WO2015039411A1 - 防火结构及其制作方法 - Google Patents

防火结构及其制作方法 Download PDF

Info

Publication number
WO2015039411A1
WO2015039411A1 PCT/CN2014/071705 CN2014071705W WO2015039411A1 WO 2015039411 A1 WO2015039411 A1 WO 2015039411A1 CN 2014071705 W CN2014071705 W CN 2014071705W WO 2015039411 A1 WO2015039411 A1 WO 2015039411A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat absorbing
heat
fire
fireproof
Prior art date
Application number
PCT/CN2014/071705
Other languages
English (en)
French (fr)
Inventor
周和平
Original Assignee
深圳市沃尔核材股份有限公司
深圳市沃尔特种线缆有限公司
金坛市沃尔新材料有限公司
乐庭电线工业(惠州)有限公司
惠州乐庭电子线缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沃尔核材股份有限公司, 深圳市沃尔特种线缆有限公司, 金坛市沃尔新材料有限公司, 乐庭电线工业(惠州)有限公司, 惠州乐庭电子线缆有限公司 filed Critical 深圳市沃尔核材股份有限公司
Publication of WO2015039411A1 publication Critical patent/WO2015039411A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/005Laminated bus-bars

Definitions

  • the invention relates to a fireproof structure and a manufacturing method thereof.
  • the existing fire door includes a fireproof core board and a fireproof finish layer covering the fireproof core board, and the fireproof core board is mainly made of aluminum silicate cotton or expanded perlite cotton.
  • the fireproof core board of the fire door is made of aluminum silicate cotton, and the smoke generated by the fireproof door is poisonous; the fireproof core board of the fire door is made of expanded perlite cotton as the main material, and its strength and fireproof performance are poor.
  • the fire-resistant power cable Another example is the fire-resistant power cable. People have higher and higher requirements for their continuous power supply in fires. The insulation performance of fire-resistant power cables has an important impact on the continuous power supply capability in fires.
  • the rope of the cable-filled rope of the fire-resistant cable is a polyethylene foam or a polyethylene foam and an outer sheath.
  • the fire-resistant cable using the above-mentioned cable-filled rope will become gray when it is exposed to fire ablation, and the filling rope can only serve as a filling function, and cannot prevent the flame from entering the cable for further damage.
  • a busbar is arranged in the busway for transmitting electrical energy, and has the function of collecting and distributing electric power, and can transmit the electric energy output from the generator, the transformer or the rectifier to each user or other substation in developed countries, Hong Kong and Macao. Etc. has become popular. In Guangzhou, China, where more than 12 floors of building distribution rooms are exported, more than 90% of the main lines leading to the floor use busway; 630KVA transformers to distribution cabinets use busway. Public construction projects in large and medium-sized cities, busbars for hotels and office buildings are also popularized, and busbar trunks are the best choice for power transmission trunks with a rated voltage of 1000V or less. Since the busway carries high current and high voltage during power transmission, the busway product has extremely high requirements for insulation performance and fire resistance, but the existing busway is still difficult to meet the fire performance requirements.
  • a primary object of the present invention is to provide a fireproof structure which does not generate harmful gases and has good fire and fire resistance. To achieve the above object, the present invention adopts the following technical solutions:
  • a fire resistant structure comprising at least one heat absorbing layer comprising an inorganic heat absorbing material capable of absorbing heat upon release of heat and capable of releasing water vapor.
  • the inorganic endothermic material is a combination of one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and hydrated calcium sulfate.
  • the inorganic endothermic material is fixed by refractory fibers.
  • the refractory fiber is a glass fiber.
  • a ceramized silicone rubber is added to the inorganic endothermic material.
  • At least one layer of thermal insulation is also included.
  • the heat insulation layer comprises one of ceramicized silicone rubber, ceramicized silicone rubber foamed material, polyphenylene foam, phenolic foam, polyurethane, rock wool, mineral wool, glass wool, fireproof cotton, mica and ceramic fiber. Or a combination of multiples.
  • At least one of the heat insulating layer and the heat absorbing layer has two layers and the heat insulating layer and the heat absorbing layer are alternately disposed.
  • a coating layer covering the heat insulating layer and the heat absorbing layer is further included.
  • the coating layer is a metal layer.
  • a fire door includes a door body, the door body including the fireproof structure.
  • the panel is a steel plate or an aluminum alloy plate.
  • a fire resistant fuel tank includes a case and a cover, at least one of the case and the cover including the fireproof structure.
  • a fire safe includes a cabinet and a cabinet door, and at least one of the cabinet and the cabinet door includes the fireproof structure.
  • a fire resistant cable includes a cable core coated with the fire resistant structure.
  • the heat absorbing layer in the fireproof structure directly covers the cable core, the heat insulating layer is a protective layer coated on the heat absorbing layer, and the coating layer is coated as a sheath On the cover layer.
  • the heat insulation layer in the fireproof structure is a sheath covering the cable core, the heat absorption layer is coated on the sheath layer, and the coating layer is coated as a sheath on the suction layer. On the hot layer.
  • the fire resistant cable further includes another layer of the heat absorbing layer that directly coats the core.
  • the fire resistant cable includes a plurality of the cores, and the heat absorbing layer directly covering the core is filled between the plurality of cores.
  • the sheath includes an inner sheath, a braid layer, and an outer sheath in order from the inside to the outside.
  • a dense insulated busway includes a busbar shield and a plurality of busbars disposed side by side in the busbar shield, each of the busbars including a conductor and an insulating layer covering the conductor,
  • a refractory material is filled between the busbar protective shell and the plurality of busbars, wherein: the busbar trunk has the fireproof structure, and the heat insulating layer in the fireproof structure is the refractory material. The heat absorbing layer is surrounded by the refractory.
  • the plurality of busbars are spaced apart, and the heat absorption layer is disposed between adjacent busbars.
  • the plurality of busbars are covered with the heat absorbing layer.
  • the dense insulated busway slot further includes a metal shell, the metal shell is disposed inside the busbar protective shell, and the plurality of busbars are disposed in the metal shell; a heat absorbing layer, a first filling groove is formed between the metal shell and the plurality of bus bars, and a second filling groove is formed between the inorganic heat absorbing material and the bus bar protective shell, A filling tank and a second filling tank are respectively filled with the refractory.
  • a fireproof coating layer is disposed outside the busbar protective casing.
  • a ship comprising a hull, the hull comprising the fire protection structure.
  • a tank includes a tank housing including the fire protection structure.
  • a method of fabricating a fire resistant structure comprising forming at least one heat absorbing layer comprising an inorganic heat absorbing material capable of absorbing heat when heated and capable of releasing water vapor.
  • the method also includes forming at least one layer of thermal insulation layer laminated to the inorganic endothermic material or one of the other.
  • the method also includes forming a cladding layer that coats the heat absorbing layer and the heat insulating layer.
  • the heat absorbing layer of the fireproof structure of the present invention contains an inorganic heat absorbing material capable of releasing water vapor when heated to a certain extent, and absorbing heat during the process of releasing water vapor by the inorganic heat absorbing material.
  • the thermal process itself can cool down, and the vapour volatilization can continuously remove heat and lower the temperature, which can improve the fire resistance and reduce the damage of objects or equipment with this fireproof structure when the fire occurs, and protect people's lives and property. Safety.
  • the insulation layer acts as a heat insulator to prevent heat transfer from the outside and improve fire resistance.
  • FIG. 1 is a schematic cross-sectional structural view of a first embodiment of a fireproof structure of the present invention
  • FIG. 2 is a cross-sectional structural view of a fireproof structure of a second embodiment of the present invention
  • Figure 4 is a cross-sectional structural view showing a second embodiment of the fire door of the present invention
  • Figure 5 is a perspective structural view of the fire-resistant fuel tank embodiment of the present invention
  • Figure 6 is a schematic cross-sectional structural view of the fire-resistant fuel tank embodiment of Figure 5;
  • Figure 8 is a schematic cross-sectional structural view of the fire safe embodiment of Figure 7;
  • Figure 9 is a cross-sectional structural view of the first embodiment of the fire resistant cable of the present invention
  • Figure 10 is a schematic cross-sectional view showing a second embodiment of the fire resistant cable of the present invention.
  • Figure 1 is a schematic cross-sectional view showing a third embodiment of the fire resistant cable of the present invention
  • Figure 12 is a schematic cross-sectional view showing a fourth embodiment of the fire resistant cable of the present invention.
  • Figure 13 is a cross-sectional view showing the fifth embodiment of the fire resistant cable of the present invention.
  • Figure 14 is a cross-sectional view showing the sixth embodiment of the fire resistant cable of the present invention.
  • Figure 15 is a cross-sectional view showing the first embodiment of a dense insulated busway.
  • Figure 16 is a cross-sectional structural view showing a second embodiment of a dense insulated busway
  • Figure 17 is a cross-sectional structural view showing a third embodiment of a dense insulated busway.
  • Figure 18 is a cross-sectional structural view showing a fourth embodiment of a dense insulated busway.
  • Figure 19 is a cross-sectional structural view showing a fifth embodiment of a dense insulated busway
  • a fire protection structure includes a heat absorption layer 110, a heat insulation layer 120, and a cladding layer 130.
  • the heat absorbing layer 1 10, the heat insulating layer 120 is disposed in the cladding layer 130, which is intended to be in the drawing.
  • Endothermic Diagram Diagram Layer 1 10 is filled with an inorganic endothermic material, which is an inorganic material that absorbs heat when heated and releases water vapor.
  • the inorganic endothermic material is one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and calcium hydrate hydrate.
  • the inorganic endothermic material is not limited to the ones listed above, as long as it is an inorganic material capable of absorbing heat after heating and capable of releasing water vapor.
  • the inorganic endothermic material is fixed by refractory fibers.
  • the heat insulation layer 120 mainly functions as a fireproof and heat insulation.
  • the heat insulation layer 120 is a ceramized silicone rubber layer, and more specifically, a ceramized silicone rubber foam insulation layer.
  • the ceramized silicone rubber layer can be formed by foaming silicone rubber, silica, silicone oil, porcelain powder and foaming agent, that is, mainly using ceramic fireproof refractory silicone rubber as the main substrate, which can be transformed at temperatures above 350 °C. It is a ceramic-like hard shell with flame retardant, halogen-free, non-toxic, low-smoke, and heat-insulating features. This further increases the fire resistance of the fire protection structure.
  • the insulating layer 120 may also contain a combination of one or several of polyphenylene fluorene, phenolic foam, polyurethane, rock wool, mineral wool, glass wool, fire resistant cotton, and ceramic fibers.
  • the cladding layer 130 mainly functions to coat the heat absorbing layer and the heat insulating layer, and the cladding layer is preferably a metal layer such as an aluminum alloy layer.
  • the cladding layer can also have other functions as needed, for example, as a skeleton support.
  • the fireproof structure has a heat absorbing layer 110 and a heat insulating layer 120.
  • the heat absorbing layer 1 10 is filled with an inorganic heat absorbing material, which can release water vapor when heated to a certain extent, and release water in the inorganic heat absorbing material. In the process of steam absorption, this endothermic process itself can reduce the temperature, and the vapour volatilization can continuously remove heat and lower the temperature, which can improve the fire resistance and reduce the occurrence of fire-resistant structures. Or damage to equipment to protect people's lives and property.
  • the heat insulation layer acts as a heat insulation and fire resistance, which can prevent the transfer of external heat and improve the fire resistance.
  • the inorganic heat absorbing material is added with a ceramized silicone rubber, and the two are mixed to form a strong fire-resisting effect.
  • the inorganic heat absorbing material can release the water vapor heat absorption when heated to a certain extent, which is at first
  • the inorganic heat absorbing material mainly acts as a cooling element.
  • the ceramized silicone rubber is ablated and transformed into a ceramic hard shell, which can isolate the external flame.
  • the second embodiment is similar to the first embodiment, and the difference is that: the heat insulation layer 120 has two layers disposed in the cladding layer 130, and the heat absorption layer 110 is distributed between the two heat insulation layers 120. . This can further enhance the heat absorption and heat insulation effect and improve the fire resistance and fire resistance.
  • the heat absorbing layer and the heat insulating layer may have a plurality of layers, respectively, which may be spaced apart.
  • a fire door includes a door panel 210 filled with an inorganic heat absorbing material 220, wherein the inorganic heat absorbing material 220 is capable of absorbing heat when heated and capable of releasing water vapor. Inorganic materials.
  • the inorganic endothermic material is one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and calcium hydrate hydrate.
  • the inorganic endothermic material is fixed by refractory fibers.
  • a ceramized silicone rubber is added to the inorganic endothermic material.
  • the door panel can be a steel door panel or an aluminum door panel.
  • the second embodiment is similar to the first embodiment in that: the door panel 210 is provided with a ceramized silicone rubber layer 230, and the inorganic heat absorbing material 220 is filled in the ceramized silicone rubber layer 230. between.
  • the ceramized silicone rubber layer 230 increases the fire resistance of the fire door.
  • the ceramized silicone rubber layer 230 is preferably a ceramicized silicone rubber foam insulation layer, which further enhances the heat insulation effect of the fire door.
  • the ceramized silicone rubber layer 230 can also be replaced with a fireproof cotton layer.
  • a fire resistant fuel tank includes a casing 3 10 and a cover (not shown). An oil chamber (not shown) having an upper opening is formed inside the casing 3 10 . The cover is used to open or close the opening 3 1 1 of the case 3 10 .
  • the main body layer 3 12 of the casing 3 10 is covered with a fireproof heat insulating group 320 formed of an inorganic heat absorbing material layer 321 and a refractory layer 322.
  • the inorganic endothermic material of the inorganic heat absorbing material layer 321 is an inorganic material capable of absorbing heat when heated and capable of releasing water vapor.
  • the cover is provided with at least one fire-insulating and heat-insulating group formed of an inorganic heat-absorbing material layer and a refractory layer.
  • the inorganic endothermic material is one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and calcium hydrate hydrate.
  • the inorganic endothermic material is fixed by refractory fibers.
  • a ceramized silicone rubber is added to the inorganic endothermic material.
  • the refractory layer is a ceramized silicone rubber layer, especially a ceramized silicone rubber foaming heat insulating layer, and may also be a fireproof cotton or mica layer or other material layer capable of refracting.
  • the fire-resistant source will be blocked by the fire-retardant refractory or ablation of the ceramized silicone rubber layer to prevent the fire from spreading.
  • the fireproof and heat insulation group of the casing 3 10 and the cover may have a plurality of stacked groups.
  • a fire safe includes a cabinet 410 and a cabinet door 420.
  • the interior of the cabinet 410 is formed with an accommodation space (not shown) for the opening 41 1 .
  • the cabinet door 420 is used to open or close the opening 41 1 of the cabinet 410.
  • the cabinet 410 is provided with a main inner layer 412 and a fireproof heat insulation group formed by an inorganic heat absorbing material layer 413 and a refractory layer 414 from the inside to the outside, wherein the inorganic heat absorbing material layer 413 is adjacent to the main inner layer. 412.
  • the inorganic endothermic material of the inorganic endothermic material layer 413 is an inorganic material which absorbs heat when heated and is capable of releasing water vapor.
  • the cabinet door 420 is provided with a main inner layer 422 and a fireproof heat insulation group formed by the inorganic heat absorbing material layer 423 and the refractory layer 424 from the inside to the outside.
  • the inorganic endothermic material is one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and calcium hydrate hydrate.
  • the inorganic endothermic material is fixed by refractory fibers.
  • a ceramized silicone rubber is added to the inorganic endothermic material.
  • the refractory layer is a ceramized silicone rubber layer, especially a ceramized silicone rubber foam insulation layer, and may also be fireproof cotton or mica layer and the like which can perform fire resistance. Material layer.
  • the fire-resistant source will be blocked by the fire-retardant refractory or ablation of the ceramized silicone rubber layer to prevent the fire from spreading.
  • the main inner layer is a metal inner layer, preferably a steel, iron or copper main inner layer.
  • the main inner layer can also be made of cement or stone.
  • the fireproof heat insulation group of the cabinet 410 and the cabinet door 420 may have a plurality of stacked groups.
  • a fire resistant cable includes a plurality of cores 5 10 .
  • a filling layer 520 is disposed between the cores 5 10 and a protective layer 530 is externally disposed.
  • the outer layer 540, the braid layer 550 and the outer sheath 560 are disposed in this order.
  • the filling layer 520 is filled with an inorganic heat absorbing material 521 which is an inorganic material which absorbs heat when heated and is capable of releasing water vapor.
  • the core 5 10 varies with the requirements of the low voltage, medium voltage, high voltage, and ultra high voltage cables.
  • the core 510 may include an insulating layer outside the conductor and the conductor, or the core 5 10 includes the conductor and is outsourced from the inside to the outside.
  • the inner shield of the covered conductor, the insulating layer, the outer shield and the copper strip shield, or the core 510 comprises a conductor and an inner shield covering the conductor from the inside to the outside, a refractory layer, an outer shield and a copper strip shield, or the core 510 comprises a conductor And an inner shield covering the conductor from the inside to the outside, a refractory layer, an insulating layer, an outer shield and a copper strip shield, or the core 510 includes a conductor and an inner shield covering the conductor from the inside to the outside, an insulating layer, a refractory layer, and the outer Shielding and copper tape shielding, of course, the structure of the cable core 510 is not limited to these, this is a prior art, will not be described o
  • the inorganic endothermic material 521 is one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and calcium hydrate hydrate.
  • the inorganic endothermic material is fixed together by refractory fibers such as glass fibers.
  • a ceramized silicone rubber is added to the inorganic endothermic material.
  • the sheath 530 is made of a mica tape or a ceramized silicone rubber composite tape.
  • the ceramized silicone rubber composite belt can be fire-resistant in the event of a fire and can be ablated into a shell to block the flame.
  • this embodiment differs from the embodiment of Figure 9 in that there is only an outer jacket 560 outside of the sheath 530.
  • the embodiment is different from the embodiment shown in FIG. 9 in that the inorganic heat absorbing material 53 1 is further disposed between the sheath 530 and the inner sheath 540.
  • the embodiment is different from the embodiment shown in FIG. 10 in that the inorganic heat absorbing material 53 1 is further disposed between the sheath 530 and the outer sheath 560.
  • this embodiment differs from the embodiment of Figure 12 in that the fill layer 520 is not filled with an inorganic heat absorbing material.
  • this embodiment differs from the embodiment shown in Fig. 11 in that the filling layer 520 is not filled with an inorganic heat absorbing material.
  • a dense insulated busway is formed in a substantially rectangular parallelepiped shape, and includes a busbar shield 610 and a plurality of busbars 620 disposed in the busbar shield 610.
  • the busbar shield 610 is a protective enclosure for dense insulated busway slots, typically a metal casing, such as a steel or iron casing, that protects the internal components of the busway.
  • the busbar shield 610 can be surrounded by four metal plates 61 1 , and the two adjacent metal plates are fixed together by bolts 612 , and of course can also be fixed by screws.
  • the busbar 620 includes a busbar conductor 621 and an insulating layer 622 covering the busbar conductor 621.
  • the insulating layer 622 mainly serves as an insulating layer for the bus bar conductor 621, and may be a heat shrinkable tube, preferably a material which is also refractory, such as a ceramized silicone rubber composite tape, a refractory mica tape or a mixture of the two.
  • the ceramized silicone rubber composite belt can exhibit flame retardant and fire resistance, and has excellent flame retardant and fire resistance performance, and can be ablated to form a hard protective shell even if it exceeds the fire end limit combustion, and the protective shell can prevent the flame from extending further toward the busbar conductor 621, thereby
  • the busbar conductor 621 located in the ceramized silicone rubber composite tape is protected from damage, and the normal use function of the busbar 620 is ensured, thereby improving the safety of the product.
  • a filler groove 640 is formed between the busbar shield 610 and the plurality of busbars 620, and the filling groove 640 is filled with refractory.
  • the refractory material is preferably a refractory cotton or a ceramized silicone rubber.
  • Refractory cotton can play a role in fire resistance, and it has a heat-dissipating effect different from other refractory materials. It can ensure that the temperature of the busbar can be released in time during the fire, so that the inside of the busway can be kept clear during the fire.
  • Refractory cotton is generally selected to be resistant to high temperature temperatures above 1000 °C.
  • the refractory cotton has thermal expansion and contraction capability, and the insulating layer 622 ensures insulation performance and ensures the normal operation of the busbar 620 during a fire.
  • the ceramized silicone rubber can play a flame retardant and refractory effect, and has excellent flame retardant and fire resistance. Even if it exceeds the fire end limit, it can be ablated to form a hard protective shell.
  • the protective shell can prevent the flame from extending into the busbar conductor, thereby protecting the ceramic.
  • the busbar conductor in the silicone rubber insulation layer is not damaged, ensuring the normal use function of the busbar, and improving the safety of the product.
  • An inorganic heat absorbing material 630 is disposed in the dense insulated busway, and the inorganic heat absorbing material 630 refers to an inorganic material capable of absorbing heat when heated and capable of releasing water vapor.
  • the inorganic endothermic material is preferably one or more of magnesium hydroxide, aluminum hydroxide, hydrated potassium aluminum sulfate, and hydrated calcium sulfate.
  • the inorganic endothermic material 630 is fixed by a refractory fiber, and the refractory fiber is preferably a glass fiber.
  • the inorganic heat absorbing material is filled with ceramic Silicone rubber.
  • a plurality of bus bars 620 are spaced apart, and an inorganic heat absorbing material 630 is disposed between adjacent bus bars 620.
  • a foaming and anti-fire coating layer (not shown) may be provided outside the busbar protective casing 610.
  • the intensive insulated busway is provided with an inorganic heat absorbing material 630, which can release water vapor when heated to a certain extent, and has an endothermic process in the process of releasing water vapor from the inorganic heat absorbing material.
  • the process itself can cool down, and the vapour volatilization can continuously remove heat and reduce the temperature of the busway, which can improve the fire resistance of the busway and improve the continuous power supply capacity of the dense insulated busway in the fire.
  • this embodiment differs from the embodiment shown in Figure 15 in that adjacent bus bars 620 are not spaced apart but are disposed adjacent to each other.
  • the inorganic heat absorbing material 630 is coated on the side of the busbar 620 arranged side by side.
  • the manner in which the inorganic material is integrally coated on the periphery of the plurality of busbars 620 is relatively more comprehensively protected from the busbars in the manner of the interval between the adjacent busbars in the embodiment 1, and the protection of the busbars is further comprehensively protected.
  • the busbar is not affected by the high temperature of the fire.
  • the difference between the embodiment and the embodiment shown in FIG. 15 is that the dense insulated busbar slot is covered with a plurality of inorganic heat absorbing materials 630 on the plurality of busbars 620.
  • This method of simultaneously providing inorganic materials between adjacent busbars and outside of the plurality of busbars 620 provides double protection for better protection of the individual busbars.
  • the dense insulated busway further includes a metal shell 650 disposed inside the busbar shield 610, and the plurality of busbars 620 are disposed on the metal. Inside the shell 650.
  • the metal shell 650 is covered with an inorganic heat absorbing material 630.
  • a first filling groove 651 is formed between the metal shell 650 and the plurality of bus bars 620, and a second filling groove 652 is formed between the inorganic heat absorbing material 630 and the bus bar shielding shell 610.
  • the first filling tank 651 and the second filling tank 652 are respectively filled with a refractory.
  • the metal shell 650 mainly plays a fixed supporting role for the outer layer of the inorganic heat absorbing material.
  • the metal shell 650 can be surrounded by four metal plates 653. The two free ends of each metal plate 653 are bent vertically inward to form a cladding portion. 654.
  • the embodiment shown in FIG. 18 can still be provided with an inorganic heat absorbing material for protection according to the embodiment shown in FIGS. 15 and 16.
  • the adjacent bus bars are spaced apart, and the inorganic heat absorbing material is disposed between adjacent bus bars.
  • the adjacent busbars may also be arranged adjacent to each other, and the plurality of busbars are covered with an inorganic heat absorbing material.
  • FIG. 19 this embodiment is similar to the embodiment shown in FIG. 18, and the difference is that: adjacent bus bars 620 are spaced apart, and an inorganic heat absorbing material 630 is disposed between adjacent bus bars 620, and multiple busbars are outsourced. It is covered with an inorganic heat absorbing material 630.
  • the present embodiment provides an inorganic heat absorbing material for protection in the manner shown in the embodiment shown in Fig. 18, and the mother row has the protection of the double inorganic heat absorbing material.
  • the inorganic heat absorbing material around the metal shell 650 that is, the triple inorganic heat absorbing material, provides more protection for the busbar in the busway.
  • Still other embodiments are directed to a ship including a hull comprising the aforementioned fire protection structure.
  • Still other embodiments are directed to a tank including a tank housing, the tank housing including the aforementioned fire protection structure.
  • Still other embodiments are directed to a method of making a fire resistant structure comprising forming at least one layer of heat absorbing layer comprising an inorganic endothermic material capable of absorbing heat upon release of heat and capable of releasing water vapor.
  • the method may further comprise forming at least one insulating layer, the insulating layer being laminated with the inorganic endothermic material or one of the other.
  • the method may further include forming a cladding layer that coats the heat absorbing layer and the heat insulating layer.

Landscapes

  • Installation Of Bus-Bars (AREA)
  • Special Wing (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

一种防火结构及其制作方法,该防火结构包括至少一层吸热层,所述吸热层包含在受热时能够吸热并且能够释放出水蒸气的无机吸热材料。由于吸热层内填充有无机吸热材料,该无机吸热材料在受热到一定程度时能够释放出水蒸气,在无机吸热材料释放出水蒸气的过程中吸热,这个吸热过程本身能够起到降温作用,而且水蒸气挥发能够源源不断地带走热量,使温度降低,这能够提高耐火性能,减少火灾发生时对具有此防火结构的物件或设备的损毁,保障人们生命财产安全。

Description

防火结构及其制作方法 技术领域
本发明涉及一种防火结构及其制作方法。
背景技术
目前人们对产品的防火耐火性能要求越来越高, 例如防火门、 油箱、 保险柜、 防火墙、 线缆、 安装母线的母线槽, 乃至轮船、 坦 克等, 都对防火性能有着特别高的要求。
举例来说, 现有的防火门包括防火芯板和包覆该防火芯板的防 火饰面层, 防火芯板以硅酸铝棉或膨胀珍珠岩棉为主要材料。然而, 防火门的防火芯板以硅酸铝棉为主要材料, 其产生的烟气具有毒 性; 防火门的防火芯板以膨胀珍珠岩棉为主要材料, 其强度和防火 燃烧性能差。
又如耐火电力电缆, 人们对其在火灾中持续供电能力也有着越 来越高的要求, 耐火电力电缆的绝缘性能对其火灾中持续供电能力 有着重要影响。 目前耐火电缆的电缆填充绳的绳体为聚乙烯发泡体 或者由聚乙烯发泡体及外包的护层构成。 然而, 采用上述电缆填充 绳的耐火电缆在遇到火灾烧蚀时会变成灰质, 填充绳仅能起到填充 作用, 不能阻止火焰进一歩对电缆的进一歩破坏。
再如母线槽, 其在电力输送干线工程项目中已越来越多地代替 了电线电缆。 母线槽内设置有母线, 用以传输电能, 具有汇集和分 配电力的功能, 通过它能将发电机、 变压器或整流器输出的电能输 送给各个用户或其他变电所, 在发达国家及香港、 澳门等已普及。 在中国的广州, 凡 12层以上楼宇配电房出线, 即引至楼层的主干 线 90%以上使用母线槽; 630KVA变压器至配电柜要使用母线槽。 大中型城市的公建项目,酒店,写字楼使用母线槽也普及化,母线槽是 户内额定电压 1000V以下电力输送干线的最佳选择。 由于母线槽在 电能传输过程中, 承载着大电流、 高电压, 因此, 母线槽产品对绝 缘性能、 耐火性能具有极高的要求, 但现有的母线槽仍然难于满足 耐火性能要求。
发明内容
本发明的主要目的在于提供一种不产生有害气体、 防火耐火性 能好的防火结构。 为实现上述目的, 本发明采用以下技术方案:
一种防火结构, 包括至少一层吸热层, 所述吸热层包含在受热 时能够吸热并且能够释放出水蒸气的无机吸热材料。
所述无机吸热材料为氢氧化镁、 氢氧化铝、 水合硫酸铝钾、 水 合硫酸钙中的一种或多种的组合。
所述无机吸热材料通过耐火纤维固定。
所述耐火纤维为玻璃纤维。
所述无机吸热材料中添加有陶瓷化硅橡胶。
还包括至少一层隔热层。
所述隔热层含有陶瓷化硅橡胶、 陶瓷化硅橡胶发泡材料、 聚苯 泡沬、 酚醛泡沬、 聚氨酯、 岩棉、 矿棉、 玻璃棉、 防火棉、 云母和 陶瓷纤维中的一种或多种的组合。
所述隔热层和所述吸热层中至少一者有两层且所述隔热层和 所述吸热层交替设置。
还包括包覆所述隔热层和所述吸热层的包覆层。
所述包覆层为金属层。
一种防火门, 包括门体, 所述门体包括所述的防火结构。
一种防火门, 具有所述的防火结构, 其中所述包覆层为所述防 火门的门体面板。
所述面板为钢质板或铝合金板。
一种防火油箱, 包括箱体和盖, 所述箱体和所述盖中至少一者 包括所述的防火结构。
一种防火保险柜, 包括柜体和柜门, 所述柜体和所述柜门中至 少一者包括所述的防火结构。
一种耐火电缆,包括缆芯,所述缆芯上包覆有所述的防火结构。 所述防火结构中的所述吸热层直接包覆所述缆芯, 所述隔热层 为包覆在所述吸热层上的护层, 所述包覆层作为护套包覆在所述护 层上。
所述防火结构中的所述隔热层为包覆所述缆芯的护层, 所述吸 热层包覆在所述护层上, 所述包覆层作为护套包覆在所述吸热层 上。
所述耐火电缆还包括直接包覆所述缆芯的另一层所述吸热层。 所述耐火电缆包括多条所述缆芯, 直接包覆所述缆芯的所述吸 热层填充于多条所述缆芯之间。
所述护套由内至外依次包括内护套、 编织层和外护套。 一种密集型绝缘母线槽, 包括母排防护壳和并排设置于所述母 排防护壳内的多个母排, 每个所述母排包括导体和包覆所述导体的 绝缘层, 所述母排防护壳与所述多个母排之间填充有耐火料, 其特 征在于: 所述母线槽具有所述的防火结构, 所述防火结构中的所述 隔热层为所述耐火料, 所述吸热层由所述耐火料包围。
所述多个母排间隔设置, 相邻母排之间设置有所述吸热层。 所述多个母排外包覆有所述吸热层。
所述密集型绝缘母线槽还包括一金属壳, 所述金属壳设置在所 述母排防护壳内部, 所述多个母排设置在所述金属壳内; 所述金属 壳外包覆有所述吸热层, 所述金属壳与所述多个母排之间形成有第 一填充槽, 所述无机吸热材料与所述母排防护壳之间形成有第二填 充槽, 所述第一填充槽、 第二填充槽分别填充有所述耐火料。
所述母排防护壳外设有防火涂料层。
一种轮船, 包括船体, 所述船体包括所述的防火结构。
一种坦克,包括坦克壳体,所述坦克壳体包括所述的防火结构。 一种防火结构的制作方法, 包括形成至少一层吸热层, 所述 吸热层包含在受热时能够吸热并且能够释放出水蒸气的无机吸热 材料。
所述方法还包括形成至少一层隔热层, 所述隔热层与所述无机 吸热材料层叠在一起或是一者将另一者包覆。
所述方法还包括形成将所述吸热层和所述隔热层包覆的包覆 层。
如上所述, 本发明防火结构的吸热层含有无机吸热材料, 该无 机吸热材料在受热到一定程度时能够释放出水蒸汽, 在无机吸热材 料释放水蒸汽的过程中吸热, 这个吸热过程本身能够起到降温作 用, 而且水蒸汽挥发能够源源不断地带走热量, 使温度降低, 这能 提高耐火性能, 减少火灾发生时对具有此防火结构的物件或设备的 损毁, 保障人们生命财产安全。
进一歩地, 隔热层起到隔热作用, 能够阻止外界热量的传递, 提高防火耐火性能。
附图说明
图 1为本发明防火结构第一实施例的截面结构示意图; 图 2为本发明防火结构第二实施例的截面结构示意图; 图 3为本发明防火门第一实施例的截面结构示意图;
图 4为本发明防火门第二实施例的截面结构示意图; 图 5为本发明防火油箱实施例的立体结构示意图; 图 6为图 5所示防火油箱实施例的横向截面结构示意图; 图 7为本发明防火保险柜实施例的立体结构示意图;
图 8为图 7所示防火保险柜实施例的横向截面结构示意图; 图 9为本发明耐火电缆第一实施例的截面结构示意目
图 10为本发明耐火电缆第二实施例的截面结构示意
图 1 1为本发明耐火电缆第三实施例的截面结构示意
图 12为本发明耐火电缆第四实施例的截面结构示意
图 13为本发明耐火电缆第五实施例的截面结构示意
图 14为本发明耐火电缆第六实施例的截面结构示意
图 15是密集型绝缘母线槽第一实施例的截面结构示
图 16是密集型绝缘母线槽第二实施例的截面结构示
图 17是密集型绝缘母线槽第三实施例的截面结构示
图 18是密集型绝缘母线槽第四实施例的截面结构示
图 19是密集型绝缘母线槽第五实施例的截面结构示
具体实施方式
为详细说明本发明的技术内容、 构造特征、 所实现目的及效 果, 以下结合实施方式并配合附图详予说明。
请参阅图 1, 一种防火结构, 包括吸热层 1 10、 隔热层 120和 包覆层 130。 吸热层 1 10、 隔热层 120设置于包覆层 130意意意意意图图图图图内。 吸热 图图图图图 层 1 10内填充有无机吸热材料, 无机吸热材料为在受热时能够吸热 并且能够释放出水蒸气的无机材料。
优选地, 所述无机吸热材料为氢氧化镁、 氢氧化铝、 水合硫酸 铝钾、 水合硫酸钙中的一种或多种。 无机吸热材料不限于上述列举 的几种, 只要是加热后能够吸热并且能够释放水蒸气的无机材料都 可以。 优选地, 所述无机吸热材料通过耐火纤维固定。
隔热层 120主要起到耐火、隔热作用。优选地, 所述隔热层 120 为陶瓷化硅橡胶层, 更具体来说, 可为陶瓷化硅橡胶发泡保温层。 陶瓷化硅橡胶层可由硅橡胶、 二氧化硅、 硅油、 瓷化粉与发泡剂发 泡后形成,即主要用陶瓷化防火耐火硅橡胶作为主要基材,其在 350 °C温度以上可以转变为陶瓷状坚硬外壳, 具备阻燃、 无卤、 无毒、 低烟、 隔热等特点。 这进一歩增加了防火结构的耐火效果。
隔热层 120也可以含有聚苯泡沬、 酚醛泡沬、 聚氨酯、 岩棉、 矿棉、 玻璃棉、 防火棉和陶瓷纤维中的一种或若干种材料的组合。 包覆层 130主要起到包覆吸热层、 隔热层的作用, 包覆层优选 金属层, 如铝合金层。 当然, 包覆层还可以根据需要具有其他功能, 例如起骨架支撑作用。
防火结构具有吸热层 1 10和隔热层 120, 吸热层 1 10 内填充有 无机吸热材料, 该无机吸热材料在受热到一定程度时能够释放出水 蒸汽, 在无机吸热材料释放水蒸汽的过程中吸热, 这个吸热过程本 身能够起到降温作用, 而且水蒸汽挥发能够源源不断地带走热量, 使温度降低, 这能提高耐火性能, 减少火灾发生时对具有此防火结 构的物件或设备的损毁, 保障人们生命财产安全。 隔热层起到隔热 耐火作用, 能够阻止外界热量的传递, 提高防火耐火性能。
优选地, 所述无机吸热材料中添加有陶瓷化硅橡胶, 二者混合 形成强大的耐火效果, 火灾发生时首先无机吸热材料在受热到一定 程度时能够释放出水蒸汽吸热, 这在起初受热到一定程度时无机吸 热材料主要起降温作用, 火焰烧至陶瓷化硅橡胶时, 陶瓷化硅橡胶 烧蚀转化成陶瓷状坚硬外壳, 能够隔绝外界火焰。
请参阅图 2, 第二实施例与第一实施例类似, 其区别在于: 隔 热层 120有两层, 设置于包覆层 130内, 吸热层 1 10分布在两隔热 层 120之间。 这能进一歩加强吸热隔热效果, 提高防火耐火性能。
在另一些实施例中, 吸热层和隔热层可以分别有多层, 可以相 间隔设置。
请参阅图 3 和图 4, 一种防火门, 包括门体面板 210, 门体面 板 210 内填充有无机吸热材料 220, 其中无机吸热材料 220为在受 热时能够吸热并且能够释放出水蒸气的无机材料。
优选地, 所述无机吸热材料为氢氧化镁、 氢氧化铝、 水合硫酸 铝钾、 水合硫酸钙中的一种或多种。 优选地, 所述无机吸热材料通 过耐火纤维固定。 优选地, 所述无机吸热材料内添加有陶瓷化硅橡 胶。
门扇面板可以为钢质门扇面板或铝合金门扇面板。
请参阅图 4, 第二实施例与第一实施例类似, 其区别在于: 门 扇面板 210 内进一歩设置有陶瓷化硅橡胶层 230, 所述无机吸热材 料 220填充于陶瓷化硅橡胶层 230之间。 陶瓷化硅橡胶层 230增加 了防火门的耐火效果。 陶瓷化硅橡胶层 230优选陶瓷化硅橡胶发泡 保温层,进一歩增强防火门的隔热效果。当然, 陶瓷化硅橡胶层 230 还可以用防火棉层代替。 请参阅图 5, 一种防火油箱, 包括箱体 3 10和盖 (图中未示)。 箱体 3 10 的内部形成有一个上部开口的油腔 (图中未示)。 盖用于 打开或关闭箱体 3 10的开口 3 1 1。
请参阅图 6, 箱体 3 10的主体层 3 12外包覆有由无机吸热材料 层 321、 耐火层 322 形成的防火隔热组 320。 无机吸热材料层 321 的无机吸热材料为在受热时能够吸热并且能够释放出水蒸气的无 机材料。
与箱体类同, 盖体外依序设有至少一由无机吸热材料层、 耐火 层形成的防火隔热组。
优选地, 所述无机吸热材料为氢氧化镁、 氢氧化铝、 水合硫酸 铝钾、 水合硫酸钙中的一种或多种。 优选地, 所述无机吸热材料通 过耐火纤维固定。 优选地, 所述无机吸热材料内添加有陶瓷化硅橡 胶。
优选地, 所述耐火层为陶瓷化硅橡胶层, 尤其是陶瓷化硅橡胶 发泡保温层, 也可以为防火棉或云母层等其他能够起到耐火作用的 材料层。 在外界发生火灾时, 亦会因陶瓷化硅橡胶层的阻燃耐火或 烧蚀形成保护壳而将火源阻挡在箱体外, 避免箱体着火造成火灾的 蔓延。
为加强油箱的防火耐火效果, 箱体 3 10和盖的防火隔热组可以 有层叠的多组。
请参阅图 7, 一种防火保险柜, 包括柜体 410和柜门 420。 柜 体 410 的内部形成有一个开口 41 1 的容纳空间 (图中未示)。 柜门 420用于打开或关闭柜体 410的开口 41 1。
请参阅图 8, 柜体 410 由内到外依序设有主内层 412和由无机 吸热材料层 413、 耐火层 414形成的防火隔热组, 其中无机吸热材 料层 413邻接主内层 412。 无机吸热材料层 413 的无机吸热材料为 在受热时能够吸热并且能够释放出水蒸气的无机材料。
与柜体类同, 柜门 420由内到外依序设有主内层 422和由无机 吸热材料层 423、 耐火层 424形成的防火隔热组。
优选地, 所述无机吸热材料为氢氧化镁、 氢氧化铝、 水合硫酸 铝钾、 水合硫酸钙中的一种或多种。 优选地, 所述无机吸热材料通 过耐火纤维固定。 优选地, 所述无机吸热材料内添加有陶瓷化硅橡 胶。
优选地, 所述耐火层为陶瓷化硅橡胶层, 尤其是陶瓷化硅橡胶 发泡保温层, 也可以为防火棉或云母层等其他能够起到耐火作用的 材料层。 在外界发生火灾时, 亦会因陶瓷化硅橡胶层的阻燃耐火或 烧蚀形成保护壳而将火源阻挡在柜体外, 避免柜体着火造成火灾的 蔓延。
优选地, 所述主内层为金属材质内层, 优选钢、 铁或铜材质主 内层。 当然, 主内层也可水泥或石材制成。
为加强保险柜的防火耐火效果, 柜体 410和柜门 420的防火隔 热组可以有层叠的多组。
请参阅图 9, 一种耐火电缆, 包括若干缆芯 5 10。 该等缆芯 5 10 之间设置有填充层 520, 并外加护层 530, 护层 530外依次设置有 内护套 540、 编织层 550和外护套 560。 填充层 520 内填充有无机 吸热材料 521, 无机吸热材料 521 为在受热时能够吸热并且能够释 放出水蒸气的无机材料。
缆芯 5 10的具体结构随低压、 中压、 高压、 超高压电缆的要求 而不同, 例如缆芯 510可以包括导体和导体外的绝缘层, 或者缆芯 5 10 包括导体和从内到外包覆导体的内屏蔽、 绝缘层、 外屏蔽和铜 带屏蔽, 或者缆芯 510包括导体和从内到外包覆导体的内屏蔽、 耐 火层、 外屏蔽和铜带屏蔽, 或者缆芯 510包括导体和从内到外包覆 导体的内屏蔽、 耐火层、 绝缘层、 外屏蔽和铜带屏蔽, 或者缆芯 510 包括导体和从内到外包覆导体的内屏蔽、 绝缘层、 耐火层、 外屏蔽 和铜带屏蔽, 当然缆芯 510的结构并不局限这些, 这为现有技术, 不予赘述 o
优选地, 所述无机吸热材料 521为氢氧化镁、 氢氧化铝、 水合 硫酸铝钾、 水合硫酸钙中的一种或多种。 优选地, 所述无机吸热材 料通过耐火纤维如玻璃纤维包在一起固定。 优选地, 所述无机吸热 材料内添加有陶瓷化硅橡胶。
优选地, 所述护层 530为云母带或陶瓷化硅橡胶复合带饶包而 成。 陶瓷化硅橡胶复合带在火灾发生时能够起到耐火效果, 能够被 烧蚀成壳体进一歩阻隔火焰。
请参阅图 10,该实施例与图 9所示实施例区别在于护层 530外 仅有外护套 560。
请参阅图 1 1,该实施例与图 9所示实施例区别在于护层 530与 内护套 540之间还设置有所述无机吸热材料 53 1。
请参阅图 12, 该实施例与图 10所示实施例区别在于护层 530 与外护套 560之间还设置有所述无机吸热材料 53 1。 请参阅图 13,该实施例与图 12所示实施例区别在于填充层 520 内不是填充无机吸热材料。
请参阅图 14,该实施例与图 1 1所示实施例区别在于填充层 520 内不是填充无机吸热材料。
请参阅图 15, 一种密集型绝缘母线槽, 大致呈长方体状, 包括 母排防护壳 610和设置于该母排防护壳 610内的多个母排 620。
母排防护壳 610是密集型绝缘母线槽的防护外壳, 一般为金属 壳体, 例如钢或铁质壳体, 具有保护母线槽内部部件的作用。 母排 防护壳 610可由四块金属板 61 1 围成, 两相邻金属板通过螺栓 612 固定在一起, 当然也可以用螺丝固定。
母排 620 包括母排导体 621 和包覆该母排导体 621 的绝缘层 622。 绝缘层 622对母排导体 621 主要起绝缘作用, 可为热縮管, 优选还能够耐火的材料, 例如陶瓷化硅橡胶复合带, 耐火云母带或 者两者的混合。 陶瓷化硅橡胶复合带能够起到阻燃耐火作用, 阻燃 耐火性能优异, 即使超过耐火极限燃烧仍能烧蚀形成坚硬的保护 壳, 保护壳能够防止火焰进一歩向母排导体 621延伸, 从而保护位 于陶瓷化硅橡胶复合带内的母排导体 621 不受损坏, 确保母排 620 的正常使用功能, 提高了产品的安全性。
母排防护壳 610与多个母排 620之间形成有填充槽 640, 填充 槽 640内填充有耐火料。 耐火料优选为耐火棉或陶瓷化硅橡胶。
耐火棉能够起到耐火作用, 而且其不同于其它耐火物质的作用 是具有散热作用, 能够确保火灾过程中母线槽的温度能够及时释放 出去, 使得在火灾中母线槽内部能够保持畅通。 耐火棉一般选耐高 温在 1000 °C以上的耐火棉。 耐火棉具有热胀冷縮能力, 绝缘层 622 确保保证绝缘性能, 确保母排 620在火灾过程中的正常运行。
陶瓷化硅橡胶能够起到阻燃耐火作用, 阻燃耐火性能优异, 即 使超过耐火极限燃烧仍能烧蚀形成坚硬的保护壳, 保护壳能够防 止火焰进一歩向母排导体延伸, 从而保护位于陶瓷化硅橡胶绝缘 层内的母排导体不受损坏, 确保母排的正常使用功能, 提高了产品 的安全性。
密集型绝缘母线槽内设有无机吸热材料 630,无机吸热材料 630 是指在受热时能够吸热并且能够释放出水蒸气的无机材料。 无机吸 热材料优选氢氧化镁、 氢氧化铝、 水合硫酸铝钾、 水合硫酸钙中的 一种或多种。 优选地, 所述无机吸热材料 630通过耐火纤维固定, 耐火纤维优选玻璃纤维。 优选地, 所述无机吸热材料内添加有陶瓷 化硅橡胶。
在本实施例中, 多个母排 620间隔设置, 相邻母排 620之间设 有无机吸热材料 630。
为了进一歩提高其耐火效果, 母排防护壳 610外可设有发泡防 火涂料层 (图中未示)。
密集型绝缘母线槽内设有无机吸热材料 630, 该无机吸热材料 630在受热到一定程度时能够释放出水蒸汽, 在无机吸热材料释放 水蒸汽的过程中有吸热过程, 这个吸热过程本身能够起到降温作 用, 而且水蒸汽挥发能够源源不断地带走热量, 使母线槽的温度降 低, 这能提高母线槽的耐火性能, 提高密集型绝缘母线槽在火灾中 的持续供电能力, 延长密集型绝缘母线槽在火灾中持续供电时间。
请参阅图 16, 本实施例与图 15所示实施例区别在于: 相邻母 排 620不是间隔设置, 而是彼此邻接设置。 无机吸热材料 630包覆 于并排设置的母排 620外。 无机材料这种整体包覆于多个母排 620 外围的方式, 相对于实施例 1 中间隔设置于相邻母排之间的方式, 可在火灾发生时, 更加全面地保护母排, 保护各个母排不受火灾高 温的影响。
请参阅图 17, 本实施例与图 15所示实施例区别在于: 密集型 绝缘母线槽进一歩在多个母排 620外包覆有无机吸热材料 630。 这 种在相邻母排之间和在多个母排 620 外部同时设置无机材料的方 式, 可进行双重保护, 可更好地保护各个母排。
请参阅图 18, 本实施例与图 15所示实施例区别在于: 密集型 绝缘母线槽还包括一金属壳 650,金属壳 650设置在母排防护壳 610 内部, 多个母排 620设置在金属壳 650内。 金属壳 650外包覆有无 机吸热材料 630。 金属壳 650与多个母排 620之间形成有第一填充 槽 651, 无机吸热材料 630与母排防护壳 610之间形成有第二填充 槽 652。 第一填充槽 651、 第二填充槽 652分别填充有耐火料。
金属壳 650主要发挥对外层包覆的无机吸热材料的固定支撑作 用, 金属壳 650可由四块金属板 653围成, 每一金属板 653的两自 由端均向内垂直弯折形成包覆部 654。
需说明的是, 图 18所示实施例仍然可以按照图 15、 图 16所示 实施例中的方式设置无机吸热材料进行保护。 例如, 使相邻母排间 隔设置, 相邻母排之间设置所述无机吸热材料。 也可使相邻母排邻 接设置, 多个母排外围包覆无机吸热材料。 请参阅图 19, 本实施例与图 18所示实施例类似, 其区别在于: 相邻母排 620间隔设置,相邻母排 620之间设有无机吸热材料 630, 同时多个母排外包覆有无机吸热材料 630。 也即本实施例按照图 18 所示实施例中的方式设置无机吸热材料进行保护, 母排有双重无机 吸热材料的保护。 再加上金属壳 650外围的无机吸热材料, 即有三 重的无机吸热材料进行保护, 可为母线槽中的母排提供更多保护。
另一些实施例是关于一种轮船, 包括船体, 所述船体包括前述 的一种防火结构。
另一些实施例是关于一种坦克, 包括坦克壳体, 所述坦克壳体 包括前述的一种防火结构。
另一些实施例是关于一种防火结构的制作方法, 其包括形成至 少一层吸热层, 所述吸热层包含在受热时能够吸热并且能够释放出 水蒸气的无机吸热材料。
所述方法还可进一歩包括形成至少一层隔热层, 所述隔热层与 所述无机吸热材料层叠在一起或是一者将另一者包覆。
所述方法还可进一歩包括形成将所述吸热层和所述隔热层包 覆的包覆层。
另一些实施例是关于前述的防火门、 防火油箱、 防火保险柜、 耐火电缆、 密集型绝缘母线槽的制作方法, 其中使用上述的防火结 构制作方法。
本发明并不局限于上述具体实施方式, 熟悉本技术领域的人 员还可据此做出多种变化, 但任何与本发明等同或相类似的变化 都应涵盖在本发明权利要求的范围内。

Claims

权 利 要 求 书
1 .一种防火结构, 其特征在于: 包括至少一层吸热层, 所述吸 热层包含在受热时能够吸热并且能够释放出水蒸气的无机吸热材 料。
2.根据权利要求 1所述的防火结构, 其特征在于: 所述无机吸 热材料为氢氧化镁、 氢氧化铝、 水合硫酸铝钾、 水合硫酸钙中的一 种或多种的组合。
3.根据权利要求 1所述的防火结构, 其特征在于: 所述无机吸 热材料通过耐火纤维固定。
4.根据权利要求 3所述的防火结构, 其特征在于: 所述耐火纤 维为玻璃纤维。
5.根据权利要求 1所述的防火结构, 其特征在于: 所述无机吸 热材料中添加有陶瓷化硅橡胶。
6.根据权利要求 1 -4任一项所述的防火结构, 其特征在于: 还 包括至少一层隔热层。
7.根据权利要求 6所述的防火结构, 其特征在于: 所述隔热层 含有陶瓷化硅橡胶、 陶瓷化硅橡胶发泡材料、 聚苯泡沬、 酚醛泡沬、 聚氨酯、 岩棉、 矿棉、 玻璃棉、 防火棉、 云母和陶瓷纤维中的一种 或多种的组合。
8.根据权利要求 6或 7所述的防火结构, 其特征在于: 所述隔 热层和所述吸热层中至少一者有两层且所述隔热层和所述吸热层 交替设置。
9. 根据权利要求 6-8任一项所述的防火结构, 其特征在于: 还 包括包覆所述隔热层和所述吸热层的包覆层。
10.根据权利要求 9所述的防火结构, 其特征在于: 所述包覆层 为金属层。
1 1. 一种防火门, 包括门体, 其特征在于: 所述门体包括根据 权利要求 1至 10任一项所述的防火结构。
12. 一种防火门, 其特征在于: 具有根据权利要求 9或 10所述 的防火结构, 其中所述包覆层为所述防火门的门体面板。
13.根据权利要求 12所述的防火门, 其特征在于: 所述面板为 钢质板或铝合金板。
14. 一种防火油箱, 包括箱体和盖, 其特征在于: 所述箱体和 所述盖中至少一者包括根据权利要求 1 至 10任一项所述的防火结
15.—种防火保险柜, 包括柜体和柜门, 其特征在于: 所述柜体 和所述柜门中至少一者包括根据权利要求 1 至 10任一项所述的防 火结构。
16. 一种耐火电缆, 包括缆芯, 其特征在于: 所述缆芯上包覆 有根据权利要求 9或 10所述的防火结构。
17. 根据权利要求 16所述的耐火电缆, 其特征在于: 所述防火 结构中的所述吸热层直接包覆所述缆芯, 所述隔热层为包覆在所述 吸热层上的护层, 所述包覆层作为护套包覆在所述护层上。
18. 根据权利要求 16所述的耐火电缆, 其特征在于: 所述防火 结构中的所述隔热层为包覆所述缆芯的护层, 所述吸热层包覆在所 述护层上, 所述包覆层作为护套包覆在所述吸热层上。
19. 根据权利要求 18所述的耐火电缆, 其特征在于: 还包括直 接包覆所述缆芯的另一层所述吸热层。
20. 根据权利要求 17或 19所述的耐火电缆, 其特征在于: 包 括多条所述缆芯, 直接包覆所述缆芯的所述吸热层填充于多条所述 缆芯之间。
21. 根据权利要求 17至 20任一项所述的耐火电缆, 其特征在 于: 所述护套由内至外依次包括内护套、 编织层和外护套。
22. 一种密集型绝缘母线槽, 包括母排防护壳和并排设置于所 述母排防护壳内的多个母排, 每个所述母排包括导体和包覆所述导 体的绝缘层, 所述母排防护壳与所述多个母排之间填充有耐火料, 其特征在于: 所述母线槽具有根据权利要求 6至 8任一项所述的防 火结构, 所述防火结构中的所述隔热层为所述耐火料, 所述吸热层 由所述耐火料包围。
23. 根据权利要求 22所述的密集型绝缘母线槽, 其特征在于: 所述多个母排间隔设置, 相邻母排之间设置有所述吸热层。
24. 根据权利要求 22或 23所述的密集型绝缘母线槽, 其特征 在于: 所述多个母排外包覆有所述吸热层。
25.根据权利要求 22至 24任一项所述的密集型绝缘母线槽,其 特征在于: 所述密集型绝缘母线槽还包括一金属壳, 所述金属壳设 置在所述母排防护壳内部, 所述多个母排设置在所述金属壳内; 所 述金属壳外包覆有所述吸热层, 所述金属壳与所述多个母排之间形 成有第一填充槽, 所述无机吸热材料与所述母排防护壳之间形成有 第二填充槽,所述第一填充槽、第二填充槽分别填充有所述耐火料。
26. 根据权利要求 22至 25任一项所述的密集型绝缘母线槽, 其特征在于: 所述母排防护壳外设有防火涂料层。
27.—种轮船, 包括船体, 其特征在于: 所述船体包括权利要求 1至 10任一项所述的防火结构。
28.—种坦克, 包括坦克壳体, 其特征在于: 所述坦克壳体包括 权利要求 1至 10任一项所述的防火结构。
29. 一种防火结构的制作方法, 其特征在于: 包括形成至少一 层吸热层, 所述吸热层包含在受热时能够吸热并且能够释放出水蒸 气的无机吸热材料。
30. 根据权利要求 29 所述的防火结构的制作方法, 其特征在 于: 还包括形成至少一层隔热层, 所述隔热层与所述无机吸热材料 层叠在一起或是一者将另一者包覆。
3 1. 根据权利要求 30 所述的防火结构的制作方法, 其特征在 于: 还包括形成将所述吸热层和所述隔热层包覆的包覆层。
PCT/CN2014/071705 2013-09-18 2014-01-28 防火结构及其制作方法 WO2015039411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310426915.4A CN103474929B (zh) 2013-09-18 2013-09-18 密集型绝缘母线槽
CN201310426915.4 2013-09-18

Publications (1)

Publication Number Publication Date
WO2015039411A1 true WO2015039411A1 (zh) 2015-03-26

Family

ID=49799674

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/091261 WO2015039401A1 (zh) 2013-09-18 2013-12-31 密集型绝缘母线槽
PCT/CN2014/071705 WO2015039411A1 (zh) 2013-09-18 2014-01-28 防火结构及其制作方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091261 WO2015039401A1 (zh) 2013-09-18 2013-12-31 密集型绝缘母线槽

Country Status (2)

Country Link
CN (1) CN103474929B (zh)
WO (2) WO2015039401A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474929B (zh) * 2013-09-18 2017-06-27 深圳市沃尔核材股份有限公司 密集型绝缘母线槽
CN103758434A (zh) * 2014-01-22 2014-04-30 深圳市沃尔核材股份有限公司 防火保险柜
CN103762031A (zh) * 2014-01-22 2014-04-30 深圳市沃尔核材股份有限公司 耐火电缆
CN103762032A (zh) * 2014-01-22 2014-04-30 深圳市沃尔核材股份有限公司 耐火电缆
CN103754464A (zh) * 2014-01-22 2014-04-30 深圳市沃尔核材股份有限公司 防火油箱
CN104242206A (zh) * 2014-09-30 2014-12-24 江苏华泽机电设备有限公司 散热母线槽
CN104218511B (zh) * 2014-09-30 2018-07-10 深圳市沃尔核材股份有限公司 密集型绝缘母线槽
CN105186419A (zh) * 2015-09-22 2015-12-23 镇江加勒母线有限公司 防水耐火多功能母线槽
CN105186420A (zh) * 2015-11-11 2015-12-23 江苏银佳企业集团有限公司 一种阻燃式母线槽
RU2634919C1 (ru) * 2016-08-11 2017-11-08 Общество с ограниченной ответственностью "Русская Техническая Компания - ЭЛЕКТРО-М" (ООО "РТК-ЭЛЕКТРО-М") Токопровод комплектный литой (варианты)
CN108997730A (zh) * 2018-09-05 2018-12-14 镇江朝阳机电科技有限公司 一种塑料线槽及制造工艺
CN111276894B (zh) * 2020-03-18 2022-04-05 南通苏源恒炫电气有限公司 一种固体绝缘环网柜用分层式抗老化绝缘罩
CN112003215B (zh) * 2020-08-26 2021-09-21 江苏中顺电气有限公司 一种用于安全通道供电的轻质化母线槽
RU2755923C1 (ru) * 2021-03-31 2021-09-23 Общество с ограниченной ответственностью "ПСК ПЛАСТМЕТАЛЛ" (ООО "ПСК Пластметалл") Способ изготовления литой изоляции токопроводов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741377A (zh) * 2009-11-13 2012-10-17 尤尼弗瑞克斯I有限责任公司 多层防火材料
CN103208764A (zh) * 2013-03-15 2013-07-17 深圳市沃尔核材股份有限公司 一种密集型绝缘母线槽及其生产方法
CN103474929A (zh) * 2013-09-18 2013-12-25 深圳市沃尔核材股份有限公司 密集型绝缘母线槽

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146034A (ja) * 1991-09-27 1993-06-11 Hitachi Cable Ltd 耐火絶縁バスダクトの絶縁バスバーのエツジ絶縁方法
CN2190817Y (zh) * 1994-04-19 1995-03-01 邱震宇 耐火绝缘式密集母线
CN200979814Y (zh) * 2006-11-30 2007-11-21 无锡市沪安电线电缆有限公司 中高压耐火电缆
KR100921893B1 (ko) * 2008-01-23 2009-10-13 엘에스전선 주식회사 방열성이 향상된 전력 버스 덕트
CN201436752U (zh) * 2009-05-26 2010-04-07 江苏省电力公司昆山市供电公司 绝缘耐火母线槽
CN102604499A (zh) * 2012-03-13 2012-07-25 三棵树涂料股份有限公司 结晶水合物隔热防火涂料及其制备方法
CN202616715U (zh) * 2012-05-30 2012-12-19 云南联方电气有限公司 固体绝缘母线槽
CN102942891B (zh) * 2012-11-29 2014-04-23 宜兴市江南药用化工厂 母线槽用环氧灌封树脂及其制备方法和应用
CN103137251A (zh) * 2013-03-15 2013-06-05 深圳市沃尔核材股份有限公司 一种母排及包括该等母排的密集型绝缘母线槽
CN203150211U (zh) * 2013-03-15 2013-08-21 深圳市沃尔核材股份有限公司 一种母排及包括该等母排的密集型绝缘母线槽
CN203607794U (zh) * 2013-09-18 2014-05-21 深圳市沃尔核材股份有限公司 密集型绝缘母线槽

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741377A (zh) * 2009-11-13 2012-10-17 尤尼弗瑞克斯I有限责任公司 多层防火材料
CN103208764A (zh) * 2013-03-15 2013-07-17 深圳市沃尔核材股份有限公司 一种密集型绝缘母线槽及其生产方法
CN103474929A (zh) * 2013-09-18 2013-12-25 深圳市沃尔核材股份有限公司 密集型绝缘母线槽

Also Published As

Publication number Publication date
CN103474929A (zh) 2013-12-25
WO2015039401A1 (zh) 2015-03-26
CN103474929B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2015039411A1 (zh) 防火结构及其制作方法
CN207251134U (zh) 密集型绝缘母线槽
CN108922672B (zh) 具有梯级释水降温结构的防火电缆
CN103065718B (zh) 一种耐火电力电缆
CN103646712B (zh) 一种阻燃复合防火电缆
CN102360617A (zh) 一种交联聚乙烯绝缘耐火阻燃电力电缆
CN205004704U (zh) 密集型绝缘母线槽
CN210091771U (zh) 耐火阻燃无卤交联变频电缆
CN208538511U (zh) 一种防火电缆
CN204760074U (zh) 云母绝缘连锁铠装金属套保护超柔性防火电缆
CN104466849A (zh) 一种新型复合材料绝缘铠体密集型耐火母线槽
CN104715822B (zh) 金属管套无机矿物绝缘防火电缆及其加工方法
CN208077662U (zh) 一种挤包绝缘耐火电力电缆
CN103646721B (zh) 一种柔性矿物绝缘铝芯防火电缆
CN105931741A (zh) 隔热型云母绝缘金属保护耐火电缆
CN213424679U (zh) 二氧化硅气凝胶隔热耐火层防火电缆
CN205692611U (zh) 一种可瓷化纳米复合绝缘材料铝合金防火电缆
CN209980842U (zh) 矿物质防鼠防蚁控制动力环保电缆
CN207663817U (zh) 一种具备优异阻燃性能的电力电缆
CN111063484A (zh) 柔性防潮不燃电缆及其制造方法
CN104218511B (zh) 密集型绝缘母线槽
CN206806090U (zh) 耐火电力电缆
CN211555553U (zh) 一种经济适用型中压耐火电力电缆
CN206134302U (zh) 一种环保电缆
CN208722619U (zh) 一种带多重防火层的防火电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A 20-07-2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14845471

Country of ref document: EP

Kind code of ref document: A1