WO2015039349A1 - 大口径均匀放大激光模块 - Google Patents

大口径均匀放大激光模块 Download PDF

Info

Publication number
WO2015039349A1
WO2015039349A1 PCT/CN2013/084003 CN2013084003W WO2015039349A1 WO 2015039349 A1 WO2015039349 A1 WO 2015039349A1 CN 2013084003 W CN2013084003 W CN 2013084003W WO 2015039349 A1 WO2015039349 A1 WO 2015039349A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
bar
pump
glass sleeve
laser module
Prior art date
Application number
PCT/CN2013/084003
Other languages
English (en)
French (fr)
Inventor
樊仲维
赵天卓
林蔚然
黄科
聂树真
余锦
Original Assignee
中国科学院光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电研究院 filed Critical 中国科学院光电研究院
Priority to PCT/CN2013/084003 priority Critical patent/WO2015039349A1/zh
Priority to JP2016516932A priority patent/JP6173572B2/ja
Priority to DE112013007453.2T priority patent/DE112013007453T5/de
Publication of WO2015039349A1 publication Critical patent/WO2015039349A1/zh
Priority to US15/076,902 priority patent/US9559481B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments

Definitions

  • the present invention relates to the field of laser devices, and more particularly to a laser amplifier module having a large aperture and uniform amplification.
  • polycrystalline aluminum-yttrium garnet, YAG has the chemical formula YaAlsOn, or is written as 3Y 2 (V5A1 2 0 3 , where Y 2 0 3 is 57.06 wt:%, and AI 2 0 5 is 42.94 wt%, which is a comprehensive property. , including optical, mechanical and thermal laser substrates. In medium and small power laser devices, the practical quantity of 4 y aluminum garnet crystals (Nd:YAG) made of yttrium aluminum garnet is far more than other laser working materials.
  • the crystal rod typically crystal rod manufacturing method.
  • the crystal rod The length determines the difference in doping concentration on the crystal rod.
  • the length of the crystal rod with a diameter of 8 mm or more is usually greater than 100 mm.
  • the laser amplifying module usually consists of a bar, a cooling heat sink and a cooling water pipe, and is connected by a plurality of pump blocks to form a plate-shaped pump bar structure, and a plurality of plates in the laser amplifying module.
  • the pump bar strip structure is arranged around the crystal rod.
  • the bar on each pump bar structure is the same distance and fixed from the crystal rod, and the doping concentration is proportional to the absorption coefficient of the crystal rod to the pump light.
  • the body is on the body.
  • the doping concentration gradient is too high, the absorption coefficient at both ends of the crystal rod is inconsistent with the absorption coefficient in the middle, and the difference is large, so that the overall pump on the crystal rod is not uniformly hooked, resulting in a final gain output unevenness
  • the object of the present invention is to provide a large-diameter uniform.
  • Amplifying laser module to solve the above problems.
  • the large-diameter large-diameter is uniformly enlarged:
  • the calender module includes: a ring-shaped pump bar structure, an electric control block, a telescopic screw, a crystal rod, a glass sleeve, and a structural member;
  • the pump bar-strip structure includes a plurality of pump blocks, each of the pump blocks being composed of a bar strip, a cooling heat sink and a cooling water pipe; the bar bar is connected to the cooling heat sink, the cooling heat
  • the inside of the sink is provided with a cooling water passage; two of the cooling heat sinks are respectively provided with an outlet pipe and an inlet pipe communicating with the cooling water passage; from the cooling heat sink provided with the inlet pipe Providing the cold but heat sink of the outlet pipe, wherein the plurality of cooling water passages are connected in series through a plurality of the cooling water pipes to form
  • a plurality of spring-pump blocks composed of bar strips, cold p heat sinks and cold p7j tubes are connected into a ring-shaped pump-pu bar Strip structure, a plurality of annular pump bar strip structures having the same or different diameters, sleeved on a glass sleeve loaded with a crystal rod, a glass sleeve and a bar strip in each annular pump bar strip structure There is an adjustment gap between them.
  • the electric control block connected to the cooling heat sink, and a telescopic screw is arranged on the electric control block, one end of the telescopic screw is connected with the electric air control rotary i, the other end and the cooling heat sink; 3 ⁇ 4 connection, the electric control block
  • the rod is fixed by a fixed casing, and the telescopic screw is rotated by an externally supplied electric signal to adjust the distance of the bar to the crystal rod. That is, it is possible to adjust and control the large separation between the bar strip and the crystal rod through the electric control block to compensate for the defects generated in the growth of the crystal, and form a small relationship between a pump bar structure and a corresponding crystal rod.
  • the uniform pumping of the range achieves a uniform gain output of the laser module.
  • the distance between the bar to the crystal rod and the uniformity of the pump are known, for example, for a diameter of 15 mm.
  • FIG. 1 is an energy density distribution diagram of a cross section of a crystal rod provided by the present invention
  • FIG. 2 is a schematic diagram of a pump ba ⁇ strip structure composed of 8 pump blocks. • Schematic diagram of the combined structure of the tube and the composite structure
  • FIG. 5 is a schematic structural view of a plurality of pump bar strips having different radii on a glass sleeve with a crystal rod;
  • FIG. 1 Large-diameter uniform amplification laser module as shown in Figure 2, Figure 7, including: annular pump bajr strip structure, electric 4 hollow block 9, telescopic screw 10, crystal 4, glass sleeve 2 and
  • the pump bar-strip structure comprises a plurality of pump blocks, each of the pump blocks being composed of a bar strip 4, a cooling heat sink 5 and a cooling water pipe 6; the _bar strip 4 and the _
  • the cooling heat sink 5 is connected, and the inside of the cooling heat: 5 is provided with a cold #7 channel; two of the cooling heat sinks 5 are respectively provided with an outlet pipe 8 communicating with the cooling water passage and - An inlet pipe 7; from the cooling heat sink 5 having the i water pipe '7 to the cooling heat sink 5 provided with the water outlet pipe 8, a plurality of the cooling water passages passing through the plurality of cooling water pipes 6 Connecting in series to form a ring shape; the bar strip 4 is adjacent to a central axis of the annular pump bar strip structure; the crystal rod
  • a plurality of pump blocks formed by the bar strip 4, the cooling heat sink 5 and the cooling water pipe 6 are connected into a ring-shaped pump bar strip structure, and a plurality of rings are formed.
  • the pump bar strips have the same or different diameters, and are placed on the glass sleeve 2 loaded with the crystal rods, and between the glass tubes 2 and the bar strips 4 in each annular pump bar structure. Adjust the gap.
  • an electric control block 9 is connected to the cooling heat sink 5, and a telescopic screw 10 is arranged on the electric control block 9.
  • the electric control block 9 is fixed by the fixed casing 11, and the telescopic screw 10 is rotated by an electric signal supplied from the outside to adjust the distance of the bar bar 4 to the crystal rod. That is, the electric control block 9 can adjust and control the if macro separation between the bar strip 4 and the crystal rod to form a defect in the growth process of the crystal, forming a A small range of uniform pumping between the pump bar structure and its corresponding segment of the crystal rod, thereby achieving a uniform gain output of the laser module.
  • the invention realizes the uniform pumping in a certain absorption coefficient range by controlling the distance between the bar strip 4 and the crystal rod, and compensates for the defects existing in the growth process of the crystal rod.
  • the electric control block 9 fixed by the fixed casing 11 is used to adjust the distance between the bar bar 4 and the crystal rod, and the uniformity of the injection pump power is precisely controlled to achieve precise control of the full range of pumping properties of the crystal rod, and further Achieve the final uniform gain amplification. Therefore, in the large-diameter uniform amplification laser module provided by the present invention, the crystal rod with a relatively large diameter and a long length can be used for laser amplification, and the purpose of uniform gain output can be achieved.
  • a large-diameter uniform amplification laser module includes: a ring-shaped pump bar structure, an electric control block 9, a telescopic screw 10, a crystal rod, a glass sleeve 2, and a structural member;
  • the pump bar-strip structure comprises a plurality of pump blocks, each of the pump blocks being composed of a bar strip 4, a cooling heat sink 5 and a cooling water pipe 6; the _ bar strip 4 and the _ cooling heat sink 5, the inside of the cooling heat sink 5 is provided with a cooling water passage; two of the cooling heat sinks 5 are respectively provided with an outlet pipe 8 and an inlet pipe 7 communicating with the cooling water passage;
  • the cooling heat sink 5 of the water inlet pipe 7 is connected to the cooling heat sink 5 provided with the water outlet pipe 8, and a plurality of the cooling water pipes are sequentially connected in series through a plurality of the cooling water pipes 6 to form a ring.
  • the _ bar strip 4 is adjacent to the central axis of the annular pump bar structure; the crystal rod is disposed in the glass sleeve 2; along the length of the glass sleeve 2 a plurality of the pump bar strips of the same diameter or different rings are sleeved on the glass sleeve 2, and the glass sleeve 2 is fixed by the structural member to the pump by a plurality of rings a hollow portion formed by the bar bar structure, the outer wall of the glass sleeve 2 is left between each of the bar strips 4 in each pump bar strip structure There is an adjustment gap; one end of the telescopic screw 10 is rotatably connected to the electric control block 9, and the other end thereof is connected to the cooling heat sink 5, and the electric control block 9 rotates the telescopic screw by an externally supplied electric signal. 10, adjusting the bar strip 4 to the crystal
  • the large-diameter uniform amplification laser module provided by the invention will be multiple by bar a bar bar structure having a plurality of annular pump bar structures having the same or different diameters, sleeved on a glass sleeve 2 loaded with a crystal rod, a glass sleeve 2 and each annular pump bar structure There is an adjustment gap between the bar bars 4 in the middle.
  • an electric control block 9 is connected to the cooling heat sink 5, and a telescopic screw 10 is arranged on the electric control block 9.
  • One end of the telescopic screw 10 is rotatably connected with the electric control block 9, and the other end is connected with the cooling heat sink 5 , and electric
  • the control block 9 is fixed by the fixed casing 11, and the telescopic screw 10 is rotated by an externally supplied electric signal to adjust the distance of the bar bar 4 to the crystal rod. That is, the distance between the bar strip 4 and the crystal rod can be adjusted and controlled by the electric control block 9 to compensate for the defects generated during the growth of the crystal, forming a small relationship between a pump br strip structure and a corresponding crystal rod.
  • the uniform pumping of the range in turn, achieves a uniform gain output of the laser module.
  • the invention realizes the uniform pumping in a certain absorption coefficient range by controlling the distance of the bar strip 4 to the crystal rod, and compensates for the defects existing in the process of growing the crystal rod.
  • the electric control block 9 fixed by the fixed casing 11 is used to adjust the distance between the bar bar 4 and the crystal rod, and the uniformity of the injection pump power is precisely controlled to achieve precise control of the full range of pumping properties of the crystal rod, and further Achieve the final uniform gain amplification. Therefore, in the large-diameter uniform amplification laser module provided by the present invention, the crystal rod with a relatively large diameter and a long length can be used for laser amplification, and the purpose of uniform gain output can be achieved.
  • the electrical signal loaded onto the electric control block 9 may be a curve fitted by the measured spot inside the crystal cross section, so that the adjustment of the pump uniformity of the module can be realized by an external electrical signal. It can also be regulated by direct voltage.
  • the glass sleeve 2 is cylindrical.
  • the inner wall of the glass sleeve 2 is provided with a plurality of fixing protrusions 3 for fixing the crystal rods, so that a passage for the cooling water to pass between the crystal rods and the inner wall of the glass sleeve 2 is left.
  • the glass sleeve 2 may be filled with cooling water. The cooling water flows along the passage between the glass sleeve 2 and the crystal rod to remove the heat generated therein.
  • the inner wall of the glass sleeve 2 is provided with a plurality of sets of the fixing protrusions 3, and each set of the fixing protrusions 3 is distributed on the inner wall of the glass sleeve 2 along the radial direction of the glass sleeve.
  • each set of fixing protrusions 3 may be provided in three, and the three fixing protrusions 3 are evenly distributed along the cross section of the glass sleeve 2 On its inner wall. At least two sets of the fixing protrusions 3 are provided on the inner wall of each of the glass sleeves 2.
  • the fixing protrusion 3 may be fixedly connected to the inner wall of the glass sleeve 2, and then the fixing protrusion 3 and the glass rod may be fixedly connected.
  • the crystal rod is a crystal long rod composed of a plurality of crystal short rods 1 connected to each other; the plurality of crystal short rods 1 are all formed on the crystal blank in a direction perpendicular to the growth direction of the crystal blank, JL force p.
  • the crystal rod used in the prior art is a crystal long rod processed along the growth direction of the crystal blank, but since the crystal blank is grown, the doping concentration at both ends gradually increases as the length increases.
  • the doping concentration at both ends of the crystal rod is high.
  • the crystal rod can be processed on the crystal blank in a direction perpendicular to its growth direction, that is, along the crystal blank The cross-sectional direction of the processing of the crystal.
  • Degree. Degree. Small will be processed into a number of crystals, short
  • the ends of the rod 1 are connected to each other to form a long rod of crystal.
  • a collecting system for the spot output signal to the large-diameter uniform-enhanced laser module, and electrically connect the collecting system and the crystal rod.
  • an acquisition system for the spot signal output from the crystal rod can collect the energy signal on the cross section of the crystal rod in real time, and can be finally presented on the test screen.
  • the electric control block 9 is passed through the energy density distribution map on the cross section of the crystal rod which is displayed on the screen in real time.
  • the auger screw further adjusts the distance between the crystal rod and the bar strip 4, thereby adjusting the state in which the distance between the crystal rod and the bar strip 4 is optimized.
  • the amplification module can not only form uniformity to the fixed input signal light.
  • the amplification within 20% can also adapt to the change of the energy density of the amplified beam itself, ensuring uniformity of uniform output of the large beam under different conditions of injected signal light.
  • Experimental Example 1 A large-diameter uniform-hook laser module according to the present invention was fabricated with reference to FIG. 2 and FIG. First, a composite structure crystal rod of the module needs to be fabricated.
  • the composite structure crystal rod adopts eight crystal-short rods of length 90mm and diameter 10mm which are processed from the yttrium aluminum garnet rod grown by the pulling method along the X-axis direction;
  • the doping concentration is similar to that of the crystal short rod, the first one is doped with a concentration of 0.6% at one end and 0, 74% at the other end; the second doping concentration is 0.63% at one end, and another -3 ⁇ 4 0,79%.
  • Each pump bar structure consists of 8 pump blocks, with 8 sets of pump bar structures arranged around each crystal stub.
  • the first group of pump bar strip structures are divided along the diameter of the first crystal short rod: 14.0mm, 14.6mm, 14,6mrri, 15,9mm, 15.9mm, 17, lrnm, 17.1 mm, 17.1 Mm;
  • the second group of pump bar strip structure along the second crystal short rod has a diameter of 14.3 mm, 14.9 ⁇ 14.9 mm, 16.3 rnm, 16.3 mm, 18, 0 mrru 18.0 mm, 18.0 mm.
  • the eight pump bar strip structures of each of the above groups are respectively fixedly connected to the respective matched 4 ⁇ crystal short rods, which are staggered and pumped for a section of the crystal short rods.
  • This experiment consists of two sections of crystal short rods, which are arranged in a coaxial arrangement. Each section is coated with an anti-reflection coating of 1064 nm on both sides. This achieves uniform pumping by pump distance adjustment.
  • the outer raft of a composite structure crystal rod composed of two crystal short rods is provided with a glass sleeve for passing cooling water. The outer diameter of the glass sleeve is 16 mm and the inner diameter is 14 mm.
  • the inner crucible includes 4 sets of 3 sets of support protrusions added by sintering.
  • the 12 support protrusions separate the connected crystal long rod from the inner wall of the glass sleeve.
  • the large-diameter uniform amplification laser module according to the present invention can be constructed by fixing the composite structure crystal rod, the glass sleeve, and the pump bar structure of the above structure through structural members, and connecting the cold water passages to the total points.
  • the large-caliber uniform-enhanced laser module provided in this experimental example can achieve an energy density fluctuation of less than 20% in the radial section of the crystal rod, and the existing laser module does not perform the compensation described in this patent, and the energy density fluctuation is usually 100%. the above.
  • Experimental Example 2 A large-diameter uniform-hook laser module according to the present invention was fabricated with reference to Figs.
  • a composite structure crystal rod of the module needs to be fabricated.
  • the obtained six crystal short rods with similar doping concentration are doped at a concentration of 0.5 ⁇ (105%, the other end is 0, 7 ⁇ (). () 5%, and the composite crystal rod is formed by bonding.
  • each pump bar structure is composed of five pump blocks, and three sets of pump bar structures are arranged around each of the crystal short bars.
  • the diameter of the pump bar structure along the row of the crystal short rods are: 12.0 ⁇ , 12.3 mm, 12.6 mm, 13. Lmm. + ⁇ :3 ⁇ 4 4 4, pump bar strips private; K ⁇ is a cycle, 6 cycles of arrangement.
  • the composite structure crystal rod is plated with l() 64 nm antireflection film on both sides.
  • a glass sleeve for passing the cooling water is installed on the outside of the composite structure crystal rod.
  • the glass sleeve has an outer diameter of 19 mm and an inner diameter of 15 mm.
  • a water passage for cooling the crystal rod is formed between the outer wall of the composite structure crystal rod and the inner wall of the glass sleeve.
  • the composite structure crystal rod is fixed by two rubber rings.
  • the large-diameter uniform-hook laser module of the present invention can be constructed by fixing the composite structure crystal rod, the glass sleeve and the pump bar structure of the above structure through structural members, and connecting the cold water passages to the total points. Through the fabrication of the composite structure crystal rod, and applying the composite structure crystal rod in the large-diameter laser method module provided by the invention, the absorption coefficient drift in the crystal rod can be further reduced, and the energy density fluctuation after pumping is less than 8%. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

一种大口径均匀放大激光模块,能够使用直径较大较长的晶体棒进行激光放大且达到均匀增益输出,包括:环状的泵浦bar条结构、晶体棒、玻璃套管(2)和结构件。泵浦bar条结构包括多个泵浦块、每个泵浦块由bar条(4),冷却热沉(5)和冷却水管(6)构成;bar条(4)和冷却热沉(5)连接,冷却热沉(5)的内部设有冷却水通道;其中的两个冷却热沉(5)上分别设有与冷却水通道连通的出水管(8)和进水管(7);从设有进水管(7)的冷却热沉(5)到设有出水管(8)的冷却热沉(5),多个冷却水通道通过多个冷却水管(6)依次串联,形成环状;bar条(4)靠近环状的泵浦bar条结构所在的中心轴;晶体棒设在玻璃套管(2)中;沿玻璃套管(2)的长度所在方向,多个直径相同或者不同的环状的泵浦bar条结构套在玻璃套管(2)上。

Description

技术领 本发明涉及激光器件领域, 具体而言, 涉及大口径均匀放 大激光模块。
(polycrystalline aluminum-yttrium garnet, YAG)的化学式为 YaAlsOn, 或写为 3Y2(V5A1203, 其中 Y203为 57.06wt:% , AI205 为 42.94wt% , 是一种综合性能, 包括光学、 力学和热学均优良 的激光基质。 在中小功率激光器件中, 目前使用钇铝石榴石制 成的 4乙铝石榴石晶体( Nd:YAG )的实用数量远远超过其他激光 工作物质。 在实际制备时是将一定比例的 A1202、 Y2Or和 Nd203 在单晶炉中熔化结晶制成钇铝石榴石晶体。 在钇铝石榴石晶体 生长过.程中主 -愛采用提 4立法,又称切克劳其†基法( Czochralsik:)、 CZ法。 生长得到的晶体毛坯。 由于钇铝石榴石晶体具有优良的 热学性能, 因此非常适合制成激光工作物质。 提 4立法的缺点是.熔体的液¾^乍用、 传动装置的振.动和温度. 的波动都^会对晶体的质量产生影响。 由于晶体自身的特性, 随 着晶体生长长度的增长, 其两端的掺杂浓度会逐渐升高。 通常 的晶体棒的制作方法.是沿着晶体毛胚生长方向加工, 晶体棒的 长度决定了晶体棒上掺杂浓度的差异大小,加工直径 8mm及以 上晶体棒的长度通常大于 100mm, 100mm 的晶体棒上会存在 20%- 30%的楼杂浓度差异。 存在的问题 通常使用的激光放大模块由 bar条、 冷却热 沉和冷却水管构成泵浦块, 由多个泵浦块连接构成板状的泵浦 bar条结构, 在激光放大模块中多个板状的泵浦 bar条结构围绕 晶体棒排布。每个泵浦 bar条结构上的 bar条距晶体棒的距离相 同且固定,而且掺杂浓度与晶体棒对泵浦光的吸收系数成正比, 对于直径较大较长的晶体棒, 其本体上的掺杂浓度梯度过高, 晶体棒两端的吸收系数和中部的吸收系数不一致, 差值较大, 使得晶体棒上的整体泵浦不均勾, 进 导致最终的增益输出不 均勾
本发明的目的在于提供一种大口径均匀.放大激光模块, 以 解决上述问题.。 在本发明的实施例中提^共的大口径均匀 大:敫光模块, 包 括:环状的泵浦 bar条结构、 电动控制块、 伸缩螺杆、 晶体棒、 玻璃套管和结构件; 所述泵浦 bar -条结构包括多个泵浦块, 每个所述泵浦块由 bar条, 冷却热沉和冷却水管构成; 所述 bar条和所述冷却热沉 连接, 所述冷却热沉的内部设有冷却水通道; 其中的两个所述 冷却热沉上分别设有与所述冷却水通道连通的出水管和进水管; 从设有所述进水管的所述冷却热沉到设有所述出水管的所述冷 · 却热沉,多个所述冷却水通道通过多个所述冷却水管依次串联, 形成环状;所述 bar条靠近环状的所述泵浦 bar条结构所在的中 心抽; 所述晶体棒设在所述玻璃套管中; 沿所述玻璃套管的长度 所在方向, 多个直径相同或者不同的环~ ^的所述泵浦 bai 条结 构套在所述玻璃套管上, 所述玻璃套管通过所述结构件固定在 由多个环史的所述泵浦 bar条结构构成的中空部, 所述玻璃套 管的外壁与每个泵浦 bar条结构中的每个所述 bar条之间均留有 调节间隙; 所述伸缩螺杆的一端和所述电动控制块转动连接, 其另一 端和所述冷却热沉连接, 所述电动控制块通过夕卜界提供的电信 号旋转所述伸缩螺杆, 调节所述 bar条到所述晶体棒的距离; 还包 4^将 ~个所述—电动控制块分别固定的固定外壳。 本发明提供的大口径均匀放大激光模块中, 将多个由 bar 条, 冷 p热沉和冷 p7j 管构成的泉浦块连接成环状的泵-浦 bar 条结构, 将多个环状的泵浦 bar条结构的直径相同或者不同, 套在装载有晶体棒的玻璃套管上, 玻璃套管和每个环状的泵浦 bar条结构中的 bar条之间均留有调节间隙。 同时, 与冷却热沉 连接有电动控制块, 在电动控制块上设有伸缩螺杆, 伸缩螺杆 的一端 -和电动^空制 转动 i 接 , 其另一端和冷却热沉 ;¾接 , 电 动控制块通过固定外壳固定, 并通过外界提供的电信号旋转伸 缩螺杆, 调节 bar条到所述晶体棒的距离。 也就是能够通过电动控制块调整并控制 bar条与晶体棒之 间的 巨离来弥补晶体在生长过 .中产生的缺陷, 形成一个泵浦 bar条结构与其相对应的一段晶体棒之间的小范围的均匀泵浦, 进而实现激光模块的均匀增益输出。 通过大量的光学追迹模扭分析和实验测试, 得知 bar条到 晶体棒的距离与泵浦均匀特性的规律, 例如针对直径 15mm的
4乙铝石榴石晶体., 在 0,8%的摻杂浓度下, bar条到晶体棒的距 离为 8mm、 10mm、 12ΪΪΉΙΊ. 口 14mm H†, '寻到的晶 拳-戴面. J: 的能量密度分布如图 1所示, 在距离为 8mm时, 明显中间存在 严重的能量交叠突起.;对于距离为 14mm时,中间就过于凹陷。 本发明通过.控制 bar条到晶体棒的距离来实现一定吸收系 数范围内的均匀泵浦,弥补晶体棒生长过程中存在的缺陷问题。 离, 4†对不同注入泵浦功率进行均匀 <li的精确控制, 实现晶体 棒全范围泵浦 进^实现最终的均勾增益放 大。 所以, 本发明提供的大口 激光模块中能够使用 直径较大长度较长的晶体棒进 并 能够达到均匀 增益输 ·出的目的。
Figure imgf000007_0001
图 1为本发明提供的晶体棒截面上的能量密度分布图 图 2为由 8个泵浦块构成的泵浦 ba ^条结构示意图
Figure imgf000007_0002
Figure imgf000007_0003
•管及复合结构 的组合 结构示意图; 图 5为多个半径不同的泵浦 bar条结枸套在一个内设有晶 体棒的玻璃套管上的结构示意图;
1.晶体短棒, 2,玻璃套管, 3,固定凸起, 4,bar条, 5,冷却热 沉, 6.冷却水管, 7.进水管, 8.出水管, 9.电动控制块, 10,伸缩 螺軒, 11,固定外壳。 具体实施方式 下面.通 ±具体的实施例子并结合附图对本发 .明 支 步的 详细描述。 实 ¾例 1 : 如图 2图 7所示 大口径均匀放大激光模块, 包括:环状的泵浦 bajr条结构、 电动 4空制块 9、 伸缩螺杆 10、 晶体 4奉、 玻璃套管 2和结构件; 所述泵浦 bar -条结构包括多个泵浦块, 每个所述泵浦块由 bar条 4, 冷却热沉 5和冷却水管 6构成; 所述 _ bar条 4和所述 _ 冷却热沉 5连接, 所述冷却热:^ 5的内部设有冷 ·#7 通道; 其 中的两个所述冷却热沉 5 上分别设有与所述冷却水通道连通 的出 管 8和-进水管 7;从 有所述 i 水管 '7的所述冷却热沉 5 到设有所述出水管 8 的所述冷却热沉 5 , 多个所述冷却水通道 通过多个所述冷却水管 6依次串联, 形成环状; 所述 bar条 4 靠近环状的所述泵浦 bar条结构所在的中心轴; 所述晶体棒设在所述玻璃套管 2中; 沿所述玻璃套管 2的 条结构套在所述玻璃套'管 2上, 所述玻璃套管 2通过所述结构 件固定在由多个环状的所述 _泵浦 bar条结构构成的中空部, 所 述玻 套管 2 的外壁与 ~个泵浦 bar条结构中的每个所述 bar 条 4之间均留有调节间隙; 所述」伸缩螺杆 10的一端和所述电动控制块 9转动连接,其 另一端和所述冷却热沉 5连接, 所述电动控制块 9通过外界提 供的电信号旋转所述伸缩螺杆 10, 调节所述 bar条 4到所述晶
本发明提供的大口径均匀放大激光模块中, 将多个由 bar 条 4, 冷却热沉 5和冷却水管 6枸成的泵浦块连接成环状的泵 浦 bar条结构,将多个环状的泵浦 bar条结构的直径相同或者不 同, 套在装载有晶体棒的玻璃套管 2上, 玻璃套管 2和每个环 状的泵浦 bar条结构中的 bar条 4之间均留有调节间隙。 同时, 与冷却热沉 5连接有电动控制块 9, 在电动控制块 9上设有伸 缩螺杆 10, 伸缩螺杆 10的一端和电动控制块. 9转动连接, 其 另一端和冷却热沉 5连接,电动控制块 9通过固定外壳 11固定, 并通过外^^提供的电信号旋转伸缩螺杆 10, 调节 bar条 4到所 述晶体棒的距离。 也就是能够通过电动控制块 9调整并控制 bar条 4与晶体 棒之.间的 if巨离来弥 卜晶体在生长过程中产生的缺陷, 形成一个 泵浦 bar条结构与其相对应的一段晶体棒之间的小范围的均匀 泵浦, 进而实现激光模块的均匀增益输出。 通过大量的光学追迹模扨分析和实验测试, 得知 bar条 4 到晶体棒的 巨离与泵浦均匀 生的规律, 例^ 直径 15mm 的 铝石榴石晶体, 在 0, 8 的掺杂浓度下, bar条 4到晶体 的距—离为 8mm、 l()mm、 12mm和 14mm日†, 4寻到的晶体棒截 面上的能量密度分布如图 1所示,在距离为 8mm时, 明显中间 -存在严重的能量交叠突 对于距离为 14mm时, 中间就过于 凹陷。 本发明通过控制 bar条 4到晶体棒的距离来实现一定吸收 系数范围内的均匀泵浦 , 弥补晶体棒生长过程中存在的缺陷问 题。 并通过固定外壳 11 固定的电动控制块 9来调节 bar条 4到 晶体棒的距离,针对不同注入泵浦功率进行均匀性的精确控制, 实现晶体棒全范围泵浦均勾性的精确控制, 进而实现最终的均 匀增益放大。 所以, 本发明提供的大口径均匀放大激光模块中 能够使用直径较大长度较长的晶体棒进行激光放大, 并且能够 达到均匀增益输出的目的。 实施例 2: 大口径均匀放大激光模块, 包括:环状的泵浦 bar条结构、 电动控制块 9、 伸缩螺杆 10、 晶体棒、 玻璃套管 2和结构件; 所述泵浦 bar -条结构包括多个泵浦块, 每个所述泵浦块由 bar条 4, 冷却热沉 5和冷却水管 6构成; 所述 _ bar条 4和所述 _ 冷却热沉 5连接, 所述冷却热沉 5的内部设有冷却水通道; 其 中的两个所述冷却热沉 5 上分别设有与所述冷却水通道连通 的出水管 8和进水管 7;从设有所述进水管 7的所述冷却热沉 5 到设有所述出水管 8 的所述冷却热沉 5, 多个所述冷却水通 i£ 通过多个所述冷却水管 6依次串联, 形成环状; 所述 _ bar条 4 靠近—环状的所述泵浦 bar条结构所在的中心轴; 所述晶体棒设在所述玻璃套管 2中; 沿所述玻璃套管 2的 长度所在方向, 多个直径相同或者不同的环状的所述泵浦 bar 条结构套在所述玻璃套管 2上, 所述玻璃套管 2通过所述结构 件固定在由多个环状的所述泵浦 bar条结构构成的中空部, 所 述玻璃套管 2的外壁与每个泵浦 bar条结构中的每个所述 bar 条 4之间均留有调节间隙; 所述伸缩螺杆 10的一端和所述电动控制块 9转动连接,其 另一端和所述冷却热沉 5连接, 所述电动控制块 9通过外界提 供的电信号旋转所述伸缩螺杆 10, 调节所述 bar条 4到所述晶
本发明提供的大口径均匀放大激光模块中, 将多个由 bar 浦 bar条结构,将多个环状的泵浦 bar条结构的直径相同或者不 同, 套在装载有晶体棒的玻璃套管 2上, 玻璃套管 2和每个环 状的泵浦 bar条结构中的 bar条 4之间均留有调节间隙。 同时, 与冷却热沉 5连接有电动控制块 9, 在电动控制块 9上设有伸 缩螺杆 10, 伸缩螺杆 10的一端和电动控制块 9转动连接, 其 另一端和冷却热沉 5连接,电动控制块 9通过固定外壳 11固定, 并通过外界提供的电信号旋转伸缩螺軒 10, 调节 bar条 4到所 述晶体棒的距离。 也就是能够通过电动控制块 9调整并控制 bar条 4与晶体 棒之间的距离来弥补晶体在生长过程中产生的缺陷, 形成一个 泵浦 br条结构与其相对应的一段晶体棒之间的小范围的均匀 泵浦, 进而实现激光模块的均匀增益输出。 通过大量的光学追迹模拟分析和实验测试, 得知 bar条 4 到晶体棒的距离与泵浦均勾特性的规律, 例如针对直径 15mm 的钇铝石榴石晶体, 在 0,8%的掺杂浓度下, bar条 4到晶体棒 的距离为 8mm、 10mm、 12mm和 14mm时, 得到的晶体棒截 面上的能量密度分布如图 1所示, 在距 -离为 8mm时, 明显中间 存在严重的能量交叠突起; 对于距离为 14mm时, 中间就过于 凹陷。 本发明通过控制 bar条 4到晶体棒的距离来实现一定吸收 系数范围内的均匀泵浦, 弥补晶体棒生长过.程中存在的缺陷问 题。 并通过固定外壳 11 固定的电动控制块 9来调节 bar条 4到 晶体棒的距离,针对不同注入泵浦功率进行均匀性的精确控制, 实现晶体棒全范围泵浦均勾性的精确控制, 进而实现最终的均 匀增益放大。 所以, 本发明提供的大口径均匀放大激光模块中 能够使用直径较大长度较长的晶体棒进行激光放大, 并且能够 达到均匀增益输出的目的。 其中, 加载到电动控制块 9上的电信号可以是由测得的晶 体截面内部的光斑均勾性拟合出来的曲线, 因此可以通过外部 电信号来实现对模块泵浦均匀性的调节。 也可以是由直接的电 压调节。 为了方便加工和 4吏用, 优选地, 所述玻璃套管 2为圓柱形
所述玻璃套管 2的内壁上设有多个用于固定晶体棒的固定 凸起 3 , 使晶体棒和所述玻璃套管 2的内壁之间留有供冷却水 通过的通道。 为了能够快速扩散晶体棒和玻璃管之间产生的热量, 可以 在玻.璃套管 2内充入冷却水。 冷却水沿着玻璃套管 2与晶体棒 之间的通过流动, 带走其中产生的热量。 所述玻璃套管 2的内壁上设有多组所述固定凸起 3, 每组 所述固定凸起 3 沿玻璃套管的径向均勾分布在所述玻璃套管 2 的内壁上。 为了能够将晶体棒稳定地固定, 同时能够和玻璃套管 2的 内壁分离, 可以设置每组固定凸起 3 包括三个, 三个固定凸起 3沿所述玻璃套管 2的截面均匀分布在其内壁上。 每个所述玻 璃套管 2的内壁上至少设置两组所述固定凸起 3。 为了能够将玻璃套管 2和晶体棒¾固连接, 可以设置固定 凸起 3与玻璃套管 2的内壁固定连接, 然后再将固定凸起 3和 玻璃棒固定连接。 晶体棒为由多个晶体短棒 1相互连接构成的晶体长棒; 多个晶体短棒 1 均为在晶体毛坯上, 沿和晶体毛坯的生长 方向垂直的方向 JL力 p工制得。 现有技术中使用的晶体棒是沿着晶体毛坯的生长方向加工 制成的晶体长棒, 但是因为晶体毛坯在生长过.程中, 随着长度 的增长, 两端的掺杂浓度逐渐升高, 所以, 沿晶体毛坯的生长 方向加工晶体棒时, 晶体棒两端的摻杂浓度较高。 为了减少晶体棒的掺杂浓度梯度。 可以在晶体毛坯上沿和 其的生长方向垂直的方向上加工晶体棒, 也就是沿着晶体毛坯 的横截面方向加工晶 奉. , 此时, 力口工 A的每个-较 4豆的晶体奉- 上的摻杂浓.度梯.度.较小, 将加工成的多个晶 、短棒 1的端部相 互连接成晶体长棒。 将该晶体长棒应用于本发明中所述的大口 径均匀放大激光模块中, 精-确匹配每个泵浦 bar条结构的半径 尺寸与晶体短棒 1之间的吸收细数的关系, 在每个晶体短棒 1 的周部分别设置不同直径的泵浦 bar 条结构以达到小范围的均 匀泵浦。 进而达到晶体长棒整体的均匀泵浦增益输出。 将多个晶体短棒 1连接时, 可以在相邻的两个晶体短棒 1 的连接面上设置增透膜, 或者将相邻的两个近体短棒通过键合 的方式连接。 还可以给所述的大口径均勾放大激光模块上增设一个对光 斑输出信号的釆集系统,将所述采集系统和所述晶体棒电连接。 还包括对晶体棒输出的光斑信号的采集系统, 该采集系统 和激光模块通过电信号相互传递信息。 增设的釆集系统能够实时将晶体棒截面上的能量信号实时 采集, 并可以最终呈现在测试屏幕上, 通过测试屏幕上实时呈 现的晶体棒截面上的能量密度分布图来通过电动控制块 9和螺 旋螺杆来进一步调节晶体棒和 bar条 4之间的距离, 进而调节 到晶体棒与 bar条 4之间距离最优化的状态。 通过.电动调节系 统的引入, 放大模块不仅能够对固定的输入信号光形成均匀度 20%以内的放大,还能够适应被放大光束本身能量密度的变化, 保证在不同的注入信号光条件下, :放.大光束输出均匀的一致 性。 实验例 1 : 参考图 2图 6制作一个本发明所述的大口径均勾放大激光 模块。 首先需要制作该模块的复合结构晶体棒。 复合结构晶体棒 采用沿着 X轴方向, 从采用提拉法生长出的钇铝石榴石棒料上 加工出的 8个长度 90mm, 直径 10mm的晶体-短棒; 从中进行挑选, 得到的 2个掺杂浓度相近的晶体短棒, 第 1才艮掺杂浓.度一端 0.6% , 另一端 0,74%; 第 2根摻杂浓度一端 0.63% , 另-一 ^¾ 0,79%。 然后制作泵浦 bar条结构。 每个泵浦 bar条结构由 8个泵 浦块构成, 每个晶体短棒周围排布 8组泵浦 bar条结构。 通过测试分析 '后, 匹配掺杂浓度与距离的精确关系得到如 下数据: 第 1组泵浦 bar条结构沿着第一根晶体短棒的排圏直径分 另 ll为: 14.0mm , 14.6mm , 14,6mrri, 15,9mm、 15.9mm、 17, lrnm、 17.1 mm、 17.1 mm; 第 2组泵浦 bar条结构沿着第二根晶体短棒的排圏直径分 另 ll为 14.3mm、 14,9ΙΤΙΤΓΚ 14.9mm , 16.3rnm, 16.3mm、 18,0mrru 18.0mm、 18.0 mm。 将上述每组的 8个泵浦 bar条结构分别与各自匹配的一 4艮 晶体短棒固定连接, 其中交错排布, 针对一段晶体短棒进行泵 浦。 本实验包含 2段晶体短棒, 采用同轴排布的方式, 每段 _两 侧镀 1064nm的增透膜., 这样通过泵浦距离调节实现了均匀泵 浦。 在 2根晶体短棒组成的复合结构晶体棒的外倜, 装有用来 通过冷却水的玻璃套管。玻璃套管的外径 16mm, 内径 14mm , 在内倜包括通过烧结添加的 4组、 每组 3个的支撑凸起。 这 12 个支撑凸起将连接成的晶体长棒与玻璃套管的内壁分离开, 构 将上述结构的复合结构晶体棒、 玻璃套管、 泵浦 bar条结 构通过结构件进行固定, 并将冷水通道进行总分连接, 就可以 构成个本发明所述的大口径均匀放大激光模块。 本实验例提供的大口径均勾放大激光模块能够实现在晶体 棒径向截面上能量密度起伏小于 20% , 而现有激光模块由于没 有进行本专利所述的补偿, 能量密度起伏通常在 100%以上。 实验例 2: 参考图 2-图 6制作一个本发明所述的大口径均勾放大激光 模块。 首先需要制作该模块的复合结构晶体棒。 采用沿着 Y轴方 向, 人采用提 法生长出的 5根钇铝石榴石 # |-上加工出的 30 ^长..度25:!11111、 直径. 13mm的晶体短棒; 从中进行挑选, 得到的 6个摻.杂浓度相近的晶体短棒, 掺 杂浓度在一端 0.5 士 (105%, 另一端 0,7士 ()。()5% , 通过键合构成 复合结构晶体棒。 制作泵浦 bar条结构时, 每个泵浦 bar条结构由 5个泵浦 块构成, 每根晶体短棒周围排布 3组泵浦 bar条结构。 通过测试分析后, 匹配掺杂浓度与距离的精确关系得到如 下数据: 泵浦 bar条结构沿着晶体短棒的排圏直径分别为: 12.0誦、 12.3mm, 12.6mm, 13。lmm。 +上:¾ 4 4、泵浦 bar条结私; K乍为 一个循环, 进行 6次周期排布。 本实施例复合结构晶体棒两侧 镀 l()64nm的增透膜。 在复合结构晶体棒的外侧, 装有用来通过冷却水的玻璃套 管。 玻璃套管外径 19mm, 内径 15mm。 在复合结构晶体棒的 外壁和玻璃套管的内壁之间构成了冷却晶体棒的水通道。 复合 结构晶体棒通过两段的橡胶圈固定。 将上述结构的复合结构晶体棒、 玻璃套管、 泵浦 bar条结 构通过结构件进行固定, 并将冷水通道进行总分连接, 就可以 构成个本发明所述的大口径均勾放大激光模块。 通过复合结构 晶体棒的制作, 并将该复合结构晶体棒应用在本发明提供的大 口径激光方法模块中, 可以进一步降低晶体棒中的吸收系数的 漂移, 实现泵浦后能量密度起伏小于 8%。 以上所述—仅为本发明的优选实施例而已, 并不用于限制本 发明, 对于本领域的技术人员来说, 本发明可以有各种更改和 变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

L 大口径均匀放大激光模块, 其特征在于, 包括:环状的泵 浦 bar条结构、 晶体棒、 玻璃套管和结构件; 所述泵浦 bar条结构包括多个泵浦块, 每个所述_泵浦 块由 bar条、 冷却热沉和冷却水管构成; 所述 bar条'和所 述冷却热沉连接, 所述冷却热沉的内部设有冷却水通道; 其中的两个所述冷却热沉上分别设有与所述冷却水通道 连通的出水管和进水管;从设有所述进水管的所述冷却热 沉到设有所述出水管的所述冷却热沉, 多个所述冷却水通 道通过多个所述冷却水管依次串联, 形成环状; 所述 bar 条靠近环状的所述泵浦 bar条结构所在的中心轴;
长度所在方向, 多个直径相同或者不同的环状的所述泵浦 bar条结构套在所述玻璃套管上, 所述玻璃套管通过所述 结构件固定在由多个环状的所述泵浦 bar条结构构成的中 空部, 所述玻璃套管的外壁与每个泵浦 bar条结构中的每 个所述. ar条之间均留有间隙; 每个所述泵浦块均对应设.置一个电动控制块以及一 个伸缩螺杆,所述泵浦块中的所述冷却热沉通过所述伸缩 螺杆与所述电动控制块连接; 所述电动控制块 居外界提 供的电信号控制所述伸缩螺杆的旋转, 调节所述 bar条到 所述晶体棒的距离; 还包括将每个所述电动控制块分别固定的固定外壳。 , # ^据权利要求 1所述的大口径均勾放大激光模块,其特征
所述玻璃套管为圓柱形管。
3. 根据权利要求 1所述的大口径均匀放大激光模块,其特征 在于', 所述玻璃套管的内壁上设有多个用于固定所述晶体 棒的固定凸起, 所述晶体棒和所述玻璃套管的内壁之间留 有供冷却水通过的通道。
4. 根据权利要求 3所述的大口径均匀放大激光模块,其特征 在于, 所述玻璃套管的内壁上设有多组所述固定凸起; 每组包括三个所述固定凸起,每组所述固定凸起沿所 述玻璃套管的径向均勾分布在所述玻璃套管的内壁上。
5. 根据权利要求 3所述的大口径均匀放大激光模块,其特征 在于',
每个所述固定凸起均和所述玻璃套管的内壁固定连 接。
6. 根据权利要求 1所述的大口径均匀放大激光模块,其特征 在于,
所述晶体棒为由多个晶体短棒相互连接构成的晶体
多个所述晶体短棒均为在晶体毛坯上,沿和晶体毛坯 的生.长方向垂直的方向一1^加工制得 c
7. 根据权利要求 6所述的大口径均勾放大激 其特征 在于',
相邻的两个所述晶体短棒的连.接面上 ·¾
8. 根据权利要求 6所述的大口径均匀放大激光模块,其特征 在于',
相邻的两个晶体短棒通过键合的方式连接。
9. # ^据权利要求 6所述的大口径均勾放大激光模块,其特征
还包括对所述晶体棒输出的光斑信号的采集系统,所 述采集系统和激光模块通过电信号相互传递信息。
10. 根据权利要求 1所述的大口径均匀放大激光模块,其特征 在于',
多个所述固定外壳相互连接构成一个闭合环形。
PCT/CN2013/084003 2013-09-23 2013-09-23 大口径均匀放大激光模块 WO2015039349A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/084003 WO2015039349A1 (zh) 2013-09-23 2013-09-23 大口径均匀放大激光模块
JP2016516932A JP6173572B2 (ja) 2013-09-23 2013-09-23 大口径均一増幅レーザモジュール
DE112013007453.2T DE112013007453T5 (de) 2013-09-23 2013-09-23 Lasermodul mit großer Apertur und gleichmäßiger Verstärkung
US15/076,902 US9559481B2 (en) 2013-09-23 2016-03-22 Large aperture uniform-amplification laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084003 WO2015039349A1 (zh) 2013-09-23 2013-09-23 大口径均匀放大激光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/076,902 Continuation US9559481B2 (en) 2013-09-23 2016-03-22 Large aperture uniform-amplification laser module

Publications (1)

Publication Number Publication Date
WO2015039349A1 true WO2015039349A1 (zh) 2015-03-26

Family

ID=52688135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084003 WO2015039349A1 (zh) 2013-09-23 2013-09-23 大口径均匀放大激光模块

Country Status (4)

Country Link
US (1) US9559481B2 (zh)
JP (1) JP6173572B2 (zh)
DE (1) DE112013007453T5 (zh)
WO (1) WO2015039349A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316554A (ja) * 1995-05-15 1996-11-29 Toshiba Corp 固体レ−ザ装置
CN1254451A (zh) * 1997-03-31 2000-05-24 美国浓缩有限公司 小型高效激光泵腔
CN101145670A (zh) * 2006-09-11 2008-03-19 深圳市大族激光科技股份有限公司 一种用于半导体侧面泵浦模块的泵浦腔
WO2009109978A1 (en) * 2008-03-06 2009-09-11 Soreq Nuclear Research Center Aberration compensation for high average power laser rods by guided diode transverse pumping
CN102368587A (zh) * 2011-06-02 2012-03-07 北京工业大学 提高半导体侧面泵浦棒状固体激光器泵浦效率的泵浦结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291654A (ja) * 1992-04-15 1993-11-05 Tokin Corp 固体レーザロッド
US7386022B2 (en) * 2003-03-17 2008-06-10 Mitsubishi Denki Kabushiki Kaisha Laser beam transmitter
FR2853146B1 (fr) * 2003-03-28 2007-06-22 Thales Sa Structure de pompage optique d'un milieu amplificateur
JP4473617B2 (ja) * 2004-03-26 2010-06-02 浜松ホトニクス株式会社 固体レーザ媒質の励起分布を制御する装置および方法
US7305016B2 (en) * 2005-03-10 2007-12-04 Northrop Grumman Corporation Laser diode package with an internal fluid cooling channel
US7529286B2 (en) * 2005-12-09 2009-05-05 D-Diode Llc Scalable thermally efficient pump diode systems
US8594147B1 (en) * 2011-08-24 2013-11-26 The United States Of America As Represented By The Secretary Of The Army Monolithic diode pumped solid-state laser for high shock environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316554A (ja) * 1995-05-15 1996-11-29 Toshiba Corp 固体レ−ザ装置
CN1254451A (zh) * 1997-03-31 2000-05-24 美国浓缩有限公司 小型高效激光泵腔
CN101145670A (zh) * 2006-09-11 2008-03-19 深圳市大族激光科技股份有限公司 一种用于半导体侧面泵浦模块的泵浦腔
WO2009109978A1 (en) * 2008-03-06 2009-09-11 Soreq Nuclear Research Center Aberration compensation for high average power laser rods by guided diode transverse pumping
CN102368587A (zh) * 2011-06-02 2012-03-07 北京工业大学 提高半导体侧面泵浦棒状固体激光器泵浦效率的泵浦结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG BIAO ET AL., LASER & INFRARED, vol. 38, no. 9, 30 September 2008 (2008-09-30), pages 883 - 886 *

Also Published As

Publication number Publication date
DE112013007453T5 (de) 2016-08-04
US20160204563A1 (en) 2016-07-14
US9559481B2 (en) 2017-01-31
JP6173572B2 (ja) 2017-08-02
JP2016532285A (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
CN105483825B (zh) 一种溴铅铯单晶制备方法
WO2020077847A1 (zh) 大尺寸高纯碳化硅单晶、衬底及其制备方法和制备用装置
CN109161970A (zh) 一种可视三温区硒化镓单晶生长装置及生长方法
TWI746400B (zh) 拉晶裝置
WO2015039349A1 (zh) 大口径均匀放大激光模块
TWI726813B (zh) 一種半導體晶體生長裝置
CN105703210B (zh) 大口径均匀放大激光模块
TWI738352B (zh) 一種半導體晶體生長裝置
TWI745973B (zh) 一種半導體晶體生長裝置
WO2018129860A1 (zh) 一种蓝宝石长晶炉的分级闭环控制冷却设备
CN106637387B (zh) 直拉单晶用加热器及直拉单晶方法
TWI738466B (zh) 晶體生長裝置
CN106637386A (zh) 提高拉晶速度的直拉单晶用加热器及直拉单晶方法
TWI761956B (zh) 一種半導體晶體生長裝置
JP5482547B2 (ja) シリコン単結晶の製造方法
CN209584423U (zh) 晶体生长的加热装置及生长装置
US20210010152A1 (en) Semiconductor crystal growth apparatus
CN109133608B (zh) 一种用于光纤预制棒的掺杂设备
CN209144309U (zh) 一种生长碳化硅单晶的装置
CN104593860A (zh) 一种vb/vgf单晶生长用支撑结构及其加工方法
CN108866619A (zh) 大尺寸氟化镁单晶的定向生长装置及工艺
CN205874583U (zh) 一种可校准的籽晶生长装置
CN204039545U (zh) 一种蓝宝石晶体泡生法生长炉多温区保温侧屏
TWI749560B (zh) 一種半導體晶體生長裝置
CN108796602A (zh) 一种单晶炉用内导流筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013007453

Country of ref document: DE

Ref document number: 1120130074532

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894056

Country of ref document: EP

Kind code of ref document: A1