WO2015037288A1 - High-electron-mobility transistor and method for manufacturing same - Google Patents

High-electron-mobility transistor and method for manufacturing same Download PDF

Info

Publication number
WO2015037288A1
WO2015037288A1 PCT/JP2014/064774 JP2014064774W WO2015037288A1 WO 2015037288 A1 WO2015037288 A1 WO 2015037288A1 JP 2014064774 W JP2014064774 W JP 2014064774W WO 2015037288 A1 WO2015037288 A1 WO 2015037288A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
algan
inaln
mobility transistor
nitride semiconductor
Prior art date
Application number
PCT/JP2014/064774
Other languages
French (fr)
Japanese (ja)
Inventor
富田 英幹
将一 兼近
上田 博之
誠 桑原
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015037288A1 publication Critical patent/WO2015037288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the technology disclosed in this specification relates to a high electron mobility transistor and a method for manufacturing the same.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2009-71061 discloses an example of a high electron mobility transistor.
  • a high electron mobility transistor disclosed in Patent Document 1 includes an AlGaN layer (electron supply layer) provided on an electron transit layer, an AlN layer (insulating layer) provided on the AlGaN layer, and an AlN layer. And a gate electrode provided via a nitride semiconductor layer.
  • an AlN layer is interposed to insulate an AlGaN layer and a nitride semiconductor layer. For this reason, after forming an AlN layer on an AlGaN layer, a nitride semiconductor layer must be formed on the AlN layer. However, when an AlN layer is formed on the AlGaN layer, the AlN layer may not be formed well. Therefore, it has been demanded to improve the quality of the high electron mobility transistor by forming a layer between the AlGaN layer and the nitride semiconductor layer well.
  • the high electron mobility transistor disclosed in this specification includes an electron transit layer, an AlGaN layer provided on the electron transit layer, and an insulating layer containing In and Al provided on the AlGaN layer. I have.
  • the high electron mobility transistor includes a nitride semiconductor layer provided on the insulating layer, a source electrode and a drain electrode provided on the AlGaN layer, and a gate electrode provided on the nitride semiconductor layer. And.
  • the AlGaN layer (electron supply layer) and the insulating layer containing In and Al can be brought into close contact with each other, and a high-quality high electron mobility transistor can be obtained. That is, in the conventional high electron mobility transistor of Patent Document 1, the “AlN” layer is used as an insulating layer that insulates the AlGaN layer (electron supply layer) and the nitride semiconductor layer. Therefore, the lattice constants of the electron supply layer and the insulating layer are greatly separated, and the insulating layer may not be formed on the electron supply layer with good quality.
  • the insulating layer is a layer containing In and Al
  • the lattice constants of the electron supply layer (AlGaN layer) and the insulating layer (layer containing In and Al) are used. Can be brought closer. Thereby, an insulating layer containing In and Al can be formed on the electron supply layer (AlGaN layer) with high quality, and a high quality high electron mobility transistor can be obtained.
  • the insulating layer may be formed of InAlN having a composition ratio of In 0.18 Al 0.82 N.
  • a method for manufacturing a high electron mobility transistor disclosed in the present specification includes a step of providing an AlGaN layer on an electron transit layer, and a step of providing an insulating layer containing In and Al on the AlGaN layer. I have.
  • the manufacturing method includes a step of providing a nitride semiconductor layer on the insulating layer, a step of providing a source electrode and a drain electrode on the AlGaN layer, a step of providing a gate electrode on the nitride semiconductor layer, It has.
  • the above manufacturing method may include a step of removing a part of the nitride semiconductor layer up to the insulating layer by an etching method before providing the gate electrode.
  • the high electron mobility transistor 1 includes an electron transit layer 103 supported on a substrate 101, an AlGaN layer 104 provided on the electron transit layer 103, and an AlGaN layer 104. And an InAlN layer 100 (an example of an insulating layer) provided by epitaxial growth.
  • the high electron mobility transistor 1 includes a nitride semiconductor layer 107 provided on the InAlN layer 100, a source electrode 109 and a drain electrode 110 provided on the AlGaN layer 104, and a nitride semiconductor layer 107. And a gate electrode 111 provided thereon.
  • the high electron mobility transistor 1 includes an interlayer insulating film 108.
  • the substrate 101 for example, a sapphire substrate or a silicon substrate can be used.
  • a buffer layer 102 is provided on the substrate 101.
  • As a material of the buffer layer 102 for example, AlN or GaN can be used.
  • An electron transit layer 103 is provided on the buffer layer 102.
  • the electron transit layer 103 becomes a channel through which electrons supplied from the electron supply layer 104 travel.
  • the electron transit layer 103 for example, an undoped GaN layer or an InGaN layer can be used.
  • the AlGaN layer 104 is an electron supply layer that supplies electrons to the electron transit layer 103.
  • the AlGaN layer 104 is not doped (undoped).
  • the AlGaN layer 104 (electron supply layer) and the electron transit layer 103 form a heterojunction, and a two-dimensional electron gas layer (2DEG) is formed on the heterojunction surface.
  • the composition ratio of AlGaN in the AlGaN layer 104 can be Al 1-x Ga x N (0.15 ⁇ x ⁇ 1.0).
  • the lattice constant of AlGaN is 3.12 to 3.189 ⁇ .
  • the AlGaN layer 104 has a larger band gap than the electron transit layer 103.
  • the InAlN layer 100 contains In and Al and is an insulating layer that insulates the AlGaN layer 104 and the nitride semiconductor layer 107.
  • the InAlN layer 100 is formed by epitaxial growth, and can be formed by, for example, metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the composition ratio of InAlN in the InAlN layer 100 can be In 1-x Al x N (0.85 ⁇ x ⁇ 1.0). In the present embodiment, InAlN having a composition ratio of In 0.18 Al 0.82 N is used in the InAlN layer 100 (insulating layer).
  • the lattice constant of InAlN can completely match the lattice constant of the underlying AlGaN, and InAlN has a larger band gap. Therefore, a high-quality InAlN layer without lattice distortion can be formed, and device characteristics such as gate current suppression can be improved.
  • the lattice constant is 3.17 ⁇ , and lattice matching is possible with In 0.14 Al 0.86 N thereon.
  • the lattice constant of AlN used as an insulating layer in the semiconductor device of Patent Document 1 is about 3.11 mm.
  • a plurality of openings 121 for disposing the source electrode 109 and the drain electrode 110 are formed in the InAlN layer 100 so as to be separated from each other.
  • the source electrode 109 and the drain electrode 110 are disposed in the opening 121 and are provided apart from each other.
  • the source electrode 109 and the drain electrode 110 are in ohmic contact with the surface of the AlGaN layer 104.
  • the nitride semiconductor layer 107 includes a lower P-type GaN layer 105 provided on the InAlN layer 100 and an upper P-type GaN layer 106 provided on the lower P-type GaN layer 105.
  • the upper P-type GaN layer 106 contains a higher concentration of P-type impurities than the lower P-type GaN layer 105.
  • the nitride semiconductor layer 107 is disposed between the source electrode 109 and the drain electrode 110 when the high electron mobility transistor 1 is viewed in plan.
  • a gate electrode 111 is provided on the upper P-type GaN layer 106.
  • the nitride semiconductor layer 107 is disposed on a part of the InAlN layer 100, and the periphery thereof is covered with an interlayer insulating film 108.
  • the gate electrode 111 is in ohmic contact with the surface of the upper P-type GaN layer 106.
  • the gate voltage applied to the gate electrode 111 By controlling the gate voltage applied to the gate electrode 111, the two-dimensional electron gas concentration at the heterojunction interface between the underlying AlGaN layer 104 (electron supply layer) and the electron transit layer 103 increases or decreases, and the source electrode 109 and the drain The main current flowing between the electrodes 110 can be controlled.
  • the gate electrode 111 is provided above the InAlN layer 100 with the nitride semiconductor layer 107 interposed therebetween.
  • the interlayer insulating film 108 has an insulating property and is made of, for example, SiN.
  • the interlayer insulating film 108 covers the electron transit layer 103, the AlGaN layer 104, the InAlN layer 100, the lower P-type GaN layer 105, and the upper P-type GaN layer 106.
  • a plurality of openings 123 are formed in the interlayer insulating film 108, and a source electrode 109, a drain electrode 110, and a gate electrode 111 are arranged in each opening 123.
  • the manufacturing method of the high electron mobility transistor according to the embodiment includes a step of providing the AlGaN layer 104 on the electron transit layer 103 and a step of providing the InAlN layer 100 on the AlGaN layer 104 by epitaxial growth. Further, this manufacturing method includes a step of providing the nitride semiconductor layer 107 on the InAlN layer 100, a step of providing the source electrode 109 and the drain electrode 110 on the AlGaN layer 104, and a gate on the nitride semiconductor layer 107. A step of providing an electrode 111. In addition, this manufacturing method includes a step of removing a part of the nitride semiconductor layer 107 up to the InAlN layer 100 by an etching method before providing the gate electrode 111. This manufacturing method will be described in more detail below.
  • a substrate 101, a buffer layer 102, and an electron transit layer 103 are sequentially stacked, and AlGaN is formed on the electron transit layer 103.
  • Layer 104 is formed.
  • an InAlN layer 100 is formed on the AlGaN layer 104.
  • the AlGaN layer 104 and the InAlN layer 100 can be formed by an epitaxial growth method such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the laminated layers by trimethylgallium (TMGa) and ammonia (NH 3) metal-organic vapor phase growth method using (MOCVD method).
  • the InAlN layer 100 having a close lattice constant is formed on the AlGaN layer 104, the InAlN layer 100 can be formed with high quality by epitaxial growth.
  • the thickness of the buffer layer 102 is 2.4 ⁇ m
  • the thickness of the electron transit layer 103 is 1.6 ⁇ m
  • the thickness of the AlGaN layer 104 is 20 nm
  • the thickness of the InAlN layer 100 is 1 nm.
  • the thickness of each layer is not particularly limited.
  • a nitride semiconductor layer 107 is provided on the InAlN layer 100.
  • the lower P-type GaN layer 105 is formed on the InAlN layer 100
  • the upper P-type GaN layer 106 is formed on the lower P-type GaN layer 105.
  • the lower P-type GaN layer 105 and the upper P-type GaN layer 106 can be formed by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the thickness of the lower P-type GaN layer 105 is 100 nm and the thickness of the upper P-type GaN layer 106 is 5 nm.
  • the thickness of each layer is not particularly limited.
  • the upper P-type GaN layer 106, the lower P-type GaN layer 105, the InAlN layer 100, the AlGaN layer 104, and the electron transit layer 103 are selectively removed by photolithography and vapor phase etching. To do. Specifically, the peripheral part of each layer is removed. The electron transit layer 103 is removed partway through the layer.
  • the nitride semiconductor layer 107 (the upper P-type GaN layer 106 and the lower P-type GaN layer 105) is selectively removed by photolithography and vapor phase etching. Specifically, a part (peripheral part) of the nitride semiconductor layer 107 is removed up to the InAlN layer 100. At this time, the presence of the insulating layer 100 prevents the lower AlGaN layer 104 from being etched.
  • an interlayer insulating film 108 is formed on the stacked body.
  • the interlayer insulating film 108 covers the upper P-type GaN layer 106, the lower P-type GaN layer 105, the InAlN layer 100, the AlGaN layer 104, and the electron transit layer 103.
  • the interlayer insulating film 108 can be formed by plasma CVD, for example.
  • a plurality of openings 121 are formed in the interlayer insulating film 108 and the InAlN layer 100 as shown in FIG.
  • the opening 121 can be formed by selectively removing the interlayer insulating film 108 and the InAlN layer 100 by, for example, photolithography and vapor phase etching.
  • the source electrode 109 and the drain electrode 110 are formed on the AlGaN layer 104 in the opening 121.
  • the source electrode 109 and the drain electrode 110 can be formed by plasma CVD, for example.
  • an opening 123 is formed in the interlayer insulating film 108 as shown in FIG.
  • the opening 123 can be formed by selectively removing the interlayer insulating film 108 by photolithography and vapor phase etching.
  • the gate electrode 111 is formed on the upper P-type GaN layer 106 in the opening 123 (see FIG. 1).
  • the gate electrode 111 can be formed by plasma CVD, for example.
  • the InAlN layer 100 (insulating layer) is formed on the surface of the AlGaN layer 104 (electron supply layer) by epitaxial growth. Therefore, the AlGaN layer 104 and the InAlN layer 100 can be brought into close contact with each other, and a high-quality high electron mobility transistor 1 can be obtained. That is, since the lattice constants of the electron supply layer (AlGaN layer 104) and the insulating layer (InAlN layer 100) are close to each other, the InAlN layer 100 can be formed on the AlGaN layer 104 with high quality by epitaxial growth, and a high-quality high-electron mobility transistor.
  • AlN layer 104 the lattice constants of the electron supply layer (AlGaN layer 104) and the insulating layer (InAlN layer 100) are close to each other, the AlN layer can be manufactured with less stress on the interface than when the AlN layer is used as the insulating layer. This is effective in reducing current collapse, which is the biggest problem in GaN-HEMT. Thereby, it becomes possible to ensure high reliability.
  • the InAlN layer 100 becomes an etching stop layer, so that the AlGaN layer 104 under the InAlN layer 100 is not etched.
  • the gate current can be suppressed even if the voltage applied by the gate electrode 111 is increased.
  • the InAlN layer 100 on the surface of the AlGaN layer 104, positive charges can be collected at the interface between the InAlN layer 100 and the AlGaN layer 104 by piezoelectric polarization.
  • the two-dimensional electron gas (2DEG) formed at the interface between the electron transit layer 103 and the AlGaN layer 104 can be increased, and the on-resistance can be reduced.
  • the critical film thickness of the insulating layer (InAlN layer 100) is made AlN. It can be thicker than the layer.
  • the present invention is not limited to this configuration, and an InAlGaN layer may be used as the insulating layer.
  • high electron mobility transistor 100 InAlN layer (insulating layer) 101; substrate 102; buffer layer 103; electron transit layer 104; AlGaN layer (electron supply layer) 105; lower P-type GaN layer 106; upper P-type GaN layer 107; nitride semiconductor layer 108; interlayer insulating film 109; source electrode 110; drain electrode 111; gate electrode 121;

Abstract

This high-electron-mobility transistor (1) is provided with: an AlGaN layer (104) arranged on an electron transit layer (103); an InAlN layer (100) arranged on the AlGaN layer (104); a nitride semiconductor layer (107) arranged on the InAlN layer (100); a source electrode (109) and a drain electrode (110) arranged on the AlGaN layer (104); and a gate electrode (111) arranged on the nitride semiconductor layer (107).

Description

高電子移動度トランジスタ及びその製造方法High electron mobility transistor and manufacturing method thereof
 本明細書に開示の技術は、高電子移動度トランジスタ及びその製造方法に関する。 The technology disclosed in this specification relates to a high electron mobility transistor and a method for manufacturing the same.
 従来から電界効果トランジスタの一つとして、化合物半導体材料を利用した高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)が知られている。この高電子移動度トランジスタは、ヘテロ接合に起因した高移動度の二次元電子ガス(2DEG)をチャネルとしている。特許文献1(日本国特開2009-71061号公報)には高電子移動度トランジスタの一例が開示されている。特許文献1に開示の高電子移動度トランジスタは、電子走行層の上に設けられたAlGaN層(電子供給層)と、AlGaN層の上に設けられたAlN層(絶縁層)と、AlN層の上に窒化物半導体層を介して設けられたゲート電極とを備えている。 Conventionally, as one of the field effect transistors, a high electron mobility transistor (HEMT) using a compound semiconductor material is known. This high electron mobility transistor uses a high mobility two-dimensional electron gas (2DEG) caused by a heterojunction as a channel. Patent Document 1 (Japanese Unexamined Patent Publication No. 2009-71061) discloses an example of a high electron mobility transistor. A high electron mobility transistor disclosed in Patent Document 1 includes an AlGaN layer (electron supply layer) provided on an electron transit layer, an AlN layer (insulating layer) provided on the AlGaN layer, and an AlN layer. And a gate electrode provided via a nitride semiconductor layer.
 特許文献1に開示された高電子移動度トランジスタでは、AlN層を介在させることによりAlGaN層と窒化物半導体層との間を絶縁している。このため、AlGaN層の上にAlN層を形成した後に、そのAlN層上に窒化物半導体層を形成しなければならない。しかしながら、AlGaN層の上にAlN層を形成しようとすると、AlN層が良好に形成されないことがあった。そのため、AlGaN層と窒化物半導体層との間の層を良好に形成して高電子移動度トランジスタの品質を高めることが要求されていた。 In the high electron mobility transistor disclosed in Patent Document 1, an AlN layer is interposed to insulate an AlGaN layer and a nitride semiconductor layer. For this reason, after forming an AlN layer on an AlGaN layer, a nitride semiconductor layer must be formed on the AlN layer. However, when an AlN layer is formed on the AlGaN layer, the AlN layer may not be formed well. Therefore, it has been demanded to improve the quality of the high electron mobility transistor by forming a layer between the AlGaN layer and the nitride semiconductor layer well.
 そこで本明細書は、高品質の高電子移動度トランジスタを得ることができる技術を提供することを目的とする。 Therefore, it is an object of the present specification to provide a technique capable of obtaining a high quality high electron mobility transistor.
 本明細書に開示する高電子移動度トランジスタは、電子走行層と、電子走行層の上に設けられたAlGaN層と、AlGaN層の上に設けられたIn及びAlを含有する絶縁層と、を備えている。また、高電子移動度トランジスタは、絶縁層の上に設けられた窒化物半導体層と、AlGaN層の上に設けられたソース電極及びドレイン電極と、窒化物半導体層の上に設けられたゲート電極と、を備えている。 The high electron mobility transistor disclosed in this specification includes an electron transit layer, an AlGaN layer provided on the electron transit layer, and an insulating layer containing In and Al provided on the AlGaN layer. I have. The high electron mobility transistor includes a nitride semiconductor layer provided on the insulating layer, a source electrode and a drain electrode provided on the AlGaN layer, and a gate electrode provided on the nitride semiconductor layer. And.
 このような構成によれば、AlGaN層(電子供給層)とIn及びAlを含有する絶縁層とを密着させることができ、高品質の高電子移動度トランジスタを得ることができる。すなわち、上記従来の特許文献1の高電子移動度トランジスタでは、AlGaN層(電子供給層)と窒化物半導体層を絶縁する絶縁層に「AlN」層を用いている。そのため、電子供給層と絶縁層の格子定数が大きく離れ、電子供給層上に絶縁層を品質良く形成できないことがある。これに対して本明細書に開示の技術では、絶縁層をIn及びAlを含有する層にしているので、電子供給層(AlGaN層)と絶縁層(In及びAlを含有する層)の格子定数を近づけることができる。これにより、In及びAlを含有する絶縁層を電子供給層(AlGaN層)の上に高品質に形成でき、高品質の高電子移動度トランジスタを得ることができる。 According to such a configuration, the AlGaN layer (electron supply layer) and the insulating layer containing In and Al can be brought into close contact with each other, and a high-quality high electron mobility transistor can be obtained. That is, in the conventional high electron mobility transistor of Patent Document 1, the “AlN” layer is used as an insulating layer that insulates the AlGaN layer (electron supply layer) and the nitride semiconductor layer. Therefore, the lattice constants of the electron supply layer and the insulating layer are greatly separated, and the insulating layer may not be formed on the electron supply layer with good quality. On the other hand, in the technique disclosed in this specification, since the insulating layer is a layer containing In and Al, the lattice constants of the electron supply layer (AlGaN layer) and the insulating layer (layer containing In and Al) are used. Can be brought closer. Thereby, an insulating layer containing In and Al can be formed on the electron supply layer (AlGaN layer) with high quality, and a high quality high electron mobility transistor can be obtained.
 上記高電子移動度トランジスタにおいて、絶縁層は、組成比がIn0.18Al0.82NのInAlNから形成されていてもよい。
 また、本明細書に開示する高電子移動度トランジスタの製造方法は、電子走行層の上にAlGaN層を設ける工程と、AlGaN層の上にIn及びAlを含有する絶縁層を設ける工程と、を備えている。また、この製造方法は、絶縁層の上に窒化物半導体層を設ける工程と、AlGaN層の上にソース電極及びドレイン電極を設ける工程と、窒化物半導体層の上にゲート電極を設ける工程と、を備えている。
In the high electron mobility transistor, the insulating layer may be formed of InAlN having a composition ratio of In 0.18 Al 0.82 N.
Further, a method for manufacturing a high electron mobility transistor disclosed in the present specification includes a step of providing an AlGaN layer on an electron transit layer, and a step of providing an insulating layer containing In and Al on the AlGaN layer. I have. The manufacturing method includes a step of providing a nitride semiconductor layer on the insulating layer, a step of providing a source electrode and a drain electrode on the AlGaN layer, a step of providing a gate electrode on the nitride semiconductor layer, It has.
 上記の製造方法では、ゲート電極を設ける前に、窒化物半導体層の一部をエッチング法により絶縁層まで除去する工程を含むことができる。 The above manufacturing method may include a step of removing a part of the nitride semiconductor layer up to the insulating layer by an etching method before providing the gate electrode.
高電子移動度トランジスタの断面図である。It is sectional drawing of a high electron mobility transistor. 高電子移動度トランジスタの製造方法を説明する図である(1)。It is a figure explaining the manufacturing method of a high electron mobility transistor (1). 高電子移動度トランジスタの製造方法を説明する図である(2)。It is a figure explaining the manufacturing method of a high electron mobility transistor (2). 高電子移動度トランジスタの製造方法を説明する図である(3)。It is a figure explaining the manufacturing method of a high electron mobility transistor (3). 高電子移動度トランジスタの製造方法を説明する図である(4)。It is a figure explaining the manufacturing method of a high electron mobility transistor (4). 高電子移動度トランジスタの製造方法を説明する図である(5)。It is a figure explaining the manufacturing method of a high electron mobility transistor (5). 高電子移動度トランジスタの製造方法を説明する図である(6)。It is a figure explaining the manufacturing method of a high electron mobility transistor (6). 高電子移動度トランジスタの製造方法を説明する図である(7)。It is a figure explaining the manufacturing method of a high electron mobility transistor (7). 高電子移動度トランジスタの製造方法を説明する図である(8)。It is a figure explaining the manufacturing method of a high electron mobility transistor (8).
 以下、実施形態について添付図面を参照して説明する。実施形態に係る高電子移動度トランジスタ1は、図1に示すように、基板101に支持された電子走行層103と、電子走行層103の上に設けられたAlGaN層104と、AlGaN層104の上にエピタキシャル成長により設けられたInAlN層100(絶縁層の一例)とを備えている。また、高電子移動度トランジスタ1は、InAlN層100の上に設けられた窒化物半導体層107と、AlGaN層104の上に設けられたソース電極109及びドレイン電極110と、窒化物半導体層107の上に設けられたゲート電極111とを備えている。また、高電子移動度トランジスタ1は層間絶縁膜108を有している。 Hereinafter, embodiments will be described with reference to the accompanying drawings. As shown in FIG. 1, the high electron mobility transistor 1 according to the embodiment includes an electron transit layer 103 supported on a substrate 101, an AlGaN layer 104 provided on the electron transit layer 103, and an AlGaN layer 104. And an InAlN layer 100 (an example of an insulating layer) provided by epitaxial growth. The high electron mobility transistor 1 includes a nitride semiconductor layer 107 provided on the InAlN layer 100, a source electrode 109 and a drain electrode 110 provided on the AlGaN layer 104, and a nitride semiconductor layer 107. And a gate electrode 111 provided thereon. The high electron mobility transistor 1 includes an interlayer insulating film 108.
 基板101としては、例えばサファイア基板やシリコン基板を用いることができる。基板101の上にはバッファ層102が設けられている。バッファ層102の材質としては、例えばAlNやGaNを用いることができる。バッファ層102の上には電子走行層103が設けられている。 As the substrate 101, for example, a sapphire substrate or a silicon substrate can be used. A buffer layer 102 is provided on the substrate 101. As a material of the buffer layer 102, for example, AlN or GaN can be used. An electron transit layer 103 is provided on the buffer layer 102.
 電子走行層103は、電子供給層104から供給された電子が走行するチャネルになる。電子走行層103としては、例えばアンドープのGaN層やInGaN層を用いることができる。 The electron transit layer 103 becomes a channel through which electrons supplied from the electron supply layer 104 travel. As the electron transit layer 103, for example, an undoped GaN layer or an InGaN layer can be used.
 AlGaN層104は、電子走行層103に電子を供給する電子供給層である。また、AlGaN層104は、ドープされていない(アンドープである)。AlGaN層104(電子供給層)と電子走行層103は、ヘテロ接合を構成しており、そのヘテロ接合面に2次元電子ガス層(2DEG)が形成される。AlGaN層104におけるAlGaNの組成比は、Al1-xGaN(0.15≦x<1.0)とすることができる。AlGaNの格子定数は3.12~3.189Åである。また、AlGaN層104は電子走行層103よりもバンドギャップが大きい。 The AlGaN layer 104 is an electron supply layer that supplies electrons to the electron transit layer 103. The AlGaN layer 104 is not doped (undoped). The AlGaN layer 104 (electron supply layer) and the electron transit layer 103 form a heterojunction, and a two-dimensional electron gas layer (2DEG) is formed on the heterojunction surface. The composition ratio of AlGaN in the AlGaN layer 104 can be Al 1-x Ga x N (0.15 ≦ x <1.0). The lattice constant of AlGaN is 3.12 to 3.189Å. The AlGaN layer 104 has a larger band gap than the electron transit layer 103.
 InAlN層100は、In及びAlを含有しており、AlGaN層104と窒化物半導体層107とを絶縁する絶縁層である。InAlN層100はエピタキシャル成長により形成されており、例えば、有機金属気相成長法(MOCVD:metal organic chemical vapor deposition)、あるいは分子線エピタキシー法(MBE:molecular beam epitaxy)などにより形成できる。InAlN層100におけるInAlNの組成比は、In1-xAlN(0.85≦x<1.0)とすることができる。本実施形態では、InAlN層100(絶縁層)において、組成比がIn0.18Al0.82NのInAlNを用いている。InAlNの格子定数は下地のAlGaNと格子定数と完全に一致することが可能で、しかもInAlNのほうがバンドギャップが大きい。そのため、格子歪のない高品質なInAlN層を形成でき、ゲート電流抑制などデバイス特性の向上が可能である。例えば、下地がAl0.2Ga0.8Nのときの格子定数が3.17Åであり、その上にIn0.14Al0.86Nにより格子整合が可能である。なお、特許文献1の半導体装置において絶縁層として用いられているAlNの格子定数は約3.11Åである。 The InAlN layer 100 contains In and Al and is an insulating layer that insulates the AlGaN layer 104 and the nitride semiconductor layer 107. The InAlN layer 100 is formed by epitaxial growth, and can be formed by, for example, metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). The composition ratio of InAlN in the InAlN layer 100 can be In 1-x Al x N (0.85 ≦ x <1.0). In the present embodiment, InAlN having a composition ratio of In 0.18 Al 0.82 N is used in the InAlN layer 100 (insulating layer). The lattice constant of InAlN can completely match the lattice constant of the underlying AlGaN, and InAlN has a larger band gap. Therefore, a high-quality InAlN layer without lattice distortion can be formed, and device characteristics such as gate current suppression can be improved. For example, when the base is Al 0.2 Ga 0.8 N, the lattice constant is 3.17 Å, and lattice matching is possible with In 0.14 Al 0.86 N thereon. Note that the lattice constant of AlN used as an insulating layer in the semiconductor device of Patent Document 1 is about 3.11 mm.
 また、InAlN層100にはソース電極109及びドレイン電極110をそれぞれ配置するための複数の開口121が離間して形成されている。ソース電極109及びドレイン電極110は、開口121内にそれぞれ配置され、互いに離間して設けられている。ソース電極109及びドレイン電極110は、AlGaN層104の表面にオーミック接触している。 In addition, a plurality of openings 121 for disposing the source electrode 109 and the drain electrode 110 are formed in the InAlN layer 100 so as to be separated from each other. The source electrode 109 and the drain electrode 110 are disposed in the opening 121 and are provided apart from each other. The source electrode 109 and the drain electrode 110 are in ohmic contact with the surface of the AlGaN layer 104.
 窒化物半導体層107は、InAlN層100の上に設けられた下部P型GaN層105と、下部P型GaN層105の上に設けられた上部P型GaN層106とを備えている。上部P型GaN層106は下部P型GaN層105よりも高濃度のP型不純物を含んでいる。窒化物半導体層107は、高電子移動度トランジスタ1を平面視したときに、ソース電極109とドレイン電極110の間に配置されている。上部P型GaN層106の上にはゲート電極111が設けられている。窒化物半導体層107は、InAlN層100上の一部に配置されており、その周囲は層間絶縁膜108により覆われている。 The nitride semiconductor layer 107 includes a lower P-type GaN layer 105 provided on the InAlN layer 100 and an upper P-type GaN layer 106 provided on the lower P-type GaN layer 105. The upper P-type GaN layer 106 contains a higher concentration of P-type impurities than the lower P-type GaN layer 105. The nitride semiconductor layer 107 is disposed between the source electrode 109 and the drain electrode 110 when the high electron mobility transistor 1 is viewed in plan. A gate electrode 111 is provided on the upper P-type GaN layer 106. The nitride semiconductor layer 107 is disposed on a part of the InAlN layer 100, and the periphery thereof is covered with an interlayer insulating film 108.
 ゲート電極111は上部P型GaN層106の表面にオーミック接触している。ゲート電極111に印加するゲート電圧を制御することで、その下のAlGaN層104(電子供給層)と電子走行層103とのヘテロ接合界面における二次元電子ガス濃度が増減し、ソース電極109とドレイン電極110の間に流れる主電流を制御できる。ゲート電極111は、窒化物半導体層107を介してInAlN層100の上方に設けられている。 The gate electrode 111 is in ohmic contact with the surface of the upper P-type GaN layer 106. By controlling the gate voltage applied to the gate electrode 111, the two-dimensional electron gas concentration at the heterojunction interface between the underlying AlGaN layer 104 (electron supply layer) and the electron transit layer 103 increases or decreases, and the source electrode 109 and the drain The main current flowing between the electrodes 110 can be controlled. The gate electrode 111 is provided above the InAlN layer 100 with the nitride semiconductor layer 107 interposed therebetween.
 層間絶縁膜108は、絶縁性を有しており、例えばSiNにより形成されている。また、層間絶縁膜108は、電子走行層103、AlGaN層104、InAlN層100、下部P型GaN層105及び上部P型GaN層106を覆っている。層間絶縁膜108には、複数の開口123が形成されており、各開口123にソース電極109、ドレイン電極110、ゲート電極111がそれぞれ配置されている。 The interlayer insulating film 108 has an insulating property and is made of, for example, SiN. The interlayer insulating film 108 covers the electron transit layer 103, the AlGaN layer 104, the InAlN layer 100, the lower P-type GaN layer 105, and the upper P-type GaN layer 106. A plurality of openings 123 are formed in the interlayer insulating film 108, and a source electrode 109, a drain electrode 110, and a gate electrode 111 are arranged in each opening 123.
 次に、上記のような高電子移動度トランジスタの製造方法について説明する。実施形態に係る高電子移動度トランジスタの製造方法は、電子走行層103の上にAlGaN層104を設ける工程と、AlGaN層104の上にエピタキシャル成長によりInAlN層100を設ける工程とを備えている。また、この製造方法は、InAlN層100の上に窒化物半導体層107を設ける工程と、AlGaN層104の上にソース電極109及びドレイン電極110を設ける工程と、窒化物半導体層107の上にゲート電極111を設ける工程とを備えている。また、この製造方法は、ゲート電極111を設ける前に、窒化物半導体層107の一部をエッチング法によりInAlN層100まで除去する工程を備えている。この製造方法について以下により詳細に説明してゆく。 Next, a method for manufacturing the high electron mobility transistor as described above will be described. The manufacturing method of the high electron mobility transistor according to the embodiment includes a step of providing the AlGaN layer 104 on the electron transit layer 103 and a step of providing the InAlN layer 100 on the AlGaN layer 104 by epitaxial growth. Further, this manufacturing method includes a step of providing the nitride semiconductor layer 107 on the InAlN layer 100, a step of providing the source electrode 109 and the drain electrode 110 on the AlGaN layer 104, and a gate on the nitride semiconductor layer 107. A step of providing an electrode 111. In addition, this manufacturing method includes a step of removing a part of the nitride semiconductor layer 107 up to the InAlN layer 100 by an etching method before providing the gate electrode 111. This manufacturing method will be described in more detail below.
 実施形態に係る高電子移動度トランジスタの製造方法では、まず図2示すように、基板101、バッファ層102、および電子走行層103を順次積層したものを準備し、電子走行層103の上にAlGaN層104を形成する。続いて、AlGaN層104の上にInAlN層100を形成する。AlGaN層104およびInAlN層100は、有機金属気相成長法(MOCVD)や分子線エピタキシー法(MBE)などのエピタキシャル成長法により形成できる。本実施形態では、トリメチルガリウム(TMGa)およびアンモニア(NH)を用いた有機金属気相成長法(MOCVD法)により各層を積層した。AlGaN層104の上に格子定数が近いInAlN層100を形成するので、エピタキシャル成長によりInAlN層100を品質良く形成できる。本実施形態では、バッファ層102の厚さを2.4μmとし、電子走行層103の厚さを1.6μmとし、AlGaN層104の厚さを20nmとし、InAlN層100の厚さを1nmとしたが、各層の厚さは特に限定されるものではない。 In the method of manufacturing a high electron mobility transistor according to the embodiment, first, as shown in FIG. 2, a substrate 101, a buffer layer 102, and an electron transit layer 103 are sequentially stacked, and AlGaN is formed on the electron transit layer 103. Layer 104 is formed. Subsequently, an InAlN layer 100 is formed on the AlGaN layer 104. The AlGaN layer 104 and the InAlN layer 100 can be formed by an epitaxial growth method such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). In this embodiment, the laminated layers by trimethylgallium (TMGa) and ammonia (NH 3) metal-organic vapor phase growth method using (MOCVD method). Since the InAlN layer 100 having a close lattice constant is formed on the AlGaN layer 104, the InAlN layer 100 can be formed with high quality by epitaxial growth. In the present embodiment, the thickness of the buffer layer 102 is 2.4 μm, the thickness of the electron transit layer 103 is 1.6 μm, the thickness of the AlGaN layer 104 is 20 nm, and the thickness of the InAlN layer 100 is 1 nm. However, the thickness of each layer is not particularly limited.
 次に、図3に示すように、InAlN層100の上に窒化物半導体層107を設ける。具体的には、InAlN層100の上に下部P型GaN層105を形成し、下部P型GaN層105の上に上部P型GaN層106を形成する。下部P型GaN層105および上部P型GaN層106の形成は、有機金属気相成長法(MOCVD)や分子線エピタキシー法(MBE)により行うことができる。本実施形態では、下部P型GaN層105の厚さを100nmとし、上部P型GaN層106の厚さを5nmとしたが、各層の厚さは特に限定されるものではない。 Next, as shown in FIG. 3, a nitride semiconductor layer 107 is provided on the InAlN layer 100. Specifically, the lower P-type GaN layer 105 is formed on the InAlN layer 100, and the upper P-type GaN layer 106 is formed on the lower P-type GaN layer 105. The lower P-type GaN layer 105 and the upper P-type GaN layer 106 can be formed by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). In the present embodiment, the thickness of the lower P-type GaN layer 105 is 100 nm and the thickness of the upper P-type GaN layer 106 is 5 nm. However, the thickness of each layer is not particularly limited.
 次に、図4示すように、フォトリソグラフィーおよび気相エッチング法により、上部P型GaN層106、下部P型GaN層105、InAlN層100、AlGaN層104、および電子走行層103を選択的に除去する。具体的には、各層の周縁部を除去する。また、電子走行層103は層の途中まで除去する。 Next, as shown in FIG. 4, the upper P-type GaN layer 106, the lower P-type GaN layer 105, the InAlN layer 100, the AlGaN layer 104, and the electron transit layer 103 are selectively removed by photolithography and vapor phase etching. To do. Specifically, the peripheral part of each layer is removed. The electron transit layer 103 is removed partway through the layer.
 次に、図5示すように、フォトリソグラフィーおよび気相エッチング法により、窒化物半導体層107(上部P型GaN層106および下部P型GaN層105)を選択的に除去する。具体的には、窒化物半導体層107の一部(周縁部)をInAlN層100まで除去する。このとき、絶縁層100の存在により、それより下層のAlGaN層104がエッチングされることを防いでいる。 Next, as shown in FIG. 5, the nitride semiconductor layer 107 (the upper P-type GaN layer 106 and the lower P-type GaN layer 105) is selectively removed by photolithography and vapor phase etching. Specifically, a part (peripheral part) of the nitride semiconductor layer 107 is removed up to the InAlN layer 100. At this time, the presence of the insulating layer 100 prevents the lower AlGaN layer 104 from being etched.
 次に、図6に示すように、積層体の上に層間絶縁膜108を形成する。層間絶縁膜108により、上部P型GaN層106、下部P型GaN層105、InAlN層100、AlGaN層104および電子走行層103が覆われる。層間絶縁膜108の形成は例えばプラズマCVDにより行うことができる。 Next, as shown in FIG. 6, an interlayer insulating film 108 is formed on the stacked body. The interlayer insulating film 108 covers the upper P-type GaN layer 106, the lower P-type GaN layer 105, the InAlN layer 100, the AlGaN layer 104, and the electron transit layer 103. The interlayer insulating film 108 can be formed by plasma CVD, for example.
 次に、ソース電極109及びドレイン電極110を配置するために、図7に示すように、層間絶縁膜108及びInAlN層100に複数の開口121を形成する。開口121の形成は、例えばフォトリソグラフィーおよび気相エッチングにより、層間絶縁膜108及びInAlN層100を選択的に除去することにより行うことができる。続いて、図8に示すように、開口121においてAlGaN層104の上にソース電極109及びドレイン電極110を形成する。ソース電極109及びドレイン電極110の形成は例えばプラズマCVDにより行うことができる。 Next, in order to dispose the source electrode 109 and the drain electrode 110, a plurality of openings 121 are formed in the interlayer insulating film 108 and the InAlN layer 100 as shown in FIG. The opening 121 can be formed by selectively removing the interlayer insulating film 108 and the InAlN layer 100 by, for example, photolithography and vapor phase etching. Subsequently, as shown in FIG. 8, the source electrode 109 and the drain electrode 110 are formed on the AlGaN layer 104 in the opening 121. The source electrode 109 and the drain electrode 110 can be formed by plasma CVD, for example.
 次に、ゲート電極111を配置するために、図9に示すように、層間絶縁膜108に開口123を形成する。開口123の形成は、フォトリソグラフィーおよび気相エッチングにより、層間絶縁膜108を選択的に除去することにより行うことができる。続いて、開口123において上部P型GaN層106の上にゲート電極111を形成する(図1参照)。ゲート電極111の形成は例えばプラズマCVDにより行うことができる。 Next, in order to arrange the gate electrode 111, an opening 123 is formed in the interlayer insulating film 108 as shown in FIG. The opening 123 can be formed by selectively removing the interlayer insulating film 108 by photolithography and vapor phase etching. Subsequently, the gate electrode 111 is formed on the upper P-type GaN layer 106 in the opening 123 (see FIG. 1). The gate electrode 111 can be formed by plasma CVD, for example.
 上述の説明から明らかなように、本明細書に開示の高電子移動度トランジスタ1では、AlGaN層104(電子供給層)の表面にエピタキシャル成長によりInAlN層100(絶縁層)を形成している。そのため、AlGaN層104とInAlN層100とを密着させることができ、高品質の高電子移動度トランジスタ1を得ることができる。すなわち、電子供給層(AlGaN層104)と絶縁層(InAlN層100)の格子定数が近いため、AlGaN層104上にInAlN層100をエピタキシャル成長により高品質に形成でき、高品質の高電子移動度トランジスタ1を得ることができる。また、電子供給層(AlGaN層104)と絶縁層(InAlN層100)の格子定数が近いことは、AlN層を絶縁層として使用するよりも界面へのストレスを与えることなく製造することができるため、GaN-HEMTにおいて最大の課題である、電流コラプスを低減することに効果を発揮する。これにより、高信頼性を確保することが可能となる。 As is clear from the above description, in the high electron mobility transistor 1 disclosed in this specification, the InAlN layer 100 (insulating layer) is formed on the surface of the AlGaN layer 104 (electron supply layer) by epitaxial growth. Therefore, the AlGaN layer 104 and the InAlN layer 100 can be brought into close contact with each other, and a high-quality high electron mobility transistor 1 can be obtained. That is, since the lattice constants of the electron supply layer (AlGaN layer 104) and the insulating layer (InAlN layer 100) are close to each other, the InAlN layer 100 can be formed on the AlGaN layer 104 with high quality by epitaxial growth, and a high-quality high-electron mobility transistor. 1 can be obtained. In addition, since the lattice constants of the electron supply layer (AlGaN layer 104) and the insulating layer (InAlN layer 100) are close to each other, the AlN layer can be manufactured with less stress on the interface than when the AlN layer is used as the insulating layer. This is effective in reducing current collapse, which is the biggest problem in GaN-HEMT. Thereby, it becomes possible to ensure high reliability.
 また、窒化物半導体層107をエッチングする際に、InAlN層100がエッチングストップ層となるので、InAlN層100の下層のAlGaN層104をエッチングしてしまうことがない。また、下部P型GaN層105とAlGaN層104の間にバンドギャップが大きいInAlN層100が介在するので、ゲート電極111による印加電圧を大きくしたとしてもゲート電流を抑制することができる。また、AlGaN層104の表面にInAlN層100を形成することにより、ピエゾ分極によってInAlN層100とAlGaN層104との界面に正の電荷を集めることができる。その結果、電子走行層103とAlGaN層104との界面に形成される二次元電子ガス(2DEG)を増加することができ、オン抵抗を低下させることができる。AlN層を絶縁層として使用するよりも電子供給層(AlGaN層104)と絶縁層(InAlN層100)の格子定数が近いことを利用して、絶縁層(InAlN層100)の臨界膜厚をAlN層より厚くすることができる。 In addition, when the nitride semiconductor layer 107 is etched, the InAlN layer 100 becomes an etching stop layer, so that the AlGaN layer 104 under the InAlN layer 100 is not etched. In addition, since the InAlN layer 100 having a large band gap is interposed between the lower P-type GaN layer 105 and the AlGaN layer 104, the gate current can be suppressed even if the voltage applied by the gate electrode 111 is increased. Further, by forming the InAlN layer 100 on the surface of the AlGaN layer 104, positive charges can be collected at the interface between the InAlN layer 100 and the AlGaN layer 104 by piezoelectric polarization. As a result, the two-dimensional electron gas (2DEG) formed at the interface between the electron transit layer 103 and the AlGaN layer 104 can be increased, and the on-resistance can be reduced. Taking advantage of the fact that the lattice constants of the electron supply layer (AlGaN layer 104) and the insulating layer (InAlN layer 100) are closer than using the AlN layer as an insulating layer, the critical film thickness of the insulating layer (InAlN layer 100) is made AlN. It can be thicker than the layer.
 以上、一実施形態について説明したが、具体的な態様は上記実施形態に限定されるものではない。例えば、上記実施形態では絶縁層としてInAlN層を用いてしたが、この構成に限定されるものではなく、絶縁層としてInAlGaN層を用いてもよい。 As mentioned above, although one embodiment was described, a specific mode is not limited to the above-mentioned embodiment. For example, although the InAlN layer is used as the insulating layer in the above embodiment, the present invention is not limited to this configuration, and an InAlGaN layer may be used as the insulating layer.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
1;高電子移動度トランジスタ
100;InAlN層(絶縁層)
101;基板
102;バッファ層
103;電子走行層
104;AlGaN層(電子供給層)
105;下部P型GaN層
106;上部P型GaN層
107;窒化物半導体層
108;層間絶縁膜
109;ソース電極
110;ドレイン電極
111;ゲート電極
121;開口
123;開口
1; high electron mobility transistor 100; InAlN layer (insulating layer)
101; substrate 102; buffer layer 103; electron transit layer 104; AlGaN layer (electron supply layer)
105; lower P-type GaN layer 106; upper P-type GaN layer 107; nitride semiconductor layer 108; interlayer insulating film 109; source electrode 110; drain electrode 111; gate electrode 121;

Claims (4)

  1.  電子走行層と、
     電子走行層の上に設けられたAlGaN層と、
     AlGaN層の上に設けられたIn及びAlを含有する絶縁層と、
     絶縁層の上に設けられた窒化物半導体層と、
     AlGaN層の上に設けられたソース電極及びドレイン電極と、
     窒化物半導体層の上に設けられたゲート電極と、を備える高電子移動度トランジスタ。
    An electronic travel layer,
    An AlGaN layer provided on the electron transit layer;
    An insulating layer containing In and Al provided on the AlGaN layer;
    A nitride semiconductor layer provided on the insulating layer;
    A source electrode and a drain electrode provided on the AlGaN layer;
    And a gate electrode provided on the nitride semiconductor layer.
  2.  絶縁層は、組成比がIn0.18Al0.82NのInAlNからなる請求項1に記載の高電子移動度トランジスタ。 The high electron mobility transistor according to claim 1, wherein the insulating layer is made of InAlN having a composition ratio of In 0.18 Al 0.82 N.
  3.  電子走行層の上にAlGaN層を設ける工程と、
     AlGaN層の上にIn及びAlを含有する絶縁層を設ける工程と、
     絶縁層の上に窒化物半導体層を設ける工程と、
     AlGaN層の上にソース電極及びドレイン電極を設ける工程と、
     窒化物半導体層の上にゲート電極を設ける工程と、を備える高電子移動度トランジスタの製造方法。
    Providing an AlGaN layer on the electron transit layer;
    Providing an insulating layer containing In and Al on the AlGaN layer;
    Providing a nitride semiconductor layer on the insulating layer;
    Providing a source electrode and a drain electrode on the AlGaN layer;
    Providing a gate electrode on the nitride semiconductor layer. A method for manufacturing a high electron mobility transistor.
  4.  ゲート電極を設ける前に、窒化物半導体層の一部をエッチング法により絶縁層まで除去する工程を備える、請求項3に記載の高電子移動度トランジスタの製造方法。
                                        
    4. The method for manufacturing a high electron mobility transistor according to claim 3, further comprising a step of removing a part of the nitride semiconductor layer up to the insulating layer by an etching method before providing the gate electrode.
PCT/JP2014/064774 2013-09-12 2014-06-03 High-electron-mobility transistor and method for manufacturing same WO2015037288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013189147 2013-09-12
JP2013-189147 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037288A1 true WO2015037288A1 (en) 2015-03-19

Family

ID=52665413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064774 WO2015037288A1 (en) 2013-09-12 2014-06-03 High-electron-mobility transistor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2015037288A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273630A (en) * 2003-03-06 2004-09-30 Sumitomo Electric Ind Ltd Method of manufacturing field effect transistor
JP2009071061A (en) * 2007-09-13 2009-04-02 Toshiba Corp Semiconductor apparatus
JP2013074188A (en) * 2011-09-28 2013-04-22 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same
JP2013074179A (en) * 2011-09-28 2013-04-22 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273630A (en) * 2003-03-06 2004-09-30 Sumitomo Electric Ind Ltd Method of manufacturing field effect transistor
JP2009071061A (en) * 2007-09-13 2009-04-02 Toshiba Corp Semiconductor apparatus
JP2013074188A (en) * 2011-09-28 2013-04-22 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same
JP2013074179A (en) * 2011-09-28 2013-04-22 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US9093512B2 (en) Compound semiconductor device
TWI487036B (en) Compound semiconductor device and method of manufacturing the same
TWI594431B (en) Compound semiconductor device and method of manufacturing the same
JP4381380B2 (en) Semiconductor device and manufacturing method thereof
JP5348364B2 (en) Heterojunction field effect semiconductor device
JP5634681B2 (en) Semiconductor element
TWI464873B (en) Compound semiconductor device
KR101365302B1 (en) Compound semiconductor device and method for fabricating the same
US9590071B2 (en) Manufacturing method of semiconductor device and semiconductor device
US20160225857A1 (en) Semiconductor device and method for manufacturing the same
US8338862B2 (en) Semiconductor device
TW201417280A (en) Compound semiconductor device and method of manufacturing the same
WO2012066701A1 (en) Nitride semiconductor device
US10199476B2 (en) Semiconductor device and manufacturing method of semiconductor device
US10784361B2 (en) Semiconductor device and method for manufacturing the same
JP5716737B2 (en) Compound semiconductor device and manufacturing method thereof
KR20130048688A (en) Compound semiconductor device, and method for manufacturing the same
US8426260B2 (en) Compound semiconductor device and method of manufacturing the same
US20120320642A1 (en) Compound semiconductor device and method of manufacturing the same
JP2013004735A (en) Semiconductor device and semiconductor device manufacturing method
JP2017059671A (en) High electron mobility transistor and method for manufacturing high electron mobility transistor
JP2010232610A (en) Semiconductor device and method of manufacturing the same
JP6604036B2 (en) Compound semiconductor device and manufacturing method thereof
TW201427013A (en) Compound semiconductor device and manufacturing method of the same
KR101302847B1 (en) Compound semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844420

Country of ref document: EP

Kind code of ref document: A1