WO2015035811A1 - 一种基站bbu的节电控制方法及装置 - Google Patents

一种基站bbu的节电控制方法及装置 Download PDF

Info

Publication number
WO2015035811A1
WO2015035811A1 PCT/CN2014/080143 CN2014080143W WO2015035811A1 WO 2015035811 A1 WO2015035811 A1 WO 2015035811A1 CN 2014080143 W CN2014080143 W CN 2014080143W WO 2015035811 A1 WO2015035811 A1 WO 2015035811A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bbu
power supply
module
power consumption
Prior art date
Application number
PCT/CN2014/080143
Other languages
English (en)
French (fr)
Inventor
王小建
徐瑞娜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015035811A1 publication Critical patent/WO2015035811A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of power-saving control, and more particularly to a power-saving control method and apparatus for a base station baseband unit (BBU) in a communication field.
  • BBU base station baseband unit
  • the power consumption reduction mechanism for a base station BBU is mainly through selecting a device with relatively powerful functions, high integration, low power consumption, simple peripheral circuits, or a digital signal processor that turns off the baseband board according to the size of the cell traffic at the initial stage of the BBU design. (Digital Signal Processor, referred to as DSP) or Central Processing Unit (CPU) chip to achieve low power consumption requirements of the entire board and even the BBU.
  • DSP Digital Signal Processor
  • CPU Central Processing Unit
  • the embodiments of the present invention are directed to the improvement of the problems in the prior art.
  • the technical problem to be solved by the embodiments of the present invention is to provide a power saving control method and apparatus for a base station BBU, which can effectively When the BBU service volume is small, the power consumption of the BBU baseband is reduced, which causes the relative power consumption of the BBU power supply unit to increase, thereby realizing dynamic energy-saving control in the daily operation of the BBU rack.
  • the embodiment of the present invention discloses a power saving control method for a base station BBU, where the power supply unit of the base station BBU includes at least two power modules; and the power saving control method includes: detecting a BBU power receiving unit in real time. Power consumption; determining that the power consumption is less than the set power unit optimal efficiency value, each power module polls the power supply according to a set time period; determining that the power consumption is greater than the set power unit optimal efficiency value , then all power modules are powered together.
  • the optimal efficiency value of the power supply unit is set according to the number of power modules it contains. When the number of power modules is N, the optimal efficiency value of the power supply unit is taken as the optimal efficiency value of the single power module of Ni times.
  • the single power module optimal efficiency value is determined according to the efficiency curve of the power module.
  • the polling power supply mode is that the number of power modules operating in one timing period is at least (Ni), where N and i are natural numbers.
  • the real-time power consumption of the power receiving unit is: collecting the power consumption calculated by the BBU main control board, and the BBU main control board calculates the power consumption according to the total power reported by each board of the power receiving unit. Or calculating the power consumption according to the power values of all the digital power sources reported by the power module, or calculating the power consumption according to the current and the output voltage of each board of the power receiving unit.
  • the power consumption control unit of the base station BBU includes at least two power modules; the power saving control device includes a power consumption detecting module, a controller, and a timer;
  • the power consumption detecting module receives the real-time power consumption of the power receiving unit reported on the BBU main control board and compares the real-time power consumption with the set power unit optimal efficiency value; when the power consumption is less than the set power unit optimal efficiency value
  • the controller is triggered to start the timer, and each power module is controlled to enter a polling power supply mode according to a time period set by the timer; when the power consumption is greater than a set power unit optimal efficiency value, all power sources are entered.
  • Module common power supply mode Preferably, the optimal efficiency value of the power supply unit is set according to the number of power modules it contains.
  • the optimal efficiency value of the power supply unit is (Ni) times the optimal efficiency value of the single power module. Any of them, where li Nl.
  • the single power module optimal efficiency value is determined according to the efficiency curve of the power source.
  • the polling power supply mode is that the number of power modules operating in one timing period is Ni.
  • the power consumption detection module obtains the power consumption of the BBU through the BBU main control board, and the BBU main control board calculates the power consumption according to the total power reported by each board of the power receiving unit, or according to all reported by the power module.
  • the power value of the digital power source calculates the power consumption, or the power consumption is calculated according to the current and output voltage on each board of the power receiving unit.
  • the power supply unit dynamically adjusts the power supply efficiency of the BBU chassis based on the polling power supply technology in a small load state.
  • the power consumption of the BBU is small, one or more power modules in the BBU power supply unit are rotated.
  • the power supply of the electric unit enables the power module to work under high efficiency conditions to achieve dynamic energy-saving control in the daily operation of the BBU rack, which can prolong the life of the BBU power module while saving energy and reducing consumption.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS The technical problems, technical solutions, and advantages of the embodiments of the present invention will be more clearly understood from the following detailed description.
  • the BBU power supply relationship structure is divided into: power supply unit and power receiving unit.
  • the power supply unit includes one or more direct current/direct current (DC/DC) or alternating current/DC (AC/DC) power modules.
  • the power supply unit supplies DC power to the entire BBU chassis to ensure that the BBU chassis can operate.
  • the power receiving unit further includes an execution unit and a heat dissipation unit.
  • the execution unit is mainly the main control board of the BBU and the baseband processing unit, and includes multiple boards.
  • the execution unit is the core component of the BBU chassis, and performs the base station control and baseband processing functions of the BBU in the base station.
  • the heat sink unit includes a fan and an environmental control panel, which may be separate or integrated.
  • the heat dissipation unit implements the heat dissipation function of the BBU chassis to ensure the operational stability of the execution unit and the power supply unit.
  • the power saving control of the BBU in the present invention is mainly realized by the power saving control of the power supply unit.
  • the commonly used BBU has two structures, one is a standard 19-inch rack, and the single board is horizontally arranged.
  • the power supply unit and the heat dissipation unit are located at both ends of the rack, and the main control board and the baseband unit are located in the middle of the rack, such as The figure above is shown in Figure 1.
  • the other is a rack that conforms to the utca architecture.
  • the boards are vertically arranged.
  • the heat sink unit and the power supply unit are located at the bottom and top of the rack, as shown in the lower diagram of Figure 1.
  • 2 is a flow chart of a method for controlling energy saving of a BBU power supply unit. It can be seen that the method comprises the following steps:
  • each power module polls the power supply according to the set time period
  • 3 is a schematic structural view of a power saving control device of the BBU.
  • the input end of the power consumption detecting module is connected to the BBU power supply unit, and the output end is connected to the BBU power receiving unit.
  • the power consumption detecting module can be embedded in the power module of the BBU, or can be embedded in the main body of the BBU power receiving unit.
  • the boards such as the control board and the baseband board can also be set separately.
  • the power consumption detection module compares the real-time power consumption of the BBU reported on the BBU main control board with the set optimal power supply unit efficiency value, and when the power consumption value monitored by the main control board is less than the optimal power supply unit efficiency value.
  • the controller starts the timer timing, and controls each power module to enter the polling power supply mode according to the time set in the timer, that is, by one or according to the number of power modules in a timing period T
  • a set of power modules determined by different optimal efficiency value settings of the power supply unit is powered, and other power supply modules are dormant, and power is supplied by another or another set of power supply modules in the next timing period T, and the remaining power supply modules are dormant.
  • the second signal is output to the controller, and the controller controls each power module to enter the common power supply mode.
  • the optimal efficiency value of the power supply unit may be set according to the number of power modules included therein.
  • the optimal efficiency value of the power supply unit is any one of the best efficiency values of the single power module of Ni times. , where li Nl.
  • Figure 4 is a schematic diagram of the manner in which the BBU main control board obtains the current power consumption of the BBU from the power receiving unit side. as the picture shows,
  • the board of the power receiving unit in the BBU is powered by the digital power supply.
  • the digital power supply reports the power to the CPU of the card.
  • the CPU of the card sends the power value to the BBU main control board.
  • the BBU control board calculates the BBU.
  • the current power consumption of the BBU is obtained from the sum of the powers of the power receiving units and reported to the power consumption detecting module.
  • the digital power supply is located on a board in the power receiving unit, and is powered by the oring power supply of the power supply unit, and supplies power to the single board.
  • the oring power supply is located on the power supply board and does not have voltage and current detection.
  • FIG. 5 is a schematic diagram of a manner in which the BBU main control board acquires the current power consumption of the BBU from the power supply unit side.
  • the power module of the power supply unit uses a digital oring power supply to power a single board of the powered unit.
  • the power module CPU reports the power value of all the digital power supplies to the main control board through the communication interface.
  • the main control board adds the power of the digital power supply of all the power modules to obtain the power consumption of the power receiving board.
  • the power consumption is added to obtain the power consumption of the BBU and reported to the power consumption detection module.
  • the digital oring power supply has a voltage and current detection function, which can increase stability when multiple digital power sources simultaneously supply power to the same power receiving unit.
  • the digital oring power supply can be a digital power supply with an Oring function or combined with other chips to form an Oring function.
  • FIG. 6 is a schematic diagram showing the second way in which the BBU main control board obtains the current power consumption of the BBU from the power supply unit side.
  • the power module of the power supply unit is powered by the Oring digital power supply for each board of the power receiving unit.
  • the current of the power path is sampled, and the power of the path is obtained based on the known output voltage.
  • the specific current sampling process is as follows: Collect and amplify the voltage across the current sensor disposed on each current channel, and then the processing circuit transmits the amplified voltage on each channel to the CPU of the power module, and the CPU of the power module receives the processing circuit.
  • the voltage value is sent and the current of the path is calculated, thereby calculating the power of all the power paths, and transmitting the power value to the main control board of the BBU, and the main control board adds the powers of the digital power sources of all the power modules to obtain
  • the power consumption of the power-receiving board is added to the power consumption of the BBU power receiving unit and reported to the power consumption detection module.
  • 7 and 8 are schematic diagrams showing the structure of two typical current sampling circuits.
  • the two current sampling circuits are divided into a sampling circuit and a processing circuit.
  • the sampling circuit collects and amplifies the voltage across the current sensor disposed on each current channel.
  • the processing circuit is implemented in FIG.
  • the current sensor can include the following: string precision resistors on the power path; or add a Hall sensor to the power path; or add a MOSFET to the power path, using the MOSFET's on-resistance test.
  • FIG. 10 shows the flow chart of the BBU power supply unit polling power supply algorithm. As shown in the figure, each power module polls the power receiving unit by polling in the counting period T.
  • the number of power supply unit power modules is two, and the optimal efficiency value of the power supply unit is set to the optimal efficiency value of the single power supply module.
  • the power module 1 and the power module 2 are powered together, that is, the power supply unit is in the common power supply mode.
  • the power consumption detecting module monitors that the power consumption value of the power receiving unit is less than the optimal power unit output efficiency value, outputs a first signal to the controller, the controller starts a timer, and controls the power supply unit.
  • the power module 1 is powered during the first set timing period, and the power module 2 is dormant.
  • the power module 2 supplies power during the second timing period, and the power module 1 sleeps.
  • the loop is performed until the power consumption detection module monitors that the power consumption value of the power receiving unit is greater than or equal to the set power unit optimal efficiency value, and then enters all power module common power supply modes.
  • the second embodiment as shown in FIG.
  • the number of power supply unit power modules is three, and the power unit optimal efficiency value is set to the optimal efficiency value of a single power module.
  • the power module 1, the power module 2, and the power module 3 are powered together, that is, the power supply unit is in the common power supply mode.
  • the power consumption detection module monitors that the power consumption value of the power receiving unit is less than the optimal efficiency value of the power supply unit, the controller starts the timer, and controls the first unit of the power supply unit.
  • the power module 1 is powered, the power module 2 and the power module 3 are dormant; during the second chronograph period, the power module 2 is powered, the power module 1 and the power module 3 are dormant; in the third timing cycle, the power module is 3 power supply, power module 1 and power module 2 sleep.
  • the power consumption detection module monitors that the power consumption value of the power receiving unit is greater than or equal to the set power unit optimal efficiency value, and then enters all power module common power supply modes.
  • the number of power supply unit power supply modules is three, and the power supply unit optimal efficiency value is set to twice the optimal efficiency value of a single power supply module.
  • the power module 1, the power module 2, and the power module 3 are powered together, that is, the power supply unit is in the common power supply mode.
  • the power consumption detection module monitors that the power consumption value of the power receiving unit is less than the optimal efficiency value of the power supply unit, the controller starts the timer, and controls the power supply unit to be set first.
  • the chronograph period the power module 1 and the power module 2 are powered, and the power module 3 is dormant; during the second chronograph period, the power module 1 and the power module 3 are powered, and the power module 2 is dormant; during the third chronograph period, the power module is 2 Power supply module 3 is powered, and power module 1 is sleeping.
  • This cycle is performed until the power consumption detection module monitors that the power consumption value of the power receiving unit is greater than or equal to the set power unit optimal efficiency value, and enters all power module common power supply modes.
  • the number of power supply unit power supply modules is four, and the power supply unit optimum efficiency value is set to twice the optimum efficiency value of a single power supply module.
  • the power module 1 to the power module 4 are powered together, that is, the power supply unit is in the common power supply mode.
  • the power consumption detection module monitors that the power consumption value of the power receiving unit is less than the optimal efficiency value of the power supply unit, the controller starts the timer, and controls the first unit of the power supply unit.
  • the power module 1 and the power module 2 are powered, and the power module 3 and the power module 4 are dormant; during the second chronograph period, the power module 3 and the power module 4 are powered, and the power module 1 and the power module 2 are dormant.
  • the loop is performed until the power consumption detection module monitors that the power consumption value of the power receiving unit is greater than or equal to the set power unit optimal efficiency value, and then enters all power module common power supply modes.
  • the number of power supply unit power modules is four, and the optimal efficiency value of the power supply unit is set to three times the optimum efficiency value of a single power supply module.
  • the power module 1 to the power module 4 are powered together, that is, the power supply unit is in the common power supply mode.
  • the power consumption detection module monitors that the power consumption value of the power receiving unit is less than the optimal efficiency value of the power supply unit, the controller starts the timer, and controls the first unit of the power supply unit.
  • the power module 1, the power module 2, and the power module 3 are powered, and the power module 4 is dormant; during the second chronograph period, the power module 1, the power module 2, and the power module 4 are powered, and the power module 3 is dormant; The power module 1, the power module 3, and the power module 4 are powered during the three timing periods, and the power module 2 is dormant; during the fourth timing period, the power module 2, the power module 3, and the power module 4 are powered, and the power module 1 is dormant.
  • the loop is performed until the power consumption detection module monitors that the power consumption value of the power receiving unit is greater than or equal to the set power unit optimal efficiency value, and then enters all power module common power supply modes.
  • the power supply unit dynamically updates the power supply efficiency of the BBU chassis based on the polling power supply technology in a small load state. Adjustment: When the BBU consumes less power, one or more power modules in the BBU power supply unit take turns to supply power to the power receiving unit, so that the power module always works under high efficiency conditions, realizing dynamic energy-saving control in the daily operation of the BBU rack. It saves the life of the BBU power module while saving energy and reducing consumption.

Abstract

本发明涉及一种节电控制方法及装置,特别是通讯领域中基站BBU的节电控制方法和装置。本发明中基站BBU的供电单元包含至少两个电源模块,本发明的节电控制方法包括检测BBU受电单元实时功耗;判断所述功耗是否小于设定的供电单元最佳效率值,如果小于则各电源模块按照设定的时间轮询供电;否则所有电源模块共同供电。相应的,本发明的节电控制装置包括功耗检测模块、控制器和定时器。通过采用发明公开的节电控制方法或装置,可以解决当整个基带单元功耗变低以后,BBU的供电部分效率变低,导致BBU供电单元功耗大的问题,实现了BBU机架日常运行中的动态的节能控制,在节能降耗同时延长了BBU电源模块的寿命。

Description

一种基站 BBU的节电控制方法及装置 技术领域 本发明涉及节电控制领域, 特别是通讯领域中一种基站基带处理单元 (Building Baseband Unit, 简称为 BBU) 的节电控制方法及装置。 背景技术 目前,针对基站 BBU降功耗机制主要是通过在 BBU设计初期选取功能相对强大、 集成度高、 功耗低, 外围电路简单的器件或者根据小区业务量大小关闭基带板的数字 信号处理器 (Digital Signal Processor, 简称为 DSP ) 或者中央处理单元 (Central Processing Unit, 简称为 CPU) 芯片, 来实现整个单板乃至 BBU的低功耗需求。 这些 技术都只能相对减少基带部分的功率, 没有解决当 BBU整个基带部分功耗变低以后, BBU的供电部分效率变低, 导致 BBU供电单元功耗大的问题。 发明内容 本发明实施例针对上述现有技术中存在的问题做出改进, 即本发明实施例要解决 的技术问题是提供一种基站 BBU的节电控制方法及装置,该方法或装置能够有效地解 决 BBU业务量小时, BBU基带部分功耗降低, 导致 BBU供电单元功相对耗增加的问 题, 从而实现 BBU机架日常运行中的动态的节能控制。 为解决上述技术问题,本发明实施例公开了一种基站 BBU的节电控制方法,所述 基站 BBU的供电单元包括至少两个电源模块; 所述节电控制方法包括: 检测 BBU受 电单元实时功耗; 确定所述功耗小于设定的供电单元最佳效率值时, 则各电源模块按 照设定的时间周期轮询供电; 确定所述功耗大于设定的供电单元最佳效率值时, 则所 有电源模块共同供电。 优选地, 所述供电单元最佳效率值根据其包含的电源模块的数量来设定, 当电源 模块数为 N时,供电单元最佳效率值取 N-i倍的单电源模块最佳效率值中的任意一个, 其中 l i N-l。所述单电源模块最佳效率值根据该电源模块的效率曲线来确定。所述 轮询供电模式为在一个计时周期内工作的电源模块数量至少为 (N-i) 个, 其中 N、 i 为自然数。 优选地, 所述检测受电单元实时功耗为: 采集 BBU主控板计算出的所述功耗, 所 述 BBU主控板根据受电单元各单板上报的总功率计算所述功耗,或者根据电源模块上 报的所有数字电源的功率值计算所述功耗, 或者根据受电单元各单板上的电流和输出 电压来计算所述功耗。 本发明实施例还提供一种基站 BBU的节电控制装置, 所述基站 BBU的供电单元 包括至少两个电源模块; 所述节电控制装置包括功耗检测模块、 控制器和定时器; 所 述功耗检测模块接收 BBU 主控板上报的受电单元实时功耗并将该实时功耗与设定的 供电单元最佳效率值比较; 当该功耗小于设定的供电单元最佳效率值时, 触发所述控 制器启动所述定时器,并按定时器设定的时间周期控制各电源模块进入轮询供电模式; 当该功耗大于设定的供电单元最佳效率值时, 进入所有电源模块共同供电模式。 优选地, 所述供电单元最佳效率值根据其包含的电源模块的数量来设定, 当电源 模块数为 N时, 供电单元最佳效率值取(N-i)倍的单电源模块最佳效率值中的任意一 个, 其中 l i N-l。所述单电源模块最佳效率值根据该电源的效率曲线来确定。所述 轮询供电模式为在一个计时周期内工作的电源模块数量为 N-i个。 优选地, 所述功耗检测模块通过 BBU主控板得到 BBU的功耗, 所述 BBU主控 板根据受电单元各单板上报的总功率计算所述功耗, 或者根据电源模块上报的所有数 字电源的功率值计算所述功耗, 或者根据受电单元各单板上的电流和输出电压来计算 所述功耗。 在上述技术方案中,供电单元基于小负载状态下的轮询供电技术,对 BBU机架供 电效率进行动态调整, 当 BBU功耗较小时使 BBU供电单元中的一个或者多个电源模 块轮流为受电单元供电,使电源模块始终工作在高效率条件下,实现 BBU机架日常运 行中的动态的节能控制, 在节能降耗同时延长了 BBU电源模块的寿命。 附图说明 图 1是两种典型的基站 BBU供电关系示意图; 图 2是 BBU供电单元节电控制方法流程图; 图 3是 BBU供电单元节电控制装置结构示意图; 图 4是 BBU功耗计算受电单元侧实现方式示意图; 图 5是 BBU功耗计算供电单元侧实现方式一示意图; 图 6是 BBU功耗计算供电单元侧实现方式二示意图; 图 7是电流采样电路一结构示意图; 图 8是电流采样电路二结构示意图; 图 9是 BBU供电单元轮询供电算法流程图; 以及 图 10是实施例一至五的示意图。 具体实施方式 为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下面将结合 附图及具体实施例进行详细描述。 从图 1可以看出, BBU供电关系结构分为: 供电单元和受电单元。 其中, 供电单 元包括一个或者多个直流 /直流(Direct Current/Direct Current, 简称为 DC/DC)或者交 流 /直流 (Alternating Current/DC, 简称为 AC/DC) 电源模块。 供电单元为整个 BBU 机架提供直流电, 保证 BBU机架能运行。 其中受电单元又包括执行单元和散热单元。 执行单元主要为 BBU的主控板以及基带处理单元, 包含多个单板。 执行单元为 BBU 机架的核心部件,完成 BBU在基站中所担负的基站控制以及基带处理功能。散热单元 包含风扇以及环境控制板,可以是分体的也可以是一体的。散热单元实现 BBU机架散 热功能,保证执行单元和供电单元的运行稳定性。本发明中对 BBU的节电控制主要是 通过对供电单元的节电控制来实现的。 目前常用的 BBU有两种结构, 一种的标准的 19英寸机架, 单板水平布置, 通常供电单元和散热单元位于机架的两端, 主控板和基 带单元位于机架的中间, 如图 1中上图所示; 另一种是遵从 utca架构的机架, 单板垂 直布置, 散热单元和供电单元分别位于机架的底部和顶部, 如图 1中下图所示。 图 2是 BBU供电单元节能控制方法的流程图。 可以看出该方法包含以下步骤:
1 ) 检测 BBU受电单元的实时功耗;
2) 判断所述功耗是否小于设定的供电单元最佳效率值;
3 ) 如果小于则各电源模块按照设定的时间周期轮询供电;
4) 否则所有电源模块共同供电。 图 3是 BBU的节电控制装置结构示意图。本发明的节电控制装置中功耗检测模块 的输入端与 BBU供电单元相连, 输出端与 BBU受电单元相连, 功耗检测模块可以嵌 入 BBU的电源模块, 也可以嵌入 BBU受电单元的主控板、 基带板等单板, 还可以单 独设置。 功耗检测模块将 BBU主控板上报的 BBU的实时功耗与设定的供电单元最佳 效率值进行比较, 当主控板监控到的功耗值小于设定的供电单元最佳效率值时, 输出 第一信号给控制器, 控制器启动定时器计时, 并根据定时器中设定的时间控制各电源 模块进入轮询供电模式, 即在一个计时周期 T内由一个或根据电源模块数量和供电单 元最佳效率值设置的不同而确定的一组电源模块进行供电, 其他电源模块休眠, 在下 一个计时周期 T内由另一个或另一组电源模块进行供电, 其余的电源模块休眠。 当功 耗检测模块监控到的功耗值大于设定值时, 输出第二信号给控制器, 控制器控制各电 源模块进入共同供电模式。 所述供电单元最佳效率值可以根据其包含的电源模块的数量来设定, 当电源模块 数为 N时, 供电单元最佳效率值取 N-i倍的单电源模块最佳效率值中的任意一个, 其 中 l i N-l。 图 4是 BBU主控板从受电单元侧获取 BBU当前功耗的方式示意图。 如图所示,
BBU 机框内受电单元的单板采用数字电源供电, 数字电源将功率上报给本单板的 CPU, 本单板的 CPU将该功率值发送给 BBU主控板, 由 BBU主控板计算 BBU受电 单元功率之和得到 BBU的当前功耗并上报给功耗检测模块。所述数字电源位于受电单 元内的单板上, 由供电单元的 oring电源供电, 并向单板供电。 其中 oring电源位于供 电单板上, 不具备电压电流检测功能。 图 5是 BBU主控板从供电单元侧获取 BBU当前功耗的方式之一示意图。 如图所 示, 供电单元的电源模块使用数字 oring 电源为受电单元的单个单板供电。 电源模块 CPU将所有数字电源的功率值通过通讯接口上报给主控板, 主控板将所有电源模块的 数字电源的功率相加,得到受电单板的功耗,再将受电单板的功耗相加得到 BBU的功 耗并上报给功耗检测模块。 所述数字 oring 电源具有电压电流检测功能, 可以在多个 数字电源同时为同一受电单元供电时增加稳定性。 具体来说, 数字 oring 电源可以是 带 Oring功能或者与其他芯片组合成 Oring功能的数字电源。 图 6是 BBU主控板从供电单元侧获取 BBU当前功耗的方式之二示意图。 如图所 示, 供电单元的电源模块由 Oring数字电源为受电单元的各单板供电。 通过对各电源 通路进行电流采样, 再根据已知的输出电压得到该通路的功率。 具体的电流采样过程 如下: 采集并放大设置在各电流通道上的电流传感器两端的电压, 再由处理电路将各 通道上放大后的上述电压发送给电源模块的 CPU, 电源模块的 CPU接受处理电路发 送的电压值并计算出该通路的电流, 从而计算出所有电源通路的功率, 并将该功率值 发送到 BBU的主控板,主控板再将所有电源模块数字电源的功率相加,得到受电单板 的功耗, 再将受电单板的功耗相加得到 BBU受电单元的功耗并上报给功耗检测模块。 图 7和图 8是示出了两种典型的电流采样电路结构示意图, 两种电流采样电路都 分为采样电路和处理电路, 采样电路采集并放大设置在各电流通道上的电流传感器两 端的电压, 处理电路在图 7中由模 /数 (Analog/Digital, 简称为 A/D) 转换器实现, 由 A/D转换器将模拟的电压转换为数字量通过通讯接口传给电源模块的 CPU, CPU由该 数字量计算出该通路电流; 处理电路在图 8中由模拟开关实现, 由模拟开关将模拟量 发送给 CPU自带的 A/D转换引脚, 由 CPU将模拟量转换为数字量, CPU由该数字量 计算出该通路电流。其中, 电流传感器可以包括以下几种: 在电源通路上串精密电阻; 或者在电源通路上增加霍尔传感器; 或者在电源通路上增加 MOSFET, 使用 MOSFET 的导通电阻测试。 图 9给出了 BBU供电单元轮询供电算法流程图。如图所示, 即各电源模块在以计 时周期 T轮询向受电单元供电。 下面结合实施例对本发明的装置进行详细描述。 第一实施例中, 如图 10所示, 供电单元电源模块的数量为两个, 供电单元最佳效 率值设定为单个电源模块的最佳效率值。 初始状态下电源模块 1和电源模块 2共同供 电, 即供电单元处于共同供电模式。 当 BBU的业务量下降, 功耗检测模块监控到受电 单元的功耗数值小于设定的供电单元最佳效率值时, 向控制器输出第一信号, 控制器 启动定时器, 并控制供电单元在设定好的第一个计时周期内由电源模块 1供电, 电源 模块 2休眠, 在第二个计时周期内由电源模块 2供电, 电源模块 1休眠。 如此进行循 环, 直到功耗检测模块监控到受电单元的功耗数值大于或等于设定的供电单元最佳效 率值, 此时进入所有电源模块共同供电模式。 第二实施例中, 如图 10所示, 供电单元电源模块的数量为三个, 供电单元最佳效 率值设定为单个电源模块的最佳效率值。 初始状态下电源模块 1、 电源模块 2和电源 模块 3共同供电, 即供电单元处于共同供电模式。 当 BBU的业务量下降, 功耗检测模 块监控到受电单元的功耗数值小于设定的供电单元最佳效率值时,控制器启动定时器, 并控制供电单元在设定好的第一个计时周期内由电源模块 1供电, 电源模块 2和电源 模块 3休眠; 在第二个计时周期内由电源模块 2供电, 电源模块 1和电源模块 3休眠; 在第三个计时周期内由电源模块 3供电, 电源模块 1和电源模块 2休眠。 如此进行循 环, 直到功耗检测模块监控到受电单元的功耗数值大于或等于设定的供电单元最佳效 率值, 此时进入所有电源模块共同供电模式。。 第三实施例中, 如图 10所示, 供电单元电源模块的数量为三个, 供电单元最佳效 率值设定为两倍单个电源模块的最佳效率值。 初始状态下电源模块 1、 电源模块 2和 电源模块 3共同供电, 即供电单元处于共同供电模式。 当 BBU的业务量下降, 功耗检 测模块监控到受电单元的功耗数值小于设定的供电单元最佳效率值时, 控制器启动定 时器,并控制供电单元在设定好的第一个计时周期内由电源模块 1和电源模块 2供电, 电源模块 3休眠; 在第二个计时周期内由电源模块 1和电源模块 3供电, 电源模块 2 休眠; 在第三个计时周期内由电源模块 2和电源模块 3供电, 电源模块 1休眠。 如此 进行循环, 直到功耗检测模块监控到受电单元的功耗数值大于或等于设定的供电单元 最佳效率值时时进入所有电源模块共同供电模式。 第四实施例中, 如图 10所示, 供电单元电源模块的数量为四个, 供电单元最佳效 率值设定为两倍的单个电源模块的最佳效率值。 初始状态下电源模块 1至电源模块 4 共同供电, 即供电单元处于共同供电模式。 当 BBU的业务量下降, 功耗检测模块监控 到受电单元的功耗数值小于设定的供电单元最佳效率值时, 控制器启动定时器, 并控 制供电单元在设定好的第一个计时周期内由电源模块 1和电源模块 2供电, 电源模块 3和电源模块 4休眠; 在第二个计时周期内由电源模块 3和电源模块 4供电, 电源模 块 1和电源模块 2休眠。 如此进行循环, 直到功耗检测模块监控到受电单元的功耗数 值大于或等于设定的供电单元最佳效率值, 此时进入所有电源模块共同供电模式。 第五实施例中, 如图 10所示, 供电单元电源模块的数量为四个, 供电单元最佳效 率值设定为三倍的单个电源模块的最佳效率值。 初始状态下电源模块 1至电源模块 4 共同供电, 即供电单元处于共同供电模式。 当 BBU的业务量下降, 功耗检测模块监控 到受电单元的功耗数值小于设定的供电单元最佳效率值时, 控制器启动定时器, 并控 制供电单元在设定好的第一个计时周期内由电源模块 1、 电源模块 2和电源模块 3供 电, 电源模块 4休眠; 在第二个计时周期内由电源模块 1、 电源模块 2和电源模块 4 供电, 电源模块 3休眠; 在第三个计时周期内由电源模块 1、 电源模块 3和电源模块 4 供电, 电源模块 2休眠; 在第四个计时周期内由电源模块 2、 电源模块 3和电源模块 4 供电, 电源模块 1休眠。 如此进行循环, 直到功耗检测模块监控到受电单元的功耗数 值大于或等于设定的供电单元最佳效率值, 此时进入所有电源模块共同供电模式。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围。 工业实用性 本发明提供的上述技术方案,可以应用于基站 BBU的节电控制过程中,在上述技 术方案中,供电单元基于小负载状态下的轮询供电技术,对 BBU机架供电效率进行动 态调整, 当 BBU功耗较小时使 BBU供电单元中的一个或者多个电源模块轮流为受电 单元供电,使电源模块始终工作在高效率条件下,实现 BBU机架日常运行中的动态的 节能控制, 在节能降耗同时延长了 BBU电源模块的寿命。

Claims

权 利 要 求 书
1. 一种基站 BBU的节电控制方法, 所述基站 BBU的供电单元包括至少两个电源 模块; 所述节电控制方法包括: 检测 BBU受电单元实时功耗; 确定所述功耗 小于设定的供电单元最佳效率值时, 则各电源模块按照设定的时间周期轮询供 电; 确定所述功耗大于设定的供电单元最佳效率值时, 则所有电源模块共同供 电。
2. 根据权利要求 1所述的节电控制方法, 其中, 所述供电单元最佳效率值根据其 包含的电源模块的数量来设定, 当电源模块数为 N时, 供电单元最佳效率值取 N-i倍的单电源模块最佳效率值中的任意一个, 其中 l i N-l。
3. 根据权利要求 2所述的节电控制方法, 其中, 所述单电源模块最佳效率值根据 该电源模块的效率曲线来确定。
4. 根据权利要求 2或 3所述的节电控制方法, 其中, 所述轮询供电模式为在一个 计时周期内工作的电源模块数量至少为 N-i个。
5. 根据权利要求 1至 3任一项所述的节电控制方法, 其中, 所述检测受电单元实 时功耗为: 采集 BBU主控板计算出的所述功耗, 所述 BBU主控板根据受电单 元各单板上报的总功率计算所述功耗, 或者根据电源模块上报的所有数字电源 的功率值计算所述功耗, 或者根据受电单元各单板上的电流和输出电压来计算 所述功耗。
6. 一种基站 BBU的节电控制装置, 所述基站 BBU的供电单元包括至少两个电源 模块; 所述节电控制装置包括功耗检测模块、 控制器和定时器;
所述功耗检测模块接收 BBU主控板上报的受电单元实时功耗并将该实时 功耗与设定的供电单元最佳效率值比较; 当该功耗小于设定的供电单元最佳效 率值时, 触发所述控制器启动所述定时器, 并按定时器设定的时间周期控制各 电源模块进入轮询供电模式; 当该功耗大于设定的供电单元最佳效率值时, 进 入所有电源模块共同供电模式。
7. 根据权利要求 6所述的节电控制装置, 其中, 所述供电单元最佳效率值根据其 包含的电源模块的数量来设定, 当电源模块数为 N时, 供电单元最佳效率值取 N-i倍的单电源模块最佳效率值中的任意一个, 其中 l i N-l。 根据权利要求 7所述的节电控制装置, 其中, 所述单电源模块最佳效率值根据 该电源的效率曲线来确定。 根据权利要求 7或 8所述的节电控制装置, 其中, 所述轮询供电模式为在一个 计时周期内工作的电源模块数量为 N-i个。 根据权利要求 6至 8任一项所述的节电控制装置, 其中, 所述功耗检测模块通 过 BBU主控板得到 BBU的功耗, 所述 BBU主控板根据受电单元各单板上报 的总功率计算所述功耗, 或者根据电源模块上报的所有数字电源的功率值计算 所述功耗, 或者根据受电单元各单板上的电流和输出电压来计算所述功耗。
PCT/CN2014/080143 2013-09-10 2014-06-17 一种基站bbu的节电控制方法及装置 WO2015035811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310429632.5A CN103491613A (zh) 2013-09-10 2013-09-10 一种基站bbu的节电控制方法及装置
CN201310429632.5 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015035811A1 true WO2015035811A1 (zh) 2015-03-19

Family

ID=49831483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080143 WO2015035811A1 (zh) 2013-09-10 2014-06-17 一种基站bbu的节电控制方法及装置

Country Status (2)

Country Link
CN (1) CN103491613A (zh)
WO (1) WO2015035811A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103491613A (zh) * 2013-09-10 2014-01-01 中兴通讯股份有限公司 一种基站bbu的节电控制方法及装置
US9612651B2 (en) * 2014-10-27 2017-04-04 Futurewei Technologies, Inc. Access based resources driven low power control and management for multi-core system on a chip
CN105068915B (zh) * 2015-08-10 2019-03-15 合肥联宝信息技术有限公司 电源管理装置及方法
CN106896889A (zh) * 2015-12-21 2017-06-27 技嘉科技股份有限公司 电源控制系统、电脑系统及电源控制方法
CN108944544B (zh) * 2018-08-09 2021-10-19 深圳领跑者新能源有限公司 一种充电桩/堆模块的控制方法及系统
CN113923062B (zh) * 2020-07-10 2024-04-02 中兴通讯股份有限公司 供电方法、装置、网络设备和可读存储介质
CN114384802B (zh) * 2021-12-30 2023-12-05 苏州博思得电气有限公司 一种x光设备的控制方法及装置
CN114828042A (zh) * 2022-04-07 2022-07-29 中国联合网络通信集团有限公司 基站系统控制方法、装置、设备、基站系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902661A (zh) * 2009-05-27 2010-12-01 华为技术有限公司 供电系统、通信设备和供电控制方法
CN102740326A (zh) * 2011-04-07 2012-10-17 中国移动通信集团公司 一种bbu中的处理资源的管理方法和设备
CN103491613A (zh) * 2013-09-10 2014-01-01 中兴通讯股份有限公司 一种基站bbu的节电控制方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201977B1 (en) * 1998-04-24 2001-03-13 Micron Technology, Inc. Power-saving mode for portable communication devices
CN102318165B (zh) * 2009-03-31 2014-04-02 华为技术有限公司 一种电源供电系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902661A (zh) * 2009-05-27 2010-12-01 华为技术有限公司 供电系统、通信设备和供电控制方法
CN102740326A (zh) * 2011-04-07 2012-10-17 中国移动通信集团公司 一种bbu中的处理资源的管理方法和设备
CN103491613A (zh) * 2013-09-10 2014-01-01 中兴通讯股份有限公司 一种基站bbu的节电控制方法及装置

Also Published As

Publication number Publication date
CN103491613A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2015035811A1 (zh) 一种基站bbu的节电控制方法及装置
CN103425056B (zh) 准零功耗待机控制电路装置及控制方法
JP2003153438A5 (zh)
CN106655809A (zh) 一种降低电源功耗的方法、自动降低功耗的电源及电视机
CN106427835A (zh) 一种新能源汽车电子vcu模块的低功耗休眠电路
CN101983612A (zh) 一种心电采集装置的睡眠和唤醒方法及心电采集装置
WO2014019493A1 (zh) 一种功率放大器减耗装置、方法以及移动终端
CN106373539A (zh) 一种液晶显示器的电源热冗余备份供电系统及方法
CN103176944A (zh) 基于不同制造工艺实现的低功耗多核soc及其设计方法
CN105487638A (zh) 电子电路系统及其降低功耗的方法
CN202261051U (zh) 一种开关电源
CN205594571U (zh) 电源控制装置和计算机
US7269447B2 (en) Portable telephone terminal and power supply method
CN111063296A (zh) 一种led显示屏电源开关控制系统
CN103605420B (zh) 低功耗处理电路及低功耗处理方法
CN206894325U (zh) 一种新型低待机功耗的控制电路
CN102033501A (zh) 单片机的电源控制系统
CN201876687U (zh) 自动关机控制系统
CN106527258B (zh) 一种炫动极光电源
CN210744818U (zh) 一种电源系统
CN202840964U (zh) 开关电源能效智能控制电路
CN102780401A (zh) 开关电源能效智能控制电路及方法
CN113271019A (zh) 一种微电路dc-dc变换器及其变换方法
CN206472024U (zh) 一种低待机功耗的电源待机控制电路结构
CN101531317A (zh) 新型电梯节能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844139

Country of ref document: EP

Kind code of ref document: A1