WO2015037408A1 - Crucible for induction heating furnace - Google Patents

Crucible for induction heating furnace Download PDF

Info

Publication number
WO2015037408A1
WO2015037408A1 PCT/JP2014/071896 JP2014071896W WO2015037408A1 WO 2015037408 A1 WO2015037408 A1 WO 2015037408A1 JP 2014071896 W JP2014071896 W JP 2014071896W WO 2015037408 A1 WO2015037408 A1 WO 2015037408A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
inner layer
induction
outer layer
induction heating
Prior art date
Application number
PCT/JP2014/071896
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 民雄
大橋 秀明
正之 奥山
克行 白川
Original Assignee
日本坩堝株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本坩堝株式会社 filed Critical 日本坩堝株式会社
Publication of WO2015037408A1 publication Critical patent/WO2015037408A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • F27B14/12Covers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • F27D1/0009Comprising ceramic fibre elements

Definitions

  • the present invention relates to an induction furnace crucible suitable for melting metals, particularly high melting point metals.
  • a crucible black crucible
  • graphite or carbon As a container for dissolving and holding a low melting point metal such as aluminum, a crucible (black crucible) mainly composed of graphite or carbon is generally used.
  • black crucibles are severely worn away by oxidation when used in a high temperature atmosphere for a long time, and react with molten cast iron.
  • the black crucible cannot be used because of contamination. Therefore, a crucible (white crucible) made of a refractory material, which is mainly composed of alumina, silica, or the like, and is excellent in corrosion resistance against refractory metals, is used.
  • an induction coil 101 is disposed around the white crucible 100 as shown in FIG.
  • Sand (indefinite shape material) 102 is arranged.
  • An insulating material 103 is disposed on the inner surface of the induction coil 101.
  • the white crucible 100 does not generate heat due to electromagnetic induction, and when the refractory metal M is introduced into the white crucible 100 to start melting, the white crucible 100 is in a normal temperature state. Therefore, the white crucible 100 may be deprived of heat from the refractory metal M that is induction-heated until the white crucible 100 is heated. Also, when the melting of the refractory metal M is completed, the molten refractory metal (molten metal) is taken out and the next refractory metal M is melted. Since the white crucible 100 is cooled later, the heat from the refractory metal M may be similarly removed.
  • alumina and silica have lower thermal conductivity than graphite, and insufficient preheating causes a large temperature difference between the inner surface side and the outer surface side of the white crucible 100.
  • the refractory metal M is melted, there is a risk that cracks are likely to occur due to thermal shock.
  • the present invention has been made by paying attention to the above-described problems, and an object of the present invention is to provide a highly durable induction furnace crucible that can efficiently heat and melt a high melting point metal.
  • the object of the present invention is an induction furnace crucible for melting metal by induction heating from an induction coil, wherein a container-shaped inner layer made of a refractory material containing metal and at least a side wall portion of the inner layer are provided. And an outer layer made of a heating element that generates heat by induction heating.
  • the refractory mainly contains at least one selected from the group consisting of silicon dioxide, alumina, magnesia, zirconia, silicon carbide, and silicon nitride.
  • the heating element mainly contains at least one selected from the group consisting of carbon and graphite.
  • the electrical resistivity value of the outer layer is preferably 100 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the thickness of the outer layer is equal to or less than the thickness of the inner layer.
  • the outer layer is preferably formed in a cylindrical shape that covers only the side wall of the inner layer.
  • the outer layer is preferably formed by CIP molding
  • the inner layer is preferably formed by pouring a casting material into the outer layer in which a mold is disposed.
  • the outer layer may include a slurry mainly including at least one selected from the group consisting of carbon and graphite, or a graphite sheet, carbon fiber paper, or carbon fiber felt attached to the outer peripheral surface of the inner layer. It is preferably formed by applying to the outer peripheral surface of the layer.
  • the operation time can be shortened and energy saving can be realized.
  • FIG. 1 is a longitudinal sectional view of an induction furnace 10 shown as an example of an induction heating furnace crucible 1 (hereinafter simply referred to as “crucible 1”) according to an embodiment of the present invention.
  • This induction furnace 10 can be particularly suitably used for melting a metal M having a high melting point (eg, 1000 ° C. or higher) such as cast iron, cast steel, special steel, or copper alloy, but melting a low melting point metal such as aluminum or zinc. Can also be used.
  • an induction coil 11 is disposed outside the crucible 1, and a back sand (indefinite shape material) 12 such as zirconia, alumina, magnesia, or silica sand is disposed between the crucible 1 and the induction coil 11.
  • a back sand (indefinite shape material) 12 such as zirconia, alumina, magnesia, or silica sand is disposed between the crucible 1 and the induction coil 11.
  • a heat insulating material 13 is disposed on the inner peripheral surface of the induction coil 11.
  • the crucible 1 includes a container-shaped inner layer 2 that contains the refractory metal M, and an outer layer 3 that covers at least the side wall portion 20 of the inner layer 2.
  • the inner layer 2 is formed in a bottomed cylindrical shape having an opening in the upper portion, and can have an arbitrary shape such as a cylindrical shape or a rectangular tube shape. Since the inner layer 2 contains a refractory metal M such as cast iron, the inner layer 2 is made of a refractory material having excellent heat resistance, high-temperature strength, corrosion resistance against melting refractory metal (molten metal), etc. Silicon (silica, quartz), alumina, magnesia, zirconia, silicon nitride and the like can be preferably exemplified, but other additives and impurities may be included.
  • the inner layer 2 can be formed by various molding methods such as casting, CIP molding, and vibration molding.
  • a cylindrical outer layer in which a formwork is disposed inside a material obtained by mixing one or more of the above materials at a predetermined mixing ratio and hydromixing them (a casting material) It is formed by pouring between the three molds, curing, solidifying and drying, and then removing the molds.
  • the inner layer 2 does not necessarily need to be 100% formed of the above-described material, as long as characteristics such as heat resistance and strength can be secured.
  • the thickness of the inner layer 2 varies depending on the size of the inner layer 2, but the side wall portion 20 is, for example, about 10 mm to 70 mm, and the bottom wall portion 21 is, for example, about 10 mm to 100 mm.
  • silicon nitride-alumina as described in, for example, JP-A-2009-228919 is provided on the inner peripheral surface of the inner layer 2.
  • a protective layer made of a system material may be coated.
  • the outer layer 3 is formed in a cylindrical shape that covers only the side wall portion 20 of the inner layer 2.
  • the outer layer 3 is composed of a heating element that generates heat by induction heating from the induction coil 11, and preferably includes a conductive material such as carbon or graphite having conductivity and high thermal conductivity. However, it may contain other additives and impurities.
  • the outer layer 3 has an electrical resistivity value of 100 ⁇ 10 ⁇ 3 ⁇ cm or less, preferably 50 ⁇ 10 ⁇ 3 ⁇ cm or less. This is because if the electrical specific resistance value is larger than 100 ⁇ 10 ⁇ 3 ⁇ cm, the exothermic property is weak.
  • the thickness of the outer layer 3 is, for example, about 5 mm to 30 mm, and is preferably equal to or less than the thickness of the side wall portion 20 of the inner layer 2.
  • the thickness of the refractory (the crucible 1 and the back sand 12) disposed between the metal M and the induction coil 11 is made as small as possible.
  • the thickness of the inner layer 2 (side wall portion 20) of the crucible 1 greatly affects the life of the inner layer 2, and it is necessary to make it as thick as possible in order to obtain the required life.
  • the back sand 12 needs to have a thickness (for example, 10 to 50 mm depending on the size) necessary for protecting the induction coil 11 against heat and as a backup material when the crucible 1 is broken.
  • a thickness for example, 10 to 50 mm depending on the size
  • the thickness of the outer layer 3 is set in consideration of the above-described circumstances, a larger heat capacity is preferable for the heat retention of the crucible 1 after the molten metal is poured out. In view of this, it is necessary to obtain an optimum thickness, and in this case, the thickness is preferably equal to or less than the thickness of the inner layer 2 (side wall portion 20).
  • the outer layer 3 can be formed by various molding methods such as CIP molding, casting molding, and vibration molding.
  • CIP molding after mixing the above-mentioned conductive material such as graphite and insulating material such as silicon dioxide at a predetermined mixing ratio, adding a slight binder and molding with a hydrostatic pressure molding machine.
  • it can be formed by baking at about 1200 ° C.
  • the outer layer 3 is made of a slurry prepared by mixing a conductive material such as graphite and an insulating material such as silicon dioxide at a predetermined mixing ratio and adding a binder such as water glass. It can also be formed by applying and spraying the outer peripheral surface of the inner layer 2 formed by casting by spraying or brushing, and then performing heat treatment at about 200 ° C.
  • the outer layer 3 can also be formed by attaching a graphite sheet, carbon fiber paper, carbon fiber felt or the like to the outer peripheral surface of the inner layer 2 formed by CIP molding or casting.
  • the outer layer 3 can also be formed in a container shape having a size capable of completely accommodating the inner layer 2 by a molding method such as CIP molding or casting.
  • the crucible 1 having a two-layer structure in which the outer layer 3 is integrated with the bottom surface in addition to the outer peripheral surface of the inner layer 2 can be manufactured by fitting the inner layer 2 into the outer layer 3.
  • the outer layer 3 may be formed by casting or the like using the same as a part of the mold, and the two layers may be integrated.
  • the material of the inner layer 2 and the outer layer 3 may be divided and filled in the mold, and the inner layer 2 and the outer layer 3 may be molded simultaneously.
  • the crucible 1 having the above configuration is used as follows. First, refractory metal M (shape is arbitrary shape) such as cast iron, cast steel, special steel, or copper alloy is accommodated in crucible 1. Then, a high frequency current is passed through the induction coil 11. As a result, a magnetic field is formed around the induction coil 11, and as a result of this magnetic field passing through the refractory metal M in the crucible 1, the refractory metal M generates heat due to the electromagnetic induction action and rises in temperature. In addition, when the magnetic field from the induction coil 11 penetrates and penetrates the outer layer 3 of the crucible 1, the heating element constituting the outer layer 3 generates heat and the temperature rises.
  • refractory metal M shape is arbitrary shape
  • a high frequency current is passed through the induction coil 11.
  • a magnetic field is formed around the induction coil 11
  • the refractory metal M generates heat due to the electromagnetic induction action and rises in temperature.
  • the outer layer 3 has a high temperature of 800 ° C. or higher, and the heat is transferred to the inner layer 2 by heat conduction, so that the inner layer 2 becomes high temperature.
  • the refractory metal M is heated without being cooled from the refractory, and the refractory metal M is melted to become a molten metal and kept in a molten state.
  • the outer layer 3 made of a heating element is heated by the magnetic field from the energized induction coil 11, and the inner layer 2 is heated by heat conduction and is accommodated in the inner layer 2.
  • the refractory metal M is heated. Therefore, the refractory metal M in the inner layer 2 rises in temperature due to heat generation from the refractory metal M itself due to the magnetic field from the energized induction coil 11, and also due to heating due to heat conduction from the inner layer 2. So it quickly reaches the melting point and dissolves. As a result, the high melting point metal M can be efficiently heated and melted, so that the operation time can be shortened and energy saving can be realized.
  • the outer surface of the inner layer 2 is heated by heat conduction from the outer layer 3, there is almost no temperature difference between the inner surface side and the outer surface side in contact with the molten high-temperature molten metal. Therefore, it is possible to prevent the inner layer 2 from being damaged by the thermal shock caused by the temperature difference between the inner surface side and the outer surface side of the inner layer 2, so that the durability of the inner layer 2 can be improved. The life of the crucible 1 can be extended.
  • the crucible of the example is a cylindrical graphite-silicon carbide-based material arranged so as to cover a container-shaped inner layer 2 made of an alumina-silica-based material and a side wall portion 20 of the inner layer 2 as shown in FIG. It has a two-layer structure consisting of an outer layer 3 made of The inner layer 2 has an outer diameter of 150 mm, an inner diameter of 125 mm, and a height of 125 mm.
  • the outer layer 3 has an outer diameter of 170 mm, an inner diameter of 150 mm, and a height of 125 mm.
  • the composition of main materials constituting the inner layer 2 and the outer layer 3 is shown in Table 1 below.
  • the cylindrical outer layer 3 was formed by CIP molding and firing at 1200 ° C., and then the inner layer 2 was poured into the outer layer 3 using the outer layer 3 as a mold (120 It was formed by drying).
  • a high frequency induction furnace (3000 Hz ⁇ 50 Kw, DC voltage set to 160 V) was used as the induction heating furnace, and a cast iron having a cylindrical shape (diameter: 80 m, height: 100 mm) was used as the refractory metal M to be melted.
  • the crucible of the comparative example has a one-layer structure made of an alumina-silica-based material as shown in FIG. 11, and has an outer diameter of 170 mm, an inner diameter of 125 mm, and a height of 125 mm.
  • the composition of the material constituting the crucible of the comparative example is shown in Table 1 below.
  • the time until the cast iron melts, the power consumption until the cast iron melts (DC voltage ⁇ DC current ⁇ time), and the temperature transition in the predetermined part of the crucible of the example and the comparative example (Example and In the comparative examples, the metal surface temperature, the outer surface temperature of the inner layer 2 in the crucible of the example, and the outer surface temperature of the crucible in the crucible of the comparative example were measured.
  • the cast iron melting operation is performed by first melting cast iron, holding the molten cast iron (molten metal) in the crucible for 30 minutes, discharging the molten metal, and allowing the crucible to cool for 30 minutes.
  • the second cast iron was melted.
  • the crucible was cooled by air cooling with the upper opening opened.
  • the measurement results are shown in Table 2, Table 3, and FIGS.
  • the time required for the surface temperature of the refractory metal dissolved in the crucible to reach 1000 ° C. in the example and the comparative example is about 10 minutes (the first time) ), About 8 minutes (second time), compared with about 14 minutes (first time) and about 10 minutes (second time) in the comparative example, and there is a large difference in the heating rate of the refractory metal in the crucible. It was confirmed that this occurred.
  • the time until the refractory metal in the crucible is completely dissolved is about 17 minutes (first time) and about 12 minutes (second time) in the example, whereas it is about 30 minutes in the comparative example.
  • the refractory metal can be heated more efficiently in the example than in the comparative example, and the melting time (operation time) is greatly reduced (from 40% to 50% shortening) was confirmed.
  • the second dissolution time of the example is further shortened than the first dissolution time, but this is favorably heated from inside and outside during the first dissolution of the refractory metal. This is probably because the amount of heat stored in the inner layer 2 is greater than that of the comparative example.
  • the current value at the time of melting the refractory metal in the crucible is that the outer layer 3 is also energized in the example.
  • the power consumption required to completely dissolve the refractory metal is the first and second times because the melting time is greatly shortened in the example.
  • the amount was significantly lower than that of the comparative example.
  • the outer surface temperature of the crucible increased only to about 500 to 600 degrees in both the first and second times, and the temperature of the molten metal in the crucible (from 1100 degrees to And a large temperature difference is generated.
  • the outer surface temperature of the inner layer 2 of the crucible rises to 1100 to 1200 degrees in both the first and second times, and the temperature of the molten metal in the inner layer 2 (1100 to 1200 degrees) ) Is almost no temperature difference. Therefore, in an Example, it can prevent that the inner layer 2 receives the damage by the thermal shock accompanying the temperature difference between the inner surface side and the outer surface side of the inner layer 2, and can improve the durability of the inner layer 2. Was confirmed.
  • a ring-shaped flange portion 22 extending radially outward is formed at the upper end portion of the inner layer 2 of the crucible 1 to prevent the outer layer 3 from being exposed to the outside air. can do.
  • the outer layer 3 made of carbon, graphite, or the like is completely embedded in the back sand 12 when the refractory metal is dissolved, so that the outer layer 3 can be prevented from being oxidized.

Abstract

Provided is a highly durable crucible for an induction heating furnace with which a high-melting-point metal can be heated and melted efficiently. This induction heating furnace crucible (1), which melts a high-melting-point metal (M) such as cast iron by means of induction heating from an induction coil (11), is equipped with a container-shaped inside layer (2) comprising a refractory holding the high-melting-point metal (M), and an outside layer (3) covering at least the side wall part (20) of the inside layer (2) and comprising a heat-generating body that generates heat by means of induction heating.

Description

誘導加熱炉用坩堝Induction furnace crucible
 本発明は、金属、特に高融点金属を溶解するのに好適な誘導加熱炉用坩堝に関するものである。 The present invention relates to an induction furnace crucible suitable for melting metals, particularly high melting point metals.
 アルミニウムなどの低融点金属を溶解・保持する容器としては、黒鉛やカーボンを主成分とした坩堝(黒色坩堝)が一般に使用されている。一方で、鋳鉄、鋳鋼、特殊鋼、銅合金などの高融点金属を溶解・保持する場合、黒色坩堝は高温雰囲気下で長期間使用すると酸化による損耗が激しく、また、溶解する鋳鉄などと反応して汚染するため、黒色坩堝は使用できない。よって、アルミナやシリカなどを主成分とした耐熱性及び高融点金属に対する耐食性に優れた耐火物からなる坩堝(白色坩堝)が使用されている。 As a container for dissolving and holding a low melting point metal such as aluminum, a crucible (black crucible) mainly composed of graphite or carbon is generally used. On the other hand, when melting and retaining refractory metals such as cast iron, cast steel, special steel, and copper alloys, black crucibles are severely worn away by oxidation when used in a high temperature atmosphere for a long time, and react with molten cast iron. The black crucible cannot be used because of contamination. Therefore, a crucible (white crucible) made of a refractory material, which is mainly composed of alumina, silica, or the like, and is excellent in corrosion resistance against refractory metals, is used.
 この白色坩堝を用いて高融点金属を溶解させるには、図11に示すように、白色坩堝100の周囲に誘導コイル101を配置し、白色坩堝100と誘導コイル101との間に珪砂などのバックサンド(不定形材)102を配置する。また、誘導コイル101の内面に絶縁材103を配置する。白色坩堝100内に高融点金属Mを収容し、白色坩堝100の周囲に配置された誘導コイル101に電圧を印加すると、白色坩堝100内の高融点金属Mが電磁誘導作用により誘導加熱されることで溶解する(例えば特許文献1を参照)。 In order to dissolve the refractory metal using the white crucible, an induction coil 101 is disposed around the white crucible 100 as shown in FIG. Sand (indefinite shape material) 102 is arranged. An insulating material 103 is disposed on the inner surface of the induction coil 101. When the refractory metal M is accommodated in the white crucible 100 and a voltage is applied to the induction coil 101 disposed around the white crucible 100, the refractory metal M in the white crucible 100 is induction-heated by electromagnetic induction. (See, for example, Patent Document 1).
特開2009-228919号公報JP 2009-228919 A
 しかしながら、白色坩堝100は、電磁誘導作用により発熱することはなく、白色坩堝100内に高融点金属Mを投入して溶解を開始する際には、白色坩堝100は常温の状態である。そのため、白色坩堝100が昇温するまで、誘導加熱される高融点金属Mから白色坩堝100に熱が奪わるおそれがある。また、高融点金属Mの溶解が終了し、溶解した高融点金属(溶融金属)を取り出して次の高融点金属Mの溶解を行う際も、操業サイクルにより程度の差はあるが、溶融金属排出後に白色坩堝100は冷却されるため、同様に高融点金属Mから熱が奪われるおそれがある。よって、高融点金属Mを加熱・溶解するのに時間がかかるうえエネルギーコストが嵩み、効率よく加熱・溶解することができないおそれがある。加えて、アルミナやシリカは、黒鉛と比べて熱伝導性が低く、予熱が不充分であると、白色坩堝100の内面側と外面側との間に大きな温度差を生じるため、特に鋳鉄などの高融点金属Mを溶解する場合には、熱衝撃によって亀裂が入り易くなるおそれもある。 However, the white crucible 100 does not generate heat due to electromagnetic induction, and when the refractory metal M is introduced into the white crucible 100 to start melting, the white crucible 100 is in a normal temperature state. Therefore, the white crucible 100 may be deprived of heat from the refractory metal M that is induction-heated until the white crucible 100 is heated. Also, when the melting of the refractory metal M is completed, the molten refractory metal (molten metal) is taken out and the next refractory metal M is melted. Since the white crucible 100 is cooled later, the heat from the refractory metal M may be similarly removed. Therefore, it takes time to heat and dissolve the refractory metal M, and the energy cost increases, and there is a possibility that it cannot be efficiently heated and dissolved. In addition, alumina and silica have lower thermal conductivity than graphite, and insufficient preheating causes a large temperature difference between the inner surface side and the outer surface side of the white crucible 100. When the refractory metal M is melted, there is a risk that cracks are likely to occur due to thermal shock.
 本発明は、上記した問題に着目してなされたもので、効率よく高融点金属を加熱・溶解することができるとともに、耐久性の高い誘導加熱炉用坩堝を提供することを目的とする。 The present invention has been made by paying attention to the above-described problems, and an object of the present invention is to provide a highly durable induction furnace crucible that can efficiently heat and melt a high melting point metal.
 本発明の前記目的は、誘導コイルからの誘導加熱により金属を溶解する誘導加熱炉用坩堝であって、金属を収容する耐火物からなる容器状の内側層と、前記内側層の少なくとも側壁部を覆い、誘導加熱により発熱する発熱体からなる外側層と、を備える誘導加熱炉用坩堝により達成される。 The object of the present invention is an induction furnace crucible for melting metal by induction heating from an induction coil, wherein a container-shaped inner layer made of a refractory material containing metal and at least a side wall portion of the inner layer are provided. And an outer layer made of a heating element that generates heat by induction heating.
 上記構成の誘導加熱炉用坩堝において、前記耐火物が、二酸化珪素、アルミナ、マグネシア、ジルコニア、炭化珪素及び窒化珪素からなる群より選ばれる少なくとも1種を主に含むことが好ましい。 In the induction furnace crucible having the above-described configuration, it is preferable that the refractory mainly contains at least one selected from the group consisting of silicon dioxide, alumina, magnesia, zirconia, silicon carbide, and silicon nitride.
 また、前記発熱体が、カーボン及び黒鉛からなる群より選ばれる少なくとも1種を主に含むことが好ましい。 Moreover, it is preferable that the heating element mainly contains at least one selected from the group consisting of carbon and graphite.
 また、前記外側層の電気比抵抗値が100×10-3Ωcm以下であることが好ましい。 In addition, the electrical resistivity value of the outer layer is preferably 100 × 10 −3 Ωcm or less.
 また、前記外側層の厚みが、前記内側層の厚み以下であることが好ましい。 Moreover, it is preferable that the thickness of the outer layer is equal to or less than the thickness of the inner layer.
 また、前記外側層が、前記内側層の側壁部のみを覆う円筒状に形成されていることが好ましい。 The outer layer is preferably formed in a cylindrical shape that covers only the side wall of the inner layer.
 また、前記外側層は、CIP成形により形成され、前記内側層は、内部に型枠を配置した前記外側層に流し込み材を流し込んで成形することで形成されることが好ましい。また、前記外側層は、前記内側層の外周面に黒鉛シート、炭素繊維ペーパー又は炭素繊維フェルトを貼り付ける、もしくは、カーボン及び黒鉛からなる群より選ばれる少なくとも1種を主に含むスラリーを前記内側層の外周面に塗布することによって形成されることが好ましい。 Further, the outer layer is preferably formed by CIP molding, and the inner layer is preferably formed by pouring a casting material into the outer layer in which a mold is disposed. The outer layer may include a slurry mainly including at least one selected from the group consisting of carbon and graphite, or a graphite sheet, carbon fiber paper, or carbon fiber felt attached to the outer peripheral surface of the inner layer. It is preferably formed by applying to the outer peripheral surface of the layer.
 本発明の誘導加熱炉用坩堝によれば、効率よく高融点を有する導電性金属を加熱・溶解することができるので、操業時間の短縮が可能である上、省エネルギーを実現できる。 According to the crucible for an induction heating furnace of the present invention, since a conductive metal having a high melting point can be efficiently heated and melted, the operation time can be shortened and energy saving can be realized.
本発明の一実施形態に係る誘導加熱炉用坩堝を模式的に示す断面図である。It is sectional drawing which shows typically the induction furnace crucible which concerns on one Embodiment of this invention. 本実施例の誘導加熱炉用坩堝により高融点金属を加熱する際の金属表面温度の変化を表すグラフである。It is a graph showing the change of the metal surface temperature at the time of heating a refractory metal with the crucible for induction heating furnaces of a present Example. 比較例の誘導加熱炉用坩堝により高融点金属を加熱する際の金属表面温度の変化を表すグラフである。It is a graph showing the change of the metal surface temperature at the time of heating a refractory metal with the crucible for induction heating furnaces of a comparative example. 本実施例の誘導加熱炉用坩堝により高融点金属を加熱する際の電力出力状況(1回目)の変化を表すグラフである。It is a graph showing the change of the power output condition (1st time) at the time of heating a refractory metal with the crucible for induction heating furnaces of a present Example. 本実施例の誘導加熱炉用坩堝により高融点金属を加熱する際の電力出力状況(2回目)の変化を表すグラフである。It is a graph showing the change of the power output condition (2nd time) at the time of heating a refractory metal with the crucible for induction heating furnaces of a present Example. 比較例の誘導加熱炉用坩堝により高融点金属を加熱する際の電力出力状況(1回目)の変化を表すグラフである。It is a graph showing the change of the power output condition (1st time) at the time of heating a refractory metal with the crucible for induction heating furnaces of a comparative example. 比較例の誘導加熱炉用坩堝により高融点金属を加熱する際の電力出力状況(2回目)の変化を表すグラフである。It is a graph showing the change of the power output condition (2nd time) at the time of heating a refractory metal with the crucible for induction heating furnaces of a comparative example. 本実施例の誘導加熱炉用坩堝により高融点金属を加熱する際の内側層外面温度の変化を表すグラフである。It is a graph showing the change of the inner layer outer surface temperature at the time of heating a refractory metal with the crucible for induction heating furnaces of a present Example. 比較例の誘導加熱炉用坩堝により高融点金属を加熱する際の坩堝外面温度の変化を表すグラフである。It is a graph showing the change of the crucible outer surface temperature at the time of heating a refractory metal with the crucible for induction heating furnaces of a comparative example. 本発明の他の実施形態に係る誘導加熱炉用坩堝を模式的に示す断面図である。It is sectional drawing which shows typically the induction furnace crucible which concerns on other embodiment of this invention. 従来例の誘導加熱炉用坩堝を模式的に示す断面図である。It is sectional drawing which shows typically the crucible for induction heating furnaces of a prior art example.
 以下、本発明の実態形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る誘導加熱炉用坩堝1(以下、単に「坩堝1」という)の一例として示す誘導炉10の縦断面図である。この誘導炉10は、鋳鉄、鋳鋼、特殊鋼、銅合金などの高融点(例えば1000℃以上)の金属Mの溶解に特に好適に用いることができるが、アルミニウム、亜鉛などの低融点金属の溶解にも用いることができる。 Hereinafter, the actual state of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view of an induction furnace 10 shown as an example of an induction heating furnace crucible 1 (hereinafter simply referred to as “crucible 1”) according to an embodiment of the present invention. This induction furnace 10 can be particularly suitably used for melting a metal M having a high melting point (eg, 1000 ° C. or higher) such as cast iron, cast steel, special steel, or copper alloy, but melting a low melting point metal such as aluminum or zinc. Can also be used.
 誘導炉10は、坩堝1の外側に、誘導コイル11が配置されており、坩堝1と誘導コイル11との間に、ジルコニア、アルミナ、マグネシア、珪砂などのバックサンド(不定形材)12が配置されている。また、誘導コイル11の内周面に、断熱材13が配置されている。坩堝1は、高融点金属Mを収容する容器状の内側層2と、内側層2の少なくとも側壁部20を覆う外側層3と、を備えている。 In the induction furnace 10, an induction coil 11 is disposed outside the crucible 1, and a back sand (indefinite shape material) 12 such as zirconia, alumina, magnesia, or silica sand is disposed between the crucible 1 and the induction coil 11. Has been. A heat insulating material 13 is disposed on the inner peripheral surface of the induction coil 11. The crucible 1 includes a container-shaped inner layer 2 that contains the refractory metal M, and an outer layer 3 that covers at least the side wall portion 20 of the inner layer 2.
 内側層2は、上部に開口を有する有底筒状に形成されており、円筒状や角筒状など任意の形状とすることができる。内側層2は、鋳鉄などの高融点金属Mを収容することから、耐熱性、高温強度、溶解する高融点金属(溶融金属)に対する耐食性などに優れた耐火物からなり、その材料としては、二酸化珪素(シリカ、石英)、アルミナ、マグネシア、ジルコニア、窒化珪素などを好ましく例示することができるが、その他の添加物や不純物を含んでいてもよい。内側層2は、流し込み成形やCIP成形、振動成形などの種々の成形法により形成することができる。例えば流し込み成形で形成する場合には、上記した材料を一種又は所定の混合比で複数種混合して加水混錬したもの(流し込み材)を、内部に型枠が配置された筒状の外側層3の型枠との間に流し込み、養生、固化、乾燥させた後、型枠を脱枠することにより形成される。 The inner layer 2 is formed in a bottomed cylindrical shape having an opening in the upper portion, and can have an arbitrary shape such as a cylindrical shape or a rectangular tube shape. Since the inner layer 2 contains a refractory metal M such as cast iron, the inner layer 2 is made of a refractory material having excellent heat resistance, high-temperature strength, corrosion resistance against melting refractory metal (molten metal), etc. Silicon (silica, quartz), alumina, magnesia, zirconia, silicon nitride and the like can be preferably exemplified, but other additives and impurities may be included. The inner layer 2 can be formed by various molding methods such as casting, CIP molding, and vibration molding. For example, in the case of forming by casting, a cylindrical outer layer in which a formwork is disposed inside a material obtained by mixing one or more of the above materials at a predetermined mixing ratio and hydromixing them (a casting material) It is formed by pouring between the three molds, curing, solidifying and drying, and then removing the molds.
 なお、内側層2は、必ずしも上記した材料で100%形成されている必要はなく、耐熱性や強度などの特性を確保できていればよい。内側層2の厚みは、内側層2の大きさにより変わってくるが、側壁部20が例えば10mm~70mm程度であり、底壁部21が例えば10mm~100mm程度である。 The inner layer 2 does not necessarily need to be 100% formed of the above-described material, as long as characteristics such as heat resistance and strength can be secured. The thickness of the inner layer 2 varies depending on the size of the inner layer 2, but the side wall portion 20 is, for example, about 10 mm to 70 mm, and the bottom wall portion 21 is, for example, about 10 mm to 100 mm.
 また、溶解した高温の溶融金属に対する耐熱性及び耐食性を良好なものとするために、内側層2の内周面に、例えば特開2009-228919号公報に記載されているような窒化珪素-アルミナ系材料からなる保護層をコーティングするようにしてもよい。 Further, in order to improve the heat resistance and corrosion resistance of the molten high-temperature molten metal, silicon nitride-alumina as described in, for example, JP-A-2009-228919 is provided on the inner peripheral surface of the inner layer 2. A protective layer made of a system material may be coated.
 外側層3は、本実施形態では、内側層2の側壁部20のみを覆う円筒状に形成されている。外側層3は、誘導コイル11からの誘導加熱により発熱する発熱体からなり、その材料としては、導電性を有しかつ熱伝導率が高い、カーボンや黒鉛などの導電性材料を好ましく例示することができるが、その他の添加物や不純物を含んでいてもよい。外側層3は、電気比抵抗値が100×10-3Ωcm以下、好ましくは50×10-3Ωcm以下であることが好ましい。電気比抵抗値が100×10-3Ωcmよりも大きいと、発熱性が弱いからである。 In this embodiment, the outer layer 3 is formed in a cylindrical shape that covers only the side wall portion 20 of the inner layer 2. The outer layer 3 is composed of a heating element that generates heat by induction heating from the induction coil 11, and preferably includes a conductive material such as carbon or graphite having conductivity and high thermal conductivity. However, it may contain other additives and impurities. The outer layer 3 has an electrical resistivity value of 100 × 10 −3 Ωcm or less, preferably 50 × 10 −3 Ωcm or less. This is because if the electrical specific resistance value is larger than 100 × 10 −3 Ωcm, the exothermic property is weak.
 外側層3の厚みは、例えば5mm~30mm程度であり、内側層2の側壁部20の厚み以下であることが好ましい。誘導炉10では、溶解する金属Mの溶解効率を良好とするためには、金属Mと誘導コイル11との間に配置される耐火物(坩堝1やバックサンド12)の厚みをできる限り小さくする必要がある。ただし、坩堝1の内側層2(側壁部20)の厚みは内側層2の寿命に大きく影響し、必要な寿命を得るためには可能な限り厚くする必要がある。また、バックサンド12は、熱に対する誘導コイル11の保護や、坩堝1が割れたときのバックアップ材として必要な厚み(例えば、大きさによって変わるが10mm~50mm)を設定する必要がある。外側層3の厚みは、上記した事情を考慮しながら設定するが、溶融金属の出湯後の坩堝1保温の為には、熱容量が大きいほうが好ましいので、厚いほうがよいが、バックサンド12の厚みとの兼ね合いで最適な厚みとする必要があり、そうすると、内側層2(側壁部20)の厚み以下となるのが好ましくなる。 The thickness of the outer layer 3 is, for example, about 5 mm to 30 mm, and is preferably equal to or less than the thickness of the side wall portion 20 of the inner layer 2. In the induction furnace 10, in order to improve the melting efficiency of the melting metal M, the thickness of the refractory (the crucible 1 and the back sand 12) disposed between the metal M and the induction coil 11 is made as small as possible. There is a need. However, the thickness of the inner layer 2 (side wall portion 20) of the crucible 1 greatly affects the life of the inner layer 2, and it is necessary to make it as thick as possible in order to obtain the required life. Further, the back sand 12 needs to have a thickness (for example, 10 to 50 mm depending on the size) necessary for protecting the induction coil 11 against heat and as a backup material when the crucible 1 is broken. Although the thickness of the outer layer 3 is set in consideration of the above-described circumstances, a larger heat capacity is preferable for the heat retention of the crucible 1 after the molten metal is poured out. In view of this, it is necessary to obtain an optimum thickness, and in this case, the thickness is preferably equal to or less than the thickness of the inner layer 2 (side wall portion 20).
 外側層3は、CIP成形や流し込み成形、振動成形などの種々の成形法により形成することができる。例えばCIP成形で形成する場合には、上記した黒鉛などの導電性材料と二酸化珪素などの絶縁材料とを、所定の混合比で混合し、若干のバインダーを加えて静水圧成形機で成形した後、例えば約1200℃で焼成することで、形成することができる。 The outer layer 3 can be formed by various molding methods such as CIP molding, casting molding, and vibration molding. For example, in the case of forming by CIP molding, after mixing the above-mentioned conductive material such as graphite and insulating material such as silicon dioxide at a predetermined mixing ratio, adding a slight binder and molding with a hydrostatic pressure molding machine. For example, it can be formed by baking at about 1200 ° C.
 なお、外側層3は、上記した黒鉛などの導電性材料と二酸化珪素などの絶縁材料とを、所定の混合比で混合して水ガラスなどのバインダーを加えて作成したスラリーを、例えばCIP成形や流し込み成形で形成した内側層2の外周面にスプレーや刷毛などで塗布・吹き付けした後、約200℃で熱処理を施すことによっても形成することができる。また、外側層3は、黒鉛シート、炭素繊維ペーパーや炭素繊維フェルトなどを、例えばCIP成形や流し込み成形で形成した内側層2の外周面に貼り付けることによっても形成することができる。さらに、外側層3は、CIP成形や流し込み成形などの成形法により、内側層2を内部にすっぽりと収容可能な大きさの容器状に形成することもできる。この場合には、外側層3内に内側層2を嵌め込むことにより、内側層2の外周面に加えて底面にも外側層3が一体化された2層構造の坩堝1を製造できる。 The outer layer 3 is made of a slurry prepared by mixing a conductive material such as graphite and an insulating material such as silicon dioxide at a predetermined mixing ratio and adding a binder such as water glass. It can also be formed by applying and spraying the outer peripheral surface of the inner layer 2 formed by casting by spraying or brushing, and then performing heat treatment at about 200 ° C. The outer layer 3 can also be formed by attaching a graphite sheet, carbon fiber paper, carbon fiber felt or the like to the outer peripheral surface of the inner layer 2 formed by CIP molding or casting. Furthermore, the outer layer 3 can also be formed in a container shape having a size capable of completely accommodating the inner layer 2 by a molding method such as CIP molding or casting. In this case, the crucible 1 having a two-layer structure in which the outer layer 3 is integrated with the bottom surface in addition to the outer peripheral surface of the inner layer 2 can be manufactured by fitting the inner layer 2 into the outer layer 3.
 また、内側層2を、CIP成形などで形成後、それを型枠の一部として、外側層3を流し込み成形などで形成して、2層を一体化させてもよい。または、CIP成形や流し込み成形をする際に、内側層2及び外側層3の材料を、型枠内に分けて充填し、内側層2及び外側層3を同時に成形してもよい。 Alternatively, after the inner layer 2 is formed by CIP molding or the like, the outer layer 3 may be formed by casting or the like using the same as a part of the mold, and the two layers may be integrated. Alternatively, when CIP molding or casting molding is performed, the material of the inner layer 2 and the outer layer 3 may be divided and filled in the mold, and the inner layer 2 and the outer layer 3 may be molded simultaneously.
 以上の構成を備えた坩堝1は以下のようにして使用される。まず、坩堝1内に鋳鉄、鋳鋼、特殊鋼、銅合金などの高融点金属M(形状は任意の形状)を収容する。そして、誘導コイル11に高周波電流を通電する。これにより誘導コイル11の周囲に磁界が形成され、この磁界が坩堝1内の高融点金属Mを透過する結果、高融点金属Mが電磁誘導作用により発熱して温度上昇する。加えて、坩堝1の外側層3に対しても、誘導コイル11からの磁界が透過しかつ浸透することで、外側層3を構成する発熱体が発熱して温度上昇する。その結果、外側層3は800℃以上の高温となり、その熱が熱伝導により内側層2に伝達されることで内側層2が高温となる。これらの両方の作用により、高融点金属Mが耐火物から冷却されることなく加熱され、高融点金属Mが溶解して溶融金属となり、溶融状態で保温される。 The crucible 1 having the above configuration is used as follows. First, refractory metal M (shape is arbitrary shape) such as cast iron, cast steel, special steel, or copper alloy is accommodated in crucible 1. Then, a high frequency current is passed through the induction coil 11. As a result, a magnetic field is formed around the induction coil 11, and as a result of this magnetic field passing through the refractory metal M in the crucible 1, the refractory metal M generates heat due to the electromagnetic induction action and rises in temperature. In addition, when the magnetic field from the induction coil 11 penetrates and penetrates the outer layer 3 of the crucible 1, the heating element constituting the outer layer 3 generates heat and the temperature rises. As a result, the outer layer 3 has a high temperature of 800 ° C. or higher, and the heat is transferred to the inner layer 2 by heat conduction, so that the inner layer 2 becomes high temperature. By both of these actions, the refractory metal M is heated without being cooled from the refractory, and the refractory metal M is melted to become a molten metal and kept in a molten state.
 本実施形態の坩堝1によれば、通電した誘導コイル11からの磁界により、発熱体からなる外側層3を発熱させ、熱伝導により内側層2を加熱することで内側層2内に収容された高融点金属Mを加熱するようにしている。よって、内側層2内の高融点金属Mは、通電した誘導コイル11からの磁界により、高融点金属M自体が発熱して温度上昇するとともに、内側層2からの熱伝導による加熱によっても温度上昇するので、素早く融点に達して溶解する。その結果、効率よく高融点金属Mを加熱・溶解することができるので、操業時間の短縮が可能である上、省エネルギーを実現できる。 According to the crucible 1 of the present embodiment, the outer layer 3 made of a heating element is heated by the magnetic field from the energized induction coil 11, and the inner layer 2 is heated by heat conduction and is accommodated in the inner layer 2. The refractory metal M is heated. Therefore, the refractory metal M in the inner layer 2 rises in temperature due to heat generation from the refractory metal M itself due to the magnetic field from the energized induction coil 11, and also due to heating due to heat conduction from the inner layer 2. So it quickly reaches the melting point and dissolves. As a result, the high melting point metal M can be efficiently heated and melted, so that the operation time can be shortened and energy saving can be realized.
 加えて、内側層2は外側層3からの熱伝導により外面が加熱されるので、溶解した高温の溶融金属と接する内面側と外面側との間の温度差がほとんど生じない。よって、内側層2の内面側と外面側との間の温度差に伴う熱衝撃によって、内側層2が損傷を受けることを防止することができるので、内側層2の耐久性を高めることができ、坩堝1の長寿命化を図ることができる。 In addition, since the outer surface of the inner layer 2 is heated by heat conduction from the outer layer 3, there is almost no temperature difference between the inner surface side and the outer surface side in contact with the molten high-temperature molten metal. Therefore, it is possible to prevent the inner layer 2 from being damaged by the thermal shock caused by the temperature difference between the inner surface side and the outer surface side of the inner layer 2, so that the durability of the inner layer 2 can be improved. The life of the crucible 1 can be extended.
 以下、本発明の坩堝の実施例を示すが、本発明がこの実施例に限定されないことは言うまでもない。実施例の坩堝は、図1に示すような、アルミナ-シリカ系材料からなる容器状の内側層2と、内側層2の側壁部20を覆うように配置した円筒状の黒鉛-炭化珪素系材料からなる外側層3とからなる2層構造のものである。内側層2の大きさは、外径が150mm、内径が125mm、高さが125mmであり、外側層3の大きさは、外径が170mm、内径が150mm、高さが125mmである。内側層2及び外側層3を構成する主な材料の組成は、以下の表1に示す。実施例の坩堝は、まず、円筒状の外側層3をCIP成形及び1200℃での焼成により形成した後、外側層3を型枠として、外側層3の内部に内側層2を流し込み成形(120℃で乾燥)することで、形成した。誘導加熱炉としては高周波誘導炉(3000Hz×50Kw、直流電圧を160Vに設定)を用い、溶解する高融点金属Mとしては、円柱状(径が80m、高さが100mm)の鋳鉄を用いた。外側層3の周囲には、シリカからなるバックサンド12(厚み:約30mm)及び絶縁シート13(厚み:約5mm)を配置した。比較例の坩堝は、図11に示すような、アルミナ-シリカ系材料からなる1層構造のものであり、大きさは、外径が170mm、内径が125mm、高さが125mmである。なお、比較例の坩堝を構成する材料の組成は、以下の表1に示す。 Hereinafter, examples of the crucible of the present invention will be shown, but it goes without saying that the present invention is not limited to this example. The crucible of the example is a cylindrical graphite-silicon carbide-based material arranged so as to cover a container-shaped inner layer 2 made of an alumina-silica-based material and a side wall portion 20 of the inner layer 2 as shown in FIG. It has a two-layer structure consisting of an outer layer 3 made of The inner layer 2 has an outer diameter of 150 mm, an inner diameter of 125 mm, and a height of 125 mm. The outer layer 3 has an outer diameter of 170 mm, an inner diameter of 150 mm, and a height of 125 mm. The composition of main materials constituting the inner layer 2 and the outer layer 3 is shown in Table 1 below. In the crucible of the example, first, the cylindrical outer layer 3 was formed by CIP molding and firing at 1200 ° C., and then the inner layer 2 was poured into the outer layer 3 using the outer layer 3 as a mold (120 It was formed by drying). A high frequency induction furnace (3000 Hz × 50 Kw, DC voltage set to 160 V) was used as the induction heating furnace, and a cast iron having a cylindrical shape (diameter: 80 m, height: 100 mm) was used as the refractory metal M to be melted. Around the outer layer 3, a back sand 12 (thickness: about 30 mm) made of silica and an insulating sheet 13 (thickness: about 5 mm) were disposed. The crucible of the comparative example has a one-layer structure made of an alumina-silica-based material as shown in FIG. 11, and has an outer diameter of 170 mm, an inner diameter of 125 mm, and a height of 125 mm. The composition of the material constituting the crucible of the comparative example is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 評価方法としては、鋳鉄が溶解するまでの時間、鋳鉄が溶解するまでの消費電力(直流電圧×直流電流×時間)、及び、実施例及び比較例の坩堝の所定部位における温度推移(実施例及び比較例ともに金属表面温度、実施例の坩堝では内側層2の外面温度、比較例の坩堝では坩堝の外面温度)を測定した。鋳鉄の溶解作業は、まず、1回目の鋳鉄の溶解を行い、坩堝内に溶解した鋳鉄(溶湯)を30分間保持した後、溶湯を出湯し、30分間の坩堝の冷却時間をおいて、2回目の鋳鉄の溶解を行った。坩堝の冷却は、上部の開口をオープン状態にした空冷により行った。この測定結果を、表2、表3、及び図2~図9に示す。 As an evaluation method, the time until the cast iron melts, the power consumption until the cast iron melts (DC voltage × DC current × time), and the temperature transition in the predetermined part of the crucible of the example and the comparative example (Example and In the comparative examples, the metal surface temperature, the outer surface temperature of the inner layer 2 in the crucible of the example, and the outer surface temperature of the crucible in the crucible of the comparative example were measured. The cast iron melting operation is performed by first melting cast iron, holding the molten cast iron (molten metal) in the crucible for 30 minutes, discharging the molten metal, and allowing the crucible to cool for 30 minutes. The second cast iron was melted. The crucible was cooled by air cooling with the upper opening opened. The measurement results are shown in Table 2, Table 3, and FIGS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図2、図3及び表2によると、実施例と比較例とで、坩堝内で溶解する高融点金属の表面温度が1000℃に到達するまでの時間が、実施例では約10分(1回目)、約8分(2回目)であるのに対し、比較例では約14分(1回目)、約10分(2回目)であり、坩堝内の高融点金属の昇温速度に大きな差が生じていることが確認された。これに伴い、坩堝内の高融点金属が完全に溶解するまでの時間も、実施例では約17分(1回目)、約12分(2回目)であるのに対し、比較例では約30分(1回目)、約23分(2回目)であり、実施例のほうが比較例よりも、効率よく高融点金属を加熱することができ、溶解時間(操業時間)の大幅な短縮(40%~50%の短縮)が可能であることが確認された。また、比較例との対比で、実施例の2回目の溶解時間は1回目の溶解時間よりもさらに短縮されているが、これは、1回目の高融点金属の溶解時に内外から良好に加熱されたことによる内側層2の蓄熱量が、比較例よりも増大していることによる効果であると思われる。 According to FIG. 2, FIG. 3 and Table 2, the time required for the surface temperature of the refractory metal dissolved in the crucible to reach 1000 ° C. in the example and the comparative example is about 10 minutes (the first time) ), About 8 minutes (second time), compared with about 14 minutes (first time) and about 10 minutes (second time) in the comparative example, and there is a large difference in the heating rate of the refractory metal in the crucible. It was confirmed that this occurred. Along with this, the time until the refractory metal in the crucible is completely dissolved is about 17 minutes (first time) and about 12 minutes (second time) in the example, whereas it is about 30 minutes in the comparative example. (First time), about 23 minutes (second time), the refractory metal can be heated more efficiently in the example than in the comparative example, and the melting time (operation time) is greatly reduced (from 40% to 50% shortening) was confirmed. Further, in contrast to the comparative example, the second dissolution time of the example is further shortened than the first dissolution time, but this is favorably heated from inside and outside during the first dissolution of the refractory metal. This is probably because the amount of heat stored in the inner layer 2 is greater than that of the comparative example.
 また、図6~図9及び表3によると、実施例と比較例とで、坩堝内の高融点金属の溶解時の電流値は、実施例のほうが外側層3にも通電させていることから比較例よりも高くなっているにも関わらず、高融点金属を完全に溶解させるのに必要な消費電力は、実施例のほうが溶解時間が大幅に短縮されているために、1回目及び2回目ともに、比較例よりも大幅に減少していることが確認された。これにより、実施例のほうが比較例よりも、省エネルギーを実現でき、エネルギーコストも低減できることが確認された。 Further, according to FIGS. 6 to 9 and Table 3, in the example and the comparative example, the current value at the time of melting the refractory metal in the crucible is that the outer layer 3 is also energized in the example. In spite of being higher than the comparative example, the power consumption required to completely dissolve the refractory metal is the first and second times because the melting time is greatly shortened in the example. In both cases, it was confirmed that the amount was significantly lower than that of the comparative example. Thereby, it was confirmed that an Example can implement | achieve energy saving and an energy cost can also be reduced rather than a comparative example.
 さらに、図4及び図5によると、比較例では、坩堝の外面温度が1回目及び2回目とも500度~600度程度までしか上昇しておらず、坩堝内の溶融金属の温度(1100度~1200度)との間に大きな温度差が生じている。これに対して、実施例では、坩堝の内側層2の外面温度が1回目及び2回目ともに1100度~1200度まで上昇しており、内側層2内の溶融金属の温度(1100度~1200度)との間で温度差はほとんど生じていない。よって、実施例では、内側層2の内面側と外面側との間の温度差に伴う熱衝撃による損傷を内側層2が受けることを防止でき、内側層2の耐久性を向上可能であることが確認された。 Furthermore, according to FIGS. 4 and 5, in the comparative example, the outer surface temperature of the crucible increased only to about 500 to 600 degrees in both the first and second times, and the temperature of the molten metal in the crucible (from 1100 degrees to And a large temperature difference is generated. On the other hand, in the example, the outer surface temperature of the inner layer 2 of the crucible rises to 1100 to 1200 degrees in both the first and second times, and the temperature of the molten metal in the inner layer 2 (1100 to 1200 degrees) ) Is almost no temperature difference. Therefore, in an Example, it can prevent that the inner layer 2 receives the damage by the thermal shock accompanying the temperature difference between the inner surface side and the outer surface side of the inner layer 2, and can improve the durability of the inner layer 2. Was confirmed.
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能であることは言うまでもない。例えば、図10に示すように、坩堝1の内側層2の上端部に径方向外側に延びるリング状のフランジ部22を形成し、外側層3が外気に露出することを防止するような構成とすることができる。この構成によると、高融点金属の溶解時において、カーボンや黒鉛などで構成される外側層3がバックサンド12に完全に埋設されるので、外側層3の酸化を防止することができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention. For example, as shown in FIG. 10, a ring-shaped flange portion 22 extending radially outward is formed at the upper end portion of the inner layer 2 of the crucible 1 to prevent the outer layer 3 from being exposed to the outside air. can do. According to this configuration, the outer layer 3 made of carbon, graphite, or the like is completely embedded in the back sand 12 when the refractory metal is dissolved, so that the outer layer 3 can be prevented from being oxidized.
 1  誘導加熱炉用坩堝
 2  内側層
 3  外側層
 20 側壁部
1 Induction furnace crucible 2 Inner layer 3 Outer layer 20 Side wall

Claims (8)

  1.  金属を誘導コイルからの誘導加熱により溶解する誘導加熱炉用坩堝であって、
     金属を収容する耐火物からなる容器状の内側層と、
     前記内側層の少なくとも側壁部を覆い、誘導加熱により発熱する発熱体からなる外側層と、を備える誘導加熱炉用坩堝。
    An induction furnace crucible for melting metal by induction heating from an induction coil,
    A container-like inner layer made of a refractory containing metal,
    A crucible for an induction heating furnace, comprising: an outer layer made of a heating element that covers at least a side wall portion of the inner layer and generates heat by induction heating.
  2.  前記耐火物が、二酸化珪素、アルミナ、マグネシア、ジルコニア、炭化珪素及び窒化珪素からなる群より選ばれる少なくとも1種を主に含む請求項1に記載の誘導加熱炉用坩堝。 The induction furnace crucible according to claim 1, wherein the refractory mainly contains at least one selected from the group consisting of silicon dioxide, alumina, magnesia, zirconia, silicon carbide and silicon nitride.
  3.  前記発熱体が、カーボン及び黒鉛からなる群より選ばれる少なくとも1種を主に含む請求項1又は2に記載の誘導加熱炉用坩堝。 The induction heating crucible according to claim 1 or 2, wherein the heating element mainly contains at least one selected from the group consisting of carbon and graphite.
  4.  前記外側層の電気比抵抗値が100×10-3Ωcm以下である請求項1~3のいずれかに記載の誘導加熱炉用坩堝。 The induction heating furnace crucible according to any one of claims 1 to 3, wherein the electrical resistivity of the outer layer is 100 x 10 -3 Ωcm or less.
  5.  前記外側層の厚みが、前記内側層の厚み以下である請求項1~4のいずれかに記載の誘導加熱炉用坩堝。 The induction furnace crucible according to any one of claims 1 to 4, wherein a thickness of the outer layer is equal to or less than a thickness of the inner layer.
  6.  前記外側層が、前記内側層の側壁部のみを覆う円筒状に形成されている請求項1~5のいずれかに記載の誘導加熱炉用坩堝。 The induction furnace crucible according to any one of claims 1 to 5, wherein the outer layer is formed in a cylindrical shape covering only a side wall portion of the inner layer.
  7.  前記外側層は、CIP成形により形成され、
     前記内側層は、内部に型枠を配置した前記外側層に流し込み材を流し込んで成形することで形成される請求項1~6のいずれかに記載の誘導加熱炉用坩堝。
    The outer layer is formed by CIP molding,
    The induction furnace crucible according to any one of claims 1 to 6, wherein the inner layer is formed by pouring a casting material into the outer layer in which a mold is disposed.
  8.  前記外側層は、前記内側層の外周面に黒鉛シート、炭素繊維ペーパー又は炭素繊維フェルトを貼り付ける、もしくは、カーボン及び黒鉛からなる群より選ばれる少なくとも1種を主に含むスラリーを前記内側層の外周面に塗布することによって形成される請求項1~6のいずれかに記載の誘導加熱炉用坩堝。
     
    The outer layer is formed by attaching a graphite sheet, carbon fiber paper, or carbon fiber felt to the outer peripheral surface of the inner layer, or a slurry mainly containing at least one selected from the group consisting of carbon and graphite. The induction furnace crucible according to any one of claims 1 to 6, which is formed by coating on an outer peripheral surface.
PCT/JP2014/071896 2013-09-13 2014-08-21 Crucible for induction heating furnace WO2015037408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190965 2013-09-13
JP2013190965A JP5745588B2 (en) 2013-09-13 2013-09-13 Induction furnace crucible

Publications (1)

Publication Number Publication Date
WO2015037408A1 true WO2015037408A1 (en) 2015-03-19

Family

ID=52665525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071896 WO2015037408A1 (en) 2013-09-13 2014-08-21 Crucible for induction heating furnace

Country Status (2)

Country Link
JP (1) JP5745588B2 (en)
WO (1) WO2015037408A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012897B1 (en) * 2016-03-08 2016-10-25 日本坩堝株式会社 Induction furnace crucible
CN111356254A (en) * 2020-03-03 2020-06-30 富士电机株式会社 Induction heating device
CN111848134A (en) * 2020-08-04 2020-10-30 江苏隆达超合金航材有限公司 Crucible integrated forming manufacturing process for vacuum induction furnace
EP3795935A1 (en) * 2019-09-20 2021-03-24 Commissariat à l'énergie atomique et aux énergies alternatives Device for heat treatment having an improved ageing resistance and method for heat treatment implementing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758177B (en) * 2015-12-31 2018-10-09 安泰科技股份有限公司 A kind of combined type sensing heating crucible

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172798U (en) * 1982-05-11 1983-11-18 トヨタ自動車株式会社 Furnace structure
JPS6430191A (en) * 1987-07-25 1989-02-01 Mitsui Petrochemical Ind Outer casing crucible for high frequency induction heating
JPH01155188A (en) * 1987-12-14 1989-06-19 Tanaka Kikinzoku Kogyo Kk Holding furnace for manufacturing pt and pd group noble metal granular lump
JPH04177087A (en) * 1990-11-08 1992-06-24 Ngk Insulators Ltd Induction furnace
JPH07267721A (en) * 1994-03-29 1995-10-17 Ngk Insulators Ltd Production of crucible for high-frequency induction furnace
JP2002243370A (en) * 2001-02-13 2002-08-28 Daido Steel Co Ltd Apparatus for dissolving silicon

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703486B2 (en) * 2006-05-26 2011-06-15 シャープ株式会社 Crucible and thin plate manufacturing equipment
JP2009274905A (en) * 2008-05-14 2009-11-26 Covalent Materials Corp Crucible for melting silicon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172798U (en) * 1982-05-11 1983-11-18 トヨタ自動車株式会社 Furnace structure
JPS6430191A (en) * 1987-07-25 1989-02-01 Mitsui Petrochemical Ind Outer casing crucible for high frequency induction heating
JPH01155188A (en) * 1987-12-14 1989-06-19 Tanaka Kikinzoku Kogyo Kk Holding furnace for manufacturing pt and pd group noble metal granular lump
JPH04177087A (en) * 1990-11-08 1992-06-24 Ngk Insulators Ltd Induction furnace
JPH07267721A (en) * 1994-03-29 1995-10-17 Ngk Insulators Ltd Production of crucible for high-frequency induction furnace
JP2002243370A (en) * 2001-02-13 2002-08-28 Daido Steel Co Ltd Apparatus for dissolving silicon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012897B1 (en) * 2016-03-08 2016-10-25 日本坩堝株式会社 Induction furnace crucible
EP3795935A1 (en) * 2019-09-20 2021-03-24 Commissariat à l'énergie atomique et aux énergies alternatives Device for heat treatment having an improved ageing resistance and method for heat treatment implementing same
FR3101138A1 (en) * 2019-09-20 2021-03-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Heat treatment device exhibiting improved resistance to aging and heat treatment method using it
CN111356254A (en) * 2020-03-03 2020-06-30 富士电机株式会社 Induction heating device
CN111848134A (en) * 2020-08-04 2020-10-30 江苏隆达超合金航材有限公司 Crucible integrated forming manufacturing process for vacuum induction furnace
CN111848134B (en) * 2020-08-04 2021-06-08 江苏隆达超合金航材有限公司 Crucible integrated forming manufacturing process for vacuum induction furnace

Also Published As

Publication number Publication date
JP5745588B2 (en) 2015-07-08
JP2015055462A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
WO2015037408A1 (en) Crucible for induction heating furnace
WO2010073736A1 (en) Continuous casting method and nozzle heating device
CN107530770A (en) The control pin of heating
JP5766271B2 (en) Apparatus and method for induction heating discharge of melt
CN112210676A (en) Electromagnetic induction heating composite crucible
JP6403693B2 (en) Induction furnace and method for treating stored metal waste
GB2543518A (en) Metal transfer device
KR101571644B1 (en) Lining structure for molten-metal container
JP3080582B2 (en) Metal casting method
JP6012897B1 (en) Induction furnace crucible
JP4445404B2 (en) Continuous casting method for molten steel
JP2000035364A (en) Device for continuous temperature-measurement of melted metal device
JP5000149B2 (en) Cold Crucible Induction Dissolver
JP5654339B2 (en) Induction heating type aluminum melting and holding furnace
JP2014105348A (en) Operation method of electric furnace for ferronickel smelting
TWI565924B (en) Crucible
JP2011099840A (en) Continuous temperature measurement probe for ladle
JP2008256233A (en) Induction heating coil and induction melting furnace
JP2013127352A (en) Cooling method for three-phase ac electrode type circular electric furnace and the three-phase ac electrode type circular electric furnace
JP5473271B2 (en) Electric heating device
WO2016093197A1 (en) Operation method for electric resistance furnaces
JP2014105904A (en) Three-phase ac electrode type circular electric furnace and its cooling method
JP2005199339A (en) Immersion nozzle
JP3180665U (en) Molten metal ladle
JP2007155141A (en) Induction melting device using halide crucible, manufacturing method of crucible, and induction melting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844037

Country of ref document: EP

Kind code of ref document: A1