WO2015037234A1 - Heat exchanger manufacturing method and heat exchanger - Google Patents

Heat exchanger manufacturing method and heat exchanger Download PDF

Info

Publication number
WO2015037234A1
WO2015037234A1 PCT/JP2014/004667 JP2014004667W WO2015037234A1 WO 2015037234 A1 WO2015037234 A1 WO 2015037234A1 JP 2014004667 W JP2014004667 W JP 2014004667W WO 2015037234 A1 WO2015037234 A1 WO 2015037234A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
row
leeward
flat tube
heat exchanger
Prior art date
Application number
PCT/JP2014/004667
Other languages
French (fr)
Japanese (ja)
Inventor
正憲 神藤
好男 織谷
康介 森本
智彦 坂巻
拓也 上総
潤一 濱舘
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480048567.4A priority Critical patent/CN105518404B/en
Publication of WO2015037234A1 publication Critical patent/WO2015037234A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a heat exchanger manufacturing method and a heat exchanger that have flat tubes and fins to exchange heat between refrigerant and air.
  • Patent Document 1 discloses a heat exchanger having a single-row structure having one tube row composed of arranged flat tubes.
  • Patent Document 2 discloses a heat exchanger having a two-row structure having two tube rows made of arranged flat tubes.
  • Patent Literature 2 two tube rows are configured by arranging individual flat tubes in two rows.
  • Patent Document 3 two tube rows are formed by arranging U-shaped flat tubes bent at an intermediate portion.
  • a header is connected to the end of the flat tube, and the refrigerant flowing into the header flows into a plurality of flat tubes.
  • JP 2013-137193 A Japanese translation of publication 2005-510689 Japanese Patent Laid-Open No. 08-145580
  • the present invention has been made in view of such problems, and its purpose is to ensure drainage of a heat exchanger having a two-row structure composed of a plurality of flat tubes and a plurality of fins having cutout portions. And providing a heat exchanger manufacturing method and a heat exchanger capable of preventing erroneous assembly.
  • the first aspect of the present disclosure includes an upwind tube row (50) and a leeward tube row (90), each of which is configured by a plurality of flat tube portions (31, 61) arranged in parallel and arranged in the air flow direction.
  • the manufacturing method of the heat exchanger provided with the fins (32, 62) joined to the flat tube portions (31, 61) is premised.
  • the heat exchanger manufacturing method includes a plurality of notches (186) formed at one edge at regular intervals, and formed from the notches (186) toward the other edge.
  • the fin (32, 62) having the tube insertion portion (187) into which the flat tube portion (31, 61) is inserted is connected to the flat tube portion (31) of the upwind tube row (50) and the leeward tube row (90
  • the fins (32, 62) are connected to a plurality of flat tubes having a flat tube portion (31) of the windward tube row (50) and a flat tube portion (61) of the leeward tube row (90) ( 170) Fin mounting step for mounting the ends of the tube insertion portion (187) on the one end and the other end in opposite directions, and each flat tube (170) between the one end and the other end.
  • the tube row forming step of forming the windward tube row (50) and the leeward tube row (90) with the edges of the fins (32, 62) on the tube insertion portion (187) side facing in the same direction As a result, a two-row heat exchanger can be manufactured.
  • the fin (32, 62) is formed between the adjacent notch portions (186) on the one edge portion, and the flat tube portion ( 31, 61) and a fin (32) projecting from the fin (32) on the windward tube row (50) side and the leeward tube row (
  • Each flat tube (170) is bent between one end and the other end so that the protrusion (188) of the fin (62) on the 90) side faces the same direction.
  • a heat exchanger having a two-row structure can be manufactured.
  • the fin (32) and the leeward tube row (90) on the upwind tube row (50) side aligned in the air flow direction after the tube row forming step.
  • a gap is formed between the fin (62) on the side.
  • a plurality of fins (32, 32) are provided at one end and the other end of the flat tube portion (31). 62) is formed to form the fin group (33) of the leeward tube row (50) and the fin group (63) of the leeward tube row, while the fin (32 , 62) is formed in the gap portion (140).
  • each flat tube (170) is bent in the gap part (140) formed between both fin groups (33,63), and an upwind tube row (50) and a leeward tube row (90 ) Is formed.
  • the tube row forming step is configured such that the flat tube (170) is U-shaped between the one end and the other end. A step of bending the U-shaped bent portion (173) into a three-dimensional bent portion (173) deviating from the flat surface of the flat tube (170).
  • the tube row forming step is configured such that the flat tube (170) is U-shaped between the one end and the other end. A step of bending the U-shaped bent portion (173) into a planar bent portion (173) along the plane of the flat tube (170).
  • the upwind tube row (50) and the leeward tube row are formed by bending the flat tube (170) in a U shape between the one end and the other end in the tube row forming step. (90) is formed.
  • the tube row forming step is configured to replace the flat tube (170) with the flat tube portion of the upwind tube row (50) ( 31) and a step of bending so that the positions of the flat tube portions (61) of the leeward tube row (90) are shifted in the arrangement direction of the flat tube portions (31, 61).
  • the flat tube portion (31) of the windward tube row (50) of the formed heat exchanger and the flat tube portion (61) of the leeward tube row (90) are arranged in the direction of arrangement (flat tube portion). (Direction perpendicular to the flat plane of (31, 61)), the flat pipe section (31) between the flat pipe section (31) and the flat pipe section (31) of the windward tube row (50) should be brought into contact with the flat pipe section (31). The air that has passed without passing through is in contact with the flat tube portion (61) of the leeward tube row (90).
  • the eighth aspect of the present disclosure includes an upwind tube row (50) and a leeward tube row (90), each of which is configured by a plurality of flat tube portions (31, 61) arranged in parallel and arranged in the air flow direction.
  • a heat exchanger provided with fins (32, 62) joined to the flat tube portions (31, 61) is assumed.
  • the heat exchanger includes a plurality of notches (186) in which the fins (32, 62) are formed at a certain interval on one edge, and the other edge from the notches (186).
  • Tube insertion portion (187) into which the flat tube portion (31, 61) is inserted and the fin (32) on the upwind tube row (50) side.
  • Each of the flat tubes in the upwind tube row (50) is arranged so that the edge on the side and the edge on the tube insertion portion (187) side of the fin (62) on the leeward tube row (90) side face in the same direction.
  • Each of the flat tube portions (61) of the head portion (31) and the leeward tube row (90) is formed by bending one flat tube (170) between the two tube rows.
  • a bent portion (173) is formed between the flat tube portion (31) and the flat tube portion (61) of the leeward tube row (90).
  • the fin (32, 62) is formed between the adjacent notch portions (186) on the one edge portion, and the flat tube portion ( 31 (61) and a projection (188) projecting from the fin (32) on the upwind tube row (50) side and the fin (62) on the leeward tube row (90) side.
  • the protrusion (188) faces the same direction.
  • the protrusions (188) of the flat tubes (31, 61) or the fins (32, 62) are oriented in the same direction. Can be easily formed, and erroneous assembly can be prevented.
  • the fins (32, 62) are arranged so that the pipe insertion part (187) side or the protrusions (188) face the windward side, the fin insertion part (187) side is located on the leeward side of each fin (32, 62).
  • a gap is formed between the fins (62) on the leeward tube row (90) when water drops condensed on the fins (32) on the upwind tube row (50) flow through the downstream side portion. It will flow smoothly without stopping by the protrusion (188). Therefore, when this heat exchanger is used as an evaporator, it is possible to reliably prevent frost formation from proceeding.
  • the upwind tube row (50) and the downwind tube are formed by bending each flat tube (170) in the gap portion (140) formed between the fin groups (33, 63).
  • the row (90) By forming the row (90), a two-row heat exchanger can be easily manufactured.
  • the windward tube row (50) and the leeward tube row (90) are formed by bending the flat tube (170) into a U shape in the tube row forming step. Therefore, a heat exchanger having a two-row structure can be easily manufactured.
  • the flat tube portion (31) of the windward tube row (50) of the heat exchanger to be formed and the flat tube portion (61) of the leeward tube row (90) are arranged in the direction of arrangement.
  • the air that has passed between the flat tube portion (31) and the flat tube portion (31) of the upwind tube row (50) without coming into contact with the flat tube portion (31) is shifted to the leeward tube row (90). Since it passes in the state which contacts the flat pipe part (61), the air volume which does not contact with the flat pipe part (31, 61) decreases, and heat exchange efficiency can be improved.
  • the heat exchanger of the said 8th, 9th aspect can be easily manufactured by implementing the manufacturing method of the 1st-7th aspect of this indication.
  • Drawing 1 is a refrigerant circuit figure showing the schematic structure of the air harmony machine provided with the outdoor heat exchanger of an embodiment.
  • Drawing 2 is a perspective view which looked at an outdoor heat exchanger of an embodiment from the 1st direction.
  • Drawing 3 is a perspective view which looked at an outdoor heat exchanger of an embodiment from the 2nd direction.
  • 4A is a partial cross-sectional view of the outdoor heat exchanger according to the embodiment as viewed from above
  • FIG. 4B is a partial enlarged view of the IVB-IVB cross-section of FIG. It is an expanded sectional view which shows arrangement
  • FIG. 5 is a schematic perspective view showing the outdoor heat exchanger according to the embodiment disassembled into an upwind heat exchanger unit and a downwind heat exchanger unit, and a refrigerant when the outdoor heat exchanger functions as an evaporator. It shows the flow.
  • FIG. 6 is a schematic perspective view showing the outdoor heat exchanger according to the embodiment disassembled into an upwind heat exchanger unit and a downwind heat exchanger unit, and the refrigerant when the outdoor heat exchanger functions as a condenser. It shows the flow.
  • FIG. 7 is a partial cross-sectional view of the wind heat exchanger unit of the embodiment as viewed from the front.
  • FIG. 8 is a partial cross-sectional view of the leeward heat exchanger unit of the embodiment as viewed from the front.
  • FIG. 9 is a cross-sectional view of the heat exchanger unit showing a part of the AA cross section of FIG. 7 and the BB cross section of FIG. 8 in an enlarged manner.
  • FIG. 10 is an enlarged cross-sectional view of a part of the upwind heat exchanger unit of the embodiment as viewed from the front.
  • FIG. 11A is a schematic view showing a manufacturing process of an outdoor heat exchanger having a two-row structure
  • FIG. 11B is a cross-sectional view taken along the line XIB-XIB in FIG. 11A
  • FIG. It is a XIC-XIC sectional view of A).
  • FIG. 12A is a front view of the bent pipe portion of the embodiment
  • FIG. 12B is a side view thereof.
  • FIG. 13A is a front view of a curved pipe portion according to a modification, and FIG. 13B is a side view thereof.
  • FIG. 14 (A) is a front view of a curved pipe part according to another modification, and FIG. 14 (B) is a side view thereof.
  • FIG. 15 is an enlarged cross-sectional view showing a modified example of the arrangement of the flat tube portion and the fins of the two-row outdoor heat exchanger.
  • the heat exchanger of this embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10). Below, an air conditioner (10) is demonstrated first, and the outdoor heat exchanger (23) is demonstrated in detail after that.
  • the air conditioner (10) includes an outdoor unit (11) and an indoor unit (12).
  • the outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
  • a refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side communication pipe (13), and the gas side communication pipe (14).
  • the refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing.
  • the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11).
  • the outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23).
  • the indoor heat exchanger (25) is accommodated in the indoor unit (12).
  • the indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
  • the refrigerant circuit (20) is a closed circuit filled with refrigerant.
  • the compressor (21) has a discharge pipe connected to the first port of the four-way switching valve (22) and a suction pipe connected to the second port of the four-way switching valve (22).
  • the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.
  • the outdoor heat exchanger (23) is connected to the expansion valve (24) via the pipe (17), and the third of the four-way switching valve (22) via the pipe (18). Connected to the port.
  • Compressor (21) is a scroll type or rotary type hermetic compressor.
  • the four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
  • the expansion valve (24) is a so-called electronic expansion valve.
  • the outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger (23) will be described later.
  • the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.
  • the air conditioner (10) selectively performs a cooling operation and a heating operation.
  • the refrigeration cycle is performed with the four-way switching valve (22) set to the first state.
  • the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser.
  • the outdoor heat exchanger (23) functions as a condenser.
  • the outdoor heat exchanger (23) functions as an evaporator.
  • the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24).
  • the refrigeration cycle is performed with the four-way switching valve (22) set to the second state.
  • the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser.
  • the indoor heat exchanger (25) functions as a condenser.
  • (23) functions as an evaporator.
  • the refrigerant that has expanded into the gas-liquid two-phase state flows into the outdoor heat exchanger (23) when passing through the expansion valve (24).
  • the refrigerant that has flowed into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21).
  • the outdoor heat exchanger (23) is a two-row air heat exchanger, and includes an upwind heat exchanger unit (30) and a downwind heat exchanger unit (60). ing.
  • the upwind heat exchanger unit (30) is disposed on the upstream side of the downwind heat exchanger unit (60).
  • the windward heat exchanger unit (30) includes one windward header collecting pipe (40), a number of flat pipe parts (31), and a number of fins (32). It has.
  • the windward header collecting pipe (40), the flat pipe part (31), and the fin (32) are all made of an aluminum alloy and are joined to each other by brazing.
  • the flat tube portion (31) provided in the upwind heat exchanger unit (30) constitutes the upwind tube row (50).
  • the leeward heat exchanger unit (60) includes one leeward header collecting pipe (70), a number of flat pipe portions (61), and a number of fins (62). And.
  • the lee header collecting pipe (70), the flat pipe part (61) and the fin (62) are all made of an aluminum alloy and are joined to each other by brazing.
  • the flat tube portion (61) provided in the leeward heat exchanger unit (60) constitutes the leeward tube row (90).
  • the fin (32) of an upwind heat exchanger unit (30) and the fin (62) of an upwind heat exchanger unit (60) are the fins (32, 62) shown in FIG.
  • the protrusions (188) are arranged so as to face in the same direction (upstream side of the air flow) (see FIG. 4B).
  • each flat tube (170) is a straight flat tube bent into a U shape, and includes the two flat tube portions (31, 61) described above and the two flat tube portions (31, 61). And one bent pipe portion (bending portion) (173).
  • the two flat tube portions (31, 61) are substantially parallel to each other. Further, as shown in FIGS.
  • the bent pipe portion (173) has a three-dimensional U-shape in which the direction of the flat portion of the flat pipe (170) changes during bending. That is, the U-shaped curved pipe portion (173) is a three-dimensional curved pipe portion (173) that is out of the plane of the flat tube (170).
  • the flat tubes (170) adjacent to each other in the upper and lower sides have flat portions of the side surfaces of the respective flat tube portions (31, 61) facing each other, and the respective flat tube portions.
  • the axial directions of (31, 61) are substantially parallel to each other.
  • Each flat tube (170) has an open end of the first flat tube portion (31) connected to the windward header collecting tube (40), and an open end of the second flat tube portion (61) is the leeward header. Connect to the collecting pipe (70).
  • each flat tube (170) provided in the outdoor heat exchanger (23) of the present embodiment two flat tube portions (50) and leeward tube row (90) constituting the upwind tube row (90) ( 31, 61) are connected via one curved pipe part (173). Therefore, in the outdoor heat exchanger (23) of the present embodiment, the flat tube portion (31) constituting the upwind tube row (50) and the flat tube portion (61) constituting the leeward tube row (90) The books are connected to each other.
  • the upwind heat exchanger unit (30) is divided into two regions in the vertical direction as shown in FIGS.
  • the upper area is the upwind main heat exchange area (35)
  • the lower area is the upwind auxiliary heat exchange area (37).
  • the windward header collecting pipe (40) is formed in an elongated cylindrical shape with both ends closed.
  • the upwind header collecting pipe (40) is installed in a standing state at the left end of the upwind heat exchanger unit (30). That is, the windward header collecting pipe (40) is installed in a state where the axial direction is the vertical direction.
  • the flat tube portion (31) is a heat transfer tube whose cross-sectional shape is a flat oval.
  • the plurality of flat tube portions (31) are in a state in which the respective axial directions are in the left-right direction and the flat portions of the respective side surfaces face each other. Is arranged.
  • the plurality of flat tube portions (31) are arranged side by side at regular intervals and their axial directions are substantially parallel to each other.
  • Each flat tube portion (31) has one end (the left end in FIG. 7) inserted into the windward header collecting tube (40).
  • each fluid passage (175) is a passage extending in the axial direction of the flat tube portion (31), and is arranged in a line in the width direction of the flat tube portion (31).
  • Each fluid passage (175) opens to the end face of the flat tube portion (31).
  • the refrigerant supplied to the upwind heat exchanger unit (30) exchanges heat with air while flowing through the fluid passage (175) of the flat tube portion (31).
  • the fin (32) is a vertically long plate-like fin formed by pressing a metal plate.
  • the fin (32) is formed with a number of elongated notches (186) extending from the front edge of the fin (32) (that is, the windward edge) in the width direction of the fin (32).
  • a large number of notches (186) are formed at regular intervals in the longitudinal direction (vertical direction in the figure) of the fin (32).
  • the portion closer to the lee of the notch (186) constitutes the tube insertion portion (187).
  • the flat tube portion (31) is inserted into the tube insertion portion (187) of the fin (32) and joined to the peripheral portion of the tube insertion portion (187) by brazing.
  • a louver (185) for promoting heat transfer is formed on the fin (32).
  • the plurality of fins (32) are arranged at regular intervals in the axial direction of the flat tube portion (31).
  • the fin (32) is formed with a plurality of notches (186) formed at one edge at regular intervals, and from the notches (186) toward the other edge.
  • the fin group (33) of an upwind tube row (50) is comprised by the several fin (32) with which the flat tube part (31) of the upwind tube row (50) was mounted
  • the upwind heat exchanger unit (30) is divided into two heat exchange regions (35, 37) in the vertical direction.
  • the upper heat exchange area is the upwind main heat exchange area (35)
  • the lower heat exchange area is the upwind auxiliary heat exchange area (37).
  • the flat tube part (31) provided in the windward heat exchanger unit (30) is located in the windward main heat exchange area (35) and constitutes the windward main row part (51).
  • region (37) comprises an upwind auxiliary row
  • the number of flat tube portions (31) constituting the windward auxiliary row portion (54) is smaller than the number of flat tube portions (31) constituting the windward main row portion (51).
  • the upwind main heat exchange area (35) is divided into six upwind main heat exchange sections (36a to 36f).
  • the upwind auxiliary heat exchange region (37) is divided into three upwind auxiliary heat exchange sections (38a to 38c). Note that the numbers of the upwind main heat exchange units (36a to 36f) and the upwind auxiliary heat exchange units (38a to 38c) shown here are merely examples.
  • the first upwind main heat exchange section (36a), the second upwind main heat exchange section (36b), and the third upwind A main heat exchange section (36c), a fourth upwind main heat exchange section (36d), a fifth upwind main heat exchange section (36e), and a sixth upwind main heat exchange section (36f) are formed. ing.
  • Each of the upwind main heat exchange sections (36a to 36f) is provided with twelve flat tube sections (31).
  • the twelve flat tube portions (31) provided in the first upwind main heat exchange section (36a) constitute the first upwind main row block (52a).
  • the twelve flat tube portions (31) provided in the second upwind main heat exchange section (36b) constitute the second upwind main row block (52b).
  • the twelve flat tube portions (31) provided in the third upwind main heat exchange section (36c) constitute the third upwind main row block (52c).
  • the twelve flat tube portions (31) provided in the fourth upwind main heat exchange section (36d) constitute the fourth upwind main row block (52d).
  • the twelve flat tube portions (31) provided in the fifth upwind main heat exchange section (36e) constitute a fifth upwind main row block (52e).
  • the twelve flat tube portions (31) provided in the sixth upwind main heat exchange section (36f) constitute a sixth upwind main row block (52f). Note that the number of the flat tube portions (31) constituting each of the upwind main row blocks (52a to 52f) does not have to coincide with each other.
  • the first upwind main row block (52a) and the second upwind main row block (52b) constitute a first upwind main row block group (53a).
  • the third upwind main row block (52c) and the fourth upwind main row block (52d) constitute a second upwind main row block group (53b).
  • the fifth upwind main row block (52e) and the sixth upwind main row block (52f) constitute a third upwind main row block group (53c).
  • the first upwind auxiliary heat exchange section (38a), the second upwind auxiliary heat exchange section (38b), and the third upwind An auxiliary heat exchange part (38c) is formed.
  • Each of the upwind auxiliary heat exchange sections (38a to 38c) is provided with three flat tube sections (31).
  • the three flat tube portions (31) provided in the first upwind auxiliary heat exchange section (38a) constitute the first upwind auxiliary row block (55a).
  • the three flat tube portions (31) provided in the second upwind auxiliary heat exchange unit (38b) constitute a second upwind auxiliary row block (55b).
  • the three flat tube portions (31) provided in the third upwind auxiliary heat exchange section (38c) constitute the third upwind auxiliary row block (55c). Note that the number of the flat tube portions (31) constituting each of the upwind auxiliary row blocks (55a to 55c) may not coincide with each other.
  • the internal space of the upwind header collecting pipe (40) is vertically divided by a partition plate (41).
  • the space above the partition plate (41) is the upper space (42), and the space below the partition plate (41) is the lower space (43).
  • the upper space (42) communicates with all the flat tube portions (31) constituting the upwind main row portion (51).
  • a gas side connecting pipe (102) is connected to a part of the upwind header collecting pipe (40) forming the upper space (42).
  • a pipe (18) constituting the refrigerant circuit (20) is connected to the gas side connection pipe (102).
  • the liquid side connection pipe (101) is connected to the part forming the lower space (43) in the upwind header collecting pipe (40).
  • a pipe (17) constituting the refrigerant circuit (20) is connected to the liquid side connection pipe (101).
  • the portion forming the lower space (43) in the windward header collecting pipe (40) is a shunt for distributing the refrigerant to the three windward auxiliary heat exchange sections (38a to 38c). (150) is configured.
  • the leeward heat exchanger unit (60) is divided into two heat exchange regions (65, 67) vertically as shown in FIGS.
  • the upper area is the leeward main heat exchange area (65)
  • the lower area is the leeward auxiliary heat exchange area (67).
  • the leeward header collecting pipe (70) is formed in an elongated cylindrical shape with both ends closed.
  • the leeward header collecting pipe (70) is installed upright at the left end of the leeward heat exchanger unit (60). That is, the leeward header collecting pipe (70) is installed in a state where the axial direction is the vertical direction.
  • the flat tube portion (61) is a heat transfer tube having the same shape as the flat tube portion (31) of the upwind heat exchanger unit (30).
  • the refrigerant supplied to the leeward heat exchanger unit (60) exchanges heat with air while flowing through the fluid passage (175) of the flat tube portion (61).
  • the plurality of flat tube portions (61) are arranged in the same manner as the flat tube portion (31) of the windward heat exchanger unit (30). .
  • One end (the left end in FIG. 8) of each of the flat tube portions (61) arranged vertically is inserted into the leeward header collecting tube (70).
  • the number of flat tube portions (61) constituting the leeward tube row (90) is equal to the number of flat tube portions (31) constituting the leeward tube row (50).
  • the fin (62) is a vertically long plate-like fin formed by pressing a metal plate.
  • the shape of the fin (62) is the same as the fin (32) of the upwind heat exchanger unit (30). That is, the notch part (186) is formed in the fin (62), and the flat tube part (61) is joined to the tube insertion part (187) which is a part of the notch part (186). Further, a louver (185) for promoting heat transfer is formed on the fin (62).
  • the plurality of fins (62) are arranged at regular intervals in the axial direction of the flat tube portion (61).
  • the fin (62) is formed with a plurality of notches (186) formed at one edge at regular intervals and from the notches (186) toward the other edge. And a tube insertion portion (187) into which the flat tube portion (61) is inserted, and a protruding portion (188) protruding from the flat tube portion (61) between the adjacent cutout portions (186).
  • the fin group (63) of the leeward tube row (90) is configured by the plurality of fins (62) attached to the flat tube portion (61) of the leeward tube row (90) (FIG. 11A). reference).
  • the leeward heat exchanger unit (60) is vertically divided into two heat exchange regions (65, 67).
  • the upper heat exchange area is the leeward main heat exchange area (65)
  • the lower heat exchange area is the leeward auxiliary heat exchange area (67).
  • the one located in the leeward main heat exchange area (65) constitutes the leeward main row part (91), and the leeward auxiliary heat exchange area ( The one located at 67) constitutes the leeward auxiliary row (94). That is, part of the flat tube portion (61) constituting the leeward tube row (90) constitutes the leeward auxiliary row portion (94), and the rest constitutes the leeward main row portion (91). As will be described in detail later, the number of flat tube portions (61) constituting the leeward auxiliary row portion (94) is smaller than the number of flat tube portions (61) constituting the leeward main row portion (91).
  • the number of flat tube portions (61) constituting the leeward main row portion (91) is equal to the number of flat tube portions (31) constituting the leeward main row portion (51), and the leeward auxiliary row portion (94
  • the number of flat tube portions (61) that constitutes a) is equal to the number of flat tube portions (31) that constitute the windward auxiliary row portion (54).
  • the leeward main heat exchange area (65) is divided into six leeward main heat exchange sections (66a to 66f).
  • the leeward auxiliary heat exchange region (67) is divided into three leeward auxiliary heat exchange sections (68a to 68c) in the vertical direction.
  • the numbers of the leeward main heat exchange units (66a to 66f) and the leeward auxiliary heat exchange units (68a to 68c) shown here are merely examples.
  • the number of leeward main heat exchangers (66a to 66f) is the same as the number of leeward main heat exchangers (36a to 36f), and the leeward auxiliary heat exchanger (68a to 68c) is the same as the windward auxiliary heat exchanger (38a to 38c). ).
  • the leeward main heat exchange region (65) In the leeward main heat exchange region (65), the first leeward main heat exchange part (66a), the second leeward main heat exchange part (66b), and the third leeward main heat exchange part in order from bottom to top. (66c), a fourth leeward main heat exchange part (66d), a fifth leeward main heat exchange part (66e), and a sixth leeward main heat exchange part (66f) are formed.
  • Each of the leeward main heat exchange sections (66a to 66f) is provided with twelve flat tube sections (61).
  • the twelve flat tube portions (61) provided in the first leeward main heat exchange portion (66a) constitute the first leeward main row block (92a).
  • the twelve flat tube portions (61) provided in the second leeward main heat exchange portion (66b) constitute the second leeward main row block (92b).
  • the twelve flat tube portions (61) provided in the third leeward main heat exchange portion (66c) constitute the third leeward main row block (92c).
  • the twelve flat tube portions (61) provided in the fourth leeward main heat exchange portion (66d) constitute a fourth leeward main row block (92d).
  • the twelve flat tube portions (61) provided in the fifth leeward main heat exchange portion (66e) constitute a fifth leeward main row block (92e).
  • the twelve flat tube portions (61) provided in the sixth leeward main heat exchange portion (66f) constitute a sixth leeward main row block (92f).
  • the number of flat tube portions (61) constituting each leeward main row block (92a to 92f) does not have to coincide with each other. However, even if the number of the flat tube portions (61) constituting each leeward main row block (92a to 92f) does not match each other, the flat tube portions (61 that constitute the first leeward main row block (92a) ) Is the same number as the flat tube portion (31) constituting the first upwind main row block (52a), and the flat tube portion (61) constituting the second leeward main row block (92b) is the second upwind main row block (52a).
  • the number of flat tube portions (31) constituting the row block (52b) is the same, and the flat tube portion (61) constituting the third leeward main row block (92c) constitutes the third upwind main row block (52c).
  • the flat tube portion (31) is the same number as the flat tube portion (31) to be configured, and the flat tube portion (61) constituting the fourth leeward main row block (92d) is the flat tube portion (31) constituting the fourth upwind main row block (52d)
  • the number of flat tube portions (61) constituting the fifth leeward main row block (92e) is the same as the number of flat tube portions (31) constituting the fifth leeward main row block (52e). It is desirable that the number of flat tube portions (61) constituting the sixth leeward main row block (92f) is the same as the number of flat tube portions (31) constituting the sixth leeward main row block (52f).
  • the first leeward main row block (92a) and the second leeward main row block (92b) constitute a first leeward main row block group (93a).
  • the third leeward main row block (92c) and the fourth leeward main row block (92d) constitute a second leeward main row block group (93b).
  • the fifth leeward main row block (92e) and the sixth leeward main row block (92f) constitute a third leeward main row block group (93c).
  • the first leeward auxiliary heat exchange unit (68a), the second leeward auxiliary heat exchange unit (68b), and the third leeward auxiliary heat exchange unit (68c) is formed.
  • Each of the lee auxiliary heat exchangers (68a to 68c) is provided with three flat tube portions (61).
  • the three flat tubes (61) provided in the first lee auxiliary heat exchanger (68a) constitute a first lee auxiliary column block (95a).
  • the three flat tube portions (61) provided in the second leeward auxiliary heat exchange portion (68b) constitute a second leeward auxiliary row block (95b).
  • the three flat tube portions (61) provided in the third leeward auxiliary heat exchange portion (68c) constitute a third leeward auxiliary row block (95c).
  • the number of the flat tube portions (61) constituting each of the leeward auxiliary row blocks (95a to 95c) does not have to coincide with each other. However, even if the number of the flat tube portions (61) constituting each leeward auxiliary row block (95a to 95c) does not match each other, the flat tube portions (61) constituting the first leeward auxiliary row block (95a) ) Is the same number as the flat tube portion (31) constituting the first upwind auxiliary row block (55a), and the flat tube portion (61) constituting the second upwind auxiliary row block (95b) is the second upwind auxiliary row block (55a).
  • the number of flat tube portions (31) constituting the row block (55b) is the same, and the flat tube portion (61) constituting the third leeward auxiliary row block (95c) constitutes the third upwind auxiliary row block (55c). It is desirable that the number is equal to the number of flat tube portions (31).
  • the internal space of the leeward header collecting pipe (70) is divided into upper and lower parts by a partition plate (71).
  • the space above the partition plate (71) is an upper space (72)
  • the space below the partition plate (71) is a lower space (73).
  • the upper space (72) is divided into six main communication spaces (75a to 75f) by five partition plates (74). That is, on the upper side of the partition plate (71) in the lee header collecting pipe (70), the first main communication space (75a), the second main communication space (75b), and the third A main communication space (75c), a fourth main communication space (75d), a fifth main communication space (75e), and a sixth main communication space (75f) are formed.
  • the twelve flat tube portions (61) constituting the first leeward main row block (92a) communicate with the first main communication space (75a). Twelve flat tube portions (61) constituting the second leeward main row block (92b) communicate with the second main communication space (75b). Twelve flat tube portions (61) constituting the third leeward main row block (92c) communicate with the third main communication space (75c). Twelve flat tube portions (61) constituting the fourth leeward main row block (92d) communicate with the fourth main communication space (75d). Twelve flat tube portions (61) constituting the fifth leeward main row block (92e) communicate with the fifth main communication space (75e). Twelve flat tube portions (61) constituting the sixth leeward main row block (92f) communicate with the sixth main communication space (75f).
  • the lower space (73) is divided into three auxiliary communication spaces (77a to 77c) by two partition plates (76). That is, on the lower side of the partition plate (71) in the leeward header collecting pipe (70), the first auxiliary communication space (77a), the second auxiliary communication space (77b), and the first 3 auxiliary main communication spaces (77c) are formed.
  • the three flat tube portions (61) constituting the first leeward auxiliary row block (95a) communicate with the first auxiliary communication space (77a).
  • Three flat tube portions (61) constituting the second leeward auxiliary row block (95b) communicate with the second auxiliary communication space (77b).
  • Three flat pipe portions (61) constituting the third leeward auxiliary row block (95c) communicate with the third auxiliary communication space (77c).
  • connection pipes (110, 120, 130) are attached to the leeward header collecting pipe (70).
  • Each of the connection pipes (110, 120, 130) includes one main pipe part (111, 121, 131) and two branch pipe parts (112a, 112b, 122a, 122b, 132a, 132b) connected to the ends of the main pipe parts (111, 121, 131). ing.
  • the first connection pipe (110) connects the first leeward auxiliary row block (95a) and the first leeward main row block group (93a). Specifically, in the first connecting pipe (110), the open end of the main pipe portion (111) communicates with the first auxiliary communication space (77a), and the open end of one branch pipe portion (112a) is the first main pipe.
  • the communicating space (75a) communicates, and the open end of the other branch pipe (112b) communicates with the second main communicating space (75b).
  • the first auxiliary communication space (77a) includes the first main communication space (75a) corresponding to the first leeward main row block (92a) and the second main communication space corresponding to the second leeward main row block (92b). Connected to both spaces (75b).
  • the second connection pipe (120) connects the second leeward auxiliary row block (95b) and the second leeward main row block group (93b). Specifically, in the second connection pipe (120), the open end of the main pipe portion (121) communicates with the second auxiliary communication space (77b), and the open end of one branch pipe portion (122a) is the third main pipe. The communication space (75c) communicates, and the open end of the other branch pipe portion (122b) communicates with the fourth main communication space (75d). Accordingly, the second auxiliary communication space (77b) includes the third main communication space (75c) corresponding to the third leeward main row block (92c) and the fourth main communication space corresponding to the fourth leeward main row block (92d). Connected to both of the spaces (75d).
  • the third connection pipe (130) connects the third leeward auxiliary row block (95c) and the third leeward main row block group (93c). Specifically, in the third connection pipe (130), the open end of the main pipe part (131) communicates with the third auxiliary communication space (77c), and the open end of one branch pipe part (132a) is the fifth main pipe. The communication space (75e) communicates, and the open end of the other branch pipe portion (132b) communicates with the sixth main communication space (75f). Accordingly, the third auxiliary communication space (77c) includes the fifth main communication space (75e) corresponding to the fifth leeward main row block (92e) and the sixth main communication space corresponding to the sixth leeward main row block (92f). Connected to both space (75f).
  • the portion forming the lower space (43) in the upwind header collecting pipe (40) constitutes the flow divider (150).
  • the shunt (150) is configured to provide three upwind auxiliary heat exchanges of the gas-liquid two-phase refrigerant supplied to the outdoor heat exchanger (23). Distribute to the parts (38a-38c).
  • the flow divider (150) will be described with reference to FIG.
  • the lower space (43) two horizontal partition plates (160, 162) and one vertical partition plate (164) are provided.
  • the lower space (43) is divided into three communication chambers (151 to 153), one mixing chamber (154), two chambers by two horizontal partition plates (160, 162) and one vertical partition plate (164). Partitioned into an intermediate chamber (155,156,).
  • each horizontal partition plate (160, 162) is arranged so as to cross the lower space (43), and partitions the lower space (43) up and down.
  • the lower lateral partition plate (160) is disposed between the first upwind auxiliary row block (55a) and the second upwind auxiliary row block (55b), and the upper lateral partition plate (162) Arranged between the auxiliary row block (55b) and the third upwind auxiliary row block (55c).
  • the vertical partition plate (164) is an elongated rectangular plate-shaped member.
  • the vertical partition plate (164) is disposed along the axial direction of the upwind header collecting pipe (40), and partitions the lower space (43) into the flat tube portion (31) side and the liquid side connection pipe (101) side. .
  • the lower portion of the lower horizontal partition plate (160) is separated by the vertical partition plate (164) into the first communication chamber (151) on the flat tube (31) side and the liquid side connection tube. It is partitioned into a lower intermediate chamber (155) on the (101) side.
  • the first communication chamber (151) communicates with the three flat tubes (31) constituting the first upwind auxiliary row block (55a).
  • a portion between the lower horizontal partition plate (160) and the upper horizontal partition plate (162) is separated by a vertical partition plate (164) into the second communication chamber on the flat tube (31) side ( 152) and the mixing chamber (154) on the liquid side connecting pipe (101) side.
  • the second communication chamber (152) communicates with the three flat tubes (61) constituting the second upwind auxiliary row block (55b).
  • the mixing chamber (154) communicates with the liquid side connecting pipe (101).
  • a portion of the lower space (43) above the upper horizontal partition plate (162) is separated by a vertical partition plate (164) from the third communication chamber (153) on the flat tube (31) side and the liquid side connection tube ( 101) partitioned into an upper intermediate chamber (156) on the side.
  • the third communication chamber (153) communicates with the three flat tubes (31) constituting the third upwind auxiliary row block (55c).
  • One communicating hole (165a, 165b) is formed in the upper part and the lower part of the vertical partition plate (164).
  • Each communication hole (165a, 165b) is a horizontally long rectangular through hole.
  • the communication hole (165b) at the lower part of the vertical partition plate (164) is formed near the lower end of the lower part of the vertical partition plate (164) than the lower horizontal partition plate (160), and the first communication chamber ( 151) is in communication with the lower intermediate chamber (155).
  • the upper communicating hole (165a) of the vertical partition plate (164) is formed near the lower end of the upper part of the vertical partition plate (164) above the upper horizontal partition plate (162), and the third communication chamber (153) Is in communication with the upper intermediate chamber (156).
  • the lower horizontal partition plate (160) has a flow rate adjusting hole (161) formed in a portion facing the mixing chamber (154).
  • the first communication chamber (151) communicates with the mixing chamber (154) through the flow rate adjusting hole (161).
  • the upper horizontal partition plate (162) has a flow rate adjusting hole (163) formed in a portion facing the mixing chamber (154).
  • the third communication chamber (153) communicates with the mixing chamber (154) through the flow rate adjusting hole (163).
  • the vertical partition plate (164) has a flow rate adjusting hole (166) formed in the vicinity of the lower end of the portion facing the mixing chamber (154).
  • the second communication chamber (152) communicates with the mixing chamber (154) through the flow rate adjusting hole (166).
  • the flow rate adjustment hole (161) of the lower horizontal partition plate (160), the flow rate adjustment hole (163) of the upper horizontal partition plate (162), and the flow rate adjustment hole of the vertical partition plate (164) (166) is a circular through-hole having a relatively small diameter.
  • the flow divider (150) has an opening area (specifically, a diameter) of the flow rate adjusting holes (161, 163, 166) so that the refrigerant is distributed to each upwind auxiliary row block (55a to 55c) at a predetermined ratio. Is set.
  • the two-row outdoor heat exchanger (23) of the present embodiment can be manufactured as follows.
  • a large number of fins (32) are parallel to each other at one end portion (flat tube portion (31)) of the flat tube (170) constituting the upwind tube row (50). Wear as follows.
  • a large number of fins (62) are attached to the other end portion (flat tube portion (61)) of the flat tube (170) constituting the leeward tube row (90) so as to be parallel to each other.
  • the fin (32) on the leeward tube row (50) side and the fin (62) on the leeward tube row (90) side are a cross-sectional view taken along line XIB-XIB and a cross-sectional view taken along line XIC-XIC in FIG. 11 (B) and 11 (C)
  • the protrusions (188) are flat so as to be in the opposite direction (downward in FIG. 11 (B) and upward in FIG. 11 (C)). Attaching to the pipe (170) (fin attachment process).
  • the flat tube (170) is bent between the one end and the other end using a bending die (201), so that the upwind tube row (50) and the leeward wind are connected as shown in FIGS.
  • the outdoor heat exchanger (23) is formed so that the tube rows (90) are parallel.
  • the fin (32) on the windward tube row (50) side and the fin (62) on the leeward tube row (90) side are protruding portions as shown in FIG. (188) They face each other in the same direction (tube row forming step).
  • the flat tube (170) is connected to the flat tube (170) between the fin (32) on the upwind tube row (50) side and the fin (62) on the leeward tube row (90) side.
  • 62) is bent at the part where it is not attached, so that a gap (140) is formed between the flat tube portion (31) of the windward tube row (50) and the flat tube portion (61) of the leeward tube row (90).
  • a U-shaped bent pipe portion (bent portion) (173) is formed, and an outdoor heat exchanger (23) having a two-row structure can be manufactured.
  • the step of bending the flat tube (170) is performed after brazing the fins (32, 62) and the header collecting pipe (40, 70) to the flat tube (170).
  • the protrusion (188) of the fin (32) on the upwind tube row (50) side and the protrusion (188) of the fin (62) on the leeward tube row (90) side are in the same direction.
  • the facing two-row outdoor heat exchanger (23) can be easily formed, and erroneous assembly can be prevented. If the fins (32, 62) are arranged so that the protrusions (188) face the windward side, there is no protrusion on the leeward side of each fin (32, 62).
  • the condensed water droplets flow down the heat exchanger through the downstream portion of each row of fins (32, 62) in the air flow direction. Therefore, when this outdoor heat exchanger (23) is used as an evaporator, it is possible to prevent frost formation from proceeding.
  • the protrusion (188) is formed between the notch (186) and the notch (186) of the fin (32, 62) has been described.
  • the fin (32) on the windward tube row (50) side edge on the tube insertion portion (187) side and the fin on the leeward tube row (90) side You may arrange
  • a gap is formed between the fin (32) on the windward tube row (50) side and the fin (62) on the leeward tube row (90) side. It does not have to be provided.
  • the U-shaped bending part (173) is a three-dimensional U-shaped bending part which remove
  • the bent portion (173) is approximately 45 ° on each of the flat tube portion (31) side and the flat tube portion (61) side with respect to the bending die (203). You may form by bending so that a bending part (173a) may be formed.
  • the U-shaped bent portion (173) is formed as a flat surface of the flat tube (170) as shown in FIG. It may be a planar bent part along the line.
  • the flat pipe part (31) which is a flat tube of the said windward pipe row (50) and the flat pipe part (61) which is a flat pipe of the leeward pipe row (90) are shown in FIG.
  • the positions may be shifted in a direction (the arrangement direction of the flat tube portions (31, 61)) perpendicular to the flat side surface portions of both flat tube portions (31, 61). This is a so-called staggered arrangement.
  • the air that passes between the flat tube portion (31) and the flat tube portion (31) of the upwind tube row (50) without contacting the flat tube portion (31) becomes the leeward tube row (90). Since it passes in the state which contacts the flat pipe part (61), the air volume which does not contact with the flat pipe part (31, 61) decreases, and heat exchange efficiency can be improved.
  • the present invention provides an upwind tube row (50) and a leeward tube row (90), each of which is constituted by a plurality of flat tube portions (31, 62) arranged in parallel and arranged in the air flow direction,
  • the heat exchanger (23) having a two-row structure including fins (32, 62) joined to the pipe portion (31, 61), the windward pipe row (50) side and the leeward pipe row (90) side;
  • the edges of the fins (32, 62) on the tube insertion part (187) side or the protrusions (188) are arranged in the same direction, other configurations may be changed as appropriate. Good.
  • the present invention is useful for a heat exchanger manufacturing method and a heat exchanger that have flat tubes and fins to exchange heat between refrigerant and air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Fins (32, 62) having a protrusion (188) on one edge are mounted on one end and the other end of each of multiple flat tubes (170) that comprise a flat tube section (31) of an upwind tube column (50) and a flat tube section (61) of a downwind tube column (90) such that the protrusions (188) face in opposite directions, and each flat tube (170) is bent between the one end and the other end. Hereby, the upwind tube column (50) and the downwind tube column (90) are formed in a state in which the protrusions (188) of the fins (32, 62) face the same direction, ensuring the water drainage properties of the two-column heat exchanger and preventing errors in assembly.

Description

熱交換器の製造方法及び熱交換器Manufacturing method of heat exchanger and heat exchanger
 本発明は、扁平管とフィンを有して冷媒と空気を熱交換させる熱交換器の製造方法及び熱交換器に関するものである。 The present invention relates to a heat exchanger manufacturing method and a heat exchanger that have flat tubes and fins to exchange heat between refrigerant and air.
 従来より、扁平管とフィンを有して冷媒と空気を熱交換させる熱交換器が知られている。特許文献1(図3を参照)には、配列された扁平管からなる管列を一つ有する一列構造の熱交換器が開示されている。特許文献2(図2を参照)及び特許文献3(図22を参照)には、配列された扁平管からなる管列を二つ有する二列構造の熱交換器が開示されている。特許文献2に開示された熱交換器では、個別の扁平管を二列に配列することによって二つの管列が構成される。一方、特許文献3の熱交換器では、中間部で折れ曲がったU字状の扁平管を配列することによって、二つの管列が構成される。また、特許文献1~3に開示された熱交換器では、扁平管の端部にヘッダが接続され、ヘッダへ流入した冷媒が複数の扁平管へ分かれて流れ込む。 Conventionally, heat exchangers that have flat tubes and fins to exchange heat between refrigerant and air are known. Patent Document 1 (see FIG. 3) discloses a heat exchanger having a single-row structure having one tube row composed of arranged flat tubes. Patent Document 2 (see FIG. 2) and Patent Document 3 (see FIG. 22) disclose a heat exchanger having a two-row structure having two tube rows made of arranged flat tubes. In the heat exchanger disclosed in Patent Literature 2, two tube rows are configured by arranging individual flat tubes in two rows. On the other hand, in the heat exchanger of Patent Document 3, two tube rows are formed by arranging U-shaped flat tubes bent at an intermediate portion. In the heat exchangers disclosed in Patent Documents 1 to 3, a header is connected to the end of the flat tube, and the refrigerant flowing into the header flows into a plurality of flat tubes.
特開2013-137193号公報JP 2013-137193 A 特表2005-510689号公報Japanese translation of publication 2005-510689 特開平08-145580号公報Japanese Patent Laid-Open No. 08-145580
 ところで、特許文献1の熱交換器では、フィンの一方の縁部に多数の切り欠き部が一定間隔で形成されており、扁平管は、フィンの切り欠き部から他方の縁部に向かって形成されている管挿入部(スリット)に挿入されて固定されている。フィンの管挿入部側は水はけ性がよくないため、二列構造の熱交換器が蒸発器になる場合に、フィンの配置によっては着霜が進みやすくなる問題がある。 By the way, in the heat exchanger of patent document 1, many notch parts are formed in the one edge part of the fin at fixed intervals, and a flat tube is formed toward the other edge part from the notch part of a fin. It is inserted and fixed in the pipe insertion part (slit) currently made. Since the fins do not have good drainage on the tube insertion part side, there is a problem that frosting tends to proceed depending on the arrangement of the fins when the heat exchanger having a two-row structure is an evaporator.
 また、二列構造の熱交換器では、各管列の扁平管を接続部材で連結するようにすると、フィンの向きを誤って組み立ててしまうおそれがある。 Also, in a heat exchanger with a two-row structure, if the flat tubes of each tube row are connected by a connecting member, the direction of the fins may be mistakenly assembled.
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、複数の扁平管と切り欠き部を有する複数のフィンとからなる二列構造の熱交換器の水はけ性を確保するとともに、誤組み立てを防止できる熱交換器の製造方法及び熱交換器を提供することである。 The present invention has been made in view of such problems, and its purpose is to ensure drainage of a heat exchanger having a two-row structure composed of a plurality of flat tubes and a plurality of fins having cutout portions. And providing a heat exchanger manufacturing method and a heat exchanger capable of preventing erroneous assembly.
 本開示の第1の態様は、平行に並んだ複数の扁平管部(31,61)によってそれぞれが構成されて空気の流れ方向に並ぶ風上管列(50)及び風下管列(90)と、上記扁平管部(31,61)に接合されたフィン(32,62)とを備えた熱交換器の製造方法を前提としている。 The first aspect of the present disclosure includes an upwind tube row (50) and a leeward tube row (90), each of which is configured by a plurality of flat tube portions (31, 61) arranged in parallel and arranged in the air flow direction. The manufacturing method of the heat exchanger provided with the fins (32, 62) joined to the flat tube portions (31, 61) is premised.
 そして、この熱交換器の製造方法は、一方の縁部に一定の間隔で形成された複数の切り欠き部(186)と、該切り欠き部(186)から他方の縁部に向かって形成され扁平管部(31,61)が挿入される管挿入部(187)とを有する上記フィン(32,62)を、風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)を有する複数の扁平管(170)それぞれの一端部と他端部に管挿入部(187)側の縁部を互いに逆向きにして装着するフィン装着工程と、上記各扁平管(170)を一端部と他端部の間で折り曲げることにより、フィン(32,62)の管挿入部(187)側の縁部同士が同じ方向を向く状態で風上管列(50)と風下管列(90)を形成する管列形成工程とを備えていることを特徴としている。 The heat exchanger manufacturing method includes a plurality of notches (186) formed at one edge at regular intervals, and formed from the notches (186) toward the other edge. The fin (32, 62) having the tube insertion portion (187) into which the flat tube portion (31, 61) is inserted is connected to the flat tube portion (31) of the upwind tube row (50) and the leeward tube row (90 And a fin mounting step of mounting the ends of the plurality of flat tubes (170) having the flat tube portions (61) in the opposite directions to the one end and the other end of the flat tubes (170), By bending each flat tube (170) between one end and the other end, the upwind tube row (in the state where the edges on the tube insertion portion (187) side of the fins (32, 62) face in the same direction ( 50) and a tube row forming step for forming the leeward tube row (90).
 この第1の態様では、フィン(32,62)を、風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)を有する複数の扁平管(170)それぞれの一端部と他端部に管挿入部(187)側の縁部を互いに逆向きにして装着するフィン装着工程と、上記各扁平管(170)を一端部と他端部の間で折り曲げることにより、フィン(32,62)の管挿入部(187)側の縁部が同じ方向を向く状態で風上管列(50)と風下管列(90)を形成する管列形成工程とを行うことにより、2列構造の熱交換器を製造することができる。 In this first aspect, the fins (32, 62) are connected to a plurality of flat tubes having a flat tube portion (31) of the windward tube row (50) and a flat tube portion (61) of the leeward tube row (90) ( 170) Fin mounting step for mounting the ends of the tube insertion portion (187) on the one end and the other end in opposite directions, and each flat tube (170) between the one end and the other end. The tube row forming step of forming the windward tube row (50) and the leeward tube row (90) with the edges of the fins (32, 62) on the tube insertion portion (187) side facing in the same direction As a result, a two-row heat exchanger can be manufactured.
 本開示の第2の態様は、第1の態様において、上記フィン(32,62)が、上記一方の縁部に、隣り合う切り欠き部(186)の間に形成されて上記扁平管部(31,61)から突出する突出部(188)を有するフィンであり、上記管列形成工程において、上記風上管列(50)側のフィン(32)の突出部(188)と風下管列(90)側のフィン(62)の突出部(188)とが同じ方向を向くように上記各扁平管(170)を一端部と他端部の間で折り曲げることを特徴としている。 According to a second aspect of the present disclosure, in the first aspect, the fin (32, 62) is formed between the adjacent notch portions (186) on the one edge portion, and the flat tube portion ( 31, 61) and a fin (32) projecting from the fin (32) on the windward tube row (50) side and the leeward tube row ( Each flat tube (170) is bent between one end and the other end so that the protrusion (188) of the fin (62) on the 90) side faces the same direction.
 この第2の態様では、フィン(32,62)の突出部(188)同士が同じ方向を向く状態で風上管列(50)と風下管列(90)を形成する管列形成工程とを行うことにより、2列構造の熱交換器を製造することができる。 In this second aspect, the tube row forming step for forming the windward tube row (50) and the leeward tube row (90) in a state where the protrusions (188) of the fins (32, 62) face in the same direction. By doing so, a heat exchanger having a two-row structure can be manufactured.
 本開示の第3の態様は、第1または第2の態様において、管列形成工程後に空気の流れ方向に並んだ風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)との間に隙間を形成することを特徴としている。 According to a third aspect of the present disclosure, in the first or second aspect, the fin (32) and the leeward tube row (90) on the upwind tube row (50) side aligned in the air flow direction after the tube row forming step. A gap is formed between the fin (62) on the side.
 本開示の第4の態様は、第1から第3の態様の何れか1つにおいて、上記フィン装着工程では、扁平管部(31)の一端部と他端部に複数の上記フィン(32,62)を装着することにより風上管列(50)のフィン群(33)と風下管列のフィン群(63)を形成する一方、両フィン群(33,63)の間にはフィン(32,62)を装着しないギャップ部(140)を形成することを特徴としている。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, in the fin mounting step, a plurality of fins (32, 32) are provided at one end and the other end of the flat tube portion (31). 62) is formed to form the fin group (33) of the leeward tube row (50) and the fin group (63) of the leeward tube row, while the fin (32 , 62) is formed in the gap portion (140).
 この第4の態様では、両フィン群(33,63)の間に形成されたギャップ部(140)において各扁平管(170)が折り曲げられ、風上管列(50)と風下管列(90)が形成される。 In this 4th aspect, each flat tube (170) is bent in the gap part (140) formed between both fin groups (33,63), and an upwind tube row (50) and a leeward tube row (90 ) Is formed.
 本開示の第5の態様は、第1から第4の態様の何れか1つにおいて、上記管列形成工程が、上記扁平管(170)を上記一端部と他端部の間でU字状に折り曲げる工程であって、U字状の折り曲げ部(173)を該扁平管(170)の平面から外れる立体的な折り曲げ部(173)にする工程であることを特徴としている。 According to a fifth aspect of the present disclosure, in any one of the first to fourth aspects, the tube row forming step is configured such that the flat tube (170) is U-shaped between the one end and the other end. A step of bending the U-shaped bent portion (173) into a three-dimensional bent portion (173) deviating from the flat surface of the flat tube (170).
 本開示の第6の態様は、第1から第4の態様の何れか1つにおいて、上記管列形成工程が、上記扁平管(170)を上記一端部と他端部の間でU字状に折り曲げる工程であって、U字状の折り曲げ部(173)を該扁平管(170)の平面に沿う平面的な折り曲げ部(173)にする工程であることを特徴としている。 According to a sixth aspect of the present disclosure, in any one of the first to fourth aspects, the tube row forming step is configured such that the flat tube (170) is U-shaped between the one end and the other end. A step of bending the U-shaped bent portion (173) into a planar bent portion (173) along the plane of the flat tube (170).
 上記第5,第6の態様では、管列形成工程において扁平管(170)を上記一端部と他端部の間でU字状に折り曲げることにより、風上管列(50)と風下管列(90)が形成される。 In the fifth and sixth aspects, the upwind tube row (50) and the leeward tube row are formed by bending the flat tube (170) in a U shape between the one end and the other end in the tube row forming step. (90) is formed.
 本開示の第7の態様は、第1から第6の態様の何れか1つにおいて、上記管列形成工程が、上記扁平管(170)を、風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)の位置が該両扁平管部(31,61)の配列方向にずれるように折り曲げる工程であることを特徴としている。 According to a seventh aspect of the present disclosure, in any one of the first to sixth aspects, the tube row forming step is configured to replace the flat tube (170) with the flat tube portion of the upwind tube row (50) ( 31) and a step of bending so that the positions of the flat tube portions (61) of the leeward tube row (90) are shifted in the arrangement direction of the flat tube portions (31, 61).
 この第7の態様では、形成された熱交換器の風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)がその配列方向(扁平管部(31,61)の扁平面に直交する方向)にずれるので、風上管列(50)の扁平管部(31)と扁平管部(31)の間を扁平管部(31)に接触せずに通過した空気が風下管列(90)の扁平管部(61)に接触する状態で通過する。 In this seventh aspect, the flat tube portion (31) of the windward tube row (50) of the formed heat exchanger and the flat tube portion (61) of the leeward tube row (90) are arranged in the direction of arrangement (flat tube portion). (Direction perpendicular to the flat plane of (31, 61)), the flat pipe section (31) between the flat pipe section (31) and the flat pipe section (31) of the windward tube row (50) should be brought into contact with the flat pipe section (31). The air that has passed without passing through is in contact with the flat tube portion (61) of the leeward tube row (90).
 本開示の第8の態様は、平行に並んだ複数の扁平管部(31,61)によってそれぞれが構成されて空気の流れ方向に並ぶ風上管列(50)及び風下管列(90)と、上記扁平管部(31,61)に接合されたフィン(32,62)とを備えた熱交換器を前提としている。 The eighth aspect of the present disclosure includes an upwind tube row (50) and a leeward tube row (90), each of which is configured by a plurality of flat tube portions (31, 61) arranged in parallel and arranged in the air flow direction. A heat exchanger provided with fins (32, 62) joined to the flat tube portions (31, 61) is assumed.
 そして、この熱交換器は、上記フィン(32,62)が、一方の縁部に一定の間隔で形成された複数の切り欠き部(186)と、該切り欠き部(186)から他方の縁部に向かって形成され扁平管部(31,61)が挿入される管挿入部(187)とを有し、上記風上管列(50)側のフィン(32)の管挿入部(187)側の縁部と風下管列(90)側のフィン(62)の管挿入部(187)側の縁部が同じ方向を向くように配置され、上記風上管列(50)の各扁平管部(31)と風下管列(90)の各扁平管部(61)が一本の扁平管(170)を両管列の間で折り曲げることにより形成され、上記風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)の間には折り曲げ部(173)が構成されていることを特徴としている。 The heat exchanger includes a plurality of notches (186) in which the fins (32, 62) are formed at a certain interval on one edge, and the other edge from the notches (186). Tube insertion portion (187) into which the flat tube portion (31, 61) is inserted and the fin (32) on the upwind tube row (50) side. Each of the flat tubes in the upwind tube row (50) is arranged so that the edge on the side and the edge on the tube insertion portion (187) side of the fin (62) on the leeward tube row (90) side face in the same direction. Each of the flat tube portions (61) of the head portion (31) and the leeward tube row (90) is formed by bending one flat tube (170) between the two tube rows. A bent portion (173) is formed between the flat tube portion (31) and the flat tube portion (61) of the leeward tube row (90).
 本開示の第9の態様は、第8の態様において、上記フィン(32,62)が、上記一方の縁部に、隣り合う切り欠き部(186)の間に形成されて上記扁平管部(31,61)から突出する突出部(188)を有し、上記風上管列(50)側のフィン(32)の突出部(188)と風下管列(90)側のフィン(62)の突出部(188)とが同じ方向を向いていることを特徴としている。 According to a ninth aspect of the present disclosure, in the eighth aspect, the fin (32, 62) is formed between the adjacent notch portions (186) on the one edge portion, and the flat tube portion ( 31 (61) and a projection (188) projecting from the fin (32) on the upwind tube row (50) side and the fin (62) on the leeward tube row (90) side. The protrusion (188) faces the same direction.
 本開示の第1,第2の態様によれば、二列構造の熱交換器を、扁平管(31,61)またはフィン(32,62)の突出部(188)が互いに同じ方向を向く状態で容易に形成することができ、誤組み立てを防止できる。また、フィン(32,62)の管挿入部(187)側または突出部(188)が風上側を向くように配置すると各フィン(32,62)の風下側には管挿入部(187)側または突出部(188)が存在しないことになるため、扁平管部(31,61)で結露した水滴が各列のフィン(32,62)の空気流れ方向の下流側の縁部を通って熱交換器の下方へ流れていくようになる。したがって、この熱交換器を蒸発器として用いる場合に着霜が進むのを防止できる。 According to the first and second aspects of the present disclosure, in the heat exchanger having a two-row structure, the protrusions (188) of the flat tubes (31, 61) or the fins (32, 62) are oriented in the same direction. Can be easily formed, and erroneous assembly can be prevented. When the fins (32, 62) are arranged so that the pipe insertion part (187) side or the protrusions (188) face the windward side, the fin insertion part (187) side is located on the leeward side of each fin (32, 62). Or, since the protrusion (188) does not exist, water droplets condensed on the flat tube portion (31, 61) pass through the edge on the downstream side in the air flow direction of the fins (32, 62) of each row. It begins to flow down the exchanger. Therefore, when this heat exchanger is used as an evaporator, frost formation can be prevented from proceeding.
 本開示の第3の態様によれば、管列形成工程後に空気の流れ方向に並んだ風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)との間に隙間が形成されるので、風上管列(50)側のフィン(32)に結露した水滴がその下流側の部分を流れるときに、風下管列(90)側のフィン(62)の突出部(188)によって停止せず、滑らかに流れていく。したがって、この熱交換器を蒸発器として用いる場合に着霜が進むのを確実に防止できる。 According to the third aspect of the present disclosure, the fin (32) on the upwind tube row (50) side and the fin (62) on the leeward tube row (90) side arranged in the air flow direction after the tube row forming step. A gap is formed between the fins (62) on the leeward tube row (90) when water drops condensed on the fins (32) on the upwind tube row (50) flow through the downstream side portion. It will flow smoothly without stopping by the protrusion (188). Therefore, when this heat exchanger is used as an evaporator, it is possible to reliably prevent frost formation from proceeding.
 本開示の第4の態様によれば、両フィン群(33,63)の間に形成されたギャップ部(140)において各扁平管(170)を折り曲げて風上管列(50)と風下管列(90)を形成することにより、二列構造の熱交換器を容易に製造することができる。 According to the fourth aspect of the present disclosure, the upwind tube row (50) and the downwind tube are formed by bending each flat tube (170) in the gap portion (140) formed between the fin groups (33, 63). By forming the row (90), a two-row heat exchanger can be easily manufactured.
 本開示の第5,第6の態様によれば、管列形成工程において扁平管(170)をU字状に折り曲げることにより風上管列(50)と風下管列(90)が形成されるので、二列構造の熱交換器を容易に製造することができる。 According to the fifth and sixth aspects of the present disclosure, the windward tube row (50) and the leeward tube row (90) are formed by bending the flat tube (170) into a U shape in the tube row forming step. Therefore, a heat exchanger having a two-row structure can be easily manufactured.
 本開示の第7の態様によれば、形成される熱交換器の風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)をその配列方向にずらすことにより、風上管列(50)の扁平管部(31)と扁平管部(31)の間を扁平管部(31)に接触せずに通過した空気が風下管列(90)の扁平管部(61)に接触する状態で通過するので、扁平管部(31,61)と接触しない風量が少なくなり、熱交換効率を高められる。 According to the seventh aspect of the present disclosure, the flat tube portion (31) of the windward tube row (50) of the heat exchanger to be formed and the flat tube portion (61) of the leeward tube row (90) are arranged in the direction of arrangement. The air that has passed between the flat tube portion (31) and the flat tube portion (31) of the upwind tube row (50) without coming into contact with the flat tube portion (31) is shifted to the leeward tube row (90). Since it passes in the state which contacts the flat pipe part (61), the air volume which does not contact with the flat pipe part (31, 61) decreases, and heat exchange efficiency can be improved.
 そして、本開示の第1から第7の態様の製造方法を実施することにより、上記第8,第9の態様の熱交換器を容易に製造することができる。 And the heat exchanger of the said 8th, 9th aspect can be easily manufactured by implementing the manufacturing method of the 1st-7th aspect of this indication.
図1は、実施形態の室外熱交換器を備えた空気調和機の概略構成を示す冷媒回路図である。Drawing 1 is a refrigerant circuit figure showing the schematic structure of the air harmony machine provided with the outdoor heat exchanger of an embodiment. 図2は、実施形態の室外熱交換器を第1方向から視た斜視図である。Drawing 2 is a perspective view which looked at an outdoor heat exchanger of an embodiment from the 1st direction. 図3は、実施形態の室外熱交換器を第2方向から視た斜視図である。Drawing 3 is a perspective view which looked at an outdoor heat exchanger of an embodiment from the 2nd direction. 図4(A)は、実施形態の室外熱交換器を上方から視た部分断面図、図4(B)は、図4(A)のIVB-IVB断面部分拡大図であって二列構造の室外熱交換器のフィンの配置を示す拡大断面図である。4A is a partial cross-sectional view of the outdoor heat exchanger according to the embodiment as viewed from above, and FIG. 4B is a partial enlarged view of the IVB-IVB cross-section of FIG. It is an expanded sectional view which shows arrangement | positioning of the fin of an outdoor heat exchanger. 図5は、実施形態の室外熱交換器を風上熱交換器ユニットと風下熱交換器ユニットに分解して示す概略の斜視図であって、室外熱交換器が蒸発器として機能する場合の冷媒の流れを示すものである。FIG. 5 is a schematic perspective view showing the outdoor heat exchanger according to the embodiment disassembled into an upwind heat exchanger unit and a downwind heat exchanger unit, and a refrigerant when the outdoor heat exchanger functions as an evaporator. It shows the flow. 図6は、実施形態の室外熱交換器を風上熱交換器ユニットと風下熱交換器ユニットに分解して示す概略の斜視図であって、室外熱交換器が凝縮器として機能する場合の冷媒の流れを示すものである。FIG. 6 is a schematic perspective view showing the outdoor heat exchanger according to the embodiment disassembled into an upwind heat exchanger unit and a downwind heat exchanger unit, and the refrigerant when the outdoor heat exchanger functions as a condenser. It shows the flow. 図7は、実施形態の風上熱交換器ユニットを正面から見た一部断面図である。FIG. 7 is a partial cross-sectional view of the wind heat exchanger unit of the embodiment as viewed from the front. 図8は、実施形態の風下熱交換器ユニットを正面から見た一部断面図である。FIG. 8 is a partial cross-sectional view of the leeward heat exchanger unit of the embodiment as viewed from the front. 図9は、図7のA-A断面および図8のB-B断面の一部を拡大して示す熱交換器ユニットの断面図である。FIG. 9 is a cross-sectional view of the heat exchanger unit showing a part of the AA cross section of FIG. 7 and the BB cross section of FIG. 8 in an enlarged manner. 図10は、実施形態の風上熱交換器ユニットの一部を正面から見た拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a part of the upwind heat exchanger unit of the embodiment as viewed from the front. 図11(A)は、二列構造の室外熱交換器の製造工程を示す概略図、図11(B)は図11(A)のXIB-XIB断面図、図11(C)は図11(A)のXIC-XIC断面図である。FIG. 11A is a schematic view showing a manufacturing process of an outdoor heat exchanger having a two-row structure, FIG. 11B is a cross-sectional view taken along the line XIB-XIB in FIG. 11A, and FIG. It is a XIC-XIC sectional view of A). 図12(A)は、実施形態の曲管部の正面図、図12(B)は、その側面図である。FIG. 12A is a front view of the bent pipe portion of the embodiment, and FIG. 12B is a side view thereof. 図13(A)は、変形例に係る曲管部の正面図、図13(B)は、その側面図である。FIG. 13A is a front view of a curved pipe portion according to a modification, and FIG. 13B is a side view thereof. 図14(A)は、他の変形例に係る曲管部の正面図、図14(B)は、その側面図である。FIG. 14 (A) is a front view of a curved pipe part according to another modification, and FIG. 14 (B) is a side view thereof. 図15は、二列構造の室外熱交換器の扁平管部とフィンの配置の変形例を示す拡大断面図である。FIG. 15 is an enlarged cross-sectional view showing a modified example of the arrangement of the flat tube portion and the fins of the two-row outdoor heat exchanger.
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Embodiments of the present invention will be described in detail with reference to the drawings. Note that the embodiments and modifications described below are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 本実施形態の熱交換器は、空気調和機(10)に設けられた室外熱交換器(23)である。以下では、先ず空気調和機(10)について説明し、その後に室外熱交換器(23)について詳細に説明する。 The heat exchanger of this embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10). Below, an air conditioner (10) is demonstrated first, and the outdoor heat exchanger (23) is demonstrated in detail after that.
  -空気調和機-
 空気調和機(10)について、図1を参照しながら説明する。
-Air conditioner-
The air conditioner (10) will be described with reference to FIG.
   〈空気調和機の構成〉
 空気調和機(10)は、室外ユニット(11)および室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)およびガス側連絡配管(14)によって、冷媒回路(20)が形成されている。
<Configuration of air conditioner>
The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14). In the air conditioner (10), a refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side communication pipe (13), and the gas side communication pipe (14).
 冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、および膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。一方、室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。 The refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing. The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11). The outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23). On the other hand, the indoor heat exchanger (25) is accommodated in the indoor unit (12). The indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
 冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出管が四方切換弁(22)の第1のポートに、その吸入管が四方切換弁(22)の第2のポートに、それぞれ接続されている。また、冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。この冷媒回路(20)において、室外熱交換器(23)は、配管(17)を介して膨張弁(24)に接続され、配管(18)を介して四方切換弁(22)の第3のポートに接続される。 The refrigerant circuit (20) is a closed circuit filled with refrigerant. In the refrigerant circuit (20), the compressor (21) has a discharge pipe connected to the first port of the four-way switching valve (22) and a suction pipe connected to the second port of the four-way switching valve (22). Has been. In the refrigerant circuit (20), the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged. In this refrigerant circuit (20), the outdoor heat exchanger (23) is connected to the expansion valve (24) via the pipe (17), and the third of the four-way switching valve (22) via the pipe (18). Connected to the port.
 圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。 Compressor (21) is a scroll type or rotary type hermetic compressor. The four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port. The expansion valve (24) is a so-called electronic expansion valve.
 室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)については後述する。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。 The outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger (23) will be described later. On the other hand, the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.
   〈空気調和機の運転動作〉
 空気調和機(10)は、冷房運転と暖房運転を選択的に行う。
<Operation of air conditioner>
The air conditioner (10) selectively performs a cooling operation and a heating operation.
 冷房運転中の冷媒回路(20)では、四方切換弁(22)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、室外熱交換器(23)、膨張弁(24)、室内熱交換器(25)の順に冷媒が循環し、室外熱交換器(23)が凝縮器として機能し、室内熱交換器(25)が蒸発器として機能する。室外熱交換器(23)では、圧縮機(21)から流入したガス冷媒が室外空気へ放熱して凝縮し、凝縮後の冷媒が膨張弁(24)へ向けて流出してゆく。 In the refrigerant circuit (20) during the cooling operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the first state. In this state, the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser. (25) functions as an evaporator. In the outdoor heat exchanger (23), the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24).
 暖房運転中の冷媒回路(20)では、四方切換弁(22)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、室内熱交換器(25)、膨張弁(24)、室外熱交換器(23)の順に冷媒が循環し、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が流入する。室外熱交換器(23)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(21)へ向けて流出してゆく。 In the refrigerant circuit (20) during the heating operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the second state. In this state, the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser. (23) functions as an evaporator. The refrigerant that has expanded into the gas-liquid two-phase state flows into the outdoor heat exchanger (23) when passing through the expansion valve (24). The refrigerant that has flowed into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21).
  -室外熱交換器-
 室外熱交換器(23)について、図2~10を適宜参照しながら説明する。なお、以下の説明に示す扁平管(31,61)の本数は、単なる一例である。
-Outdoor heat exchanger-
The outdoor heat exchanger (23) will be described with reference to FIGS. 2 to 10 as appropriate. Note that the number of flat tubes (31, 61) shown in the following description is merely an example.
 図2~4に示すように、室外熱交換器(23)は、二列構造の空気熱交換器であり、風上熱交換器ユニット(30)と風下熱交換器ユニット(60)とを備えている。風上熱交換器ユニット(30)と風下熱交換器ユニット(60)は、室外熱交換器(23)を通過する空気流の方向に重なっている。室外熱交換器(23)を通過する空気の流れ方向において、風上熱交換器ユニット(30)は、風下熱交換器ユニット(60)の上流側に配置されている。 As shown in FIGS. 2 to 4, the outdoor heat exchanger (23) is a two-row air heat exchanger, and includes an upwind heat exchanger unit (30) and a downwind heat exchanger unit (60). ing. The windward heat exchanger unit (30) and the leeward heat exchanger unit (60) overlap in the direction of the air flow passing through the outdoor heat exchanger (23). In the flow direction of the air passing through the outdoor heat exchanger (23), the upwind heat exchanger unit (30) is disposed on the upstream side of the downwind heat exchanger unit (60).
 図2~図7に示すように、風上熱交換器ユニット(30)は、一つの風上ヘッダ集合管(40)と、多数の扁平管部(31)と、多数のフィン(32)とを備えている。風上ヘッダ集合管(40)、扁平管部(31)及びフィン(32)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。風上熱交換器ユニット(30)に設けられた扁平管部(31)は、風上管列(50)を構成している。 As shown in FIGS. 2 to 7, the windward heat exchanger unit (30) includes one windward header collecting pipe (40), a number of flat pipe parts (31), and a number of fins (32). It has. The windward header collecting pipe (40), the flat pipe part (31), and the fin (32) are all made of an aluminum alloy and are joined to each other by brazing. The flat tube portion (31) provided in the upwind heat exchanger unit (30) constitutes the upwind tube row (50).
 図2~図6,図8に示すように、風下熱交換器ユニット(60)は、一つの風下ヘッダ集合管(70)と、多数の扁平管部(61)と、多数のフィン(62)とを備えている。風下ヘッダ集合管(70)、扁平管部(61)及びフィン(62)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。風下熱交換器ユニット(60)に設けられた扁平管部(61)は、風下管列(90)を構成している。 As shown in FIG. 2 to FIG. 6 and FIG. 8, the leeward heat exchanger unit (60) includes one leeward header collecting pipe (70), a number of flat pipe portions (61), and a number of fins (62). And. The lee header collecting pipe (70), the flat pipe part (61) and the fin (62) are all made of an aluminum alloy and are joined to each other by brazing. The flat tube portion (61) provided in the leeward heat exchanger unit (60) constitutes the leeward tube row (90).
 なお、詳しくは後述するが、風上熱交換器ユニット(30)のフィン(32)と風下熱交換器ユニット(60)のフィン(62)は、図9に示す各フィン(32,62)の突出部(188)が同じ方向(空気流の上流側)を向くように配置されている(図4(B)参照)。 In addition, although mentioned later in detail, the fin (32) of an upwind heat exchanger unit (30) and the fin (62) of an upwind heat exchanger unit (60) are the fins (32, 62) shown in FIG. The protrusions (188) are arranged so as to face in the same direction (upstream side of the air flow) (see FIG. 4B).
 図3及び図4に示すように、風上管列(50)を構成する扁平管部(31)と風下管列(90)を構成する扁平管部(61)は一体化されている。具体的に、本実施形態の室外熱交換器(23)では、U字状に屈曲した多数の一体型の扁平管(170)が上下に配列されている。各扁平管(170)は、真っ直ぐな扁平管をU字状に屈曲させたものであって、上述した二つの扁平管部(31,61)と、これら二つの扁平管部(31,61)を繋ぐ一つの曲管部(折り曲げ部)(173)とによって構成されている。各扁平管(170)において、二つの扁平管部(31,61)は、互いに実質的に平行となっている。また、曲管部(173)は、図3,図4及び図12に示すように、折り曲げの途中で扁平管(170)の扁平部分の向きが変わる立体的なU字形状になっている。つまり、U字状の曲管部(173)は、扁平管(170)の平面から外れる立体的な曲管部(173)になっている。 As shown in FIGS. 3 and 4, the flat tube portion (31) constituting the upwind tube row (50) and the flat tube portion (61) constituting the leeward tube row (90) are integrated. Specifically, in the outdoor heat exchanger (23) of the present embodiment, a large number of integrated flat tubes (170) bent in a U shape are arranged vertically. Each flat tube (170) is a straight flat tube bent into a U shape, and includes the two flat tube portions (31, 61) described above and the two flat tube portions (31, 61). And one bent pipe portion (bending portion) (173). In each flat tube (170), the two flat tube portions (31, 61) are substantially parallel to each other. Further, as shown in FIGS. 3, 4, and 12, the bent pipe portion (173) has a three-dimensional U-shape in which the direction of the flat portion of the flat pipe (170) changes during bending. That is, the U-shaped curved pipe portion (173) is a three-dimensional curved pipe portion (173) that is out of the plane of the flat tube (170).
 本実施形態の室外熱交換器(23)において、上下に隣り合う扁平管(170)は、それぞれの扁平管部(31,61)の側面のうち平坦な部分が互いに向かい合い、それぞれの扁平管部(31,61)の軸方向が互いに実質的に平行となっている。また、各扁平管(170)は、第1の扁平管部(31)の開口端が風上ヘッダ集合管(40)に接続し、第2の扁平管部(61)の開口端が風下ヘッダ集合管(70)に接続する。 In the outdoor heat exchanger (23) of the present embodiment, the flat tubes (170) adjacent to each other in the upper and lower sides have flat portions of the side surfaces of the respective flat tube portions (31, 61) facing each other, and the respective flat tube portions. The axial directions of (31, 61) are substantially parallel to each other. Each flat tube (170) has an open end of the first flat tube portion (31) connected to the windward header collecting tube (40), and an open end of the second flat tube portion (61) is the leeward header. Connect to the collecting pipe (70).
 このように、本実施形態の室外熱交換器(23)に設けられた各扁平管(170)では、風上管列(50)と風下管列(90)を構成する二つの扁平管部(31,61)が一つの曲管部(173)を介して接続されている。従って、本実施形態の室外熱交換器(23)では、風上管列(50)を構成する扁平管部(31)と風下管列(90)を構成する扁平管部(61)が、一本ずつ互いに接続されている。 Thus, in each flat tube (170) provided in the outdoor heat exchanger (23) of the present embodiment, two flat tube portions (50) and leeward tube row (90) constituting the upwind tube row (90) ( 31, 61) are connected via one curved pipe part (173). Therefore, in the outdoor heat exchanger (23) of the present embodiment, the flat tube portion (31) constituting the upwind tube row (50) and the flat tube portion (61) constituting the leeward tube row (90) The books are connected to each other.
   〈風上熱交換器ユニットの構成〉
 詳しくは後述するが、風上熱交換器ユニット(30)は、図5,6に示すように上下に二つの領域に区分されている。そして、風上熱交換器ユニット(30)は、上側の領域が風上主熱交換領域(35)となり、下側の領域が風上補助熱交換領域(37)となっている。
<Configuration of upwind heat exchanger unit>
As will be described in detail later, the upwind heat exchanger unit (30) is divided into two regions in the vertical direction as shown in FIGS. In the upwind heat exchanger unit (30), the upper area is the upwind main heat exchange area (35), and the lower area is the upwind auxiliary heat exchange area (37).
 風上ヘッダ集合管(40)は、両端が閉塞された細長い円筒状に形成されている。図7において、風上ヘッダ集合管(40)は風上熱交換器ユニット(30)の左端に起立した状態で設置されている。つまり、風上ヘッダ集合管(40)は、軸方向が上下方向となる状態で設置されている。 The windward header collecting pipe (40) is formed in an elongated cylindrical shape with both ends closed. In FIG. 7, the upwind header collecting pipe (40) is installed in a standing state at the left end of the upwind heat exchanger unit (30). That is, the windward header collecting pipe (40) is installed in a state where the axial direction is the vertical direction.
 図9に示すように、扁平管部(31)は、その断面形状が扁平な長円形となった伝熱管である。図7に示すように、風上熱交換器ユニット(30)において、複数の扁平管部(31)は、それぞれの軸方向が左右方向となり、それぞれの側面のうち平坦な部分が対向する状態で配置されている。また、複数の扁平管部(31)は、互いに一定の間隔をおいて上下に並んで配置され、互いの軸方向が実質的に平行となっている。各扁平管部(31)は、その一端(図7の左側端)が風上ヘッダ集合管(40)に挿入されている。 As shown in FIG. 9, the flat tube portion (31) is a heat transfer tube whose cross-sectional shape is a flat oval. As shown in FIG. 7, in the upwind heat exchanger unit (30), the plurality of flat tube portions (31) are in a state in which the respective axial directions are in the left-right direction and the flat portions of the respective side surfaces face each other. Is arranged. In addition, the plurality of flat tube portions (31) are arranged side by side at regular intervals and their axial directions are substantially parallel to each other. Each flat tube portion (31) has one end (the left end in FIG. 7) inserted into the windward header collecting tube (40).
 図9に示すように、各扁平管部(31)には、複数の流体通路(175)が形成されている。各流体通路(175)は、扁平管部(31)の軸方向に延びる通路であって、扁平管部(31)の幅方向に一列に並んでいる。各流体通路(175)は、扁平管部(31)の端面に開口している。風上熱交換器ユニット(30)へ供給された冷媒は、扁平管部(31)の流体通路(175)を流れる間に空気と熱交換する。 As shown in FIG. 9, a plurality of fluid passages (175) are formed in each flat tube portion (31). Each fluid passage (175) is a passage extending in the axial direction of the flat tube portion (31), and is arranged in a line in the width direction of the flat tube portion (31). Each fluid passage (175) opens to the end face of the flat tube portion (31). The refrigerant supplied to the upwind heat exchanger unit (30) exchanges heat with air while flowing through the fluid passage (175) of the flat tube portion (31).
 図9に示すように、フィン(32)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(32)には、フィン(32)の前縁(即ち、風上側の縁部)からフィン(32)の幅方向に延びる細長い切り欠き部(186)が、多数形成されている。フィン(32)では、多数の切り欠き部(186)が、フィン(32)の長手方向(図の上下方向)に一定の間隔で形成されている。切り欠き部(186)の風下寄りの部分は、管挿入部(187)を構成している。扁平管部(31)は、フィン(32)の管挿入部(187)に挿入され、管挿入部(187)の周縁部とロウ付けによって接合される。また、フィン(32)には、伝熱を促進するためのルーバー(185)が形成されている。そして、複数のフィン(32)は、扁平管部(31)の軸方向に一定の間隔をおいて配列されている。 As shown in FIG. 9, the fin (32) is a vertically long plate-like fin formed by pressing a metal plate. The fin (32) is formed with a number of elongated notches (186) extending from the front edge of the fin (32) (that is, the windward edge) in the width direction of the fin (32). In the fin (32), a large number of notches (186) are formed at regular intervals in the longitudinal direction (vertical direction in the figure) of the fin (32). The portion closer to the lee of the notch (186) constitutes the tube insertion portion (187). The flat tube portion (31) is inserted into the tube insertion portion (187) of the fin (32) and joined to the peripheral portion of the tube insertion portion (187) by brazing. In addition, a louver (185) for promoting heat transfer is formed on the fin (32). The plurality of fins (32) are arranged at regular intervals in the axial direction of the flat tube portion (31).
 このように、上記フィン(32)は、一方の縁部に一定の間隔で形成された複数の切り欠き部(186)と、該切り欠き部(186)から他方の縁部に向かって形成され扁平管部(31)が挿入される管挿入部(187)とを有し、かつ、隣り合う切り欠き部(186)の間に上記扁平管部(31)から突出する突出部(188)を有している。そして、風上管列(50)の扁平管部(31)に装着された複数のフィン(32)により、風上管列(50)のフィン群(33)が構成されている(図11(A)参照)。 In this way, the fin (32) is formed with a plurality of notches (186) formed at one edge at regular intervals, and from the notches (186) toward the other edge. A tube insertion portion (187) into which the flat tube portion (31) is inserted, and a protruding portion (188) protruding from the flat tube portion (31) between the adjacent cutout portions (186). Have. And the fin group (33) of an upwind tube row (50) is comprised by the several fin (32) with which the flat tube part (31) of the upwind tube row (50) was mounted | worn (FIG. 11 ( A)).
 図5及び図7に示すように、風上熱交換器ユニット(30)は、上下に二つの熱交換領域(35,37)に区分されている。風上熱交換器ユニット(30)は、上側の熱交換領域が風上主熱交換領域(35)であり、下側の熱交換領域が風上補助熱交換領域(37)である。 As shown in FIGS. 5 and 7, the upwind heat exchanger unit (30) is divided into two heat exchange regions (35, 37) in the vertical direction. In the upwind heat exchanger unit (30), the upper heat exchange area is the upwind main heat exchange area (35), and the lower heat exchange area is the upwind auxiliary heat exchange area (37).
 風上熱交換器ユニット(30)に設けられた扁平管部(31)は、風上主熱交換領域(35)に位置するものが風上主列部(51)を構成し、風上補助熱交換領域(37)に位置するものが風上補助列部(54)を構成する。つまり、風上管列(50)を構成する扁平管部(31)は、その一部が風上補助列部(54)を構成し、残りが風上主列部(51)を構成する。詳しくは後述するが、風上補助列部(54)を構成する扁平管部(31)の本数は、風上主列部(51)を構成する扁平管部(31)の本数よりも少ない。 The flat tube part (31) provided in the windward heat exchanger unit (30) is located in the windward main heat exchange area (35) and constitutes the windward main row part (51). What is located in a heat exchange area | region (37) comprises an upwind auxiliary row | line | column part (54). That is, a part of the flat tube portion (31) constituting the windward tube row (50) constitutes the windward auxiliary row portion (54), and the rest constitutes the windward main row portion (51). As will be described in detail later, the number of flat tube portions (31) constituting the windward auxiliary row portion (54) is smaller than the number of flat tube portions (31) constituting the windward main row portion (51).
 風上主熱交換領域(35)は、上下に六つの風上主熱交換部(36a~36f)に区分されている。一方、風上補助熱交換領域(37)は、上下に三つの風上補助熱交換部(38a~38c)に区分されている。なお、ここに示した風上主熱交換部(36a~36f)及び風上補助熱交換部(38a~38c)の数は、単なる一例である。 The upwind main heat exchange area (35) is divided into six upwind main heat exchange sections (36a to 36f). On the other hand, the upwind auxiliary heat exchange region (37) is divided into three upwind auxiliary heat exchange sections (38a to 38c). Note that the numbers of the upwind main heat exchange units (36a to 36f) and the upwind auxiliary heat exchange units (38a to 38c) shown here are merely examples.
 風上主熱交換領域(35)には、下から上に向かって順に、第1風上主熱交換部(36a)と、第2風上主熱交換部(36b)と、第3風上主熱交換部(36c)と、第4風上主熱交換部(36d)と、第5風上主熱交換部(36e)と、第6風上主熱交換部(36f)とが形成されている。各風上主熱交換部(36a~36f)には、十二本の扁平管部(31)が設けられている。 In the upwind main heat exchange area (35), the first upwind main heat exchange section (36a), the second upwind main heat exchange section (36b), and the third upwind A main heat exchange section (36c), a fourth upwind main heat exchange section (36d), a fifth upwind main heat exchange section (36e), and a sixth upwind main heat exchange section (36f) are formed. ing. Each of the upwind main heat exchange sections (36a to 36f) is provided with twelve flat tube sections (31).
 第1風上主熱交換部(36a)に設けられた十二本の扁平管部(31)は、第1風上主列ブロック(52a)を構成する。第2風上主熱交換部(36b)に設けられた十二本の扁平管部(31)は、第2風上主列ブロック(52b)を構成する。第3風上主熱交換部(36c)に設けられた十二本の扁平管部(31)は、第3風上主列ブロック(52c)を構成する。第4風上主熱交換部(36d)に設けられた十二本の扁平管部(31)は、第4風上主列ブロック(52d)を構成する。第5風上主熱交換部(36e)に設けられた十二本の扁平管部(31)は、第5風上主列ブロック(52e)を構成する。第6風上主熱交換部(36f)に設けられた十二本の扁平管部(31)は、第6風上主列ブロック(52f)を構成する。なお、各風上主列ブロック(52a~52f)を構成する扁平管部(31)の本数は、互いに一致していなくてもよい。 The twelve flat tube portions (31) provided in the first upwind main heat exchange section (36a) constitute the first upwind main row block (52a). The twelve flat tube portions (31) provided in the second upwind main heat exchange section (36b) constitute the second upwind main row block (52b). The twelve flat tube portions (31) provided in the third upwind main heat exchange section (36c) constitute the third upwind main row block (52c). The twelve flat tube portions (31) provided in the fourth upwind main heat exchange section (36d) constitute the fourth upwind main row block (52d). The twelve flat tube portions (31) provided in the fifth upwind main heat exchange section (36e) constitute a fifth upwind main row block (52e). The twelve flat tube portions (31) provided in the sixth upwind main heat exchange section (36f) constitute a sixth upwind main row block (52f). Note that the number of the flat tube portions (31) constituting each of the upwind main row blocks (52a to 52f) does not have to coincide with each other.
 第1風上主列ブロック(52a)及び第2風上主列ブロック(52b)は、第1風上主列ブロック群(53a)を構成する。第3風上主列ブロック(52c)及び第4風上主列ブロック(52d)は、第2風上主列ブロック群(53b)を構成する。第5風上主列ブロック(52e)及び第6風上主列ブロック(52f)は、第3風上主列ブロック群(53c)を構成する。 The first upwind main row block (52a) and the second upwind main row block (52b) constitute a first upwind main row block group (53a). The third upwind main row block (52c) and the fourth upwind main row block (52d) constitute a second upwind main row block group (53b). The fifth upwind main row block (52e) and the sixth upwind main row block (52f) constitute a third upwind main row block group (53c).
 風上補助熱交換領域(37)には、下から上に向かって順に、第1風上補助熱交換部(38a)と、第2風上補助熱交換部(38b)と、第3風上補助熱交換部(38c)とが形成されている。各風上補助熱交換部(38a~38c)には、三本の扁平管部(31)が設けられている。 In the upwind auxiliary heat exchange region (37), the first upwind auxiliary heat exchange section (38a), the second upwind auxiliary heat exchange section (38b), and the third upwind An auxiliary heat exchange part (38c) is formed. Each of the upwind auxiliary heat exchange sections (38a to 38c) is provided with three flat tube sections (31).
 第1風上補助熱交換部(38a)に設けられた三本の扁平管部(31)は、第1風上補助列ブロック(55a)を構成する。第2風上補助熱交換部(38b)に設けられた三本の扁平管部(31)は、第2風上補助列ブロック(55b)を構成する。第3風上補助熱交換部(38c)に設けられた三本の扁平管部(31)は、第3風上補助列ブロック(55c)を構成する。なお、各風上補助列ブロック(55a~55c)を構成する扁平管部(31)の本数は、互いに一致していなくてもよい。 The three flat tube portions (31) provided in the first upwind auxiliary heat exchange section (38a) constitute the first upwind auxiliary row block (55a). The three flat tube portions (31) provided in the second upwind auxiliary heat exchange unit (38b) constitute a second upwind auxiliary row block (55b). The three flat tube portions (31) provided in the third upwind auxiliary heat exchange section (38c) constitute the third upwind auxiliary row block (55c). Note that the number of the flat tube portions (31) constituting each of the upwind auxiliary row blocks (55a to 55c) may not coincide with each other.
 図7に示すように、風上ヘッダ集合管(40)の内部空間は、仕切板(41)によって上下に仕切られている。風上ヘッダ集合管(40)は、仕切板(41)の上側の空間が上側空間(42)となり、仕切板(41)の下側の空間が下側空間(43)となっている。 As shown in FIG. 7, the internal space of the upwind header collecting pipe (40) is vertically divided by a partition plate (41). In the upwind header collecting pipe (40), the space above the partition plate (41) is the upper space (42), and the space below the partition plate (41) is the lower space (43).
 上側空間(42)は、風上主列部(51)を構成する全ての扁平管部(31)と連通する。風上ヘッダ集合管(40)のうち上側空間(42)を形成する部分には、ガス側接続管(102)が接続されている。このガス側接続管(102)には、冷媒回路(20)を構成する配管(18)が接続される。 The upper space (42) communicates with all the flat tube portions (31) constituting the upwind main row portion (51). A gas side connecting pipe (102) is connected to a part of the upwind header collecting pipe (40) forming the upper space (42). A pipe (18) constituting the refrigerant circuit (20) is connected to the gas side connection pipe (102).
 風上ヘッダ集合管(40)のうち下側空間(43)を形成する部分には、液側接続管(101)が接続される。この液側接続管(101)には、冷媒回路(20)を構成する配管(17)が接続される。詳しくは後述するが、風上ヘッダ集合管(40)のうち下側空間(43)を形成する部分は、冷媒を三つの風上補助熱交換部(38a~38c)へ分配するための分流器(150)を構成する。 The liquid side connection pipe (101) is connected to the part forming the lower space (43) in the upwind header collecting pipe (40). A pipe (17) constituting the refrigerant circuit (20) is connected to the liquid side connection pipe (101). As will be described in detail later, the portion forming the lower space (43) in the windward header collecting pipe (40) is a shunt for distributing the refrigerant to the three windward auxiliary heat exchange sections (38a to 38c). (150) is configured.
   〈風下熱交換器ユニットの構成〉
 詳しくは後述するが、風下熱交換器ユニット(60)は、図5,6に示すように上下に二つの熱交換領域(65,67)に区分されている。そして、風下熱交換器ユニット(60)は、上側の領域が風下主熱交換領域(65)となり、下側の領域が風下補助熱交換領域(67)となっている。
<Configuration of leeward heat exchanger unit>
As will be described in detail later, the leeward heat exchanger unit (60) is divided into two heat exchange regions (65, 67) vertically as shown in FIGS. In the leeward heat exchanger unit (60), the upper area is the leeward main heat exchange area (65), and the lower area is the leeward auxiliary heat exchange area (67).
 風下ヘッダ集合管(70)は、両端が閉塞された細長い円筒状に形成されている。図8において、風下ヘッダ集合管(70)は風下熱交換器ユニット(60)の左端に起立した状態で設置されている。つまり、風下ヘッダ集合管(70)は、軸方向が上下方向となる状態で設置されている。 The leeward header collecting pipe (70) is formed in an elongated cylindrical shape with both ends closed. In FIG. 8, the leeward header collecting pipe (70) is installed upright at the left end of the leeward heat exchanger unit (60). That is, the leeward header collecting pipe (70) is installed in a state where the axial direction is the vertical direction.
 図9に示すように、扁平管部(61)は、風上熱交換器ユニット(30)の扁平管部(31)と同一形状の伝熱管である。風下熱交換器ユニット(60)へ供給された冷媒は、扁平管部(61)の流体通路(175)を流れる間に空気と熱交換する。 As shown in FIG. 9, the flat tube portion (61) is a heat transfer tube having the same shape as the flat tube portion (31) of the upwind heat exchanger unit (30). The refrigerant supplied to the leeward heat exchanger unit (60) exchanges heat with air while flowing through the fluid passage (175) of the flat tube portion (61).
 図8に示すように、風下熱交換器ユニット(60)において、複数の扁平管部(61)は、風上熱交換器ユニット(30)の扁平管部(31)と同様に配列されている。上下に配列された各扁平管部(61)は、その一端(図8の左側端)が風下ヘッダ集合管(70)に挿入されている。風下管列(90)を構成する扁平管部(61)の本数は、当然ながら、風上管列(50)を構成する扁平管部(31)の本数と等しい。 As shown in FIG. 8, in the leeward heat exchanger unit (60), the plurality of flat tube portions (61) are arranged in the same manner as the flat tube portion (31) of the windward heat exchanger unit (30). . One end (the left end in FIG. 8) of each of the flat tube portions (61) arranged vertically is inserted into the leeward header collecting tube (70). Of course, the number of flat tube portions (61) constituting the leeward tube row (90) is equal to the number of flat tube portions (31) constituting the leeward tube row (50).
 図9に示すように、フィン(62)は、金属板をプレス加工することによって形成された縦長の板状フィンである。このフィン(62)の形状は、風上熱交換器ユニット(30)のフィン(32)と同じである。つまり、フィン(62)には切り欠き部(186)が形成され、切り欠き部(186)の一部である管挿入部(187)に扁平管部(61)が接合される。また、フィン(62)には、伝熱を促進するためのルーバー(185)が形成されている。そして、複数のフィン(62)は、扁平管部(61)の軸方向に一定の間隔をおいて配列されている。 As shown in FIG. 9, the fin (62) is a vertically long plate-like fin formed by pressing a metal plate. The shape of the fin (62) is the same as the fin (32) of the upwind heat exchanger unit (30). That is, the notch part (186) is formed in the fin (62), and the flat tube part (61) is joined to the tube insertion part (187) which is a part of the notch part (186). Further, a louver (185) for promoting heat transfer is formed on the fin (62). The plurality of fins (62) are arranged at regular intervals in the axial direction of the flat tube portion (61).
 このように、上記フィン(62)は、一方の縁部に一定の間隔で形成された複数の切り欠き部(186)と、該切り欠き部(186)から他方の縁部に向かって形成され扁平管部(61)が挿入される管挿入部(187)とを有し、かつ、隣り合う切り欠き部(186)の間に上記扁平管部(61)から突出する突出部(188)を有している。そして、風下管列(90)の扁平管部(61)に装着された複数のフィン(62)により、風下管列(90)のフィン群(63)が構成されている(図11(A)参照)。 In this way, the fin (62) is formed with a plurality of notches (186) formed at one edge at regular intervals and from the notches (186) toward the other edge. And a tube insertion portion (187) into which the flat tube portion (61) is inserted, and a protruding portion (188) protruding from the flat tube portion (61) between the adjacent cutout portions (186). Have. The fin group (63) of the leeward tube row (90) is configured by the plurality of fins (62) attached to the flat tube portion (61) of the leeward tube row (90) (FIG. 11A). reference).
 図5及び図8に示すように、風下熱交換器ユニット(60)は、上下に二つの熱交換領域(65,67)に区分されている。風下熱交換器ユニット(60)は、上側の熱交換領域が風下主熱交換領域(65)であり、下側の熱交換領域が風下補助熱交換領域(67)である。 As shown in FIGS. 5 and 8, the leeward heat exchanger unit (60) is vertically divided into two heat exchange regions (65, 67). In the leeward heat exchanger unit (60), the upper heat exchange area is the leeward main heat exchange area (65), and the lower heat exchange area is the leeward auxiliary heat exchange area (67).
 風下熱交換器ユニット(60)に設けられた扁平管部(61)は、風下主熱交換領域(65)に位置するものが風下主列部(91)を構成し、風下補助熱交換領域(67)に位置するものが風下補助列部(94)を構成する。つまり、風下管列(90)を構成する扁平管部(61)は、その一部が風下補助列部(94)を構成し、残りが風下主列部(91)を構成する。詳しくは後述するが、風下補助列部(94)を構成する扁平管部(61)の本数は、風下主列部(91)を構成する扁平管部(61)の本数よりも少ない。また、風下主列部(91)を構成する扁平管部(61)の本数は、風上主列部(51)を構成する扁平管部(31)の本数と等しく、風下補助列部(94)を構成する扁平管部(61)の本数は、風上補助列部(54)を構成する扁平管部(31)の本数と等しい。 In the flat tube part (61) provided in the leeward heat exchanger unit (60), the one located in the leeward main heat exchange area (65) constitutes the leeward main row part (91), and the leeward auxiliary heat exchange area ( The one located at 67) constitutes the leeward auxiliary row (94). That is, part of the flat tube portion (61) constituting the leeward tube row (90) constitutes the leeward auxiliary row portion (94), and the rest constitutes the leeward main row portion (91). As will be described in detail later, the number of flat tube portions (61) constituting the leeward auxiliary row portion (94) is smaller than the number of flat tube portions (61) constituting the leeward main row portion (91). Further, the number of flat tube portions (61) constituting the leeward main row portion (91) is equal to the number of flat tube portions (31) constituting the leeward main row portion (51), and the leeward auxiliary row portion (94 The number of flat tube portions (61) that constitutes a) is equal to the number of flat tube portions (31) that constitute the windward auxiliary row portion (54).
 風下主熱交換領域(65)は、上下に六つの風下主熱交換部(66a~66f)に区分されている。一方、風下補助熱交換領域(67)は、上下に三つの風下補助熱交換部(68a~68c)に区分されている。なお、ここに示した風下主熱交換部(66a~66f)及び風下補助熱交換部(68a~68c)の数は、単なる一例である。ただし、風下主熱交換部(66a~66f)は風上主熱交換部(36a~36f)と同数であり、風下補助熱交換部(68a~68c)は風上補助熱交換部(38a~38c)と同数であるのが望ましい。 The leeward main heat exchange area (65) is divided into six leeward main heat exchange sections (66a to 66f). On the other hand, the leeward auxiliary heat exchange region (67) is divided into three leeward auxiliary heat exchange sections (68a to 68c) in the vertical direction. The numbers of the leeward main heat exchange units (66a to 66f) and the leeward auxiliary heat exchange units (68a to 68c) shown here are merely examples. However, the number of leeward main heat exchangers (66a to 66f) is the same as the number of leeward main heat exchangers (36a to 36f), and the leeward auxiliary heat exchanger (68a to 68c) is the same as the windward auxiliary heat exchanger (38a to 38c). ).
 風下主熱交換領域(65)には、下から上に向かって順に、第1風下主熱交換部(66a)と、第2風下主熱交換部(66b)と、第3風下主熱交換部(66c)と、第4風下主熱交換部(66d)と、第5風下主熱交換部(66e)と、第6風下主熱交換部(66f)とが形成されている。各風下主熱交換部(66a~66f)には、十二本の扁平管部(61)が設けられている。 In the leeward main heat exchange region (65), the first leeward main heat exchange part (66a), the second leeward main heat exchange part (66b), and the third leeward main heat exchange part in order from bottom to top. (66c), a fourth leeward main heat exchange part (66d), a fifth leeward main heat exchange part (66e), and a sixth leeward main heat exchange part (66f) are formed. Each of the leeward main heat exchange sections (66a to 66f) is provided with twelve flat tube sections (61).
 第1風下主熱交換部(66a)に設けられた十二本の扁平管部(61)は、第1風下主列ブロック(92a)を構成する。第2風下主熱交換部(66b)に設けられた十二本の扁平管部(61)は、第2風下主列ブロック(92b)を構成する。第3風下主熱交換部(66c)に設けられた十二本の扁平管部(61)は、第3風下主列ブロック(92c)を構成する。第4風下主熱交換部(66d)に設けられた十二本の扁平管部(61)は、第4風下主列ブロック(92d)を構成する。第5風下主熱交換部(66e)に設けられた十二本の扁平管部(61)は、第5風下主列ブロック(92e)を構成する。第6風下主熱交換部(66f)に設けられた十二本の扁平管部(61)は、第6風下主列ブロック(92f)を構成する。 The twelve flat tube portions (61) provided in the first leeward main heat exchange portion (66a) constitute the first leeward main row block (92a). The twelve flat tube portions (61) provided in the second leeward main heat exchange portion (66b) constitute the second leeward main row block (92b). The twelve flat tube portions (61) provided in the third leeward main heat exchange portion (66c) constitute the third leeward main row block (92c). The twelve flat tube portions (61) provided in the fourth leeward main heat exchange portion (66d) constitute a fourth leeward main row block (92d). The twelve flat tube portions (61) provided in the fifth leeward main heat exchange portion (66e) constitute a fifth leeward main row block (92e). The twelve flat tube portions (61) provided in the sixth leeward main heat exchange portion (66f) constitute a sixth leeward main row block (92f).
 なお、各風下主列ブロック(92a~92f)を構成する扁平管部(61)の本数は、互いに一致していなくてもよい。ただし、各風下主列ブロック(92a~92f)を構成する扁平管部(61)の本数が互いに一致しない場合であっても、第1風下主列ブロック(92a)を構成する扁平管部(61)は第1風上主列ブロック(52a)を構成する扁平管部(31)と同数であり、第2風下主列ブロック(92b)を構成する扁平管部(61)は第2風上主列ブロック(52b)を構成する扁平管部(31)と同数であり、第3風下主列ブロック(92c)を構成する扁平管部(61)は第3風上主列ブロック(52c)を構成する扁平管部(31)と同数であり、第4風下主列ブロック(92d)を構成する扁平管部(61)は第4風上主列ブロック(52d)を構成する扁平管部(31)と同数であり、第5風下主列ブロック(92e)を構成する扁平管部(61)は第5風上主列ブロック(52e)を構成する扁平管部(31)と同数であり、第6風下主列ブロック(92f)を構成する扁平管部(61)は第6風上主列ブロック(52f)を構成する扁平管部(31)と同数であるのが望ましい。 It should be noted that the number of flat tube portions (61) constituting each leeward main row block (92a to 92f) does not have to coincide with each other. However, even if the number of the flat tube portions (61) constituting each leeward main row block (92a to 92f) does not match each other, the flat tube portions (61 that constitute the first leeward main row block (92a) ) Is the same number as the flat tube portion (31) constituting the first upwind main row block (52a), and the flat tube portion (61) constituting the second leeward main row block (92b) is the second upwind main row block (52a). The number of flat tube portions (31) constituting the row block (52b) is the same, and the flat tube portion (61) constituting the third leeward main row block (92c) constitutes the third upwind main row block (52c). The flat tube portion (31) is the same number as the flat tube portion (31) to be configured, and the flat tube portion (61) constituting the fourth leeward main row block (92d) is the flat tube portion (31) constituting the fourth upwind main row block (52d) The number of flat tube portions (61) constituting the fifth leeward main row block (92e) is the same as the number of flat tube portions (31) constituting the fifth leeward main row block (52e). It is desirable that the number of flat tube portions (61) constituting the sixth leeward main row block (92f) is the same as the number of flat tube portions (31) constituting the sixth leeward main row block (52f).
 第1風下主列ブロック(92a)及び第2風下主列ブロック(92b)は、第1風下主列ブロック群(93a)を構成する。第3風下主列ブロック(92c)及び第4風下主列ブロック(92d)は、第2風下主列ブロック群(93b)を構成する。第5風下主列ブロック(92e)及び第6風下主列ブロック(92f)は、第3風下主列ブロック群(93c)を構成する。 The first leeward main row block (92a) and the second leeward main row block (92b) constitute a first leeward main row block group (93a). The third leeward main row block (92c) and the fourth leeward main row block (92d) constitute a second leeward main row block group (93b). The fifth leeward main row block (92e) and the sixth leeward main row block (92f) constitute a third leeward main row block group (93c).
 風下補助熱交換領域(67)には、下から上に向かって順に、第1風下補助熱交換部(68a)と、第2風下補助熱交換部(68b)と、第3風下補助熱交換部(68c)とが形成されている。各風下補助熱交換部(68a~68c)には、三本の扁平管部(61)が設けられている。 In the leeward auxiliary heat exchange region (67), in order from bottom to top, the first leeward auxiliary heat exchange unit (68a), the second leeward auxiliary heat exchange unit (68b), and the third leeward auxiliary heat exchange unit (68c) is formed. Each of the lee auxiliary heat exchangers (68a to 68c) is provided with three flat tube portions (61).
 第1風下補助熱交換部(68a)に設けられた三本の扁平管部(61)は、第1風下補助列ブロック(95a)を構成する。第2風下補助熱交換部(68b)に設けられた三本の扁平管部(61)は、第2風下補助列ブロック(95b)を構成する。第3風下補助熱交換部(68c)に設けられた三本の扁平管部(61)は、第3風下補助列ブロック(95c)を構成する。 The three flat tubes (61) provided in the first lee auxiliary heat exchanger (68a) constitute a first lee auxiliary column block (95a). The three flat tube portions (61) provided in the second leeward auxiliary heat exchange portion (68b) constitute a second leeward auxiliary row block (95b). The three flat tube portions (61) provided in the third leeward auxiliary heat exchange portion (68c) constitute a third leeward auxiliary row block (95c).
 なお、各風下補助列ブロック(95a~95c)を構成する扁平管部(61)の本数は、互いに一致していなくてもよい。ただし、各風下補助列ブロック(95a~95c)を構成する扁平管部(61)の本数が互いに一致しない場合であっても、第1風下補助列ブロック(95a)を構成する扁平管部(61)は第1風上補助列ブロック(55a)を構成する扁平管部(31)と同数であり、第2風下補助列ブロック(95b)を構成する扁平管部(61)は第2風上補助列ブロック(55b)を構成する扁平管部(31)と同数であり、第3風下補助列ブロック(95c)を構成する扁平管部(61)は第3風上補助列ブロック(55c)を構成する扁平管部(31)と同数であるのが望ましい。 It should be noted that the number of the flat tube portions (61) constituting each of the leeward auxiliary row blocks (95a to 95c) does not have to coincide with each other. However, even if the number of the flat tube portions (61) constituting each leeward auxiliary row block (95a to 95c) does not match each other, the flat tube portions (61) constituting the first leeward auxiliary row block (95a) ) Is the same number as the flat tube portion (31) constituting the first upwind auxiliary row block (55a), and the flat tube portion (61) constituting the second upwind auxiliary row block (95b) is the second upwind auxiliary row block (55a). The number of flat tube portions (31) constituting the row block (55b) is the same, and the flat tube portion (61) constituting the third leeward auxiliary row block (95c) constitutes the third upwind auxiliary row block (55c). It is desirable that the number is equal to the number of flat tube portions (31).
 図8に示すように、風下ヘッダ集合管(70)の内部空間は、仕切板(71)によって上下に仕切られている。風下ヘッダ集合管(70)は、仕切板(71)の上側の空間が上側空間(72)となり、仕切板(71)の下側の空間が下側空間(73)となっている。 As shown in FIG. 8, the internal space of the leeward header collecting pipe (70) is divided into upper and lower parts by a partition plate (71). In the lee header collecting pipe (70), the space above the partition plate (71) is an upper space (72), and the space below the partition plate (71) is a lower space (73).
 上側空間(72)は、五枚の仕切板(74)によって、六つの主連通空間(75a~75f)に仕切られている。つまり、風下ヘッダ集合管(70)における仕切板(71)の上側には、下から上へ向かって順に、第1主連通空間(75a)と、第2主連通空間(75b)と、第3主連通空間(75c)と、第4主連通空間(75d)と、第5主連通空間(75e)と、第6主連通空間(75f)とが形成されている。 The upper space (72) is divided into six main communication spaces (75a to 75f) by five partition plates (74). That is, on the upper side of the partition plate (71) in the lee header collecting pipe (70), the first main communication space (75a), the second main communication space (75b), and the third A main communication space (75c), a fourth main communication space (75d), a fifth main communication space (75e), and a sixth main communication space (75f) are formed.
 第1主連通空間(75a)には、第1風下主列ブロック(92a)を構成する十二本の扁平管部(61)が連通する。第2主連通空間(75b)には、第2風下主列ブロック(92b)を構成する十二本の扁平管部(61)が連通する。第3主連通空間(75c)には、第3風下主列ブロック(92c)を構成する十二本の扁平管部(61)が連通する。第4主連通空間(75d)には、第4風下主列ブロック(92d)を構成する十二本の扁平管部(61)が連通する。第5主連通空間(75e)には、第5風下主列ブロック(92e)を構成する十二本の扁平管部(61)が連通する。第6主連通空間(75f)には、第6風下主列ブロック(92f)を構成する十二本の扁平管部(61)が連通する。 The twelve flat tube portions (61) constituting the first leeward main row block (92a) communicate with the first main communication space (75a). Twelve flat tube portions (61) constituting the second leeward main row block (92b) communicate with the second main communication space (75b). Twelve flat tube portions (61) constituting the third leeward main row block (92c) communicate with the third main communication space (75c). Twelve flat tube portions (61) constituting the fourth leeward main row block (92d) communicate with the fourth main communication space (75d). Twelve flat tube portions (61) constituting the fifth leeward main row block (92e) communicate with the fifth main communication space (75e). Twelve flat tube portions (61) constituting the sixth leeward main row block (92f) communicate with the sixth main communication space (75f).
 下側空間(73)は、二枚の仕切板(76)によって、三つの補助連通空間(77a~77c)に仕切られている。つまり、風下ヘッダ集合管(70)における仕切板(71)の下側には、下から上へ向かって順に、第1補助連通空間(77a)と、第2補助連通空間(77b)と、第3補助主連通空間(77c)とが形成されている。 The lower space (73) is divided into three auxiliary communication spaces (77a to 77c) by two partition plates (76). That is, on the lower side of the partition plate (71) in the leeward header collecting pipe (70), the first auxiliary communication space (77a), the second auxiliary communication space (77b), and the first 3 auxiliary main communication spaces (77c) are formed.
 第1補助連通空間(77a)には、第1風下補助列ブロック(95a)を構成する三本の扁平管部(61)が連通する。第2補助連通空間(77b)には、第2風下補助列ブロック(95b)を構成する三本の扁平管部(61)が連通する。第3補助連通空間(77c)には、第3風下補助列ブロック(95c)を構成する三本の扁平管部(61)が連通する。 The three flat tube portions (61) constituting the first leeward auxiliary row block (95a) communicate with the first auxiliary communication space (77a). Three flat tube portions (61) constituting the second leeward auxiliary row block (95b) communicate with the second auxiliary communication space (77b). Three flat pipe portions (61) constituting the third leeward auxiliary row block (95c) communicate with the third auxiliary communication space (77c).
 風下ヘッダ集合管(70)には、三本の接続用配管(110,120,130)が取り付けられている。各接続用配管(110,120,130)は、一つの主管部(111,121,131)と、主管部(111,121,131)の端部に接続する二つの分岐管部(112a,112b,122a,122b,132a,132b)とを備えている。 Three connecting pipes (110, 120, 130) are attached to the leeward header collecting pipe (70). Each of the connection pipes (110, 120, 130) includes one main pipe part (111, 121, 131) and two branch pipe parts (112a, 112b, 122a, 122b, 132a, 132b) connected to the ends of the main pipe parts (111, 121, 131). ing.
 第1接続用配管(110)は、第1風下補助列ブロック(95a)と第1風下主列ブロック群(93a)とを接続する。具体的に、第1接続用配管(110)は、主管部(111)の開口端が第1補助連通空間(77a)と連通し、一方の分岐管部(112a)の開口端が第1主連通空間(75a)と連通し、他方の分岐管部(112b)の開口端が第2主連通空間(75b)と連通する。従って、第1補助連通空間(77a)は、第1風下主列ブロック(92a)に対応する第1主連通空間(75a)と、第2風下主列ブロック(92b)に対応する第2主連通空間(75b)の両方に接続される。 The first connection pipe (110) connects the first leeward auxiliary row block (95a) and the first leeward main row block group (93a). Specifically, in the first connecting pipe (110), the open end of the main pipe portion (111) communicates with the first auxiliary communication space (77a), and the open end of one branch pipe portion (112a) is the first main pipe. The communicating space (75a) communicates, and the open end of the other branch pipe (112b) communicates with the second main communicating space (75b). Accordingly, the first auxiliary communication space (77a) includes the first main communication space (75a) corresponding to the first leeward main row block (92a) and the second main communication space corresponding to the second leeward main row block (92b). Connected to both spaces (75b).
 第2接続用配管(120)は、第2風下補助列ブロック(95b)と第2風下主列ブロック群(93b)とを接続する。具体的に、第2接続用配管(120)は、主管部(121)の開口端が第2補助連通空間(77b)と連通し、一方の分岐管部(122a)の開口端が第3主連通空間(75c)と連通し、他方の分岐管部(122b)の開口端が第4主連通空間(75d)と連通する。従って、第2補助連通空間(77b)は、第3風下主列ブロック(92c)に対応する第3主連通空間(75c)と、第4風下主列ブロック(92d)に対応する第4主連通空間(75d)の両方に接続される。 The second connection pipe (120) connects the second leeward auxiliary row block (95b) and the second leeward main row block group (93b). Specifically, in the second connection pipe (120), the open end of the main pipe portion (121) communicates with the second auxiliary communication space (77b), and the open end of one branch pipe portion (122a) is the third main pipe. The communication space (75c) communicates, and the open end of the other branch pipe portion (122b) communicates with the fourth main communication space (75d). Accordingly, the second auxiliary communication space (77b) includes the third main communication space (75c) corresponding to the third leeward main row block (92c) and the fourth main communication space corresponding to the fourth leeward main row block (92d). Connected to both of the spaces (75d).
 第3接続用配管(130)は、第3風下補助列ブロック(95c)と第3風下主列ブロック群(93c)とを接続する。具体的に、第3接続用配管(130)は、主管部(131)の開口端が第3補助連通空間(77c)と連通し、一方の分岐管部(132a)の開口端が第5主連通空間(75e)と連通し、他方の分岐管部(132b)の開口端が第6主連通空間(75f)と連通する。従って、第3補助連通空間(77c)は、第5風下主列ブロック(92e)に対応する第5主連通空間(75e)と、第6風下主列ブロック(92f)に対応する第6主連通空間(75f)の両方に接続される。 The third connection pipe (130) connects the third leeward auxiliary row block (95c) and the third leeward main row block group (93c). Specifically, in the third connection pipe (130), the open end of the main pipe part (131) communicates with the third auxiliary communication space (77c), and the open end of one branch pipe part (132a) is the fifth main pipe. The communication space (75e) communicates, and the open end of the other branch pipe portion (132b) communicates with the sixth main communication space (75f). Accordingly, the third auxiliary communication space (77c) includes the fifth main communication space (75e) corresponding to the fifth leeward main row block (92e) and the sixth main communication space corresponding to the sixth leeward main row block (92f). Connected to both space (75f).
   〈分流器の構成〉
 上述したように、風上ヘッダ集合管(40)のうち下側空間(43)を形成する部分は、分流器(150)を構成する。この分流器(150)は、室外熱交換器(23)が蒸発器として機能する場合に、室外熱交換器(23)へ供給された気液二相状態の冷媒を三つの風上補助熱交換部(38a~38c)へ分配する。ここでは、分流器(150)について、図10を参照しながら説明する。
<Configuration of shunt>
As described above, the portion forming the lower space (43) in the upwind header collecting pipe (40) constitutes the flow divider (150). When the outdoor heat exchanger (23) functions as an evaporator, the shunt (150) is configured to provide three upwind auxiliary heat exchanges of the gas-liquid two-phase refrigerant supplied to the outdoor heat exchanger (23). Distribute to the parts (38a-38c). Here, the flow divider (150) will be described with reference to FIG.
 下側空間(43)には、二枚の横仕切板(160,162)と、一枚の縦仕切板(164)とが設けられている。下側空間(43)は、二枚の横仕切板(160,162)と一枚の縦仕切板(164)とによって、三つの連通室(151~153)と一つの混合室(154)と二つの中間室(155,156,)に仕切られる。 In the lower space (43), two horizontal partition plates (160, 162) and one vertical partition plate (164) are provided. The lower space (43) is divided into three communication chambers (151 to 153), one mixing chamber (154), two chambers by two horizontal partition plates (160, 162) and one vertical partition plate (164). Partitioned into an intermediate chamber (155,156,).
 具体的に、各横仕切板(160,162)は、下側空間(43)を横断するように配置され、下側空間(43)を上下に仕切る。下側横仕切板(160)は、第1風上補助列ブロック(55a)と第2風上補助列ブロック(55b)の間に配置され、上側横仕切板(162)は、第2風上補助列ブロック(55b)と第3風上補助列ブロック(55c)の間に配置される。縦仕切板(164)は、細長い長方形板状の部材である。縦仕切板(164)は、風上ヘッダ集合管(40)の軸方向に沿って配置され、下側空間(43)を扁平管部(31)側と液側接続管(101)側に仕切る。 Specifically, each horizontal partition plate (160, 162) is arranged so as to cross the lower space (43), and partitions the lower space (43) up and down. The lower lateral partition plate (160) is disposed between the first upwind auxiliary row block (55a) and the second upwind auxiliary row block (55b), and the upper lateral partition plate (162) Arranged between the auxiliary row block (55b) and the third upwind auxiliary row block (55c). The vertical partition plate (164) is an elongated rectangular plate-shaped member. The vertical partition plate (164) is disposed along the axial direction of the upwind header collecting pipe (40), and partitions the lower space (43) into the flat tube portion (31) side and the liquid side connection pipe (101) side. .
 下側空間(43)のうち下側横仕切板(160)の下側の部分は、縦仕切板(164)によって、扁平管(31)側の第1連通室(151)と液側接続管(101)側の下側中間室(155)に仕切られる。第1連通室(151)は、第1風上補助列ブロック(55a)を構成する三本の扁平管(31)と連通する。 Of the lower space (43), the lower portion of the lower horizontal partition plate (160) is separated by the vertical partition plate (164) into the first communication chamber (151) on the flat tube (31) side and the liquid side connection tube. It is partitioned into a lower intermediate chamber (155) on the (101) side. The first communication chamber (151) communicates with the three flat tubes (31) constituting the first upwind auxiliary row block (55a).
 下側空間(43)のうち下側横仕切板(160)と上側横仕切板(162)の間の部分は、縦仕切板(164)によって、扁平管(31)側の第2連通室(152)と液側接続管(101)側の混合室(154)に仕切られる。第2連通室(152)は、第2風上補助列ブロック(55b)を構成する三本の扁平管(61)と連通する。混合室(154)は、液側接続管(101)と連通する。 In the lower space (43), a portion between the lower horizontal partition plate (160) and the upper horizontal partition plate (162) is separated by a vertical partition plate (164) into the second communication chamber on the flat tube (31) side ( 152) and the mixing chamber (154) on the liquid side connecting pipe (101) side. The second communication chamber (152) communicates with the three flat tubes (61) constituting the second upwind auxiliary row block (55b). The mixing chamber (154) communicates with the liquid side connecting pipe (101).
 下側空間(43)のうち上側横仕切板(162)よりも上側の部分は、縦仕切板(164)によって、扁平管(31)側の第3連通室(153)と液側接続管(101)側の上側中間室(156)に仕切られる。第3連通室(153)は、第3風上補助列ブロック(55c)を構成する三本の扁平管(31)と連通する。 A portion of the lower space (43) above the upper horizontal partition plate (162) is separated by a vertical partition plate (164) from the third communication chamber (153) on the flat tube (31) side and the liquid side connection tube ( 101) partitioned into an upper intermediate chamber (156) on the side. The third communication chamber (153) communicates with the three flat tubes (31) constituting the third upwind auxiliary row block (55c).
 縦仕切板(164)の上部と下部には、連通孔(165a,165b)が一つずつ形成されている。各連通孔(165a,165b)は、横長の長方形状の貫通孔である。縦仕切板(164)の下部の連通孔(165b)は、縦仕切板(164)のうち下側横仕切板(160)よりも下側の部分の下端付近に形成され、第1連通室(151)を下側中間室(155)と連通させる。縦仕切板(164)の上部の連通孔(165a)は、縦仕切板(164)のうち上側横仕切板(162)よりも上側の部分の下端付近に形成され、第3連通室(153)を上側中間室(156)と連通させる。 One communicating hole (165a, 165b) is formed in the upper part and the lower part of the vertical partition plate (164). Each communication hole (165a, 165b) is a horizontally long rectangular through hole. The communication hole (165b) at the lower part of the vertical partition plate (164) is formed near the lower end of the lower part of the vertical partition plate (164) than the lower horizontal partition plate (160), and the first communication chamber ( 151) is in communication with the lower intermediate chamber (155). The upper communicating hole (165a) of the vertical partition plate (164) is formed near the lower end of the upper part of the vertical partition plate (164) above the upper horizontal partition plate (162), and the third communication chamber (153) Is in communication with the upper intermediate chamber (156).
 下側横仕切板(160)は、混合室(154)に面する部分に流量調節孔(161)が形成されている。第1連通室(151)は、この流量調節孔(161)を介して混合室(154)と連通する。上側横仕切板(162)は、混合室(154)に面する部分に流量調節孔(163)が形成されている。第3連通室(153)は、この流量調節孔(163)を介して混合室(154)と連通する。縦仕切板(164)は、混合室(154)に面する部分の下端付近に流量調節孔(166)が形成されている。第2連通室(152)は、この流量調節孔(166)を介して混合室(154)と連通する。 The lower horizontal partition plate (160) has a flow rate adjusting hole (161) formed in a portion facing the mixing chamber (154). The first communication chamber (151) communicates with the mixing chamber (154) through the flow rate adjusting hole (161). The upper horizontal partition plate (162) has a flow rate adjusting hole (163) formed in a portion facing the mixing chamber (154). The third communication chamber (153) communicates with the mixing chamber (154) through the flow rate adjusting hole (163). The vertical partition plate (164) has a flow rate adjusting hole (166) formed in the vicinity of the lower end of the portion facing the mixing chamber (154). The second communication chamber (152) communicates with the mixing chamber (154) through the flow rate adjusting hole (166).
 分流器(150)において、下側横仕切板(160)の流量調節孔(161)と、上側横仕切板(162)の流量調節孔(163)と、縦仕切板(164)の流量調節孔(166)とは、比較的小径の円形の貫通孔である。分流器(150)は、各風上補助列ブロック(55a~55c)へ冷媒が所定の割合で分配されるように、これら流量調節孔(161,163,166)の開口面積(具体的には、直径)が設定されている。 In the flow divider (150), the flow rate adjustment hole (161) of the lower horizontal partition plate (160), the flow rate adjustment hole (163) of the upper horizontal partition plate (162), and the flow rate adjustment hole of the vertical partition plate (164) (166) is a circular through-hole having a relatively small diameter. The flow divider (150) has an opening area (specifically, a diameter) of the flow rate adjusting holes (161, 163, 166) so that the refrigerant is distributed to each upwind auxiliary row block (55a to 55c) at a predetermined ratio. Is set.
   〈2列構造の室外熱交換器の製造〉
 本実施形態の2列構造の室外熱交換器(23)は、以下のようにして製造することができる。
<Manufacture of two-row outdoor heat exchanger>
The two-row outdoor heat exchanger (23) of the present embodiment can be manufactured as follows.
 まず、図11(A)に示すように、風上管列(50)を構成する扁平管(170)の一端部(扁平管部(31))に多数のフィン(32)を互いに平行になるように装着する。また、風下管列(90)を構成する扁平管(170)の他端部(扁平管部(61))に多数のフィン(62)を互いに平行になるように装着する。このとき、風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)は、図11(A)のXIB-XIB線断面図及びXIC-XIC線断面図である図11(B)及び図11(C)に示すように、突出部(188)が逆向き(図11(B)においては下向き、図11(C)においては上向き)になるように扁平管(170)に装着する(フィン装着工程)。 First, as shown in FIG. 11 (A), a large number of fins (32) are parallel to each other at one end portion (flat tube portion (31)) of the flat tube (170) constituting the upwind tube row (50). Wear as follows. In addition, a large number of fins (62) are attached to the other end portion (flat tube portion (61)) of the flat tube (170) constituting the leeward tube row (90) so as to be parallel to each other. At this time, the fin (32) on the leeward tube row (50) side and the fin (62) on the leeward tube row (90) side are a cross-sectional view taken along line XIB-XIB and a cross-sectional view taken along line XIC-XIC in FIG. 11 (B) and 11 (C), the protrusions (188) are flat so as to be in the opposite direction (downward in FIG. 11 (B) and upward in FIG. 11 (C)). Attaching to the pipe (170) (fin attachment process).
 また、図11(A)に示している風上管列(50)のフィン群(33)と風下管列(90)のフィン群(33)との間の部分は、曲管部(173)になる部分であり、この部分にはフィン(32,62)は装着されていない(ギャップ部(140))。 Further, a portion between the fin group (33) of the windward tube row (50) and the fin group (33) of the leeward tube row (90) shown in FIG. The fin (32, 62) is not attached to this part (gap part (140)).
 そして、上記扁平管(170)を、曲げ型(201)を用いて上記一端部と他端部の間で折り曲げることにより、図2~図4に示すように風上管列(50)と風下管列(90)が平行になるように室外熱交換器(23)を形成する。扁平管(170)を折り曲げる際は、図11(A)の折り曲げ前の状態で、曲げ型(201)をギャップ部(140)に対して、風上管列(50)側のフィン(32)の突出部(188)が形成されていない側(風下管列(90)側のフィン(62)の突出部(188)が形成されている側)に配置して行う。 Then, the flat tube (170) is bent between the one end and the other end using a bending die (201), so that the upwind tube row (50) and the leeward wind are connected as shown in FIGS. The outdoor heat exchanger (23) is formed so that the tube rows (90) are parallel. When the flat tube (170) is bent, the fin (32) on the upwind tube row (50) side of the bending die (201) with respect to the gap portion (140) in the state before the bending shown in FIG. Is arranged on the side where the projecting portion (188) is not formed (the side where the projecting portion (188) of the fin (62) on the leeward tube row (90) side is formed).
 扁平管(170)を折り曲げた状態において、風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)は、図4(B)に示すように突出部(188)同士が同じ方向を向く(管列形成工程)。以上のように、扁平管(170)を風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)の間の、扁平管(170)にフィン(32,62)が装着されていない部分で折り曲げることにより、風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)の間にギャップ部(140)を構成するU字状の曲管部(折り曲げ部)(173)が形成され、2列構造の室外熱交換器(23)を製造することができる。 In the state where the flat tube (170) is bent, the fin (32) on the windward tube row (50) side and the fin (62) on the leeward tube row (90) side are protruding portions as shown in FIG. (188) They face each other in the same direction (tube row forming step). As described above, the flat tube (170) is connected to the flat tube (170) between the fin (32) on the upwind tube row (50) side and the fin (62) on the leeward tube row (90) side. , 62) is bent at the part where it is not attached, so that a gap (140) is formed between the flat tube portion (31) of the windward tube row (50) and the flat tube portion (61) of the leeward tube row (90). A U-shaped bent pipe portion (bent portion) (173) is formed, and an outdoor heat exchanger (23) having a two-row structure can be manufactured.
 なお、上記の扁平管(170)を折り曲げる工程は、扁平管(170)にフィン(32,62)やヘッダ集合管(40,70)をロウ付け接合してから行われる。 The step of bending the flat tube (170) is performed after brazing the fins (32, 62) and the header collecting pipe (40, 70) to the flat tube (170).
  -実施形態の効果-
 本実施形態によれば、風上管列(50)側のフィン(32)の突出部(188)と風下管列(90)側のフィン(62)の突出部(188)が互いに同じ方向を向く二列構造の室外熱交換器(23)を容易に形成することができ、誤組み立てを防止できる。また、フィン(32,62)の突出部(188)が風上側を向くように配置すると各フィン(32,62)の風下側には突出部がないため、扁平管部(31,61)で結露した水滴が各列のフィン(32,62)の空気流れ方向の下流側部分を通って熱交換器の下方へ流れていくようになる。したがって、この室外熱交換器(23)を蒸発器として用いる場合に着霜が進むのを防止できる。
-Effects of the embodiment-
According to the present embodiment, the protrusion (188) of the fin (32) on the upwind tube row (50) side and the protrusion (188) of the fin (62) on the leeward tube row (90) side are in the same direction. The facing two-row outdoor heat exchanger (23) can be easily formed, and erroneous assembly can be prevented. If the fins (32, 62) are arranged so that the protrusions (188) face the windward side, there is no protrusion on the leeward side of each fin (32, 62). The condensed water droplets flow down the heat exchanger through the downstream portion of each row of fins (32, 62) in the air flow direction. Therefore, when this outdoor heat exchanger (23) is used as an evaporator, it is possible to prevent frost formation from proceeding.
 また、風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)との間に図4に示すように隙間を形成すると、風上管列(50)側のフィン(32)に結露した水滴がその下流側の縁部を流れるときに、風下管列(90)側のフィン(62)の突出部(188)によって停止せず、滑らかに流れていく。したがって、この室外熱交換器(23)を蒸発器として用いるときに着霜が進むのを防止する効果を高められる。 When a gap is formed as shown in FIG. 4 between the fin (32) on the windward tube row (50) side and the fin (62) on the leeward tube row (90) side, the windward tube row (50) When water droplets condensed on the fin (32) on the side flow through the edge on the downstream side, the water droplet flows smoothly without being stopped by the protrusion (188) of the fin (62) on the leeward tube row (90) side . Therefore, when using this outdoor heat exchanger (23) as an evaporator, the effect which prevents that frost formation progresses can be heightened.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
 例えば、上記実施形態では、フィン(32,62)の切り欠き部(186)と切り欠き部(186)の間に突出部(188)が形成されている例を説明したが、フィン(32,62)の突出部(188)が形成されていない構成で、風上管列(50)側のフィン(32)の管挿入部(187)側の縁部と風下管列(90)側のフィン(62)の管挿入部(187)側の縁部が同じ方向を向くように配置してもよい。このようにしても、扁平管部(31,61)で結露した水滴が各列のフィン(32,62)の空気流れ方向の下流側部分を通って熱交換器の下方へ流れていく。したがって、この室外熱交換器(23)を蒸発器として用いる場合に着霜が進むのを防止できる。 For example, in the above embodiment, an example in which the protrusion (188) is formed between the notch (186) and the notch (186) of the fin (32, 62) has been described. 62) in which the protrusion (188) is not formed, the fin (32) on the windward tube row (50) side edge on the tube insertion portion (187) side and the fin on the leeward tube row (90) side You may arrange | position so that the edge part by the side of the pipe insertion part (187) of (62) may face the same direction. Even in this case, the water droplets condensed on the flat tube portions (31, 61) flow down the heat exchanger through the downstream portions of the fins (32, 62) in the air flow direction. Therefore, when this outdoor heat exchanger (23) is used as an evaporator, it is possible to prevent frost formation from proceeding.
 また、上記実施形態では、風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)との間に隙間ができるようにしているが、この隙間は必ずしも設けなくてもよい。 In the above embodiment, a gap is formed between the fin (32) on the windward tube row (50) side and the fin (62) on the leeward tube row (90) side. It does not have to be provided.
 また、上記実施形態では、管列形成工程において、U字状の折り曲げ部(173)を、図12に示すように、該扁平管(170)の平面から外れる立体的なU字状の折り曲げ部にしているが、この折り曲げ部(173)は、図13に示すように、曲げ型(203)を基準として扁平管部(31)側と扁平管部(61)側のそれぞれに約45°の曲げ部(173a)を形成するように折り返すことにより形成してもよい。 Moreover, in the said embodiment, in a tube row formation process, as shown in FIG. 12, the U-shaped bending part (173) is a three-dimensional U-shaped bending part which remove | deviates from the plane of this flat tube (170). However, as shown in FIG. 13, the bent portion (173) is approximately 45 ° on each of the flat tube portion (31) side and the flat tube portion (61) side with respect to the bending die (203). You may form by bending so that a bending part (173a) may be formed.
 また、上記扁平管(170)を上記中間部でU字状に折り曲げる管列形成工程において、U字状の折り曲げ部(173)を、図14に示すように、該扁平管(170)の平面に沿う平面的な折り曲げ部にしてもよい。 Further, in the tube row forming step of bending the flat tube (170) into a U shape at the intermediate portion, the U-shaped bent portion (173) is formed as a flat surface of the flat tube (170) as shown in FIG. It may be a planar bent part along the line.
 また、上記実施形態においては、上記風上管列(50)の扁平管である扁平管部(31)と風下管列(90)の扁平管である扁平管部(61)を、図15に示すように、両扁平管部(31,61)の扁平な側面部分に直交する方向(扁平管部(31,61)の配列方向)に位置をずらすようにしてもよい。いわゆる千鳥配置である。このようにすると、風上管列(50)の扁平管部(31)と扁平管部(31)の間を扁平管部(31)に接触せずに通過した空気が風下管列(90)の扁平管部(61)に接触する状態で通過するので、扁平管部(31,61)と接触しない風量が少なくなり、熱交換効率を高められる。 Moreover, in the said embodiment, the flat pipe part (31) which is a flat tube of the said windward pipe row (50) and the flat pipe part (61) which is a flat pipe of the leeward pipe row (90) are shown in FIG. As shown, the positions may be shifted in a direction (the arrangement direction of the flat tube portions (31, 61)) perpendicular to the flat side surface portions of both flat tube portions (31, 61). This is a so-called staggered arrangement. In this way, the air that passes between the flat tube portion (31) and the flat tube portion (31) of the upwind tube row (50) without contacting the flat tube portion (31) becomes the leeward tube row (90). Since it passes in the state which contacts the flat pipe part (61), the air volume which does not contact with the flat pipe part (31, 61) decreases, and heat exchange efficiency can be improved.
 また、本発明は、平行に並んだ複数の扁平管部(31,62)によってそれぞれが構成されて空気の流れ方向に並ぶ風上管列(50)及び風下管列(90)と、上記扁平管部(31,61)に接合されたフィン(32,62)とを備えた二列構造の熱交換器(23)において、風上管列(50)側と風下管列(90)側とで、フィン(32,62)の管挿入部(187)側の縁部同士または突出部(188)同士が同じ方向を向くように配置されている限りは、他の構成は適宜変更してもよい。 Further, the present invention provides an upwind tube row (50) and a leeward tube row (90), each of which is constituted by a plurality of flat tube portions (31, 62) arranged in parallel and arranged in the air flow direction, In the heat exchanger (23) having a two-row structure including fins (32, 62) joined to the pipe portion (31, 61), the windward pipe row (50) side and the leeward pipe row (90) side; As long as the edges of the fins (32, 62) on the tube insertion part (187) side or the protrusions (188) are arranged in the same direction, other configurations may be changed as appropriate. Good.
 以上説明したように、本発明は、扁平管とフィンを有して冷媒と空気を熱交換させる熱交換器の製造方法及び熱交換器について有用である。 As described above, the present invention is useful for a heat exchanger manufacturing method and a heat exchanger that have flat tubes and fins to exchange heat between refrigerant and air.
 23 室外熱交換器
 31 扁平管部
 32 フィン
 33 フィン群
 50 風上管列
 61 扁平管部
 62 フィン
 63 フィン群
 90 風下管列
 140 ギャップ部
 170 扁平管
 173 折り曲げ部
 186 切り欠き部
 187 管挿入部
 188 突出部
23 Outdoor heat exchanger 31 Flat tube portion 32 Fin 33 Fin group 50 Upwind tube row 61 Flat tube portion 62 Fin 63 Fin group 90 Downward tube row 140 Gap portion 170 Flat tube 173 Bending portion 186 Notch portion 187 Pipe insertion portion 188 Protrusion

Claims (9)

  1.  平行に並んだ複数の扁平管部(31,61)によってそれぞれが構成されて空気の流れ方向に並ぶ風上管列(50)及び風下管列(90)と、上記扁平管部(31,61)に接合されたフィン(32,62)とを備えた熱交換器の製造方法であって、
     一方の縁部に一定の間隔で形成された複数の切り欠き部(186)と、該切り欠き部(186)から他方の縁部に向かって形成され扁平管部(31,61)が挿入される管挿入部(187)とを有する上記フィン(32,62)を、風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)を有する複数の扁平管(170)それぞれの一端部と他端部に管挿入部(187)側の縁部を互いに逆向きにして装着するフィン装着工程と、
     上記各扁平管(170)を一端部と他端部の間で折り曲げることにより、フィン(32,62)の管挿入部(187)側の縁部同士が同じ方向を向く状態で風上管列(50)と風下管列(90)を形成する管列形成工程と、
    を備えていることを特徴とする熱交換器の製造方法。
    An upwind tube row (50) and a leeward tube row (90) each formed by a plurality of flat tube portions (31, 61) arranged in parallel and arranged in the air flow direction, and the flat tube portions (31, 61) And a fin (32, 62) joined to the heat exchanger.
    A plurality of notches (186) formed at a certain interval on one edge, and a flat tube (31, 61) formed from the notches (186) toward the other edge are inserted. A plurality of fins (32, 62) having a tube insertion portion (187) having a flat tube portion (31) of the windward tube row (50) and a flat tube portion (61) of the leeward tube row (90). A fin mounting step of mounting the flat tube (170) on one end and the other end of the flat tube (170) with the edges on the tube insertion portion (187) side facing each other;
    The above-mentioned flat tubes (170) are bent between one end and the other end so that the edges on the tube insertion portion (187) side of the fins (32, 62) face in the same direction. (50) and a tube row forming step for forming a leeward tube row (90);
    A method for producing a heat exchanger, comprising:
  2.  請求項1において、
     上記フィン(32,62)が、上記一方の縁部に、隣り合う切り欠き部(186)の間に形成されて上記扁平管部(31,61)から突出する突出部(188)を有するフィンであり、
     上記管列形成工程において、上記風上管列(50)側のフィン(32)の突出部(188)と風下管列(90)側のフィン(62)の突出部(188)とが同じ方向を向くように上記各扁平管(170)を一端部と他端部の間で折り曲げることを特徴とする熱交換器の製造方法。
    In claim 1,
    The fin (32, 62) has a protruding portion (188) formed between the adjacent notch portions (186) and protruding from the flat tube portion (31, 61) at the one edge portion. And
    In the tube row forming step, the protrusion (188) of the fin (32) on the upwind tube row (50) side and the protrusion (188) of the fin (62) on the leeward tube row (90) side are in the same direction. A method of manufacturing a heat exchanger, wherein the flat tubes (170) are bent between one end and the other end so as to face the surface.
  3.  請求項1または2において、
     管列形成工程後に空気の流れ方向に並んだ風上管列(50)側のフィン(32)と風下管列(90)側のフィン(62)との間に隙間を形成することを特徴とする熱交換器の製造方法。
    In claim 1 or 2,
    It is characterized in that a gap is formed between the fin (32) on the upwind tube row (50) and the fin (62) on the leeward tube row (90) side by side in the air flow direction after the tube row forming step A method for manufacturing a heat exchanger.
  4.  請求項1から3の何れか1つにおいて、
     上記フィン装着工程では、扁平管部(31)の一端部と他端部に複数の上記フィン(32,62)を装着することにより風上管列(50)のフィン群(33)と風下管列のフィン群(63)を形成する一方、両フィン群(33,63)の間にはフィン(32,62)を装着しないギャップ部(140)を形成することを特徴とする熱交換器の製造方法。
    In any one of Claims 1-3,
    In the fin mounting step, a plurality of fins (32, 62) are mounted on one end portion and the other end portion of the flat tube portion (31), whereby the fin group (33) and the leeward tube in the upwind tube row (50) A heat exchanger characterized by forming a fin group (63) in a row and forming a gap (140) between the fin groups (33, 63) without the fins (32, 62). Production method.
  5.  請求項1から4の何れか1つにおいて、
     上記管列形成工程は、上記扁平管(170)を上記一端部と他端部の間でU字状に折り曲げる工程であって、U字状の折り曲げ部(173)を該扁平管(170)の平面から外れる立体的な折り曲げ部(173)にする工程であることを特徴とする熱交換器の製造方法。
    In any one of Claims 1-4,
    The tube row forming step is a step of bending the flat tube (170) in a U shape between the one end and the other end, and the U-shaped bent portion (173) is bent into the flat tube (170). A method of manufacturing a heat exchanger, characterized in that it is a step of forming a three-dimensional bent portion (173) that deviates from the plane.
  6.  請求項1から4の何れか1つにおいて、
     上記管列形成工程は、上記扁平管(170)を上記一端部と他端部の間でU字状に折り曲げる工程であって、U字状の折り曲げ部(173)を該扁平管(170)の平面に沿う平面的な折り曲げ部(173)にする工程であることを特徴とする熱交換器の製造方法。
    In any one of Claims 1-4,
    The tube row forming step is a step of bending the flat tube (170) in a U shape between the one end and the other end, and the U-shaped bent portion (173) is bent into the flat tube (170). A method of manufacturing a heat exchanger, characterized in that it is a step of forming a flat bent portion (173) along the plane of the above.
  7.  請求項1から6の何れか1つにおいて、
     上記管列形成工程は、上記扁平管(170)を、風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)の位置が該両扁平管部(31,61)の配列方向にずれるように折り曲げる工程であることを特徴とする熱交換器の製造方法。
    In any one of Claims 1-6,
    In the tube row forming step, the flat tube (170) is placed on the flat tube portion (31) of the windward tube row (50) and the flat tube portion (61) of the leeward tube row (90). A method of manufacturing a heat exchanger, characterized in that it is a step of bending so as to shift in the arrangement direction of the sections (31, 61).
  8.  平行に並んだ複数の扁平管部(31,61)によってそれぞれが構成されて空気の流れ方向に並ぶ風上管列(50)及び風下管列(90)と、上記扁平管部(31,61)に接合されたフィン(32,62)とを備えた熱交換器であって、
     上記フィン(32,62)は、一方の縁部に一定の間隔で形成された複数の切り欠き部(186)と、該切り欠き部(186)から他方の縁部に向かって形成され扁平管部(31,61)が挿入される管挿入部(187)とを有し、
     上記風上管列(50)側のフィン(32)の管挿入部(187)側の縁部と風下管列(90)側のフィン(62)の管挿入部(187)側の縁部が同じ方向を向くように配置され、
     上記風上管列(50)の各扁平管部(31)と風下管列(90)の各扁平管部(61)が一本の扁平管(170)を両管列の間で折り曲げることにより形成され、上記風上管列(50)の扁平管部(31)と風下管列(90)の扁平管部(61)の間には折り曲げ部(173)が構成されていることを特徴とする熱交換器。
    An upwind tube row (50) and a leeward tube row (90) each formed by a plurality of flat tube portions (31, 61) arranged in parallel and arranged in the air flow direction, and the flat tube portions (31, 61) And a fin (32, 62) joined to the heat exchanger,
    The fins (32, 62) include a plurality of notches (186) formed at a certain interval on one edge, and a flat tube formed from the notches (186) toward the other edge. A pipe insertion part (187) into which the part (31, 61) is inserted,
    The edge on the tube insertion portion (187) side of the fin (32) on the upwind tube row (50) side and the edge on the tube insertion portion (187) side of the fin (62) on the leeward tube row (90) side are Placed in the same direction,
    Each flat tube portion (31) of the above-mentioned windward tube row (50) and each flat tube portion (61) of the leeward tube row (90) bend one flat tube (170) between both tube rows. A bent portion (173) is formed between the flat tube portion (31) of the upwind tube row (50) and the flat tube portion (61) of the leeward tube row (90). Heat exchanger.
  9.  請求項8において、
     上記フィン(32,62)は、上記一方の縁部に、隣り合う切り欠き部(186)の間に形成されて上記扁平管部(31,61)から突出する突出部(188)を有し、
     上記風上管列(50)側のフィン(32)の突出部(188)と風下管列(90)側のフィン(62)の突出部(188)とが同じ方向を向いていることを特徴とする熱交換器。
    In claim 8,
    The fin (32, 62) has a protruding portion (188) formed between the adjacent notch portions (186) and protruding from the flat tube portion (31, 61) at the one edge portion. ,
    The protrusion (188) of the fin (32) on the upwind tube row (50) side and the protrusion (188) of the fin (62) on the leeward tube row (90) side face the same direction. Heat exchanger.
PCT/JP2014/004667 2013-09-11 2014-09-10 Heat exchanger manufacturing method and heat exchanger WO2015037234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480048567.4A CN105518404B (en) 2013-09-11 2014-09-10 The manufacture method and heat exchanger of heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013188546A JP5900440B2 (en) 2013-09-11 2013-09-11 Manufacturing method of heat exchanger and heat exchanger
JP2013-188546 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015037234A1 true WO2015037234A1 (en) 2015-03-19

Family

ID=52665365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004667 WO2015037234A1 (en) 2013-09-11 2014-09-10 Heat exchanger manufacturing method and heat exchanger

Country Status (3)

Country Link
JP (1) JP5900440B2 (en)
CN (1) CN105518404B (en)
WO (1) WO2015037234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187243A (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133790A (en) * 2016-01-29 2017-08-03 株式会社富士通ゼネラル Heat exchanger
CN107702381A (en) * 2016-08-08 2018-02-16 杭州三花家电热管理系统有限公司 A kind of micro-channel flat plate type heat interchanger and refrigeration system
CN112424552B (en) * 2018-07-27 2023-01-17 三菱电机株式会社 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050082A (en) * 1952-02-01 1954-01-05 Heating radiator
JPS63154962U (en) * 1987-03-30 1988-10-12
JPH08145580A (en) * 1994-11-17 1996-06-07 Showa Alum Corp Heat exchanger
JP2002318087A (en) * 2001-02-07 2002-10-31 Modine Mfg Co Heat exchanger
JP2003262485A (en) * 2002-03-07 2003-09-19 Mitsubishi Electric Corp Fin tube type heat exchanger, its manufacturing method, and refrigeration air conditioner
JP2007192474A (en) * 2006-01-19 2007-08-02 Calsonic Kansei Corp Heat exchanger
JP2007283406A (en) * 2006-04-13 2007-11-01 Visteon Global Technologies Inc Method of bending of flat tube for heat exchanger and bent flat tube
JP2008170041A (en) * 2007-01-10 2008-07-24 Showa Denko Kk Heat exchanger
JP2013011369A (en) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus using the same
JP2013137193A (en) * 2011-11-22 2013-07-11 Daikin Industries Ltd Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170718A (en) * 2005-12-20 2007-07-05 Denso Corp Heat exchanger
JP2007192441A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Radiator, its manufacturing method, and cooling device comprising the same
JP2009216315A (en) * 2008-03-11 2009-09-24 Showa Denko Kk Heat exchanger
JP5376010B2 (en) * 2011-11-22 2013-12-25 ダイキン工業株式会社 Heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050082A (en) * 1952-02-01 1954-01-05 Heating radiator
JPS63154962U (en) * 1987-03-30 1988-10-12
JPH08145580A (en) * 1994-11-17 1996-06-07 Showa Alum Corp Heat exchanger
JP2002318087A (en) * 2001-02-07 2002-10-31 Modine Mfg Co Heat exchanger
JP2003262485A (en) * 2002-03-07 2003-09-19 Mitsubishi Electric Corp Fin tube type heat exchanger, its manufacturing method, and refrigeration air conditioner
JP2007192474A (en) * 2006-01-19 2007-08-02 Calsonic Kansei Corp Heat exchanger
JP2007283406A (en) * 2006-04-13 2007-11-01 Visteon Global Technologies Inc Method of bending of flat tube for heat exchanger and bent flat tube
JP2008170041A (en) * 2007-01-10 2008-07-24 Showa Denko Kk Heat exchanger
JP2013011369A (en) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus using the same
JP2013137193A (en) * 2011-11-22 2013-07-11 Daikin Industries Ltd Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187243A (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
WO2017175702A1 (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
CN108885015A (en) * 2016-04-07 2018-11-23 大金工业株式会社 indoor heat exchanger
AU2017247746B2 (en) * 2016-04-07 2018-12-06 Daikin Industries, Ltd. Indoor heat exchanger

Also Published As

Publication number Publication date
CN105518404A (en) 2016-04-20
JP5900440B2 (en) 2016-04-06
JP2015055401A (en) 2015-03-23
CN105518404B (en) 2017-09-29

Similar Documents

Publication Publication Date Title
JP5900564B2 (en) Heat exchanger, air conditioner, and heat exchanger manufacturing method
JP5679084B1 (en) Heat exchanger and air conditioner
JP2015078833A5 (en)
JP2015055410A (en) Method of manufacturing heat exchanger, heat exchanger, and air conditioner
JP5741657B2 (en) Heat exchanger and air conditioner
AU2014319843B2 (en) Heat exchanger and air conditioner
WO2015037234A1 (en) Heat exchanger manufacturing method and heat exchanger
JP2015055413A (en) Heat exchanger
WO2016174802A1 (en) Heat exchanger and air conditioner
JP5716496B2 (en) Heat exchanger and air conditioner
JP2014137177A (en) Heat exchanger and refrigerator
JP2015055408A (en) Heat exchanger and air conditioner
JP6171766B2 (en) Heat exchanger
JP2015055398A (en) Brazing method of heat exchanger
JP6171765B2 (en) Heat exchanger
JP2015055414A (en) Heat exchanger
JP2015055407A (en) Heat exchanger and air conditioner
JP2015055400A (en) Heat exchanger
JP2015055409A (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844697

Country of ref document: EP

Kind code of ref document: A1