構部62が取り付けられている。 The optometry table 64 is arranged between the optotype presenting unit 61 and the subject 101. The optometry table 64 can be placed with a controller 63. The optometry table 64 is provided with a support column 67 that can be expanded and contracted in the vertical direction, and a support arm 68 is rotatably provided on the support column 67. The support arm 68 is provided so as to extend in the horizontal direction from the upper part of the support column 67, and the correction mechanism 62 is attached to the horizontal portion.
 その矯正機構部62は、被検者101の被検眼の視機能を矯正するために設けられており、支柱67および支持アーム68により被検者101(被検眼)と視標呈示部61との間に配置することが可能とされている(図19等参照)。矯正機構部62は、左右で対称形状とされた一対のフォロプタ71を有する。各フォロプタ71は、被検眼の視機能を矯正するための光学部材を収容するハウジング71aを有し、その各ハウジング71aに検眼窓72が設けられている。その両検眼窓72は、被検者101が各フォロプタ71に収容された光学部材を介して視標呈示部61(その表示画面66)を覗き見るために設けられており、被検者101の左右の被検眼に対応されている。この一対のフォロプタ71は、互いの間隔が調整可能、すなわち相対的に近付けることと離すこととが可能とされている。このため、矯正機構部62では、一対の検眼窓72の光軸間距離を、被検者101の左右の被検眼の瞳孔間距離に合わせることができる。この一対のフォロプタ71は、左右対称な構造であることから、以下で単にフォロプタ71としてその構造を説明する。 The correction mechanism unit 62 is provided to correct the visual function of the subject's eye of the subject 101, and the subject 101 (the subject's eye) and the optotype presenting unit 61 are connected by the support 67 and the support arm 68. It can be arranged between them (see FIG. 19 and the like). The correction mechanism unit 62 includes a pair of phoropters 71 that are symmetrical on the left and right. Each phoropter 71 has a housing 71a that houses an optical member for correcting the visual function of the eye to be examined, and an optometry window 72 is provided in each housing 71a. The both optometry windows 72 are provided for the subject 101 to look into the optotype presenting unit 61 (its display screen 66) through the optical member accommodated in each phoropter 71. It corresponds to the left and right eye to be examined. The pair of phoropters 71 are adjustable in distance from each other, that is, can be moved closer to each other and separated from each other. For this reason, in the correction mechanism unit 62, the distance between the optical axes of the pair of optometry windows 72 can be matched to the distance between the pupils of the left and right eyes of the subject 101. Since the pair of phoropters 71 have a bilaterally symmetric structure, the structure is simply described as the phoropter 71 below.
 フォロプタ71では、ハウジング71a内に5つの回転ディスク73(個別に述べる際には符号731から735を用いる(図14参照))が、回転軸73aを回転中心としてそれぞれ回転可能に設けられている。各回転ディスク73には、図14に示すように、周回り方向に等間隔を開けて円形開口73bが設けられており、各回転ディスク73(731~735)の外周部にはギヤ731G~735Gが形成されている。その各ギヤ731G~735Gには、後述する演算制御回路76(図16参照)の制御下で駆動されるパルスモータによって回転駆動される駆動ギヤ(図示せず)が噛み合わされている。各回転ディスク73は、各円形開口73bに設けられた矯正レンズを適宜組み合わせて検眼窓72(図13参照)内に配置させる。 In the phoropter 71, five rotary disks 73 (reference numerals 731 to 735 (see FIG. 14) when individually described) are provided in the housing 71a so as to be rotatable about the rotation shaft 73a. As shown in FIG. 14, each rotating disk 73 is provided with circular openings 73b at equal intervals in the circumferential direction, and gears 731G to 735G are provided on the outer peripheral portion of each rotating disk 73 (731 to 735). Is formed. Each of the gears 731G to 735G is engaged with a drive gear (not shown) that is rotationally driven by a pulse motor that is driven under the control of an arithmetic control circuit 76 (see FIG. 16) described later. Each rotating disk 73 is arranged in the optometry window 72 (see FIG. 13) by appropriately combining corrective lenses provided in each circular opening 73b.
 回転ディスク731では、複数の円形開口73bに、検査用光学素子として例えば0.25Dずつ球面度数が異なる複数の球面度数レンズ(図示せず)が一枚ずつ嵌め込まれて設けられている。また、回転ディスク732では、複数の円形開口73bに、3Dずつ球面度数の異なる複数の球面度数レンズ(図示せず)が一枚ずつ嵌め込まれて設けられている。さらに、回転ディスク733では、各円形開口73bに、検査用光学素子として乱視レンズ(図示せず)が嵌め込まれて設けられている。回転ディスク734では、各円形開口73bに、水平斜位検査用の水平プリズムや垂直斜位検査用の垂直プリズムや補正度数がそれぞれ異なる水平斜位検査用の検査用光学素子である検査用プリズムが、嵌め込まれて設けられている。その水平プリズムは、呈示された視標を水平方向に分離させるものであり、垂直プリズムは、呈示された視標を垂直方向に分離させるものである。そして、回転ディスク735では、複数の円形開口73bに、補正度数がそれぞれ異なる垂直斜位検査用の検査用光学素子である検査用プリズム(光学部材:検査用垂直プリズム)や、マドックスロッドによる線条光による斜位検査用のマドックスロッドレンズ等が、嵌め込まれて設けられている。 In the rotating disk 731, a plurality of spherical power lenses (not shown) each having a different spherical power, for example, by 0.25 D, are fitted into the circular openings 73 b one by one. Further, in the rotating disk 732, a plurality of spherical power lenses (not shown) having different spherical powers 3D are fitted into the circular openings 73b one by one. Further, in the rotating disk 733, an astigmatic lens (not shown) is fitted into each circular opening 73b as an inspection optical element. In the rotating disk 734, a horizontal prism for horizontal oblique inspection, a vertical prism for vertical oblique inspection, and an inspection prism which is an inspection optical element for horizontal oblique inspection with different correction powers are provided in each circular opening 73b. , Is provided. The horizontal prism separates the presented target in the horizontal direction, and the vertical prism separates the presented target in the vertical direction. In the rotating disk 735, an inspection prism (optical member: inspection vertical prism), which is an inspection optical element for vertical oblique inspection with different correction powers, is formed in a plurality of circular openings 73b, or a linear strip formed by a Madox rod. A Madox rod lens or the like for oblique inspection by light is fitted and provided.
 加えて、各回転ディスク73では、少なくとも1つの円形開口73bが、矯正力をかけない状態での検眼検査を行うために素通しとされている。実施例2の各回転ディスク73では、符号73bAで示す1つの円形開口73bが素通しとされている。また、各回転ディスク73では、素通しとされた円形開口73bAに隣接する円形開口73bに、被検者101が各視標65を視認することを防止するための遮蔽板73cが設けられている。 In addition, in each rotating disk 73, at least one circular opening 73b is made transparent for performing an optometry in a state where no correction force is applied. In each rotating disk 73 of the second embodiment, one circular opening 73b indicated by reference numeral 73bA is passed through. Further, in each rotary disk 73, a shielding plate 73c for preventing the subject 101 from visually recognizing each target 65 is provided in the circular opening 73b adjacent to the transparent circular opening 73bA.
 このため、矯正機構部62では、図13に示すように、各フォロプタ71における後述する演算制御回路76(図16参照)の制御下でパルスモータを適宜駆動して各回転ディスク73を適宜回転させることにより、適宜選択した矯正レンズを各検眼窓72内に配置する。これにより、矯正機構部62では、各検眼窓72を経ることによる矯正力を調整することができる。そして、演算制御回路76は、コントローラ63に為された操作に基づいて、矯正機構部62における矯正力を調整する。 Therefore, as shown in FIG. 13, the correction mechanism unit 62 appropriately drives the pulse motor under the control of an arithmetic control circuit 76 (see FIG. 16) described later in each phoropter 71 to rotate each rotary disk 73 appropriately. Thus, an appropriately selected correction lens is arranged in each optometry window 72. Thereby, in the correction mechanism part 62, the correction force by passing through each optometry window 72 can be adjusted. The arithmetic control circuit 76 adjusts the correction force in the correction mechanism unit 62 based on the operation performed by the controller 63.
 そのコントローラ63は、検眼テーブル64の上に置かれている。コントローラ63は、図15に示すように、検者102(図13参照)により操作される操作部74と、操作内容を示す操作画像をそれぞれ表示する表示部75と、を有する。そのコントローラ63では、操作部74の縁部74aに表示部75の下縁部75aが、軸部材を介して回転可能に取り付けられて構成されている。 The controller 63 is placed on the optometry table 64. As shown in FIG. 15, the controller 63 includes an operation unit 74 operated by the examiner 102 (see FIG. 13) and a display unit 75 that displays operation images indicating operation contents. In the controller 63, the lower edge 75a of the display unit 75 is rotatably attached to the edge 74a of the operation unit 74 via a shaft member.
 その操作部74には、ダイヤル74bや表示切替スイッチ74c等の検査の設定や実行等の操作のための各種スイッチが設けられている。そのダイヤル74bは、各フォロプタ71の検眼窓72内に配置する矯正レンズを選択するものである。表示切替スイッチ74cは、表示部75における表示内容を、後述する遠用検査のための第一の表示モード(図17参照)と、後述する近用検査のための第二の表示モード(図18参照)と、で切り換えるものである。この操作部74には、マウス74dが接続されており、各種スイッチと同様に、検査の設定や実行等の操作を行うことが可能とされている。 The operation unit 74 is provided with various switches for operations such as setting and execution of inspection such as the dial 74b and the display changeover switch 74c. The dial 74b is used to select a correction lens to be disposed in the optometry window 72 of each phoropter 71. The display changeover switch 74c displays the display contents on the display unit 75 in a first display mode (see FIG. 17) for a distance inspection described later and a second display mode (see FIG. 18) for a near inspection described later. And switching). A mouse 74d is connected to the operation unit 74, and operations such as setting and execution of examinations can be performed as in the case of various switches.
 表示部75には、操作部74に為された操作内容や視標65や検査に関するデータ等を表示する表示画面75bが設けられている。その表示画面75bには、後述する遠用検査のための第一の表示モード(図17参照)と、後述する近用検査のための第二の表示モード(図18参照)と、が適宜切り換えられて表示される。この表示画面75bは、実施例2では、タッチパネルの機能を搭載しており、そのタッチパネルの機能を利用して第一の表示モードや第二の表示モードにおける後述する各操作のための各種の記号に触れることによる操作を可能とする。 The display unit 75 is provided with a display screen 75b for displaying details of operations performed on the operation unit 74, a target 65, data relating to an inspection, and the like. On the display screen 75b, a first display mode (see FIG. 17) for a distance inspection described later and a second display mode (see FIG. 18) for a near inspection described later are appropriately switched. Displayed. In the second embodiment, the display screen 75b has a touch panel function. By using the touch panel function, various symbols for various operations described later in the first display mode and the second display mode are used. Allows operation by touching.
 このコントローラ63では、図16に示すように、操作部74と表示部75とに加えて、演算制御回路76を有する。その演算制御回路76は、CPU77およびメモリ部78を有する。そのCPU77は、メモリ部78に格納されたプログラムにより自覚式検眼装置60の各部を統括的に制御する。CPU77(自覚式検眼装置60)は、操作部74および表示部75と接続されており、操作部74に為された操作に基づく信号が入力されると、その操作に応じて表示部75(その表示画面75b)の動作(表示)を制御する。また、CPU77(自覚式検眼装置60)は、視標呈示部61の駆動制御部および矯正機構部62の駆動制御部(そのパルスモータ)と接続されており、視標呈示部61および矯正機構部62の動作を制御する。さらに、CPU77(自覚式検眼装置60)は、他の光学検査機器としての光学検査機器としてのレンズメータCLおよび他覚検査装置RMと接続されており、これらの他の光学検査機器からの測定データを光学特性データとして取り込むことができる。その測定データには、被検者の眼の光学特性データ、眼鏡レンズの光学特性データに加えて、検査に関連する他のデータ、例えば、機器ID、被検者ID、被検者の氏名、データ番号、測定時刻等の項目も含まれている。 The controller 63 includes an arithmetic control circuit 76 in addition to the operation unit 74 and the display unit 75 as shown in FIG. The arithmetic control circuit 76 includes a CPU 77 and a memory unit 78. The CPU 77 comprehensively controls each unit of the subjective optometry apparatus 60 by a program stored in the memory unit 78. The CPU 77 (the subjective optometry apparatus 60) is connected to the operation unit 74 and the display unit 75. When a signal based on the operation performed on the operation unit 74 is input, the display unit 75 (there The operation (display) of the display screen 75b) is controlled. The CPU 77 (a subjective optometry apparatus 60) is connected to the drive control unit of the optotype presenting unit 61 and the drive control unit (its pulse motor) of the correction mechanism unit 62, and the optotype presenting unit 61 and the correction mechanism unit. The operation of 62 is controlled. Further, the CPU 77 (a subjective optometry apparatus 60) is connected to a lens meter CL as an optical inspection apparatus as another optical inspection apparatus and an objective inspection apparatus RM, and measurement data from these other optical inspection apparatuses. Can be captured as optical characteristic data. In the measurement data, in addition to the optical characteristic data of the eye of the subject and the optical characteristic data of the spectacle lens, other data related to the examination, for example, the instrument ID, the subject ID, the name of the subject, Items such as data number and measurement time are also included.
 メモリ部78には、遠方を見た状態(遠方視状態)での被検眼の視機能を検査する遠用検査時に用いられる各種の視標65と、近方を見た状態(近方視状態)での被検眼の視機能を検査する近用検査時に用いられる各種の視標65と、のそれぞれを示す視標データが記憶される。CPU77は、この視標データに基づいて、視標呈示部61(表示画面66)や表示部75(表示画面75bの後述する視標呈示欄91(図18参照))に、各種の視標65を適宜表示させる。また、メモリ部78には、操作画像を示す操作画像データ(後述する第一の表示モード(図17参照)や第二の表示モード(図18参照)等を含む)が記憶されている。さらに、メモリ部78には、各矯正レンズの球面度数、乱視度数、軸角度、水平方向のプリズム量及び垂直方向のプリズム量等の屈折力を示すレンズデータDL(図17、図18参照)と、が記憶されている。 The memory unit 78 includes various visual targets 65 used during a distance test for examining the visual function of the subject's eye in a far-viewed state (far vision state), and a near-viewed state (near vision state). The visual target data indicating each of the various visual targets 65 used in the near-field examination for examining the visual function of the eye to be examined in (1) is stored. Based on the target data, the CPU 77 displays various targets 65 in the target display unit 61 (display screen 66) and the display unit 75 (target display column 91 (see FIG. 18) described later on the display screen 75b). Is displayed as appropriate. The memory unit 78 stores operation image data indicating an operation image (including a first display mode (see FIG. 17) and a second display mode (see FIG. 18) described later). Further, the memory unit 78 includes lens data DL (see FIGS. 17 and 18) indicating refractive powers such as spherical power, astigmatism power, axial angle, horizontal prism amount, and vertical prism amount of each correction lens. , Is stored.
 CPU77は、操作部74のダイヤル74b(図15参照)が操作されると、その操作位置に応じた屈折力を示すレンズデータDLをメモリ部78から抽出する。そして、CPU77は、抽出したレンズデータDLが示す屈折力を有する矯正レンズを各フォロプタ71の検眼窓72(図13参照)内に配置する旨の制御信号を、矯正機構部62の駆動制御部(そのパルスモータ)に送る。これにより、矯正機構部62の各フォロプタ71では、ダイヤル74bの操作により選択された屈折力を有する矯正レンズが検眼窓72内に配置される。また、CPU77は、そのメモリ部78から抽出したレンズデータDLを示す信号を表示部75に送り、その表示画面75bにレンズデータDLを表示させる(図17、図18参照)。 When the dial 74b (see FIG. 15) of the operation unit 74 is operated, the CPU 77 extracts lens data DL indicating the refractive power according to the operation position from the memory unit 78. Then, the CPU 77 sends a control signal indicating that the correcting lens having the refractive power indicated by the extracted lens data DL is arranged in the optometry window 72 (see FIG. 13) of each phoropter 71 to the drive control unit ( To the pulse motor). Thereby, in each phoropter 71 of the correction mechanism unit 62, a correction lens having a refractive power selected by operating the dial 74b is arranged in the optometry window 72. Further, the CPU 77 sends a signal indicating the lens data DL extracted from the memory unit 78 to the display unit 75 to display the lens data DL on the display screen 75b (see FIGS. 17 and 18).
 さらに、CPU77は、操作部74の表示切替スイッチ74c(図15参照)に、表示部75の表示モードを第一の表示モードと第二の表示モードとの間で切り替える旨の操作が為されると、各表示モードに対応する操作画像データをメモリ部78から抽出する。そして、CPU77は、その抽出した各表示モードの操作画像データを示す信号を表示部75に送り、その表示画面75bに各表示モードに応じた操作画像を表示させる。 Further, the CPU 77 performs an operation to switch the display mode of the display unit 75 between the first display mode and the second display mode on the display changeover switch 74c (see FIG. 15) of the operation unit 74. Then, operation image data corresponding to each display mode is extracted from the memory unit 78. Then, the CPU 77 sends a signal indicating the extracted operation image data of each display mode to the display unit 75, and displays an operation image corresponding to each display mode on the display screen 75b.
 その第一の表示モードは、遠方視状態での被検眼の視機能を検査する遠用検査時、すなわち矯正機構部62を介して視標呈示部61(その表示画面66)に表示された視標65を見て検査する際に表示部75(その表示画面75b)に表示される(図13参照)。第一の表示モードでは、図17に示すように、表示部75(その表示画面75b)に、検査種別表示欄81と検査詳細内容表示欄82と屈折力表示欄83と参照表示欄84と一覧表示欄85と視標表示欄86と操作記号表示欄87とダイヤル表示欄88と瞳孔間距離表示欄89とが表示される。これらの各欄は、それぞれ画像データとしてメモリ部78に記憶されている。また、これらの各欄は、表示画面75b(表示部75)におけるタッチパネルの機能を利用して触れることによる選択(切替)操作を可能するアイコンとしての各種記号としても機能する。このため、CPU77(演算制御回路76)は、表示画面75bに表示された各欄に触れられた検出信号を表示部75から受けると、その検出信号に応じたデータをメモリ部78から抽出し、その抽出したデータを示す信号を表示部75や視標呈示部61に適宜送る。 The first display mode is a distance test for inspecting the visual function of the subject's eye in the far vision state, that is, the visual displayed on the optotype presenting unit 61 (its display screen 66) via the correction mechanism unit 62. It is displayed on the display part 75 (the display screen 75b) when inspecting by looking at the mark 65 (see FIG. 13). In the first display mode, as shown in FIG. 17, an inspection type display field 81, an inspection details display field 82, a refractive power display field 83, a reference display field 84, and a list are displayed on the display unit 75 (its display screen 75b). A display field 85, a target display field 86, an operation symbol display field 87, a dial display field 88, and an interpupillary distance display field 89 are displayed. Each of these fields is stored in the memory unit 78 as image data. Each of these fields also functions as various symbols as icons that enable a selection (switching) operation by touching using the function of the touch panel on the display screen 75b (display unit 75). For this reason, when the CPU 77 (arithmetic control circuit 76) receives a detection signal touched by each column displayed on the display screen 75b from the display unit 75, it extracts data corresponding to the detection signal from the memory unit 78, A signal indicating the extracted data is appropriately sent to the display unit 75 and the optotype presenting unit 61.
 その検査種別表示欄81は、実行中の検査の名称を表示するものであり、図17に示す例では遠用検査の球面度テストにおいてチャート(視標)を用いることを表示している。検査詳細内容表示欄82は、検査の詳細内容の名称を表示するものであり、図17に示す例では左端に右眼であることを示す「右」の文字と、右端に左眼であることを示す「左」の文字と、真ん中に自覚測定の遠用検査によりデータ(測定結果)を取得している旨と、を表示している。 The examination type display field 81 displays the name of the examination being executed. In the example shown in FIG. 17, the chart (target) is used in the sphericity test for the distance examination. The examination detailed content display field 82 displays the name of the detailed content of the examination, and in the example shown in FIG. 17, the character “right” indicating the right eye at the left end and the left eye at the right end. “Left” indicating that the data (measurement result) has been acquired by the distance measurement of subjective measurement in the middle.
 屈折力表示欄83は、矯正機構部62(その各フォロプタ71)で設定された矯正レンズのレンズデータDL、すなわち各検眼窓72にセットされている光学素子としてのレンズの球面度数、乱視度数及び軸角度等の光学特性データを表示する。その矯正レンズは、上述したように操作部74のダイヤル74bへの操作で選択されることで設定されることから、屈折力表示欄83は、ダイヤル74bに為された操作結果を表示していることになる。このため、CPU77(演算制御回路76)は、屈折力表示欄83に表示させる光学特性データに対応する光学素子が各検眼窓72にセットされるように矯正機構部62を制御する。その屈折力表示欄83は、図17に示す例では、レンズデータDLとして、レンズの屈折力のうち球面度数、乱視度数、軸角度および加入の各項目が表示され、被検者101の右眼と左眼とに対応して各検眼窓72にセットされている光学特性データの数値を項目毎に表示している。 The refractive power display field 83 includes lens data DL of the correction lens set by the correction mechanism unit 62 (each of the phoropters 71), that is, the spherical power, astigmatism power of the lens as an optical element set in each optometry window 72, and Displays optical characteristic data such as shaft angle. Since the correction lens is set by being selected by operating the dial 74b of the operation unit 74 as described above, the refractive power display field 83 displays the result of the operation performed on the dial 74b. It will be. Therefore, the CPU 77 (arithmetic control circuit 76) controls the correction mechanism unit 62 so that the optical element corresponding to the optical characteristic data displayed in the refractive power display field 83 is set in each optometry window 72. In the example shown in FIG. 17, the refractive power display field 83 displays items of spherical power, astigmatic power, axial angle, and addition of the refractive power of the lens as lens data DL, and the right eye of the subject 101. The numerical values of the optical characteristic data set in each optometry window 72 corresponding to the left eye and the left eye are displayed for each item.
 参照表示欄84は、屈折力表示欄83に表示されている光学特性データと対比可能な光学特性データを表示するものであり、検者102による自覚検査の作業をより効率的なものとすべく設けている。その参照表示欄84は、屈折力表示欄83の左右に1つずつ設けられ、それぞれが被検者101の右眼と左眼とに対応する各種の光学特性データを表示する。図17に示す例では、左側の参照表示欄84は、他覚検査装置RM(図16参照)から取り込んだ測定データを表示しており、上段に測定データの表題を示す「他覚」の文字を表示し、その下にその測定データの各数値を項目毎に表示している。また、図17に示す例では、右側の参照表示欄84は、レンズメータCL(図16参照)から取り込んだ測定データを表示しており、上段に測定データの表題を示す「メガネ」の文字を表示し、その下にその測定データの各数値を項目毎に表示している。 The reference display field 84 displays optical characteristic data that can be compared with the optical characteristic data displayed in the refractive power display field 83, and is intended to make the work of the subjective examination by the examiner 102 more efficient. Provided. The reference display column 84 is provided on each of the left and right sides of the refractive power display column 83, and each displays various optical characteristic data corresponding to the right eye and the left eye of the subject 101. In the example shown in FIG. 17, the reference display column 84 on the left side displays measurement data taken from the objective test device RM (see FIG. 16). Is displayed below and each numerical value of the measured data is displayed for each item. In the example shown in FIG. 17, the reference display column 84 on the right side displays measurement data taken from the lens meter CL (see FIG. 16), and the characters “glasses” indicating the title of the measurement data are displayed on the upper row. It is displayed and the numerical values of the measurement data are displayed for each item below.
 一覧表示欄85は、自覚式検眼装置60において用いることのできる視標65の一覧を表示するものであり、上段に表示する項目の切り替えのための表示切替ボタンを表示し、その下に表示切替ボタンで選択された項目における視標65の一覧を表示する。その表示切替ボタンは、図17に示す例では、左側から順に、視標65の一覧を表示させる項目としての「チャート1」および「チャート2」の文字と、自動および手動による操作が必要な視標65の一覧を表示させる項目としての「手動vs自動」の文字と、何も設定されていない箇所と、近方視状態での被検眼の視機能を検査する近用検査時に用いる視標65の一覧を表示させる項目としての「近用」の文字と、を表示させている。そして、図17に示す例では、最も左側の表示切替ボタンである「チャート1」が選択されて、その下に「チャート1」における視標65の一覧を表示させている様子を示している。この一覧表示欄85では、タッチパネルの機能を利用して、表示した視標65の一覧のうちのいずれかに触れられると、その触れられた視標65が選択されたものとする。視標表示欄86は、一覧表示欄85において選択された視標65を表示するものであり、図17に示す例では、選択されたVAチャートを表示している。CPU77(演算制御回路76)は、一覧表示欄85で選択されて視標表示欄86に表示された視標65を、視標呈示部61の表示画面66に表示させるように当該視標呈示部61を制御する(図13等参照)。 The list display field 85 displays a list of targets 65 that can be used in the subjective optometry apparatus 60, displays a display switching button for switching items to be displayed in the upper stage, and displays switching below the button. A list of visual targets 65 in the item selected by the button is displayed. In the example shown in FIG. 17, the display switching button includes characters “Chart 1” and “Chart 2” as items for displaying the list of targets 65 in order from the left side, and a view that requires automatic and manual operations. Characters “manual vs. automatic” as items for displaying a list of marks 65, places where nothing is set, and targets 65 used in a near vision examination for examining the visual function of the subject's eye in the near vision state "Nearly use" as an item for displaying a list of. In the example illustrated in FIG. 17, “Chart 1” that is the leftmost display switching button is selected, and a list of targets 65 in “Chart 1” is displayed below the “Chart 1”. In this list display field 85, when any one of the displayed lists of targets 65 is touched using the function of the touch panel, the touched target 65 is selected. The target display column 86 displays the target 65 selected in the list display column 85. In the example shown in FIG. 17, the selected VA chart is displayed. The CPU 77 (arithmetic control circuit 76) displays the target 65 selected in the list display field 85 and displayed in the target display field 86 on the display screen 66 of the target display unit 61. 61 is controlled (see FIG. 13 and the like).
 操作記号表示欄87は、各種の操作のための記号を表示するものであり、表示画面75bにおける下部に表示される。この操作記号表示欄87は、図17に示す例では、左側から順に、レンズの度数を0.25ディオプターずつ変化させるステップ送りボタンとしての「S:0.25」の文字と、遮蔽板を各検眼窓72にセットさせる「遮蔽板」の文字と、各種のデータを表示させる「データ表示」の文字と、処方データを記録させる「処方:記録」の文字と、自覚データ、他覚データ、処方データ、前回処方データ、裸眼データ等のデータをセットするための「データセット」の文字と、を表示させている。ダイヤル表示欄88は、操作部74のダイヤル74b(図15参照)への操作の様子を示すダイヤル像を表示する。瞳孔間距離表示欄89は、被検者101の左右の被検眼の瞳孔間距離となる一対の検眼窓72(図13参照)の光軸間距離を表示する。 The operation symbol display column 87 displays symbols for various operations, and is displayed at the bottom of the display screen 75b. In the operation symbol display field 87, in the example shown in FIG. 17, the letters “S: 0.25” as a step feed button for changing the lens power by 0.25 diopters in order from the left side, and the shielding plate are shown. Characters of “shielding plate” to be set on the optometry window 72, characters of “data display” to display various data, characters of “prescription: record” to record prescription data, awareness data, objective data, prescription Data, “preset data”, “data set” characters for setting data such as naked eye data, and the like are displayed. The dial display column 88 displays a dial image indicating the state of operation on the dial 74b (see FIG. 15) of the operation unit 74. The interpupillary distance display column 89 displays the distance between the optical axes of the pair of optometry windows 72 (see FIG. 13) that is the distance between the pupils of the left and right eyes of the subject 101.
 また、第二の表示モードは、近方視状態での被検眼の視機能を検査する近用検査時、すなわち矯正機構部62を介して表示画面75b(図15参照)に表示された視標65を見て検査を行うために表示部75(その表示画面75b)に表示される。その第二の表示モードでは、図18に示すように、表示部75(その表示画面75b)に、視標65を呈示する視標呈示欄91と、矯正機構部62(その各フォロプタ71)で設定された矯正レンズのレンズデータDLを表示させる屈折力表示欄92と、が表示される。これらの各欄は、それぞれ画像データとしてメモリ部78(図16参照)に記憶されている。その視標呈示欄91は、近用検査時に被検者101(被検眼)に見せるために視標65を表示させる箇所とであり、近用検査のために選択された視標65を表示する。 Further, the second display mode is a visual target displayed on the display screen 75b (see FIG. 15) at the time of near vision examination for examining the visual function of the eye to be examined in the near vision state, that is, through the correction mechanism unit 62. It is displayed on the display part 75 (its display screen 75b) in order to see 65 and to perform an inspection. In the second display mode, as shown in FIG. 18, the display unit 75 (the display screen 75b) includes an optotype presenting column 91 for presenting the optotype 65 and a correction mechanism unit 62 (the respective phoropters 71). A refracting power display field 92 for displaying the lens data DL of the set correction lens is displayed. Each of these fields is stored in the memory unit 78 (see FIG. 16) as image data. The optotype presenting column 91 is a place where the optotype 65 is displayed to be shown to the subject 101 (examined eye) at the time of the near examination, and displays the optotype 65 selected for the near examination. .
 屈折力表示欄92は、矯正機構部62における左右のフォロプタ71で設定された矯正レンズのレンズデータDLを左右に分けて表示しており、上段に左右のいずれに対応しているかを示す項目としての「右」および「左」の文字を表示している。また、屈折力表示欄92は、その項目の下に各レンズデータDLのうちのいずれを表示しているのかを示す箇所と、その箇所に対応するデータを示す箇所と、が設けられている。屈折力表示欄92は、図18に示す例では、各レンズデータDLのうち、外側から順に、加入(「加入」の文字)、軸角度(「軸」の文字)、乱視度数(「乱視」の文字)、球面度数(「球面」の文字)、水平方向のプリズム量H(「プリズムH」の文字)、垂直方向のプリズム量V(「プリズムV」の文字)の値を表示している。 The refractive power display column 92 displays the lens data DL of the correction lens set by the left and right phoropters 71 in the correction mechanism unit 62 separately on the left and right, and as an item indicating whether it corresponds to the left or right in the upper stage. “Right” and “Left” characters are displayed. Further, the refractive power display column 92 is provided with a location indicating which of the lens data DL is displayed below the item, and a location indicating data corresponding to the location. In the example shown in FIG. 18, the refractive power display column 92 includes, in order from the outside, each lens data DL, the addition (“addition” character), the axis angle (“axis” character), and the astigmatism power (“astigmatism”). ), Spherical power (character “spherical”), horizontal prism amount H (character “prism H”), and vertical prism amount V (character “prism V”). .
 CPU77(演算制御回路76)は、上述したように、視標呈示部61(表示画面66)およびコントローラ63の表示部75(表示画面75bの視標呈示欄91)において、各視標65(グリッドチャート31v等)を呈示させることが可能とされている。この各視標65(グリッドチャート31v等)の呈示は、視標呈示部61(表示画面66)および表示部75(表示画面75b)がディスプレイ等の表示装置で形成されていることから、容易に行うことができる。このため、自覚式検眼装置60では、選択された視標65(グリッドチャート31v(アムスラーチャート))の呈示を、実施例1の眼屈折力測定装置10と同様に行うことができる。 As described above, the CPU 77 (arithmetic control circuit 76) is configured to display each target 65 (grid) in the target display unit 61 (display screen 66) and the display unit 75 of the controller 63 (target display column 91 on the display screen 75b). Chart 31v and the like) can be presented. Presentation of each target 65 (grid chart 31v, etc.) is easy because the target display unit 61 (display screen 66) and the display unit 75 (display screen 75b) are formed by a display device such as a display. It can be carried out. For this reason, the subjective optometry apparatus 60 can present the selected target 65 (grid chart 31v (Amsler chart)) in the same manner as the eye refractive power measurement apparatus 10 of the first embodiment.
 次に、自覚式検眼装置60により、遠方視状態での被検眼の視機能を検査する遠用検査を行う様子と、近方視状態での被検眼の視機能を検査する近用検査を行う様子と、について説明する。先ず、検者102は、遠用検査を行うべく、操作部74に設けられた表示切替スイッチ74c(図15参照)を操作することにより表示部75(その表示画面75b)を第一の表示モードに切り替える。すると、自覚式検眼装置60では、CPU77(演算制御回路76)の制御下で、表示画面75b(表示部75)に第一の表示モードの操作画像(図17参照)を表示させる。そして、検者102は、第一の表示モードの操作画像において、一覧表示欄85から検査に用いる遠用検査用の視標65を選択する。すると、自覚式検眼装置60では、CPU77(演算制御回路76)の制御下で、表示部75の視標表示欄86(図17参照)と視標呈示部61の表示画面66(図13参照)とのそれぞれに、選択された視標65を表示させる。このため、検者102は、視標表示欄86に表示された視標65を視認することにより、表示画面66および視標表示欄86に表示された視標65が、選択した視標65に一致しているか否かを確認することができる。 Next, with the subjective optometry apparatus 60, a distance test for inspecting the visual function of the eye to be examined in the far vision state and a near vision test for examining the visual function of the eye in the near vision state are performed. The situation and will be described. First, the examiner 102 operates the display changeover switch 74c (see FIG. 15) provided in the operation unit 74 to perform the distance inspection, thereby causing the display unit 75 (the display screen 75b) to be in the first display mode. Switch to. Then, the subjective optometry apparatus 60 displays the operation image (see FIG. 17) in the first display mode on the display screen 75b (display unit 75) under the control of the CPU 77 (arithmetic control circuit 76). Then, the examiner 102 selects the distance test target 65 used for the test from the list display field 85 in the operation image in the first display mode. Then, in the subjective optometry apparatus 60, under the control of the CPU 77 (arithmetic control circuit 76), the target display column 86 (see FIG. 17) of the display unit 75 and the display screen 66 of the target presentation unit 61 (see FIG. 13). And the selected visual target 65 is displayed on each of. Therefore, the examiner 102 visually recognizes the target 65 displayed in the target display column 86, so that the target 65 displayed in the display screen 66 and the target display column 86 becomes the selected target 65. It can be confirmed whether or not they match.
 この設定状態において、自覚式検眼装置60では、図19に示すように、矯正機構部62の各フォロプタ71の各検眼窓72を通して、視標呈示部61の表示画面66に表示された視標65を被検者101に見させる。ここで、被検者101(被検眼)に各検眼窓72を覗かせてから、上記した各種の設定を行うものであってもよい。そして、検者102は、被検者101に視標65の見え具合を聞き、その応答に基づいて各フォロプタ71(各検眼窓72内)に配置する矯正レンズを操作部74のダイヤル74bの操作により切り替える。このとき、ダイヤル74bの操作により選択された矯正レンズのレンズデータDLが、表示部75の屈折力表示欄83に表示されるので、検者102はそのレンズデータDLを視認しながらダイヤル74bを操作することができる。このことを視標65が良好に見えるまで繰り返すことにより、被検眼の視機能を適切に矯正する作成すべき眼鏡のレンズの屈折度数を定めることができる。このため、自覚式検眼装置60は、遠方視状態において、被検眼の眼屈折力(眼鏡のレンズの屈折度数)を測定することができる。 In this set state, in the subjective optometry apparatus 60, as shown in FIG. 19, the optotype 65 displayed on the display screen 66 of the optotype presenting unit 61 through each optometry window 72 of each phoropter 71 of the correction mechanism unit 62. To the subject 101. Here, after making the subject 101 (eye to be examined) look through each optometry window 72, the above-described various settings may be performed. Then, the examiner 102 asks the subject 101 about the appearance of the optotype 65, and operates the dial 74b of the operation unit 74 with a correction lens to be placed in each phoropter 71 (in each optometry window 72) based on the response. Switch with. At this time, since the lens data DL of the correction lens selected by operating the dial 74b is displayed in the refractive power display field 83 of the display unit 75, the examiner 102 operates the dial 74b while viewing the lens data DL. can do. By repeating this until the visual target 65 looks good, it is possible to determine the refractive power of the lens of the spectacles to be created that appropriately corrects the visual function of the eye to be examined. For this reason, the subjective optometry apparatus 60 can measure the eye refractive power of the eye to be examined (the refractive power of the lens of the glasses) in the distance vision state.
 近方視状態での被検眼の視機能を検査する際、検者102は、図20に示すように、コントローラ63を検眼テーブル64上で被検者101の前方に配置し、その表示部75の表示画面75bを各フォロプタ71に対向させる。そして、検者102は、近用検査を行うべく一覧表示欄85から検査に用いる近用検査用の視標65を選択し、操作部74に設けられた表示切替スイッチ74c(図15参照)を操作することにより表示部75(その表示画面75b)を第二の表示モードに切り替える。すると、自覚式検眼装置60では、CPU77(演算制御回路76)の制御下で、表示画面75b(表示部75)に第二の表示モードの操作画像(図18参照)を表示させる。また、自覚式検眼装置60では、CPU77(演算制御回路76)の制御下で、表示部75(その表示画面75b)の視標呈示欄91に選択された視標65を表示させる(図18参照)。このとき、CPU77(演算制御回路76)は、各フォロプタ71と表示画面75bとの距離を算出し、その距離に基づいて視標65の大きさを検査対象となる被検者101(被検眼)の視力値に応じた大きさに調節して表示画面75bに表示させる。 When examining the visual function of the subject's eye in the near vision state, the examiner 102 arranges the controller 63 in front of the subject 101 on the optometry table 64 as shown in FIG. The display screen 75b is made to face each phoropter 71. Then, the examiner 102 selects the near vision inspection target 65 to be used for the examination from the list display column 85 to perform the near vision examination, and presses the display changeover switch 74c (see FIG. 15) provided on the operation unit 74. By operating, the display unit 75 (the display screen 75b) is switched to the second display mode. Then, the subjective optometry apparatus 60 displays the operation image (see FIG. 18) in the second display mode on the display screen 75b (display unit 75) under the control of the CPU 77 (arithmetic control circuit 76). In the subjective optometry apparatus 60, under the control of the CPU 77 (arithmetic control circuit 76), the selected target 65 is displayed in the target display column 91 of the display unit 75 (display screen 75b) (see FIG. 18). ). At this time, the CPU 77 (arithmetic control circuit 76) calculates the distance between each phoropter 71 and the display screen 75b, and based on the distance, the size of the visual target 65 is the subject to be examined 101 (the eye to be examined). Is adjusted to a size corresponding to the visual acuity value and displayed on the display screen 75b.
 この設定状態において、検者102は、矯正機構部62の各フォロプタ71の各検眼窓72を通して、コントローラ63の表示部75(表示画面75b)に表示された視標65を被検者101に見させる。そして、検者102は、遠用検査時と同様に、被検者101に視標65の見え具合を聞き、その応答に基づいて各フォロプタ71(各検眼窓72内)に配置する矯正レンズを操作部74のダイヤル74bの操作により切り替える。このことを視標65が良好に見えるまで繰り返すことにより、被検眼の視機能を適切に矯正する作成すべき眼鏡のレンズの屈折度数を定めることができる。このため、自覚式検眼装置60は、近方視状態において、被検眼の眼屈折力(眼鏡のレンズの屈折度数)を測定することができる。 In this setting state, the examiner 102 sees the visual target 65 displayed on the display unit 75 (display screen 75b) of the controller 63 through the optometry windows 72 of the phoropters 71 of the correction mechanism unit 62. Let Then, as in the distance examination, the examiner 102 asks the subject 101 about the appearance of the optotype 65 and, based on the response, arranges a correction lens to be placed in each phoropter 71 (in each optometry window 72). Switching is performed by operating the dial 74b of the operation unit 74. By repeating this until the visual target 65 looks good, it is possible to determine the refractive power of the lens of the spectacles to be created that appropriately corrects the visual function of the eye to be examined. Therefore, the subjective optometry apparatus 60 can measure the eye refractive power of the eye to be examined (the refractive power of the lens of the glasses) in the near vision state.
 また、自覚式検眼装置60では、偏光板やレッド・グリーンフィルタや液晶フィルタを用いることで、被検眼の斜位度を測定する斜位検査を行うことができる。これらの各種の検査は、従来と同様である。 Further, the subjective optometry apparatus 60 can perform an oblique examination for measuring the oblique degree of the eye to be examined by using a polarizing plate, a red / green filter, and a liquid crystal filter. These various inspections are the same as in the past.
 加えて、本発明に係る実施例2の自覚式検眼装置60では、グリッドチャート31v(アムスラーチャート)を用いた自覚測定(グリッドチャートテスト)を行うことができる。すなわち、自覚式検眼装置60では、遠用検査を行う際には、CPU77(演算制御回路76)の制御下で、視標呈示部61の表示画面66に視標65としてのグリッドチャート31v(アムスラーチャート)を表示させる。この表示画面66におけるグリッドチャート31v(アムスラーチャート)の呈示(表示)は、表示の態様が、視標投影光学系31において光軸O2上に位置させたグリッドチャート31v(アムスラーチャート)としてのターゲット光束を被検眼Eに投影しそのグリッドチャート31vを主光軸O1上で被検眼Eに呈示(投影)することから、視標呈示部61(その表示画面66)で呈示することに変わるのみであるので、実施例1と同様に行うことができる。このため、視標呈示部61は、矯正機構部62と協働して、被検眼Eに対して自覚測定のために注視させる自覚視標としてのグリッドチャート31v(アムスラーチャート)を呈示する視標呈示光学系として機能する。 In addition, the subjective optometry apparatus 60 according to the second embodiment of the present invention can perform subjective measurement (grid chart test) using the grid chart 31v (Amsler chart). That is, in the subjective optometry apparatus 60, when performing a distance examination, the grid chart 31v (Amsler) as the target 65 is displayed on the display screen 66 of the target presenting unit 61 under the control of the CPU 77 (arithmetic control circuit 76). (Chart) is displayed. The presentation (display) of the grid chart 31v (Amsler chart) on the display screen 66 is performed by using a target light beam as a grid chart 31v (Amsler chart) whose display mode is positioned on the optical axis O2 in the target projection optical system 31. Is projected on the eye E and the grid chart 31v is presented (projected) to the eye E on the main optical axis O1, but only the target chart 61 (its display screen 66) presents it. Therefore, it can be performed in the same manner as in the first embodiment. For this reason, the optotype presenting unit 61 cooperates with the correction mechanism unit 62 to provide a grid chart 31v (Amsler chart) as a subjective chart that causes the eye E to be watched for subjective measurement. It functions as a presentation optical system.
 また、自覚式検眼装置60では、近用検査を行う際には、CPU77(演算制御回路76)の制御下で、表示部75の表示画面75bの視標呈示欄91に視標65としてのグリッドチャート31v(アムスラーチャート)を表示させる。この表示画面75b(視標呈示欄91)におけるグリッドチャート31v(アムスラーチャート)の呈示は、表示の態様が、視標投影光学系31において光軸O2上に位置させたグリッドチャート31v(アムスラーチャート)としてのターゲット光束を被検眼Eに投影しそのグリッドチャート31vを主光軸O1上で被検眼Eに呈示(投影)することから、表示部75(その表示画面75b(視標呈示欄91))で呈示することに変わるのみであるので、実施例1と同様に行うことができる。このため、コントローラ63の表示部75は、矯正機構部62と協働して、被検眼Eに対して自覚測定のために注視させる自覚視標としてのグリッドチャート31v(アムスラーチャート)を呈示する視標呈示光学系として機能する。また、CPU77(演算制御回路76)は、視標呈示光学系(視標呈示部61、コントローラ63の表示部75)におけるグリッドチャート31v(アムスラーチャート)(視標65)の呈示を制御する制御部として機能する。 In the subjective optometry apparatus 60, when performing a near-field examination, a grid as a target 65 is displayed in the target display column 91 of the display screen 75b of the display unit 75 under the control of the CPU 77 (calculation control circuit 76). Chart 31v (Amsler chart) is displayed. The display of the grid chart 31v (Amsler chart) on the display screen 75b (target presentation column 91) is a grid chart 31v (Amsler chart) in which the display mode is positioned on the optical axis O2 in the target projection optical system 31. The target luminous flux is projected onto the eye E and the grid chart 31v is presented (projected) on the eye E on the main optical axis O1, so that the display unit 75 (the display screen 75b (target display column 91)) Therefore, it can be carried out in the same manner as in the first embodiment. For this reason, the display unit 75 of the controller 63 cooperates with the correction mechanism unit 62 to present a grid chart 31v (Amsler chart) as a subjective visual target that causes the eye E to be watched for subjective measurement. It functions as a sign presentation optical system. Further, the CPU 77 (calculation control circuit 76) controls the presentation of the grid chart 31v (Amsler chart) (target 65) in the target presenting optical system (the target presenting unit 61, the display unit 75 of the controller 63). Function as.
 実施例2の自覚式検眼装置60では、グリッドチャート31v(アムスラーチャート)の呈示に関しては基本的に実施例1の眼屈折力測定装置10と同様の構成であることから、基本的に実施例1と同様の効果を得ることができる。 In the subjective optometry apparatus 60 according to the second embodiment, the grid chart 31v (Amsler chart) is basically configured in the same manner as the eye refractive power measurement apparatus 10 according to the first embodiment. The same effect can be obtained.
 それに加えて、自覚式検眼装置60では、視標呈示部61の表示画面66でのグリッドチャート31v(アムスラーチャート)の表示、あるいは表示部75(表示画面75b)の視標呈示欄91でのグリッドチャート31v(アムスラーチャート)の表示を、CPU77(演算制御回路76)の制御下で行う。このため、自覚式検眼装置60では、簡易な構成で、遠用検査であっても近用検査であってもグリッドチャート31v(アムスラーチャート)を用いて自覚測定を行うことができる。 In addition, in the subjective optometry apparatus 60, the grid chart 31v (Amsler chart) is displayed on the display screen 66 of the target presentation unit 61, or the grid in the target presentation column 91 of the display unit 75 (display screen 75b). The chart 31v (Amsler chart) is displayed under the control of the CPU 77 (arithmetic control circuit 76). Therefore, the subjective optometry apparatus 60 can perform subjective measurement using a grid chart 31v (Amsler chart) with a simple configuration, whether it is a distance test or a near test.
 したがって、本発明に係る検眼装置の他の一例としての実施例2の自覚式検眼装置60では、アムスラーチャートを用いた自覚測定を容易にかつ適切に行うことができる。 Therefore, the subjective optometry apparatus 60 of the second embodiment as another example of the optometry apparatus according to the present invention can easily and appropriately perform the subjective measurement using the Amsler chart.
 なお、この実施例2では、第一の表示モード(図17参照)と第二の表示モード(図18参照)とにおいて表示画面75bに表示される画像の例を示していたが、前者が遠用検査のために表示されるものであり後者が近用検査のために表示されるものであればよく、上記した例に限定されるものではない。 In the second embodiment, an example of an image displayed on the display screen 75b in the first display mode (see FIG. 17) and the second display mode (see FIG. 18) is shown. It is only necessary to be displayed for the purpose inspection, and the latter may be displayed for the near purpose inspection, and is not limited to the above example.
 なお、上記した各実施例では、本発明に係る眼屈折力測定装置(検眼装置)の実施例としての眼屈折力測定装置10について説明したが、被検眼の眼底に向けて主光軸上で測定光を投影するレフ測定投影光学系と、前記主光軸を通る前記測定光の前記眼底での反射光を受光するレフ測定受光光学系と、を備え、前記レフ測定受光光学系での受光に基づいて前記被検眼の眼屈折力を測定する眼屈折力測定装置(検眼装置)であって、自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを、前記主光軸上で前記被検眼に呈示する視標呈示光学系を備える眼屈折力測定装置(検眼装置)であればよく、上記した各実施例に限定されるものではない。 In each of the above-described embodiments, the eye refractive power measurement device 10 as an embodiment of the eye refractive power measurement device (optometry device) according to the present invention has been described. However, on the main optical axis toward the fundus of the eye to be examined. A reflex measurement projection optical system for projecting measurement light, and a reflex measurement light reception optical system for receiving reflected light from the fundus of the measurement light passing through the main optical axis, and receiving light by the reflex measurement light reception optical system. An eye refractive power measurement device (optometry device) for measuring the eye refractive power of the subject's eye based on an Amsler chart composed of a lattice pattern as a subjective visual target that causes the subject to gaze for subjective measurement Any eye refractive power measurement device (optometry device) provided with a visual target presenting optical system to be presented to the eye to be examined on the main optical axis may be used, and the present invention is not limited to the above-described embodiments.
 また、上記した各実施例では、本発明に係る検眼装置(眼屈折力測定装置)の実施例としての眼屈折力測定装置10および自覚式検眼装置60について説明したが、被検眼の眼屈折力を測定する検眼装置であって、自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを前記被検眼に呈示する視標呈示光学系を備える検眼装置(眼屈折力測定装置)であればよく、上記した各実施例に限定されるものではない。 In each of the above-described embodiments, the eye refractive power measurement device 10 and the subjective optometry device 60 as examples of the optometry apparatus (eye refractive power measurement device) according to the present invention have been described. Optometry apparatus (eye) comprising an optotype presenting optical system for presenting an Amsler chart composed of a lattice pattern as a subjective target to be watched by a subject for subjective measurement. (Refractive power measuring device), and is not limited to the above-described embodiments.
 さらに、上記した各実施例では、中心注視点D1(中心位置)を含む縦線および横線でグリッドチャート31vを4分割した各分割領域の中心位置に4つの周辺注視点(D2~D5)を設けていた。しかしながら、各周辺注視点は、それらを注視させることにより視標投影光学系31により被検眼E(被験者)に見せることのできるグリッドチャート31v(アムスラーチャート)が小さなものとなる場合であっても、実際に見せているグリッドチャート31vよりも大きな範囲で疾患の可能性があるか否かを確認することを可能とするものであれば、設ける位置および個数は適宜設定すればよく、上記した各実施例に限定されるものではない。 Further, in each of the above-described embodiments, four peripheral gazing points (D2 to D5) are provided at the center position of each divided area obtained by dividing the grid chart 31v into four by the vertical and horizontal lines including the central gazing point D1 (center position). It was. However, each peripheral gaze point is a case where the grid chart 31v (Amsler chart) that can be shown to the eye E (subject) by the target projection optical system 31 by gazing at them is small. As long as it is possible to confirm whether or not there is a possibility of a disease in a larger range than the grid chart 31v actually shown, the position and the number to be provided may be set as appropriate. It is not limited to examples.
 上記した各実施例では、各注視点(D1~D5)を予めグリッドチャート31vに設けるものとしていたが、上記した効果を得ることができるものであれば、例えば、視標投影光学系31に各注視点(D1~D5)の位置に対応して複数の光源(LED等)を設けて当該光源により各周辺注視点を形成するものであってもよく、グリッドチャート(格子状のパターン)の角で形成するものであってもよく、他の構成であってもよく、上記した各実施例に限定されるものではない。このとき、各注視点は、検者が固視目標として誘導し易いものであることや、被検者が固視目標として理解し易く注視し易いものであることが望ましい。このように、各光源により各注視点(D1~D5)を形成する場合、グリッド補助記号47の各チェックマーク(47a~47e(図6参照))が触れられると対応する光源を点灯させつつ他の光源を消灯させるものとする機能を持たせることにより、当該チェックマークを触れることで固視目標としての各注視点(D1~D5)を切り換えることを可能とすることができる。 In each of the above-described embodiments, each gazing point (D1 to D5) is provided in advance in the grid chart 31v. However, if the above-described effects can be obtained, for example, each target projection optical system 31 is provided with each gazing point (D1 to D5). A plurality of light sources (LEDs, etc.) may be provided corresponding to the positions of the gazing points (D1 to D5), and the respective peripheral gazing points may be formed by the light sources, and the corners of the grid chart (lattice pattern) It may be formed by or other configurations, and is not limited to the above-described embodiments. At this time, it is desirable that each gaze point is easy for the examiner to guide as a fixation target, or easy for the subject to easily understand and gaze as the fixation target. Thus, when each gazing point (D1 to D5) is formed by each light source, when each check mark (47a to 47e (see FIG. 6)) of the grid auxiliary symbol 47 is touched, the corresponding light source is turned on and the other By providing a function for turning off the light source, it is possible to switch each gazing point (D1 to D5) as a fixation target by touching the check mark.
 上記した各実施例では、格子状のパターンの箇所を白色としたグリッドチャート31vを被検眼Eに呈示している。しかしながら、グリッドチャート31vを被検眼Eに呈示するものであれば、例えば、格子状のパターンの箇所を適宜赤や緑や青の色として呈示する等のように、格子状のパターンの箇所の色を適宜変更可能とするものとしてもよい。このようなことは、眼屈折力測定装置10であれば、視標投影光学系31において、色補正フィルタ31bとして様々な色に対応した複数の色補正フィルタを用意し、その各色補正フィルタのうちのいずれかを光軸O2上に位置させることが可能な構成とすることにより、実現することができる。また、視標光源31aに替えて、種々の色の光(光束)を出射させることのできる光源を用いるものとしても、実現することができる。このような種々の色の光(光束)を出射させる光源としては、複数の光源を用意して点灯させる光源を適宜切り換えることで実現することができ、赤と緑と青との光源を用意するものとすればそれらを適宜組み合わせることで多くの色の光(光束)を出射させることができる。加えて、上記したことは、自覚式検眼装置60であれば、視標呈示部61(表示画面66)やコントローラ63の表示部75(表示画面75b)として、カラー表示が可能な液晶ディスプレイを用いることにより実現することができる。この場合、様々な色でグリッドチャート31v(アムスラーチャート)を被検眼E(被験者)に見せることができるので、例えば色に応じて反応(被験者が感じ取った見え方)が異なる場合であってもそれらも含めて適切に疾患の可能性があるか否かを判断することができる。すなわち、種々の色のグリッドチャート31v(アムスラーチャート)を被検眼E(被験者)に見せることにより、色に応じた反応(被験者が感じ取った見え方)の差異を確認することが可能となる。また、被検眼E(被験者)において、最も視認性の高い色で呈示したグリッドチャート31v(アムスラーチャート)を見せることで、被験者が感じ取った見え方をより正確に把握することが可能となり、より適切に疾患の可能性があるか否かを判断することができる。 In each of the above-described embodiments, the eye E is presented with the grid chart 31v in which the grid pattern portion is white. However, if the grid chart 31v is to be presented to the eye E, for example, the color of the location of the grid pattern, such as presenting the location of the grid pattern as a red, green, or blue color as appropriate. It is good also as what can change suitably. This is because the eye refractive power measuring apparatus 10 includes a plurality of color correction filters corresponding to various colors as the color correction filter 31b in the target projection optical system 31, and among the color correction filters. This can be realized by adopting a configuration in which any one of the above can be positioned on the optical axis O2. Moreover, it can implement | achieve as what uses the light source which can be changed to the target light source 31a, and can radiate | emit the light (light beam) of various colors. Such a light source that emits light (luminous flux) of various colors can be realized by preparing a plurality of light sources and appropriately switching the light sources to be lit, and preparing red, green, and blue light sources. If so, light of many colors (light flux) can be emitted by appropriately combining them. In addition, in the case of the subjective optometry apparatus 60 described above, a liquid crystal display capable of color display is used as the optotype presenting unit 61 (display screen 66) and the display unit 75 (display screen 75b) of the controller 63. Can be realized. In this case, since the grid chart 31v (Amsler chart) can be shown to the eye E (subject) in various colors, for example, even if the reaction (how the subject feels) differs depending on the color It is possible to determine whether or not there is a possibility of a disease appropriately. That is, by showing the grid chart 31v (Amsler chart) of various colors to the eye E (subject), it is possible to confirm the difference in the response (how the subject feels) according to the color. In addition, by showing the grid chart 31v (Amsler chart) presented in the most highly visible color in the eye E (subject), it becomes possible to more accurately grasp the appearance felt by the subject, and more appropriately It can be determined whether or not there is a possibility of a disease.
 上記した各実施例では、グリッドチャート31v(アムスラーチャート)を、縦方向および横方向にそれぞれ20個のグリッド(マス目)が並べられて構成されているものとしたが、格子状のパターンとされているものであって上記した他覚測定(グリッドチャートテスト(アムスラーチャートテスト))を可能とするものであれば、大きさ寸法やグリッド(マス目)の数や全体の形状等は適宜設定すればよく、上記した各実施例に限定されるものではない。 In each of the above-described embodiments, the grid chart 31v (Amsler chart) is configured by arranging 20 grids (cells) in the vertical direction and the horizontal direction, respectively. If the above-mentioned objective measurement (grid chart test (Amsler chart test)) is possible, the size, the number of grids (the squares) and the overall shape should be set appropriately. What is necessary is just and it is not limited to each above-mentioned Example.
 以上、本発明の眼屈折力測定装置(検眼装置)を各実施例に基づき説明してきたが、具体的な構成については各実施例に限られるものではなく、本発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
[関連出願への相互参照]
 本出願は、2013年9月18日に日本国特許庁に出願された特願2013-193234に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
As mentioned above, although the eye refractive power measuring apparatus (optometry apparatus) of the present invention has been described based on each example, the specific configuration is not limited to each example, and unless departing from the gist of the present invention, Design changes and additions are allowed.
[Cross-reference to related applications]
This application claims priority based on Japanese Patent Application No. 2013-193234 filed with the Japan Patent Office on September 18, 2013, the entire disclosure of which is fully incorporated herein by reference.
 10 (眼屈折力測定装置および検眼装置の一例としての)眼屈折力測定装置
 31 (視標呈示光学系の一例としての)視標投影光学系
 31a 視標光源
 31u (他の視標の一例としての)風景チャート
 31v (アムスラーチャートの一例としての)グリッドチャート
 32 (眼特性測定受光光学系の一例としての)前眼部観察光学系
 33 レフ測定投影光学系
 34 レフ測定受光光学系
 36 (眼特性測定投影光学系の一例としての)ケラトリング状指標投影光源
 60 (検眼装置の一例としての)自覚式検眼装置
 61 (視標呈示光学系の一例としての)視標呈示部
 75 (視標呈示光学系の一例としての)表示部
 D1 中心注視点
 D2、D3、D4、D5 周辺注視点
 E 被検眼
 Ef 眼底
 O1 主光軸
 Vf 視野
10. Eye refractive power measurement device 31 (as an example of an eye refractive power measurement device and an optometry device) 31 Target projection optical system 31a (as an example of a target presentation optical system) Target light source 31u (As an example of another target) Scene chart 31v Grid chart (as an example of an Amsler chart) 32 Anterior eye observation optical system (as an example of an eye characteristic measurement light receiving optical system) 33 Ref measurement projection optical system 34 Ref measurement light receiving optical system 36 (Ocular characteristics) Keratring-shaped index projection light source 60 (as an example of a measurement projection optical system) 60 A subjective optometry apparatus (as an example of an optometry apparatus) 61 (As an example of a target presentation optical system) A target presentation unit 75 (Target presentation optics) Display unit (as an example of the system) D1 Central gazing point D2, D3, D4, D5 Peripheral gazing point E Eye to be examined Ef Fundus O1 Main optical axis Vf Field of view

Claims (14)

  1.  被検眼の眼底に向けて主光軸上で測定光を投影するレフ測定投影光学系と、前記主光軸を通る前記測定光の前記眼底での反射光を受光するレフ測定受光光学系と、を備え、前記レフ測定受光光学系での受光に基づいて前記被検眼の眼屈折力を測定する眼屈折力測定装置であって、
     自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを、前記主光軸上で前記被検眼に呈示する視標呈示光学系を備えることを特徴とする眼屈折力測定装置。
    A reflex measurement projection optical system that projects measurement light on the main optical axis toward the fundus of the eye to be examined; a reflex measurement light reception optical system that receives reflected light from the fundus of the measurement light passing through the main optical axis; An eye refractive power measuring device for measuring an eye refractive power of the eye based on light received by the reflex measurement light receiving optical system,
    An eye having an optical system for presenting an amsler chart made of a lattice pattern as a subjective visual target to be gazed at a subject for subjective measurement on the subject's eye on the main optical axis Refractometer.
  2.  前記視標呈示光学系は、前記アムスラーチャートが所定の大きさ寸法で前記被検眼から所定の距離となる位置に設けられたものと等しい状態で前記被検眼に呈示することを特徴とする請求項1に記載の眼屈折力測定装置。 The visual target presenting optical system is characterized in that the Amsler chart is presented to the eye to be examined in a state equal to that provided at a position having a predetermined size and a predetermined distance from the eye to be examined. The eye refractive power measuring apparatus according to 1.
  3.  前記視標呈示光学系は、前記レフ測定受光光学系での受光に基づいて測定した前記被検眼の眼屈折力に応じて、前記アムスラーチャートを前記被検眼において遠くを見るときに適した度数となる位置または近くを見るときに適した度数となる位置に移動することを特徴とする請求項1または請求項2に記載の眼屈折力測定装置。 The optotype presenting optical system has a power suitable for viewing the Amsler chart at a distance in the subject's eye according to the eye refractive power of the subject's eye measured based on the light received by the reflex measurement light-receiving optical system. The eye refractive power measurement apparatus according to claim 1, wherein the eye refractive power measurement apparatus moves to a position suitable for viewing at or near a position.
  4.  前記視標呈示光学系は、前記被検眼における網膜の中心に対応する範囲で前記アムスラーチャートを前記被検眼に呈示することを特徴とする請求項1から請求項3のいずれか1項に記載の眼屈折力測定装置。 The said optotype presenting optical system presents the Amsler chart to the eye to be examined within a range corresponding to the center of the retina in the eye to be examined. Eye refractive power measurement device.
  5.  前記アムスラーチャートでは、中心位置に中心注視点が設けられているとともに、前記中心注視点を取り巻いて複数の周辺注視点が設けられていることを特徴とする請求項1から請求項4のいずれか1項に記載の眼屈折力測定装置。 5. The Amsler chart according to claim 1, wherein a central gazing point is provided at a central position, and a plurality of peripheral gazing points are provided around the central gazing point. The eye refractive power measuring apparatus according to Item 1.
  6.  前記各周辺注視点は、前記視標呈示光学系により呈示された前記アムスラーチャート上での前記被検眼からの視野の周縁部に設けられていることを特徴とする請求項5に記載の眼屈折力測定装置。 6. The eye refraction according to claim 5, wherein each of the peripheral gazing points is provided at a peripheral portion of a visual field from the eye to be examined on the Amsler chart presented by the target presentation optical system. Force measuring device.
  7.  前記アムスラーチャートは、正方形状を呈し、
     前記周辺注視点は、前記アムスラーチャートを、前記中心注視点を含む縦線および横線により4分割した際の4つの分割領域におけるそれぞれの中心位置に設けられていることを特徴とする請求項5または請求項6に記載の眼屈折力測定装置。
    The Amsler chart has a square shape,
    6. The peripheral gaze point is provided at each central position in four divided areas when the Amsler chart is divided into four by a vertical line and a horizontal line including the central gaze point. The eye refractive power measuring apparatus according to claim 6.
  8.  前記視標呈示光学系は、前記アムスラーチャートにおける格子状のパターンを描く線分を所定の色として前記被検眼に呈示すること特徴とする請求項1から請求項7のいずれか1項に記載の眼屈折力測定装置。 The said target | presentation optical system presents to the said to-be-examined eye the line segment which draws the grid | lattice-like pattern in the said Amsler chart as a predetermined color, The said any one of Claim 1-7 characterized by the above-mentioned. Eye refractive power measurement device.
  9.  前記視標呈示光学系は、視標光源を有し、
     前記アムスラーチャートは、前記視標呈示光学系において前記視標光源から出射された光を透過させる部材で形成されていることを特徴とする請求項1から請求項8のいずれか1項に記載の眼屈折力測定装置。
    The target presentation optical system has a target light source,
    The said Amsler chart is formed with the member which permeate | transmits the light radiate | emitted from the said target light source in the said target presentation optical system, The any one of Claims 1-8 characterized by the above-mentioned. Eye refractive power measurement device.
  10.  前記視標呈示光学系は、前記アムスラーチャートとは異なる他の視標を有し、前記アムスラーチャートと前記他の視標とを切り替えて前記視標光源から出射された光が進行する光軸上に位置させることを特徴とする請求項9に記載の眼屈折力測定装置。 The optotype presenting optical system has another optotype different from the Amsler chart, on the optical axis on which light emitted from the optotype light source travels by switching between the Amsler chart and the other optotype The eye refractive power measuring apparatus according to claim 9, wherein
  11.  前記アムスラーチャートは、前記視標呈示光学系において画像形成装置の表示画面上に表示されて形成されていることを特徴とする請求項1から請求項8のいずれか1項に記載の眼屈折力測定装置。 The eye refractive power according to any one of claims 1 to 8, wherein the Amsler chart is formed by being displayed on a display screen of an image forming apparatus in the visual target presenting optical system. measuring device.
  12.  請求項1から請求項11のいずれか1項に記載の眼屈折力測定装置であって、
     さらに、前記被検眼に向けて前記主光軸上で眼屈折力とは異なる前記被検眼の他の光学特性を測定するための他の測定光を投影する眼特性測定投影光学系と、前記主光軸を通る前記他の測定光の前記被検眼からの反射光を受光する眼特性測定受光光学系と、を備えることを特徴とする眼屈折力測定装置。
    It is an eye refractive power measuring device according to any one of claims 1 to 11,
    Further, an eye characteristic measurement projection optical system for projecting other measurement light for measuring other optical characteristics of the subject eye different from eye refractive power on the main optical axis toward the subject eye, and the main An eye refractive power measurement apparatus comprising: an eye characteristic measurement light receiving optical system that receives reflected light from the subject eye of the other measurement light passing through the optical axis.
  13.  被検眼の眼屈折力を測定する検眼装置であって、
     自覚測定のために被検者に注視させる自覚視標として格子状のパターンからなるアムスラーチャートを前記被検眼に呈示する視標呈示光学系を備えることを特徴とする検眼装置。
    An optometry apparatus for measuring eye refractive power of an eye to be examined,
    An optometry apparatus, comprising: an optotype presenting optical system for presenting an Amsler chart having a lattice pattern as a subjective visual target to be gazed at a subject for subjective measurement.
  14.  前記視標呈示光学系は、前記アムスラーチャートが所定の大きさ寸法で前記被検眼から所定の距離となる位置に設けられたものと等しい状態で前記被検眼に呈示することを特徴とする請求項13に記載の検眼装置。 The visual target presenting optical system is characterized in that the Amsler chart is presented to the eye to be examined in a state equal to that provided at a position having a predetermined size and a predetermined distance from the eye to be examined. The optometry apparatus according to 13.
PCT/JP2014/069187 2013-09-18 2014-07-18 Ocular refractive power measuring apparatus and optometry apparatus WO2015040950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015537590A JP6351606B2 (en) 2013-09-18 2014-07-18 Eye refractive power measurement device, optometry device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013193234 2013-09-18
JP2013-193234 2013-09-18

Publications (1)

Publication Number Publication Date
WO2015040950A1 true WO2015040950A1 (en) 2015-03-26

Family

ID=52688609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069187 WO2015040950A1 (en) 2013-09-18 2014-07-18 Ocular refractive power measuring apparatus and optometry apparatus

Country Status (2)

Country Link
JP (2) JP6351606B2 (en)
WO (1) WO2015040950A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023414A (en) * 2015-07-22 2017-02-02 株式会社トプコン Ophthalmologic apparatus
CN107788946A (en) * 2016-09-05 2018-03-13 尼德克株式会社 Subjective formula optometry equipment and subjective formula optometry program
JP2018089080A (en) * 2016-12-01 2018-06-14 株式会社ニデック Subjective optometric apparatus
CN113508330A (en) * 2019-03-29 2021-10-15 豪雅镜片泰国有限公司 Method for measuring perception ability of spectacles of subject and method for designing progressive-power lens

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030683A1 (en) * 2020-08-07 2022-02-10 주식회사 에이아이포펫 Portable retina measuring device, and ophthalmologic disease measuring system and ophthalmologic disease management method using portable terminal
KR102415301B1 (en) * 2020-08-07 2022-06-30 주식회사 에이아이포펫 Protable device for measuring retian

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673805U (en) * 1979-11-13 1981-06-17
JP2003235800A (en) * 2002-02-20 2003-08-26 Nidek Co Ltd Eye examination machinery
JP2004255010A (en) * 2003-02-27 2004-09-16 Canon Inc Apparatus for measuring refractive power of eye
US20050261557A1 (en) * 2004-05-18 2005-11-24 Baker Ernest W Computer-based method and apparatus for evaluation of sensory and physiological parameters
JP2005342042A (en) * 2004-05-31 2005-12-15 Topcon Corp Optometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265412A (en) * 2002-03-18 2003-09-24 Taketoshi Suzuki Metamorphopsia testing chart
WO2010061547A1 (en) * 2008-11-25 2010-06-03 学校法人日本大学 Ophthalmic simulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673805U (en) * 1979-11-13 1981-06-17
JP2003235800A (en) * 2002-02-20 2003-08-26 Nidek Co Ltd Eye examination machinery
JP2004255010A (en) * 2003-02-27 2004-09-16 Canon Inc Apparatus for measuring refractive power of eye
US20050261557A1 (en) * 2004-05-18 2005-11-24 Baker Ernest W Computer-based method and apparatus for evaluation of sensory and physiological parameters
JP2005342042A (en) * 2004-05-31 2005-12-15 Topcon Corp Optometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D CHUSHIN ANTENKEI, GANKA KENSAHO HANDBOOK, 1 June 2005 (2005-06-01), pages 164 - 167 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023414A (en) * 2015-07-22 2017-02-02 株式会社トプコン Ophthalmologic apparatus
CN107788946A (en) * 2016-09-05 2018-03-13 尼德克株式会社 Subjective formula optometry equipment and subjective formula optometry program
JP2018089080A (en) * 2016-12-01 2018-06-14 株式会社ニデック Subjective optometric apparatus
CN108209854A (en) * 2016-12-01 2018-06-29 尼德克株式会社 Subjective formula optometry equipment
CN113508330A (en) * 2019-03-29 2021-10-15 豪雅镜片泰国有限公司 Method for measuring perception ability of spectacles of subject and method for designing progressive-power lens
EP3951483A4 (en) * 2019-03-29 2022-04-27 Hoya Lens Thailand Ltd. Measuring method for measuring sensing capability of eye of subject, and setting method for progressive power lens

Also Published As

Publication number Publication date
JP2017127648A (en) 2017-07-27
JP6277295B2 (en) 2018-02-07
JPWO2015040950A1 (en) 2017-03-02
JP6351606B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6277295B2 (en) Optometry equipment
JP6537843B2 (en) Optometry device, awareness measurement method using chart for optometry
JP6568403B2 (en) Ophthalmic equipment
JP4252902B2 (en) Optometry apparatus and optometry chart
JP4503354B2 (en) Optometry equipment
JP5386224B2 (en) Optometry equipment
JP2009291409A (en) Apparatus for measuring refractive power of eye
JP6853496B2 (en) Optometry device and optometry program
JP2018047049A (en) Subjective optometer and subjective optometric program
JP7024295B2 (en) Awareness-based optometry device
JP2017063978A (en) Ophthalmologic apparatus
JP6396125B2 (en) Ophthalmic equipment
JP2018171139A (en) Subjective optometric apparatus
WO2015102092A1 (en) Ophthalmological device
JP2021146184A (en) Ophthalmologic apparatus and measurement method
JP4494075B2 (en) Optometry equipment
JP2018143571A (en) Optometry apparatus
JP4851176B2 (en) Optical target presentation optical device
JP6057061B2 (en) Eye refractive power measuring device
JP7249097B2 (en) Ophthalmic device and optometric system
WO2015040885A1 (en) Eye examination device
JP2004166903A (en) Optometric device
WO2023233411A1 (en) Eye examination device and method for eye examination
CN114206199A (en) Ophthalmologic apparatus and ophthalmologic system
JP2024021350A (en) Subjective optometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845535

Country of ref document: EP

Kind code of ref document: A1