WO2015037929A1 - 편광필름의 제조장치 - Google Patents

편광필름의 제조장치 Download PDF

Info

Publication number
WO2015037929A1
WO2015037929A1 PCT/KR2014/008495 KR2014008495W WO2015037929A1 WO 2015037929 A1 WO2015037929 A1 WO 2015037929A1 KR 2014008495 W KR2014008495 W KR 2014008495W WO 2015037929 A1 WO2015037929 A1 WO 2015037929A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
potassium iodide
concentration
bath
film
Prior art date
Application number
PCT/KR2014/008495
Other languages
English (en)
French (fr)
Inventor
김은용
이규황
이호경
이창송
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016540823A priority Critical patent/JP6257777B2/ja
Priority to CN201480049321.9A priority patent/CN105518562B/zh
Publication of WO2015037929A1 publication Critical patent/WO2015037929A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to an apparatus for producing a polarizing film.
  • Polarizing sheet (Polarizing Sheet) or polarizing film (Polarizing Film) generally has a function of converting natural light into polarization, this polarization function is implemented by a material that is dyed to the polarizing plate.
  • a liquid crystal display uses an iodine type polarizing film in which iodine is salted as a polarizing material.
  • the iodine type polarizing film is produced by dyeing a polyvinyl alcohol (PVA) film using dichroic iodine or a dichroic dye, orientating it in a predetermined direction by a method such as uniaxial stretching, and used in LCDs and the like.
  • PVA polyvinyl alcohol
  • the unstretched PVA film is uniaxially stretched in an aqueous solution and then immersed in a solution containing iodine and potassium iodide, or the unstretched PVA film is immersed in a solution containing iodine and potassium iodide and then uniaxially stretched.
  • the unstretched PVA film is uniaxially stretched in a solution containing iodine and potassium iodide, or the unstretched PVA film is uniaxially stretched in a dry state and then immersed in a solution containing iodine and potassium iodide to prepare a polarizing film. do.
  • the PVA film having iodine adsorbed and oriented is post-treated by a method such as water washing or drying to obtain a polarizing film, and a polarizing plate is obtained by laminating a protective film on at least one side of the obtained polarizing film.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have conducted in-depth studies on the characteristics and continuous process of the input data measured from the iodine in the dye bath, the potassium iodide and boric acid concentration meter in the dye bath, the potassium iodide concentration meter in the complementary bath, and the temperature meter in the element oven and the four-stage oven.
  • the iodine concentration of the dyeing bath is controlled in real time to control the amount of iodine to maintain a low concentration in a predetermined range, It has been found that material loss and the use of iodine solution can be minimized and the present invention has been completed.
  • the apparatus according to the present invention is a device for producing a PVA film (polarizing film) exhibiting polarization characteristics by dyeing iodine, potassium iodide and boric acid on a base film by a continuous process,
  • a dyeing bath in which the base film is immersed and dyed in an aqueous solution containing iodine, potassium iodide, and boric acid, and the iodine is maintained at a low concentration within a predetermined range;
  • At least one pump provided at one side of the dye bath to inject iodine in a continuous or intermittent dropping manner
  • the iodine concentration measured at the point is maintained at a low concentration in a predetermined range. It can be made of a device characterized in that for controlling the dosage of iodine.
  • the low concentration of iodine may be set in the range of 0.1 ppm to 100 ppm, and preferably, the low concentration of iodine may be set in the range of 0.5 ppm to 50 ppm.
  • the input amount of iodine may be determined by a calculated value or an experimental value function value reflecting a deviation of the iodine concentration of the dyeing bath at a low concentration in the predetermined range and the measurement time point.
  • the deviation is a value in consideration of the average due to the interaction between the current iodine concentration in the predetermined low concentration range and the iodine concentration (I 2 ) according to the change of the measurement time point.
  • the interaction means that the interaction between two factors is reflected when the change of the dependent variable according to the level of one factor is different according to the level of another factor.
  • any point of the dye bath separated from the pump may be a central portion of the dye bath, and in a specific example, the iodine concentration and iodine measured at any point of the dye bath separated from the pump are introduced from the pump.
  • the variation in iodine concentration at the point may be a configuration represented by a time delay of iodine diffusion.
  • the diffusion rate of iodine in the dye bath may range from 0.01 m / min to 0.10 m / min, preferably 0.04 m / min. That is, according to the present invention, since the diffusion rate of iodine in the dyeing tank affects the transmittance of the polarizing film, by reflecting the diffusion rate of the iodine in the transmittance input model of the polarizing film, more accurate transmittance through the iodine dose adjustment Predictions are possible.
  • the polarizing film may be a structure that is moved at a speed of 20m / min to 35m / min in the dyeing tank in the process of dyeing in the dyeing tank.
  • the dyeing tank may have a structure including an iodine concentration meter, a potassium iodide concentration meter and a boric acid concentration meter for measuring concentrations of iodine, potassium iodide and boric acid, respectively.
  • the device is
  • Complementary color bath for immersing and dyeing a PVA film impregnated with iodine, potassium iodide and boric acid in an aqueous solution of potassium iodide,
  • Complementary tank having a potassium iodide concentration meter for measuring the concentration of potassium iodide;
  • An element oven for drying a PVA film oriented with iodine, potassium iodide, and boric acid comprising: an element oven having an element oven temperature measuring device for measuring a temperature of the element oven; And
  • a central controller for controlling the amount of iodine input of the dye bath and / or the complementary tank;
  • the element oven may be a structure consisting of two ovens.
  • a four-stage oven for drying the PVA film dried in the device oven it may be a structure further comprising a four-stage oven having a four-stage oven measuring instrument for measuring the temperature of the four-stage oven,
  • the four stage oven may have a structure consisting of four ovens.
  • the permeability prediction according to the iodine dose control may be achieved by a PVA film permeability prediction model based on partial least squares.
  • a drawing bath for washing a polyvinyl alcohol (PVA) film which is a base film
  • a drawing bath for drawing iodine, potassium iodide, and boric acid by drawing a PVA film iodine, potassium iodide, and boric acid salted by a drawing roller. It may be a structure further comprising.
  • the structure may further include a swelling tank for swelling the PVA film, and a cleaning tank for washing the dyed PVA film.
  • the present invention also provides a polarizing plate manufactured by attaching a protective film to each of the upper and lower surfaces of the polarizing film manufactured through the apparatus.
  • FIG. 1 is a block diagram of a polarizing film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a polarizing film manufacturing method according to another embodiment of the present invention.
  • FIG. 3 is a block diagram of a polarizing film manufacturing apparatus according to another embodiment of the present invention.
  • 4 and 5 are schematic diagrams of an iodine control process for adjusting the transmittance according to an embodiment of the present invention
  • FIG. 7 is a graph showing the correlation between the predicted iodine concentration value and the measured iodine concentration value according to the present invention.
  • FIG. 8 is a graph showing the results of the transmittance of the predictive polarizing film and the transmittance of the actual polarizing film according to the present invention.
  • FIG. 1 is a schematic diagram of a polarizing film manufacturing apparatus according to an embodiment of the present invention.
  • the polarizing film manufacturing apparatus 90 the dyeing bath 10, the iodine, potassium iodide and boric acid is dyed by immersing the washed PVA film in an aqueous solution of iodine and potassium iodide Complementary color bath 20 for immersing and dyeing PVA film in aqueous potassium iodide solution, device oven 30 for drying PVA film oriented with iodine, potassium iodide and boric acid, 4-stage oven for drying PVA film dried in device oven 40, the temperature of the element oven 30 and the four-stage oven 40 and the amount of the composition introduced into the complementary tank 20 and the complementary color tank 20 are supplemented based on the input information of the central control unit 60. It consists of the composition supply apparatus 50 and the central control part 60 which are mentioned.
  • the PVA film becomes a polarizing film through the dye bath 10, the complementary color tank 20, the element oven 30, and the four-stage oven 40 sequentially.
  • the dye bath 10 is provided with an iodine concentration meter 12, a potassium iodide concentration meter 14, and a boric acid concentration meter 16 for measuring the concentrations (C12, C14) of iodine, potassium iodide and boric acid.
  • the color tone 20 is provided with a potassium iodide concentration measuring instrument 22 for measuring the concentration (C22) of potassium iodide.
  • an element oven 30 consisting of two ovens and a four-stage oven 40 consisting of four ovens are provided for measuring oven temperatures T32, T34, T42, T44, T46 and T48.
  • Device oven temperature meters 32, 34 and four four-stage oven meters 42, 44, 46, 48 are installed.
  • the central control unit 60 controls the iodine, potassium iodide and boric acid concentration measuring instruments 12. 14 and 16 of the dye bath 10, the potassium iodide concentration measuring machine 22 of the complementary tank 20, and the element oven 30 and 4. However, based on the information on the characteristics of the input data measured from the temperature measuring devices 32, 34, 42, 44, 46, 48 of the oven 40 and the characteristics of the PVA film introduced into the continuous process, the device oven 30 And the temperature of the four-stage oven 40 and the amount of the composition to be added to the dyeing tank 10 and the complementary color tank 20 are controlled.
  • the composition introduced into the dye bath 10 is iodine, potassium iodide and boric acid
  • the composition introduced into the complementary tank 20 is potassium iodide.
  • the central control unit 60 adjusts the iodine dose to maintain a low concentration (0.5 ppm to 50 ppm) of iodine preset through the iodine concentration measuring device 12 of the dyeing bath 10 to adjust the transmittance of the polarizing film. It is controlled in real time to determine and input through the composition supply device (50).
  • Permeability prediction of PVA films is achieved by multiple regression analysis, which is a partial least squares based PVA film permeability model.
  • FIG. 2 is a flowchart schematically illustrating a method of manufacturing a polarizing film according to one embodiment of the present invention.
  • the washed PVA film is immersed and dyed in a salt bath (10) containing an aqueous solution of iodine and an aqueous solution of potassium iodide, and the iodine concentration meter (12) and the potassium iodide concentration meter (14) are iodine and potassium iodide in the salt bath (10).
  • Dyeing step 300 of measuring the concentration of boric acid A washing step 400 for washing the dyed PVA film in a washing tank; Stretching step (500) to orient the salted iodine, potassium iodide and boric acid by stretching the PVA film iodine, potassium iodide and boric acid salted by a stretching roller; A PVA film in which iodine, potassium iodide and boric acid are salted is immersed in a complementary color tank 20 containing an aqueous potassium iodide solution, and the potassium iodide concentration meter 22 measures the concentration of potassium iodide in the complementary color tank 20.
  • Step 600 A first drying step 700 of drying the PVA film in which the iodine, potassium iodide and boric acid are oriented in the device oven 30, and the device oven temperature measuring devices 32 and 34 measure the temperature of the device oven 30; Second drying step in which the PVA film dried in the device oven 30 is dried in the four-stage oven 40 and the four-stage oven meters 42, 44, 46, and 48 measure the temperature of the four-stage oven 40. 800; And the central control unit 60 is iodine, potassium iodide and boric acid concentration measuring devices 12 and 14 of the dye bath 10, potassium iodide concentration measuring device 22 of the complementary tank 20, and the element oven 30 and four stages.
  • the device oven 30 Based on the characteristics of the input data measured from the temperature measuring devices 32, 34, 42, 44, 46, 48 of the oven 40 and the characteristics of the PVA film introduced into the continuous process, the device oven 30 And a control step 900 of controlling the temperature of the four-stage oven 40 and the amount of the composition to be added to the dyeing tank 10 and the complementary color tank 20.
  • the PVA film is dyed by immersing in a dyeing bath 10 containing an aqueous solution of iodine, potassium iodide and boric acid at a temperature of 20 to 40 °C, PVA in 1 drying step 700 and 2 drying step 800
  • the film is dried in the element oven 30 and the four stage oven 40 under conditions of a temperature of 40 to 60 ° C.
  • FIG. 3 is a schematic diagram of a polarizing film manufacturing apparatus according to another embodiment of the present invention.
  • the polarizing plate 108 is formed of triacetyl cellulose on the upper and lower surfaces of the polarizing film 102 stretched by the polarizing film manufacturing apparatus 90 of FIG. 1, respectively. Prepared by attaching (104, 106).
  • the stretching step 500 includes a first drawing step by the first drawing bath and a second drawing step by the second drawing bath according to the change of the rotational speed of the drawing roller, and drawing of the PVA film in the first drawing step.
  • the magnification is 1.5 to 3.0 times
  • the draw ratio of the PVA film in the second stretching step is 2.0 to 3.0 times.
  • the polarizing film manufacturing apparatus 92 includes a water washing tank 51 for washing a polyvinyl alcohol (PVA) film, which is a base film, a swelling tank 53 for swelling the washed PVA film, iodine, potassium iodide and boric acid, and dyeing.
  • PVA polyvinyl alcohol
  • the drawn PVA film is stretched with a drawing roller, and a drawing tank 52 for orienting the salted iodine, potassium iodide and boric acid, and a washing tank 54 for washing the dye PVA film are included.
  • iodine is introduced into the dyeing tank 10 of the polarizing film manufacturing apparatus 92 through the pump 200 by the operation of the composition supply device 50.
  • Low concentration of the iodine concentration measured at the central portion in the dyeing tank 10 based on the deviation of the iodine concentration measured at the starting point input from the 200 and the central portion in the dyeing tank 10 (approximately) 0.5 ppm to 50 ppm) is controlled by the composition supply device 50 in accordance with the command of the central control 60 to the iodine dose from the pump 200.
  • the adjustment of the iodine input amount introduced through the pump 200 is automatically controlled according to a predetermined value of the transmittance T s required according to the use environment, and the transmittance T s is as shown in FIG. 5. And reflecting the data considering the temperature of the dyeing bath 10 and the element drying oven 30 and the film draw ratio of the drawing bath 52.
  • FIG. 6 schematically illustrates a transmission prediction model system applied to the polarizing film manufacturing apparatus according to the present invention.
  • the transmittance prediction model system inputs an iodine input model MI 2 for inputting and modeling an iodine concentration value and a transmittance input model MT s for inputting and modeling a transmittance T s . ) Is included.
  • the difference value 220: 0.05mM is displayed.
  • a predetermined value (43.2%) is input to the transmittance input model MT s in which the upper and lower conditions of the target element transmittance 300 are converted according to the current step 310.
  • the target iodine is input as the transmittance of the polarizing film (320: 43.7%), the moving speed of the polarizing film (400: 27 m / min), and the device oven temperature (500: 90 degrees) are sequentially input.
  • the amount of iodine input through the pump 200 such that the difference value 220 between the concentration value 210 and the current iodine concentration value 230 is represented as '0' depends on the condition of the target element permeability 300. It is adjusted in real time.
  • the time required for the polarizing film to reach the center portion of the dye bath 10 is approximately 16 minutes.
  • FIG. 7 is a graph showing a correlation between the predicted iodine concentration value and the measured iodine concentration value according to the present invention
  • FIG. 8 is a graph showing the results of the transmittance of the predicted polarizing film according to the present invention and the transmittance of the actual polarizing film. Is schematically illustrated.
  • the correlation coefficient is 0.811 and the predicted iodine concentration value is measured. It can be seen that the distribution of iodine concentration values are very similar, and the transmittance of the polarizing film can be achieved by adjusting the concentration of iodine, which is a main process variable.
  • the transmittance of the polarizing film may be confirmed that the accuracy of the predicted device transmittance value and the measured device transmittance value, which is set as a correlation coefficient of 0.973, is very high.
  • the solid line shown in the graph represents the deviation of the variable.
  • the polarizing film manufacturing apparatus is characterized in that the input data measured from the iodine of the dye bath, the potassium iodide and boric acid concentration meter, the complementary potassium iodide concentration meter, and the temperature measuring device of the element oven and the four-stage oven
  • the input data measured from the iodine of the dye bath, the potassium iodide and boric acid concentration meter, the complementary potassium iodide concentration meter, and the temperature measuring device of the element oven and the four-stage oven In order to predict the permeability as a main factor of the polarizing film based on the information on the characteristics of the PVA film that is put into the continuous process, by controlling the amount of iodine in real time to maintain the iodine concentration of the dyeing tank in a low concentration in a predetermined range , Material loss of the PVA film and unnecessary waste of the iodine solution can be prevented.
  • the dosage of the additional iodine solution is controlled in consideration of the current iodine concentration and other variables based on the predicted iodine concentration administered, it is possible to shorten the time required in the conventional dyeing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

본 발명은 연속공정에 의해 기재필름에 요오드, 요오드화 칼륨과 붕산을 염색하여 편광 특성을 발휘하는 PVA 필름( 편광필름 )을 제조하는 장치로서, 기재필름을 요오드, 요오드화 칼륨 및 붕산을 포함하는 수용액에 침지하여 염색하며, 상기 요오드가 기설정된 범위의 저농도로 유지되고 있는 염착조; 및 상기 염착조의 일측에 구비되어 요오드를 연속적 또는 단속적인 점적(dropping) 방식으로 투입하는 적어도 하나의 펌프들;을 포함하고 있고, 상기 펌프로부터 이격된 염착조의 임의의 지점에서 측정된 요오드 농도와 요오드가 펌프로부터 투입되는 지점의 요오드 농도의 편차에 기반하여, 상기 임의의 지점에서 측정된 요오드 농도가 기설정된 범위의 저농도가 유지되도록 요오드의 투입량을 제어하는 것을 특징으로 하는 장치를 제공한다.

Description

편광필름의 제조장치
본 발명은 편광필름의 제조장치에 관한 것이다.
편광판(Polarizing Sheet) 또는 편광필름(Polarizing Film)은 일반적으로 자연광을 편광으로 전환시키는 기능을 가지고 있는데, 이러한 편광 기능은 편광판에 염착되는 재료에 의해 구현된다. 일반적으로 액정 디스플레이는 편광 재료로서 요오드가 염착된 요오드 타입 편광필름을 사용한다.
요오드 타입 편광필름은, 폴리비닐알콜(PVA) 계열의 필름을 이색성 요오드 또는 이색성 염료 등을 사용하여 염색하고, 일축 연신 등의 방법에 의해 일정한 방향으로 배향시켜 제조하며 LCD 등에 많이 사용된다. 예를 들어, 비연신 PVA 필름을 수용액에서 일축 연신한 후 요오드 및 요오드화칼륨을 함유한 용액에 침지(dipping)하거나, 또는 비연신 PVA 필름을 요오드 및 요오드화칼륨을 함유한 용액에 침지한 후 일축 연신하거나, 또는 비연신 PVA 필름을 요오드 및 요오드화 요오드화칼륨을 함유한 용액에서 일축 연신하거나, 또는 비연신 PVA 필름을 건조 상태에서 일축 연신한 후 요오드 및 요오드화칼륨을 함유한 용액에 침지하여 편광필름을 제조한다.
요오드가 흡착 및 배향된 PVA 필름을 물 세척이나 건조 등의 방법으로 후처리하여 편광필름을 수득하고, 수득된 편광필름의 적어도 한 면 이상에 보호 필름을 적층하면 편광판이 얻어진다.
한편, 상기와 같은 편광판의 제조과정에서 PVA 필름을 교체하는 경우, 시운전을 통해 편광필름을 제조한 후, 상기 편광필름을 절취하는 등의 방법으로 샘플을 취하여 편광필름의 투과도를 측정하고, 기준 스펙과 일치하도록 공정인자 및 부원료를 추가하거나 희석시키는 방법이 널리 사용되고 있다.
그러나, 상기와 같이 시운전을 통해 편광필름을 제조한 후 투과도를 측정하는 방법은, PVA 필름의 손실이 많고, 생산라인의 가동이 중단되므로 제조원가를 상승시키는 문제점이 있다. 특히, 편광필름이 일반적으로 연속공정에 의해 제조됨을 고려하면, 투과도의 측정을 위해 경험적인 조절로 투과도에 크게 영향을 미치는 요오드를 투입함으로써, 다량의 요도드가 소모되어 고가의 요오드 용액이 크게 낭비되는 문제점이 있다.
따라서, 상기와 같은 문제점을 해결하고 PVA 교체시 PVA 필름의 재료 손실 및 요오드 용액의 낭비를 최소화할 수 있는 편광필름 색상 제어장치에 대한 기술이 매우 필요한 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도있는 연구를 통해, 염착조의 요오드, 요오드화칼륨과 붕산 농도 측정기, 보색조의 요오드화칼륨 농도 측정기, 및 소자 오븐과 4단 오븐의 온도 측정기로부터 측정된 입력 데이터의 특성과 연속공정에 투입되는 PVA 필름의 특성에 대한 정보를 바탕으로 편광필름의 주요 인자로서 투과도를 예측하기 위해, 상기 염착조의 요오드 농도를 기설정된 범위의 저농도가 유지되도록 요오드의 투입량을 실시간으로 제어함으로써, PVA 필름의 재료 손실 및 요오드 용액의 사용을 최소화할 수 있음을 발견하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 장치는, 연속공정에 의해 기재필름에 요오드, 요오드화 칼륨과 붕산을 염색하여 편광 특성을 발휘하는 PVA 필름( 편광필름 )을 제조하는 장치로서,
기재필름을 요오드, 요오드화 칼륨 및 붕산을 포함하는 수용액에 침지하여 염색하며, 상기 요오드가 기설정된 범위의 저농도로 유지되고 있는 염착조; 및
상기 염착조의 일측에 구비되어 요오드를 연속적 또는 단속적인 점적(dropping) 방식으로 투입하는 적어도 하나의 펌프들;
을 포함하고 있고,
상기 펌프로부터 이격된 염착조의 임의의 지점에서 측정된 요오드 농도와 요오드가 펌프로부터 투입되는 지점의 요오드 농도의 편차에 기반하여, 상기 임의의 지점에서 측정된 요오드 농도가 기설정된 범위의 저농도가 유지되도록 요오드의 투입량을 제어하는 것을 특징으로 하는 장치 로 이루어질 수 있다..
하나의 구체적인 예에서, 상기 요오드의 저농도는 0.1 ppm 내지 100 ppm의 범위에서 설정될 수 있으며, 바람직하게는, 상기 요오드의 저농도는 0.5 ppm 내지 50 ppm의 범위에서 설정될 수 있다.
본 발명에 따르면, 상기 요오드의 투입량은 기설정된 범위의 저농도와 측정 시점에서 염착조의 요오드 농도의 편차를 반영한 계산치 또는 실험치 함수값에 의해 결정될 수 있다. 상기 편차는 기설정된 저농도 범위에서의 현재 요오드 농도와 측정 시점의 변화에 따른 요오드 농도(I2) 간의 교호작용에 의한 평균을 고려한 값이 반영된다. 여기서, 교호작용이라 함은 하나의 인자의 수준에 따른 종속변수의 변화가 다른 인자의 수준에 따라 다르게 나타날 때 두 인자간의 상호작용이 반영된다는 것을 뜻한다
하나의 예에서, 상기 펌프로부터 이격된 염착조의 임의의 지점은 염착조의 중앙 부위일 수 있고, 구체적인 예에서, 상기 펌프로부터 이격된 염착조의 임의의 지점에서 측정된 요오드 농도와 요오드가 펌프로부터 투입되는 지점의 요오드 농도의 편차는 요오드 확산의 시간 지연(time delay)에 의해 나타나는 구성일 수 있다.
이러한 구조에서, 상기 염착조에서 요오드의 확산 속도는 0.01 m/min 내지 0.10 m/min 범위일 수 있으며, 바람직하게는, 0.04m/min 일 수 있다. 즉, 본 발명에 따르면, 상기 염착조에서 요오드의 확산 속도가 편광필름의 투과도에 영향을 미치므로, 상기 요오드의 확산 속도를 편광필름의 투과도 입력 모델에 반영함으로써, 요오드 투입량 조절을 통해 보다 정확한 투과도 예측이 가능하다.
또, 상기 편광필름은, 상기 염착조에서 염착되는 과정에서, 상기 염착조 내에서 20m/min 내지 35m/min의 속도로 이동되는 구조일 수 있다.
상기 염착조는 요오드, 요오드화 칼륨 및 붕산의 농도를 각각 측정하기 위한 요오드 농도 측정기, 요오드화 칼륨 농도 측정기 및 붕산 농도 측정기를 포함하는 구조일 수 있다.
하나의 구체적인 예에서, 상기 장치는
요오드, 요오드화 칼륨 및 붕산이 염착된 PVA 필름을 요오드화 칼륨 수용액에 침지하여 염색하는 보색조로서, 요오드화 칼륨의 농도를 측정하기 위한 요오드화 칼륨 농도 측정기를 구비하고 있는 보색조;
요오드, 요오드화 칼륨 및 붕산이 배향된 PVA 필름을 건조하는 소자 오븐으로서, 소자 오븐의 온도를 측정하기 위한 소자 오븐 온도 측정기를 구비하고 있는 소자 오븐; 및
상기 염착조 및/또는 보색조의 요오드 투입량을 제어하는 중앙 제어부;
를 추가로 포함하는 구조일 수 있다.
상기 구조에서, 상기 소자 오븐은 2개의 오븐으로 구성되어 있는 구조일 수 있다.
경우에 따라, 상기 소자 오븐에서 건조된 PVA 필름을 건조하는 4단 오븐으로서, 4단 오븐의 온도를 측정하기 위한 4단 오븐 측정기를 구비하고 있는 4단 오븐을 더 포함하는 구조일 수 있고, 상기 4단 오븐은 4개의 오븐으로 구성되어 있는 구조일 수 있다.
한편, 본 발명에 따르면, 상기 요오드 투입량 제어에 따른 투과도 예측은 부분 최소 자승법(Partial Least Squares) 기반의 PVA 필름 투과도 예측 모델에 의해 달성될 수 있다.
또한, 기재필름인 폴리비닐알콜(PVA) 필름을 수세하는 수세조, 및 요오드, 요오드화 칼륨 및 붕산이 염착된 PVA 필름을 연신 롤러에 의해 연신하여 염착된 요오드, 요오드화 칼륨과 붕산을 배향시키는 연신조를 추가로 포함하는 구조일 수 있다.
경우에 따라, 상기 PVA 필름을 팽윤시키는 팽윤조, 및 염착된 PVA 필름을 세정하는 세정조를 추가로 포함하는 구조일 수 있다.
본 발명은 또한, 상기 장치를 거쳐 제조된 편광필름의 상면과 하면에 각각 보호필름을 부착하여 제조되는 편광판을 제공한다.
도 1은 본 발명의 하나의 실시예에 따른 편광필름 제조장치의 구성도이다;
도 2는 본 발명의 또 다른 실시예에 따른 편광필름 제조방법의 흐름도이다;
도 3은 본 발명의 또 다른 실시예에 따른 편광필름 제조장치의 구성도이다;
도 4 및 도 5는 본 발명의 하나의 실시예에 따른 투과도를 조절하기 위한 요오드 제어 과정의 모식도들이다;
도 6은 본 발명에 따른 편광필름 제조장치에 적용되는 투과도 예측 모델 시스템이다;
도 7은 본 발명에 따른 예측 요오드 농도값과 실측 요오드 농도값의 상관관계를 나타내는 그래프이다;
도 8은 본 발명에 따른 예측 편광필름의 투과도와 실제 편광필름의 투과도의 결과를 나타내는 그래프이다.
이하에서는 도면 등을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 편광필름 제조장치의 구성도가 모식적으로 도시되어 있다.
도 1을 참조하면, 본 발명에 따른 편광필름 제조장치(90)는, 수세한 PVA 필름을 요오드 수용액과 요오드화칼륨 수용액에 침지하여 염색하는 염착조(10), 요오드, 요오드화칼륨과 붕산이 염착된 PVA 필름을 요오드화칼륨 수용액에 침지하여 염색하는 보색조(20), 요오드, 요오드화칼륨과 붕산이 배향된 PVA 필름을 건조하는 소자 오븐(30), 소자 오븐에서 건조된 PVA 필름을 건조하는 4단 오븐(40), 중앙 제어부(60)의 입력정보를 바탕으로 소자 오븐(30) 및 4단 오븐(40)의 온도와 염착조(10)의 및 보색조(20)에 투입되는 조성물의 투입량을 보충하는 조성물 공급장치(50), 및 중앙 제어부(60)로 구성되어 있다.
따라서, PVA 필름은 염착조(10), 보색조(20), 소자 오븐(30), 및 4단 오븐(40)을 순차적으로 거쳐 편광필름이 된다.
염착조(10)에는 요오드, 요오드화칼륨과 붕산의 농도(C12, C14)를 측정하기 위한 요오드 농도 측정기(12), 요오드화칼륨 농도 측정기(14) 및 붕산 농도 측정기(16)가 설치되어 있고, 보색조(20)에는 요오드화칼륨의 농도(C22)를 측정하기 위한 요오드화칼륨 농도 측정기(22)가 설치되어 있다.
또한, 2개의 오븐들로 이루어진 소자 오븐(30)과 4개의 오븐들로 이루어진 4단 오븐(40)에는 오븐의 온도들(T32, T34, T42, T44, T46, T48)을 측정하기 위한 2개의 소자 오븐 온도 측정기들(32, 34)과 4개의 4단 오븐 측정기들(42, 44, 46, 48)이 설치되어 있다.
중앙 제어부(60)는 염착조(10)의 요오드, 요오드화칼륨과 붕산 농도 측정기(12. 14, 16), 보색조(20)의 요오드화칼륨 농도 측정기(22), 및 소자 오븐(30)과 4단 오븐(40)의 온도 측정기들(32, 34, 42, 44, 46, 48)부터 측정된 입력 데이터의 특성과 연속공정에 투입되는 PVA 필름의 특성에 대한 정보를 바탕으로, 소자 오븐(30) 및 4단 오븐(40)의 온도와 염착조(10) 및 보색조(20)에 투입되는 조성물의 투입량을 제어하고 있다.
염착조(10)에 투입되는 조성물은 요오드, 요오드화칼륨 및 붕산이고, 보색조(20)에 투입되는 조성물은 요오드화칼륨이다. 아울러, 중앙 제어부(60)는 편광필름의 투과도를 조절하기 위해, 염착조(10)의 요오드 농도 측정기(12)를 통해 기설정된 요오드의 저농도(0.5 ppm 내지 50 ppm)를 유지하기 위한 요오드 투입량을 결정하여 조성물 공급장치(50)를 통해 투입하도록 실기간으로 제어하고 있다.
PVA 필름의 투과도 예측은 부분 최소 자승법 기반의 PVA 필름 투과도 모델인 다중회귀 분석법에 의해 달성된다.
도 2에는 본 발명의 하나의 실시예에 따른 편광필름 제조방법의 흐름도가 모식적으로 도시되어 있다.
도 2를 도 1과 함께 참조하면, 본 발명에 따른 편광필름 제조방법(902)은, 기재필름인 폴리비닐알콜(PVA) 필름을 수세하는 수세단계(100); 수세한 PVA 필름을 팽윤조에서 팽윤시키는 팽윤단계(200); 수세한 PVA 필름을 요오드 수용액과 요오드화칼륨 수용액이 담긴 염착조(10)에 침지하여 염색하고, 요오드 농도 측정기(12)와 요오드화칼륨 농도 측정기(14)가 염착조(10)의 요오드, 요오드화칼륨과 붕산의 농도를 측정하는 염착단계(300); 염착된 PVA 필름을 세정조에서 세정하는 세정단계(400); 요오드, 요오드화칼륨과 붕산이 염착된 PVA 필름을 연신롤러에 의해 연신하여 염착된 요오드, 요오드화칼륨과 붕산을 배향시키는 연신단계(500); 요오드, 요오드화칼륨과 붕산이 염착된 PVA 필름을 요오드화칼륨 수용액이 담긴 보색조(20)에 침지하여 염색하고, 요오드화칼륨 농도 측정기(22)가 보색조(20)의 요오드화칼륨의 농도를 측정하는 보색단계(600); 요오드, 요오드화칼륨과 붕산이 배향된 PVA 필름을 소자 오븐(30)에서 건조하고 소자 오븐 온도 측정기들(32, 34)이 소자 오븐(30)의 온도를 측정하는 제 1 건조단계(700); 소자 오븐(30)에서 건조된 PVA 필름을 4단 오븐(40)에서 건조하고 4단 오븐 측정기들(42, 44, 46, 48)이 4단 오븐(40)의 온도를 측정하는 제 2 건조단계(800); 및 중앙 제어부(60)가 염착조(10)의 요오드, 요오드화칼륨과 붕산 농도 측정기(12, 14), 보색조(20)의 요오드화칼륨 농도 측정기(22), 및 소자 오븐(30)과 4단 오븐(40)의 온도 측정기들(32, 34, 42, 44, 46, 48)로부터 측정된 입력 데이터의 특성과 연속공정에 투입되는 PVA 필름의 특성에 대한 정보를 바탕으로, 소자 오븐(30) 및 4단 오븐(40)의 온도와 염착조(10) 및 보색조(20)에 투입되는 조성물의 투입량을 제어하는 제어단계(900);로 구성되어 있다.
염착단계(300)에서 PVA 필름은 20 내지 40℃ 온도의 요오드, 요오드화칼륨과 붕산 수용액이 담긴 염착조(10)에 침지하여 염색되고, 1 건조단계(700) 및 2 건조단계(800)에서 PVA 필름은 40 내지 60℃ 온도의 조건으로 소자 오븐(30) 및 4단 오븐(40)에서 건조된다.
도 3에는 본 발명의 또 다른 실시예에 따른 편광필름 제조장치의 구성도가 모식적으로 도시되어 있다.
도 3을 도 1 및 도 2와 함께 참조하면, 편광판(108)은 도 1의 편광필름 제조장치(90)에 의해 연신된 편광필름(102)의 상면과 하면에 각각 트리아세틸 셀룰로오스로 이루어진 보호필름(104, 106)을 부착하여 제조된다.
연신단계(500)는 연신롤러의 회전속도의 변화에 따라 제 1 연신수조에 의한 제 1 연신단계와 제 2 연신수조에 의한 제 2 연신단계로 이루어지고, 제 1 연신단계에서의 PVA 필름의 연신배율이 1.5 내지 3.0배이며, 제 2 연신단계에서의 PVA 필름의 연신배율이 2.0 내지 3.0배로 이루어져 있다.
또한, 편광필름 제조장치(92)는 기재필름인 폴리비닐알콜(PVA) 필름을 수세하는 수세조(51), 수세한 PVA 필름을 팽윤시키는 팽윤조(53), 요오드, 요오드화칼륨과 붕산이 염착된 PVA 필름을 연신롤러에 의해 연신하여 염착된 요오드, 요오드화칼륨과 붕산을 배향시키는 연신조(52), 및 염착된 PVA 필름을 세정하는 세정조(54)를 포함하고 있다.
도 4 및 도 5에는 본 발명의 하나의 실시예에 따른 투과도를 조절하기 위한 요오드 제어 과정의 모식도들이 개략적으로 도시되어 있다.
이들 도면을 도 1 내지 도 3과 함께 참조하면, 우선, 편광필름 제조장치(92)의 염착조(10)에는 조성물 공급장치(50)의 작동으로 펌프(200)를 통해 요오드가 투입되고, 펌프(200)로부터 투입되는 개시 지점에서 측정된 요오드 농도와 염착조(10) 내의 중앙부위에서의 요오드 농도의 편차를 기반으로 염착조(10) 내의 중앙부위에서 측정된 요오드 농도가 기설정된 범위의 저농도(대략 0.5 ppm 내지 50 ppm)가 유지되도록 펌프(200)로부터 요오드 투입량이 중앙 제어부(60)의 명령에 따라 조성물 공급장치(50)에 의해 조절된다. 여기서, 펌프(200)를 통해 투입되는 요오드 투입량 조절은 사용 환경에 따라 요구되는 투과도(Ts)의 기 설정값에 따라 자동적으로 제어되며, 상기 투과도(Ts)는, 도 5에 나타난 바와 같이, 염착조(10) 및 소자 건조 오븐(30)의 온도와 연신조(52)의 필름 연신비를 고려한 데이터를 반영하여 설정된다.
이에 따라, 도 4에 도시되어 있는 바와 같이, 1차적으로 요오드 농도의 모형화(A)가 이루어지면 현재 요오드 농도와 예측 요오드 농도값의 상관도가 대략 86%를 나타내고, 2차적으로 투과도 모형화(B)가 이루어지면서 실제 소자 투과도와 예측 소자 투과도의 상관도가 대략 95%를 나타내며 이러한 실험값에 대한 결과는 하기의 도 7 내지 도 8을 통해 확인할 수 있다.
도 6에는 본 발명에 따른 편광필름 제조장치에 적용되는 투과도 예측 모델 시스템이 모식적으로 도시되어 있다.
도 6을 도 1 내지 도 5와 함께 참조하면, 투과도 예측 모델시스템은 요오드 농도값을 입력하여 모형화하는 요오드 입력 모델(MI2)과 투과도(Ts)를 입력하여 모형화하는 투과도 입력 모델(MTs)을 포함하고 있다.
우선, 현재 염착조(10) 내의 현재 요오드 농도값(230: 1.80mM)을 기반으로 목표 요오드 농도값(210: 1.85mM)을 입력하면, 이들의 차이값(220: 0.05mM)이 표시된다. 여기에서, 투과도 입력 모델(MTs)에는 목표 소자 투과도(300)가 현재 단계(310)에 따라 상하한 조건이 변환되는 기설정값(43.2%)이 입력된다.
이 후에, 현재 염착조(10) 내의 편광필름의 투과도(320: 43.7%), 편광필름의 이동 속도(400: 27m/min) 및 소자 오븐 온도(500: 90도)가 차례로 입력되면서 목표 오오드 농도값(210)과 현재 요오드 농도값(230)의 차이값(220: 0.05mM)이 '0'으로 나타나도록 펌프(200)를 통해 투입되는 요오드 투입량이 목표 소자 투과도(300)의 조건에 따라 실시간으로 조절된다.
또, 본 발명의 실험결과에 따르면, 상기 편광필름이 상기 염착조(10)의 중앙부위까지 도달하는데 필요한 시간은 대략 16분인 것으로 확인되었다.
도 7에는 본 발명에 따른 예측 요오드 농도값과 실측 요오드 농도값의 상관관계를 나타내는 그래프가 도시되어 있고, 도 8에는 본 발명에 따른 예측 편광필름의 투과도와 실제 편광필름의 투과도의 결과를 나타내는 그래프가 모식적으로 도시되어 있다.
도 7 및 도 8을 참조하면, 염착조의 현재 요오드 농도와 요오드 약액 투입 유량을 입력 데이터로 하여 다중 회귀분석 모델을 수행한 결과, 하기 도 7에서 보는 바와 같이 상관계수가 0.811로서 예측 요오드 농도값와 실측 요오드 농도값의 분포도가 매우 유사함을 확인할 수 있고, 편광필름의 투과도는, 주요 공정 변수인 요오드의 농도를 조절하여 달성될 수 있음을 확인할 수 있다.
편광필름의 투과도는 도 8에 도시된 바와 같이 상관계수가 0.973로서 기설정된 예측 소자 투과도값과 실측 소자 투과도값의 정확도가 매우 높음을 확인할 수 있다.
여기서, 그래프에 도시되어 있는 실선은 해당 변수의 편차를 나타낸다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 편광필름 제조장치는 염착조의 요오드, 요오드화칼륨과 붕산 농도 측정기, 보색조의 요오드화칼륨 농도 측정기, 및 소자 오븐과 4단 오븐의 온도 측정기로부터 측정된 입력 데이터의 특성과 연속공정에 투입되는 PVA 필름의 특성에 대한 정보를 바탕으로 편광필름의 주요 인자로서 투과도를 예측하기 위해, 상기 염착조의 요오드 농도를 기설정된 범위의 저농도가 유지되도록 요오드의 투입량을 실시간으로 제어함으로써, PVA 필름의 재료 손실 및 요오드 용액의 불필요한 낭비를 방지할 수 있다.
또, 편광필름의 제조를 위해, 투여되는 예측 요오드의 농도를 기준으로 현재 요오드 농도 및 기타 변수들을 고려하여 추가적인 요오드 용액의 투입량이 제어되므로, 통상적인 염착 과정에서 요구되는 시간을 단축시킬 수 있다.

Claims (17)

  1. 연속공정에 의해 기재필름에 요오드, 요오드화 칼륨과 붕산을 염색하여 편광 특성을 발휘하는 PVA 필름( 편광필름 )을 제조하는 장치로서,
    기재필름을 요오드, 요오드화 칼륨 및 붕산을 포함하는 수용액에 침지하여 염색하며, 상기 요오드가 기설정된 범위의 저농도로 유지되고 있는 염착조; 및
    상기 염착조의 일측에 구비되어 요오드를 연속적 또는 단속적인 점적(dropping) 방식으로 투입하는 적어도 하나의 펌프들;
    을 포함하고 있고,
    상기 펌프로부터 이격된 염착조의 임의의 지점에서 측정된 요오드 농도와 요오드가 펌프로부터 투입되는 지점의 요오드 농도의 편차에 기반하여, 상기 임의의 지점에서 측정된 요오드 농도가 기설정된 범위의 저농도가 유지되도록 요오드의 투입량을 제어하는 것을 특징으로 하는 장치.
  2. 제 1 항에 있어서, 상기 요오드의 저농도는 0.1 ppm 내지 100 ppm의 범위에서 설정되는 것을 특징으로 하는 장치.
  3. 제 1 항에 있어서, 상기 요오드의 저농도는 0.5 ppm 내지 50 ppm의 범위에서 설정되는 것을 특징으로 하는 장치.
  4. 제 1 항에 있어서, 상기 요오드의 투입량은 기설정된 범위의 저농도와 측정 시점에서 염착조의 요오드 농도의 편차를 반영한 계산치 또는 실험치 함수값에 의해 결정되는 것을 특징으로 하는 장치.
  5. 제 1 항에 있어서, 상기 펌프로부터 이격된 염착조의 임의의 지점은 염착조의 중앙 부위인 것을 특징으로 하는 장치.
  6. 제 5 항에 있어서, 상기 펌프로부터 이격된 염착조의 임의의 지점에서 측정된 요오드 농도와 요오드가 펌프로부터 투입되는 지점의 요오드 농도의 편차는 요오드 확산의 시간 지연(time delay)에 의해 나타나는 것을 특징으로 하는 장치.
  7. 제 1 항에 있어서, 상기 염착조에서 요오드의 확산 속도는 0.01m/min 내지 0.10m/min의 범위인 것을 특징으로 하는 장치.
  8. 제 5 항에 있어서, 상기 편광필름은, 상기 염착조에서 염색되는 과정에서, 상기 염착조 내에서 20m/min 내지 35m/min 범위의 속도로 이동되는 것을 특징으로 하는 장치.
  9. 제 1 항에 있어서, 상기 염착조는, 요오드, 요오드화 칼륨 및 붕산의 농도를 각각 측정하기 위한 요오드 농도 측정기, 요오드화 칼륨 농도 측정기 및 붕산 농도 측정기를 구비하고 있는 것을 특징으로 하는 장치.
  10. 제 1 항에 있어서, 상기 장치는
    요오드, 요오드화 칼륨 및 붕산이 염착된 PVA 필름을 요오드화 칼륨 수용액에 침지하여 염색하는 보색조로서, 요오드화 칼륨의 농도를 측정하기 위한 요오드화 칼륨 농도 측정기를 구비하고 있는 보색조;
    요오드, 요오드화 칼륨 및 붕산이 배향된 PVA 필름을 건조하는 소자 오븐으로서, 소자 오븐의 온도를 측정하기 위한 소자 오븐 온도 측정기를 구비하고 있는 소자 오븐; 및
    상기 염착조 및/또는 보색조의 요오드 투입량을 제어하는 중앙 제어부;
    를 추가로 포함하는 것을 특징으로 하는 장치.
  11. 제 1 항에 있어서, 상기 소자 오븐은 2개의 오븐으로 구성되어 있는 것을 특징으로 하는 장치.
  12. 제 1 항에 있어서, 상기 소자 오븐에서 건조된 PVA 필름을 건조하는 4단 오븐으로서, 4단 오븐의 온도를 측정하기 위한 4단 오븐 측정기를 구비하고 있는 4단 오븐을 더 포함하고 있는 것을 특징으로 하는 장치.
  13. 제 12 항에 있어서, 상기 4단 오븐은 4개의 오븐으로 구성되어 있는 것을 특징으로 하는 장치.
  14. 제 1 항에 있어서, 상기 요오드 투입량 조절에 따른 투과도 예측은 부분 최소 자승법(Partial Least Squares) 기반의 PVA 필름 투과도 예측 모델에 의해 달성되는 것을 특징으로 하는 장치.
  15. 제 1 항에 있어서, 기재필름인 폴리비닐알콜(PVA) 필름을 수세하는 수세조, 및 요오드, 요오드화 칼륨 및 붕산이 염착된 PVA 필름을 연신 롤러에 의해 연신하여 염착된 요오드, 요오드화 칼륨과 붕산을 배향시키는 연신조를 추가로 포함하는 것을 특징으로 하는 장치.
  16. 제 1 항에 있어서, 상기 PVA 필름을 팽윤시키는 팽윤조, 및 염착된 PVA 필름을 세정하는 세정조를 추가로 포함하는 것을 특징으로 하는 장치.
  17. 제 1 항에 따른 제어장치를 거쳐 제조된 편광필름의 상면과 하면에 각각 보호필름을 부착하여 제조된 것을 특징으로 하는 편광판.
PCT/KR2014/008495 2013-09-12 2014-09-12 편광필름의 제조장치 WO2015037929A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016540823A JP6257777B2 (ja) 2013-09-12 2014-09-12 偏光フィルムの製造装置
CN201480049321.9A CN105518562B (zh) 2013-09-12 2014-09-12 用于制备偏振膜的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130109842 2013-09-12
KR10-2013-0109842 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037929A1 true WO2015037929A1 (ko) 2015-03-19

Family

ID=52665955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008495 WO2015037929A1 (ko) 2013-09-12 2014-09-12 편광필름의 제조장치

Country Status (5)

Country Link
JP (1) JP6257777B2 (ko)
KR (1) KR101661250B1 (ko)
CN (1) CN105518562B (ko)
TW (1) TWI519407B (ko)
WO (1) WO2015037929A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802446A (zh) * 2015-11-27 2017-06-06 住友化学株式会社 偏振片的制造方法
CN114047181A (zh) * 2021-10-09 2022-02-15 万华化学集团股份有限公司 一种检测复合反渗透膜表面pva涂层的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105796B1 (ja) * 2015-11-27 2017-03-29 住友化学株式会社 偏光子の製造方法及びポリビニルアルコールの検出方法
CN113204067B (zh) * 2020-10-15 2023-05-23 合肥三利谱光电科技有限公司 一种偏光片用pva膜的染色工艺及偏光片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045982A1 (en) * 2002-12-12 2006-03-02 Koji Matsumoto Method for producing iodine type polarizing film
KR100866005B1 (ko) * 2001-09-28 2008-10-29 닛토덴코 가부시키가이샤 편광판 및 그 제조 방법과 액정 표시 장치
KR20110134833A (ko) * 2010-06-09 2011-12-15 주식회사 엘지화학 편광필름의 제조장치 및 제조방법
KR20130003465A (ko) * 2011-06-30 2013-01-09 주식회사 엘지화학 내구성 및 배향성이 우수한 편광자, 편광판 및 편광자 제조 방법
KR20130035193A (ko) * 2011-09-29 2013-04-08 주식회사 엘지화학 편광필름의 색상 제어장치 및 제어방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310640A (en) * 1976-07-19 1978-01-31 Hitachi Ltd Equipment for thin film forming
JP2000114225A (ja) * 1998-10-08 2000-04-21 Dainippon Screen Mfg Co Ltd 基板処理方法及び基板処理装置
TWI228606B (en) * 2003-10-07 2005-03-01 Optimax Tech Corp Method of auto-detection and feedback of the polarizer
JP4394431B2 (ja) * 2003-12-11 2010-01-06 住友化学株式会社 偏光フィルムの製造方法および偏光板の製造方法
WO2008001640A1 (fr) * 2006-06-30 2008-01-03 Tokai Senko K.K. Dispositif de surveillance de concentration de composant de solution colorante, dispositif de contrôle de concentration de composant et dispositif de teinte
JP5831249B2 (ja) * 2012-01-23 2015-12-09 住友化学株式会社 偏光フィルムとその製造方法及び偏光板
CN102967943A (zh) * 2012-12-12 2013-03-13 福建福晶科技股份有限公司 一种高透光率的偏振模块
CN203007125U (zh) * 2012-12-19 2013-06-19 江苏亨通光电股份有限公司 一种生产低偏振模色散光纤的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866005B1 (ko) * 2001-09-28 2008-10-29 닛토덴코 가부시키가이샤 편광판 및 그 제조 방법과 액정 표시 장치
US20060045982A1 (en) * 2002-12-12 2006-03-02 Koji Matsumoto Method for producing iodine type polarizing film
KR20110134833A (ko) * 2010-06-09 2011-12-15 주식회사 엘지화학 편광필름의 제조장치 및 제조방법
KR20130003465A (ko) * 2011-06-30 2013-01-09 주식회사 엘지화학 내구성 및 배향성이 우수한 편광자, 편광판 및 편광자 제조 방법
KR20130035193A (ko) * 2011-09-29 2013-04-08 주식회사 엘지화학 편광필름의 색상 제어장치 및 제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802446A (zh) * 2015-11-27 2017-06-06 住友化学株式会社 偏振片的制造方法
CN114047181A (zh) * 2021-10-09 2022-02-15 万华化学集团股份有限公司 一种检测复合反渗透膜表面pva涂层的方法

Also Published As

Publication number Publication date
JP2016532907A (ja) 2016-10-20
CN105518562A (zh) 2016-04-20
JP6257777B2 (ja) 2018-01-10
TW201513998A (zh) 2015-04-16
CN105518562B (zh) 2017-10-27
KR20150030629A (ko) 2015-03-20
KR101661250B1 (ko) 2016-09-29
TWI519407B (zh) 2016-02-01

Similar Documents

Publication Publication Date Title
WO2015037929A1 (ko) 편광필름의 제조장치
Okamura et al. Measuring mode propagation losses of integrated optical waveguides: a simple method
Batumalay et al. A study of relative humidity fiber-optic sensors
CN106896277A (zh) 一种基于微纳光纤倏逝场及电光聚合物的电场传感器
WO2011155725A2 (ko) 편광필름의 제조장치 및 제조방법
WO2013048058A2 (ko) 편광필름의 색상 제어장치 및 제어방법
CN204789331U (zh) 基于智能手机监测平台的光纤表面等离子体共振图像传感器
CN206095924U (zh) 一种长周期光纤光栅检测海水盐度的装置
CN109709197A (zh) Bod快速测定仪以及精确补偿测定方法
CN208350650U (zh) 便携式氨氮检测系统
Rojas-Sanchez et al. Simple method for the characterization of birefringence of single-mode optical fibers
Li et al. Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
WO1999066117A1 (en) Computer monitored dye bath
CN104729831B (zh) 一种fa漏光检测装置
CN110455680A (zh) 一种玻璃密度的测试装置
CN107519964B (zh) 一种可监控温度变化的玻璃消解试管
CN212780378U (zh) 一种基于光纤光栅的液体表面张力系数测量系统
SU1520406A1 (ru) Способ определени концентрационного распределени красител по поперечному сечению волокна
Zhu et al. Numerical simulation and modeling of viscous fluid residence time distribution in the melt spinning pack
Li et al. Colour effect on fibre diameter measurement with OFDA 2000
CN103823025B (zh) 用于细胞的抗冻剂溶液加入或取出程序筛选装置
CN110927123A (zh) 一种纤维油剂透光度快速检测装置及方法
CN104876436B (zh) 低偏振模色散光纤的制造方法及设备
Jia et al. Design of Multichannel Data Real-Time Processing System Based on Serial Port Communication
CN203053677U (zh) 多通道电控双折射液晶衰减波纹测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844903

Country of ref document: EP

Kind code of ref document: A1