WO2015037171A1 - Sensor device, input device, and electronic device - Google Patents

Sensor device, input device, and electronic device Download PDF

Info

Publication number
WO2015037171A1
WO2015037171A1 PCT/JP2014/003433 JP2014003433W WO2015037171A1 WO 2015037171 A1 WO2015037171 A1 WO 2015037171A1 JP 2014003433 W JP2014003433 W JP 2014003433W WO 2015037171 A1 WO2015037171 A1 WO 2015037171A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode lines
sensor device
electrode substrate
shield layer
Prior art date
Application number
PCT/JP2014/003433
Other languages
French (fr)
Japanese (ja)
Inventor
章吾 新開
圭 塚本
はやと 長谷川
川口 裕人
文彦 飯田
智子 勝原
知明 鈴木
隆之 田中
泰三 西村
水野 裕
阿部 康之
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020167005408A priority Critical patent/KR20160053919A/en
Priority to JP2015536427A priority patent/JP6561835B2/en
Priority to CN201480048888.4A priority patent/CN105531651B/en
Publication of WO2015037171A1 publication Critical patent/WO2015037171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present technology relates to a sensor device, an input device, and an electronic device that can detect an input operation electrostatically.
  • a configuration including a capacitive element and capable of detecting an operation position and a pressing force of an operator with respect to an input operation surface is known (for example, see Patent Document 1).
  • an object of the present technology is to provide a sensor device, an input device, and an electronic device that can suppress a decrease in detection accuracy due to the influence of external electromagnetic noise.
  • a sensor device includes an electrode substrate and a shield layer.
  • the electrode substrate has a plurality of first electrode lines and a plurality of second electrode lines, and a plurality of opposing regions between the plurality of first electrode lines and the plurality of second electrode lines.
  • a plurality of capacitance sensors each formed are arranged in a matrix.
  • the shield layer includes a conductor film which is provided on the electrode substrate and shields at least a part of the wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions.
  • the shield layer functions as an electromagnetic shield that covers the wiring region. Therefore, the fall of the detection accuracy of each capacity
  • the plurality of first electrode lines and the plurality of second electrode lines may be spaced apart from each other in the thickness direction of the electrode substrate.
  • the plurality of capacitance sensors are respectively formed in intersecting regions of the plurality of first electrode lines and the plurality of second electrode lines.
  • the electrode substrate may include a first insulating layer that supports the plurality of first electrode lines, and a second insulating layer that supports the plurality of second electrode lines.
  • the shield layer is provided on the first insulating layer, for example.
  • the shield layer may be provided on the same plane as the plurality of first electrode lines.
  • the conductor film may be made of the same material as the plurality of first electrode wires.
  • the conductor film may include a plurality of third electrode lines disposed between the plurality of first electrode lines.
  • the conductor film may further include a wiring portion that connects the plurality of third electrode lines to each other.
  • the plurality of capacitance sensors may be respectively formed in regions facing the plurality of first electrode lines and the plurality of second electrode lines facing each other in an in-plane direction of the electrode substrate.
  • the shield layer may further include an insulating film disposed between the conductor film and the wiring region.
  • the electrode substrate may include a plurality of jumper wiring portions provided at intersections of the plurality of first electrode lines and the plurality of second electrode lines.
  • the conductor film may be provided on the same plane as the plurality of jumper wiring portions.
  • the shield layer may cover the plurality of jumper wiring portions.
  • the conductor film may be made of the same material as the plurality of jumper wiring portions.
  • the shield layer may further shield at least a part of the wiring region of the plurality of first electrode lines connecting the plurality of opposed regions.
  • the plurality of second electrode lines may include an outer peripheral wiring portion formed outside a detection region where the plurality of capacitance sensors arranged in a matrix are formed.
  • the shield layer may further shield at least a part of the outer peripheral wiring portion.
  • the sensor device includes a deformable first conductor layer disposed to face one main surface of the electrode substrate, and a plurality of first conductors connecting between the first conductor layer and the electrode substrate. And a first support having the structure.
  • the sensor device includes a second conductor layer disposed to face the other main surface of the electrode substrate, and a plurality of second structures connecting the second conductor layer and the electrode substrate. And a second support having a body.
  • An input device includes an operation member, an electrode substrate, and a shield layer.
  • the operation member has an input operation surface.
  • the electrode substrate has a plurality of first electrode lines and a plurality of second electrode lines, and a plurality of opposing regions between the plurality of first electrode lines and the plurality of second electrode lines.
  • a plurality of capacitance sensors each formed are arranged in a matrix.
  • the shield layer includes a conductor film that is provided between the operation member and the electrode substrate and shields at least some of the wiring regions of the plurality of second electrode lines that communicate between the plurality of opposing regions. .
  • An electronic device includes a display element, an electrode substrate, and a shield layer.
  • the display element has an input operation surface.
  • the electrode substrate has a plurality of first electrode lines and a plurality of second electrode lines, and a plurality of opposing regions between the plurality of first electrode lines and the plurality of second electrode lines.
  • a plurality of capacitance sensors each formed are arranged in a matrix.
  • the shield layer includes a conductor film that is provided between the display element and the electrode substrate and shields at least some of the wiring regions of the plurality of second electrode lines that communicate between the plurality of opposing regions. .
  • FIG. 1 is a schematic cross-sectional view of an input device according to a first embodiment of the present technology. It is a disassembled perspective view of the said input device. It is a schematic sectional drawing of the principal part of the said input device. It is a block diagram of the electronic device using the said input device. It is a schematic sectional drawing which shows the mode of the force added to the said 1st and 2nd structure when the point of the 1st surface of the said input device is pressed below to the Z-axis direction with the operation element.
  • the typical principal part sectional view showing the mode of the above-mentioned input device when the point on the 1st structure of the above-mentioned 1st surface receives operation by a manipulator, and the output outputted from the above-mentioned detection part at that time It is a figure which shows an example of a signal. It is a principal part top view of the electrode substrate in the said input device. It is a principal part top view of the 1st wiring board which comprises the said electrode substrate. It is a principal part top view of the 2nd wiring board which comprises the said electrode substrate. It is a top view which shows roughly the whole said 1st wiring board.
  • A is a schematic sectional view of an input device according to a second embodiment of the present technology
  • B is a sectional view showing an enlarged main part of the input device. It is a principal part top view which shows the structure of the 1st electrode line in the said input device, and a 2nd electrode line.
  • A is a plan view of the main part of the electrode substrate in the input device
  • B is a cross-sectional view taken along the line AA. It is typical sectional drawing for demonstrating the structure of the detection part which concerns on the said input device.
  • A is a plan view of an essential part of an electrode substrate having a shield layer
  • B is a sectional view taken along line B1-B1
  • C is a sectional view taken along line C1-C1.
  • A is a plan view of an essential part of an electrode substrate having a shield layer
  • B is a sectional view taken along line B2-B2
  • C is a sectional view taken along line C2-C2.
  • It is a principal part top view which shows the modification of a structure of a 1st electrode wire.
  • It is a schematic plan view which shows the other structural example of a 1st electrode line.
  • It is a principal part top view which shows the modification of a structure of a 2nd electrode wire.
  • FIG. 1 is a schematic cross-sectional view of an input device 100 according to the first embodiment of the present technology
  • FIG. 2 is an exploded perspective view of the input device 100
  • FIG. 3 is a schematic cross-sectional view of a main part of the input device 100
  • FIG. 4 is a block diagram of an electronic device 70 using the device 100.
  • FIG. Hereinafter, the configuration of the input device 100 of the present embodiment will be described.
  • the X-axis and the Y-axis indicate directions orthogonal to each other (in-plane direction of the input device 100), and the Z-axis indicates a direction orthogonal to the X-axis and Y-axis (thickness direction or vertical direction of the input device 100). Is shown.
  • the input device 100 includes a flexible display (display element) 11 that receives an operation by a user and a sensor device 1 that detects the user's operation.
  • the input device 100 is configured as a flexible touch panel display, for example, and is incorporated in an electronic device 70 described later.
  • the sensor device 1 and the flexible display 11 have a flat plate shape extending in a direction perpendicular to the Z axis.
  • the flexible display 11 has a first surface 110 and a second surface 120 opposite to the first surface 110.
  • the flexible display 11 has both a function as an input operation unit in the input device 100 and a function as a display unit.
  • the flexible display 11 causes the first surface 110 to function as an input operation surface and a display surface, and displays an image corresponding to an operation by the user from the first surface 110 facing upward in the Z-axis direction.
  • On the first surface 110 for example, an image corresponding to a keyboard, a GUI (Graphical User Interface), or the like is displayed. Examples of the operator that performs an operation on the flexible display 11 include a finger and a pen (stylus pen).
  • the specific configuration of the flexible display 11 is not particularly limited.
  • the flexible display 11 so-called electronic paper, an organic EL (electroluminescence) panel, an inorganic EL panel, a liquid crystal panel, or the like can be employed.
  • the thickness of the flexible display 11 is not particularly limited, and is about 0.1 mm to 1 mm, for example.
  • the sensor device 1 includes a metal film (first conductor layer) 12, a conductor layer (second conductor layer) 50, an electrode substrate 20, a first support 30, and a second support 40. .
  • the sensor device 1 is disposed on the second surface 120 side of the flexible display 11.
  • the metal film 12 is configured in a deformable sheet shape.
  • the conductor layer 50 is disposed to face the metal film 12.
  • the electrode substrate 20 includes a plurality of first electrode lines 210 and a plurality of second electrode lines 220 that are arranged to face the plurality of first electrode lines 210 and intersect the plurality of first electrode lines 210. And disposed so as to be deformable between the metal film 12 and the conductor layer 50, and it is possible to electrostatically detect a change in the distance between the metal film 12 and the conductor layer 50.
  • the first support 30 includes a plurality of first structures 310 that connect the metal film 12 and the electrode substrate 20, and a first space formed between the plurality of first structures 310. 330.
  • the second support body 40 is disposed between a plurality of adjacent first structure bodies 310, respectively, and a plurality of second structure bodies 410 connecting the conductor layer 50 and the electrode substrate 20, and a plurality of second structure bodies And a second space portion 430 formed between the structures 410.
  • the sensor device 1 (input device 100) according to the present embodiment includes a gap between the metal film 12 and the electrode substrate 20 by the input operation on the first surface 110 of the flexible display 11, and the conductor layer 50 and the electrode substrate 20.
  • the input operation is detected by electrostatically detecting a change in the distance.
  • the input operation is not limited to a conscious pressing (push) operation on the first surface 110 but may be a contact (touch) operation. That is, the input device 100 can detect even a minute pressing force (for example, about several tens of g) applied by a general touch operation, as will be described later.
  • the touch operation is configured to be possible.
  • the input device 100 includes a control unit 60, and the control unit 60 includes a calculation unit 61 and a signal generation unit 62.
  • the calculation unit 61 detects an operation by the user based on the change in the capacitance of the detection unit 20s.
  • the signal generator 62 generates an operation signal based on the detection result by the calculator 61.
  • the electronic device 70 illustrated in FIG. 4 includes a controller 710 that performs processing based on an operation signal generated by the signal generation unit 62 of the input device 100.
  • the operation signal processed by the controller 710 is output to the flexible display 11 as an image signal, for example.
  • the flexible display 11 is connected to a drive circuit mounted on the controller 710 via a flexible wiring board 113 (see FIG. 2).
  • the drive circuit may be mounted on the wiring board 113.
  • the electronic device 70 includes a mobile phone, a smart phone, a notebook PC (personal computer), a tablet PC, a portable game machine, and the like. It can also be applied to stationary electronic devices such as automatic teller machines) and automatic ticket vending machines.
  • the flexible display 11 is configured as a part of the operation member 10 of the input device 100 in the present embodiment. That is, the input device 100 includes the operation member 10, the electrode substrate 20, the first support body 30, the second support body 40, and the conductor layer 50. Hereinafter, each of these elements will be described.
  • the operation member 10 has a laminated structure of the flexible display 11 including the first surface 110 and the second surface 120 and the metal film 12. That is, the operation member 10 includes a first surface 110 that receives an operation by a user, and a second surface 120 that is formed with the metal film 12 and is opposite to the first surface 110, and is configured in a deformable sheet shape. Is done.
  • the metal film 12 is configured in a sheet shape that can be deformed following the deformation of the flexible display 11, and is formed of a metal foil or a mesh material such as Cu (copper) or Al (aluminum), for example.
  • the thickness of the metal film 12 is not particularly limited and is, for example, several tens of nm to several tens of ⁇ m.
  • the metal film 12 is connected to a predetermined reference potential (for example, ground potential). Thereby, the metal film 12 exhibits a certain shield function against electromagnetic waves when mounted on the electronic device 70. That is, for example, intrusion of electromagnetic waves from other electronic components or the like mounted on the electronic device 70 and leakage of electromagnetic waves from the input device 100 can be suppressed, which can contribute to the stability of the operation as the electronic device 70.
  • the constituent material of the metal film 12 is not limited to a metal, and may be a metal oxide material such as ITO, or another conductive material such as carbon.
  • the metal film 12 is formed by attaching an adhesive adhesive layer 13 on which a metal foil is formed to the flexible display 11.
  • the material of the adhesive layer 13 is not particularly limited as long as it has adhesiveness, but may be a resin film to which a resin material is applied. Alternatively, it may be composed of a vapor deposition film or a sputtered film directly formed on the flexible display 11, or may be a coating film such as a conductive paste printed on the surface of the flexible display 11.
  • the conductor layer 50 constitutes the lowermost part of the input device 100 and is disposed to face the metal film 12 in the Z-axis direction.
  • the conductor layer 50 also functions as a support plate of the input device 100, for example, and is configured to have higher bending rigidity than the operation member 10 and the electrode substrate 20, for example.
  • the conductor layer 50 may be made of a metal plate containing, for example, an Al alloy, an Mg (magnesium) alloy, or other metal material, or a conductor plate such as a carbon fiber reinforced plastic.
  • the conductor layer 50 may have a laminated structure in which a conductor film such as a plating film, a vapor deposition film, a sputtering film, or a metal foil is formed on an insulating layer such as a plastic material.
  • the thickness of the conductor layer 50 is not specifically limited, For example, it is about 0.3 mm.
  • the conductor layer 50 is connected to a predetermined reference potential (for example, ground potential).
  • a predetermined reference potential for example, ground potential.
  • the conductor layer 50 exhibits a function as an electromagnetic shield layer when mounted on the electronic device 70. That is, for example, intrusion of electromagnetic waves from other electronic components or the like mounted on the electronic device 70 and leakage of electromagnetic waves from the input device 100 can be suppressed, which can contribute to the stability of the operation as the electronic device 70.
  • the electrode substrate 20 is configured by a laminate of a first wiring substrate 21 having first electrode lines 210 and a second wiring substrate 22 having second electrode lines 220.
  • the first wiring board 21 includes a first base material 211 (see FIG. 2) and a plurality of first electrode wires (X electrodes) 210.
  • the first base material 211 (first insulating layer) is made of, for example, a flexible sheet material, specifically, an electrically insulating plastic sheet (film) such as PET, PEN, PC, PMMA, and polyimide. Consists of.
  • the thickness of the first base material 211 is not particularly limited, and is, for example, several tens of ⁇ m to several hundreds of ⁇ m.
  • the plurality of first electrode wires 210 are integrally provided on one surface of the first base material 211.
  • the plurality of first electrode lines 210 are arranged at a predetermined interval along the X-axis direction and are formed substantially linearly along the Y-axis direction.
  • Each of the first electrode wires 210 is drawn out to the edge of the first base material 211 and connected to different terminals.
  • each of the first electrode lines 210 is electrically connected to the control unit 60 via these terminals.
  • each of the plurality of first electrode lines 210 may be configured by a single electrode line, or may be configured by a plurality of electrode groups arranged along the X-axis direction.
  • a plurality of electrode lines constituting each electrode group may be connected to a common terminal, or may be connected to two or more different terminals.
  • the second wiring board 22 has a second base material 221 (see FIG. 2) and a plurality of second electrode lines (Y electrodes) 220.
  • the second base material 221 (second insulating layer) is composed of, for example, a flexible sheet material like the first base material 211, and specifically, PET, PEN, PC, PMMA, polyimide, etc. It consists of an electrically insulating plastic sheet (film).
  • the thickness of the second base material 221 is not particularly limited and is, for example, several tens of ⁇ m to several hundreds of ⁇ m.
  • the second wiring board 22 is disposed to face the first wiring board 21.
  • the plurality of second electrode lines 220 are configured in the same manner as the plurality of first electrode lines 210. That is, the plurality of second electrode lines 220 are integrally provided on one surface of the second base material 221, arranged at a predetermined interval along the Y-axis direction, and in the X-axis direction. It is formed almost linearly along.
  • Each of the plurality of second electrode lines 220 may be configured by a single electrode line or may be configured by a plurality of electrode groups arranged along the Y-axis direction.
  • Each of the second electrode wires 220 is drawn out to the edge of the second base material 221 and connected to a different terminal.
  • the plurality of electrode lines constituting each electrode group may be connected to a common terminal, or may be divided and connected to two or more different terminals.
  • Each of the second electrode lines 220 is electrically connected to the control unit 60 via these terminals.
  • the first electrode line 210 and the second electrode line 220 may be formed using a conductive paste or the like by a printing method such as screen printing, gravure offset printing, or ink jet printing, or a metal foil or metal layer photolithography technique. It may be formed by the patterning method used. Moreover, it can be set as the structure which has flexibility as the electrode substrate 20 whole because both the 1st and 2nd base materials 211 and 221 are comprised with the sheet
  • the electrode substrate 20 has an adhesive layer 23 that joins the first wiring substrate 21 and the second wiring substrate 22 to each other.
  • the adhesive layer 23 has electrical insulating properties, and is made of, for example, an adhesive cured material, an adhesive material such as an adhesive tape, or the like.
  • the plurality of first electrode lines 210 and the plurality of second electrode lines 220 are separated from each other in the thickness direction (Z-axis direction) of the electrode substrate 20. Arranged. Accordingly, in the electrode substrate 20, a plurality of detection units 20s (capacitance sensors) formed in a plurality of opposing regions of the plurality of first electrode lines 210 and the plurality of second electrode lines 220 are arranged in a matrix. . The plurality of detection units 20 s are respectively formed in intersection regions of the plurality of first electrode lines 210 and the plurality of second electrode lines 220.
  • the plurality of first electrode lines 210 are disposed closer to the operation member 10 than the plurality of second electrode lines 220.
  • the present invention is not limited to this, and a plurality of second electrode lines 220 are provided.
  • the first electrode wire 210 may be disposed closer to the operation member 10 side.
  • the controller 60 is electrically connected to the electrode substrate 20. More specifically, the control unit 60 is connected to each of the plurality of first and second electrode wires 210 and 220 via terminals.
  • the control unit 60 configures a signal processing circuit capable of generating information related to an input operation on the first surface 110 based on outputs of the plurality of detection units 20s.
  • the control unit 60 acquires the capacitance change amount of each detection unit 20s while scanning each of the plurality of detection units 20s at a predetermined cycle, and generates information related to the input operation based on the capacitance change amount.
  • the control unit 60 is typically composed of a computer having a CPU / MPU, a memory, and the like.
  • the control unit 60 may be composed of a single chip component or a plurality of circuit components.
  • the control unit 60 may be mounted on the input device 100 or may be mounted on the electronic device 70 in which the input device 100 is incorporated. In the former case, for example, it is mounted on a flexible wiring board connected to the electrode substrate 20. In the latter case, the electronic device 70 may be integrated with the controller 710.
  • the control unit 60 includes the calculation unit 61 and the signal generation unit 62 as described above, and executes various functions according to a program stored in a storage unit (not shown).
  • the calculation unit 61 determines the operation position in the XY coordinate system on the first surface 110 based on electrical signals (input signals) output from the first and second electrode lines 210 and 220 of the electrode substrate 20.
  • the signal generation unit 62 calculates and generates an operation signal based on the result. Thereby, an image based on an input operation on the first surface 110 can be displayed on the flexible display 11.
  • 3 and 4 calculates the XY coordinates of the operation position by the operator on the first surface 110 based on the output from each detection unit 20s to which the unique XY coordinates are assigned. Specifically, the calculation unit 61 determines whether each X electrode, Y is based on the amount of change in capacitance obtained from each X electrode (first electrode line 210) and Y electrode (second electrode line 220). The amount of change in capacitance in each detection unit 20s formed in the electrode intersection region (opposite region) is calculated. The XY coordinates of the operation position by the operator can be calculated from the ratio of the change in capacitance of each detection unit 20s.
  • the calculation unit 61 applies the detection electrode (E2) obtained when a drive signal is applied to the electrode line corresponding to the drive electrode (E1) of the first and second electrode lines 210 and 220 at a predetermined cycle. Based on the output from the corresponding electrode wire, the capacitance change amount of each detection unit 20s is acquired.
  • the signal generation unit 62 generates information (control signal) related to the input operation on the input operation surface based on the output of the calculation unit 61 (capacity change amount of each detection unit 20s).
  • the first electrode line 210 is the drive electrode (E1)
  • the second electrode line 220 is the detection electrode (E2). Since the drive electrode (E1) has a more stable potential than the detection electrode (E2), it is less susceptible to electromagnetic noise than the detection electrode (E2). From such a viewpoint, the first electrode wire 210 also has a function as a shield layer that protects the second electrode wire 220 from electromagnetic noise.
  • the calculation unit 61 can determine whether or not the first surface 110 is being operated. Specifically, for example, when the amount of change in the capacitance of the entire detection unit 20s or the amount of change in the capacitance of each detection unit 20s is equal to or greater than a predetermined threshold, the first surface 110 receives an operation. Can be determined. Further, by providing two or more threshold values, for example, it is possible to distinguish and determine a touch operation and a (conscious) push operation. Furthermore, it is also possible to calculate the pressing force based on the amount of change in capacitance of the detection unit 20s.
  • the signal generation unit 62 generates a predetermined operation signal based on the calculation result of the calculation unit 61.
  • the operation signal is, for example, an image control signal for generating a display image to be output to the flexible display 11, an operation signal corresponding to a key of a keyboard image displayed at an operation position on the flexible display 11, or a GUI (Graphical User It may be an operation signal related to an operation corresponding to (Interface).
  • the input device 100 is configured to change the distance between each of the metal film 12 and the conductor layer 50 and the electrode substrate 20 (detection unit 20s) by an operation on the first surface 110.
  • Two supports 30, 40 are provided. Hereinafter, the first and second supports 30 and 40 will be described.
  • the first support 30 is disposed between the operation member 10 and the electrode substrate 20.
  • the first support 30 has a plurality of first structures 310, a first frame 320, and a first space 330.
  • the 1st support body 30 is joined on the electrode substrate 20 via the contact bonding layer 35 (refer FIG. 3).
  • the adhesive layer 35 may be an adhesive, or may be composed of an adhesive material such as an adhesive and an adhesive tape.
  • the first support 30 is formed at a predetermined position on the base material 31, the structural layer 32 provided on the surface (upper surface) of the base material 31, and the structural layer 32.
  • a stacked structure of a plurality of bonded portions 341 is provided.
  • the base material 31 is composed of an electrically insulating plastic sheet such as PET, PEN, or PC.
  • the thickness of the base material 31 is not particularly limited, and is, for example, several ⁇ m to several 100 ⁇ m.
  • the structural layer 32 is made of an electrically insulating resin material such as UV resin, and forms a plurality of first convex portions 321, second convex portions 322, and concave portions 323 on the base material 31.
  • Each of the first convex portions 321 has, for example, a columnar shape, a prismatic shape, a frustum shape, or the like protruding in the Z-axis direction, and is arranged on the substrate 31 at a predetermined interval.
  • the second convex portion 322 is formed with a predetermined width so as to surround the periphery of the base material 31.
  • the structural layer 32 is made of a material having such a rigidity that the electrode substrate 20 can be deformed by an input operation on the first surface 110. It may be made of a material. That is, the elastic modulus of the structural layer 32 is not particularly limited, and can be appropriately selected as long as the desired operational feeling and detection sensitivity are obtained.
  • the concave portion 323 is composed of a flat surface formed between the first and second convex portions 321 and 322. That is, the space area on the recess 323 constitutes the first space 330. Further, in the present embodiment, an adhesion preventing layer 342 made of UV resin having low adhesiveness or the like is formed on the recess 323 (not shown in FIG. 3).
  • the shape of the adhesion preventing layer 342 is not particularly limited, and may be formed in an island shape, or may be formed as a flat film on the recess 323.
  • each of the first structures 310 includes a stacked body of the first convex portion 321 and the joint portion 341 formed thereon, and each of the first frame bodies 320 includes the second convex portion 322. And a joined body 341 formed thereon.
  • the thickness (height) of the first structure 310 and the first frame 320 is configured to be substantially the same, and is in the range of several ⁇ m to several 100 ⁇ m, for example, in the present embodiment.
  • the height of the adhesion prevention layer 342 is not particularly limited as long as it is lower than the height of the first structure 310 and the first frame 320, and is lower than, for example, the first and second convex portions 321 and 322. Formed to be.
  • the plurality of first structures 310 are arranged corresponding to the arrangement of the detection units 20s.
  • the plurality of first structures 310 are disposed, for example, opposite to the center of each of the plurality of detection units 20s in the Z-axis direction. May be arranged at an offset position.
  • the number of the structures 310 facing each detection unit 20s is not limited to one, and may be a plurality.
  • the first frame 320 is formed so as to surround the periphery of the first support 30 along the periphery of the electrode substrate 20.
  • the length of the first frame 320 in the short direction, that is, the width is not particularly limited as long as the strength of the entire first support 30 and the input device 100 can be sufficiently secured.
  • the second support body 40 is disposed between the electrode substrate 20 and the conductor layer 50.
  • the second support 40 includes a plurality of second structures 410, a second frame 420, and a second space 430.
  • the second structure body 410 and the second frame body 420 are directly formed on the conductor layer 50.
  • the second structure body 410 and the second frame body 420 are made of, for example, an insulative resin material having adhesiveness, and also serve as a joint portion that joins between the conductor layer 50 and the electrode substrate 20.
  • the thicknesses of the second structural body 410 and the second frame body 420 are not particularly limited, and are, for example, several ⁇ m to several hundred ⁇ m.
  • the second structures 410 are respectively disposed between the adjacent first structures 310. That is, the second structure 410 is disposed between the adjacent detection units 20s. However, the present invention is not limited to this, and the second structure 410 may be disposed so as to face each detection unit 20s.
  • the second frame 420 is formed so as to surround the periphery of the second support 40 along the periphery of the conductor layer 50.
  • the width of the second frame body 420 is not particularly limited as long as the strength of the second support body 40 and the input device 100 as a whole can be sufficiently ensured.
  • the width of the second frame body 420 is configured to be substantially the same as that of the first frame body 320.
  • the elastic modulus of the second structure 410 is not particularly limited, as is the case with the structural layer 32 that constitutes the first structure 310. That is, it can be appropriately selected within a range in which a desired operation feeling and detection sensitivity can be obtained, and may be made of an elastic material that can be deformed together with the electrode substrate 20 during an input operation.
  • the second space 430 is formed between the second structures 410 and constitutes a space region around the second structures 410 and the second frame 420.
  • the second space 430 accommodates each detection unit 20s and each first structure 310 when viewed from the Z-axis direction.
  • the first and second support bodies 30 and 40 are (1) having first and second structures 310 and 410 and first and second spaces 330 and 430; (2) The first structure 310 and the second structure 410 do not overlap with each other when viewed from the Z-axis direction, and the first structure 310 is disposed on the second space 430. Therefore, as shown below, the metal film 12 and the conductor layer 50 can be deformed even by a minute pressing force of about several tens of grams during operation.
  • FIG. 5 is a schematic cross section showing the state of the force applied to the first and second structures 310 and 410 when the point P on the first surface 110 is pressed downward in the Z-axis direction by the operating element h.
  • FIG. The white arrow in the figure schematically shows the magnitude of the force downward in the Z-axis direction (hereinafter simply referred to as “downward”).
  • FIG. 14 aspects such as the bending of the metal film 12 and the electrode substrate 20 and the elastic deformation of the first and second structures 310 and 410 are not shown. In the following description, even when the user performs a touch operation that is not conscious of pressing, since a minute pressing force is actually applied, these input operations will be collectively described as “pressing”.
  • the metal film 12 immediately below the point P bends downward.
  • the first structures 310p1 and 310p2 adjacent to the first space 330p0 receive the force F1, elastically deform in the Z-axis direction, and the thickness slightly decreases.
  • the first structures 310p3 and 310p4 adjacent to the first structures 310p1 and 310p2 also receive a force F2 smaller than F1.
  • force is applied to the electrode substrate 20 by the forces F1 and F2, and the electrode substrate 20 bends downward about the region immediately below the first structures 310p1 and 310p2.
  • the second structure 410p0 disposed between the first structures 310p1 and 310p2 receives the force F3, elastically deforms in the Z-axis direction, and the thickness slightly decreases.
  • the second structure 410p1, which is disposed between the first structures 310p1, 310p3, and the second structure 410p2, which is disposed between the first structures 310p2, 310p4, also have F4 smaller than F3, respectively. receive.
  • force can be transmitted in the thickness direction by the first and second structures 310 and 410, and the electrode substrate 20 can be easily deformed. Further, the metal film 12 and the electrode substrate 20 are bent, and the influence of the pressing force is exerted in the in-plane direction (direction parallel to the X-axis direction and the Y-axis direction). A force can also be exerted on the neighboring first and second structures 310 and 410.
  • the metal film 12 and the electrode substrate 20 can be easily deformed by the first and second space portions 330 and 430. Further, the first and second structures 310 and 410 configured by columns or the like can apply a high pressure to the electrode substrate 20 with respect to the pressing force of the operation element h, and the electrode substrate 20 can be flexed efficiently. I can do it.
  • the first and second structures 310 and 410 are not overlapped when viewed from the Z-axis direction, the first structure 310 has the second space 430 below it. Thus, the electrode substrate 20 can be easily bent.
  • FIGS. 15A and 15B are schematic cross-sectional views showing the main part of the input device 100 when the first surface 110 is operated by the operator h, and output signals output from the detection unit 20s at that time. It is a figure which shows an example.
  • the bar graph shown along the X-axis in FIGS. 15A and 15B schematically shows the amount of change from the reference value of the capacitance in each detection unit 20s.
  • FIG. 15A shows a mode when the operator h presses on the first structure 310 (310a2)
  • FIG. 15B shows a mode when the operator h presses on the first space 330 (330b1). The aspect of is shown.
  • the first structure 310a2 immediately below the operating position receives the most force, and the first structure 310a2 itself is elastically deformed and displaced downward. Due to the displacement, the detection unit 20sa2 directly below the first structure 310a2 is displaced downward. As a result, the detection unit 20sa2 and the conductor layer 50 come close to each other through the second space 430a2. That is, the detection unit 20sa2 obtains the capacitance change amount Ca2 by slightly changing the distance to the metal film 12 and greatly changing the distance to the conductor layer 50.
  • the first structures 310a1 and 310a3 are also slightly displaced downward due to the influence of the bending of the metal film 12, and the amount of change in capacitance in the detection units 20sa1 and 20sa3 is Ca1 and Ca3, respectively.
  • Ca2 is the largest, and Ca1 and Ca3 are substantially the same and smaller than Ca2. That is, as shown in FIG. 15A, the amount of change in capacitance Ca1, Ca2, Ca3 shows a mountain-shaped distribution with Ca2 as the apex.
  • the calculation unit 61 can calculate the center of gravity and the like based on the ratio of Ca1, Ca2, and Ca3, and can calculate the XY coordinates on the detection unit 20sa2 as the operation position.
  • the first structures 310b1 and 310b2 in the vicinity of the operation position are slightly elastically deformed and displaced downward due to the bending of the metal film 12. Due to the displacement, the electrode substrate 20 is bent, and the detection units 20sb1 and 20sb2 immediately below the first structures 310b1 and 310b2 are displaced downward. Accordingly, the detection units 20sb1 and 20sb2 and the conductor layer 50 are brought close to each other through the second space portions 430b1 and 430b2. That is, the detection units 20sb1 and 20sb2 obtain the capacitance change amounts Cb1 and Cb2, respectively, by slightly changing the distance to the metal film 12 and relatively changing the distance to the conductor layer 50.
  • Cb1 and Cb2 are substantially the same.
  • the calculating part 61 can calculate the XY coordinate between detection part 20sb1, 20sb2 as an operation position.
  • the capacitance of the detection unit 20s is reduced.
  • the amount of change can be made larger. As a result, it is possible to increase the detection sensitivity of the input operation.
  • the flexible display 11 which comprises the operation member 10 is drive-controlled by the controller 710 as mentioned above.
  • the flexible display 11 typically displays an image by controlling light emission of a plurality of pixels arranged in a matrix in the plane. At this time, electromagnetic noise of a level that cannot be ignored by the sensor device 1 may be generated from the pixel circuit that drives each pixel.
  • the sensor device 1 has the operation position with respect to the input operation surface (first surface 110) based on the change in the capacitance of the detection unit 20s based on the change in the facing distance to the metal film 12 and the conductor layer 50.
  • the operation amount (pressing force) is configured to be detected. Therefore, when electromagnetic noise enters the detection unit 20s, the detection accuracy of the capacitance change amount of the detection unit 20s decreases, and the problem becomes more prominent as the capacitance change amount is smaller.
  • the metal film 12 disposed between each detection unit 20s and the flexible display 11.
  • the metal film 12 needs to be formed with a thickness that can be deformed following the input operation on the input operation surface (first surface 110), the thickness of the metal film 12 that can shield electromagnetic noise is always secured. Is not limited.
  • a structure capable of sufficiently protecting the detection unit 20s from electromagnetic noise is essential.
  • the sensor device 1 of the present embodiment has a shield layer S1 for electromagnetically shielding the electrode wires constituting the detection unit 20s from the noise source.
  • the shield layer S1 is provided on the electrode substrate 20 as shown in FIGS.
  • the shield layer S1 is composed of a conductor film provided on the first base material 211 that supports the plurality of first electrode wires 210.
  • the shield layer S ⁇ b> 1 is provided on the first base material 211 on the same plane as the plurality of first electrode wires 210. Accordingly, the shield layer S1 can be formed without separately providing a member that supports the shield layer S1. Furthermore, since the shield layer S1 is made of the same material as the plurality of first electrode lines 210, the first electrode line and the shield layer S1 can be formed in the same process.
  • FIG. 7 is a plan view of the main part of the electrode substrate 20
  • FIG. 8 is a plan view of the main part of the first wiring board 21
  • the first and second electrode lines 210 and 220 are each composed of an electrode line group composed of a plurality of thin electrode lines.
  • the present invention is not limited to this, and each is composed of a single wide electrode line. May be.
  • the shield layer S1 includes a plurality of electrode lines S11 (third electrode lines) disposed between each of the plurality of first electrode lines 210.
  • the plurality of electrode lines S11 are arranged with a predetermined gap from the first electrode line 210.
  • the plurality of electrode lines S ⁇ b> 11 are formed with the same width, and the length of each electrode line S ⁇ b> 11 is substantially the same as the length of the first electrode line 210.
  • Each of the plurality of electrode lines S11 is connected to a predetermined reference potential (for example, ground potential) similarly to the metal film 12 and the conductor layer 50.
  • the plurality of second electrode lines 220 communicate with each other between the plurality of detection units 20 s (opposite regions between the first electrode lines 210 and the second electrode lines 220) when viewed from the flexible display 11.
  • the wiring region 220b to be shielded is shielded by the shield layer S1 (electrode line S11). Thereby, the wiring region 220b is electromagnetically shielded from the flexible display 11.
  • Each electrode line S11 may be formed of a conductive paste or the like by a printing method such as screen printing, gravure offset printing or ink jet printing, a metal foil or metal layer, a transparent conductive film material such as ITO, a carbon material, or the like.
  • the conductive material may be formed by a patterning method using a photolithography technique.
  • the thickness of each electrode line S11 is not particularly limited, and is typically formed with a thickness equivalent to that of the first electrode line 210 (for example, several tens of nm to several tens of ⁇ m).
  • Each electrode line S11 is not limited to the example formed in the same process as the first electrode line 210.
  • Each electrode line S ⁇ b> 11 may be made of a material different from that of the first electrode line 210, and may be formed with a thickness larger than the thickness of the first electrode line 210.
  • the region where the wiring region 220b is shielded by the shield layer S1 is adjusted by the width of each electrode line S11 constituting the shield layer S1. Since the shield layer S1 is formed on the same plane as the first electrode line 210, a part of the wiring region 220b is shielded by the shield layer S1.
  • the shield layer may be configured to cover at least a part of the wiring region of the first electrode line 210 communicating between the plurality of detection units 20s.
  • the shield layer may be configured by a lattice-shaped conductor film that is open in a region facing the plurality of detection units 20s.
  • FIG. 10A is a plan view schematically showing the entire first wiring board 21.
  • the shield layer S1 further includes a wiring part S12 that connects the plurality of electrode lines S11 to each other.
  • the wiring portion S12 is connected to each of the plurality of electrode lines S11 at the edge portion 21a on one long side of the first wiring substrate 21.
  • the wiring part S12 is routed to the edge part 21c on the other long side via the edge part 21b on the short side on the one side of the first wiring board 21.
  • the edge portion 21c is formed with a lead line S12a connected to the wiring portion S12, and is connected to a predetermined reference potential (ground potential) via the control unit 60.
  • the plurality of electrode lines S11 disposed between the plurality of first electrode lines 210 can be commonly connected to the ground potential.
  • lead lines 210a connected to each of the plurality of first electrode lines 210 are further formed, and the first electrode lines 210 are connected via the lead lines 210a. Is connected to the control unit 60.
  • the second wiring board 22 is a lead line connected to each of the plurality of second electrode lines 220, and these lead lines are typically formed on the second wiring board 22. It is formed at the edge on one short side. Therefore, in order to protect at least a part of the lead wires (outer peripheral wiring portions formed outside the detection region where the plurality of detection portions 20s are formed) of the second electrode wires 220 from electromagnetic noise, FIG. As shown in FIG. 10B, it is possible to shield the leader line with the shield layer S provided on the first wiring board 21.
  • FIG. 10B is a plan view of the first wiring board showing a modified example of the configuration of the shield layer S1.
  • the shield layer S ⁇ b> 1 further includes a strip-shaped portion S ⁇ b> 11 b formed on the edge portion 21 b of the first wiring substrate 21.
  • the band-shaped portion S11b is connected between the wiring portion S12 and the lead-out line S12a, and a region between the electrode line 210b located closest to the edge portion 21b and the edge portion among the plurality of first electrode lines 210. Cover in a solid form. Thereby, it becomes possible to protect the outer periphery wiring part of the 2nd electrode wire 220 located just under strip
  • the flexible display 11 may affect the ground potential of the control unit 60. There is a possibility that the shield effect cannot be fully exhibited. Therefore, by connecting the metal film 12, the conductor layer 50, and the shield layer S1 to the ground of the controller 710 to which the flexible display 11 is connected, a more stable ground potential can be maintained and the electromagnetic shielding effect is improved. Can be made. Furthermore, the electromagnetic shielding effect can also be improved by connecting the metal film 12, the conductor layer 50, and the shield layer S1 with more contacts.
  • the plurality of first electrode lines and the plurality of second electrode lines are separated from each other in the thickness direction of the electrode substrate, and a plurality of detection units ( Capacitive sensor) was configured.
  • the plurality of first electrode lines and the plurality of second electrode lines are separated from each other in the plane of the electrode substrate, and a plurality of detection units ( Capacitance sensor) is configured.
  • FIG. 11A is a schematic cross-sectional view of an input device 100C according to the second embodiment of the present technology
  • FIG. 11B is an enlarged cross-sectional view illustrating a main part of the input device 100C.
  • This embodiment is different from the first embodiment in that the electrode substrate 20C electrostatically detects a change in the distance between the metal film 12 and the conductor layer 50 by the amount of change in capacitive coupling in the XY plane. Is different. That is, the Y electrode 220C has a facing portion that faces the X electrode 210C and the electrode substrate 20C in the in-plane direction, and the facing portion constitutes the detection unit 20Cs.
  • the electrode substrate 20C includes a base material 211C on which a plurality of first electrode lines (X electrodes) 210C and a plurality of second electrode lines (Y electrodes) 220C are arranged, and the plurality of X electrodes 210C and Y electrodes 220C are arranged on the same plane.
  • each X electrode 210C and each Y electrode 220C respectively includes a plurality of comb-like unit electrode bodies (first unit electrode bodies) 210m and a plurality of unit electrode bodies (second unit electrode bodies) 220m.
  • An example is shown in which one unit electrode body 210m and one unit electrode body 220m form each detector 20Cs.
  • the X electrode 210C includes a plurality of unit electrode bodies 210m, an electrode wire portion 210p, and a plurality of connection portions 210z.
  • the electrode line portion 210p extends in the Y-axis direction.
  • the plurality of unit electrode bodies 210m are arranged at regular intervals in the Y-axis direction.
  • the electrode wire portion 210p and the unit electrode body 210m are disposed with a predetermined distance therebetween, and the two are connected by a connecting portion 210z.
  • the unit electrode body 210m has a comb-like shape as a whole as described above. Specifically, the unit electrode body 210m includes a plurality of sub-electrodes 210w and a connecting portion 210y. The plurality of sub-electrodes 210w extend in the X-axis direction. Adjacent sub-electrodes 210w are separated by a predetermined distance. One end of the plurality of sub-electrodes 210w is connected to a connecting portion 210y that extends in the X-axis direction.
  • the Y electrode 220C includes a plurality of unit electrode bodies 220m, an electrode line portion 220p, and a plurality of connection portions 220z.
  • the electrode wire portion 220p extends in the X-axis direction.
  • the plurality of unit electrode bodies 220m are arranged at regular intervals in the X-axis direction.
  • the electrode wire portion 220p and the unit electrode body 220m are arranged with a predetermined distance therebetween, and the two are connected by a connecting portion 220z.
  • the connection part 220z may be omitted, and a configuration in which the unit electrode body 220m is directly provided on the electrode line part 220p may be employed.
  • the unit electrode body 220m has a comb-like shape as a whole as described above. Specifically, the unit electrode body 220m includes a plurality of sub-electrodes 220w and a connecting part 220y. The plurality of sub-electrodes 220w extend in the X-axis direction. Adjacent sub-electrodes 220w are separated by a predetermined distance. One ends of the plurality of sub-electrodes 220w are connected to a connecting portion 220y that extends in the Y-axis direction.
  • each detection unit 20Cs is formed in a region where each unit electrode body 210m and each unit electrode body 220m are combined with each other.
  • the plurality of sub-electrodes 210w of the unit electrode body 210m and the plurality of sub-electrodes 220w of the unit electrode body 220m are alternately arranged in the Y-axis direction. That is, the sub-electrodes 210w and 220w are arranged to face each other in the in-plane direction (for example, the Y-axis direction) of the electrode substrate 20C.
  • FIG. 13B is a cross-sectional view seen from the direction AA in FIG. 13A. Similar to the first embodiment, the Y electrode 220C is provided so as to intersect the X electrode 210C, but is formed on the same plane as the X electrode 210C. Therefore, as shown in FIG. 13B, the region where the X electrode 210C and the Y electrode 220C intersect is configured such that the X electrode 210C and the Y electrode 220C do not directly contact each other. That is, the insulating layer 220r is provided on the electrode line portion 210p of the X electrode 210C and the electrode line portion 220p of the Y electrode 220C.
  • a jumper wiring portion 220q is provided in a region where the X electrode 210C and the Y electrode 220C intersect so as to straddle the insulating layer 220r.
  • the electrode wire portion 220p is connected by the jumper wiring portion 220q.
  • FIG. 14 is a schematic cross-sectional view for explaining the configuration of the detection unit 20Cs according to the present embodiment.
  • the sub electrode 210w1 and the sub electrode 220w1, the sub electrode 220w1 and the sub electrode 210w2, the sub electrode 210w2 and the sub electrode 220w2, the sub electrode 220w2 and the sub electrode 210w3, and the sub electrode 210w3 and the sub electrode 210w3 Each of the electrodes 220w3 is capacitively coupled.
  • the capacitances Cc11, Cc12, Cc13, Cc14, and Cc15 between the sub-electrodes are the metal film 12, the conductor layer 50, and the first and second electrode lines 210C including the sub-electrodes.
  • 220C is variably configured according to capacitive coupling.
  • the above configuration eliminates the need for the second base material and the adhesive layer of the electrode substrate, and contributes to reducing the thickness of the input device 100C.
  • many sub-electrodes are capacitively coupled to each other, and the distance between the sub-electrodes that are capacitively coupled can be reduced. Thereby, the capacitive coupling amount as the whole input device 100C can be increased, and detection sensitivity can be improved.
  • the sensor device of the present embodiment also has a shield layer S2 for electromagnetically shielding the electrode wires constituting the detection unit 20Cs from the noise source.
  • the shield layer S2 is provided on the electrode substrate 20C as shown in FIGS. 15A to 15C.
  • FIG. 15A is a plan view of the main part of the electrode substrate 20C
  • FIG. 15B is a cross-sectional view taken along line B1-B1 in FIG. 15A
  • FIG. 15C is a cross-sectional view taken along line C1-C1 in FIG.
  • the shield layer S2 includes at least a part of the first conductor film S21 covering the electrode line part 210p of the first electrode line 210C and the electrode line part 220p of the second electrode line 220C. And a second conductor film S22 to be coated.
  • These electrode line portions 210p and 220p correspond to the wiring regions of the first and second electrode lines 210 and 220 that connect the plurality of detection portions 20Cs.
  • the shield layer S2 includes an insulating film disposed between the first conductor film S21 and the electrode line portion 210p, and an insulating film disposed between the second conductor film S22 and the electrode line portion 220p. Have each. In the present embodiment, each of the insulating films corresponds to the insulating layer 220r that covers the electrode wire portions 210p and 220p.
  • the shield layer S2 is provided on the same plane as the jumper wiring part 220q and the insulating layer 220r.
  • the first and second conductor films S21 and S22 are provided on the same plane as the jumper wiring portion 220q. Therefore, the first and second conductor films S21, S22 and the jumper wiring part 220q are formed in the same process by configuring the first and second conductor films S21, S22 with the same material as the jumper wiring part 220q. It becomes possible. That is, in this example, after forming the first electrode line 210C and the second electrode line 220C, the jumper wiring part 220q and the first electrode at the intersection of the first electrode line 210C and the second electrode line 220C.
  • the insulating layer 220r existing between the lines 210C and the insulating layer 220r covering the first electrode line 210C and the second electrode line 220C. Further, thereafter, the jumper wiring part 220q and the first and second conductor films S21 and S22 described above can be formed simultaneously.
  • the formation method is not particularly limited, and a printing method such as screen printing is typically applicable.
  • the shield layer S2 has an opening S20 that exposes the jumper wiring part 220q.
  • the present invention is not limited to this, and the shield effect may be improved by covering the jumper wiring portion 220q with the shield layer S.
  • the configuration of the shield layer S3 shown in FIGS. 16A to 16C can be employed.
  • FIG. 16A is a plan view of the main part of the electrode substrate 20C
  • FIG. 16B is a cross-sectional view taken along line B2-B2 in FIG. 16A
  • FIG. 16C is a cross-sectional view taken along line C2-C2 in FIG.
  • the shield layer S3 in this example includes the first and second conductor films S21 and S22, and the insulating film 220r1 disposed between the conductor films S21 and S22 and the electrode line portions 210p and 220p.
  • the first electrode line 210 is configured by a linear electrode line or a group of electrode lines, but is not limited thereto, and various shapes of electrodes can be employed.
  • each of the first electrode lines 210D may have a plurality of unit electrode bodies 210Dm.
  • the unit electrode body 210Dm is formed in a facing region intersecting with the second electrode line, and constitutes a capacitance sensor.
  • the unit electrode body 210Dm of the X electrode 210D is composed of a plurality of sub-electrodes, but may be composed of a flat solid electrode.
  • the configuration of the unit electrode body is not limited to the above example, and various types as shown in FIGS. 18 (A) to (P) can be employed.
  • an electrode line 220D configured by a group of electrode lines each composed of a plurality of electrode thin lines may be employed as shown in FIG. 19A, or as shown in FIG. 19B.
  • Electrode wires 220E each having a plurality of unit electrode bodies may be employed.
  • each may be configured by a single electrode line 220F.
  • the shield layers S1 and S2 for shielding the detection unit 20s from electromagnetic noise are arranged between the flexible display 11 and the detection unit 20s, but the noise source is on the conductor layer 50 side (for example, the input device).
  • a shield layer may also be arranged on the back side of the electrode substrate.
  • FIG. 20 shows a configuration example of an input device in which the second support 40 is omitted.
  • the input device including the first and second supports 30 and 40 has been described as an example. However, the input device including only one of these supports, or The present technology can also be applied to an input device that does not include the support.
  • the flexible display 11 has been described as an example of the operation member 10, but the present invention is not limited to this, and the present technology can be applied to, for example, a keyboard on which a key arrangement is displayed.
  • this technique can also take the following structures. (1) It has a plurality of first electrode lines and a plurality of second electrode lines, and is formed in a plurality of opposing regions of the plurality of first electrode lines and the plurality of second electrode lines, respectively.
  • An electrode substrate in which a plurality of capacitive sensors are arranged in a matrix A sensor device comprising: a shield layer that is provided on the electrode substrate and includes a conductor film that shields at least a part of a wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions.
  • the sensor device (2) The sensor device according to (1) above, The plurality of first electrode lines and the plurality of second electrode lines are spaced apart from each other in the thickness direction of the electrode substrate, The plurality of capacitance sensors are respectively formed in intersection regions of the plurality of first electrode lines and the plurality of second electrode lines.
  • the electrode substrate is A first insulating layer that supports the plurality of first electrode wires; A second insulating layer that supports the plurality of second electrode wires, The shield layer is provided on the first insulating layer.
  • the shield layer is provided on the same plane as the plurality of first electrode lines.
  • the conductor film is made of the same material as the plurality of first electrode wires.
  • the conductor film includes a plurality of third electrode lines arranged between each of the plurality of first electrode lines.
  • the conductor film further includes a wiring portion that connects the plurality of third electrode lines to each other.
  • the shield layer further includes an insulating film disposed between the conductor film and the wiring region.
  • the electrode substrate includes a plurality of jumper wiring portions provided at intersections of the plurality of first electrode lines and the plurality of second electrode lines.
  • the conductor film is provided on the same plane as the plurality of jumper wiring portions.
  • the shield layer covers the plurality of jumper wiring portions.
  • the sensor device according to any one of (9) to (11) above, The said conductor film is comprised with the same material as the said several jumper wiring part. Sensor apparatus.
  • the shield layer further shields at least a part of a wiring region of the plurality of first electrode lines communicating between the plurality of opposed regions.
  • the sensor device according to any one of (1) to (13) above,
  • the plurality of second electrode lines have an outer peripheral wiring portion formed outside a detection region where the plurality of capacitance sensors arranged in a matrix are formed,
  • the shield layer further shields at least a part of the outer peripheral wiring portion.
  • a second conductor layer disposed to face the other main surface of the electrode substrate;
  • a sensor device further comprising: a second support body having a plurality of second structures connecting between the second conductor layer and the electrode substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided are a sensor device, an input device, and an electronic device in which degradation of detection precision from effects of electromagnetic noise from external sources can be alleviated. A sensor device according to an embodiment of the present technology comprises an electrode substrate and shield layers. The electrode substrate further comprises a plurality of first electrode wires and a plurality of second electrode wires. A plurality of capacitance sensors which are respectively formed in a plurality of facing regions of the plurality of first electrode wires and the plurality of second electrode wires are arrayed in a matrix. The shield layers are disposed upon the electrode substrate, and further comprise conductive films which isolate at least portions of wiring regions of the plurality of second electrode wires which communicate among the plurality of facing regions.

Description

センサ装置、入力装置及び電子機器Sensor device, input device and electronic apparatus
 本技術は、入力操作を静電的に検出することが可能なセンサ装置、入力装置及び電子機器に関する。 The present technology relates to a sensor device, an input device, and an electronic device that can detect an input operation electrostatically.
 電子機器用のセンサ装置として、例えば容量素子を備え、入力操作面に対する操作子の操作位置と押圧力とを検出することが可能な構成が知られている(例えば、特許文献1参照)。 As a sensor device for an electronic device, for example, a configuration including a capacitive element and capable of detecting an operation position and a pressing force of an operator with respect to an input operation surface is known (for example, see Patent Document 1).
特開2011-170659号公報JP 2011-170659 A
 近年、指の動きを利用したジェスチャー操作によって自由度の高い入力方法が行われているが、さらに、操作面上の押圧力を高い精度で安定的に検出することができれば、より多彩な入力操作を実現することが期待できる。例えば、入力操作を静電的に検出するように構成されたセンサ装置においては、外部からの電磁ノイズの影響による検出精度の低下を抑える必要がある。 In recent years, input methods with a high degree of freedom have been performed by gesture operations using finger movements. However, if the pressing force on the operation surface can be stably detected with high accuracy, more various input operations can be performed. Can be expected to be realized. For example, in a sensor device configured to electrostatically detect an input operation, it is necessary to suppress a decrease in detection accuracy due to the influence of external electromagnetic noise.
 以上のような事情に鑑み、本技術の目的は、外部からの電磁ノイズの影響による検出精度の低下を抑えることができるセンサ装置、入力装置及び電子機器を提供することにある。 In view of the circumstances as described above, an object of the present technology is to provide a sensor device, an input device, and an electronic device that can suppress a decrease in detection accuracy due to the influence of external electromagnetic noise.
 以上の目的を達成するため、本技術の一形態に係るセンサ装置は、電極基板と、シールド層とを具備する。
 前記電極基板は、複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列される。
 前記シールド層は、前記電極基板に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含む。
In order to achieve the above object, a sensor device according to an embodiment of the present technology includes an electrode substrate and a shield layer.
The electrode substrate has a plurality of first electrode lines and a plurality of second electrode lines, and a plurality of opposing regions between the plurality of first electrode lines and the plurality of second electrode lines. A plurality of capacitance sensors each formed are arranged in a matrix.
The shield layer includes a conductor film which is provided on the electrode substrate and shields at least a part of the wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions.
 上記センサ装置において、上記シールド層は、上記配線領域を被覆する電磁シールドとして機能する。これにより外部からの電磁ノイズの影響による各容量センサの検出精度の低下を抑制することができる。 In the sensor device, the shield layer functions as an electromagnetic shield that covers the wiring region. Thereby, the fall of the detection accuracy of each capacity | capacitance sensor by the influence of the electromagnetic noise from the outside can be suppressed.
 前記複数の第1の電極線と前記複数の第2の電極線とは、前記電極基板の厚み方向に相互に離間して配置されてもよい。この場合、前記複数の容量センサは、前記複数の第1の電極線と前記複数の第2の電極線との交差領域に各々形成される。 The plurality of first electrode lines and the plurality of second electrode lines may be spaced apart from each other in the thickness direction of the electrode substrate. In this case, the plurality of capacitance sensors are respectively formed in intersecting regions of the plurality of first electrode lines and the plurality of second electrode lines.
 前記電極基板は、前記複数の第1の電極線を支持する第1の絶縁層と、前記複数の第2の電極線を支持する第2の絶縁層とを有してもよい。この場合、前記シールド層は、例えば、前記第1の絶縁層に設けられる。 The electrode substrate may include a first insulating layer that supports the plurality of first electrode lines, and a second insulating layer that supports the plurality of second electrode lines. In this case, the shield layer is provided on the first insulating layer, for example.
 前記シールド層は、前記複数の第1の電極線と同一平面上に設けられてもよい。前記導体膜は、前記複数の第1の電極線と同じ材料で構成されてもよい。前記導体膜は、前記複数の第1の電極線各々の間に配置された複数の第3の電極線を含んでもよい。前記導体膜は、前記複数の第3の電極線を相互に接続する配線部をさらに含んでもよい。 The shield layer may be provided on the same plane as the plurality of first electrode lines. The conductor film may be made of the same material as the plurality of first electrode wires. The conductor film may include a plurality of third electrode lines disposed between the plurality of first electrode lines. The conductor film may further include a wiring portion that connects the plurality of third electrode lines to each other.
 一方、前記複数の容量センサは、前記電極基板の面内方向に相互に対向する前記複数の第1の電極線及び前記複数の第2の電極線との対向領域に各々形成されてもよい。この場合、前記シールド層は、前記導体膜と前記配線領域との間に配置された絶縁膜をさらに有してもよい。 On the other hand, the plurality of capacitance sensors may be respectively formed in regions facing the plurality of first electrode lines and the plurality of second electrode lines facing each other in an in-plane direction of the electrode substrate. In this case, the shield layer may further include an insulating film disposed between the conductor film and the wiring region.
 前記電極基板は、前記複数の第1の電極線と前記複数の第2の電極線との交差部に設けられた複数のジャンパ配線部を有してもよい。前記導体膜は、前記複数のジャンパ配線部と同一平面上に設けられてもよい。前記シールド層は、前記複数のジャンパ配線部を被覆してもよい。前記導体膜は、前記複数のジャンパ配線部と同じ材料で構成されてもよい。前記シールド層は、前記複数の対向領域間を連絡する前記複数の第1の電極線の少なくとも一部の配線領域をさらに遮蔽してもよい。 The electrode substrate may include a plurality of jumper wiring portions provided at intersections of the plurality of first electrode lines and the plurality of second electrode lines. The conductor film may be provided on the same plane as the plurality of jumper wiring portions. The shield layer may cover the plurality of jumper wiring portions. The conductor film may be made of the same material as the plurality of jumper wiring portions. The shield layer may further shield at least a part of the wiring region of the plurality of first electrode lines connecting the plurality of opposed regions.
 前記複数の第2の電極線は、マトリクス状に配列された前記複数の容量センサが形成される検出領域の外側に形成された外周配線部を有してもよい。この場合、前記シールド層は、前記外周配線部の少なくとも一部をさらに遮蔽してもよい。 The plurality of second electrode lines may include an outer peripheral wiring portion formed outside a detection region where the plurality of capacitance sensors arranged in a matrix are formed. In this case, the shield layer may further shield at least a part of the outer peripheral wiring portion.
 前記センサ装置は、前記電極基板の一方の主面に対向して配置された変形可能な第1の導体層と、前記第1の導体層と前記電極基板との間を接続する複数の第1の構造体を有する第1の支持体と、をさらに具備してもよい。また前記センサ装置は、前記電極基板の他方の主面に対向して配置された第2の導体層と、前記第2の導体層と前記電極基板との間を接続する複数の第2の構造体を有する第2の支持体と、をさらに具備してもよい。 The sensor device includes a deformable first conductor layer disposed to face one main surface of the electrode substrate, and a plurality of first conductors connecting between the first conductor layer and the electrode substrate. And a first support having the structure. The sensor device includes a second conductor layer disposed to face the other main surface of the electrode substrate, and a plurality of second structures connecting the second conductor layer and the electrode substrate. And a second support having a body.
 本技術の一形態に係る入力装置は、操作部材と、電極基板と、シールド層とを具備する。
 前記操作部材は、入力操作面を有する。
 前記電極基板は、複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列される。
 前記シールド層は、前記操作部材と前記電極基板との間に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含む。
An input device according to an embodiment of the present technology includes an operation member, an electrode substrate, and a shield layer.
The operation member has an input operation surface.
The electrode substrate has a plurality of first electrode lines and a plurality of second electrode lines, and a plurality of opposing regions between the plurality of first electrode lines and the plurality of second electrode lines. A plurality of capacitance sensors each formed are arranged in a matrix.
The shield layer includes a conductor film that is provided between the operation member and the electrode substrate and shields at least some of the wiring regions of the plurality of second electrode lines that communicate between the plurality of opposing regions. .
 本技術の一形態に係る電子機器は、表示素子と、電極基板と、シールド層とを具備する。
 前記表示素子は、入力操作面を有する。
 前記電極基板は、複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列される。
 前記シールド層は、前記表示素子と前記電極基板との間に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含む。
An electronic device according to an embodiment of the present technology includes a display element, an electrode substrate, and a shield layer.
The display element has an input operation surface.
The electrode substrate has a plurality of first electrode lines and a plurality of second electrode lines, and a plurality of opposing regions between the plurality of first electrode lines and the plurality of second electrode lines. A plurality of capacitance sensors each formed are arranged in a matrix.
The shield layer includes a conductor film that is provided between the display element and the electrode substrate and shields at least some of the wiring regions of the plurality of second electrode lines that communicate between the plurality of opposing regions. .
 以上のように、本技術によれば、外部からの電磁ノイズの影響による検出精度の低下を抑えることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
As described above, according to the present technology, it is possible to suppress a decrease in detection accuracy due to the influence of external electromagnetic noise.
Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施形態に係る入力装置の概略断面図である。1 is a schematic cross-sectional view of an input device according to a first embodiment of the present technology. 上記入力装置の分解斜視図である。It is a disassembled perspective view of the said input device. 上記入力装置の要部の概略断面図である。It is a schematic sectional drawing of the principal part of the said input device. 上記入力装置を用いた電子機器のブロック図である。It is a block diagram of the electronic device using the said input device. 操作子により上記入力装置の第1の面の点をZ軸方向下方へ押圧した際に、上記第1及び第2の構造体へ付加される力の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the force added to the said 1st and 2nd structure when the point of the 1st surface of the said input device is pressed below to the Z-axis direction with the operation element. 上記第1の面の第1の構造体上の点が操作子による操作を受けたときの上記入力装置の態様を示す模式的な要部断面図と、そのとき上記検出部から出力される出力信号の一例を示す図である。The typical principal part sectional view showing the mode of the above-mentioned input device when the point on the 1st structure of the above-mentioned 1st surface receives operation by a manipulator, and the output outputted from the above-mentioned detection part at that time It is a figure which shows an example of a signal. 上記入力装置における電極基板の要部平面図である。It is a principal part top view of the electrode substrate in the said input device. 上記電極基板を構成する第1の配線基板の要部平面図である。It is a principal part top view of the 1st wiring board which comprises the said electrode substrate. 上記電極基板を構成する第2の配線基板の要部平面図である。It is a principal part top view of the 2nd wiring board which comprises the said electrode substrate. 上記第1の配線基板の全体を概略的に示す平面図である。It is a top view which shows roughly the whole said 1st wiring board. Aは、本技術の第2の実施形態に係る入力装置の概略断面図であり、Bは、入力装置の要部を拡大して示す断面図である。A is a schematic sectional view of an input device according to a second embodiment of the present technology, and B is a sectional view showing an enlarged main part of the input device. 上記入力装置における第1の電極線および第2の電極線の構成を示す要部平面図である。It is a principal part top view which shows the structure of the 1st electrode line in the said input device, and a 2nd electrode line. Aは上記入力装置における電極基板の要部平面図、BはそのA-A線断面図である。A is a plan view of the main part of the electrode substrate in the input device, and B is a cross-sectional view taken along the line AA. 上記入力装置に係る検出部の構成を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the structure of the detection part which concerns on the said input device. Aはシールド層を有する電極基板の要部平面図、BはそのB1-B1線断面図、CはそのC1-C1線断面図である。A is a plan view of an essential part of an electrode substrate having a shield layer, B is a sectional view taken along line B1-B1, and C is a sectional view taken along line C1-C1. Aはシールド層を有する電極基板の要部平面図、BはそのB2-B2線断面図、CはそのC2-C2線断面図である。A is a plan view of an essential part of an electrode substrate having a shield layer, B is a sectional view taken along line B2-B2, and C is a sectional view taken along line C2-C2. 第1の電極線の構成の変形例を示す要部平面図である。It is a principal part top view which shows the modification of a structure of a 1st electrode wire. 第1の電極線のその他の構成例を示す概略平面図である。It is a schematic plan view which shows the other structural example of a 1st electrode line. 第2の電極線の構成の変形例を示す要部平面図である。It is a principal part top view which shows the modification of a structure of a 2nd electrode wire. 上記入力装置の構成の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of a structure of the said input device.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present technology will be described with reference to the drawings.
<第1の実施形態>
 図1は本技術の第1の実施形態に係る入力装置100の概略断面図、図2は入力装置100の分解斜視図、図3は入力装置100の要部の概略断面図、図4は入力装置100を用いた電子機器70のブロック図である。以下、本実施形態の入力装置100の構成について説明する。なお図中、X軸及びY軸は相互に直交する方向(入力装置100の面内方向)を示し、Z軸はX軸及びY軸に直交する方向(入力装置100の厚み方向又は上下方向)を示している。
<First Embodiment>
1 is a schematic cross-sectional view of an input device 100 according to the first embodiment of the present technology, FIG. 2 is an exploded perspective view of the input device 100, FIG. 3 is a schematic cross-sectional view of a main part of the input device 100, and FIG. 4 is a block diagram of an electronic device 70 using the device 100. FIG. Hereinafter, the configuration of the input device 100 of the present embodiment will be described. In the figure, the X-axis and the Y-axis indicate directions orthogonal to each other (in-plane direction of the input device 100), and the Z-axis indicates a direction orthogonal to the X-axis and Y-axis (thickness direction or vertical direction of the input device 100). Is shown.
[入力装置]
 入力装置100は、ユーザによる操作を受け付けるフレキシブルディスプレイ(表示素子)11と、ユーザの操作を検出するセンサ装置1とを有する。入力装置100は、例えばフレキシブルなタッチパネルディスプレイとして構成され、後述する電子機器70に組み込まれる。センサ装置1及びフレキシブルディスプレイ11は、Z軸に垂直な方向に延びる平板状である。
[Input device]
The input device 100 includes a flexible display (display element) 11 that receives an operation by a user and a sensor device 1 that detects the user's operation. The input device 100 is configured as a flexible touch panel display, for example, and is incorporated in an electronic device 70 described later. The sensor device 1 and the flexible display 11 have a flat plate shape extending in a direction perpendicular to the Z axis.
 フレキシブルディスプレイ11は、第1の面110と、第1の面110の反対側の第2の面120とを有する。フレキシブルディスプレイ11は、入力装置100における入力操作部としての機能と、表示部としての機能とを兼ね備える。すなわちフレキシブルディスプレイ11は、第1の面110を入力操作面及び表示面として機能させ、第1の面110からユーザによる操作に応じた画像をZ軸方向上方に向けて表示する。第1の面110には、例えばキーボードに対応する画像や、GUI(Graphical User Interface)等が表示される。フレキシブルディスプレイ11に対する操作を行う操作子としては、例えば、指やペン(スタイラスペン)等が挙げられる。 The flexible display 11 has a first surface 110 and a second surface 120 opposite to the first surface 110. The flexible display 11 has both a function as an input operation unit in the input device 100 and a function as a display unit. In other words, the flexible display 11 causes the first surface 110 to function as an input operation surface and a display surface, and displays an image corresponding to an operation by the user from the first surface 110 facing upward in the Z-axis direction. On the first surface 110, for example, an image corresponding to a keyboard, a GUI (Graphical User Interface), or the like is displayed. Examples of the operator that performs an operation on the flexible display 11 include a finger and a pen (stylus pen).
 フレキシブルディスプレイ11の具体的な構成は特に限定されない。例えば、フレキシブルディスプレイ11として、いわゆる電子ペーパー、有機EL(エレクトロルミネセンス)パネル、無機ELパネル、液晶パネル等を採用することができる。またフレキシブルディスプレイ11の厚みも特に限定されず、例えば0.1mm~1mm程度である。 The specific configuration of the flexible display 11 is not particularly limited. For example, as the flexible display 11, so-called electronic paper, an organic EL (electroluminescence) panel, an inorganic EL panel, a liquid crystal panel, or the like can be employed. The thickness of the flexible display 11 is not particularly limited, and is about 0.1 mm to 1 mm, for example.
 センサ装置1は、金属膜(第1の導体層)12と、導体層(第2の導体層)50と、電極基板20と、第1の支持体30と、第2の支持体40を有する。センサ装置1は、フレキシブルディスプレイ11の第2の面120側に配置されている。 The sensor device 1 includes a metal film (first conductor layer) 12, a conductor layer (second conductor layer) 50, an electrode substrate 20, a first support 30, and a second support 40. . The sensor device 1 is disposed on the second surface 120 side of the flexible display 11.
 金属膜12は、変形可能なシート状に構成される。導体層50は、金属膜12に対向して配置される。電極基板20は、複数の第1の電極線210と、複数の第1の電極線210に対向して配置され複数の第1の電極線210と交差する複数の第2の電極線220とを有し、金属膜12と導体層50との間に変形可能に配置され、金属膜12及び導体層50各々との距離の変化を静電的に検出することが可能である。第1の支持体30は、金属膜12と電極基板20との間を接続する複数の第1の構造体310と、複数の第1の構造体310の間に形成された第1の空間部330とを有する。第2の支持体40は、隣り合う複数の第1の構造体310間にそれぞれ配置され導体層50と電極基板20との間を接続する複数の第2の構造体410と、複数の第2の構造体410の間に形成された第2の空間部430とを有する。 The metal film 12 is configured in a deformable sheet shape. The conductor layer 50 is disposed to face the metal film 12. The electrode substrate 20 includes a plurality of first electrode lines 210 and a plurality of second electrode lines 220 that are arranged to face the plurality of first electrode lines 210 and intersect the plurality of first electrode lines 210. And disposed so as to be deformable between the metal film 12 and the conductor layer 50, and it is possible to electrostatically detect a change in the distance between the metal film 12 and the conductor layer 50. The first support 30 includes a plurality of first structures 310 that connect the metal film 12 and the electrode substrate 20, and a first space formed between the plurality of first structures 310. 330. The second support body 40 is disposed between a plurality of adjacent first structure bodies 310, respectively, and a plurality of second structure bodies 410 connecting the conductor layer 50 and the electrode substrate 20, and a plurality of second structure bodies And a second space portion 430 formed between the structures 410.
 本実施形態に係るセンサ装置1(入力装置100)は、フレキシブルディスプレイ11の第1の面110上での入力操作による金属膜12及び電極基板20と、導体層50及び電極基板20との間の距離の変化を静電的に検出することで、当該入力操作を検出する。当該入力操作は、第1の面110上を意識的な押圧(プッシュ)操作に限られず、接触(タッチ)操作であってもよい。すなわち、入力装置100は、後述するように、一般的なタッチ操作により付加される微小な押圧力(例えば約数十g程度)であっても検出可能であるため、通常のタッチセンサと同様のタッチ操作が可能に構成される。 The sensor device 1 (input device 100) according to the present embodiment includes a gap between the metal film 12 and the electrode substrate 20 by the input operation on the first surface 110 of the flexible display 11, and the conductor layer 50 and the electrode substrate 20. The input operation is detected by electrostatically detecting a change in the distance. The input operation is not limited to a conscious pressing (push) operation on the first surface 110 but may be a contact (touch) operation. That is, the input device 100 can detect even a minute pressing force (for example, about several tens of g) applied by a general touch operation, as will be described later. The touch operation is configured to be possible.
 入力装置100は、制御部60を有し、当該制御部60は、演算部61及び信号生成部62を含む。演算部61は、検出部20sの静電容量の変化に基づいて、ユーザによる操作を検出する。信号生成部62は、演算部61による検出結果に基づいて操作信号を生成する。 The input device 100 includes a control unit 60, and the control unit 60 includes a calculation unit 61 and a signal generation unit 62. The calculation unit 61 detects an operation by the user based on the change in the capacitance of the detection unit 20s. The signal generator 62 generates an operation signal based on the detection result by the calculator 61.
 図4に示す電子機器70は、入力装置100の信号生成部62の生成する操作信号に基づいた処理を行うコントローラ710を有する。コントローラ710によって処理された操作信号は、例えば画像信号として、フレキシブルディスプレイ11に出力される。フレキシブルディスプレイ11は、フレキシブル配線基板113(図2参照)を介してコントローラ710に搭載された駆動回路に接続される。上記駆動回路は、配線基板113に搭載されていてもよい。 The electronic device 70 illustrated in FIG. 4 includes a controller 710 that performs processing based on an operation signal generated by the signal generation unit 62 of the input device 100. The operation signal processed by the controller 710 is output to the flexible display 11 as an image signal, for example. The flexible display 11 is connected to a drive circuit mounted on the controller 710 via a flexible wiring board 113 (see FIG. 2). The drive circuit may be mounted on the wiring board 113.
 電子機器70としては、典型的には、携帯電話、スマートフォン、ノート型PC(パーソナルコンピュータ)、タブレット型PC、携帯型ゲーム機等が挙げられるが、これら携帯型電子機器に限られず、ATM(現金自動預け払い機)、自動券売機等の据置型電子機器等にも適用可能である。 Typically, the electronic device 70 includes a mobile phone, a smart phone, a notebook PC (personal computer), a tablet PC, a portable game machine, and the like. It can also be applied to stationary electronic devices such as automatic teller machines) and automatic ticket vending machines.
 フレキシブルディスプレイ11は、本実施形態において、入力装置100の操作部材10の一部として構成される。すなわち、入力装置100は、操作部材10と、電極基板20と、第1の支持体30と、第2の支持体40と、導体層50とを有する。以下、これらの各要素について説明する。 The flexible display 11 is configured as a part of the operation member 10 of the input device 100 in the present embodiment. That is, the input device 100 includes the operation member 10, the electrode substrate 20, the first support body 30, the second support body 40, and the conductor layer 50. Hereinafter, each of these elements will be described.
 (操作部材)
 操作部材10は、第1の面110と第2の面120とを含むフレキシブルディスプレイ11と、金属膜12との積層構造を有する。すなわち操作部材10は、ユーザによる操作を受け付ける第1の面110と、金属膜12が形成され第1の面110の反対側の第2の面120とを有し、変形可能なシート状に構成される。
(Operation member)
The operation member 10 has a laminated structure of the flexible display 11 including the first surface 110 and the second surface 120 and the metal film 12. That is, the operation member 10 includes a first surface 110 that receives an operation by a user, and a second surface 120 that is formed with the metal film 12 and is opposite to the first surface 110, and is configured in a deformable sheet shape. Is done.
 金属膜12は、フレキシブルディスプレイ11の変形に倣って変形可能なシート状に構成され、例えばCu(銅)、Al(アルミニウム)等の金属箔あるいはメッシュ材で構成される。金属膜12の厚みは特に限定されず、例えば数10nm~数10μmである。金属膜12は、所定の基準電位(例えばグランド電位)に接続される。これにより金属膜12は、電子機器70に実装された際に電磁波に対する一定のシールド機能を発揮する。すなわち、例えば電子機器70に実装される他の電子部品等からの電磁波の侵入及び入力装置100からの電磁波の漏洩を抑制し、電子機器70としての動作の安定性に寄与することができる。 The metal film 12 is configured in a sheet shape that can be deformed following the deformation of the flexible display 11, and is formed of a metal foil or a mesh material such as Cu (copper) or Al (aluminum), for example. The thickness of the metal film 12 is not particularly limited and is, for example, several tens of nm to several tens of μm. The metal film 12 is connected to a predetermined reference potential (for example, ground potential). Thereby, the metal film 12 exhibits a certain shield function against electromagnetic waves when mounted on the electronic device 70. That is, for example, intrusion of electromagnetic waves from other electronic components or the like mounted on the electronic device 70 and leakage of electromagnetic waves from the input device 100 can be suppressed, which can contribute to the stability of the operation as the electronic device 70.
 なお金属膜12の構成材料は金属に限られず、例えば、ITO等の金属酸化物材料やカーボン等のような他の導電材料であってもよい。 Note that the constituent material of the metal film 12 is not limited to a metal, and may be a metal oxide material such as ITO, or another conductive material such as carbon.
 金属膜12は、例えば図3に示すように、金属箔が形成された粘着性の接着層13をフレキシブルディスプレイ11に貼り付けることで形成される。接着層13の材料は粘着性を有すれば特に限定されないが、樹脂材料を適用した樹脂膜としてもよい。あるいは、フレキシブルディスプレイ11に直接形成された蒸着膜やスパッタ膜等で構成されてもよく、フレキシブルディスプレイ11の表面に印刷された導電ペースト等の塗膜であってもよい。 For example, as shown in FIG. 3, the metal film 12 is formed by attaching an adhesive adhesive layer 13 on which a metal foil is formed to the flexible display 11. The material of the adhesive layer 13 is not particularly limited as long as it has adhesiveness, but may be a resin film to which a resin material is applied. Alternatively, it may be composed of a vapor deposition film or a sputtered film directly formed on the flexible display 11, or may be a coating film such as a conductive paste printed on the surface of the flexible display 11.
 (導体層)
 導体層50は、入力装置100の最下部を構成し、金属膜12とZ軸方向に対向して配置される。導体層50は、例えば入力装置100の支持プレートとしても機能し、例えば操作部材10及び電極基板20よりも高い曲げ剛性を有するように構成される。導体層50は、例えばAl合金、Mg(マグネシウム)合金その他の金属材料を含む金属板又はカーボン繊維強化型プラスチック等の導体板で構成されてもよい。あるいは導体層50は、プラスチック材料等の絶縁体層上にメッキ膜や蒸着膜、スパッタリング膜、金属箔等の導体膜が形成された積層構造を有してもよい。また導体層50の厚みは特に限定されず、例えば約0.3mm程度である。
(Conductor layer)
The conductor layer 50 constitutes the lowermost part of the input device 100 and is disposed to face the metal film 12 in the Z-axis direction. The conductor layer 50 also functions as a support plate of the input device 100, for example, and is configured to have higher bending rigidity than the operation member 10 and the electrode substrate 20, for example. The conductor layer 50 may be made of a metal plate containing, for example, an Al alloy, an Mg (magnesium) alloy, or other metal material, or a conductor plate such as a carbon fiber reinforced plastic. Alternatively, the conductor layer 50 may have a laminated structure in which a conductor film such as a plating film, a vapor deposition film, a sputtering film, or a metal foil is formed on an insulating layer such as a plastic material. Moreover, the thickness of the conductor layer 50 is not specifically limited, For example, it is about 0.3 mm.
 導体層50は、所定の基準電位(例えばグランド電位)に接続される。これにより導体層50は、電子機器70に実装された際の電磁シールド層としての機能を発揮する。すなわち、例えば電子機器70に実装される他の電子部品等からの電磁波の侵入及び入力装置100からの電磁波の漏洩を抑制し、電子機器70としての動作の安定性に寄与することができる。 The conductor layer 50 is connected to a predetermined reference potential (for example, ground potential). Thus, the conductor layer 50 exhibits a function as an electromagnetic shield layer when mounted on the electronic device 70. That is, for example, intrusion of electromagnetic waves from other electronic components or the like mounted on the electronic device 70 and leakage of electromagnetic waves from the input device 100 can be suppressed, which can contribute to the stability of the operation as the electronic device 70.
 (電極基板)
 電極基板20は、第1の電極線210を有する第1の配線基板21と、第2の電極線220を有する第2の配線基板22との積層体で構成される。
(Electrode substrate)
The electrode substrate 20 is configured by a laminate of a first wiring substrate 21 having first electrode lines 210 and a second wiring substrate 22 having second electrode lines 220.
 第1の配線基板21は、第1の基材211(図2参照)と、複数の第1の電極線(X電極)210とを有する。第1の基材211(第1の絶縁層)は、例えばフレキシブル性を有するシート材で構成され、具体的にはPET、PEN、PC、PMMA、ポリイミド等の電気絶縁性のプラスチックシート(フィルム)で構成される。第1の基材211の厚みは特に限定されず、例えば数10μm~数100μmである。 The first wiring board 21 includes a first base material 211 (see FIG. 2) and a plurality of first electrode wires (X electrodes) 210. The first base material 211 (first insulating layer) is made of, for example, a flexible sheet material, specifically, an electrically insulating plastic sheet (film) such as PET, PEN, PC, PMMA, and polyimide. Consists of. The thickness of the first base material 211 is not particularly limited, and is, for example, several tens of μm to several hundreds of μm.
 複数の第1の電極線210は、第1の基材211の一方の面に一体的に設けられている。複数の第1の電極線210は、X軸方向に沿って所定の間隔をおいて配列され、かつY軸方向に沿ってほぼ直線的に形成されている。第1の電極線210各々は、第1の基材211の縁部等に引き出され、それぞれ異なる端子に接続される。また第1の電極線210各々は、これらの端子を介して制御部60に電気的に接続される。 The plurality of first electrode wires 210 are integrally provided on one surface of the first base material 211. The plurality of first electrode lines 210 are arranged at a predetermined interval along the X-axis direction and are formed substantially linearly along the Y-axis direction. Each of the first electrode wires 210 is drawn out to the edge of the first base material 211 and connected to different terminals. In addition, each of the first electrode lines 210 is electrically connected to the control unit 60 via these terminals.
 なお、複数の第1の電極線210各々は、単一の電極線で構成されていてもよいし、X軸方向に沿って配列された複数の電極群で構成されていてもよい。また、各々の電極群を構成する複数の電極線は、共通の端子に接続されてもよいし、異なる2以上の端子に分けて接続されてもよい。 In addition, each of the plurality of first electrode lines 210 may be configured by a single electrode line, or may be configured by a plurality of electrode groups arranged along the X-axis direction. In addition, a plurality of electrode lines constituting each electrode group may be connected to a common terminal, or may be connected to two or more different terminals.
 一方、第2の配線基板22は、第2の基材221(図2参照)と、複数の第2の電極線(Y電極)220とを有する。第2の基材221(第2の絶縁層)は、第1の基材211と同様に例えばフレキシブル性を有するシート材で構成され、具体的にはPET、PEN、PC、PMMA、ポリイミド等の電気絶縁性のプラスチックシート(フィルム)等で構成される。第2の基材221の厚みは特に限定されず、例えば数10μm~数100μmである。第2の配線基板22は、第1の配線基板21に対向して配置される。 On the other hand, the second wiring board 22 has a second base material 221 (see FIG. 2) and a plurality of second electrode lines (Y electrodes) 220. The second base material 221 (second insulating layer) is composed of, for example, a flexible sheet material like the first base material 211, and specifically, PET, PEN, PC, PMMA, polyimide, etc. It consists of an electrically insulating plastic sheet (film). The thickness of the second base material 221 is not particularly limited and is, for example, several tens of μm to several hundreds of μm. The second wiring board 22 is disposed to face the first wiring board 21.
 複数の第2の電極線220は、複数の第1の電極線210と同様に構成される。すなわち複数の第2の電極線220は、第2の基材221の一方の面に一体的に設けられており、Y軸方向に沿って所定の間隔をおいて配列され、かつX軸方向に沿ってほぼ直線的に形成されている。また複数の第2の電極線220各々は、単一の電極線で構成されていてもよいし、Y軸方向に沿って配列された複数の電極群で構成されていてもよい。 The plurality of second electrode lines 220 are configured in the same manner as the plurality of first electrode lines 210. That is, the plurality of second electrode lines 220 are integrally provided on one surface of the second base material 221, arranged at a predetermined interval along the Y-axis direction, and in the X-axis direction. It is formed almost linearly along. Each of the plurality of second electrode lines 220 may be configured by a single electrode line or may be configured by a plurality of electrode groups arranged along the Y-axis direction.
 第2の電極線220各々は、第2の基材221の縁部等に引き出され、それぞれ異なる端子に接続される。各々の電極群を構成する複数の電極線は、共通の端子に接続されてもよいし、異なる2以上の端子に分けて接続されてもよい。また第2の電極線220各々は、これらの端子を介して制御部60に電気的に接続される。 Each of the second electrode wires 220 is drawn out to the edge of the second base material 221 and connected to a different terminal. The plurality of electrode lines constituting each electrode group may be connected to a common terminal, or may be divided and connected to two or more different terminals. Each of the second electrode lines 220 is electrically connected to the control unit 60 via these terminals.
 第1の電極線210及び第2の電極線220は、導電ペースト等をスクリーン印刷やグラビアオフセット印刷、インクジェット印刷等の印刷法で形成されてもよいし、金属箔あるいは金属層のフォトリソグラフィ技術を用いたパターニング法で形成されてもよい。また第1及び第2の基材211,221がいずれもフレキシブル性を有するシートで構成されることで、電極基板20全体としてフレキシブル性を有する構成とすることができる。 The first electrode line 210 and the second electrode line 220 may be formed using a conductive paste or the like by a printing method such as screen printing, gravure offset printing, or ink jet printing, or a metal foil or metal layer photolithography technique. It may be formed by the patterning method used. Moreover, it can be set as the structure which has flexibility as the electrode substrate 20 whole because both the 1st and 2nd base materials 211 and 221 are comprised with the sheet | seat which has flexibility.
 図3に示すように電極基板20は、第1の配線基板21と第2の配線基板22とを相互に接合する接着層23を有する。接着層23は、電気絶縁性を有し、例えば、接着剤の硬化物、粘着テープ等の粘着材料等で構成される。 As shown in FIG. 3, the electrode substrate 20 has an adhesive layer 23 that joins the first wiring substrate 21 and the second wiring substrate 22 to each other. The adhesive layer 23 has electrical insulating properties, and is made of, for example, an adhesive cured material, an adhesive material such as an adhesive tape, or the like.
 以上のように本実施形態の電極基板20においては、複数の第1の電極線210と複数の第2の電極線220とは、電極基板20の厚み方向(Z軸方向)に相互に離間して配置される。したがって電極基板20は、複数の第1の電極線210と複数の第2の電極線220との複数の対向領域に各々形成される複数の検出部20s(容量センサ)がマトリクス状に配列される。複数の検出部20sは、複数の第1の電極線210と複数の第2の電極線220との交差領域に各々形成される。 As described above, in the electrode substrate 20 of the present embodiment, the plurality of first electrode lines 210 and the plurality of second electrode lines 220 are separated from each other in the thickness direction (Z-axis direction) of the electrode substrate 20. Arranged. Accordingly, in the electrode substrate 20, a plurality of detection units 20s (capacitance sensors) formed in a plurality of opposing regions of the plurality of first electrode lines 210 and the plurality of second electrode lines 220 are arranged in a matrix. . The plurality of detection units 20 s are respectively formed in intersection regions of the plurality of first electrode lines 210 and the plurality of second electrode lines 220.
 本実施形態においては、複数の第1の電極線210が複数の第2の電極線220よりも操作部材10側に配置されるが、これに限られず、複数の第2の電極線220が複数の第1の電極線210よりも操作部材10側に配置されてもよい。 In the present embodiment, the plurality of first electrode lines 210 are disposed closer to the operation member 10 than the plurality of second electrode lines 220. However, the present invention is not limited to this, and a plurality of second electrode lines 220 are provided. The first electrode wire 210 may be disposed closer to the operation member 10 side.
 (制御部)
 制御部60は、電極基板20に電気的に接続される。より詳細には、制御部60は、複数の第1及び第2の電極線210,220各々に端子を介してそれぞれ接続される。制御部60は、複数の検出部20sの出力に基づいて第1の面110に対する入力操作に関する情報を生成することが可能な信号処理回路を構成する。制御部60は、所定の周期で複数の検出部20s各々をスキャンしながら各検出部20sの容量変化量を取得し、その容量変化量に基づいて入力操作に関する情報を生成する。
(Control part)
The controller 60 is electrically connected to the electrode substrate 20. More specifically, the control unit 60 is connected to each of the plurality of first and second electrode wires 210 and 220 via terminals. The control unit 60 configures a signal processing circuit capable of generating information related to an input operation on the first surface 110 based on outputs of the plurality of detection units 20s. The control unit 60 acquires the capacitance change amount of each detection unit 20s while scanning each of the plurality of detection units 20s at a predetermined cycle, and generates information related to the input operation based on the capacitance change amount.
 制御部60は、典型的には、CPU/MPU、メモリ等を有するコンピュータで構成される。制御部60は、単一のチップ部品で構成されてもよいし、複数の回路部品で構成されてもよい。制御部60は、入力装置100に搭載されてもよいし、入力装置100が組み込まれる電子機器70に搭載されてもよい。前者の場合には、例えば、電極基板20に接続されるフレキシブル配線基板上に実装される。後者の場合には、電子機器70を制御するコントローラ710と一体的に構成されてもよい。 The control unit 60 is typically composed of a computer having a CPU / MPU, a memory, and the like. The control unit 60 may be composed of a single chip component or a plurality of circuit components. The control unit 60 may be mounted on the input device 100 or may be mounted on the electronic device 70 in which the input device 100 is incorporated. In the former case, for example, it is mounted on a flexible wiring board connected to the electrode substrate 20. In the latter case, the electronic device 70 may be integrated with the controller 710.
 制御部60は、上述のように演算部61と、信号生成部62とを有し、不図示の記憶部に格納されたプログラムに従って各種機能を実行する。演算部61は、電極基板20の第1及び第2の電極線210,220各々から出力される電気的な信号(入力信号)に基づいて第1の面110上のXY座標系における操作位置を算出し、信号生成部62は、その結果に基づいて操作信号を生成する。これにより、フレキシブルディスプレイ11に対し、第1の面110上での入力操作に基づく画像を表示させることができる。 The control unit 60 includes the calculation unit 61 and the signal generation unit 62 as described above, and executes various functions according to a program stored in a storage unit (not shown). The calculation unit 61 determines the operation position in the XY coordinate system on the first surface 110 based on electrical signals (input signals) output from the first and second electrode lines 210 and 220 of the electrode substrate 20. The signal generation unit 62 calculates and generates an operation signal based on the result. Thereby, an image based on an input operation on the first surface 110 can be displayed on the flexible display 11.
 図3,4に示す演算部61は、第1の面110上における操作子による操作位置のXY座標を、固有のXY座標が割り当てられた各検出部20sからの出力に基づいて算出する。具体的には、演算部61は、各X電極(第1の電極線210)、Y電極(第2の電極線220)から得られる静電容量の変化量に基づいて、各X電極、Y電極の交差領域(対向領域)に形成される各検出部20sにおける静電容量の変化量を算出する。この各検出部20sの静電容量の変化量の比率等により、操作子による操作位置のXY座標を算出することが可能となる。 3 and 4 calculates the XY coordinates of the operation position by the operator on the first surface 110 based on the output from each detection unit 20s to which the unique XY coordinates are assigned. Specifically, the calculation unit 61 determines whether each X electrode, Y is based on the amount of change in capacitance obtained from each X electrode (first electrode line 210) and Y electrode (second electrode line 220). The amount of change in capacitance in each detection unit 20s formed in the electrode intersection region (opposite region) is calculated. The XY coordinates of the operation position by the operator can be calculated from the ratio of the change in capacitance of each detection unit 20s.
 例えば、演算部61は、第1及び第2の電極線210,220のうち駆動電極(E1)に相当する電極線に所定の周期で駆動信号を印加したときに得られる検出電極(E2)に相当する電極線からの出力に基づいて、各検出部20sの容量変化量を取得する。信号生成部62は、演算部61の出力(各検出部20sの容量変化量)に基づいて、入力操作面に対する入力操作に関する情報(制御信号)を生成する。 For example, the calculation unit 61 applies the detection electrode (E2) obtained when a drive signal is applied to the electrode line corresponding to the drive electrode (E1) of the first and second electrode lines 210 and 220 at a predetermined cycle. Based on the output from the corresponding electrode wire, the capacitance change amount of each detection unit 20s is acquired. The signal generation unit 62 generates information (control signal) related to the input operation on the input operation surface based on the output of the calculation unit 61 (capacity change amount of each detection unit 20s).
 本実施形態では、第1の電極線210が駆動電極(E1)とされ、第2の電極線220が検出電極(E2)とされる。駆動電極(E1)は検出電極(E2)と比較して電位が安定しているため、検出電極(E2)よりも電磁ノイズの影響を受けにくい。このような観点から、第1の電極線210は、第2の電極線220を電磁ノイズから保護するシールド層としての機能をも有する。 In the present embodiment, the first electrode line 210 is the drive electrode (E1), and the second electrode line 220 is the detection electrode (E2). Since the drive electrode (E1) has a more stable potential than the detection electrode (E2), it is less susceptible to electromagnetic noise than the detection electrode (E2). From such a viewpoint, the first electrode wire 210 also has a function as a shield layer that protects the second electrode wire 220 from electromagnetic noise.
 また演算部61は、第1の面110が操作を受けているか否かを判定することができる。具体的には、例えば、検出部20s全体の静電容量の変化量や検出部20s各々の静電容量の変化量等が所定の閾値以上である場合に、第1の面110が操作を受けていると判定することができる。また、当該閾値を2以上設けることにより、例えばタッチ操作と(意識的な)プッシュ操作とを区別して判定することが可能となる。さらに、検出部20sの静電容量の変化量に基づいて押圧力を算出することも可能である。 Further, the calculation unit 61 can determine whether or not the first surface 110 is being operated. Specifically, for example, when the amount of change in the capacitance of the entire detection unit 20s or the amount of change in the capacitance of each detection unit 20s is equal to or greater than a predetermined threshold, the first surface 110 receives an operation. Can be determined. Further, by providing two or more threshold values, for example, it is possible to distinguish and determine a touch operation and a (conscious) push operation. Furthermore, it is also possible to calculate the pressing force based on the amount of change in capacitance of the detection unit 20s.
 信号生成部62は、演算部61の算出結果に基づいて、所定の操作信号を生成する。当該操作信号は、例えばフレキシブルディスプレイ11に出力する表示画像を生成するための画像制御信号や、フレキシブルディスプレイ11上の操作位置に表示されたキーボード画像のキーに対応する操作信号、あるいはGUI(Graphical User Interface)に対応する操作に関する操作信号等であってもよい。 The signal generation unit 62 generates a predetermined operation signal based on the calculation result of the calculation unit 61. The operation signal is, for example, an image control signal for generating a display image to be output to the flexible display 11, an operation signal corresponding to a key of a keyboard image displayed at an operation position on the flexible display 11, or a GUI (Graphical User It may be an operation signal related to an operation corresponding to (Interface).
 ここで、入力装置100は、第1の面110上での操作により金属膜12及び導体層50各々と電極基板20(検出部20s)との距離の変化を生じさせる構成として、第1及び第2の支持体30,40を有する。以下、第1及び第2の支持体30,40について説明する。 Here, the input device 100 is configured to change the distance between each of the metal film 12 and the conductor layer 50 and the electrode substrate 20 (detection unit 20s) by an operation on the first surface 110. Two supports 30, 40 are provided. Hereinafter, the first and second supports 30 and 40 will be described.
 (第1及び第2の支持体の基本構成)
 第1の支持体30は、操作部材10と電極基板20との間に配置される。第1の支持体30は、複数の第1の構造体310と、第1の枠体320と、第1の空間部330とを有する。本実施形態において第1の支持体30は、接着層35を介して電極基板20の上に接合されている(図3参照)。接着層35は、接着剤であっても良いし、粘着剤、粘着テープ等の粘着材料で構成されてもよい。
(Basic configuration of first and second supports)
The first support 30 is disposed between the operation member 10 and the electrode substrate 20. The first support 30 has a plurality of first structures 310, a first frame 320, and a first space 330. In this embodiment, the 1st support body 30 is joined on the electrode substrate 20 via the contact bonding layer 35 (refer FIG. 3). The adhesive layer 35 may be an adhesive, or may be composed of an adhesive material such as an adhesive and an adhesive tape.
 図3に示すように本実施形態に係る第1の支持体30は、基材31と、基材31の表面(上面)に設けられた構造層32と、構造層32上の所定位置に形成された複数の接合部341の積層構造を有する。基材31は、PET、PEN、PC等の電気絶縁性のプラスチックシートで構成される。基材31の厚みは特に限定されず、例えば数μm~数100μmである。 As shown in FIG. 3, the first support 30 according to the present embodiment is formed at a predetermined position on the base material 31, the structural layer 32 provided on the surface (upper surface) of the base material 31, and the structural layer 32. A stacked structure of a plurality of bonded portions 341 is provided. The base material 31 is composed of an electrically insulating plastic sheet such as PET, PEN, or PC. The thickness of the base material 31 is not particularly limited, and is, for example, several μm to several 100 μm.
 構造層32は、UV樹脂等の電気絶縁性の樹脂材料で構成され、基材31の上に複数の第1の凸部321と、第2の凸部322と、凹部323とを形成する。第1の凸部321各々は、例えばZ軸方向に突出する円柱状、角柱状、錐台形状等の形状を有し、基材31の上に所定間隔で配列される。第2の凸部322は、基材31の周囲を取り囲むように所定の幅で形成される。 The structural layer 32 is made of an electrically insulating resin material such as UV resin, and forms a plurality of first convex portions 321, second convex portions 322, and concave portions 323 on the base material 31. Each of the first convex portions 321 has, for example, a columnar shape, a prismatic shape, a frustum shape, or the like protruding in the Z-axis direction, and is arranged on the substrate 31 at a predetermined interval. The second convex portion 322 is formed with a predetermined width so as to surround the periphery of the base material 31.
 また構造層32は、第1の面110上での入力操作により電極基板20を変形させることが可能な程度の剛性を有する材料で構成されるが、入力操作時に操作部材10とともに変形可能な弾性材料で構成されてもよい。すなわち構造層32の弾性率は特に限定されず、目的とする操作感や検出感度が得られる範囲で適宜選択可能である。 The structural layer 32 is made of a material having such a rigidity that the electrode substrate 20 can be deformed by an input operation on the first surface 110. It may be made of a material. That is, the elastic modulus of the structural layer 32 is not particularly limited, and can be appropriately selected as long as the desired operational feeling and detection sensitivity are obtained.
 凹部323は、第1及び第2の凸部321,322の間に形成された平坦面で構成される。すなわち、凹部323上の空間領域は、第1の空間部330を構成する。また凹部323上には、本実施形態において、粘着性の低いUV樹脂等で形成された接着防止層342が形成される(図3において図示せず)。接着防止層342の形状は特に限られず、島状に形成されてもよいし、凹部323上に平坦膜で形成されてもよい。 The concave portion 323 is composed of a flat surface formed between the first and second convex portions 321 and 322. That is, the space area on the recess 323 constitutes the first space 330. Further, in the present embodiment, an adhesion preventing layer 342 made of UV resin having low adhesiveness or the like is formed on the recess 323 (not shown in FIG. 3). The shape of the adhesion preventing layer 342 is not particularly limited, and may be formed in an island shape, or may be formed as a flat film on the recess 323.
 さらに第1及び第2の凸部321,322各々の上には、粘着性の樹脂材料等で構成された接合部341が形成される。すなわち、第1の構造体310各々は、第1の凸部321とその上に形成された接合部341との積層体で構成され、第1の枠体320各々は、第2の凸部322とその上に形成された接合部341との積層体で構成される。これにより、第1の構造体310及び第1の枠体320の厚み(高さ)は、略同一に構成され、本実施形態において例えば数μm~数100μmの範囲である。なお、接着防止層342の高さは、第1の構造体310及び第1の枠体320の高さよりも低ければ特に限定されず、例えば第1及び第2の凸部321,322よりも低くなるように形成される。 Further, on each of the first and second convex portions 321 and 322, a joint portion 341 made of an adhesive resin material or the like is formed. That is, each of the first structures 310 includes a stacked body of the first convex portion 321 and the joint portion 341 formed thereon, and each of the first frame bodies 320 includes the second convex portion 322. And a joined body 341 formed thereon. Thereby, the thickness (height) of the first structure 310 and the first frame 320 is configured to be substantially the same, and is in the range of several μm to several 100 μm, for example, in the present embodiment. Note that the height of the adhesion prevention layer 342 is not particularly limited as long as it is lower than the height of the first structure 310 and the first frame 320, and is lower than, for example, the first and second convex portions 321 and 322. Formed to be.
 複数の第1の構造体310は、検出部20s各々の配置に対応して配置される。本実施形態において、複数の第1の構造体310は、例えば複数の検出部20s各々の中心とZ軸方向に対向して配置されるが、これに限られず、各検出部20sの中心に対してオフセットした位置に配置されてもよい。また、各検出部20sに対向する構造体310の数は1本に限られず、複数本であってもよい。 The plurality of first structures 310 are arranged corresponding to the arrangement of the detection units 20s. In the present embodiment, the plurality of first structures 310 are disposed, for example, opposite to the center of each of the plurality of detection units 20s in the Z-axis direction. May be arranged at an offset position. Moreover, the number of the structures 310 facing each detection unit 20s is not limited to one, and may be a plurality.
 第1の枠体320は、電極基板20の周縁に沿って第1の支持体30の周囲を取り囲むように形成される。第1の枠体320の短手方向の長さ、すなわち幅は、第1の支持体30及び入力装置100全体の強度を十分に確保できれば特に限られない。 The first frame 320 is formed so as to surround the periphery of the first support 30 along the periphery of the electrode substrate 20. The length of the first frame 320 in the short direction, that is, the width is not particularly limited as long as the strength of the entire first support 30 and the input device 100 can be sufficiently secured.
 一方、第2の支持体40は、電極基板20と導体層50との間に配置される。第2の支持体40は、複数の第2の構造体410と、第2の枠体420と、第2の空間部430とを有する。 On the other hand, the second support body 40 is disposed between the electrode substrate 20 and the conductor layer 50. The second support 40 includes a plurality of second structures 410, a second frame 420, and a second space 430.
 図3に示すように本実施形態に係る第2の支持体40は、導体層50上に直接第2の構造体410及び第2の枠体420が形成される。第2の構造体410及び第2の枠体420は、例えば粘着性を有する絶縁性の樹脂材料で構成され、導体層50と電極基板20との間を接合する接合部の機能も兼ねる。第2の構造体410及び第2の枠体420の厚みは特に限定されないが、例えば数μm~数100μmである。 As shown in FIG. 3, in the second support body 40 according to this embodiment, the second structure body 410 and the second frame body 420 are directly formed on the conductor layer 50. The second structure body 410 and the second frame body 420 are made of, for example, an insulative resin material having adhesiveness, and also serve as a joint portion that joins between the conductor layer 50 and the electrode substrate 20. The thicknesses of the second structural body 410 and the second frame body 420 are not particularly limited, and are, for example, several μm to several hundred μm.
 第2の構造体410は、隣り合う第1の構造体310間にそれぞれ配置される。すなわち第2の構造体410は、隣り合う検出部20s間にそれぞれ配置されている。これに限られず、第2の構造体410は、各検出部20sに対向するように配置されてもよい。 The second structures 410 are respectively disposed between the adjacent first structures 310. That is, the second structure 410 is disposed between the adjacent detection units 20s. However, the present invention is not limited to this, and the second structure 410 may be disposed so as to face each detection unit 20s.
 第2の枠体420は、導体層50の周縁に沿って第2の支持体40の周囲を取り囲むように形成される。第2の枠体420の幅は、第2の支持体40及び入力装置100全体の強度を十分に確保できれば特に限られず、例えば第1の枠体320と略同一の幅で構成される。 The second frame 420 is formed so as to surround the periphery of the second support 40 along the periphery of the conductor layer 50. The width of the second frame body 420 is not particularly limited as long as the strength of the second support body 40 and the input device 100 as a whole can be sufficiently ensured. For example, the width of the second frame body 420 is configured to be substantially the same as that of the first frame body 320.
 また第2の構造体410は、第1の構造体310を構成する構造層32と同様に弾性率は特に限定されない。すなわち、目的とする操作感や検出感度が得られる範囲で適宜選択可能であり、入力操作時に電極基板20とともに変形可能な弾性材料で構成されてもよい。 Further, the elastic modulus of the second structure 410 is not particularly limited, as is the case with the structural layer 32 that constitutes the first structure 310. That is, it can be appropriately selected within a range in which a desired operation feeling and detection sensitivity can be obtained, and may be made of an elastic material that can be deformed together with the electrode substrate 20 during an input operation.
 また第2の空間部430は、第2の構造体410の間に形成され、第2の構造体410及び第2の枠体420の周囲の空間領域を構成する。本実施形態において、第2の空間部430は、Z軸方向から見たときに各検出部20s及び各第1の構造体310を収容する。 The second space 430 is formed between the second structures 410 and constitutes a space region around the second structures 410 and the second frame 420. In the present embodiment, the second space 430 accommodates each detection unit 20s and each first structure 310 when viewed from the Z-axis direction.
 以上のように、本実施形態に係る第1及び第2の支持体30,40は、
(1)第1及び第2の構造体310,410と第1及び第2の空間部330,430とを有し、
(2)Z軸方向から見て第1の構造体310と第2の構造体410とが重複しておらず、第1の構造体310が第2の空間部430上に配置される。
したがって、以下に示すように、操作時の数十g程度の微小な押圧力によっても金属膜12及び導体層50を変形させることが可能となる。
As described above, the first and second support bodies 30 and 40 according to the present embodiment are
(1) having first and second structures 310 and 410 and first and second spaces 330 and 430;
(2) The first structure 310 and the second structure 410 do not overlap with each other when viewed from the Z-axis direction, and the first structure 310 is disposed on the second space 430.
Therefore, as shown below, the metal film 12 and the conductor layer 50 can be deformed even by a minute pressing force of about several tens of grams during operation.
 (第1及び第2の支持体の動作)
 図5は、操作子hにより第1の面110上の点PをZ軸方向下方へ押圧した際の、第1及び第2の構造体310,410へ付加される力の様子を示す概略断面図である。図中の白抜き矢印は、Z軸方向下方(以下、単に「下方」とする)への力の大きさを模式的に示している。図14においては、金属膜12及び電極基板20等の撓み、第1及び第2の構造体310,410の弾性変形等の態様は示していない。なお以下の説明において、ユーザが押圧を意識しないタッチ操作を行った場合でも、実際には微小な押圧力が付加されることから、これらの入力操作を一括して「押圧」として説明する。
(Operation of the first and second supports)
FIG. 5 is a schematic cross section showing the state of the force applied to the first and second structures 310 and 410 when the point P on the first surface 110 is pressed downward in the Z-axis direction by the operating element h. FIG. The white arrow in the figure schematically shows the magnitude of the force downward in the Z-axis direction (hereinafter simply referred to as “downward”). In FIG. 14, aspects such as the bending of the metal film 12 and the electrode substrate 20 and the elastic deformation of the first and second structures 310 and 410 are not shown. In the following description, even when the user performs a touch operation that is not conscious of pressing, since a minute pressing force is actually applied, these input operations will be collectively described as “pressing”.
 例えば第1の空間部330p0上の点Pが力Fで下方へ押圧された場合、点Pの直下の金属膜12が下方へ撓む。それに伴い、第1の空間部330p0に隣接する第1の構造体310p1,310p2が力F1を受け、Z軸方向に弾性変形して厚みがわずかに減少する。また、金属膜12の撓みにより、第1の構造体310p1,310p2に隣接する第1の構造体310p3、310p4も、F1より小さい力F2を受ける。さらに力F1、F2により、電極基板20にも力が加えられ、第1の構造体310p1,310p2直下の領域を中心に下方へ撓む。これにより第1の構造体310p1,310p2の間に配置された第2の構造体410p0が力F3を受け、Z軸方向に弾性変形して厚みがわずかに減少する。また第1の構造体310p1,310p3の間に配置された第2の構造体410p1,及び第1の構造体310p2,310p4の間に配置された第2の構造体410p2もそれぞれF3より小さいF4を受ける。 For example, when the point P on the first space 330p0 is pressed downward by the force F, the metal film 12 immediately below the point P bends downward. Accordingly, the first structures 310p1 and 310p2 adjacent to the first space 330p0 receive the force F1, elastically deform in the Z-axis direction, and the thickness slightly decreases. Further, due to the bending of the metal film 12, the first structures 310p3 and 310p4 adjacent to the first structures 310p1 and 310p2 also receive a force F2 smaller than F1. Further, force is applied to the electrode substrate 20 by the forces F1 and F2, and the electrode substrate 20 bends downward about the region immediately below the first structures 310p1 and 310p2. As a result, the second structure 410p0 disposed between the first structures 310p1 and 310p2 receives the force F3, elastically deforms in the Z-axis direction, and the thickness slightly decreases. Further, the second structure 410p1, which is disposed between the first structures 310p1, 310p3, and the second structure 410p2, which is disposed between the first structures 310p2, 310p4, also have F4 smaller than F3, respectively. receive.
 このように、第1及び第2の構造体310,410により厚み方向に力を伝達することができ、電極基板20を容易に変形させることができる。また、金属膜12及び電極基板20が撓み、面内方向(X軸方向及びY軸方向に平行な方向)に押圧力の影響が及ぶことにより、操作子hの直下の領域のみならず、その近傍の第1及び第2の構造体310,410にも力を及ぼすことができる。 Thus, force can be transmitted in the thickness direction by the first and second structures 310 and 410, and the electrode substrate 20 can be easily deformed. Further, the metal film 12 and the electrode substrate 20 are bent, and the influence of the pressing force is exerted in the in-plane direction (direction parallel to the X-axis direction and the Y-axis direction). A force can also be exerted on the neighboring first and second structures 310 and 410.
 また上記(1)に関して、第1及び第2の空間部330,430により金属膜12及び電極基板20を容易に変形させることができる。さらに柱体等で構成された第1及び第2の構造体310,410により、操作子hの押圧力に対して電極基板20へ高い圧力を及ぼすことができ、電極基板20を効率的に撓ませることができる。 Further, with respect to the above (1), the metal film 12 and the electrode substrate 20 can be easily deformed by the first and second space portions 330 and 430. Further, the first and second structures 310 and 410 configured by columns or the like can apply a high pressure to the electrode substrate 20 with respect to the pressing force of the operation element h, and the electrode substrate 20 can be flexed efficiently. I can do it.
 さらに上記(2)に関して、第1及び第2の構造体310,410がZ軸方向から見て重複して配置されていないため、第1の構造体310がその下の第2の空間部430を介して電極基板20を容易に撓ませることができる。 Further, regarding (2) above, since the first and second structures 310 and 410 are not overlapped when viewed from the Z-axis direction, the first structure 310 has the second space 430 below it. Thus, the electrode substrate 20 can be easily bent.
 以下、具体的な操作時における検出部20sの静電容量の変化量の一例を示す。 Hereinafter, an example of the amount of change in the capacitance of the detection unit 20s during a specific operation will be shown.
 (検出部の出力例)
 図15A,Bは、第1の面110が操作子hによる操作を受けたときの入力装置100の態様を示す模式的な要部断面図と、そのとき検出部20sから出力される出力信号の一例を示す図である。図15A,BにおけるX軸に沿って示す棒グラフは、各検出部20sにおける静電容量の基準値からの変化量を模式的に示している。また図15Aは、操作子hが第1の構造体310(310a2)上を押圧した際の態様を示し、図15Bは、操作子hが第1の空間部330(330b1)上を押圧した際の態様を示す。
(Example of detector output)
FIGS. 15A and 15B are schematic cross-sectional views showing the main part of the input device 100 when the first surface 110 is operated by the operator h, and output signals output from the detection unit 20s at that time. It is a figure which shows an example. The bar graph shown along the X-axis in FIGS. 15A and 15B schematically shows the amount of change from the reference value of the capacitance in each detection unit 20s. FIG. 15A shows a mode when the operator h presses on the first structure 310 (310a2), and FIG. 15B shows a mode when the operator h presses on the first space 330 (330b1). The aspect of is shown.
 図15Aでは、操作位置の直下の第1の構造体310a2が最も力を受け、第1の構造体310a2自身が弾性変形するとともに、下方へ変位する。その変位により第1の構造体310a2直下の検出部20sa2が下方へと変位する。これにより第2の空間部430a2を介して検出部20sa2と導体層50とが近接する。すなわち検出部20sa2は、金属膜12との距離が若干変化し、かつ導体層50との距離が大きく変化することで、静電容量の変化量Ca2を得る。一方で、金属膜12の撓みの影響により、第1の構造体310a1,310a3もわずかに下方へと変位し、検出部20sa1,20sa3における静電容量の変化量は、それぞれCa1,Ca3となる。 15A, the first structure 310a2 immediately below the operating position receives the most force, and the first structure 310a2 itself is elastically deformed and displaced downward. Due to the displacement, the detection unit 20sa2 directly below the first structure 310a2 is displaced downward. As a result, the detection unit 20sa2 and the conductor layer 50 come close to each other through the second space 430a2. That is, the detection unit 20sa2 obtains the capacitance change amount Ca2 by slightly changing the distance to the metal film 12 and greatly changing the distance to the conductor layer 50. On the other hand, the first structures 310a1 and 310a3 are also slightly displaced downward due to the influence of the bending of the metal film 12, and the amount of change in capacitance in the detection units 20sa1 and 20sa3 is Ca1 and Ca3, respectively.
 図15Aに示す例において、Ca2が最も大きく、Ca1とCa3とは略同一で、かつCa2よりも小さい。すなわち、図15Aに示すように、静電容量の変化量Ca1,Ca2,Ca3は、Ca2を頂点とする山形の分布を示す。この場合に演算部61は、Ca1,Ca2,Ca3の比率に基づいて重心等を算出し、操作位置として検出部20sa2上のXY座標を算出することができる。 In the example shown in FIG. 15A, Ca2 is the largest, and Ca1 and Ca3 are substantially the same and smaller than Ca2. That is, as shown in FIG. 15A, the amount of change in capacitance Ca1, Ca2, Ca3 shows a mountain-shaped distribution with Ca2 as the apex. In this case, the calculation unit 61 can calculate the center of gravity and the like based on the ratio of Ca1, Ca2, and Ca3, and can calculate the XY coordinates on the detection unit 20sa2 as the operation position.
 一方、図15Bでは、金属膜12の撓みにより操作位置近傍の第1の構造体310b1,310b2がわずかに弾性変形するとともに、下方へと変位する。その変位により、電極基板20が撓み、第1の構造体310b1,310b2直下の検出部20sb1,20sb2が下方へと変位する。これにより第2の空間部430b1,430b2を介して検出部20sb1,20sb2と導体層50とが近接する。すなわち検出部20sb1,20sb2は、金属膜12との距離がわずかに変化し、かつ導体層50との距離が比較的大きく変化することで、それぞれ静電容量の変化量Cb1,Cb2を得る。 On the other hand, in FIG. 15B, the first structures 310b1 and 310b2 in the vicinity of the operation position are slightly elastically deformed and displaced downward due to the bending of the metal film 12. Due to the displacement, the electrode substrate 20 is bent, and the detection units 20sb1 and 20sb2 immediately below the first structures 310b1 and 310b2 are displaced downward. Accordingly, the detection units 20sb1 and 20sb2 and the conductor layer 50 are brought close to each other through the second space portions 430b1 and 430b2. That is, the detection units 20sb1 and 20sb2 obtain the capacitance change amounts Cb1 and Cb2, respectively, by slightly changing the distance to the metal film 12 and relatively changing the distance to the conductor layer 50.
 図15Bに示す例において、Cb1とCb2とは略同一である。これにより、演算部61は、操作位置として検出部20sb1,20sb2の間のXY座標を算出することができる。 In the example shown in FIG. 15B, Cb1 and Cb2 are substantially the same. Thereby, the calculating part 61 can calculate the XY coordinate between detection part 20sb1, 20sb2 as an operation position.
 このように、本実施形態によれば、検出部20s及び金属膜12と、検出部20s及び導体層50との厚みの双方が押圧力によって可変であることから、検出部20sにおける静電容量の変化量をより大きくすることができる。これにより、入力操作の検出感度を高めることが可能となる。 Thus, according to this embodiment, since both the thickness of the detection unit 20s and the metal film 12, and the detection unit 20s and the conductor layer 50 are variable depending on the pressing force, the capacitance of the detection unit 20s is reduced. The amount of change can be made larger. As a result, it is possible to increase the detection sensitivity of the input operation.
 また、フレキシブルディスプレイ11上の操作位置が第1の構造体310上、第1の空間部330上のいずれの点であっても、操作位置のXY座標を算出することが可能となる。すなわち、金属膜12が面内方向に押圧力の影響を波及させることにより、操作位置直下の検出部20sのみならず、Z軸方向から見て操作位置の近傍の検出部20sにおいても静電容量変化を生じさせることができる。これにより、第1の面110内における検出精度のバラつきを抑制し、第1の面110全面において高い検出精度を維持することができる。 In addition, it is possible to calculate the XY coordinates of the operation position regardless of the operation position on the flexible display 11 on the first structure 310 or the first space 330. That is, when the metal film 12 propagates the influence of the pressing force in the in-plane direction, not only the detection unit 20s just below the operation position but also the detection unit 20s near the operation position when viewed from the Z-axis direction. Changes can be made. Thereby, variation in detection accuracy in the first surface 110 can be suppressed, and high detection accuracy can be maintained over the entire first surface 110.
 (シールド層)
 ところで、操作部材10を構成するフレキシブルディスプレイ11は、上述のようにコントローラ710によって駆動制御される。フレキシブルディスプレイ11は、典型的には、面内においてマトリクス状に配列された複数の画素の発光を制御することで画像が表示される。この際、個々の画素を駆動する画素回路からセンサ装置1にとって無視できないレベルの電磁ノイズが発生する場合がある。
(Shield layer)
By the way, the flexible display 11 which comprises the operation member 10 is drive-controlled by the controller 710 as mentioned above. The flexible display 11 typically displays an image by controlling light emission of a plurality of pixels arranged in a matrix in the plane. At this time, electromagnetic noise of a level that cannot be ignored by the sensor device 1 may be generated from the pixel circuit that drives each pixel.
 センサ装置1は上述のように、金属膜12及び導体層50に対する対向距離の変化に基づく検出部20sの静電容量の変化に基づいて、入力操作面(第1の面110)に対する操作位置及び操作量(押圧力)を検出するように構成される。したがって検出部20sに電磁ノイズが侵入すると、検出部20sの容量変化量の検出精度が低下するとともに、当該容量変化量が微小であるほどその問題が顕著となる。 As described above, the sensor device 1 has the operation position with respect to the input operation surface (first surface 110) based on the change in the capacitance of the detection unit 20s based on the change in the facing distance to the metal film 12 and the conductor layer 50. The operation amount (pressing force) is configured to be detected. Therefore, when electromagnetic noise enters the detection unit 20s, the detection accuracy of the capacitance change amount of the detection unit 20s decreases, and the problem becomes more prominent as the capacitance change amount is smaller.
 一方、各検出部20sとフレキシブルディスプレイ11との間に配置された金属膜12によって一定のシールド機能を確保することは可能である。しかし当該金属膜12は、入力操作面(第1の面110)への入力操作に追従して変形できる厚みで形成される必要があるため、電磁ノイズを遮蔽できる程度の厚みを必ずしも確保できるとは限らない。このように入力操作を静電的に検出する入力装置においては、検出精度の向上を図る上で、検出部20sを電磁ノイズから十分に保護できる構造が必須となる。 On the other hand, it is possible to ensure a certain shield function by the metal film 12 disposed between each detection unit 20s and the flexible display 11. However, since the metal film 12 needs to be formed with a thickness that can be deformed following the input operation on the input operation surface (first surface 110), the thickness of the metal film 12 that can shield electromagnetic noise is always secured. Is not limited. Thus, in an input device that detects an input operation electrostatically, in order to improve detection accuracy, a structure capable of sufficiently protecting the detection unit 20s from electromagnetic noise is essential.
 そこで本実施形態のセンサ装置1は、検出部20sを構成する電極線をノイズ源から電磁的に遮蔽するためのシールド層S1を有する。シールド層S1は、図2及び図3に示すように、電極基板20に設けられる。 Therefore, the sensor device 1 of the present embodiment has a shield layer S1 for electromagnetically shielding the electrode wires constituting the detection unit 20s from the noise source. The shield layer S1 is provided on the electrode substrate 20 as shown in FIGS.
 シールド層S1は、複数の第1の電極線210を支持する第1の基材211に設けられた導体膜で構成される。本実施形態では、シールド層S1は、第1の基材211上に複数の第1の電極線210と同一平面上に設けられる。これによりシールド層S1を支持する部材を別途設けることなくシールド層S1を形成することができる。さらにシールド層S1は、複数の第1の電極線210と同じ材料で構成されることで、第1の電極線とシールド層S1とを同一工程で形成することができる。 The shield layer S1 is composed of a conductor film provided on the first base material 211 that supports the plurality of first electrode wires 210. In the present embodiment, the shield layer S <b> 1 is provided on the first base material 211 on the same plane as the plurality of first electrode wires 210. Accordingly, the shield layer S1 can be formed without separately providing a member that supports the shield layer S1. Furthermore, since the shield layer S1 is made of the same material as the plurality of first electrode lines 210, the first electrode line and the shield layer S1 can be formed in the same process.
 図7は電極基板20の要部平面図、図8は第1の配線基板21の要部平面図、図9は第2の配線基板22の要部平面図である。 7 is a plan view of the main part of the electrode substrate 20, FIG. 8 is a plan view of the main part of the first wiring board 21, and FIG.
 図示の例では、第1及び第2の電極線210,220は各々複数の電極細線からなる電極線群で構成されているが、勿論これに限られず、各々単一の幅広の電極線で構成されてもよい。 In the example shown in the figure, the first and second electrode lines 210 and 220 are each composed of an electrode line group composed of a plurality of thin electrode lines. However, the present invention is not limited to this, and each is composed of a single wide electrode line. May be.
 本実施形態においてシールド層S1は、複数の第1の電極線210各々の間に配置された複数の電極線S11(第3の電極線)を有する。複数の電極線S11は、第1の電極線210と所定の間隙をあけて配列されている。複数の電極線S11はそれぞれ同一の幅で形成されており、各電極線S11の長さは、第1の電極線210の長さと略同等の長さで形成される。複数の電極線S11はそれぞれ、金属膜12及び導体層50と同様に、所定の基準電位(例えばグランド電位)に接続されている。 In the present embodiment, the shield layer S1 includes a plurality of electrode lines S11 (third electrode lines) disposed between each of the plurality of first electrode lines 210. The plurality of electrode lines S11 are arranged with a predetermined gap from the first electrode line 210. The plurality of electrode lines S <b> 11 are formed with the same width, and the length of each electrode line S <b> 11 is substantially the same as the length of the first electrode line 210. Each of the plurality of electrode lines S11 is connected to a predetermined reference potential (for example, ground potential) similarly to the metal film 12 and the conductor layer 50.
 上記構成により、複数の第2の電極線220は、フレキシブルディスプレイ11から見たときに、複数の検出部20s(第1の電極線210と第2の電極線220との対向領域)間を連絡する配線領域220bをシールド層S1(電極線S11)によって遮蔽される。これにより上記配線領域220bは、フレキシブルディスプレイ11から電磁的に遮蔽される。 With the above configuration, the plurality of second electrode lines 220 communicate with each other between the plurality of detection units 20 s (opposite regions between the first electrode lines 210 and the second electrode lines 220) when viewed from the flexible display 11. The wiring region 220b to be shielded is shielded by the shield layer S1 (electrode line S11). Thereby, the wiring region 220b is electromagnetically shielded from the flexible display 11.
 各電極線S11は、導電ペースト等をスクリーン印刷やグラビアオフセット印刷、インクジェット印刷等の印刷法で形成されてもよいし、金属箔あるいは金属層、ITO等の透明導電膜の材料、カーボン材料等の導体材料のフォトリソグラフィ技術を用いたパターニング法で形成されてもよい。各電極線S11の厚みは、特に限定されず、典型的には、第1の電極線210と同等の厚み(例えば数10nm~数10μm)で形成される。 Each electrode line S11 may be formed of a conductive paste or the like by a printing method such as screen printing, gravure offset printing or ink jet printing, a metal foil or metal layer, a transparent conductive film material such as ITO, a carbon material, or the like. The conductive material may be formed by a patterning method using a photolithography technique. The thickness of each electrode line S11 is not particularly limited, and is typically formed with a thickness equivalent to that of the first electrode line 210 (for example, several tens of nm to several tens of μm).
 各電極線S11は、第1の電極線210と同一の工程で形成される例に限られない。また各電極線S11は、第1の電極線210と異なる材料で構成されてもよく、第1の電極線210の厚みよりも大きな厚みで形成されてもよい。 Each electrode line S11 is not limited to the example formed in the same process as the first electrode line 210. Each electrode line S <b> 11 may be made of a material different from that of the first electrode line 210, and may be formed with a thickness larger than the thickness of the first electrode line 210.
 上記配線領域220bがシールド層S1で遮蔽される領域は、シールド層S1を構成する各電極線S11の幅で調整される。シールド層S1が第1の電極線210と同一平面上に形成されるため、上記配線領域220bの一部の領域がシールド層S1によって遮蔽されることになる。 The region where the wiring region 220b is shielded by the shield layer S1 is adjusted by the width of each electrode line S11 constituting the shield layer S1. Since the shield layer S1 is formed on the same plane as the first electrode line 210, a part of the wiring region 220b is shielded by the shield layer S1.
 上記配線領域220bのすべての領域がシールド層S1で遮蔽されるためには、例えば、第1の電極線210を被覆する絶縁膜を別途形成し、当該絶縁膜の上にシールド層を設ければよい。このとき、当該シールド層によって、複数の検出部20s間を連絡する第1の電極線210の配線領域の少なくとも一部をも被覆するように構成されてもよい。この場合、当該シールド層は、複数の検出部20sに対向する領域で開口となっている格子状の導体膜で構成されていてもよい。 In order to shield all regions of the wiring region 220b with the shield layer S1, for example, an insulating film that covers the first electrode wire 210 is separately formed, and a shield layer is provided on the insulating film. Good. At this time, the shield layer may be configured to cover at least a part of the wiring region of the first electrode line 210 communicating between the plurality of detection units 20s. In this case, the shield layer may be configured by a lattice-shaped conductor film that is open in a region facing the plurality of detection units 20s.
 図10Aは、第1の配線基板21の全体を概略的に示す平面図である。シールド層S1は、複数の電極線S11を相互に接続する配線部S12をさらに含む。配線部S12は、第1の配線基板21の一方の長辺側の縁部21aにおいて複数の電極線S11とそれぞれ接続される。配線部S12は、第1の配線基板21の一方側の短辺側の縁部21bを介して他方側の長辺側の縁部21cへ引き回される。縁部21cには、配線部S12と接続される引出し線S12aとが形成されており、制御部60を介して所定の基準電位(グランド電位)に接続される。これにより複数の第1の電極線210間に配置された複数の電極線S11を共通にグランド電位に接続することができる。 FIG. 10A is a plan view schematically showing the entire first wiring board 21. The shield layer S1 further includes a wiring part S12 that connects the plurality of electrode lines S11 to each other. The wiring portion S12 is connected to each of the plurality of electrode lines S11 at the edge portion 21a on one long side of the first wiring substrate 21. The wiring part S12 is routed to the edge part 21c on the other long side via the edge part 21b on the short side on the one side of the first wiring board 21. The edge portion 21c is formed with a lead line S12a connected to the wiring portion S12, and is connected to a predetermined reference potential (ground potential) via the control unit 60. As a result, the plurality of electrode lines S11 disposed between the plurality of first electrode lines 210 can be commonly connected to the ground potential.
 第1の配線基板21の縁部21cには、複数の第1の電極線210各々と接続される引出し線210aがさらに形成されており、これら引出し線210aを介して各第1の電極線210が制御部60へ接続される。 On the edge portion 21c of the first wiring substrate 21, lead lines 210a connected to each of the plurality of first electrode lines 210 are further formed, and the first electrode lines 210 are connected via the lead lines 210a. Is connected to the control unit 60.
 図示せずとも第2の配線基板22は、複数の第2の電極線220各々と接続される引出し線をしており、これらの引出し線は、典型的には、第2の配線基板22の一短辺側の縁部に形成される。そこで、これら第2の電極線220の引出し線(複数の検出部20sが形成される検出領域の外側に形成された外周配線部)の少なくとも一部を被覆して電磁ノイズから保護するため、図10Bに示すように第1の配線基板21に設けたシールド層Sで当該引出し線を遮蔽することも可能である。 Although not shown, the second wiring board 22 is a lead line connected to each of the plurality of second electrode lines 220, and these lead lines are typically formed on the second wiring board 22. It is formed at the edge on one short side. Therefore, in order to protect at least a part of the lead wires (outer peripheral wiring portions formed outside the detection region where the plurality of detection portions 20s are formed) of the second electrode wires 220 from electromagnetic noise, FIG. As shown in FIG. 10B, it is possible to shield the leader line with the shield layer S provided on the first wiring board 21.
 図10Bは、シールド層S1の構成の変形例を示す第1の配線基板の平面図である。当該シールド層S1は、第1の配線基板21の縁部21bに形成された帯状部S11bをさらに有する。帯状部S11bは、配線部S12と引出し線S12aとの間に接続され、複数の第1の電極線210のうち最も縁部21b側に位置する電極線210bと当該縁部との間の領域をベタ状に被覆する。これにより、帯状部S11bの直下に位置する第2の電極線220の外周配線部を電磁ノイズから保護することが可能となる。 FIG. 10B is a plan view of the first wiring board showing a modified example of the configuration of the shield layer S1. The shield layer S <b> 1 further includes a strip-shaped portion S <b> 11 b formed on the edge portion 21 b of the first wiring substrate 21. The band-shaped portion S11b is connected between the wiring portion S12 and the lead-out line S12a, and a region between the electrode line 210b located closest to the edge portion 21b and the edge portion among the plurality of first electrode lines 210. Cover in a solid form. Thereby, it becomes possible to protect the outer periphery wiring part of the 2nd electrode wire 220 located just under strip | belt-shaped part S11b from electromagnetic noise.
 ここで、センサ装置1の検出感度に影響を及ぼす機器の一つとして、フレキシブルディスプレイ11が挙げられる。仮に、金属膜12と導体層50とシールド層S1とが制御部60のグランドのみに接続されていた場合には、フレキシブルディスプレイ11が制御部60のグランド電位に影響を及ぼす可能性があり、電磁シールド効果を十分に発揮することができない可能性がある。そこで、フレキシブルディスプレイ11が接続されるコントローラ710のグランドに金属膜12と導体層50とシールド層S1とを接続することで、より安定的なグランド電位に維持することができ、電磁シールド効果を向上させることができる。さらに、金属膜12と導体層50とシールド層S1とをより多くの接点で接続することによっても、電磁シールド効果を向上させることができる。 Here, as one of the devices that affect the detection sensitivity of the sensor device 1, there is a flexible display 11. If the metal film 12, the conductor layer 50, and the shield layer S1 are connected only to the ground of the control unit 60, the flexible display 11 may affect the ground potential of the control unit 60. There is a possibility that the shield effect cannot be fully exhibited. Therefore, by connecting the metal film 12, the conductor layer 50, and the shield layer S1 to the ground of the controller 710 to which the flexible display 11 is connected, a more stable ground potential can be maintained and the electromagnetic shielding effect is improved. Can be made. Furthermore, the electromagnetic shielding effect can also be improved by connecting the metal film 12, the conductor layer 50, and the shield layer S1 with more contacts.
<第2の実施形態>
 続いて、本技術の第2の実施形態について説明する。
<Second Embodiment>
Subsequently, a second embodiment of the present technology will be described.
 上述の第1の実施形態では、複数の第1の電極線と複数の第2の電極線とが電極基板の厚み方向に相互に離間し、これら各電極線の交差領域に複数の検出部(容量センサ)が構成された。これに対して本実施形態では、複数の第1の電極線と複数の第2の電極線とが電極基板の面内において相互に離間し、これら各電極線の対向領域に複数の検出部(容量センサ)が構成される。 In the first embodiment described above, the plurality of first electrode lines and the plurality of second electrode lines are separated from each other in the thickness direction of the electrode substrate, and a plurality of detection units ( Capacitive sensor) was configured. In contrast, in the present embodiment, the plurality of first electrode lines and the plurality of second electrode lines are separated from each other in the plane of the electrode substrate, and a plurality of detection units ( Capacitance sensor) is configured.
 図11Aは、本技術の第2の実施形態に係る入力装置100Cの概略断面図であり、図11Bは、入力装置100Cの要部を拡大して示す断面図である。本実施形態は、電極基板20Cが、XY平面内での容量結合の変化量により金属膜12及び導体層50各々との距離の変化を静電的に検出する点において、第1の実施形態とは異なっている。すなわち、Y電極220Cは、X電極210Cと電極基板20Cの面内方向に対向する対向部を有し、当該対向部が検出部20Csを構成する。 FIG. 11A is a schematic cross-sectional view of an input device 100C according to the second embodiment of the present technology, and FIG. 11B is an enlarged cross-sectional view illustrating a main part of the input device 100C. This embodiment is different from the first embodiment in that the electrode substrate 20C electrostatically detects a change in the distance between the metal film 12 and the conductor layer 50 by the amount of change in capacitive coupling in the XY plane. Is different. That is, the Y electrode 220C has a facing portion that faces the X electrode 210C and the electrode substrate 20C in the in-plane direction, and the facing portion constitutes the detection unit 20Cs.
 電極基板20Cは、複数の第1の電極線(X電極)210Cおよび複数の第2の電極線(Y電極)220Cとが配置された基材211Cを有し、これらの複数のX電極210C及びY電極220Cが同一平面上に配置されている。 The electrode substrate 20C includes a base material 211C on which a plurality of first electrode lines (X electrodes) 210C and a plurality of second electrode lines (Y electrodes) 220C are arranged, and the plurality of X electrodes 210C and Y electrodes 220C are arranged on the same plane.
 図12A,Bを参照して、X電極(第1の電極線)210CおよびY電極(第2の電極線)220Cの構成の一例について説明する。ここでは、各X電極210Cと各Y電極220Cとが、それぞれ櫛歯状の複数の単位電極体(第1の単位電極体)210m及び複数の単位電極体(第2の単位電極体)220mを有しており、1つの単位電極体210mと1つの単位電極体220mが各検出部20Csを形成する例を示す。 An example of the configuration of the X electrode (first electrode line) 210C and the Y electrode (second electrode line) 220C will be described with reference to FIGS. 12A and 12B. Here, each X electrode 210C and each Y electrode 220C respectively includes a plurality of comb-like unit electrode bodies (first unit electrode bodies) 210m and a plurality of unit electrode bodies (second unit electrode bodies) 220m. An example is shown in which one unit electrode body 210m and one unit electrode body 220m form each detector 20Cs.
 図12Aに示すように、X電極210Cは、複数の単位電極体210mと、電極線部210pと、複数の接続部210zとを有する。電極線部210pは、Y軸方向に延在されている。複数の単位電極体210mは、Y軸方向に一定の間隔で配置されている。電極線部210pと単位電極体210mとは所定間隔離して配置されており、両者の間は接続部210zにより接続されている。 As shown in FIG. 12A, the X electrode 210C includes a plurality of unit electrode bodies 210m, an electrode wire portion 210p, and a plurality of connection portions 210z. The electrode line portion 210p extends in the Y-axis direction. The plurality of unit electrode bodies 210m are arranged at regular intervals in the Y-axis direction. The electrode wire portion 210p and the unit electrode body 210m are disposed with a predetermined distance therebetween, and the two are connected by a connecting portion 210z.
 単位電極体210mは、上述のように、全体として櫛歯状を有している。具体的には、単位電極体210mは、複数のサブ電極210wと、連結部210yとを含む。複数のサブ電極210wは、X軸方向に延在されている。隣り合うサブ電極210wの間は、所定の間隔離されている。複数のサブ電極210wの一端は、X軸方向に延在された連結部210yに接続されている。 The unit electrode body 210m has a comb-like shape as a whole as described above. Specifically, the unit electrode body 210m includes a plurality of sub-electrodes 210w and a connecting portion 210y. The plurality of sub-electrodes 210w extend in the X-axis direction. Adjacent sub-electrodes 210w are separated by a predetermined distance. One end of the plurality of sub-electrodes 210w is connected to a connecting portion 210y that extends in the X-axis direction.
 図12Bに示すように、Y電極220Cは、複数の単位電極体220mと、電極線部220pと、複数の接続部220zとを備える。電極線部220pは、X軸方向に延在されている。複数の単位電極体220mは、X軸方向に一定の間隔で配置されている。電極線部220pと単位電極体220mとは所定間隔離して配置されており、両者の間は接続部220zにより接続されている。なお、接続部220zを省略して、電極線部220p上に単位電極体220mが直接設けられた構成を採用するようにしてもよい。 As shown in FIG. 12B, the Y electrode 220C includes a plurality of unit electrode bodies 220m, an electrode line portion 220p, and a plurality of connection portions 220z. The electrode wire portion 220p extends in the X-axis direction. The plurality of unit electrode bodies 220m are arranged at regular intervals in the X-axis direction. The electrode wire portion 220p and the unit electrode body 220m are arranged with a predetermined distance therebetween, and the two are connected by a connecting portion 220z. In addition, the connection part 220z may be omitted, and a configuration in which the unit electrode body 220m is directly provided on the electrode line part 220p may be employed.
 単位電極体220mは、上述のように、全体として櫛歯状を有している。具体的には、単位電極体220mは、複数のサブ電極220wと、連結部220yとを含む。複数のサブ電極220wは、X軸方向に延在されている。隣り合うサブ電極220wの間は、所定の間隔離されている。複数のサブ電極220wの一端は、Y軸方向に延在された連結部220yに接続されている。 The unit electrode body 220m has a comb-like shape as a whole as described above. Specifically, the unit electrode body 220m includes a plurality of sub-electrodes 220w and a connecting part 220y. The plurality of sub-electrodes 220w extend in the X-axis direction. Adjacent sub-electrodes 220w are separated by a predetermined distance. One ends of the plurality of sub-electrodes 220w are connected to a connecting portion 220y that extends in the Y-axis direction.
 図13Aに示すように、単位電極体210m各々と単位電極体220m各々とが相互に組み合わされた領域には、各検出部20Csが形成される。単位電極体210mの複数のサブ電極210wと、単位電極体220mの複数のサブ電極220wとは、Y軸方向に向かって交互に配列されている。すなわちサブ電極210w、220wは、電極基板20Cの面内方向(例えばY軸方向)に相互に対向して配置される。 As shown in FIG. 13A, each detection unit 20Cs is formed in a region where each unit electrode body 210m and each unit electrode body 220m are combined with each other. The plurality of sub-electrodes 210w of the unit electrode body 210m and the plurality of sub-electrodes 220w of the unit electrode body 220m are alternately arranged in the Y-axis direction. That is, the sub-electrodes 210w and 220w are arranged to face each other in the in-plane direction (for example, the Y-axis direction) of the electrode substrate 20C.
 図13Bは、図13AのA-A方向から見た断面図である。Y電極220Cは、第1の実施形態と同様に、X電極210Cと交差して設けられるが、X電極210Cと同一平面上に形成される。そこで図13Bに示すように、X電極210CとY電極220Cとが交差する領域は、各X電極210C及び各Y電極220Cが直接接触しないように構成される。すなわち、X電極210Cの電極線部210p及びY電極220Cの電極線部220p上には絶縁層220rが設けられている。そして、X電極210CとY電極220Cとが交差する領域には、この絶縁層220rを跨ぐようにしてジャンパ配線部220qが設けられている。このジャンパ配線部220qにより電極線部220pが連結されている。 FIG. 13B is a cross-sectional view seen from the direction AA in FIG. 13A. Similar to the first embodiment, the Y electrode 220C is provided so as to intersect the X electrode 210C, but is formed on the same plane as the X electrode 210C. Therefore, as shown in FIG. 13B, the region where the X electrode 210C and the Y electrode 220C intersect is configured such that the X electrode 210C and the Y electrode 220C do not directly contact each other. That is, the insulating layer 220r is provided on the electrode line portion 210p of the X electrode 210C and the electrode line portion 220p of the Y electrode 220C. A jumper wiring portion 220q is provided in a region where the X electrode 210C and the Y electrode 220C intersect so as to straddle the insulating layer 220r. The electrode wire portion 220p is connected by the jumper wiring portion 220q.
 図14は、本実施形態に係る検出部20Csの構成を説明するための模式的な断面図である。同図に示す例では、検出部20Csにおいて、サブ電極210w1とサブ電極220w1、サブ電極220w1とサブ電極210w2、サブ電極210w2とサブ電極220w2、サブ電極220w2とサブ電極210w3、及びサブ電極210w3とサブ電極220w3とがそれぞれ容量結合する。すなわち、基材211Cを誘電層として、各サブ電極間の静電容量Cc11,Cc12,Cc13,Cc14,Cc15が金属膜12及び導体層50各々とサブ電極を含む第1及び第2の電極線210C,220Cとの容量結合に応じて可変に構成される。 FIG. 14 is a schematic cross-sectional view for explaining the configuration of the detection unit 20Cs according to the present embodiment. In the example shown in the figure, in the detection unit 20Cs, the sub electrode 210w1 and the sub electrode 220w1, the sub electrode 220w1 and the sub electrode 210w2, the sub electrode 210w2 and the sub electrode 220w2, the sub electrode 220w2 and the sub electrode 210w3, and the sub electrode 210w3 and the sub electrode 210w3 Each of the electrodes 220w3 is capacitively coupled. That is, with the base material 211C as a dielectric layer, the capacitances Cc11, Cc12, Cc13, Cc14, and Cc15 between the sub-electrodes are the metal film 12, the conductor layer 50, and the first and second electrode lines 210C including the sub-electrodes. , 220C is variably configured according to capacitive coupling.
 上記構成により、電極基板の第2の基材及び接着層が不要となり、入力装置100Cの薄型化に貢献できる。また、多数のサブ電極同士が容量結合し、かつ容量結合するサブ電極間の距離を狭めることができる。これにより、入力装置100C全体としての容量結合量を増加させることができ、検出感度を向上させることが可能となる。 The above configuration eliminates the need for the second base material and the adhesive layer of the electrode substrate, and contributes to reducing the thickness of the input device 100C. In addition, many sub-electrodes are capacitively coupled to each other, and the distance between the sub-electrodes that are capacitively coupled can be reduced. Thereby, the capacitive coupling amount as the whole input device 100C can be increased, and detection sensitivity can be improved.
 本実施形態のセンサ装置もまた、検出部20Csを構成する電極線をノイズ源から電磁的に遮蔽するためのシールド層S2を有する。シールド層S2は、図15A~Cに示すように電極基板20Cに設けられる The sensor device of the present embodiment also has a shield layer S2 for electromagnetically shielding the electrode wires constituting the detection unit 20Cs from the noise source. The shield layer S2 is provided on the electrode substrate 20C as shown in FIGS. 15A to 15C.
 図15Aは、電極基板20Cの要部平面図、図15Bは、図15AにおけるB1-B1線断面図、図15Cは、図15AにおけるC1-C1線断面図である。 15A is a plan view of the main part of the electrode substrate 20C, FIG. 15B is a cross-sectional view taken along line B1-B1 in FIG. 15A, and FIG. 15C is a cross-sectional view taken along line C1-C1 in FIG.
 図15Aに示すように、シールド層S2は、第1の電極線210Cの電極線部210pを被覆する第1の導体膜S21と、第2の電極線220Cの電極線部220pの少なくとも一部を被覆する第2の導体膜S22とを有する。これら電極線部210p,220pは、複数の検出部20Cs間を連絡する第1及び第2の電極線210,220の配線領域に相当する。 As shown in FIG. 15A, the shield layer S2 includes at least a part of the first conductor film S21 covering the electrode line part 210p of the first electrode line 210C and the electrode line part 220p of the second electrode line 220C. And a second conductor film S22 to be coated. These electrode line portions 210p and 220p correspond to the wiring regions of the first and second electrode lines 210 and 220 that connect the plurality of detection portions 20Cs.
 またシールド層S2は、第1の導体膜S21と電極線部210pとの間に配置された絶縁膜、及び、第2の導体膜S22と電極線部220pとの間に配置された絶縁膜をそれぞれ有する。本実施形態では上記各絶縁膜は、電極線部210p,220pを被覆する絶縁層220rにそれぞれ相当する。 The shield layer S2 includes an insulating film disposed between the first conductor film S21 and the electrode line portion 210p, and an insulating film disposed between the second conductor film S22 and the electrode line portion 220p. Have each. In the present embodiment, each of the insulating films corresponds to the insulating layer 220r that covers the electrode wire portions 210p and 220p.
 すなわち本実施形態において、シールド層S2は、ジャンパ配線部220q及び絶縁層220rと同一平面上に設けられる。第1及び第2の導体膜S21,S22はジャンパ配線部220qと同一平面上に設けられる。したがって、第1及び第2の導体膜S21,S22をジャンパ配線部220qと同じ材料で構成することにより、第1及び第2の導体膜S21,S22とジャンパ配線部220qとを同一工程で形成することが可能となる。すなわち、この例では、第1の電極線210C及び第2の電極線220Cを形成した後、第1の電極線210Cと第2の電極線220Cの交差部においてジャンパ配線部220qと第1の電極線210Cの間に存在する絶縁層220rと、第1の電極線210C及び第2の電極線220Cを被覆する絶縁層220rとを同時に形成することが可能となる。さらに、その後に、ジャンパ配線部220qと上述の第1及び第2の導体膜S21,S22を同時に形成することが可能となる。形成方法は特に限定されず、典型的には、スクリーン印刷等の印刷法が適用可能である。 That is, in the present embodiment, the shield layer S2 is provided on the same plane as the jumper wiring part 220q and the insulating layer 220r. The first and second conductor films S21 and S22 are provided on the same plane as the jumper wiring portion 220q. Therefore, the first and second conductor films S21, S22 and the jumper wiring part 220q are formed in the same process by configuring the first and second conductor films S21, S22 with the same material as the jumper wiring part 220q. It becomes possible. That is, in this example, after forming the first electrode line 210C and the second electrode line 220C, the jumper wiring part 220q and the first electrode at the intersection of the first electrode line 210C and the second electrode line 220C. It is possible to simultaneously form the insulating layer 220r existing between the lines 210C and the insulating layer 220r covering the first electrode line 210C and the second electrode line 220C. Further, thereafter, the jumper wiring part 220q and the first and second conductor films S21 and S22 described above can be formed simultaneously. The formation method is not particularly limited, and a printing method such as screen printing is typically applicable.
 なお、第1及び第2の導体膜S21,S22とジャンパ配線部220qとの電気的接触を回避するため、シールド層S2は、ジャンパ配線部220qを露出する開口部S20を有する。勿論これに限られず、ジャンパ配線部220qをシールド層Sで被覆することでシールド効果を向上させるようにしてもよい。この場合、図16A~Cに示すシールド層S3の構成が採用可能である。 In order to avoid electrical contact between the first and second conductor films S21 and S22 and the jumper wiring part 220q, the shield layer S2 has an opening S20 that exposes the jumper wiring part 220q. Of course, the present invention is not limited to this, and the shield effect may be improved by covering the jumper wiring portion 220q with the shield layer S. In this case, the configuration of the shield layer S3 shown in FIGS. 16A to 16C can be employed.
 図16Aは、電極基板20Cの要部平面図、図16Bは、図16AにおけるB2-B2線断面図、図16Cは、図16AにおけるC2-C2線断面図である。 16A is a plan view of the main part of the electrode substrate 20C, FIG. 16B is a cross-sectional view taken along line B2-B2 in FIG. 16A, and FIG. 16C is a cross-sectional view taken along line C2-C2 in FIG.
 この例では、ジャンパ配線部220qを形成した後、ジャンパ配線部220qを被覆する絶縁膜220r1を形成し、さらに当該絶縁膜220r1の上に上述の第1及び第2の導体膜S21,S22がそれぞれ形成される。すなわち本例におけるシールド層S3は、第1及び第2の導体膜S21,S22と、これら導体膜S21,S22と電極線部210p,220pとの間に配置された絶縁膜220r1とを有する。 In this example, after forming the jumper wiring part 220q, the insulating film 220r1 covering the jumper wiring part 220q is formed, and the first and second conductor films S21 and S22 are respectively formed on the insulating film 220r1. It is formed. That is, the shield layer S3 in this example includes the first and second conductor films S21 and S22, and the insulating film 220r1 disposed between the conductor films S21 and S22 and the electrode line portions 210p and 220p.
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this technique was described, this technique is not limited only to the above-mentioned embodiment, Of course, various changes can be added within the range which does not deviate from the summary of this technique.
 例えば以上の第1の実施形態では、第1の電極線210として直線的な電極線又は電極線群で構成されたが、これに限られず、種々の形状の電極が採用可能である。 For example, in the first embodiment described above, the first electrode line 210 is configured by a linear electrode line or a group of electrode lines, but is not limited thereto, and various shapes of electrodes can be employed.
 例えば図17に示すように、第1の電極線210Dは、それぞれ、複数の単位電極体210Dmを有してもよい。単位電極体210Dmは、第2の電極線と交差する対向領域に形成され、容量センサを構成する。X電極210Dの単位電極体210Dmは、複数のサブ電極により構成されているが、平板状のベタ電極で構成されてもよい。 For example, as shown in FIG. 17, each of the first electrode lines 210D may have a plurality of unit electrode bodies 210Dm. The unit electrode body 210Dm is formed in a facing region intersecting with the second electrode line, and constitutes a capacitance sensor. The unit electrode body 210Dm of the X electrode 210D is composed of a plurality of sub-electrodes, but may be composed of a flat solid electrode.
 単位電極体の構成は上記の例に限られず、例えば図18(A)~(P)に示すような各種形態のものが採用可能である。 The configuration of the unit electrode body is not limited to the above example, and various types as shown in FIGS. 18 (A) to (P) can be employed.
 複数の第2の電極線220についても同様に、図19Aに示すように各々複数の電極細線からなる電極線群で構成された電極線220Dが採用されてもよいし、図19Bに示すように各々複数の単位電極体を有する電極線220Eが採用されてもよい。あるいは、図19Cに示すように各々単一の電極線220Fで構成されてもよい。 Similarly, for the plurality of second electrode lines 220, an electrode line 220D configured by a group of electrode lines each composed of a plurality of electrode thin lines may be employed as shown in FIG. 19A, or as shown in FIG. 19B. Electrode wires 220E each having a plurality of unit electrode bodies may be employed. Alternatively, as shown in FIG. 19C, each may be configured by a single electrode line 220F.
 また、検出部20sを電磁ノイズから遮蔽するためのシールド層S1,S2は、フレキシブルディスプレイ11と検出部20sとの間に配置されたが、ノイズ源が導体層50側にある場合(例えば入力装置の駆動回路等の配線基板が設置される場合)には、電極基板の裏面側にもシールド層が配置されてもよい。 The shield layers S1 and S2 for shielding the detection unit 20s from electromagnetic noise are arranged between the flexible display 11 and the detection unit 20s, but the noise source is on the conductor layer 50 side (for example, the input device). In the case where a wiring board such as a driving circuit is installed), a shield layer may also be arranged on the back side of the electrode substrate.
 そして以上の各実施形態では、電極基板20を一対の支持体30,40で支持する構成を説明したが、何れか一方のみであってもよい。図20に、第2の支持体40を省略した入力装置の構成例を示す。 In the above embodiments, the configuration in which the electrode substrate 20 is supported by the pair of support bodies 30 and 40 has been described, but only one of them may be used. FIG. 20 shows a configuration example of an input device in which the second support 40 is omitted.
 そして以上の各実施形態では、第1及び第2の支持体30,40を備えた入力装置を例に挙げて説明したが、これら支持体のうち何れか一方のみ備えた入力装置、あるいは、いずれの支持体をも備えていない入力装置にも本技術は適用可能である。 In each of the above embodiments, the input device including the first and second supports 30 and 40 has been described as an example. However, the input device including only one of these supports, or The present technology can also be applied to an input device that does not include the support.
 さらに、操作部材10としてフレキシブルディスプレイ11を例に挙げて説明したが、これに限られず、例えばキー配列が表示されたキーボード等にも本技術は適用可能である。 Furthermore, the flexible display 11 has been described as an example of the operation member 10, but the present invention is not limited to this, and the present technology can be applied to, for example, a keyboard on which a key arrangement is displayed.
 なお、本技術は以下のような構成もとることができる。
(1) 複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列された電極基板と、
 前記電極基板に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含むシールド層と
 を具備するセンサ装置。
(2)上記(1)に記載のセンサ装置であって、
 前記複数の第1の電極線と前記複数の第2の電極線とは、前記電極基板の厚み方向に相互に離間して配置され、
 前記複数の容量センサは、前記複数の第1の電極線と前記複数の第2の電極線との交差領域に各々形成される
 センサ装置。
(3)上記(2)に記載のセンサ装置であって、
 前記電極基板は、
 前記複数の第1の電極線を支持する第1の絶縁層と、
 前記複数の第2の電極線を支持する第2の絶縁層とを有し、
 前記シールド層は、前記第1の絶縁層に設けられる
 センサ装置。
(4)上記(3)に記載のセンサ装置であって、
 前記シールド層は、前記複数の第1の電極線と同一平面上に設けられる
 センサ装置。
(5)上記(2)~(4)のいずれか1つに記載のセンサ装置であって、
 前記導体膜は、前記複数の第1の電極線と同じ材料で構成される
 センサ装置。
(6)上記(2)~(5)のいずれか1つに記載のセンサ装置であって、
 前記導体膜は、前記複数の第1の電極線各々の間に配置された複数の第3の電極線を含む
 センサ装置。
(7)上記(6)に記載のセンサ装置であって、
 前記導体膜は、前記複数の第3の電極線を相互に接続する配線部をさらに含む
 センサ装置。
(8)上記(1)に記載のセンサ装置であって、
 前記複数の容量センサは、前記電極基板の面内方向に相互に対向する前記複数の第1の電極線及び前記複数の第2の電極線との対向領域に各々形成され、
 前記シールド層は、前記導体膜と前記配線領域との間に配置された絶縁膜をさらに有する
 センサ装置。
(9)上記(8)に記載のセンサ装置であって、
 前記電極基板は、前記複数の第1の電極線と前記複数の第2の電極線との交差部に設けられた複数のジャンパ配線部を有する
 センサ装置。
(10)上記(9)に記載のセンサ装置であって、
 前記導体膜は、前記複数のジャンパ配線部と同一平面上に設けられる
 センサ装置。
(11)上記(9)に記載のセンサ装置であって、
 前記シールド層は、前記複数のジャンパ配線部を被覆する
 センサ装置。
(12)上記(9)~(11)のいずれか1つに記載のセンサ装置であって、
 前記導体膜は、前記複数のジャンパ配線部と同じ材料で構成される
 センサ装置。
(13)上記(1)~(12)のいずれか1つに記載のセンサ装置であって、
 前記シールド層は、前記複数の対向領域間を連絡する前記複数の第1の電極線の少なくとも一部の配線領域をさらに遮蔽する
 センサ装置。
(14)上記(1)~(13)のいずれか1つに記載のセンサ装置であって、
 前記複数の第2の電極線は、マトリクス状に配列された前記複数の容量センサが形成される検出領域の外側に形成された外周配線部を有し、
 前記シールド層は、前記外周配線部の少なくとも一部をさらに遮蔽する
 センサ装置。
(15)上記(1)~(14)のいずれか1つに記載のセンサ装置であって、
 前記電極基板の一方の主面に対向して配置された変形可能な第1の導体層と、
 前記第1の導体層と前記電極基板との間を接続する複数の第1の構造体を有する第1の支持体と、をさらに具備する
 センサ装置。
(16)上記(15)に記載のセンサ装置であって、
 前記電極基板の他方の主面に対向して配置された第2の導体層と、
 前記第2の導体層と前記電極基板との間を接続する複数の第2の構造体を有する第2の支持体と、をさらに具備する
 センサ装置。
In addition, this technique can also take the following structures.
(1) It has a plurality of first electrode lines and a plurality of second electrode lines, and is formed in a plurality of opposing regions of the plurality of first electrode lines and the plurality of second electrode lines, respectively. An electrode substrate in which a plurality of capacitive sensors are arranged in a matrix,
A sensor device comprising: a shield layer that is provided on the electrode substrate and includes a conductor film that shields at least a part of a wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions.
(2) The sensor device according to (1) above,
The plurality of first electrode lines and the plurality of second electrode lines are spaced apart from each other in the thickness direction of the electrode substrate,
The plurality of capacitance sensors are respectively formed in intersection regions of the plurality of first electrode lines and the plurality of second electrode lines.
(3) The sensor device according to (2) above,
The electrode substrate is
A first insulating layer that supports the plurality of first electrode wires;
A second insulating layer that supports the plurality of second electrode wires,
The shield layer is provided on the first insulating layer.
(4) The sensor device according to (3) above,
The shield layer is provided on the same plane as the plurality of first electrode lines.
(5) The sensor device according to any one of (2) to (4) above,
The conductor film is made of the same material as the plurality of first electrode wires.
(6) The sensor device according to any one of (2) to (5) above,
The conductor film includes a plurality of third electrode lines arranged between each of the plurality of first electrode lines.
(7) The sensor device according to (6) above,
The conductor film further includes a wiring portion that connects the plurality of third electrode lines to each other.
(8) The sensor device according to (1) above,
The plurality of capacitance sensors are respectively formed in regions facing the plurality of first electrode lines and the plurality of second electrode lines facing each other in an in-plane direction of the electrode substrate,
The shield layer further includes an insulating film disposed between the conductor film and the wiring region.
(9) The sensor device according to (8) above,
The electrode substrate includes a plurality of jumper wiring portions provided at intersections of the plurality of first electrode lines and the plurality of second electrode lines.
(10) The sensor device according to (9) above,
The conductor film is provided on the same plane as the plurality of jumper wiring portions.
(11) The sensor device according to (9) above,
The shield layer covers the plurality of jumper wiring portions.
(12) The sensor device according to any one of (9) to (11) above,
The said conductor film is comprised with the same material as the said several jumper wiring part. Sensor apparatus.
(13) The sensor device according to any one of (1) to (12) above,
The shield layer further shields at least a part of a wiring region of the plurality of first electrode lines communicating between the plurality of opposed regions.
(14) The sensor device according to any one of (1) to (13) above,
The plurality of second electrode lines have an outer peripheral wiring portion formed outside a detection region where the plurality of capacitance sensors arranged in a matrix are formed,
The shield layer further shields at least a part of the outer peripheral wiring portion.
(15) The sensor device according to any one of (1) to (14) above,
A deformable first conductor layer disposed to face one main surface of the electrode substrate;
A sensor device, further comprising: a first support having a plurality of first structures that connect between the first conductor layer and the electrode substrate.
(16) The sensor device according to (15) above,
A second conductor layer disposed to face the other main surface of the electrode substrate;
A sensor device further comprising: a second support body having a plurality of second structures connecting between the second conductor layer and the electrode substrate.
 1…センサ装置
 11…フレキシブルディスプレイ
 20,20C…電極基板
 20s,20Cs…検出部
 30…第1の支持体
 40…第2の支持体
 50…導体層
 60…制御部
 100…入力装置
 210,210C…第1の電極線
 220,220C…第2の電極線
 220q…ジャンパ配線部
 310…第1の構造体
 410…第2の構造体
 S1,S2…シールド層
 S21,S22…導体膜
DESCRIPTION OF SYMBOLS 1 ... Sensor apparatus 11 ... Flexible display 20, 20C ... Electrode board | substrate 20s, 20Cs ... Detection part 30 ... 1st support body 40 ... 2nd support body 50 ... Conductive layer 60 ... Control part 100 ... Input device 210, 210C ... First electrode line 220, 220C ... Second electrode line 220q ... Jumper wiring part 310 ... First structure 410 ... Second structure S1, S2 ... Shield layer S21, S22 ... Conductor film

Claims (18)

  1.  複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列された電極基板と、
     前記電極基板に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含むシールド層と
     を具備するセンサ装置。
    A plurality of first electrode lines and a plurality of second electrode lines, each of which is formed in a plurality of opposing regions of the plurality of first electrode lines and the plurality of second electrode lines. An electrode substrate in which a plurality of capacitance sensors are arranged in a matrix,
    A sensor device comprising: a shield layer that is provided on the electrode substrate and includes a conductor film that shields at least a part of a wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions.
  2.  請求項1に記載のセンサ装置であって、
     前記複数の第1の電極線と前記複数の第2の電極線とは、前記電極基板の厚み方向に相互に離間して配置され、
     前記複数の容量センサは、前記複数の第1の電極線と前記複数の第2の電極線との交差領域に各々形成される
     センサ装置。
    The sensor device according to claim 1,
    The plurality of first electrode lines and the plurality of second electrode lines are spaced apart from each other in the thickness direction of the electrode substrate,
    The plurality of capacitance sensors are respectively formed in intersection regions of the plurality of first electrode lines and the plurality of second electrode lines.
  3.  請求項2に記載のセンサ装置であって、
     前記電極基板は、
     前記複数の第1の電極線を支持する第1の絶縁層と、
     前記複数の第2の電極線を支持する第2の絶縁層とを有し、
     前記シールド層は、前記第1の絶縁層に設けられる
     センサ装置。
    The sensor device according to claim 2,
    The electrode substrate is
    A first insulating layer that supports the plurality of first electrode wires;
    A second insulating layer that supports the plurality of second electrode wires,
    The shield layer is provided on the first insulating layer.
  4.  請求項3に記載のセンサ装置であって、
     前記シールド層は、前記複数の第1の電極線と同一平面上に設けられる
     センサ装置。
    The sensor device according to claim 3,
    The shield layer is provided on the same plane as the plurality of first electrode lines.
  5.  請求項2に記載のセンサ装置であって、
     前記導体膜は、前記複数の第1の電極線と同じ材料で構成される
     センサ装置。
    The sensor device according to claim 2,
    The conductor film is made of the same material as the plurality of first electrode wires.
  6.  請求項2に記載のセンサ装置であって、
     前記導体膜は、前記複数の第1の電極線各々の間に配置された複数の第3の電極線を含む
     センサ装置。
    The sensor device according to claim 2,
    The conductor film includes a plurality of third electrode lines arranged between each of the plurality of first electrode lines.
  7.  請求項6に記載のセンサ装置であって、
     前記導体膜は、前記複数の第3の電極線を相互に接続する配線部をさらに含む
     センサ装置。
    The sensor device according to claim 6,
    The conductor film further includes a wiring portion that connects the plurality of third electrode lines to each other.
  8.  請求項1に記載のセンサ装置であって、
     前記複数の容量センサは、前記電極基板の面内方向に相互に対向する前記複数の第1の電極線及び前記複数の第2の電極線との対向領域に各々形成され、
     前記シールド層は、前記導体膜と前記配線領域との間に配置された絶縁膜をさらに有する
     センサ装置。
    The sensor device according to claim 1,
    The plurality of capacitance sensors are respectively formed in regions facing the plurality of first electrode lines and the plurality of second electrode lines facing each other in an in-plane direction of the electrode substrate,
    The shield layer further includes an insulating film disposed between the conductor film and the wiring region.
  9.  請求項8に記載のセンサ装置であって、
     前記電極基板は、前記複数の第1の電極線と前記複数の第2の電極線との交差部に設けられた複数のジャンパ配線部を有する
     センサ装置。
    The sensor device according to claim 8,
    The electrode substrate includes a plurality of jumper wiring portions provided at intersections of the plurality of first electrode lines and the plurality of second electrode lines.
  10.  請求項9に記載のセンサ装置であって、
     前記導体膜は、前記複数のジャンパ配線部と同一平面上に設けられる
     センサ装置。
    The sensor device according to claim 9,
    The conductor film is provided on the same plane as the plurality of jumper wiring portions.
  11.  請求項9に記載のセンサ装置であって、
     前記シールド層は、前記複数のジャンパ配線部を被覆する
     センサ装置。
    The sensor device according to claim 9,
    The shield layer covers the plurality of jumper wiring portions.
  12.  請求項9に記載のセンサ装置であって、
     前記導体膜は、前記複数のジャンパ配線部と同じ材料で構成される
     センサ装置。
    The sensor device according to claim 9,
    The said conductor film is comprised with the same material as the said several jumper wiring part. Sensor apparatus.
  13.  請求項1に記載のセンサ装置であって、
     前記シールド層は、前記複数の対向領域間を連絡する前記複数の第1の電極線の少なくとも一部の配線領域をさらに遮蔽する
     センサ装置。
    The sensor device according to claim 1,
    The shield layer further shields at least a part of a wiring region of the plurality of first electrode lines communicating between the plurality of opposed regions.
  14.  請求項1に記載のセンサ装置であって、
     前記複数の第2の電極線は、マトリクス状に配列された前記複数の容量センサが形成される検出領域の外側に形成された外周配線部を有し、
     前記シールド層は、前記外周配線部の少なくとも一部をさらに遮蔽する
     センサ装置。
    The sensor device according to claim 1,
    The plurality of second electrode lines have an outer peripheral wiring portion formed outside a detection region where the plurality of capacitance sensors arranged in a matrix are formed,
    The shield layer further shields at least a part of the outer peripheral wiring portion.
  15.  請求項1に記載のセンサ装置であって、
     前記電極基板の一方の主面に対向して配置された変形可能な第1の導体層と、
     前記第1の導体層と前記電極基板との間を接続する複数の第1の構造体を有する第1の支持体と、をさらに具備する
     センサ装置。
    The sensor device according to claim 1,
    A deformable first conductor layer disposed to face one main surface of the electrode substrate;
    A sensor device, further comprising: a first support having a plurality of first structures that connect between the first conductor layer and the electrode substrate.
  16.  請求項15に記載のセンサ装置であって、
     前記電極基板の他方の主面に対向して配置された第2の導体層と、
     前記第2の導体層と前記電極基板との間を接続する複数の第2の構造体を有する第2の支持体と、をさらに具備する
     センサ装置。
    The sensor device according to claim 15, wherein
    A second conductor layer disposed to face the other main surface of the electrode substrate;
    A sensor device further comprising: a second support body having a plurality of second structures connecting between the second conductor layer and the electrode substrate.
  17.  入力操作面を有する操作部材と、
     複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列された電極基板と、
     前記操作部材と前記電極基板との間に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含むシールド層と
     を具備する入力装置。
    An operation member having an input operation surface;
    A plurality of first electrode lines and a plurality of second electrode lines, each of which is formed in a plurality of opposing regions of the plurality of first electrode lines and the plurality of second electrode lines. An electrode substrate in which a plurality of capacitance sensors are arranged in a matrix,
    A shield layer provided between the operation member and the electrode substrate and including a conductor film that shields at least a part of the wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions. Input device.
  18.  入力操作面を有する表示素子と、
     複数の第1の電極線と、複数の第2の電極線とを有し、前記複数の第1の電極線と前記複数の第2の電極線との複数の対向領域に各々形成される複数の容量センサがマトリクス状に配列された電極基板と、
     前記表示素子と前記電極基板との間に設けられ、前記複数の対向領域間を連絡する前記複数の第2の電極線の少なくとも一部の配線領域を遮蔽する導体膜を含むシールド層と
     を具備する電子機器。
    A display element having an input operation surface;
    A plurality of first electrode lines and a plurality of second electrode lines, each of which is formed in a plurality of opposing regions of the plurality of first electrode lines and the plurality of second electrode lines. An electrode substrate in which a plurality of capacitance sensors are arranged in a matrix,
    A shield layer that is provided between the display element and the electrode substrate and includes a conductor film that shields at least a part of a wiring region of the plurality of second electrode lines communicating between the plurality of opposing regions. Electronic equipment.
PCT/JP2014/003433 2013-09-11 2014-06-27 Sensor device, input device, and electronic device WO2015037171A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167005408A KR20160053919A (en) 2013-09-11 2014-06-27 Sensor device, input device, and electronic device
JP2015536427A JP6561835B2 (en) 2013-09-11 2014-06-27 Sensor device, input device and electronic apparatus
CN201480048888.4A CN105531651B (en) 2013-09-11 2014-06-27 Sensor device, input unit and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-187946 2013-09-11
JP2013187946 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015037171A1 true WO2015037171A1 (en) 2015-03-19

Family

ID=52665307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003433 WO2015037171A1 (en) 2013-09-11 2014-06-27 Sensor device, input device, and electronic device

Country Status (5)

Country Link
JP (1) JP6561835B2 (en)
KR (1) KR20160053919A (en)
CN (1) CN105531651B (en)
TW (1) TWI625653B (en)
WO (1) WO2015037171A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937504A (en) * 2018-04-09 2020-11-13 三星电子株式会社 Electronic device equipped with flexible display and wireless charging method using the same
WO2021106490A1 (en) * 2019-11-29 2021-06-03 株式会社ジャパンディスプレイ Detection device and method for manufacturing detection device
CN114616447A (en) * 2019-10-29 2022-06-10 松下知识产权经营株式会社 Load sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016010971A1 (en) * 2016-06-06 2017-12-07 Preh Gmbh Input device with two-part force sensor for actuating input and method for its production
KR102286534B1 (en) * 2017-04-18 2021-08-06 주식회사 지2터치 Display with integrated touch screen
KR102410267B1 (en) * 2017-09-08 2022-06-20 삼성디스플레이 주식회사 Input sensing unit and electronic device including the same
WO2019169839A1 (en) * 2018-03-08 2019-09-12 佛山市顺德区美的电热电器制造有限公司 Touch button structure and electrical device
CN110247649A (en) * 2018-03-08 2019-09-17 佛山市顺德区美的电热电器制造有限公司 Touch key-press structure and electric appliance
TWI662457B (en) * 2018-06-20 2019-06-11 鴻海精密工業股份有限公司 Touch display device
CN110618759B (en) 2018-06-20 2023-06-09 鸿富锦精密工业(深圳)有限公司 Touch display device
TWI718540B (en) * 2019-05-23 2021-02-11 元太科技工業股份有限公司 Touch structure and manufacturing method thereof and touch display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106391A (en) * 1996-09-30 1998-04-24 Omron Corp Liquid crystal display apparatus equipped with touch switch
JP2007086075A (en) * 2005-09-20 2007-04-05 Philipp Harald Capacitive contact sensor
JP2010272105A (en) * 2009-04-22 2010-12-02 Hitachi Displays Ltd Input device and display having the same
JP2011090430A (en) * 2009-10-21 2011-05-06 Sony Corp Capacitance type input device and electrooptical device with input device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932898B2 (en) * 2005-09-20 2011-04-26 Atmel Corporation Touch sensitive screen
JP2010061384A (en) * 2008-09-03 2010-03-18 Rohm Co Ltd Input device and portable information processor using the same
EP2469249B1 (en) * 2009-08-17 2021-10-06 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor
KR101635746B1 (en) * 2009-10-20 2016-07-05 삼성디스플레이 주식회사 Sensor array substrate, display device comprising the same and method of manufacturing the same
EP2511798A4 (en) * 2009-12-11 2014-09-24 Nissha Printing Mounting structure for thin display and resistive touch panel, resistive touch panel unit with protrusions at front surface thereof, and thin display unit with protrusions at back surface thereof
KR20110076188A (en) * 2009-12-29 2011-07-06 삼성전자주식회사 Mutual capacitance sensing device and method for manufacturing the same
US9470941B2 (en) * 2011-08-19 2016-10-18 Apple Inc. In-cell or on-cell touch sensor with color filter on array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106391A (en) * 1996-09-30 1998-04-24 Omron Corp Liquid crystal display apparatus equipped with touch switch
JP2007086075A (en) * 2005-09-20 2007-04-05 Philipp Harald Capacitive contact sensor
JP2010272105A (en) * 2009-04-22 2010-12-02 Hitachi Displays Ltd Input device and display having the same
JP2011090430A (en) * 2009-10-21 2011-05-06 Sony Corp Capacitance type input device and electrooptical device with input device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937504A (en) * 2018-04-09 2020-11-13 三星电子株式会社 Electronic device equipped with flexible display and wireless charging method using the same
CN111937504B (en) * 2018-04-09 2023-10-27 三星电子株式会社 Electronic device equipped with flexible display and wireless charging method using the same
CN114616447A (en) * 2019-10-29 2022-06-10 松下知识产权经营株式会社 Load sensor
WO2021106490A1 (en) * 2019-11-29 2021-06-03 株式会社ジャパンディスプレイ Detection device and method for manufacturing detection device
JP2021086997A (en) * 2019-11-29 2021-06-03 株式会社ジャパンディスプレイ Detection device and manufacturing method for detection device
US20220284728A1 (en) * 2019-11-29 2022-09-08 Japan Display Inc. Detection device and method for manufacturing same
JP7377082B2 (en) 2019-11-29 2023-11-09 株式会社ジャパンディスプレイ Detection device and method for manufacturing the detection device
US11875594B2 (en) 2019-11-29 2024-01-16 Japan Display Inc. Detection device and method for manufacturing same

Also Published As

Publication number Publication date
CN105531651B (en) 2019-07-12
TW201510814A (en) 2015-03-16
CN105531651A (en) 2016-04-27
TWI625653B (en) 2018-06-01
JPWO2015037171A1 (en) 2017-03-02
JP6561835B2 (en) 2019-08-21
KR20160053919A (en) 2016-05-13

Similar Documents

Publication Publication Date Title
JP6561835B2 (en) Sensor device, input device and electronic apparatus
JP6142745B2 (en) Sensor device, input device and electronic apparatus
US10936128B2 (en) Sensor device, input device, and electronic apparatus
US10672566B2 (en) Touch window having improved electrode pattern structure
JP6288073B2 (en) Sensor device, input device and electronic device
US9632637B2 (en) Sensor device, input device, and electronic apparatus
WO2014141584A1 (en) Sensor device, input device, and electronic apparatus
KR102335116B1 (en) Touch screen pannel and manufacturing method thereof
JP6806183B2 (en) Sensor device and input device
CN110007797A (en) Flexible display panel and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048888.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536427

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167005408

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844866

Country of ref document: EP

Kind code of ref document: A1