WO2015035758A1 - 一种基于多回路法的场路瞬态-瞬态耦合仿真方法 - Google Patents

一种基于多回路法的场路瞬态-瞬态耦合仿真方法 Download PDF

Info

Publication number
WO2015035758A1
WO2015035758A1 PCT/CN2014/073357 CN2014073357W WO2015035758A1 WO 2015035758 A1 WO2015035758 A1 WO 2015035758A1 CN 2014073357 W CN2014073357 W CN 2014073357W WO 2015035758 A1 WO2015035758 A1 WO 2015035758A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
motor
model
winding
finite element
Prior art date
Application number
PCT/CN2014/073357
Other languages
English (en)
French (fr)
Inventor
梁文毅
方卫中
陆天雄
Original Assignee
杭州易泰达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州易泰达科技有限公司 filed Critical 杭州易泰达科技有限公司
Publication of WO2015035758A1 publication Critical patent/WO2015035758A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Definitions

  • the invention relates to a field circuit coupling method for a motor.
  • motors are one of the main power generation and power equipment.
  • a detailed and reliable motor model must be established during the system simulation. Since the structure and materials of the motor will affect the harmonics, load, and transient characteristics of the system, it is necessary to establish the electromagnetic field model of the motor and couple it to the system simulator for joint simulation.
  • the current general algorithm for this method uses the Thevenin method and the Norton method.
  • the Thevenin method equalizes each winding of the motor into a constant voltage source and impedance model, and uses the time-step algorithm to call the voltage and impedance parameters in real time to achieve joint simulation.
  • Norton's law equates the motor into a constant current source and conductance parameter model, and performs real-time iterative calculations.
  • the present invention provides an effective application for multiple finite element model occasions and improves convergence performance.
  • Field-path transient-transient coupling simulation method of loop method The technical solution adopted by the present invention to solve the technical problem thereof is:
  • S is the friction coefficient
  • / is the moment of inertia
  • M is the winding mutual inductance
  • 3 ⁇ 4 is the damper bar resistance
  • r em is the electromagnetic torque
  • 7 is the load torque
  • W is the motor speed, which is the damper winding flux linkage
  • W is the motor winding flux linkage
  • the motor electromagnetic field finite element model is used to solve the self-inductance and mutual inductance parameters of each winding, including the damping circuit, and then return the parameter to the motor multi-loop model. Iteratively solve the motor and external circuit model to achieve coupling in system simulation Co-simulation of a finite element multi-loop model.
  • the finite element model is used to solve the inductance parameter as follows: 2.1) Firstly, according to the excitation of each winding at the previous moment, the electromagnetic field distribution and the electromagnetic torque in the motor are solved, and after the solution is completed, the stator core is kept. The relative permeability values in each triangular unit are unchanged;
  • the beneficial effects of the invention are mainly as follows: 1.
  • the transient-transient joint simulation technology integrating multiple motor finite element models in system simulation is realized, and the technical difficulties of multi-finite element model coupling simulation in system simulation are solved;
  • the multi-loop joint simulation technology makes the co-simulation convergence performance better.
  • Synchronous iteration technology is used to realize the synchronous iteration between the transient model and the system circuit, which improves the simulation precision and convergence performance.
  • Figure 1 is a flow chart for solving the inductance parameters of the motor winding and the damping circuit in real time by calling the finite element model.
  • Figure 2 is a flow chart of multi-circuit field path coupling simulation.
  • Figure 3 is a schematic diagram showing the comparison of the simulation results with the experimental results of the current waveform when using AC power, where (a) is the no-load start-up process winding current response obtained by multi-loop field-circuit coupling simulation, (b) is the measured no-load start Current response, (c) is the measured current compared to the simulation results.
  • Fig. 4 is a schematic diagram showing the comparison of the current waveforms of the simulation results and the experimental results when using the variable frequency power supply, (a) the steady-state current response waveform of the winding obtained by multi-loop field coupling simulation, and (b) the measured steady-state current response waveform. (c) Compare the measured current with the simulation results.
  • Figure 5 is a schematic diagram of a three-stage brushless AC power generation system.
  • Figure 6 is a schematic diagram of the simulated main output voltage and the excitation current response waveform of the exciter, where (a) represents the excitation current response waveform of the exciter, and (b) represents the voltage response waveform during no-load build-up. (c) Indicates the voltage transient response waveform at the time of sudden load.
  • a field-path transient-transient coupling simulation method based on the multi-loop method includes the following steps:
  • the self-inductance and mutual inductance parameters are then returned to the motor multi-loop model to iteratively solve the motor and the external circuit model to realize the joint simulation of the coupled finite element multi-loop model in the system simulation; Further, in the step 2), the finite element model is used to solve the inductance parameter as follows:
  • the accurate solution of the motor inductance parameter list is the key to modeling.
  • the current common method is to obtain the data table of the inductance parameter with respect to the position by offline calculation, and then the time domain multi-loop model of the motor.
  • iteratively solve the motor model In the real-time query of the inductance parameters, iteratively solve the motor model. This method neglects the saturation of the motor, so it is difficult to accurately simulate the steady-state and transient performance of the motor under heavy load conditions.
  • the scheme solves the inductance parameters of the motor winding and the damping circuit in real time by calling the finite element model, so as to realize the joint simulation of the external circuit model and the motor finite element model.
  • the motor electromagnetic field finite element model is used to solve the self-inductance and mutual inductance parameters of each winding, including the damping circuit, and then return the parameter to the motor multi-loop model to the motor.
  • the external circuit model is iteratively solved, and the solution flow is shown in Figure 1.
  • the finite element model When using the finite element model to solve the inductance parameters, firstly, according to the excitation of each winding at the previous moment, the electromagnetic field distribution and electromagnetic torque in the motor are solved. After the solution is completed, the relative magnetic permeability in each triangular unit of the stator core is maintained. The value is unchanged, and then the unit current is respectively input into each winding and the guide bar, while keeping the remaining windings and the guide bars as zero excitation. At this time, the flux linkage in each loop is the mutual inductance parameter of each loop, and the inductance matrix is used. After the parameters and electromagnetic torque are extracted, return to the system simulator to establish a multi-loop motor module. Type, and the model is coupled with external circuits, mechanical motion equations, etc. to solve.
  • each iteration will call the finite element model to solve the parameters. Until the current step length is completed, the excitation and rotor position of the current winding are taken as the next step finite element. The initial value of the calculation. After such a loop iteration, the joint simulation of the coupled finite element multi-loop model in the system simulation is realized.
  • the finite element model participates in the iterative calculation of the system simulator in each step, in this method, the synchronous simulation is actually realized between the finite element model and the system simulator, which solves the limitation in the usual joint simulation.
  • the meta model lags behind the system to simulate a step size problem.
  • the multi-loop method is used to establish the joint simulation model of the motor finite element. Since only the inductance and resistance parameters are provided in the model, and the winding voltage and current parameters calculated in the finite element model are not involved, the joint simulation is performed in the system model. Very good convergence performance, can support series and parallel analysis between multiple multi-loop model windings, thus solving the convergence problem easily caused when coupling multiple finite element models in the system simulator. On the other hand, since the winding inductance parameter reflects the saturation and spatial harmonics of the motor, it can accurately evaluate the transient and steady-state performance of the system.
  • This scheme uses the system simulation software Portunus and the electromagnetic field finite element simulation software EasiMotor to establish a multi-loop transient joint simulation of the motor, as shown in Figure 2.
  • Figure 3 and Figure 4 show the simulation results of the simulation results and the experimental results when using AC power and variable frequency power supply. Obviously, the simulation results of the multi-loop algorithm are used. It is basically consistent with the experimental results.
  • the system composition is shown in Figure 5 below.
  • the system consists of permanent magnet machine, exciter and main generator.
  • the rotating rectifier bridge and the voltage regulator are composed.
  • the permanent magnet machine, the exciter and the main hair are simulated by the finite element model.
  • Figure 6 shows the simulated main output voltage and the excitation current response waveform of the exciter.
  • the system first performs the no-load voltage-building process, and suddenly increases the rated power by 75% at 0.1s.
  • the transient data such as the excitation current of the simulation result and the voltage drop when the load is suddenly applied are basically consistent with the measured results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种基于多回路法的场路瞬态-瞬态耦合仿真方法,包括以下步骤:1)、依照电机的有限元模型,根据多回路理论,建立电机的多回路模型,如下(1)~ (6):2)通过调用有限元模型,在每一个系统仿真步长中,利用电机电磁场有限元模型求解每一个绕组、包括阻尼回路的自感、互感参数,然后将该参数返回到电机多回路模型中,对电机及外电路模型进行迭代求解,实现在系统仿真中耦合有限元多回路模型的联合仿真。本发明提供了一种有效适用于多个有限元模型场合、提升收敛性能的基于多回路法的场路瞬态-瞬态耦合仿真方法。

Description

一种基于多回路法的场路瞬态 -瞬态耦合仿真方法 技术领域
本发明涉及一种电机的场路耦合方法。
背景技术
现代功率电力电子系统中, 电机是主要的发电与用电设备之一。 为了在设 计、 分析、 优化等各个阶段, 对系统进行精确模拟, 必须在系统仿真过程中建 立详细可靠的电机模型。 由于电机的结构、 材料会对系统的谐波、 负载、 瞬变 等特性产生影响, 因此需要建立电机的电磁场模型耦合到系统仿真器中进行联 合仿真。
目前通用的场路耦合算法有两种, 一种是直接耦合算法, 这种算法将电路 模型耦合到电机有限元方程中进行求解, 因此只能实现一个电机有限元模型与 系统电路的耦合仿真。 另一种是间接耦合, 通过将有限元模型集成到系统电路 中实现瞬态-瞬态联合仿真。 目前这种方法通用的算法是采用戴维南法和诺顿 法。 戴维南法将电机的每个绕组等效成一个恒压源与阻抗模型, 通过时步算法 实时调用电压与阻抗参数实现联合仿真。 诺顿法则将电机等效成恒流源与电导 参数模型, 并进行实时迭代计算。
诺顿法与戴维南法其物理原理非常简单, 也是电路分析中最常见的等效技 术,因此在联合仿真中得到广泛应用。但是由于引进了激励源(电压源 /电流源), 当系统中包含多个有限元模型时, 系统电路求解时容易造成由于该激励源变化 引起的数值计算不收敛问题, 尤其是当有限元模型端子之间存在相互连接的情 况时, 这中情况尤为明显。 而这样的应用场合又是目前系统中普遍存在的情况, 例如在三级无刷交流发电系统中, 励磁机的输出电压直接供给给主发电机的励 磁绕组。 因此目前现有技术的瞬态-瞬态联合仿真主要局限于单个电机有限元模 型与系统电路的联合仿真。
发明内容
为了克服已有的电机场路耦合方法的不能适用于多个有限元模型场合、收敛性能较差的不足,本发 明提供了一种有效适用于多个有限元模型场合、提升收敛性能的基于多回路法的场路瞬态 -瞬态耦合仿 真方法。 本发明解决其技术问题所采用的技术方案是:
一种基于多回路法的场路瞬态-瞬态耦合仿真方法, 包括以下步骤:
1 )、 依照电机的有限元模型, 根据多回路理论, 建立电机的多回路模型, 如下 ( 1 ) ~ (6):
Figure imgf000004_0001
t - ) + ¾+1 ( t - ) + RRt t + P L (2)
Figure imgf000004_0002
άω + (6)
dt
其中, S为摩擦系数, /为转动惯量, 为阻尼绕组电流, 为电机绕组电流, M为绕组互感, 为转子位置, ¾为阻尼条电阻, rem为电磁转矩, 7 为负载 转矩, W为电机转速, 为阻尼绕组磁链, W为电机绕组磁链;
2)通过调用有限元模型, 在每一个系统仿真步长中, 利用电机电磁场有限元模 型求解每一个绕组、 包括阻尼回路的自感、 互感参数, 然后将该参数返回到电 机多回路模型中, 对电机及外电路模型进行迭代求解, 实现在系统仿真中耦合 有限元多回路模型的联合仿真。
进一步, 所述步骤 2 ) 中, 采用有限元模型进行电感参数的求解如下: 2.1 )首先根据上一时刻各绕组激励, 求解电机内地电磁场分布和电磁转矩, 求解完成后, 保持定转子铁芯各三角单元中的相对磁导率 值不变;
2.2) 然后依次在各绕组、 导条中分别通入单位电流, 同时保持其余绕组、 导条为零激励, 此时各回路中的磁链即为各回路的互感参数, 将该电感矩阵参 数和电磁转矩提取后返回到系统仿真器中建立多回路电机模型, 并将该模型与 外部电路、 机械运动方程耦合进行求解。
本发明的有益效果主要表现在: 1、 实现了系统仿真中集成多个电机有限元 模型的瞬态-瞬态联合仿真技术, 解决了系统仿真中多有限元模型耦合仿真的技 术难点; 2、 采用多回路联合仿真技术使得联合仿真的收敛性能更好; 3、 采用 同步迭代技术, 实现瞬态模型与系统电路之间同步迭代, 提高了仿真精度和收 敛性能。
附图说明
图 1 是通过调用有限元模型, 实时迭代求解电机绕组与阻尼回路的电感参 数的流程图。
图 2是多回路场路耦合仿真流程图。
图 3 是采用交流电源时, 仿真结果与实验结果的电流波形比较示意图, 其 中, (a) 为采用多回路场路耦合仿真获得的空载启动过程绕组电流响应, (b ) 为实测空载启动电流响应, (c ) 为实测电流与仿真结果比较。
图 4是采用变频电源时, 仿真结果与实验结果的电流波形比较示意图, (a) 为采用多回路场路耦合仿真获得的绕组稳态电流响应波形, (b ) 为实测稳态电 流响应波形, (c ) 为实测电流与仿真结果比较。 图 5是三级无刷交流发电系统的示意图。
图 6 是仿真得到的主发输出电压、 与励磁机励磁电流响应波形的示意图, 其中, (a) 表示励磁机的励磁电流响应波形, (b) 表示空载建压过程中的电压 响应波形, (c) 表示突加负载时的电压瞬态响应波形。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图 1~图6, 一种基于多回路法的场路瞬态-瞬态耦合仿真方法, 包括以 下步骤:
1)、 依照电机的有限元模型, 根据多回路理论, 建立电机的多回路模型, 如下
(1) ~ (6): uwk = Rw wk
0 = RBk ( -
Figure imgf000006_0001
人 +∑ ^ (4)
1 r.,<3|
=÷['·] (5)
2L J 3Θ ['ΐ+['·] δθ
j^ + Bm = TTl. (6)
dt em L
其中, S为摩擦系数, /为转动惯量, 为阻尼绕组电流, 为电机绕组电流, M为绕组互感, 为转子位置, ¾为阻尼条电阻, rem为电磁转矩, 7 为负载 转矩, w为电机转速, 为阻尼绕组磁链, W为电机绕组磁链; 2)通过调用有限元模型, 在每一个系统仿真步长中, 利用电机电磁场有限元模 型求解每一个绕组、 包括阻尼回路的自感、 互感参数, 然后将该参数返回到电 机多回路模型中, 对电机及外电路模型进行迭代求解, 实现在系统仿真中耦合 有限元多回路模型的联合仿; 进一步, 所述步骤 2) 中, 采用有限元模型进行电感参数的求解如下:
2.1 )首先根据上一时刻各绕组激励, 求解电机内地电磁场分布和电磁转矩, 求解完成后, 保持定转子铁芯各三角单元中的相对磁导率 值不变;
2.2) 然后依次在各绕组、 导条中分别通入单位电流, 同时保持其余绕组、 导条为零激励, 此时各回路中的磁链即为各回路的互感参数, 将该电感矩阵参 数和电磁转矩提取后返回到系统仿真器中建立多回路电机模型, 并将该模型与 外部电路、 机械运动方程耦合进行求解。
本发明中, 根据多回路模型的定义, 电机电感参数列表的精确求解是建模 的关键, 目前通常的方法是通过离线计算得到电感参数关于位置的数据表, 然 后在电机的时域多回路模型中, 实时查询电感参数, 迭代求解电机模型。 这种 方法由于忽略电机的饱和因素, 因此难以对电机重载工况下的稳态、 瞬态性能 进行精确模拟。
为了弥补多回路模型难以考虑电机饱和特性的不足, 本方案通过调用有限 元模型, 实时迭代求解电机绕组与阻尼回路的电感参数, 从而实现外电路模型 与电机有限元模型的联合仿真。 在这种方法里, 在每一个系统仿真步长中, 利 用电机电磁场有限元模型求解每一个绕组、 包括阻尼回路的自感、 互感参数, 然后将该参数返回到电机多回路模型中, 对电机及外电路模型进行迭代求解, 其求解流程如图 1所示。
在采用有限元模型进行电感参数的求解时, 首先根据上一时刻各绕组激励, 求解电机内地电磁场分布和电磁转矩, 求解完成后, 保持定转子铁芯各三角单 元中的相对磁导率/值不变, 然后依次在各绕组、 导条中分别通入单位电流, 同 时保持其余绕组、 导条为零激励, 此时各回路中的磁链即为各回路的互感参数, 将该电感矩阵参数和电磁转矩提取后返回到系统仿真器中建立多回路电机模 型, 并将该模型与外部电路、 机械运动方程等耦合进行求解。 为了保证计算精 度, 在系统仿真器迭代求解过程中, 每一次迭代都将调用有限元模型进行参数 求解, 直到当前步长迭代完成后, 将当前绕组的激励和转子位置作为下一个步 长有限元计算的初始值。 经过如此循环迭代, 这样就实现了在系统仿真中耦合 有限元多回路模型的联合仿真。
由于在每一个步长内, 有限元模型均参与了系统仿真器的迭代计算, 因此 在该方法中, 有限元模型与系统仿真器之间实际上实现了同步仿真, 解决了通 常联合仿真中有限元模型落后系统仿真一个步长的问题。
采用多回路法建立电机有限元的联合仿真模型, 由于在模型中仅仅提供电 感、 电阻参数, 而不涉及有限元模型中计算出来的绕组电压和电流参数, 因此 在系统模型中进行联合仿真时具备非常好的收敛性能, 可以支持多个多回路模 型绕组之间的串联、 并联分析, 从而解决了系统仿真器中耦合多个有限元模型 时容易造成的收敛性问题。 另一方面, 由于绕组电感参数反映了电机的饱和、 空间谐波等因素, 因此可以精确对系统瞬态、 稳态性能进行仿真评估。
本方案采用系统仿真软件 Portunus和电磁场有限元仿真软件 EasiMotor建立 了实现了电机的多回路瞬态联合仿真, 如图 2所示。
为了验证该算法, 我们采用某感应电机对其进行了实验验证, 图 3、 图 4分 别为采用交流电源与变频电源时, 仿真结果与实验结果的电流波形比较, 显然 采用多回路算法的仿真结果与实验结果基本吻合。
为了验证该算法在多有限元模型耦合仿真中的应用, 我们对某三级无刷交 流发电系统进行了仿真验证, 系统组成如下图 5所示, 该系统由永磁机、 励磁 机、 主发、 旋转整流桥以及调压器组成, 在仿真模型中, 永磁机、 励磁机、 主 发采用有限元模型进行仿真。 图 6所示为仿真得到的主发输出电压、 与励磁机励磁电流响应波形, 系统首 先进行空载建压过程, 在 0.1s 时突加 75% 额定功率。 仿真结果的励磁电流与 突加负载时电压跌落等瞬态数据与实测结果基本一致。

Claims

权利要求书
1)、 依照电机的有限元模型, 根据多回路理论, 建立电机的多回路模型, 如下 (1) ~ (6):
lwk = Rwkiwk + ΡΨ ( t - ― 1 ) + ¾+1 ( t - ) + RRt t + p .
Figure imgf000010_0001
= Lwt wt +∑ M WtWjw_ +∑ M Wt人 +∑ wtM
T =½ [ +
Figure imgf000010_0002
ji^+Bo) = T _T (6)
dt em L
其中, 下标 表示第 个电机绕组或者阻尼条, 下标 W„、 L„和 分别表示电 机绕组、 阻尼绕组、 永磁体激励第《个回路, p表示求导; S为摩擦系数, /为 转动惯量, ^为阻尼绕组电流, ½为电机绕组电流, 示绕组漏感, Μ为绕 组互感, 为转子位置, ¾为阻尼条电阻, 为端环电阻, Rw为绕组电阻, rem为电磁转矩, 7 为负载转矩, Mw为电机绕组端电压, w为电机转速, /L%阻 尼绕组磁链, ^为电机绕组磁链;
2)通过调用有限元模型, 在每一个系统仿真步长中, 利用电机电磁场有限元模 型求解每一个绕组、 包括阻尼回路的自感、 互感参数, 然后将该参数返回到电 机多回路模型中, 对电机及外电路模型进行迭代求解, 实现在系统仿真中耦合 有限元多回路模型的联合仿真。
2、如权利要求 1所述的基于多回路法的场路瞬态-瞬态耦合仿真方法,其特征在 于: 所述步骤 2) 中, 采用有限元模型进行电感参数的求解如下:
2.1 )首先根据上一时刻各绕组激励, 求解电机内地电磁场分布和电磁转矩, 求解完成后, 保持定转子铁芯各三角单元中的相对磁导率 值不变;
2.2)然后依次在各绕组、 导条中分别通入单位电流, 同时保持其余绕组、 导 条为零激励, 此时各回路中的磁链即为各回路的互感参数, 将该电感矩阵参数 和电磁转矩提取后返回到系统仿真器中建立多回路电机模型, 并将该模型与外 部电路、 机械运动方程耦合进行求解。
PCT/CN2014/073357 2013-09-11 2014-03-13 一种基于多回路法的场路瞬态-瞬态耦合仿真方法 WO2015035758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310412187.1A CN103500245B (zh) 2013-09-11 2013-09-11 一种基于多回路法的场路瞬态-瞬态耦合仿真方法
CN201310412187.1 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015035758A1 true WO2015035758A1 (zh) 2015-03-19

Family

ID=49865455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073357 WO2015035758A1 (zh) 2013-09-11 2014-03-13 一种基于多回路法的场路瞬态-瞬态耦合仿真方法

Country Status (2)

Country Link
CN (1) CN103500245B (zh)
WO (1) WO2015035758A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105302975A (zh) * 2015-11-09 2016-02-03 国网福建省电力有限公司 一种电磁式电流互感器谐波传变建模方法
CN112434450A (zh) * 2020-10-23 2021-03-02 中国人民解放军海军工程大学 基于Matlab和Maxwell的直线电机联合优化设计方法
CN113255189A (zh) * 2021-06-03 2021-08-13 福州大学 一种用于高速开关阀电磁铁优化的多场耦合电磁仿真方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500245B (zh) * 2013-09-11 2019-01-15 杭州易泰达科技有限公司 一种基于多回路法的场路瞬态-瞬态耦合仿真方法
CN106599429B (zh) * 2016-12-06 2020-01-31 中南大学 鼠笼型异步电机转子导条故障注入方法及故障注入器
CN106844923B (zh) * 2017-01-12 2020-11-06 中国人民解放军海军工程大学 一种多相永磁电机的参数化设计方法
CN110046461B (zh) * 2019-04-28 2022-05-13 哈尔滨理工大学 一种场-路-网-控耦合的同步调相机无功补偿仿真方法
CN111146871B (zh) * 2019-12-16 2021-03-09 北京交通大学 大功率非接触电能传输系统耦合线圈效率优化设计方法
CN113221396B (zh) * 2021-03-22 2023-12-12 梁文毅 一种电机集中参数模型建模方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957884A (zh) * 2010-03-01 2011-01-26 南京航空航天大学 混合励磁同步电机发电系统建模方法
CN102110179A (zh) * 2009-12-29 2011-06-29 上海电气集团股份有限公司 一种永磁直线同步电机仿真方法
CN103500245A (zh) * 2013-09-11 2014-01-08 杭州易泰达科技有限公司 一种基于多回路法的场路瞬态-瞬态耦合仿真方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484914B2 (ja) * 2007-10-16 2010-06-16 シャープ株式会社 シミュレーション装置、シミュレーションプログラム、およびシミュレーションプログラムが格納された記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110179A (zh) * 2009-12-29 2011-06-29 上海电气集团股份有限公司 一种永磁直线同步电机仿真方法
CN101957884A (zh) * 2010-03-01 2011-01-26 南京航空航天大学 混合励磁同步电机发电系统建模方法
CN103500245A (zh) * 2013-09-11 2014-01-08 杭州易泰达科技有限公司 一种基于多回路法的场路瞬态-瞬态耦合仿真方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105302975A (zh) * 2015-11-09 2016-02-03 国网福建省电力有限公司 一种电磁式电流互感器谐波传变建模方法
CN105302975B (zh) * 2015-11-09 2018-11-27 国网福建省电力有限公司 一种电磁式电流互感器谐波传变建模方法
CN112434450A (zh) * 2020-10-23 2021-03-02 中国人民解放军海军工程大学 基于Matlab和Maxwell的直线电机联合优化设计方法
CN112434450B (zh) * 2020-10-23 2022-09-27 中国人民解放军海军工程大学 基于Matlab和Maxwell的直线电机联合优化设计方法
CN113255189A (zh) * 2021-06-03 2021-08-13 福州大学 一种用于高速开关阀电磁铁优化的多场耦合电磁仿真方法
CN113255189B (zh) * 2021-06-03 2022-05-10 福州大学 一种用于高速开关阀电磁铁优化的多场耦合电磁仿真方法

Also Published As

Publication number Publication date
CN103500245A (zh) 2014-01-08
CN103500245B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2015035758A1 (zh) 一种基于多回路法的场路瞬态-瞬态耦合仿真方法
Fu et al. Modeling of solid conductors in two-dimensional transient finite-element analysis and its application to electric machines
Dehkordi et al. Permanent magnet synchronous machine model for real-time simulation
Hu et al. High-fidelity nonlinear IPM modeling based on measured stator winding flux linkage
Herisanu et al. An analytical approach to non‐linear dynamical model of a permanent magnet synchronous generator
Ruuskanen et al. Effect of radial cooling ducts on the electromagnetic performance of the permanent magnet synchronous generators with double radial forced air cooling for direct-driven wind turbines
Zhang et al. Steady‐state performance evaluations of three‐phase brushless asynchronous excitation system for aircraft starter/generator
Liang et al. A new method for multiple finite-element models in cosimulation with electrical circuit using machine multiloop modeling scheme
Zivotic-Kukolj et al. Iron loss reduction in an interior PM automotive alternator
Mirahki et al. Design optimization of IPMSM for 42 V integrated starter alternator using lumped parameter model and genetic algorithms
Di Leonardo et al. Finite elements model co-simulation of an induction motor drive for traction application
Chen et al. Fast steady-state analysis in time-stepping finite-element simulation of induction motors based on virtual blocked rotor techniques
Koti et al. On shortening the numerical transient in time-stepping finite element analysis of induction motors: Method implementation
CN114465537B (zh) 永磁同步电机高精度建模方法、设备及存储介质
Rottach et al. A computationally efficient design procedure for actuator motors using magnetic reluctance-and thermal resistance network models
Ouachtouk et al. Modeling of squirrel cage induction motor a view to detecting broken rotor bars faults
Fu et al. Enhanced nonlinear algorithm for the transient analysis of magnetic field and electric circuit coupled problems
Aller et al. Model of the induction machine including saturation
Mingardi et al. FE-aided analytical method to predict the capabilities of line-start synchronous motors
Zhou et al. Performance analysis of single-phase line-start permanent-magnet synchronous motor
Stermecki et al. Calculation of load-dependent equivalent circuit parameters of squirrel cage induction motors using time-harmonic FEM
Mabhula et al. Computational efficient parameter and performance prediction of wound-rotor induction motor
Nemec et al. Simplified model of induction machine with electrical rotor asymmetry
Smith et al. Prediction of transient performance of isolated saturated synchronous generator
Saheb et al. Estimation of copper and iron losses in a three-phase induction motor using finite element analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844150

Country of ref document: EP

Kind code of ref document: A1