WO2015039494A1 - 一种高抗振六氟化硫气体密度继电器 - Google Patents

一种高抗振六氟化硫气体密度继电器 Download PDF

Info

Publication number
WO2015039494A1
WO2015039494A1 PCT/CN2014/082872 CN2014082872W WO2015039494A1 WO 2015039494 A1 WO2015039494 A1 WO 2015039494A1 CN 2014082872 W CN2014082872 W CN 2014082872W WO 2015039494 A1 WO2015039494 A1 WO 2015039494A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
control
vibration
density relay
signal
Prior art date
Application number
PCT/CN2014/082872
Other languages
English (en)
French (fr)
Inventor
金海勇
金海生
苏丽芳
Original Assignee
上海乐研电气科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海乐研电气科技有限公司 filed Critical 上海乐研电气科技有限公司
Publication of WO2015039494A1 publication Critical patent/WO2015039494A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/26Details
    • H01H35/28Compensation for variation of ambient pressure or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/04Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges in the form of flexible, deformable tubes, e.g. Bourdon gauges
    • G01L7/043Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges in the form of flexible, deformable tubes, e.g. Bourdon gauges with mechanical transmitting or indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/04Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges in the form of flexible, deformable tubes, e.g. Bourdon gauges
    • G01L7/048Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges in the form of flexible, deformable tubes, e.g. Bourdon gauges correcting or regulating means for flexible, deformable tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/36Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow actuated by curled flexible tube, e.g. Bourdon tube

Definitions

  • the invention relates to a high anti-vibration sulfur hexafluoride gas density relay. Background technique
  • the density of sulphur hexafluoride gas used in the monitoring of sulphur hexafluoride electrical equipment is generally based on an oil-free gas density relay with a micro switch (see Figure 1). This sulphur hexafluoride gas density relay is used.
  • the micro switch has the advantage of good electrical performance, since the micro switch has an operating arm
  • the length of the joint operating arm is longer and it is a cantilever beam.
  • the vibration of the contact operating arm is large, which causes the sulfur hexafluoride gas.
  • the density relay malfunctions, and even the micro switch is destroyed, and the performance is completely lost.
  • the anti-vibration performance is poor, the precision performance is poor, and it is difficult to ensure reliable operation of the system.
  • the gas density relay disclosed in the patents 201020190271. 5 and 201010171798. 8 (see Fig. 4) further comprises a displacement amplifying mechanism, the starting end of the displacement amplifying mechanism is connected to the other end of the temperature compensating element, and the amplifying end drives the contact of the micro switch Operate the handle to make the contact on the micro switch turn on or off
  • the Bourdon tube and the temperature compensating element generate a displacement, which is amplified by the displacement amplifying mechanism and transmitted to the micro switch, so that the micro switch emits a corresponding signal to complete the function of the density relay.
  • the sulphur hexafluoride switch when the sulphur hexafluoride switch performs the opening and closing operation, it will vibrate the Baden tube and the temperature compensating element, which will cause the displacement of the Baden tube and the temperature compensating element, and this displacement is also amplified by the displacement amplifying mechanism. It is then passed to the micro switch, which causes the micro switch to send a corresponding signal. This will cause a malfunction, which means that its anti-vibration performance is not good, and the system cannot be guaranteed to work reliably, which brings great hidden dangers to the safe operation of the power grid.
  • these sulphur hexafluoride gas density relays cannot meet the reclosing requirements of sulphur hexafluoride switches. That is, the inflation pressure (density) cannot withstand the alarm pressure value.
  • the lock contact will malfunction.
  • 0. 6 / 0. 52 / 0. 5 density relay when the gas pressure (density) drops to the alarm action point, the 50g, 11ms impact test is performed at this time, the latching contact will malfunction, and the switch is implemented.
  • the lock is not able to meet the reclosing requirements of the sulphur hexafluoride switch.
  • the defect of the patent 200520115321. 2 is similar to the patent 201 010171798.8, and the displacement caused by the vibration is also amplified by the displacement amplifying mechanism and transmitted to the micro switch (ie, transmitted to the control manifold by controlling the sector gear, and then passed through the control machine).
  • the mandrel is transmitted to the microswitch), which greatly amplifies the displacement caused by the vibration, which is equivalent to making the vibration more powerful.
  • These gas density relays cannot cope because of the high vibration during the switching operation of the SF6 switch, especially for gas density relays with better vibration resistance.
  • the above gas density relays are temperature compensated by temperature compensation sheets, and it is difficult to achieve high precision.
  • the housing is not completely sealed, and it is a relative pressure type density relay, which is affected by altitude.
  • Patent 200920075456. 9 discloses an oil-filled anti-vibration type sulfur hexafluoride gas density relay, although the contact of the density relay also adopts a micro switch, but each is installed on site. These density relays often have a problem of leakage of liquid (shock-proof oil) in the casing after a period of time. Patent 200920075456. 9 (see Figure 5) and the currently widely used oil-filled electric contact type density relay (see Figure 6). From the actual operation, the oil leakage phenomenon at these density relay observation windows (watch glass) is very Generally, it seriously affects the safety and reliability of the system, and it takes a lot of money to replace these density relays.
  • the active contact of the density relay currently used mainly adopts the electric contact type and the micro switch type, and the electric contact type density relay generally needs to be filled with the anti-vibration silicone oil for anti-vibration, and the micro switch type type density relay is used in some occasions with special vibration. It also needs to be filled with anti-vibration silicone oil.
  • the density relays of these anti-shock oils in the world are in a housing because of the control part and the real part, and the display part needs to be observable, so there are observation windows (table glass), charging The natural observation window (watch glass) is also immersed in the anti-vibration oil when the oil is shockproof.
  • the sealing window (watch glass) and the casing are sealed on the curved surface (or small curved surface), the sealing effect is not good, and the sealing ring will age, often the oil leakage problem occurs, and the user is brought To lose, even security issues, so there is an urgent need for innovation. Summary of the invention
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a high anti-vibration sulfur hexafluoride gas density relay which has the advantages of good vibration resistance, high precision, good electrical performance and long working life.
  • a technical solution for achieving the above object is: a high anti-vibration sulfur hexafluoride gas density relay comprising a housing and a signal control portion disposed in the housing and an indication display portion independent of the signal control portion;
  • the display portion includes a display Baden tube, a display base, a display end seat, a display temperature compensating element, a movement and a pointer, and one end of the display Baden tube is welded on the display base, the display of the Baden tube
  • the other end and one end of the display temperature compensating element are fixed to the display end seat, and the other end of the display temperature compensating element is directly or sequentially connected to the movement through a display connecting arm and a display link, the pointer Mounted on the movement,
  • the housing includes a relatively independent sealed oil chamber for mounting the signal control portion and a gas chamber connected to the oil chamber for mounting the indication display portion;
  • the oil chamber is filled with anti-vibration oil
  • the signal control portion includes a control of a Baden tube,
  • a living device and a signal adjusting mechanism wherein one end of the control Baden tube is fixed on the control base, and the other end of the control Baden tube and one end of the control temperature compensating element are fixed to the control end seat
  • the signal regulating mechanism is mounted on the other end of the control temperature compensating element, and the signal generator is mounted on the control base or in the oil chamber and triggered by the signal adjusting mechanism.
  • the above high-vibration sulfur hexafluoride gas density relay wherein the gas chamber is nested in the oil chamber.
  • the above high-vibration sulfur hexafluoride gas density relay wherein the oil chamber is nested in the gas chamber
  • the above-mentioned high anti-vibration sulfur hexafluoride gas density relay wherein the signal generator is a micro switch or a magnetic assist type electric contact.
  • the high anti-vibration sulfur hexafluoride gas density relay wherein the density relay further comprises a chassis disposed at a bottom of the housing, the connection joint of the density relay is fixed on the chassis, the chassis and the The housings are fixedly connected by a plurality of dampers.
  • a high anti-vibration sulfur hexafluoride gas density relay comprising a housing and a signal control portion disposed in the housing and an indication display portion independent of the signal control portion;
  • the value display portion includes a display Baden tube, a base, a display end seat, a display temperature compensating element, a movement and a pointer, and one end of the display Baden tube is welded on the display base, the display of the Baden tube
  • the other end and one end of the display temperature compensating element are fixed to the display end seat, and the other end of the display temperature compensating element is directly or sequentially connected to the movement through a display connecting arm and a display link, the pointer Mounted on the movement, wherein the casing is a sealed oil chamber filled with anti-vibration oil;
  • the signal control portion includes a control of a Baden tube, a control end seat, a control temperature compensating element, and a plurality of signal generation And a signal adjusting mechanism, wherein one end of the
  • the oil chamber does not need to be provided with an observation window, and the welding seal can be performed, so that it is not necessary to use the sealing ring to seal, and the area where the sealing is required is smaller than the area of the glass, so it is very easy to realize. Sealed, so it has a good sealing performance, so there is absolutely no oil leakage problem in the oil chamber where the signal control part is installed.
  • the control of the Baden tube and the control temperature compensating element directly control the signal adjusting mechanism according to the density value of the sulfur hexafluoride gas, thereby controlling the signal generator, the accuracy can be greatly improved; and the third aspect also increases the sulfur hexafluoride gas. Density display function.
  • the indication display part Since the indication display part is independent, it is very easy to realize a full-range range of density relays (-0. l ⁇ 0. 9 MPa), especially it is very easy to achieve the start of -0. IMPa display, when vacuuming It can display the degree of vacuum and is very easy to promote.
  • a temperature compensation component is displayed to realize the temperature compensation function of the indication display portion, which improves and ensures the accuracy.
  • the high anti-vibration sulfur hexafluoride gas density relay of the present invention has the advantages of no oil leakage, good anti-vibration performance, high precision, good electrical performance and long working life.
  • FIG. 1 is a schematic structural view of a first pointer type SF6 gas density relay in the prior art
  • FIG. 2 is a schematic structural view of a second pointer type SF6 gas density relay in the prior art
  • FIG. 4 is a schematic structural view of a fourth type of hexafluoride hexafluoride gas density relay of the prior art
  • FIG. 4 is a schematic view of the prior art
  • FIG. 6 is a schematic structural view of a fifth type of hexafluoride hexafluoride gas density relay in the prior art
  • FIG. 7 is a first high anti-vibration hexafluoride of the present invention
  • FIG. 8 is a schematic structural view of a second high anti-vibration sulfur hexafluoride gas density relay according to the present invention
  • FIG. 9 is a schematic structural view of a third high anti-vibration sulfur hexafluoride gas density relay according to the present invention
  • Figure 10 is a schematic view showing the structure of a fourth high-vibration sulfur hexafluoride gas density relay according to the present invention.
  • the first high anti-vibration sulfur hexafluoride gas density relay of the present invention comprises a relatively independent signal control portion and an indication display portion, and the signal control portion and the indication display portion are correspondingly mounted or sealed.
  • the sealed oil chamber 10 is filled with a shock-proof oil 26 (silicone oil), and the oil chamber 10 and the gas chamber 25 constitute a housing of the density relay.
  • the air chamber 25 of this embodiment is nested within the oil chamber 10.
  • the signal control portion includes a control barden tube 3A, a control temperature compensating element 4A, a susceptor 5, a signal generator, three signal adjusting mechanisms 111, 112, 113, a control terminal block 14A, and a limiting mechanism 22, the signal of this embodiment.
  • the control portion further includes a control movement 6A, a control link 7A and a control pointer 6A1, wherein the base 5 is sealingly fixed to the wall of the oil chamber 10 and extends into the intake chamber 25.
  • the head end of the control Baden tube 3A is welded to the base 5 and communicated with the joint outside the oil chamber 10, and the end of the control Baden tube 3A is welded to the control end seat 14A.
  • the control end seat 14A is connected to the control temperature compensating element 4A and the control link 7 A, the other end of the control link 7A is connected to the control movement 6A, and the control hand 6A1 is mounted on the control movement 6A.
  • One end of the control temperature compensating element 4A is fixed to the control end block 14A, and the other end of the control temperature compensating element 4A is also fixed with three signal adjusting mechanisms 111, 112, 113.
  • three micro switches 101, 102, 103 are used as signal generators, and three micro switches 101, 102, 103 are fixed on the base 5 through the switch fixing member 18 and the mounting bracket 20 and with three signals.
  • the adjusting mechanisms 111, 112, 113 are correspondingly arranged, and the three movable switches 101, 102, 103 and the base 5 of the present embodiment are respectively located above and below the three signal adjusting mechanisms 111, 112, 113, three ⁇ 1
  • the contact operating arms 1011, 1021, and 1031 on the movable switches 101, 102, and 103 can be in contact with the corresponding signal adjusting mechanisms 111, 112, and 113, and the alarm signal contacts and the latching signal contacts on the three microswitches pass through the lead wire holder.
  • the output is 21 and the lead wire holder 21 is hermetically fixed to the wall of the oil chamber 10.
  • the indication display portion includes a display of the Baden tube 3B, the display end seat 14B, the movement 6B, the dial 1 and the pointer 2, and one end of the display of the Baden tube 3B is connected to the base 5, and the other end of the Baden tube 3B is welded.
  • the display end seat 14B On the display end seat 14B, the display end seat 14B is connected to the display link 7B, the other end of the display link 7B is connected to the movement 6B, and the pointer 2 is mounted on the movement 6B.
  • the control of the Baden tube 3A in the control section and the display of the Baden tube 3B in the display section are arranged side by side and the dimensions of the control of the Baden tube 3A and the display of the Baden tube 3B may be the same or different.
  • Controlling the Baden tube 3A is a resilient element and uses the temperature compensation component 4A to control the varying pressure and temperature The degree is corrected to reflect the change in the density of sulfur hexafluoride gas. That is, under the pressure of the sulfur hexafluoride gas to be tested, due to the action of the temperature compensating element 4A, when the density value of the sulfur hexafluoride gas in the switch that controls the Baden tube 3A changes, the control is forced.
  • the end of the Baden tube 3A and the control temperature compensating element 4A are correspondingly elastically deformed and displaced.
  • the end of the control temperature compensating element 4A is correspondingly displaced downward, causing the signal adjusting mechanisms 111, 112, 113 to be displaced downward to drive
  • Corresponding micro-switches 101, 102, 103 contact operating arms 1011, 1021, 1031, the micro-switches 101, 102, 103 contacts are turned on to issue a corresponding alarm or blocking signal, to achieve monitoring and control of electrical switches and other equipment
  • the density of sulfur hexafluoride gas makes electrical equipment work safely.
  • the end of the control temperature compensating element 4A produces a corresponding upward displacement, and the driving signal adjusting mechanisms 111, 112, 113 are also displaced upward.
  • the signal adjusting mechanisms 111, 112, and 11 3 are displaced upward to a certain extent, the corresponding micro-switches 101, 102, and 103 are not triggered, and the corresponding micro-switches 101, 102, and 103 are disconnected, and the signal (alarm) Or latching) is released, thus completing the function of the density relay.
  • the lower portion of the limiting mechanism 22 is fixed to the base 5 by screws.
  • the limiting mechanism 22 can limit the control end seat 14A at a corresponding position corresponding to the density alarm value, thereby restricting the signal adjusting mechanisms 111, 112. , 113 occurs more displacement, and when the density relay is subjected to shock or vibration, the signal adjusting mechanism 111, 112, 11 3 does not vibrate or reduce the amplitude of the vibration, and the signal adjusting mechanism 111, 112, 11 3 is prevented from being in the gas.
  • the density is normal, the signal generator is triggered by mistake, so that the signal generator can avoid malfunction (false lock or false alarm) and ensure reliable operation of the system.
  • the structure of the limit mechanism 22 can be varied.
  • the display of the Baden tube 3B in the indication display portion is also an elastic element, and the temperature and temperature of the change are also corrected by the display temperature compensating element 4B to reflect the change in the density of the sulfur hexafluoride gas. That is, under the pressure of the sulfur hexafluoride gas to be tested, due to the function of the display temperature compensating element 4B, the end of the display of the Baden tube 3B is forced to be correspondingly elastically deformed and displaced, and transmitted by means of the display link 7B. For the movement 6B, the movement 6B is again transmitted to the pointer 2, and the density value of the sulfur hexafluoride gas to be measured is indicated on the dial 1, so that the density relay displays the density value of sulfur hexafluoride.
  • the most important feature of the high-precision density relay of the present invention is that the signal control portion and the display
  • the value display part is relatively independent, so that it is possible to install or seal the signal control part in a well-sealed oil chamber (filled with anti-vibration oil), and use shock-proof oil to achieve high vibration resistance of the signal control part.
  • a well-sealed oil chamber filled with anti-vibration oil
  • shock-proof oil to achieve high vibration resistance of the signal control part.
  • Figure 8 is a second high-vibration sulfur hexafluoride gas density relay of the present invention, which is compared with the first high-vibration sulfur hexafluoride gas density relay (Fig. 7) of the present invention, two relatively independent oil chambers 10 and gas chambers. 25, wherein the oil chamber 10 is nested in the air chamber 25, and the oil chamber 10 and the air chamber 25 constitute a housing of the density relay.
  • Figure 9 is a third high anti-vibration sulfur hexafluoride gas density relay of the present invention, compared with the first high anti-vibration sulfur hexafluoride gas density relay (Fig. 7) of the present invention, the signal control portion and the indication display portion - Correspondingly, it is sealed in a relatively independent oil chamber and a gas chamber to constitute an absolute pressure type density relay, wherein the gas chamber 25 and the oil chamber 10 are front and rear abutting connections.
  • an oil sealing plug 27 is also provided at the oil filling port of the oil chamber 10. The main function of the oil sealing plug 27 is to seal the oil filling port after the oil chamber 10 is filled with the shockproof oil to prevent the transportation. The anti-shock oil overflows.
  • Figure 10 is a fourth high anti-vibration sulfur hexafluoride gas density relay of the present invention, compared with the first high anti-vibration sulfur hexafluoride gas density relay (Fig. 7) of the present invention, the signal control portion and the indication display portion - Correspondingly sealed in a relatively independent oil chamber and in the air chamber, an absolute pressure type density relay is formed, wherein the air chamber 25 and the oil chamber 10 are front and rear abutting connections.
  • an oil sealing plug 27 is also provided at the oil filling port of the oil chamber 10. The main function of the oil sealing plug 27 is to seal the oil filling port after the oil chamber 10 is filled with the shockproof oil to prevent the transportation. Shockproof oil overflows.
  • the base 5 is welded to the intermediate partition 31, and the joint 39 is welded to the casing of the oil chamber 10, and is reinforced by the nut 38 to the casing of the oil chamber 10.
  • the connecting gas pipe 37 is welded to the base 5, and the other end of the connecting gas pipe 37 is welded to the joint 39.
  • the lead wire holder 21 is welded and fixed to the housing of the oil chamber 10, and the intermediate partition plate 31 is also welded and fixed to the housing of the oil chamber 10, so that the entire signal control portion constitutes a very well sealed chamber, which can be completely welded. Sealed and fixed without sealing with a seal ring, the chamber is filled with anti-shock oil, which is theoretically and virtually never oil leaking. As shown in Fig.
  • the gas chamber 25 is mainly composed of an intermediate partition 31, a seal ring 32, a seal ring 33, a viewing window (glass) 34, a cover 35, and a bushing 36, and the display portion is mounted on the sealing performance excellent.
  • the seal ring 32 and the seal ring 33 are respectively mounted on the seal grooves at both ends of the bushing 36.
  • the bushing 36 provided with the seal rings 32, 33 is fixed to the casing of the oil chamber 10 welded to the intermediate partition 31 by the cover 35, the observation window (glass) 34. This achieves a gas chamber 25 with excellent sealing performance, and the manufacturing process is simple and easy to implement.
  • a chassis may be disposed at the bottom of the casing, and the connection joint of the density relay is fixed on the chassis, and the chassis and the case are fixedly connected by a plurality of dampers (shock pads), Further improve the vibration resistance of the density relay.
  • a damping mechanism can be installed in the oil chamber 10, which will dampen the control of the Baden tube or the signal regulating mechanism, so that the control of the Baden tube or the signal regulating mechanism is impacted at the density relay or
  • the control of the Baden tube or the signal adjustment mechanism is not displaced or the amplitude of the displacement is reduced, and the signal adjustment mechanism is prevented from erroneously triggering the signal generator when the gas density is normal, and the vibration resistance of the density relay can be further improved.
  • the signal control part and the indication value display part of the density relay can be sealed in the same oil chamber, and the oil chamber is filled with anti-vibration oil for vibration prevention. .
  • the biggest innovation of the present invention is: an innovative design by two independent oil chambers and gas chambers, that is, a sealed oil chamber in which the signal control portion is installed and a gas chamber in which the indication value display portion is installed, since the signal control portion does not need It can be seen that without the need for transparent glass, it can be sealed by all welding without sealing with a sealing ring, so that if the chamber is filled with anti-shock oil, it will theoretically and practically never leak oil. It completely solves the problem of oil leakage of oil-filled density relays at present, which should be a major innovation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Fluid-Damping Devices (AREA)
  • Contacts (AREA)

Abstract

一种高抗振六氟化硫气体密度继电器,包括设置在壳体内的信号控制部分和与信号控制部分相对独立的示值显示部分。壳体包括相对独立的用于安装信号控制部分的密封油室(10)和与油室连接的用于安装示值显示部分的气室(25),油室内充有防振油(26)。本发明的高抗振六氟化硫气体密度继电器不会漏油、抗振性能好、精度高、电气性能好、工作寿命长。

Description

一种高抗振六氟化硫气体密度继电器 技术领域
本发明涉及一种高抗振六氟化硫气体密度继电器。 背景技术
目前, 用来监测六氟化硫电气设备中的六氟化硫气体密度普遍采用接点为 微动开关的无油型气体密度继电器 (见图 1 ) , 这种六氟化硫气体密度继电器 所采用的微动开关虽然具有电气性能好的优点, 但由于微动开关都带有操作臂
1011、 1021、 1031 , 且其位移量有限, 所以精度差。 更为突出的是由于其结构 上的接点操作臂 12 的长度较长, 而且是个悬臂梁, 在操作六氟化硫开关时, 造成接点操作臂 12 的振动很大, 进而引起六氟化硫气体密度继电器出现误动 作, 甚至出现毁坏微动开关, 完全失去了性能。 总之抗振性能较差, 精度性能 差, 量程显示范围小, 难以保证系统可靠工作。
本申请人还在中国专利或专利申请 200510110648. 5 (见图 2 ) 、 200720066586. 7 , 200910195174. 7(见图 3 ), 200920209217. 8、 201010171798. 8、 201020190271. 5、 201210032293. 2 , 201220047225. 9、 200920075456. 9公开过 一些六氟化硫气体密度继电器,其中,专利 200510110648. 5和 200910195174. 7 公开的气体密度继电器包括显示部分和控制部分, 并且显示部分和控制部分分 别用温度补偿片进行温度补偿, 难以实现高精度动作及显示。 同时, 更为突出 的是由于其结构上的接点操作臂的长度较长, 而且是个悬臂梁, 在操作六氟化 硫开关时, 造成接点操作臂的振动很大, 进而引起六氟化硫气体密度继电器出 现误动作, 甚至出现毁坏微动开关, 完全失去了性能, 总之抗振性能较差, 精 度性能差, 难以保证系统可靠工作。
在专利 201020190271. 5和 201010171798. 8 (见图 4 ) 公开的气体密度继 电器还包括位移放大机构, 该位移放大机构的起始端与温度补偿元件的另一端 连接, 而放大端驱动微动开关的接点操作手柄, 使微动开关上的接点接通或断 开; 当气体密度值发生变化, 波登管和温度补偿元件产生位移, 该位移通过位 移放大机构放大后传递给微动开关, 使微动开关发出相应的信号, 完成密度继 电器的功能。 然而, 六氟化硫开关进行分合闸操作时, 会对巴登管和温度补偿 元件产生振动, 这种振动会引起巴登管和温度补偿元件发生位移, 这种位移也 通过位移放大机构放大后传递给微动开关, 使微动开关发出相应的信号。 这样 就会产生误动作, 也就是说其抗振性能不好, 不能保证系统可靠工作, 给电网 的安全运行带来极大的隐患。 同时这些六氟化硫气体密度继电器不能满足六氟 化硫开关的重合闸要求。 即充气压力 (密度) 在报警压力值以下时, 不能承受
50g、 11ms的冲击试验, 此时闭锁接点会发生误动作。 例如: 0. 6 / 0. 52/ 0. 5的 密度继电器, 当气体压力 (密度) 下降到报警动作点时, 此时进行 50g、 11ms 的冲击试验, 闭锁接点会发生误动作, 对开关实行了闭锁, 不能满足六氟化硫 开关的重合闸要求。 而专利 200520115321. 2的缺陷与专利 201 010171798. 8相 似, 也是会把振动引起的位移通过位移放大机构放大后传递给微动开关 (即通 过控制扇形齿轮传递给控制机芯轴, 再经控制机芯轴传递给微动开关) , 这样 大大地放大了振动引起的位移, 相当于使振动变得更加厉害。 由于在六氟化硫 开关分合闸操作时振动很大, 特别需要抗振性能更好的气体密度继电器, 上述 这些气体密度继电器则不能应付。
上述气体密度继电器都是采用温度补偿片进行温度补偿, 难以实现高精 度, 同时壳体不是全密封的, 是相对压力型密度继电器, 会受海拔高度影响。
在本申请人的专利 200920075456. 9 (见图 5 )公开是一种充油抗振型六氟 化硫气体密度继电器, 虽然这种密度继电器的接点也采用微动开关, 但是安装 于现场的各种这些密度继电器, 经过一段时期后常出现其壳体内的液体 (防震 油) 发生泄漏问题。 专利 200920075456. 9 (见图 5 ) 以及目前大量使用的充油 型电接点式密度继电器 (见图 6 ) , 从实际运行情况来看, 这些密度继电器观 察窗 (表玻璃) 处的漏油现象非常普遍, 严重影响系统的安全和可靠, 同时如 要更换这些密度继电器又要花费很多经费。 经过长期观察和分析, 其原因是因 为这些密度继电器上的观察窗 (表玻璃) 是在小弧面上密封, 其密封效果本身 就不好, 加上其密封圈会老化, 自然就常常会发生漏油或漏气问题。 在海拔高 的地区, 由于表玻璃压差大, 甚至会出现表玻璃爆炸现象, 出现安全问题。 对 于绝对压力型的充油式密度继电器, 由于温度升高, 壳体里外压差大, 也会出 现表玻璃爆炸现象, 出现安全问题。 总之目前使用的密度继电器的动作接点主 要采用电接点型和微动开关型, 电接点型密度继电器一般都要充抗振用的防震 硅油, 而微动开关型的密度继电器在有些振动特别的场合也需要充防震硅油, 而目前世界上这些充防震油的密度继电器由于其控制部分和现实部分都是在 一个壳体内, 而显示部分又需要可以观察, 所以都有观察窗 (表玻璃) , 充防 震油时自然观察窗 (表玻璃) 也浸在防震油里。 而观察窗 (表玻璃) 与壳体的 密封都是采取在弧面(或小弧面)上密封,其密封效果不好,加上密封圈会老化, 常常会发生漏油问题, 给用户带来损失, 甚至安全问题, 所以迫切需要创新。 发明内容
本发明的目的在于克服现有技术的缺陷, 提供一种高抗振六氟化硫气体密 度继电器, 它具有抗振性能好、 精度高、 电气性能好、 工作寿命长的优点。
实现上述目的的一种技术方案是: 一种高抗振六氟化硫气体密度继电器, 包括壳体及设在壳体内的信号控制部分和与信号控制部分相对独立的示值显 示部分; 所述示值显示部分包括显示巴登管、 显示基座、 显示端座、 显示温度 补偿元件、 机芯及指针, 所述显示巴登管的一端焊接在所述显示基座上, 所述 显示巴登管的另一端和所述显示温度补偿元件的一端均固定在所述显示端座, 所述显示温度补偿元件的另一端直接或依次通过显示连接臂及显示连杆与所 述机芯连接, 所述指针安装在所述机芯上, 其中, 所述壳体包括相对独立的用 于安装所述信号控制部分的密封的油室和与油室连接的用于安装所述示值显 示部分的气室; 所述油室内充有防震油; 所述信号控制部分包括控制巴登管、 控制基座、 控制端座、 控制温度补偿元件、 若干信号发生器及信号调节机构, 所述控制巴登管的一端固定在所述控制基座上, 所述控制巴登管的另一端和所 述控制温度补偿元件的一端均固定在所述控制端座上, 所述控制温度补偿元件 的另一端安装所述信号调节机构, 所述信号发生器安装在所述控制基座上或所 述油室内并由所述信号调节机构触发动作。
上述的高抗振六氟化硫气体密度继电器, 其中, 所述气室嵌套在所述油室 内。 上述的高抗振六氟化硫气体密度继电器 其中, 所述油室嵌套在所述气室 内
上述的高抗振六氟化硫气体密度继电器 其中, 所述气室和油室为前后邻 接式连接。
上述的高抗振六氟化硫气体密度继电器 其中, 所述显示基座和控制基座 为一体结构。
上述的高抗振六氟化硫气体密度继电器 其中, 所述显示温度补偿元件为 双金属片。
上述的高抗振六氟化硫气体密度继电器 其中, 所述信号发生器为微动开 关或磁助式电接点。
上述的高抗振六氟化硫气体密度继电器 其中, 所述油室内还安装一对所 述控制巴登管或信号调节机构起阻尼作用的阻尼机构。
上述的高抗振六氟化硫气体密度继电器, 其中, 所述的密度继电器还包括 一设在所述壳体的底部的底盘, 所述密度继电器的连接接头固定在该底盘上, 该底盘和所述壳体之间通过若干个减振器固定连接。
实现上述目的的另一种技术方案是: 一种高抗振六氟化硫气体密度继电 器, 包括壳体及设在壳体内的信号控制部分和与信号控制部分相对独立的示值 显示部分; 所述示值显示部分包括显示巴登管、 基座、 显示端座、 显示温度补 偿元件、 机芯及指针, 所述显示巴登管的一端焊接在所述显示基座上, 所述显 示巴登管的另一端和所述显示温度补偿元件的一端均固定在所述显示端座, 所 述显示温度补偿元件的另一端直接或依次通过显示连接臂及显示连杆与所述 机芯连接, 所述指针安装在所述机芯上, 其中, 所述壳体为一密封的并充有防 震油的油室; 所述信号控制部分包括控制巴登管、 控制端座、 控制温度补偿元 件、 若干信号发生器及信号调节机构, 所述控制巴登管的一端固定在所述基座 上, 所述控制巴登管的另一端和所述控制温度补偿元件的一端均固定在所述控 制端座上, 所述控制温度补偿元件的另一端安装所述信号调节机构, 所述信号 发生器安装在所述基座上或所述油室内并由所述信号调节机构触发动作。
本发明的高抗振六氟化硫气体密度继电器与现有的专利 200920075456. 9 公开的一种充油抗振型六氟化硫气体密度继电器以及目前大量使用的充油型 电接点式密度继电器相比, 一方面采用了信号控制部分和示值显示部分相对独 立, 并将信号控制部分安装或密封在一充有防震油的信号里, 利用防震油实现 信号控制部分的高抗振性能。 由于信号控制部分是不需要显示和观察的, 所以 油室不需要设观察窗, 可以进行焊接密封, 也就无须利用密封圈密封, 再说需 要密封的地方面积小于表玻璃的面积, 所以非常容易实现密封, 因此具有很好 的密封性能, 这样安装信号控制部分的油室就绝对不会出现漏油问题。 第二方 面由于控制巴登管和控制温度补偿元件根据六氟化硫气体的密度值直接控制 信号调节机构, 进而控制信号发生器, 可以大大提高精度; 第三方面还增加了 六氟化硫气体密度的示值显示功能。 由于示值显示部分是独立的, 可以非常容 易地实现全量程范围的密度继电器 (-0. l ~ 0. 9MPa ) , 特别是非常容易实现起 始为 -0. IMPa 的显示, 抽真空时就可以显示真空度, 非常容易推广应用。 另外 还采用了显示温度补偿元件来实现示值显示部分的温度补偿功能, 提高和保证 了精度。 总之, 本发明的高抗振六氟化硫气体密度继电器具有不会漏油、 抗振 性能又好、 精度高、 电气性能好、 工作寿命长的优点。 附图说明
图 1为现有技术的第一种指针式六氟化硫气体密度继电器的结构示意图; 图 2为现有技术的第二种指针式六氟化硫气体密度继电器的结构示意图; 图 3为现有技术的第三种指针式六氟化硫气体密度继电器的结构示意图; 图 4为现有技术的第四种指针式六氟化硫气体密度继电器的结构示意图; 图 5为现有技术的第五种指针式六氟化硫气体密度继电器的结构示意图; 图 6为现有技术的第五种指针式六氟化硫气体密度继电器的结构示意图; 图 7为本发明的第一种高抗振六氟化硫气体密度继电器的结构示意图; 图 8为本发明的第二种高抗振六氟化硫气体密度继电器的结构示意图; 图 9为本发明的第三种高抗振六氟化硫气体密度继电器的结构示意图; 图 10为本发明的第四种高抗振六氟化硫气体密度继电器的结构示意图。 具体实施方式
为了能更好地对本发明的技术方案进行理解, 下面通过具体的实施例并结 合附图进行详细地说明。
请参阅图 7 , 本发明的第一种高抗振六氟化硫气体密度继电器, 包括相对 独立的信号控制部分和示值显示部分, 并且信号控制部分和示值显示部分—— 对应地安装或密封在一个密封的油室 10 内和气室 25 内, 其中密封的油室 10 内充有防震油 26 (硅油) , 油室 10和气室 25构成密度继电器的壳体。 本实施 例的气室 25嵌套在油室 10内。
信号控制部分包括控制巴登管 3A、 控制温度补偿元件 4A、 基座 5、 信号发 生器、 三个信号调节机构 111、 112、 113、 控制端座 14A及限位机构 22 , 本实 施例的信号控制部分还包括控制机芯 6A、 控制连杆 7A及控制指针 6A1 , 其中, 基座 5密封固定在油室 10的壁上并伸进气室 25 内。 控制巴登管 3A的首端焊 接在基座 5上并与油室 10外的接头连通, 控制巴登管 3A的末端焊接在控制端 座 14A上。 控制端座 14A与控制温度补偿元件 4A及控制连杆 7 A相连接, 控制 连杆 7A的另一端与控制机芯 6A连接, 控制指针 6A1安装在控制机芯 6A上。 控制温度补偿元件 4A的一端固定在控制端座 14A上, 控制温度补偿元件 4A的 另一端还固定三个信号调节机构 111、 112、 113。 本实施例中采用三个微动开 关 101、 102、 103作为信号发生器, 三个微动开关 101、 102、 103通过开关固 定件 18和安装架 20固定在基座 5上并与三个信号调节机构 111、 112、 113对 应设置, 本实施例的三个^!动开关 101、 102、 103和基座 5分别位于三个信号 调节机构 111、 112、 113的上方和下方, 三个^ 1动开关 101、 102、 103上的接 点操作臂 1011、 1021、 1031可与对应的信号调节机构 111、 112、 113相接触, 三个微动开关上的报警信号接点和闭锁信号接点通过引出线座 21 输出, 而引 出线座 21密封固定在油室 10的壁上。
示值显示部分包括显示巴登管 3B、 显示端座 14B、 机芯 6B、 刻度盘 1及指 针 2 , 显示巴登管 3B的一端连接在基座 5上, 显示巴登管 3B的另一端焊接在 显示端座 14B上, 显示端座 14B与显示连杆 7B相连接, 显示连杆 7B的另一端 与机芯 6B连接, 指针 2安装在机芯 6B上。 控制部分中的控制巴登管 3A与显 示部分中的显示巴登管 3B为并排设置并且控制巴登管 3A和显示巴登管 3B的 外形尺寸可以一样或不一样。
控制巴登管 3A是弹性元件并利用控制温度补偿元件 4A对变化的压力和温 度进行修正, 反应六氟化硫气体密度的变化。 即在被测六氟化硫气体的压力作 用下, 由于有了控制温度补偿元件 4A的作用, 当与控制巴登管 3A连通的开关 内的六氟化硫气体密度值发生变化时, 迫使控制巴登管 3A 和控制温度补偿元 件 4A 的未端产生相应的弹性变形并发生位移。 如果开关漏气了并且气体密度 值下降到一定程度 (达到报警或闭锁值) , 控制温度补偿元件 4A 的未端产生 相应的向下位移, 使信号调节机构 111、 112、 113向下位移而驱动对应的微动 开关 101、 1 02、 103的接点操作臂 1011、 1021、 1031 , 使微动开关 101、 102、 103 的接点接通发出相应的报警或闭锁信号, 达到监视和控制电气开关等设备 中的六氟化硫气体密度, 使电气设备安全工作。 如果气体密度值升高了并升高 到一定程度, 控制温度补偿元件 4A 的未端产生相应的向上位移, 带动信号调 节机构 111、 112、 113也向上位移。 信号调节机构 111、 112、 11 3向上位移到 一定程度时, 就不触发相应的微动开关 1 01、 1 02、 103 , 相应的微动开关 101、 102、 103接点就断开, 信号 (报警或闭锁)就解除, 这样就完成密度继电器的 功能。
限位机构 22的下部通过螺钉固定在基座 5上, 通过调节使限位机构 22可 以在一个设定的并大于密度报警值的对应位置限制控制端座 14A , 进而限制信 号调节机构 111、 112、 113发生更大的位移, 并在密度继电器受到冲击或振动 时, 使信号调节机构 111、 112、 11 3不发生振动或降低发生振动的幅度, 避免 信号调节机构 111、 112、 11 3在气体密度正常时误触发信号发生器, 使信号发 生器避免发生误动作 (误闭锁或误报警) , 保证系统可靠工作。 限位机构 22 的结构形式可以多样。
示值显示部分中的显示巴登管 3B 也是一弹性元件, 同样利用显示温度补 偿元件 4B 对变化的压力和温度进行修正, 反应六氟化硫气体密度的变化。 即 在被测六氟化硫气体的压力作用下, 由于有了显示温度补偿元件 4B 的作用, 迫使显示巴登管 3B 之未端产生相应的弹性变形并发生位移, 借助于显示连杆 7B传递给机芯 6B , 机芯 6B又传递给指针 2 , 逐将被测的六氟化硫气体密度值 在刻度盘 1上指示出来, 这样密度继电器就具有把六氟化硫的密度值显示出来 的功能。
总之, 本发明的高精度密度继电器最重要的特点在于, 信号控制部分和示 值显示部分是相对独立的, 这样才有可能把信号控制部分安装或密封在一个密 封性能非常好的油室里 (充有防震油) , 利用防震油实现信号控制部分的高抗 振性能, 同时可以采用焊接密封, 就永远不存在漏油问题, 并同时还具有密度 示值显示功能。
图 8为本发明的第二种高抗振六氟化硫气体密度继电器, 与本发明的第一 种高抗振六氟化硫气体密度继电器(图 7 )相比, 两个相对独立的油室 10和气 室 25 , 其中, 油室 10嵌套在气室 25里, 油室 10和气室 25构成密度继电器的 壳体。
图 9为本发明的第三种高抗振六氟化硫气体密度继电器, 与本发明的第一 种高抗振六氟化硫气体密度继电器 (图 7 )相比, 信号控制部分和示值显示部 分——对应地被密封在相对独立的油室里和气室里, 构成绝对压力型密度继电 器, 其中, 气室 25 和油室 10是前后邻接式连接。 并且本案例中还在油室 10 的充油口设置封油塞 27 ,该封油塞 27的主要功能是在油室 10中充好防震油后, 对充油口进行封堵, 防止在运输中防震油溢出。
图 10 为本发明的第四种高抗振六氟化硫气体密度继电器, 与本发明的第 一种高抗振六氟化硫气体密度继电器 (图 7 )相比, 信号控制部分和示值显示 部分——对应地被密封在相对独立的油室里和气室里, 构成绝对压力型密度继 电器, 其中, 气室 25和油室 10是前后邻接式连接。 本案例中也在油室 10的 充油口设置封油塞 27 , 该封油塞 27的主要功能是在油室 10中充好防震油后, 对充油口进行封堵, 防止在运输中防震油溢出。 本案例中基座 5焊接在中间隔 板 31上, 连接接头 39焊接在油室 10的壳体上, 并且通过螺母 38加强固定在 油室 10的壳体上。 连接气管 37—端焊接在基座 5上, 而连接气管 37另一端 焊接在接头 39上。 引出线座 21焊接固定在油室 10的壳体上, 中间隔板 31也 焊接固定在油室 10 的壳体上, 这样整个信号控制部分就构成了一个密封非常 好腔室, 可以通过全部焊接密封固定, 而不用密封圈密封, 在该腔室里充防震 油, 在理论上和实际上是永远不会漏油的。 如图 10所示, 气室 25主要由中间 隔板 31、 密封圈 32、 密封圈 33、 观察窗 (玻璃) 34、 罩盖 35、 衬套 36构成, 显示部分就安装在该密封性能卓越的气室 25 里面。 具体是当显示部分调试好 后, 如图 10所示, 密封圈 32和密封圈 33分别安装在衬套 36两端的密封凹槽 里, 然后通过罩盖 35、 观察窗 (玻璃) 34 , 把装有密封圈 32、 33的衬套 36 固 定在与中间隔板 31焊接在一起的油室 1 0的壳体上。 这样就实现了一个密封性 能非常卓越的气室 25 , 同时本案例制造工艺简单, 实现起来非常方便。
为了进一步提高抗振性能, 在壳体的底部还可以设置一底盘, 密度继电器 的连接接头固定在底盘上, 该底盘和表壳之间通过若干个减振器 (避震垫) 固 定连接, 可以进一步提高密度继电器的抗振性能。
为了进一步提高抗振性能, 在油室 10 内还可以安装阻尼机构, 该阻尼机 构将对控制巴登管或信号调节机构起阻尼作用, 使控制巴登管或信号调节机构 在密度继电器受到冲击或振动时, 使控制巴登管或信号调节机构不发生位移或 降低发生位移的幅度, 避免信号调节机构在气体密度正常时误触发信号发生 器, 可以进一步提高密度继电器的抗振性能。
在使用寿命要求不高, 而抗震要求高、 精度要求高的场合下, 密度继电器 的信号控制部分和示值显示部分可以密封在同一油室里, 该油室内充有作为防 振用的防震油。
本发明最大的创新点是: 通过两个独立的油室和气室创新设计, 即安装所 述信号控制部分的密封的油室和安装所述示值显示部分的气室, 由于信号控制 部分不需要看见, 无须透明的玻璃, 就可以通过全部焊接密封, 而不用密封圈 密封,这样一来如在该腔室里充防震油,在理论上和实际上是永远不会漏油的。 彻底解决了目前充油型密度继电器漏油问题, 应该是重大创新。
以上实施例仅供说明本发明之用, 而非对本发明的限制, 有关技术领域的 技术人员, 在不脱离本发明的精神和范围的情况下, 还可以作出各种变换或变 型, 因此所有等同的技术方案也应该属于本发明的范畴, 应由各权利要求所限 定。

Claims

权 利 要 求 书
1.一种高抗振六氟化硫气体密度继电器, 包括壳体及设在壳体内的信号控 制部分和与信号控制部分相对独立的示值显示部分; 所述示值显示部分包括显 示巴登管、 显示基座、 显示端座、 显示温度补偿元件、 机芯及指针, 所述显示 巴登管的一端焊接在所述显示基座上, 所述显示巴登管的另一端和所述显示温 度补偿元件的一端均固定在所述显示端座, 所述显示温度补偿元件的另一端直 接或依次通过显示连接臂及显示连杆与所述机芯连接, 所述指针安装在所述机 芯上, 其特征在于,
所述壳体包括相对独立的用于安装所述信号控制部分的密封的油室和与 油室连接的用于安装所述示值显示部分的气室; 所述油室内充有防震油; 所述信号控制部分包括控制巴登管、 控制基座、 控制端座、 控制温度补偿 元件、 若干信号发生器及信号调节机构, 所述控制巴登管的一端固定在所述控 制基座上, 所述控制巴登管的另一端和所述控制温度补偿元件的一端均固定在 所述控制端座上, 所述控制温度补偿元件的另一端安装所述信号调节机构, 所 述信号发生器安装在所述控制基座上或所述油室内并由所述信号调节机构触 发动作。
2.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述气室嵌套在所述油室内。
3.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述油室嵌套在所述气室内。
4.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述气室和油室为前后邻接式连接。
5.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述显示基座和控制基座为一体结构。
6.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述显示温度补偿元件为双金属片。
7.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述信号发生器为微动开关或磁助式电接点。
8.根据权利要求 1至 4所述的任意一种高抗振六氟化硫气体密度继电器, 其特征在于, 所述油室内还安装一对所述控制巴登管或信号调节机构起阻尼作 用的阻尼机构。
9.根据权利要求 1所述的高抗振六氟化硫气体密度继电器, 其特征在于, 所述的密度继电器还包括一设在所述壳体的底部的底盘, 所述密度继电器的连 接接头固定在该底盘上, 该底盘和所述壳体之间通过若干个减振器固定连接。
10.一种高抗振六氟化硫气体密度继电器, 包括壳体及设在壳体内的信号 控制部分和与信号控制部分相对独立的示值显示部分; 所述示值显示部分包括 显示巴登管、 基座、 显示端座、 显示温度补偿元件、 机芯及指针, 所述显示巴 登管的一端焊接在所述显示基座上, 所述显示巴登管的另一端和所述显示温度 补偿元件的一端均固定在所述显示端座, 所述显示温度补偿元件的另一端直接 或依次通过显示连接臂及显示连杆与所述机芯连接, 所述指针安装在所述机芯 上, 其特征在于,
所述壳体为一密封的并充有防震油的油室;
所述信号控制部分包括控制巴登管、 控制端座、 控制温度补偿元件、 若干 信号发生器及信号调节机构, 所述控制巴登管的一端固定在所述基座上, 所述 控制巴登管的另一端和所述控制温度补偿元件的一端均固定在所述控制端座 上, 所述控制温度补偿元件的另一端安装所述信号调节机构, 所述信号发生器 安装在所述基座上或所述油室内并由所述信号调节机构触发动作。
PCT/CN2014/082872 2013-09-18 2014-07-24 一种高抗振六氟化硫气体密度继电器 WO2015039494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310426057.3A CN103456560B (zh) 2013-09-18 2013-09-18 一种高抗振六氟化硫气体密度继电器
CN201310426057.3 2013-09-18

Publications (1)

Publication Number Publication Date
WO2015039494A1 true WO2015039494A1 (zh) 2015-03-26

Family

ID=49738816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082872 WO2015039494A1 (zh) 2013-09-18 2014-07-24 一种高抗振六氟化硫气体密度继电器

Country Status (2)

Country Link
CN (1) CN103456560B (zh)
WO (1) WO2015039494A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043402A1 (en) * 2018-09-28 2021-02-11 Shanghai Roye Electrical Co., Ltd. Method for improving gas density relay precision and a high-precision gas density relay
EP3965133A4 (en) * 2020-03-11 2022-08-10 Shanghai Roye Electric Co., Ltd. HIGH GAS DENSITY ANTI-VIBRATION RELAY
RU2784412C1 (ru) * 2020-03-11 2022-11-24 Шанхай Ройе Электрик Ко., Лтд. Монитор плотности газа с высокими антивибрационными характеристиками

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456560B (zh) * 2013-09-18 2015-12-02 上海乐研电气科技有限公司 一种高抗振六氟化硫气体密度继电器
CN114018795B (zh) * 2021-11-05 2023-09-26 国网四川省电力公司电力科学研究院 一种sf6密度继电器防震油老化试验箱及试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440906A1 (de) * 1994-11-17 1996-05-23 Helag Electronic Gmbh Vorrichtung zum Überwachen von Drücken
CN2699283Y (zh) * 2004-05-31 2005-05-11 大连天盛仪表有限公司 双弹簧管式六氟化硫密度控制器
US7124642B2 (en) * 2004-04-15 2006-10-24 Right Weigh, Inc. Dual gauge with dual calibration system and method
CN1971795A (zh) * 2005-11-23 2007-05-30 苏丽芳 抗振型六氟化硫气体密度继电器
JP2008064542A (ja) * 2006-09-06 2008-03-21 Hitachi High-Tech Science Systems Corp 圧力計及びクロマトグラフ装置
CN201465901U (zh) * 2009-07-29 2010-05-12 上海乐研电气科技有限公司 充油抗振型六氟化硫气体密度继电器
CN103456560A (zh) * 2013-09-18 2013-12-18 上海乐研电气科技有限公司 一种高抗振六氟化硫气体密度继电器
CN203521302U (zh) * 2013-09-18 2014-04-02 上海乐研电气科技有限公司 一种高抗振六氟化硫气体密度继电器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103842A (ja) * 1993-10-04 1995-04-21 Shinagawa Sokki Seisakusho:Kk 圧力スイッチ
CN102543571B (zh) * 2012-02-14 2014-11-05 上海乐研电气科技有限公司 一种抗振型六氟化硫气体密度继电器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440906A1 (de) * 1994-11-17 1996-05-23 Helag Electronic Gmbh Vorrichtung zum Überwachen von Drücken
US7124642B2 (en) * 2004-04-15 2006-10-24 Right Weigh, Inc. Dual gauge with dual calibration system and method
CN2699283Y (zh) * 2004-05-31 2005-05-11 大连天盛仪表有限公司 双弹簧管式六氟化硫密度控制器
CN1971795A (zh) * 2005-11-23 2007-05-30 苏丽芳 抗振型六氟化硫气体密度继电器
JP2008064542A (ja) * 2006-09-06 2008-03-21 Hitachi High-Tech Science Systems Corp 圧力計及びクロマトグラフ装置
CN201465901U (zh) * 2009-07-29 2010-05-12 上海乐研电气科技有限公司 充油抗振型六氟化硫气体密度继电器
CN103456560A (zh) * 2013-09-18 2013-12-18 上海乐研电气科技有限公司 一种高抗振六氟化硫气体密度继电器
CN203521302U (zh) * 2013-09-18 2014-04-02 上海乐研电气科技有限公司 一种高抗振六氟化硫气体密度继电器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043402A1 (en) * 2018-09-28 2021-02-11 Shanghai Roye Electrical Co., Ltd. Method for improving gas density relay precision and a high-precision gas density relay
EP3734632A4 (en) * 2018-09-28 2021-03-31 Shanghai Roye Electrical Co., Ltd METHOD FOR IMPROVING GAS SEAL RELAY PRECISION AND HIGH PRECISE GAS SEAL RELAY
EP3965133A4 (en) * 2020-03-11 2022-08-10 Shanghai Roye Electric Co., Ltd. HIGH GAS DENSITY ANTI-VIBRATION RELAY
RU2784412C1 (ru) * 2020-03-11 2022-11-24 Шанхай Ройе Электрик Ко., Лтд. Монитор плотности газа с высокими антивибрационными характеристиками

Also Published As

Publication number Publication date
CN103456560A (zh) 2013-12-18
CN103456560B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN107863271B (zh) 一种高抗振气体密度继电器
WO2015039494A1 (zh) 一种高抗振六氟化硫气体密度继电器
CN107871642B (zh) 一种高精度气体密度继电器
CN107863269B (zh) 一种超小型气体密度继电器
US11885827B2 (en) High anti-vibration gas density monitor
CN107968018B (zh) 一种高抗振气体密度继电器
WO2011140986A1 (zh) 一种六氟化硫气体密度继电器
CN103456561B (zh) 一种高精度六氟化硫气体密度继电器
CN109103050B (zh) 一种提高气体密度继电器精度的方法
WO2020063606A1 (zh) 一种高精度sf6气体密度继电器及其实现方法
CN103700541B (zh) 一种薄形的六氟化硫气体密度继电器
US20210043402A1 (en) Method for improving gas density relay precision and a high-precision gas density relay
CN208673989U (zh) 一种高精度气体密度继电器
CN107808798B (zh) 一种小型化的大量程气体密度继电器
CN103456562B (zh) 一种六氟化硫气体密度继电器
CN103456563B (zh) 一种六氟化硫气体密度继电器
CN207752938U (zh) 一种高抗振气体密度继电器
CN211604957U (zh) 一种薄形的高抗振气体密度继电器
CN208570456U (zh) 一种设有报警保持结构的气体密度继电器
CN211320005U (zh) 一种高抗振气体密度继电器
CN203521302U (zh) 一种高抗振六氟化硫气体密度继电器
CN107863272A (zh) 一种设有报警保持结构的气体密度继电器
CN208093438U (zh) 一种中部出线的气体密度继电器
CN203774177U (zh) 一种薄形的六氟化硫气体密度继电器
RU2784412C1 (ru) Монитор плотности газа с высокими антивибрационными характеристиками

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845981

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14845981

Country of ref document: EP

Kind code of ref document: A1