WO2015037588A1 - Failure determination device for hybrid vehicles and failure determination method therefor - Google Patents

Failure determination device for hybrid vehicles and failure determination method therefor Download PDF

Info

Publication number
WO2015037588A1
WO2015037588A1 PCT/JP2014/073825 JP2014073825W WO2015037588A1 WO 2015037588 A1 WO2015037588 A1 WO 2015037588A1 JP 2014073825 W JP2014073825 W JP 2014073825W WO 2015037588 A1 WO2015037588 A1 WO 2015037588A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
failure determination
temperature
rotational speed
engine
Prior art date
Application number
PCT/JP2014/073825
Other languages
French (fr)
Japanese (ja)
Inventor
倫平 天野
創 田坂
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2015536586A priority Critical patent/JP6152422B2/en
Publication of WO2015037588A1 publication Critical patent/WO2015037588A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1088CVT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30404Clutch temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50661Limit transmission input torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5104Preventing failures
    • F16D2500/5106Overheat protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5108Failure diagnosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a technique for determining a clutch engagement failure (MIN pressure failure) due to insufficient hydraulic pressure supplied to a clutch in a hybrid vehicle.
  • JP2010-155590A discloses a hybrid vehicle in which an engine and a motor are arranged in series, a first clutch is arranged between the engine and the motor, and a second clutch is arranged between the motor and the drive wheel.
  • the EV mode travels only with the motor.
  • the HEV travels with the engine and the motor. It becomes a mode.
  • the failure determination as to whether or not a clutch engagement failure (MIN pressure failure) has occurred due to insufficient hydraulic pressure supplied to the clutch is determined if the engine blow-off is not suppressed by motor regeneration. This can be done based on the difference (difference between the rotational speed of the input side element and the rotational speed of the output side element). That is, if there is a rotational speed difference in the clutch when the select position such as D, R, etc. is operated to the travel position and the clutch is supposed to be engaged, it can be determined that a clutch engagement failure has occurred. .
  • the clutch temperature is estimated, and when it is determined that the estimated clutch temperature exceeds the upper limit, the driving force is cut to prevent the clutch temperature from rising further.
  • the clutch temperature is estimated based on the engagement torque capacity of the clutch and the rotational speed difference in the clutch.
  • the clutch temperature is actually large because the clutch is released or substantially released and the clutch heat generation is small.
  • the driving force is cut by the high-temperature protection process because it is erroneously estimated to be high. If the driving force is cut, the rotational speed difference in the clutch is reduced, and the determination method based on the rotational speed difference cannot determine the engagement failure of the clutch.
  • the present invention has been made in view of such a technical problem, and prevents failure determination processing for determining clutch engagement failure from interfering with high-temperature protection processing so that failure determination processing is performed correctly. For the purpose.
  • the temperature of the clutch exceeds the upper limit temperature based on the engine and motor arranged in series, the clutch arranged between the motor and the drive wheel, and the rotational speed difference in the clutch.
  • a high temperature protection unit that performs a driving force cut to zero the torque input to the clutch from the engine and the motor when it is determined that the temperature of the clutch exceeds the upper limit temperature.
  • a failure determination apparatus for a hybrid vehicle comprising: an engagement failure determination stage for determining an engagement failure of the clutch based on a rotational speed difference in the clutch; and the engagement failure determination unit determining an engagement failure of the clutch,
  • a failure determination device including a control interference prevention unit that prevents the driving force from being cut by the high temperature protection unit.
  • an engine and a motor arranged in series, a clutch arranged between the motor and the drive wheel, and the temperature of the clutch based on a difference in rotational speed between the clutches is an upper limit temperature.
  • a high-temperature protection unit that performs a driving force cut to zero torque input from the engine and the motor to the clutch;
  • a failure determination method for a hybrid vehicle comprising: determining a clutch engagement failure based on a rotational speed difference in the clutch; and determining the clutch engagement failure while performing the driving force cut by the high-temperature protection unit.
  • a failure determination method is provided that is not performed.
  • the clutch engagement failure is determined based on the rotational speed difference in the clutch, but the driving force is not cut by the high temperature protection of the clutch while the clutch engagement failure is determined. As a result, it is prevented that the rotational speed difference in the clutch is reduced due to the driving force cut and the clutch engagement failure cannot be determined (control interference is prevented), and the clutch engagement failure is correctly corrected based on the rotational speed difference in the clutch. Can be determined.
  • FIG. 1 is an overall configuration diagram of a hybrid vehicle to which a failure determination device according to an embodiment of the present invention is applied.
  • FIG. 2 is an example of the mode switching map.
  • FIG. 3 is a flowchart showing the contents of the failure determination process.
  • FIG. 4 is a map for setting the torque-down amount.
  • FIG. 5 is a flowchart showing the contents of the high temperature protection process.
  • FIG. 1 is an overall configuration diagram of a hybrid vehicle (hereinafter referred to as a vehicle) 100.
  • vehicle 100 includes an engine 1, a first clutch 2, a motor generator (hereinafter referred to as MG) 3, a first oil pump 4, a second oil pump 5, a second clutch 6, and a continuously variable transmission. (Hereinafter referred to as CVT) 7, drive wheel 8, and integrated controller 50.
  • MG motor generator
  • CVT continuously variable transmission
  • Engine 1 is an internal combustion engine that uses gasoline, diesel, or the like as fuel, and the rotational speed, torque, and the like are controlled based on commands from integrated controller 50.
  • the first clutch 2 is a normally open hydraulic clutch interposed between the engine 1 and the MG 3.
  • the first clutch 2 is engaged / released by the hydraulic pressure adjusted by the hydraulic control valve unit 71 using the discharge pressure of the first oil pump 4 or the second oil pump 5 as a source pressure based on a command from the integrated controller 50. Is controlled.
  • a dry multi-plate clutch is used as the first clutch 2.
  • MG3 is a synchronous rotating electric machine that is arranged in series with the engine 1, has a permanent magnet embedded in the rotor, and a stator coil wound around the stator.
  • the MG 3 is controlled by applying a three-phase alternating current generated by the inverter 9 based on a command from the integrated controller 50.
  • the MG 3 can operate as an electric motor that is rotationally driven by the supply of electric power from the battery 10. Further, when the rotor receives rotational energy from the engine 1 or the drive wheel 8, the MG 3 functions as a generator that generates electromotive force at both ends of the stator coil and can charge the battery 10.
  • the first oil pump 4 is a vane pump that operates when the rotation of the MG 3 is transmitted via the belt 4b.
  • the first oil pump 4 sucks up the hydraulic oil stored in the oil pan 72 of the CVT 7 and supplies the hydraulic pressure to the hydraulic control valve unit 71.
  • the second oil pump 5 is an electric oil pump that operates by receiving power from the battery 10.
  • the second oil pump 5 is driven when the amount of oil is insufficient with only the first oil pump 4 based on a command from the integrated controller 50, and is stored in the oil pan 72 of the CVT 7 in the same manner as the first oil pump 4.
  • the hydraulic oil is sucked up and the hydraulic pressure is supplied to the hydraulic control valve unit 71.
  • the second clutch 6 is interposed between the MG 3, the CVT 7, and the drive wheel 8.
  • the second clutch is controlled to be engaged and disengaged by the hydraulic pressure adjusted by the hydraulic control valve unit 71 using the discharge pressure of the first oil pump 4 or the second oil pump 5 as a source pressure based on a command from the integrated controller 50. Is done.
  • a normally open wet multi-plate clutch is used as the second clutch 6, for example.
  • the CVT 7 is arranged downstream of the MG 3 and can change the gear ratio steplessly according to the vehicle speed, the accelerator opening, and the like.
  • the CVT 7 includes a primary pulley, a secondary pulley, and a belt that spans both pulleys.
  • a primary pulley pressure and a secondary pulley pressure are generated by the hydraulic control valve unit 71 using the discharge pressure from the first oil pump 4 and the second oil pump 5 as a source pressure, and the movable pulley of the primary pulley and the movable pulley of the secondary pulley are generated by the pulley pressure.
  • the gear ratio is changed steplessly by moving the shaft in the axial direction and changing the pulley contact radius of the belt.
  • a differential 12 is connected to an output shaft of the CVT 7 via a final reduction gear mechanism (not shown), and a drive wheel 8 is connected to the differential 12 via a drive shaft 13.
  • the integrated controller 50 performs various controls on the engine 1, MG3 (inverter 9), and CVT 7 based on these input signals.
  • the integrated controller 50 calculates a required driving force (driving force that realizes the acceleration required by the driver) based on the accelerator opening APO and the vehicle speed VSP, and the engine 1 is configured so that the required driving force is realized. And MG3 torque are controlled respectively.
  • the integrated controller 50 sets the engagement torque capacity of the second clutch 6 capable of transmitting torque input from the engine 1 and the MG 3 as the target torque capacity Tc, and the engagement torque capacity of the second clutch 6 is set to the target torque capacity Tc.
  • the hydraulic pressure supplied to the second clutch 6 from the hydraulic control valve unit 71 is controlled so that
  • the integrated controller 50 calculates a target gear ratio based on the accelerator opening APO and the vehicle speed VSP, and controls the gear ratio of the CVT 7 so that the target gear ratio is realized.
  • the integrated controller 50 switches between the EV mode and the HEV mode as the operation mode of the vehicle 100 with reference to the mode switching map shown in FIG.
  • EV mode is a mode in which the first clutch 2 is disengaged and only MG3 is used as a drive source.
  • the EV mode is selected when the required driving force is low and the SOC of the battery 10 is sufficient.
  • the HEV mode is a mode in which the first clutch 2 is engaged and the engine 1 and the MG 3 are used as driving sources.
  • the HEV mode is selected when the required driving force is high or when the SOC of the battery 10 is insufficient.
  • the switching line from the EV mode to the HEV mode is set at a higher vehicle speed side and a larger accelerator opening than the switching line from the HEV mode to the EV mode so that the switching between the EV mode and the HEV mode is not hunting.
  • the integrated controller 50 performs WSC control that starts and stops while slipping the second clutch 6.
  • the integrated controller 50 is supplied to the second clutch 6.
  • the hydraulic pressure is gradually increased, and the second clutch 6 is gradually engaged while slipping.
  • VSP1 the integrated controller 50 completely engages the second clutch 6, and ends the WSC control.
  • the integrated controller 50 gradually increases the hydraulic pressure supplied to the second clutch 6.
  • the second clutch 6 is gradually released while slipping.
  • the integrated controller 50 completely releases the second clutch 6 and ends the WSC control.
  • the integrated controller 50 controls the engine 1 and the MG 3 so that the rotational speed difference in the second clutch 6 becomes the target rotational speed difference.
  • the durability of the second clutch 6 decreases, so the temperature of the second clutch 6 is estimated, and the estimated temperature of the second clutch 6 is the upper limit.
  • the driving force is cut so that the torque input from the engine 1 and the MG 3 to the second clutch 6 becomes zero, and the durability of the second clutch 6 is prevented from deteriorating due to heat generation (high temperature protection). processing).
  • FIG. 3 is a flowchart showing the content of the failure determination process of the second clutch 6 performed by the integrated controller 50.
  • the integrated controller 50 determines whether a failure determination condition is satisfied.
  • the failure judgment condition is that the CVT 7 select position is in a driving position such as D, R, etc., the accelerator opening is larger than 0, the operation mode is not being switched, the select position is not being changed, and a sensor failure has occurred. Is determined to have been established. If the failure determination condition is satisfied, the process proceeds to S2, and if not, the process ends.
  • the integrated controller 50 reads the accelerator opening APO, the vehicle speed VSP, the rotational speed Ne of the engine 1, the rotational speed Nm of MG3, and the input rotational speed Nin of CVT7.
  • the accelerator opening APO, the vehicle speed VSP, the rotational speed Ne of the engine 1, and the input rotational speed Nin of the CVT 7 are values detected by sensors, and the rotational speed Nm of MG3 is a value calculated from a control signal of MG3. .
  • the integrated controller 50 calculates the actual torque Te of the engine 1 and the actual torque Tm of the MG3.
  • the actual torque Te of the engine 1 can be calculated by referring to the torque map of the engine 1 based on the accelerator opening APO and the rotational speed Ne of the engine 1.
  • the actual torque of MG3 can be calculated based on the electrical load (current value) of MG3.
  • the integrated controller 50 calculates the target torque capacity Tc of the second clutch 6.
  • the target torque capacity Tc is an engagement torque capacity of the second clutch 6 capable of transmitting torque input from the engine 1 and MG3.
  • the integrated controller 50 determines whether or not the blow of the engine 1 when the second clutch 6 is poorly engaged can be suppressed by regeneration of the MG3. Whether the engine 1 can be blown or not depends on the actual torque of the engine 1 and the regenerative capacity of the MG 3.
  • the accelerator opening APO is smaller than the predetermined opening APOth, or the SOC of the battery 10 is a predetermined predetermined value.
  • the integrated controller 50 determines that there is a possibility that the second clutch 6 is defectively engaged, and the process proceeds to S7. Otherwise, the process proceeds to S15.
  • the integrated controller 50 sets the failure determination flag to 1 and counts up the failure determination timer.
  • the failure determination timer is a timer for measuring a time during which the torque deviation is larger than the first failure determination value ⁇ 1.
  • the integrated controller 50 determines whether the value of the failure determination timer is greater than the failure determination threshold value TFAIL. When the value of the failure determination timer is larger than the failure determination threshold value TFAIL, the process proceeds to S9, and the integrated controller 50 determines that the engagement failure has occurred in the second clutch 6.
  • the pseudo-D state is a state in which the second clutch 6 is not engaged due to the operation delay of the hydraulic control valve unit 71 even though the integrated position is recognized as the travel position because the select position is the travel position. is there. Since the torque deviation is likely to be resolved within a short time in the pseudo D state, it is possible to distinguish the pseudo D state from the engagement failure of the second clutch 6 by using the failure determination timer in this way. it can.
  • the integrated controller 50 sets and sets the torque reduction amount with reference to the map shown in FIG.
  • the torque of the engine 1 is reduced according to the amount of torque reduction.
  • the temperature of the second clutch 6 is erroneously estimated to be high in the high temperature protection process described later, and the driving force is cut, so that the rotational speed difference in the second clutch 6 is reduced and the engagement failure of the second clutch can be determined. Prevent disappearance.
  • the torque-down amount is set when the rotational speed difference in the second clutch 6 calculated based on the rotational speed Nm of the MG 3 and the input rotational speed Nin of the CVT 7 is a predetermined value or more.
  • the predetermined value is a lower limit value of the rotational speed difference that may cause the engagement failure of the second clutch 6.
  • the torque reduction amount is set to 0 so that unnecessary torque reduction is not performed.
  • the torque reduction amount when the rotational speed difference is equal to or larger than a predetermined value is set to a larger value as the rotational speed difference in the second clutch 6 becomes larger and as the required torque capacity of the second clutch 6 becomes larger. This is because, as these values increase, the temperature of the second clutch 6 estimated in the high temperature protection process increases and interference between the failure determination process and the high temperature protection process easily occurs. This is because in order to suppress an increase in the temperature of the two-clutch 6, it is necessary to increase the torque-down amount and reduce the engagement torque capacity.
  • the integrated controller 50 calculates the rotational speed difference in the second clutch 6 based on the rotational speed Nm of the MG 3 and the input rotational speed Nin of the CVT 7, and determines whether this is greater than the second failure determination value ⁇ 2. Since the temperature of the second clutch 6 estimated by the high-temperature protection process is lowered by reducing the torque of the engine 1 in S10, the driving force is not cut, and the second clutch 6 has a poor engagement. If it occurs, even if the torque of the engine 1 is reduced, the engine 1 is blown away. Therefore, it is possible to correctly determine the engagement failure of the second clutch 6 based on the rotational speed difference. If the rotational speed difference is larger than the second failure determination value ⁇ 2, the process proceeds to S12 on the assumption that there is a possibility that the second clutch 6 is defectively engaged, and if not, the process proceeds to S15.
  • the processing from S12 to S14 is the same as the processing from S7 to S9.
  • the failure determination flag is set to 1 and the failure determination timer is counted up (S12). While the value of the failure determination timer is smaller than the failure determination threshold value TFAIL, the pseudo D state is determined (S13 ⁇ S14), and when the value of the failure determination timer becomes larger than the failure determination threshold value TFAIL, the second clutch 6 is determined that a fastening failure has occurred (S13 ⁇ S9).
  • the integrated controller 50 determines whether the return determination condition is satisfied.
  • the return determination condition is determined to be satisfied when either of the following two conditions is satisfied. Torque deviation ⁇ first return determination value ⁇ 1, and rotational speed difference ⁇ second return determination value ⁇ 2 ⁇ Accelerator opening APO> 0 and rotational speed difference ⁇ 0
  • the integrated controller 50 determines whether the return determination timer has become larger than the return determination threshold value TSAFE. If it is determined that the return determination timer has become larger than the return determination threshold value TSAFE, the process proceeds to S19, and the integrated controller 50 resets the failure determination timer and the return determination timer, and determines that the second clutch 6 is normal. To do.
  • the engagement failure (MIN pressure failure) of the second clutch 6 is determined.
  • FIG. 5 is a flowchart showing the contents of the high temperature protection process of the second clutch 6 performed by the integrated controller 50.
  • the integrated controller 50 multiplies the engagement torque capacity of the second clutch 6 by the rotational speed difference in the second clutch 6 to generate the heat generation rate of the second clutch 6 (the second clutch 6 in a minute time). Calorific value) at the same time.
  • the target torque capacity Tc is used as the engagement torque capacity of the second clutch 6.
  • the integrated controller 50 time-integrates the heat generation rate of the second clutch 6 calculated in S21, calculates the heat generation amount of the second clutch 6, and estimates the temperature of the second clutch 6 based on this.
  • the integrated controller 50 determines whether the estimated temperature of the second clutch 6 exceeds the upper limit temperature.
  • the upper limit temperature is set to a temperature that is lower by a predetermined value than the temperature at which the durability of the second clutch 6 is reduced by heat. If it is determined that the temperature of the second clutch 6 exceeds the upper limit temperature, the process proceeds to S24.
  • the integrated controller 50 performs the fuel cut of the engine 1 and the energization stop of the MG 3 to zero the torque input to the second clutch 6 from the engine 1 and MG 3 (driving force cut).
  • the failure determination process and the high-temperature protection process are performed simultaneously, and when the poor engagement of the second clutch 6 is determined based on the rotational speed difference, the temperature estimation value of the second clutch 6 becomes high and the driving is performed. If force cutting is performed, the rotational speed difference in the second clutch 6 is reduced, and it becomes impossible to determine the engagement failure of the second clutch 6. That is, interference occurs between the failure determination process and the high temperature protection process.
  • the torque reduction of the engine 1 is performed while the failure of the engagement of the second clutch 6 is determined based on the rotational speed difference in the second clutch 6. (Target torque capacity Tc) decreases, and the temperature of the second clutch 6 estimated by the high temperature protection process decreases. As a result, the high-temperature protection treatment does not function substantially and the driving force is not cut.
  • the engagement failure occurs in the second clutch 6, the engine 1 is blown even if the torque of the engine 1 is reduced, and the rotational speed difference in the second clutch 6 becomes large. A fastening failure can be determined.
  • the temperature of the second clutch 6 is specifically estimated, and it is determined whether or not the driving force cut is to be performed based on the estimated temperature of the second clutch 6, but is calculated in S21. If the heat generation rate or the heat generation amount calculated in S22 exceeds the upper limit value, it may be determined that the temperature of the second clutch 6 exceeds the upper limit temperature, and the driving force may be cut.
  • the torque of the engine 1 is reduced while the second clutch 6 is judged to be poorly engaged based on the rotational speed difference in the second clutch 6 so that the temperature of the second clutch 6 is not erroneously estimated to be high.
  • the method for preventing the high temperature protection control from functioning is not limited to this.
  • the estimated temperature of the second clutch 6 is fixed to a value lower than the upper limit temperature, or the estimated value of the second clutch 6 is estimated. Even if the temperature exceeds the upper limit temperature, the high temperature protection control may not be functioned, for example, by not performing the driving force cut.
  • the vehicle 100 includes the CVT 7 as a transmission.
  • CVT 7 instead of the CVT 7, another type of transmission (step AT, toroidal CVT, 2 pedal MT, etc.) may be included.

Abstract

An integrated controller determines whether or not the temperature of a second clutch has exceeded an upper limit temperature, on the basis of the difference in rotation speed in the second clutch, and, if a determination is made that the temperature of the second clutch exceeds the upper limit temperature, cuts drive force (high-temperature protection processing) such that the torque that is input to the second clutch from an engine and an MG is zero. In addition, the integrated controller determines second clutch engagement failure on the basis of the rotation speed difference in the second clutch and, while a second clutch engagement failure has been determined, does not cut drive force by using high-temperature protection processing.

Description

ハイブリッド車両の故障判定装置及びその故障判定方法Hybrid vehicle failure determination device and failure determination method thereof
 本発明は、ハイブリッド車両において、クラッチに供給される油圧が不足することによるクラッチの締結不良(MIN圧故障)を判定する技術に関する。 The present invention relates to a technique for determining a clutch engagement failure (MIN pressure failure) due to insufficient hydraulic pressure supplied to a clutch in a hybrid vehicle.
 JP2010-155590Aには、エンジンとモータとを直列に配置し、エンジンとモータとの間に第1クラッチ、モータと駆動輪との間に第2クラッチを配置したハイブリッド車両が開示されている。 JP2010-155590A discloses a hybrid vehicle in which an engine and a motor are arranged in series, a first clutch is arranged between the engine and the motor, and a second clutch is arranged between the motor and the drive wheel.
 このような構成のハイブリッド車両においては、第1クラッチを解放し第2クラッチを締結すればモータのみで走行するEVモードとなり、第1クラッチ及び第2クラッチを締結すればエンジン及びモータで走行するHEVモードとなる。 In the hybrid vehicle having such a configuration, when the first clutch is released and the second clutch is engaged, the EV mode travels only with the motor. When the first clutch and the second clutch are engaged, the HEV travels with the engine and the motor. It becomes a mode.
 また、発進時又は減速して停車する時に第2クラッチをスリップさせるWSC(Wet Start Clutch)制御を行うことによって、トルクコンバータに頼ることなく、スムーズな発進及び停車を実現している。 Also, by starting WSC (Wet Start Clutch) control that slips the second clutch when starting or decelerating and stopping, smooth start and stop are realized without relying on a torque converter.
 クラッチに供給される油圧が不足してクラッチの締結不良(MIN圧故障)が生じているか否かの故障判定は、エンジンの空吹きがモータの回生によって抑制されない状況であれば、クラッチにおける回転速度差(入力側要素の回転速度と出力側要素の回転速度との差)に基づき行うことができる。すなわち、D、R等のセレクトポジションが走行ポジションに操作されてクラッチが締結されているはずの状態でクラッチにおいて回転速度差がある場合は、クラッチの締結不良が生じていると判定することができる。 The failure determination as to whether or not a clutch engagement failure (MIN pressure failure) has occurred due to insufficient hydraulic pressure supplied to the clutch is determined if the engine blow-off is not suppressed by motor regeneration. This can be done based on the difference (difference between the rotational speed of the input side element and the rotational speed of the output side element). That is, if there is a rotational speed difference in the clutch when the select position such as D, R, etc. is operated to the travel position and the clutch is supposed to be engaged, it can be determined that a clutch engagement failure has occurred. .
 一方、クラッチ温度を推定し、推定されたクラッチ温度が上限を超えると判断される場合には駆動力をカットして、クラッチ温度がそれ以上上昇しないようにする高温保護処理も行われている。クラッチ温度は、クラッチの締結トルク容量及びクラッチにおける回転速度差に基づき推定される。 On the other hand, the clutch temperature is estimated, and when it is determined that the estimated clutch temperature exceeds the upper limit, the driving force is cut to prevent the clutch temperature from rising further. The clutch temperature is estimated based on the engagement torque capacity of the clutch and the rotational speed difference in the clutch.
 しかしながら、これら故障判定処理と高温保護処理とが同時に行われる状況では、これら2つの制御の干渉が問題となる However, in the situation where these failure determination processing and high-temperature protection processing are performed simultaneously, interference between these two controls becomes a problem.
 すなわち、上記クラッチの締結不良が生じている状況では、実際には、クラッチが解放又は略解放されているのでクラッチの発熱が少ないにも関わらず、クラッチにおける回転速度差が大きいためにクラッチ温度が誤って高く推定され、高温保護処理により駆動力カットが行われてしまう場合がある。駆動力カットが行われてしまうと、クラッチにおける回転速度差が縮小し、回転速度差に基づく判定方法ではクラッチの締結不良を判定することができなくなる。 That is, in the situation where the clutch is poorly engaged, the clutch temperature is actually large because the clutch is released or substantially released and the clutch heat generation is small. There is a case where the driving force is cut by the high-temperature protection process because it is erroneously estimated to be high. If the driving force is cut, the rotational speed difference in the clutch is reduced, and the determination method based on the rotational speed difference cannot determine the engagement failure of the clutch.
 本発明は、このような技術的課題に鑑みてなされたもので、クラッチの締結不良を判定する故障判定処理が高温保護処理と干渉するのを防止し、故障判定処理が正しく行われるようにすることを目的とする。 The present invention has been made in view of such a technical problem, and prevents failure determination processing for determining clutch engagement failure from interfering with high-temperature protection processing so that failure determination processing is performed correctly. For the purpose.
 本発明のある態様によれば、直列に配置されるエンジン及びモータと、前記モータと駆動輪との間に配置されるクラッチと、前記クラッチにおける回転速度差に基づき前記クラッチの温度が上限温度を超えるか判断し、前記クラッチの温度が前記上限温度を超えると判断される場合には前記エンジン及び前記モータから前記クラッチに入力されるトルクをゼロにする駆動力カットを行う高温保護部と、を備えたハイブリッド車両の故障判定装置であって、前記クラッチにおける回転速度差に基づき前記クラッチの締結不良を判定する締結不良判定段と、前記締結不良判定部が前記クラッチの締結不良を判定する間、前記高温保護部による前記駆動力カットが行われないようにする制御干渉防止部と、を備えた故障判定装置が提供される。 According to an aspect of the present invention, the temperature of the clutch exceeds the upper limit temperature based on the engine and motor arranged in series, the clutch arranged between the motor and the drive wheel, and the rotational speed difference in the clutch. A high temperature protection unit that performs a driving force cut to zero the torque input to the clutch from the engine and the motor when it is determined that the temperature of the clutch exceeds the upper limit temperature. A failure determination apparatus for a hybrid vehicle, comprising: an engagement failure determination stage for determining an engagement failure of the clutch based on a rotational speed difference in the clutch; and the engagement failure determination unit determining an engagement failure of the clutch, There is provided a failure determination device including a control interference prevention unit that prevents the driving force from being cut by the high temperature protection unit.
 本発明の別の態様によれば、直列に配置されるエンジン及びモータと、前記モータと駆動輪との間に配置されるクラッチと、前記クラッチにおける回転速度差に基づき前記クラッチの温度が上限温度を超えるか判断し、前記クラッチの温度が前記上限温度を超えると判断される場合には前記エンジン及び前記モータから前記クラッチに入力されるトルクをゼロにする駆動力カットを行う高温保護部と、を備えたハイブリッド車両の故障判定方法であって、前記クラッチにおける回転速度差に基づき前記クラッチの締結不良を判定し、前記クラッチの締結不良を判定する間、前記高温保護部による前記駆動力カットを行わない、故障判定方法が提供される。 According to another aspect of the present invention, an engine and a motor arranged in series, a clutch arranged between the motor and the drive wheel, and the temperature of the clutch based on a difference in rotational speed between the clutches is an upper limit temperature. When the temperature of the clutch is determined to exceed the upper limit temperature, a high-temperature protection unit that performs a driving force cut to zero torque input from the engine and the motor to the clutch; A failure determination method for a hybrid vehicle, comprising: determining a clutch engagement failure based on a rotational speed difference in the clutch; and determining the clutch engagement failure while performing the driving force cut by the high-temperature protection unit. A failure determination method is provided that is not performed.
 これらの態様によれば、クラッチにおける回転速度差に基づきクラッチの締結不良が判定されるが、クラッチの締結不良を判定する間はクラッチの高温保護による駆動力カットが行われない。これにより、駆動力カットが原因でクラッチにおける回転速度差が縮小してクラッチの締結不良が判定できなくなるのが防止され(制御干渉の防止)、クラッチにおける回転速度差に基づきクラッチの締結不良を正しく判定することができる。 According to these aspects, the clutch engagement failure is determined based on the rotational speed difference in the clutch, but the driving force is not cut by the high temperature protection of the clutch while the clutch engagement failure is determined. As a result, it is prevented that the rotational speed difference in the clutch is reduced due to the driving force cut and the clutch engagement failure cannot be determined (control interference is prevented), and the clutch engagement failure is correctly corrected based on the rotational speed difference in the clutch. Can be determined.
図1は、本発明の実施形態に係る故障判定装置が適用されるハイブリッド車両の全体構成図である。FIG. 1 is an overall configuration diagram of a hybrid vehicle to which a failure determination device according to an embodiment of the present invention is applied. 図2は、モード切換マップの一例である。FIG. 2 is an example of the mode switching map. 図3は、故障判定処理の内容を示したフローチャートである。FIG. 3 is a flowchart showing the contents of the failure determination process. 図4は、トルクダウン量を設定するためのマップである。FIG. 4 is a map for setting the torque-down amount. 図5は、高温保護処理の内容を示したフローチャートである。FIG. 5 is a flowchart showing the contents of the high temperature protection process.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、ハイブリッド車両(以下、車両という。)100の全体構成図である。車両100は、エンジン1と、第1クラッチ2と、モータジェネレータ(以下、MGという。)3と、第1オイルポンプ4と、第2オイルポンプ5と、第2クラッチ6と、無段変速機(以下、CVTという。)7と、駆動輪8と、統合コントローラ50とを備える。 FIG. 1 is an overall configuration diagram of a hybrid vehicle (hereinafter referred to as a vehicle) 100. The vehicle 100 includes an engine 1, a first clutch 2, a motor generator (hereinafter referred to as MG) 3, a first oil pump 4, a second oil pump 5, a second clutch 6, and a continuously variable transmission. (Hereinafter referred to as CVT) 7, drive wheel 8, and integrated controller 50.
 エンジン1は、ガソリン、ディーゼル等を燃料とする内燃機関であり、統合コントローラ50からの指令に基づいて、回転速度、トルク等が制御される。 Engine 1 is an internal combustion engine that uses gasoline, diesel, or the like as fuel, and the rotational speed, torque, and the like are controlled based on commands from integrated controller 50.
 第1クラッチ2は、エンジン1とMG3との間に介装されたノーマルオープンの油圧式クラッチである。第1クラッチ2は、統合コントローラ50からの指令に基づき、第1オイルポンプ4又は第2オイルポンプ5の吐出圧を元圧として油圧コントロールバルブユニット71によって調圧された油圧によって、締結・解放状態が制御される。第1クラッチ2としては、例えば、乾式多板クラッチが用いられる。 The first clutch 2 is a normally open hydraulic clutch interposed between the engine 1 and the MG 3. The first clutch 2 is engaged / released by the hydraulic pressure adjusted by the hydraulic control valve unit 71 using the discharge pressure of the first oil pump 4 or the second oil pump 5 as a source pressure based on a command from the integrated controller 50. Is controlled. For example, a dry multi-plate clutch is used as the first clutch 2.
 MG3は、エンジン1に対して直列に配置され、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型回転電機である。MG3は、統合コントローラ50からの指令に基づいて、インバータ9により作り出された三相交流を印加することにより制御される。MG3は、バッテリ10からの電力の供給を受けて回転駆動する電動機として動作することができる。また、MG3は、ロータがエンジン1や駆動輪8から回転エネルギーを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ10を充電することができる。 MG3 is a synchronous rotating electric machine that is arranged in series with the engine 1, has a permanent magnet embedded in the rotor, and a stator coil wound around the stator. The MG 3 is controlled by applying a three-phase alternating current generated by the inverter 9 based on a command from the integrated controller 50. The MG 3 can operate as an electric motor that is rotationally driven by the supply of electric power from the battery 10. Further, when the rotor receives rotational energy from the engine 1 or the drive wheel 8, the MG 3 functions as a generator that generates electromotive force at both ends of the stator coil and can charge the battery 10.
 第1オイルポンプ4は、MG3の回転がベルト4bを介して伝達されることによって動作するベーンポンプである。第1オイルポンプ4は、CVT7のオイルパン72に貯留される作動油を吸い上げ、油圧コントロールバルブユニット71に油圧を供給する。 The first oil pump 4 is a vane pump that operates when the rotation of the MG 3 is transmitted via the belt 4b. The first oil pump 4 sucks up the hydraulic oil stored in the oil pan 72 of the CVT 7 and supplies the hydraulic pressure to the hydraulic control valve unit 71.
 第2オイルポンプ5は、バッテリ10から電力の供給を受けて動作する電動オイルポンプである。第2オイルポンプ5は、統合コントローラ50からの指令に基づき、第1オイルポンプ4のみでは油量が不足する場合に駆動され、第1オイルポンプ4と同様にCVT7のオイルパン72に貯留される作動油を吸い上げ、油圧コントロールバルブユニット71に油圧を供給する。 The second oil pump 5 is an electric oil pump that operates by receiving power from the battery 10. The second oil pump 5 is driven when the amount of oil is insufficient with only the first oil pump 4 based on a command from the integrated controller 50, and is stored in the oil pan 72 of the CVT 7 in the same manner as the first oil pump 4. The hydraulic oil is sucked up and the hydraulic pressure is supplied to the hydraulic control valve unit 71.
 第2クラッチ6は、MG3とCVT7及び駆動輪8との間に介装される。第2クラッチは、統合コントローラ50からの指令に基づき、第1オイルポンプ4又は第2オイルポンプ5の吐出圧を元圧として油圧コントロールバルブユニット71によって調圧された油圧により、締結・解放が制御される。第2クラッチ6としては、例えば、ノーマルオープンの湿式多板クラッチが用いられる。 The second clutch 6 is interposed between the MG 3, the CVT 7, and the drive wheel 8. The second clutch is controlled to be engaged and disengaged by the hydraulic pressure adjusted by the hydraulic control valve unit 71 using the discharge pressure of the first oil pump 4 or the second oil pump 5 as a source pressure based on a command from the integrated controller 50. Is done. As the second clutch 6, for example, a normally open wet multi-plate clutch is used.
 CVT7は、MG3の下流に配置され、車速やアクセル開度等に応じて変速比を無段階に変更することができる。CVT7は、プライマリプーリと、セカンダリプーリと、両プーリに掛け渡されたベルトとを備える。第1オイルポンプ4及び第2オイルポンプ5からの吐出圧を元圧として油圧コントロールバルブユニット71によってプライマリプーリ圧とセカンダリプーリ圧を作り出し、プーリ圧によりプライマリプーリの可動プーリとセカンダリプーリの可動プーリとを軸方向に動かし、ベルトのプーリ接触半径を変化させることで、変速比を無段階に変更する。 The CVT 7 is arranged downstream of the MG 3 and can change the gear ratio steplessly according to the vehicle speed, the accelerator opening, and the like. The CVT 7 includes a primary pulley, a secondary pulley, and a belt that spans both pulleys. A primary pulley pressure and a secondary pulley pressure are generated by the hydraulic control valve unit 71 using the discharge pressure from the first oil pump 4 and the second oil pump 5 as a source pressure, and the movable pulley of the primary pulley and the movable pulley of the secondary pulley are generated by the pulley pressure. The gear ratio is changed steplessly by moving the shaft in the axial direction and changing the pulley contact radius of the belt.
 CVT7の出力軸には、図示しない終減速ギヤ機構を介してディファレンシャル12が接続され、ディファレンシャル12には、ドライブシャフト13を介して駆動輪8が接続される。 A differential 12 is connected to an output shaft of the CVT 7 via a final reduction gear mechanism (not shown), and a drive wheel 8 is connected to the differential 12 via a drive shaft 13.
 統合コントローラ50には、エンジン1の回転速度Neを検出する回転速度センサ51、CVT7の入力回転速度Nin(=第2クラッチ6の出力回転速度)を検出する回転速度センサ52、アクセル開度APOを検出するアクセル開度センサ53、CVT7のセレクトポジション(前進、後進、ニュートラル及びパーキングを切り替えるセレクトレバー又はセレクトスイッチの状態)を検出するインヒビタスイッチ54、車速VSPを検出する車速センサ55等からの信号が入力される。統合コントローラ50は、入力されるこれら信号に基づき、エンジン1、MG3(インバータ9)、CVT7に対する各種制御を行う。 The integrated controller 50 includes a rotation speed sensor 51 that detects the rotation speed Ne of the engine 1, a rotation speed sensor 52 that detects an input rotation speed Nin of the CVT 7 (= output rotation speed of the second clutch 6), and an accelerator opening APO. Signals from an accelerator opening sensor 53 to be detected, an inhibitor switch 54 for detecting a select position of the CVT 7 (a state of a select lever or a select switch for switching forward, reverse, neutral and parking), a vehicle speed sensor 55 for detecting a vehicle speed VSP, and the like. Entered. The integrated controller 50 performs various controls on the engine 1, MG3 (inverter 9), and CVT 7 based on these input signals.
 具体的には、統合コントローラ50は、アクセル開度APO及び車速VSPに基づき要求駆動力(運転者が要求する加速度を実現する駆動力)を演算し、この要求駆動力が実現されるようエンジン1及びMG3のトルクをそれぞれ制御する。 Specifically, the integrated controller 50 calculates a required driving force (driving force that realizes the acceleration required by the driver) based on the accelerator opening APO and the vehicle speed VSP, and the engine 1 is configured so that the required driving force is realized. And MG3 torque are controlled respectively.
 また、統合コントローラ50は、エンジン1及びMG3から入力されるトルクを伝達可能な第2クラッチ6の締結トルク容量を目標トルク容量Tcとして設定し、第2クラッチ6の締結トルク容量が目標トルク容量Tcとなるように油圧コントロールバルブユニット71から第2クラッチ6に供給される油圧を制御する。 Further, the integrated controller 50 sets the engagement torque capacity of the second clutch 6 capable of transmitting torque input from the engine 1 and the MG 3 as the target torque capacity Tc, and the engagement torque capacity of the second clutch 6 is set to the target torque capacity Tc. The hydraulic pressure supplied to the second clutch 6 from the hydraulic control valve unit 71 is controlled so that
 また、統合コントローラ50は、アクセル開度APO及び車速VSPに基づき目標変速比を演算し、この目標変速比が実現されるようにCVT7の変速比を制御する。 Further, the integrated controller 50 calculates a target gear ratio based on the accelerator opening APO and the vehicle speed VSP, and controls the gear ratio of the CVT 7 so that the target gear ratio is realized.
 また、統合コントローラ50は、図2に示すモード切換マップを参照して、車両100の運転モードとして、EVモードとHEVモードとを切り換える。 Further, the integrated controller 50 switches between the EV mode and the HEV mode as the operation mode of the vehicle 100 with reference to the mode switching map shown in FIG.
 EVモードは、第1クラッチ2を解放し、MG3のみを駆動源として走行するモードである。EVモードは、要求駆動力が低く、バッテリ10のSOCが十分な時に選択される。 EV mode is a mode in which the first clutch 2 is disengaged and only MG3 is used as a drive source. The EV mode is selected when the required driving force is low and the SOC of the battery 10 is sufficient.
 HEVモードは、第1クラッチ2を締結し、エンジン1とMG3とを駆動源として走行するモードである。HEVモードは、要求駆動力が高い時、あるいは、バッテリ10のSOCが不足する時に選択される。 The HEV mode is a mode in which the first clutch 2 is engaged and the engine 1 and the MG 3 are used as driving sources. The HEV mode is selected when the required driving force is high or when the SOC of the battery 10 is insufficient.
 なお、EVモードとHEVモードとの切り換えがハンチングしないように、EVモードからHEVモードへの切換線は、HEVモードからEVモードへの切換線よりも高車速側かつアクセル開度大側に設定される。 Note that the switching line from the EV mode to the HEV mode is set at a higher vehicle speed side and a larger accelerator opening than the switching line from the HEV mode to the EV mode so that the switching between the EV mode and the HEV mode is not hunting. The
 また、車両100がトルクコンバータを備えていないので、図2に示すWSC領域(発進・減速停車時に使用される車速がVSP1以下の低車速領域、VSP1は、例えば、10km/h)では、統合コントローラ50は、第2クラッチ6をスリップさせながら発進及び停止するWSC制御を行う。 Further, since the vehicle 100 is not provided with a torque converter, in the WSC region shown in FIG. 2 (the vehicle speed used when starting / decelerating and stopping is a low vehicle speed region of VSP1 or less, VSP1 is, for example, 10 km / h), the integrated controller 50 performs WSC control that starts and stops while slipping the second clutch 6.
 具体的には、CVT7のセレクトポジションがN、P等の非走行ポジションからD、R等の走行ポジションに切り換えられて車両100が発進する場合は、統合コントローラ50は、第2クラッチ6に供給される油圧を徐々に増大させ、第2クラッチ6をスリップさせながら徐々に締結する。そして、車速がVSP1に到達すると、統合コントローラ50は、第2クラッチ6を完全締結し、WSC制御を終了する。 Specifically, when the select position of the CVT 7 is switched from a non-travel position such as N or P to a travel position such as D or R and the vehicle 100 starts, the integrated controller 50 is supplied to the second clutch 6. The hydraulic pressure is gradually increased, and the second clutch 6 is gradually engaged while slipping. When the vehicle speed reaches VSP1, the integrated controller 50 completely engages the second clutch 6, and ends the WSC control.
 また、CVT7のセレクトポジションが走行ポジションで車両100が走行しており、車両100が減速してVSP1まで車速が低下した場合は、統合コントローラ50は、第2クラッチ6に供給される油圧を徐々に低下させ、第2クラッチ6をスリップさせながら徐々に解放する。そして、車両100が停車すると、統合コントローラ50は、第2クラッチ6を完全解放し、WSC制御を終了する。 Further, when the vehicle 100 is traveling with the select position of the CVT 7 being the traveling position, and the vehicle 100 is decelerated and the vehicle speed is reduced to VSP1, the integrated controller 50 gradually increases the hydraulic pressure supplied to the second clutch 6. The second clutch 6 is gradually released while slipping. When the vehicle 100 stops, the integrated controller 50 completely releases the second clutch 6 and ends the WSC control.
 なお、WSC制御中は、統合コントローラ50は、第2クラッチ6における回転速度差が目標とする回転速度差になるように、エンジン1及びMG3を制御する。 During WSC control, the integrated controller 50 controls the engine 1 and the MG 3 so that the rotational speed difference in the second clutch 6 becomes the target rotational speed difference.
 ところで、第2クラッチ6に供給する油圧が不足して第2クラッチ6の締結不良(MIN圧故障)が生じた場合は、その元となるライン圧が低下している可能性があり、ライン圧が低下しているとCVT7においてベルト滑りが発生する可能性がある。このため、第2クラッチ6の締結不良が生じた場合は、早急にそれを判定し、エンジン1及びMG3のトルクダウン等、適切な制御を行う必要がある。このため、統合コントローラ50は、WSC制御中、第2クラッチ6に締結不良が生じていないか判定する(故障判定処理)。 By the way, when the hydraulic pressure supplied to the second clutch 6 is insufficient and the engagement failure of the second clutch 6 (MIN pressure failure) occurs, there is a possibility that the original line pressure has decreased, and the line pressure If it is lowered, there is a possibility that belt slip occurs in the CVT 7. For this reason, when the engagement failure of the 2nd clutch 6 arises, it is necessary to determine it immediately and to perform appropriate control, such as the torque reduction of the engine 1 and MG3. For this reason, the integrated controller 50 determines whether or not a fastening failure has occurred in the second clutch 6 during WSC control (failure determination processing).
 また、第2クラッチ6の温度が上限温度を超えて上昇すると、第2クラッチ6の耐久性が低下するので、第2クラッチ6の温度を推定し、推定された第2クラッチ6の温度が上限温度を超える場合には、エンジン1及びMG3から第2クラッチ6に入力されるトルクをゼロにする駆動力カットを行い、発熱によって第2クラッチ6の耐久性が低下するのを防止する(高温保護処理)。 Further, if the temperature of the second clutch 6 rises above the upper limit temperature, the durability of the second clutch 6 decreases, so the temperature of the second clutch 6 is estimated, and the estimated temperature of the second clutch 6 is the upper limit. When the temperature is exceeded, the driving force is cut so that the torque input from the engine 1 and the MG 3 to the second clutch 6 becomes zero, and the durability of the second clutch 6 is prevented from deteriorating due to heat generation (high temperature protection). processing).
 図3は、統合コントローラ50が行う第2クラッチ6の故障判定処理の内容を示したフローチャートである。 FIG. 3 is a flowchart showing the content of the failure determination process of the second clutch 6 performed by the integrated controller 50.
 これについて説明すると、まず、S1では、統合コントローラ50は、故障判定条件が成立しているか判断する。故障判定条件は、CVT7のセレクトポジションがD、R等の走行用ポジションにあり、アクセル開度が0よりも大きく、運転モード切換中でなく、セレクトポジション変更中でなく、かつ、センサ等のフェールが検知されていない場合に成立していると判断される。故障判定条件が成立している場合は処理がS2に進み、そうでない場合は処理が終了する。 Describing this, first, in S1, the integrated controller 50 determines whether a failure determination condition is satisfied. The failure judgment condition is that the CVT 7 select position is in a driving position such as D, R, etc., the accelerator opening is larger than 0, the operation mode is not being switched, the select position is not being changed, and a sensor failure has occurred. Is determined to have been established. If the failure determination condition is satisfied, the process proceeds to S2, and if not, the process ends.
 S2では、統合コントローラ50は、アクセル開度APO、車速VSP、エンジン1の回転速度Ne、MG3の回転速度Nm、CVT7の入力回転速度Ninを読み込む。アクセル開度APO、車速VSP、エンジン1の回転速度Ne、及び、CVT7の入力回転速度Ninはセンサにより検出された値であり、MG3の回転速度NmはMG3の制御信号から演算される値である。 In S2, the integrated controller 50 reads the accelerator opening APO, the vehicle speed VSP, the rotational speed Ne of the engine 1, the rotational speed Nm of MG3, and the input rotational speed Nin of CVT7. The accelerator opening APO, the vehicle speed VSP, the rotational speed Ne of the engine 1, and the input rotational speed Nin of the CVT 7 are values detected by sensors, and the rotational speed Nm of MG3 is a value calculated from a control signal of MG3. .
 S3では、統合コントローラ50は、エンジン1の実トルクTe及びMG3の実トルクTmを演算する。エンジン1の実トルクTeは、アクセル開度APO及びエンジン1の回転速度Neに基づき、エンジン1のトルクマップを参照することによって演算することができる。MG3の実トルクは、MG3の電気負荷(電流値)に基づき演算することができる。 In S3, the integrated controller 50 calculates the actual torque Te of the engine 1 and the actual torque Tm of the MG3. The actual torque Te of the engine 1 can be calculated by referring to the torque map of the engine 1 based on the accelerator opening APO and the rotational speed Ne of the engine 1. The actual torque of MG3 can be calculated based on the electrical load (current value) of MG3.
 S4では、統合コントローラ50は、第2クラッチ6の目標トルク容量Tcを演算する。目標トルク容量Tcは、エンジン1及びMG3から入力されるトルクを伝達可能な第2クラッチ6の締結トルク容量である。 In S4, the integrated controller 50 calculates the target torque capacity Tc of the second clutch 6. The target torque capacity Tc is an engagement torque capacity of the second clutch 6 capable of transmitting torque input from the engine 1 and MG3.
 S5では、統合コントローラ50は、MG3の回生によって第2クラッチ6締結不良時のエンジン1の空吹きを抑制することができるか判断する。エンジン1の空吹きを抑制できるかは、エンジン1の実トルク及びMG3の回生能力に依存し、アクセル開度APOが所定開度APOthよりも小さい場合、又は、バッテリ10のSOCが所定の所定値SOCthよりも小さい場合に、MG3の回生によってエンジン1の空吹きを抑制することができると判断される。 In S5, the integrated controller 50 determines whether or not the blow of the engine 1 when the second clutch 6 is poorly engaged can be suppressed by regeneration of the MG3. Whether the engine 1 can be blown or not depends on the actual torque of the engine 1 and the regenerative capacity of the MG 3. When the accelerator opening APO is smaller than the predetermined opening APOth, or the SOC of the battery 10 is a predetermined predetermined value. When it is smaller than SOCth, it is determined that the idling of engine 1 can be suppressed by regeneration of MG3.
 MG3の回生によってエンジン1の空吹きを抑制することができると判断された場合は処理がS6に進み、抑制する事ができないと判断された場合は処理がS10に進む。 If it is determined that regeneration of the MG 3 can suppress the air blow of the engine 1, the process proceeds to S6, and if it is determined that it cannot be suppressed, the process proceeds to S10.
 S6では、統合コントローラ50は、第2クラッチ6の目標トルク容量Tcとエンジン1の実トルクTe及びMG3の実トルクTmの和(=CVT7の実入力トルク)との偏差の絶対値(以下、「トルク偏差」という。)を演算し、これが第1故障判定値δ1よりも大きいか判断する。 In S6, the integrated controller 50 determines the absolute value of the deviation between the target torque capacity Tc of the second clutch 6 and the sum of the actual torque Te of the engine 1 and the actual torque Tm of MG3 (= actual input torque of CVT7) (hereinafter, “ Torque deviation ") is calculated, and it is determined whether this is greater than the first failure determination value δ1.
 第2クラッチ6に締結不良が発生している場合は、第2クラッチ6における回転速度差が目標とする回転速度差よりも大きくならないようにMG3による回生が行われ、MG3のトルクが負値になるので、エンジン1及びMG3から第2クラッチ6に入力されるトルクが小さくなり、トルク偏差が大きくなる。 When the engagement failure occurs in the second clutch 6, regeneration is performed by MG3 so that the rotational speed difference in the second clutch 6 does not become larger than the target rotational speed difference, and the torque of MG3 becomes a negative value. Therefore, the torque input from the engine 1 and MG 3 to the second clutch 6 decreases, and the torque deviation increases.
 したがって、トルク偏差が第1故障判定値δ1よりも大きい場合は、統合コントローラ50は、第2クラッチ6に締結不良が生じている可能性があると判断され、処理がS7に進む。そうでない場合は処理がS15に進む。 Therefore, when the torque deviation is larger than the first failure determination value δ1, the integrated controller 50 determines that there is a possibility that the second clutch 6 is defectively engaged, and the process proceeds to S7. Otherwise, the process proceeds to S15.
 S7では、統合コントローラ50は、故障判定フラグに1をセットするとともに、故障判定タイマをカウントアップする。故障判定タイマは、トルク偏差が第1故障判定値δ1よりも大きくなっている時間を計測するためのタイマである。 In S7, the integrated controller 50 sets the failure determination flag to 1 and counts up the failure determination timer. The failure determination timer is a timer for measuring a time during which the torque deviation is larger than the first failure determination value δ1.
 S8では、統合コントローラ50は、故障判定タイマの値が故障判定閾値TFAILよりも大きくなったか判断する。故障判定タイマの値が故障判定閾値TFAILよりも大きい場合は処理がS9に進み、統合コントローラ50は、第2クラッチ6に締結不良が発生していると判定する。 In S8, the integrated controller 50 determines whether the value of the failure determination timer is greater than the failure determination threshold value TFAIL. When the value of the failure determination timer is larger than the failure determination threshold value TFAIL, the process proceeds to S9, and the integrated controller 50 determines that the engagement failure has occurred in the second clutch 6.
 故障判定タイマの値が故障判定閾値TFAILよりも小さい場合は処理がS14に進み、いわゆる疑似D状態であると判定する。疑似D状態は、セレクトポジションが走行用ポジションになって統合コントローラ50が走行用ポジションと認識しているにもかかわらず油圧コントロールバルブユニット71の作動遅れによって第2クラッチ6が締結していない状態である。疑似D状態であればトルク偏差が短時間のうちに解消する可能性が高いので、このように故障判定タイマを用いることで、疑似D状態と第2クラッチ6の締結不良とを区別することができる。 If the value of the failure determination timer is smaller than the failure determination threshold value TFAIL, the process proceeds to S14, and it is determined that a so-called pseudo-D state is reached. The pseudo-D state is a state in which the second clutch 6 is not engaged due to the operation delay of the hydraulic control valve unit 71 even though the integrated position is recognized as the travel position because the select position is the travel position. is there. Since the torque deviation is likely to be resolved within a short time in the pseudo D state, it is possible to distinguish the pseudo D state from the engagement failure of the second clutch 6 by using the failure determination timer in this way. it can.
 一方、S5でMG3の回生によってエンジン1の空吹きを抑制することができないと判断されて進むS10では、統合コントローラ50は、図4に示すマップを参照してトルクダウン量を設定し、設定されたトルクダウン量に応じてエンジン1のトルクを減少させる。これにより、後述する高温保護処理で第2クラッチ6の温度が誤って高く推定されて駆動力カットが行われ、第2クラッチ6における回転速度差が縮小して第2クラッチの締結不良が判定できなくなるのを防止する。 On the other hand, in S10, when it is determined in S5 that it is not possible to suppress the air blow of the engine 1 due to regeneration of MG3, the integrated controller 50 sets and sets the torque reduction amount with reference to the map shown in FIG. The torque of the engine 1 is reduced according to the amount of torque reduction. As a result, the temperature of the second clutch 6 is erroneously estimated to be high in the high temperature protection process described later, and the driving force is cut, so that the rotational speed difference in the second clutch 6 is reduced and the engagement failure of the second clutch can be determined. Prevent disappearance.
 トルクダウン量は、MG3の回転速度NmとCVT7の入力回転速度Ninとに基づき演算される第2クラッチ6における回転速度差が所定値以上の場合に設定される。所定値は、第2クラッチ6に締結不良が発生している可能性のある回転速度差の下限値である。演算された回転速度差が所定値未満の場合は第2クラッチ6に締結不良が発生していないので、トルクダウン量に0を設定し、不要なトルクダウンが行われないようにする。 The torque-down amount is set when the rotational speed difference in the second clutch 6 calculated based on the rotational speed Nm of the MG 3 and the input rotational speed Nin of the CVT 7 is a predetermined value or more. The predetermined value is a lower limit value of the rotational speed difference that may cause the engagement failure of the second clutch 6. When the calculated rotational speed difference is less than the predetermined value, there is no defective engagement in the second clutch 6, and therefore, the torque reduction amount is set to 0 so that unnecessary torque reduction is not performed.
 さらに、回転速度差が所定値以上の場合のトルクダウン量は、第2クラッチ6における回転速度差が大きくなるほど、また、第2クラッチ6の必要トルク容量が大きくなるほど、大きな値が設定される。これは、これらの値が大きくなるほど高温保護処理で推定される第2クラッチ6の温度が高くなって故障判定処理と高温保護処理との干渉が起こりやすくなるので、高温保護処理で推定される第2クラッチ6の温度の上昇を抑えるためにはトルクダウン量を増やして締結トルク容量を減らす必要があるからである。 Further, the torque reduction amount when the rotational speed difference is equal to or larger than a predetermined value is set to a larger value as the rotational speed difference in the second clutch 6 becomes larger and as the required torque capacity of the second clutch 6 becomes larger. This is because, as these values increase, the temperature of the second clutch 6 estimated in the high temperature protection process increases and interference between the failure determination process and the high temperature protection process easily occurs. This is because in order to suppress an increase in the temperature of the two-clutch 6, it is necessary to increase the torque-down amount and reduce the engagement torque capacity.
 S11では、統合コントローラ50は、MG3の回転速度NmとCVT7の入力回転速度Ninとに基づき第2クラッチ6における回転速度差を演算し、これが第2故障判定値δ2よりも大きいか判断する。S10でエンジン1のトルクを下げたことで高温保護処理によって推定される第2クラッチ6の温度が低くなるので、駆動力カットが実行されることはなく、また、第2クラッチ6に締結不良が生じていればエンジン1のトルクを下げてもエンジン1の空吹きが発生するので、回転速度差に基づき第2クラッチ6の締結不良を正しく判定することができる。回転速度差が第2故障判定値δ2よりも大きい場合は、第2クラッチ6に締結不良が生じている可能性があるとして、処理がS12に進み、そうでない場合は処理がS15に進む。 In S11, the integrated controller 50 calculates the rotational speed difference in the second clutch 6 based on the rotational speed Nm of the MG 3 and the input rotational speed Nin of the CVT 7, and determines whether this is greater than the second failure determination value δ2. Since the temperature of the second clutch 6 estimated by the high-temperature protection process is lowered by reducing the torque of the engine 1 in S10, the driving force is not cut, and the second clutch 6 has a poor engagement. If it occurs, even if the torque of the engine 1 is reduced, the engine 1 is blown away. Therefore, it is possible to correctly determine the engagement failure of the second clutch 6 based on the rotational speed difference. If the rotational speed difference is larger than the second failure determination value δ2, the process proceeds to S12 on the assumption that there is a possibility that the second clutch 6 is defectively engaged, and if not, the process proceeds to S15.
 S12~S14の処理はS7~S9の処理と同じであり、故障判定フラグに1がセットされて故障判定タイマがカウントアップされる(S12)。故障判定タイマの値が故障判定閾値TFAILよりも小さい間は疑似D状態であると判定され(S13→S14)、故障判定タイマの値が故障判定閾値TFAILよりも大きくなった場合には第2クラッチ6に締結不良が発生していると判定される(S13→S9)。 The processing from S12 to S14 is the same as the processing from S7 to S9. The failure determination flag is set to 1 and the failure determination timer is counted up (S12). While the value of the failure determination timer is smaller than the failure determination threshold value TFAIL, the pseudo D state is determined (S13 → S14), and when the value of the failure determination timer becomes larger than the failure determination threshold value TFAIL, the second clutch 6 is determined that a fastening failure has occurred (S13 → S9).
 一方、S6でトルク偏差が第1故障判定値δ1よりも小さいと判断された場合、及び、S11で回転速度差が第2故障判定値δ2よりも小さいと判断された場合は、処理がS15に進み、統合コントローラ50は故障判定フラグに0をセットする。 On the other hand, if it is determined in S6 that the torque deviation is smaller than the first failure determination value δ1, and if it is determined in S11 that the rotational speed difference is smaller than the second failure determination value δ2, the process proceeds to S15. Then, the integrated controller 50 sets 0 to the failure determination flag.
 S16では、統合コントローラ50は、復帰判定条件が成立しているか判断する。復帰判定条件は、以下の2つの条件のいずれかが成立している場合に成立していると判断される。
 ・トルク偏差<第1復帰判定値Δ1、かつ、回転速度差<第2復帰判定値Δ2
 ・アクセル開度APO>0、かつ、回転速度差≒0
In S16, the integrated controller 50 determines whether the return determination condition is satisfied. The return determination condition is determined to be satisfied when either of the following two conditions is satisfied.
Torque deviation <first return determination value Δ1, and rotational speed difference <second return determination value Δ2
・ Accelerator opening APO> 0 and rotational speed difference ≒ 0
 復帰判定条件が成立していると判断された場合は処理がS17に進み、復帰判定タイマがカウントアップされる。 If it is determined that the return determination condition is satisfied, the process proceeds to S17, and the return determination timer is counted up.
 S18では、統合コントローラ50は、復帰判定タイマが復帰判定閾値TSAFEよりも大きくなったか判断する。復帰判定タイマが復帰判定閾値TSAFEよりも大きくなったと判断された場合は処理がS19に進み、統合コントローラ50は、故障判定タイマ及び復帰判定タイマをリセットし、第2クラッチ6が正常であると判定する。 In S18, the integrated controller 50 determines whether the return determination timer has become larger than the return determination threshold value TSAFE. If it is determined that the return determination timer has become larger than the return determination threshold value TSAFE, the process proceeds to S19, and the integrated controller 50 resets the failure determination timer and the return determination timer, and determines that the second clutch 6 is normal. To do.
 以上の故障判定処理により、第2クラッチ6の締結不良(MIN圧故障)が判定される。 By the above failure determination processing, the engagement failure (MIN pressure failure) of the second clutch 6 is determined.
 また、図5は、統合コントローラ50が行う第2クラッチ6の高温保護処理の内容を示したフローチャートである。 FIG. 5 is a flowchart showing the contents of the high temperature protection process of the second clutch 6 performed by the integrated controller 50.
 これについて説明すると、まず、S21では、統合コントローラ50は、第2クラッチ6の締結トルク容量に第2クラッチ6における回転速度差を掛けて第2クラッチ6の発熱率(微少時間における第2クラッチ6における発熱量)を演算する。第2クラッチ6の締結トルク容量としては目標トルク容量Tcを用いる。 To describe this, first, in S21, the integrated controller 50 multiplies the engagement torque capacity of the second clutch 6 by the rotational speed difference in the second clutch 6 to generate the heat generation rate of the second clutch 6 (the second clutch 6 in a minute time). Calorific value) at the same time. The target torque capacity Tc is used as the engagement torque capacity of the second clutch 6.
 S22では、統合コントローラ50は、S21で演算した第2クラッチ6の発熱率を時間積分して、第2クラッチ6の発熱量を演算し、これに基づき第2クラッチ6の温度を推定する。 In S22, the integrated controller 50 time-integrates the heat generation rate of the second clutch 6 calculated in S21, calculates the heat generation amount of the second clutch 6, and estimates the temperature of the second clutch 6 based on this.
 S23では、統合コントローラ50は、推定された第2クラッチ6の温度が上限温度を超えているか判断する。上限温度は、例えば、第2クラッチ6が熱によって耐久性が低下する温度よりも所定値だけ低い温度に設定される。第2クラッチ6の温度が上限温度を超えていると判断された場合は、処理がS24に進む。 In S23, the integrated controller 50 determines whether the estimated temperature of the second clutch 6 exceeds the upper limit temperature. For example, the upper limit temperature is set to a temperature that is lower by a predetermined value than the temperature at which the durability of the second clutch 6 is reduced by heat. If it is determined that the temperature of the second clutch 6 exceeds the upper limit temperature, the process proceeds to S24.
 S24では、統合コントローラ50は、エンジン1の燃料カット及びMG3の通電停止を行い、エンジン1及びMG3から第2クラッチ6に入力されるトルクをゼロにする(駆動力カット)。 In S24, the integrated controller 50 performs the fuel cut of the engine 1 and the energization stop of the MG 3 to zero the torque input to the second clutch 6 from the engine 1 and MG 3 (driving force cut).
 WSC制御中は、上記故障判定処理と上記高温保護処理とが同時に行われ、第2クラッチ6の締結不良を回転速度差に基づき判定する場合に第2クラッチ6の温度推定値が高くなって駆動力カットが行われると、第2クラッチ6における回転速度差が縮小し、第2クラッチ6の締結不良を判定することができなくなってしまう。すなわち、故障判定処理と高温保護処理との干渉が発生する。 During the WSC control, the failure determination process and the high-temperature protection process are performed simultaneously, and when the poor engagement of the second clutch 6 is determined based on the rotational speed difference, the temperature estimation value of the second clutch 6 becomes high and the driving is performed. If force cutting is performed, the rotational speed difference in the second clutch 6 is reduced, and it becomes impossible to determine the engagement failure of the second clutch 6. That is, interference occurs between the failure determination process and the high temperature protection process.
 しかしながら、上記故障判定処理によれば、第2クラッチ6における回転速度差に基づき第2クラッチ6の締結不良を判定する間はエンジン1のトルクダウンが行われるので、第2クラッチ6の締結トルク容量(目標トルク容量Tc)が減少し、高温保護処理で推定される第2クラッチ6の温度が低くなる。これにより、上記高温保護処理は実質機能せず、駆動力カットが行われることはない。一方、第2クラッチ6に締結不良が生じていれば、エンジン1のトルクダウンが行われてもエンジン1が空吹きし、第2クラッチ6における回転速度差が大きくなるので、第2クラッチ6の締結不良を判定することができる。 However, according to the failure determination process, the torque reduction of the engine 1 is performed while the failure of the engagement of the second clutch 6 is determined based on the rotational speed difference in the second clutch 6. (Target torque capacity Tc) decreases, and the temperature of the second clutch 6 estimated by the high temperature protection process decreases. As a result, the high-temperature protection treatment does not function substantially and the driving force is not cut. On the other hand, if the engagement failure occurs in the second clutch 6, the engine 1 is blown even if the torque of the engine 1 is reduced, and the rotational speed difference in the second clutch 6 becomes large. A fastening failure can be determined.
 したがって、本実施形態によれば、故障判定処理と高温保護処理との干渉を防止しつつ、故障判定処理を正しく行うことができる。 Therefore, according to the present embodiment, it is possible to correctly perform the failure determination process while preventing interference between the failure determination process and the high temperature protection process.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above, but the above embodiment is merely a part of an application example of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not.
 例えば、高温保護処理では、第2クラッチ6の温度を具体的に推定し、推定された第2クラッチ6の温度に基づき駆動力カットを行うか否かを判断しているが、S21で演算された発熱率あるいはS22で演算された発熱量が上限値を超えた場合に第2クラッチ6の温度が上限温度を超えると判断し、駆動力カットを行うようにしてもよい。 For example, in the high temperature protection process, the temperature of the second clutch 6 is specifically estimated, and it is determined whether or not the driving force cut is to be performed based on the estimated temperature of the second clutch 6, but is calculated in S21. If the heat generation rate or the heat generation amount calculated in S22 exceeds the upper limit value, it may be determined that the temperature of the second clutch 6 exceeds the upper limit temperature, and the driving force may be cut.
 また、上記実施形態では、第2クラッチ6における回転速度差に基づき第2クラッチ6の締結不良を判定する間、エンジン1のトルクダウンを行い、第2クラッチ6の温度が誤って高く推定されないようにすることで、高温保護制御が実質機能しないようにしているが、高温保護制御を機能させないようにする方法はこれに限定されない。 In the above embodiment, the torque of the engine 1 is reduced while the second clutch 6 is judged to be poorly engaged based on the rotational speed difference in the second clutch 6 so that the temperature of the second clutch 6 is not erroneously estimated to be high. However, the method for preventing the high temperature protection control from functioning is not limited to this.
 例えば、第2クラッチ6における回転速度差に基づき第2クラッチ6の締結不良を判定する間は、第2クラッチ6の推定温度を上限温度未満の値に固定する、あるいは、第2クラッチ6の推定温度が上限温度を超えても駆動力カットを行わない等によって高温保護制御を機能させないようにしてもよい。 For example, while the poor engagement of the second clutch 6 is determined based on the rotational speed difference in the second clutch 6, the estimated temperature of the second clutch 6 is fixed to a value lower than the upper limit temperature, or the estimated value of the second clutch 6 is estimated. Even if the temperature exceeds the upper limit temperature, the high temperature protection control may not be functioned, for example, by not performing the driving force cut.
 また、上記実施形態では車両100が変速機としてCVT7を備えているが、CVT7に代えてその他の方式の変速機(ステップAT、トロイダルCVT、2ペダルMT等)を備えていてもよい。 In the above embodiment, the vehicle 100 includes the CVT 7 as a transmission. However, instead of the CVT 7, another type of transmission (step AT, toroidal CVT, 2 pedal MT, etc.) may be included.
 本願は日本国特許庁に2013年9月13日に出願された特願2013-190338号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-190338 filed on September 13, 2013 with the Japan Patent Office, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  直列に配置されるエンジン及びモータと、前記モータと駆動輪との間に配置されるクラッチと、前記クラッチにおける回転速度差に基づき前記クラッチの温度が上限温度を超えるか判断し、前記クラッチの温度が前記上限温度を超えると判断される場合には前記エンジン及び前記モータから前記クラッチに入力されるトルクをゼロにする駆動力カットを行う高温保護手段と、を備えたハイブリッド車両の故障判定装置であって、
     前記クラッチにおける回転速度差に基づき前記クラッチの締結不良を判定する締結不良判定手段と、
     前記締結不良判定手段が前記クラッチの締結不良を判定する間、前記高温保護手段による前記駆動力カットが行われないようにする制御干渉防止手段と、
    を備えた故障判定装置。
    It is determined whether the temperature of the clutch exceeds an upper limit temperature based on a difference in rotational speed between the engine and motor arranged in series, a clutch arranged between the motor and the drive wheel, and a rotational speed difference in the clutch, and the temperature of the clutch And a high temperature protection means for performing a driving force cut to zero the torque input to the clutch from the engine and the motor when it is determined that the temperature exceeds the upper limit temperature. There,
    An engagement failure determination means for determining an engagement failure of the clutch based on a rotational speed difference in the clutch;
    Control interference prevention means for preventing the driving force cut by the high temperature protection means from being performed while the engagement failure determination means determines the engagement failure of the clutch;
    A failure determination device comprising:
  2.  請求項1に記載の故障判定装置であって、
     前記制御干渉防止手段は、前記締結不良判定手段が前記クラッチの締結不良を判定する間、前記エンジンのトルクダウンを行うことによって、前記高温保護手段による前記駆動力カットが行われないようにする、
    故障判定装置。
    The failure determination device according to claim 1,
    The control interference preventing means prevents the driving force from being cut by the high temperature protection means by performing torque reduction of the engine while the engagement failure determination means determines the engagement failure of the clutch.
    Failure determination device.
  3.  直列に配置されるエンジン及びモータと、前記モータと駆動輪との間に配置されるクラッチと、前記クラッチにおける回転速度差に基づき前記クラッチの温度が上限温度を超えるか判断し、前記クラッチの温度が前記上限温度を超えると判断される場合には前記エンジン及び前記モータから前記クラッチに入力されるトルクをゼロにする駆動力カットを行う高温保護手段と、を備えたハイブリッド車両の故障判定方法であって、
     前記クラッチにおける回転速度差に基づき前記クラッチの締結不良を判定し、
     前記クラッチの締結不良を判定する間、前記高温保護手段による前記駆動力カットを行わない、
    故障判定方法。
    It is determined whether the temperature of the clutch exceeds an upper limit temperature based on a difference in rotational speed between the engine and motor arranged in series, a clutch arranged between the motor and the drive wheel, and a rotational speed difference in the clutch, and the temperature of the clutch And a high-temperature protection means for performing a driving force cut to zero the torque input to the clutch from the engine and the motor when it is determined that the temperature exceeds the upper limit temperature. There,
    Determine the engagement failure of the clutch based on the rotational speed difference in the clutch,
    While determining the engagement failure of the clutch, do not perform the driving force cut by the high temperature protection means,
    Failure determination method.
PCT/JP2014/073825 2013-09-13 2014-09-09 Failure determination device for hybrid vehicles and failure determination method therefor WO2015037588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015536586A JP6152422B2 (en) 2013-09-13 2014-09-09 Hybrid vehicle failure determination device and failure determination method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190338 2013-09-13
JP2013190338 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037588A1 true WO2015037588A1 (en) 2015-03-19

Family

ID=52665690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073825 WO2015037588A1 (en) 2013-09-13 2014-09-09 Failure determination device for hybrid vehicles and failure determination method therefor

Country Status (2)

Country Link
JP (1) JP6152422B2 (en)
WO (1) WO2015037588A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015037588A1 (en) * 2013-09-13 2017-03-02 ジヤトコ株式会社 Hybrid vehicle failure determination device and failure determination method thereof
WO2017159305A1 (en) * 2016-03-16 2017-09-21 ユニプレス株式会社 Wet multi-plate clutch
CN110005730A (en) * 2019-03-04 2019-07-12 中国第一汽车股份有限公司 Hybrid power car wet separation clutch combination failure diagnostic method
CN110667400A (en) * 2019-09-21 2020-01-10 西安中车永电电气有限公司 Method for restraining motor bearing temperature rise of AC-DC-AC electric motor train unit
EP3595923B1 (en) * 2017-05-15 2023-10-11 Siemens Mobility GmbH Method and device for monitoring a drive system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332009A (en) * 1998-05-18 1999-11-30 Hitachi Ltd Hybrid car
JP2010143416A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Starting controller for hybrid vehicle
JP2010155590A (en) * 2009-01-05 2010-07-15 Nissan Motor Co Ltd Start control device for hybrid car
JP2010190254A (en) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd Control device for vehicle
JP2010228703A (en) * 2009-03-30 2010-10-14 Jatco Ltd Apparatus for control of hybrid vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316576B2 (en) * 2011-04-14 2013-10-16 株式会社デンソー Vehicle control device
JP2013181554A (en) * 2012-02-29 2013-09-12 Nissan Motor Co Ltd Shift control device of vehicle
JP6152422B2 (en) * 2013-09-13 2017-06-21 ジヤトコ株式会社 Hybrid vehicle failure determination device and failure determination method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332009A (en) * 1998-05-18 1999-11-30 Hitachi Ltd Hybrid car
JP2010143416A (en) * 2008-12-19 2010-07-01 Nissan Motor Co Ltd Starting controller for hybrid vehicle
JP2010155590A (en) * 2009-01-05 2010-07-15 Nissan Motor Co Ltd Start control device for hybrid car
JP2010190254A (en) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd Control device for vehicle
JP2010228703A (en) * 2009-03-30 2010-10-14 Jatco Ltd Apparatus for control of hybrid vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015037588A1 (en) * 2013-09-13 2017-03-02 ジヤトコ株式会社 Hybrid vehicle failure determination device and failure determination method thereof
WO2017159305A1 (en) * 2016-03-16 2017-09-21 ユニプレス株式会社 Wet multi-plate clutch
JPWO2017159305A1 (en) * 2016-03-16 2018-03-22 ユニプレス株式会社 Wet multi-plate clutch
CN108779809A (en) * 2016-03-16 2018-11-09 有能沛思株式会社 Wet multi-plate clutch
US10927900B2 (en) 2016-03-16 2021-02-23 Unipres Corporation Wet-type multiple plate clutch
CN108779809B (en) * 2016-03-16 2021-04-23 有能沛思株式会社 Wet-type multi-plate clutch
EP3595923B1 (en) * 2017-05-15 2023-10-11 Siemens Mobility GmbH Method and device for monitoring a drive system
CN110005730A (en) * 2019-03-04 2019-07-12 中国第一汽车股份有限公司 Hybrid power car wet separation clutch combination failure diagnostic method
CN110005730B (en) * 2019-03-04 2020-10-23 中国第一汽车股份有限公司 Method for diagnosing combination fault of wet type separating clutch of hybrid power car
CN110667400A (en) * 2019-09-21 2020-01-10 西安中车永电电气有限公司 Method for restraining motor bearing temperature rise of AC-DC-AC electric motor train unit
CN110667400B (en) * 2019-09-21 2021-02-02 西安中车永电电气有限公司 Method for restraining temperature rise of asynchronous motor bearing of alternating current-direct current-alternating current electric motor train unit

Also Published As

Publication number Publication date
JP6152422B2 (en) 2017-06-21
JPWO2015037588A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5981650B2 (en) Hybrid vehicle failure determination device and failure determination method thereof
JP6048585B2 (en) Start-up control device and start-up control method for hybrid vehicle
KR101466460B1 (en) Engine start control device for a hybrid vehicle
JP6152422B2 (en) Hybrid vehicle failure determination device and failure determination method thereof
WO2015049806A1 (en) Hybrid vehicle control device
JP2011201370A (en) Control device of hybrid vehicle
US9897202B2 (en) Temperature warning device and temperature warning method of friction element
JP6158915B2 (en) Abnormality detection device and abnormality detection method for hybrid vehicle
JP5967313B2 (en) Vehicle control apparatus and control method
JP6320541B2 (en) Hydraulic control device for hybrid vehicle
JP5945628B2 (en) Hybrid vehicle failure determination device and failure determination method thereof
JP6194735B2 (en) Control device for hybrid vehicle
JP6089601B2 (en) Auxiliary machine control device
WO2016147407A1 (en) Control device for hybrid vehicles
JP6457912B2 (en) Hybrid vehicle diagnostic device and diagnostic method thereof
US20200238974A1 (en) Control device and control method for vehicle
JP6333533B2 (en) Hybrid vehicle
WO2015037042A1 (en) Hybrid vehicle control device
JP2018111379A (en) Control device and control method of hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843880

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015536586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843880

Country of ref document: EP

Kind code of ref document: A1