WO2015035643A1 - 射频功放处理方法、Doherty功率放大器与无线收发设备 - Google Patents

射频功放处理方法、Doherty功率放大器与无线收发设备 Download PDF

Info

Publication number
WO2015035643A1
WO2015035643A1 PCT/CN2013/083554 CN2013083554W WO2015035643A1 WO 2015035643 A1 WO2015035643 A1 WO 2015035643A1 CN 2013083554 W CN2013083554 W CN 2013083554W WO 2015035643 A1 WO2015035643 A1 WO 2015035643A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
power
radio frequency
input
doherty
Prior art date
Application number
PCT/CN2013/083554
Other languages
English (en)
French (fr)
Inventor
吴成林
武胜波
王亮芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380076710.6A priority Critical patent/CN105229922B/zh
Priority to PCT/CN2013/083554 priority patent/WO2015035643A1/zh
Publication of WO2015035643A1 publication Critical patent/WO2015035643A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers

Definitions

  • the present invention relates to a communication technology, and in particular, to a radio frequency power amplifier processing method, a Doherty power amplifier, and a wireless transceiver device.
  • a radio frequency power amplifier (referred to as an RF power amplifier) is a core unit of a transceiver.
  • the RF power amplifier is responsible for transmitting the signal of the DC energy into the signal of the RF energy, and if the energy loss is too large, the efficiency of the power amplifier is reduced.
  • the Doherty power amplifier consists of a main power amplifier and an auxiliary power amplifier.
  • the two amplifiers are of different types and each assumes different input signal power amplification functions, so as to ensure that both amplifiers work in their respective saturation regions as much as possible, thus ensuring the whole Doherty power amplifiers maintain high output signal power over the widest possible range of input signal power.
  • Embodiments of the present invention provide a radio frequency power amplifier processing method, a Doherty power amplifier, and a wireless transceiver device to improve power amplifier efficiency and gain of a Doherty power amplifier and power amplifier efficiency and gain of the entire power amplifier module.
  • an embodiment of the present invention provides a method for processing a radio frequency power amplifier, including:
  • the power of the RF input signal is less than the preset input power, controlling the RF input signal to be all input to the main power amplifier of the Doherty power amplifier;
  • Controlling the RF input if the power of the RF input signal is greater than or equal to a preset input power The input signal is input to the main power amplifier and the auxiliary power amplifier of the Doherty power amplifier; wherein the preset input power is determined according to a traction characteristic of the main power amplifier.
  • the detecting a power of a radio input signal of the Doherty power amplifier includes:
  • a detection circuit in the Doherty power amplifier detects a magnitude of a power of a radio frequency input signal of the Doherty power amplifier
  • controlling the RF input signal to be all input to the main power amplifier of the Doherty power amplifier including:
  • the control circuit in the Doherty power amplifier controls the radio frequency input signal to input all of the
  • the main power amplifier of the Doherty power amplifier is the main power amplifier of the Doherty power amplifier
  • controlling the radio frequency input signal to be input to the main power amplifier and the auxiliary power amplifier of the Doherty power amplifier including:
  • the control circuit in the Doherty power amplifier controls the RF input signal to be shunted to the main power amplifier and the auxiliary of the Doherty power amplifier. Power amplifier.
  • the detecting circuit is a detector, and the control circuit is a power reflector;
  • a radio frequency power input of the Doherty power amplifier is coupled to a first end of the circulator in the Doherty power amplifier, and a second end of the circulator is coupled to an input of the main power amplifier, the circulator
  • the third end is connected to the input end of the auxiliary power amplifier, and the detection signal input end of the detector is connected to the RF power input end, and the detection result output end of the detector and the control end of the power reflector Connecting, one end of the power reflector is grounded and a control end of the power reflector is connected to a path between a second end of the circulator and the main power amplifier;
  • the detection circuit in the Doherty power amplifier detects the power of the RF input signal of the Doherty power amplifier, including:
  • the detector detects the magnitude of the power of the RF input signal of the Doherty power amplifier; if the detection circuit detects that the power of the RF input signal is less than the preset input power, Then, the control circuit in the Doherty power amplifier controls the RF input signal to be all input to the main power amplifier of the Doherty power amplifier, including:
  • the power reflector does not start to work according to the signal of the control end, and the radio frequency input signal passes through the first end of the circulator, The second end of the circulator is all input to the main power amplifier;
  • the control circuit in the Doherty power amplifier controls the RF input signal to be shunted to the main power amplifier and the auxiliary of the Doherty power amplifier.
  • Power amplifiers including:
  • the power reflector starts to work according to the signal of the control end, and the radio frequency input signal passes through the first end of the circulator, a second end of the circulator is input to the main power amplifier and the power reflector, and the power reflector reflects power of an input signal and reflects power through a second end of the circulator, the ring
  • the third end of the device is input to the auxiliary power amplifier.
  • the power reflector is a limiter or a varactor.
  • an embodiment of the present invention provides a Doherty power amplifier, including: a main power amplifier and an auxiliary power amplifier, a detection circuit, and a control circuit;
  • the detecting circuit is configured to detect a power level of a radio frequency input signal of the Doherty power amplifier
  • the control circuit is configured to: if the power of the radio frequency input signal is less than a preset input power, control the radio frequency input signal to be all input to a main power amplifier of the Doherty power amplifier; if the power of the radio frequency input signal is greater than or equal to Presetting the input power, controlling the RF input signal to be input to the main power amplifier and the auxiliary power amplifier of the Doherty power amplifier;
  • the preset input power is determined according to a traction characteristic of the main power amplifier.
  • the detecting circuit is a detector
  • the control circuit is a power reflector
  • the radio frequency power amplifier further includes: a circulator
  • a radio frequency power input of the Doherty power amplifier is coupled to a first end of the circulator in the Doherty power amplifier, and a second end of the circulator is coupled to an input of the main power amplifier, the circulator
  • the third end is connected to the input end of the auxiliary power amplifier, and the detection signal input end of the detector is connected to the RF power input end, and the detection result of the detector is lost.
  • An output end is connected to a control end of the power reflector, one end of the power reflector is grounded, and a control end of the power reflector is connected to a path between a second end of the circulator and the main power amplifier .
  • the power reflector is a limiter or a varactor.
  • the embodiment of the present invention provides a wireless transceiver device, including: the radio frequency circuit of the wireless transceiver device includes the Doherty power amplifier according to any one of claims 5-8.
  • the device includes:
  • the RF power amplifier processing method, the Doherty power amplifier, and the wireless transceiver device determine the power of the RF input signal.
  • the power of the RF input signal is less than the preset power, all the RF input signals enter the main power amplifier for amplification.
  • the invention solves the problem that when the power of the RF input signal is less than the preset power in the prior art, the Doherty power is improved because a part of the RF input signal enters the auxiliary power amplifier, and the auxiliary power amplifier does not work, thereby causing low efficiency of the power amplifier of the Doherty power amplifier.
  • the amplifier's power amplifier efficiency and gain also increase the power amplifier efficiency and gain of the entire power amplifier module.
  • FIG. 1 is a flowchart of a method for processing an RF power amplifier according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for processing an RF power amplifier according to Embodiment 2 of the present invention
  • FIG. 3A is a flowchart of a method for processing a radio frequency power amplifier according to a third embodiment of the present invention
  • FIG. 3B is a circuit diagram of a Doherty power amplifier for implementing an RF power amplifier processing method according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic structural diagram of a Doherty power amplifier according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic structural diagram of a Doherty power amplifier according to Embodiment 5 of the present invention
  • FIG. 6 is a schematic structural diagram of a multi-channel Doherty power amplifier according to Embodiment 6 of the present invention.
  • FIG. 1 is a flowchart of a method for processing a radio frequency power amplifier according to Embodiment 1 of the present invention.
  • the method of this embodiment is suitable for amplifying the power of the RF input signal through the RF power amplifier under the premise of improving the power amplifier efficiency and gain of the RF power amplifier.
  • the method is performed by a Doherty power amplifier configured in a wireless transceiver device.
  • the method of this embodiment includes the following steps:
  • Step 110 Detect a power level of a radio input signal of the Doherty power amplifier.
  • a power amplifying module is disposed in the wireless transceiver device, and the power amplifying module configured in the base station is generally composed of a power amplifier of 2 to 3 stages, so that the weak digital intermediate frequency signal can be amplified to a required transmit power level, thereby ensuring the power as the final stage.
  • the high power amplifier efficiency and gain of the amplifier's Doherty power amplifier are important for improving the power amplifier efficiency and gain of the entire power amplifier module.
  • the front stage drive power amplifier located before the Doherty power amplifier can provide an RF input signal for the Doherty power amplifier, and in step 110, the RF input signal provided to the Doherty power amplifier by the previous stage drive power amplifier The power is detected to detect the power of the RF input signal.
  • Step 120 If the power of the RF input signal is less than the preset input power, the control RF input signals are all input to the main power amplifier of the Doherty power amplifier.
  • step 120 if the power of the RF input signal is less than the preset input power, then all of the RF input signals are controlled to be input to the main power amplifier of the Doherty power amplifier, and the main power amplifier amplifies the power of the RF input signal.
  • Step 130 If the power of the RF input signal is greater than or equal to the preset input power, control the RF input signal to be input to the main power amplifier and the auxiliary power amplifier of the Doherty power amplifier.
  • step 130 if the power of the RF input signal is greater than or equal to the preset input power, then control The RF input signal is input to the main power amplifier and the auxiliary power amplifier of the Doherty power amplifier, and the main power amplifier and the auxiliary power amplifier respectively amplify the power of the input RF input signal.
  • the Doherty power amplifier by detecting the power of the RF input signal of the Doherty power amplifier, comparing the power of the detected RF input signal with a preset input power, if the power of the RF input signal is less than the preset input power, controlling all the RF input signals.
  • the main power amplifier amplifies the power of the RF input signal; if the power of the RF input signal is greater than or equal to the preset input power, the RF input signal is input to the main power amplifier and auxiliary of the Doherty power amplifier
  • the power amplifier, the main power amplifier and the auxiliary power amplifier respectively amplify the power of the input RF input signal, wherein the preset input power refers to a reference value for starting the operation of the auxiliary power amplifier, and the power input to the auxiliary power amplifier is greater than or equal to
  • the preset input power refers to a reference value for starting the operation of the auxiliary power amplifier
  • the power input to the auxiliary power amplifier is greater than or equal to
  • the preset input power is determined according to the traction characteristic of the main power amplifier.
  • the traction characteristic of the main power amplifier refers to the main power amplifier.
  • the radio frequency power amplifier processing method provided by the embodiment determines the power level of the radio frequency input signal.
  • the power of the radio frequency input signal is less than the preset power
  • all the radio frequency input signals enter the main power amplifier for amplification processing, and the prior art is solved.
  • the power efficiency and gain of the Doherty power amplifier are improved because a part of the RF input signal enters the auxiliary power amplifier, and the auxiliary power amplifier does not work, resulting in low power efficiency of the Doherty power amplifier. Therefore, the power amplifier efficiency and gain of the entire power amplifier module are also improved.
  • FIG. 2 is a flowchart of a method for processing a radio frequency power amplifier according to Embodiment 2 of the present invention. The embodiment is further optimized based on the first embodiment. Referring to FIG. 2, the method in this embodiment may include:
  • Step 210 A detection circuit in the Doherty power amplifier detects the power of the RF input signal of the Doherty power amplifier.
  • Step 220 If the detection circuit detects that the power of the RF input signal is less than the preset input power, the control circuit in the Doherty power amplifier controls the RF input signals to be all input to the main power amplifier of the Doherty power amplifier.
  • Step 230 If the detection circuit detects that the power of the RF input signal is greater than or equal to the preset input power, the control circuit in the Doherty power amplifier controls the RF input signal to be shunt input to the Doherty function.
  • the main amplifier and auxiliary power amplifier of the amplifier are the main amplifier and auxiliary power amplifier of the amplifier.
  • the power of the radio frequency input signal is detected by the detecting circuit, and the power of the radio frequency input signal is compared with the preset input power.
  • the control circuit controls All the RF input signals enter the main power amplifier for amplification processing, which solves the problem that when the power of the RF input signal is less than the preset power in the prior art, a part of the RF input signal enters the auxiliary power amplifier, but the auxiliary power amplifier does not work, resulting in Doherty
  • the low power amplifier gain of the power amplifier increases the power amplifier gain of the Doherty power amplifier, which in turn increases the power amplifier gain of the entire power amplifier module.
  • FIG. 3A is a flowchart of a method for processing a radio frequency power amplifier according to Embodiment 3 of the present invention.
  • the present embodiment is further optimized based on the second embodiment.
  • the detection circuit in the second embodiment can be implemented by a detector, and the control circuit can be implemented by using a power reflector.
  • the method of an embodiment may include:
  • Step 310 The detector detects the power of the RF input signal of the Doherty power amplifier.
  • the power reflector can be a limiter or a varactor.
  • a varactor is used as the power reflector, if the power of the RF input signal detected by the detector is less than the preset input power, the signal output from the detector The voltage cannot make the varactor start working.
  • the RF input signal can be input to the input of the main power amplifier through the first end and the second end of the circulator, that is, since the P-type semiconductor end of the varactor is grounded, the output from the detector
  • the voltage of the signal is applied to the N-type semiconductor terminal of the varactor diode, which is equivalent to applying a forward voltage to the varactor diode, so that the PN junction of the varactor diode becomes thinner, even when the varactor diode is conducting the varactor diode
  • the PN junction disappears, so the varactor does not affect the load impedance of the main power amplifier.
  • the main power amplifier amplifies all of the input RF input signals while the load impedance is well matched.
  • the use of a limiter as a power reflector is similar to the use of a varactor as a power reflector and will not be described here.
  • Step 330 If the detector detects that the power of the radio frequency input signal is greater than or equal to the preset input power, the power reflector starts working according to the signal of the control end, and the radio frequency input signal is input to the main end through the first end of the circulator and the second end of the circulator Power amplifier and power reflector, and the power reflector will lose The power of the incoming signal is reflected and the reflected power is input to the auxiliary power amplifier through the second end of the circulator and the third end of the circulator.
  • step 330 the same uses a varactor as a power reflector. If the detector detects that the power of the RF input signal is greater than or equal to the preset input power, the voltage of the signal output from the detector causes the varactor to start working, and the RF The input signal is input to the main power amplifier and the varactor through the first end of the circulator and the second end of the circulator. It should be noted that the varactor operation refers to the ability to reflect the power of the input signal. In detail, since the P-type semiconductor terminal of the varactor is grounded, the voltage of the signal output from the detector is applied to the varactor. The N-type semiconductor terminal is equivalent to applying a reverse voltage to the varactor diode. At this time, the varactor diode is in an off state.
  • the varactor diode in this state can be regarded as a capacitor, so the capacitance value of the varactor diode is affected.
  • the input impedance of the main power amplifier causes the input impedance of the main power amplifier to change.
  • the varactor diode reflects the power of the input signal.
  • the power reflected by the varactor is input to the auxiliary power amplifier through the second end of the circulator and the third end of the circulator, and the auxiliary power amplifier is driven to start working for load pulling. Part of the RF input signal entering the main power amplifier is still amplified by the main power amplifier.
  • the existing "Traffic Tracking” technology adjusts the gate voltage of the main power amplifier and the auxiliary power amplifier by adjusting the voltage of the power supply unit (PSU), the output power of the Doherty power amplifier is adjusted. . For example, when the power required to be output is large, the gate voltage is raised. When the power required to be output is small, turn down the gate voltage.
  • the gate of the RF power amplifier generally has a large filter capacitor to ensure the performance of the Doherty power amplifier, and the filter capacitor is basically at the micro-level, for such a large capacitive load, the current PSU cannot reach such a large size.
  • the load capacity that is, the gate voltage cannot be quickly adjusted according to the instantaneous change of the broadband signal, and the adjustment is not performed for a long period of time after adjusting the gate voltage once, for example, when high power is required during the daytime, Turn the gate voltage up once and turn the gate voltage down once when you need to output a small power at night. Therefore, the wider the bandwidth of the RF input signal, the more difficult it is for the PSU to keep up with the instantaneous changes in the RF input signal, and thus the gate voltage cannot be adjusted. however.
  • the voltage of the signal output from the detector can not only control whether the varactor diode starts to work, but also can adjust the power distribution of the main power amplifier and the auxiliary power amplifier, and output the signal from the detector.
  • the voltage allows the varactor to start operating, and the power distribution between the main power amplifier and the auxiliary power amplifier can be adjusted to adjust the main The output power of the power amplifier and the auxiliary power amplifier, because the voltage of the signal output from the detector is related to the power of the RF input signal, and the greater the power of the RF input signal, the greater the voltage of the signal output from the detector, detecting
  • the voltage of the signal output by the device can be used by the power reflector to achieve an ideal power distribution ratio between the main power amplifier and the auxiliary power amplifier, thereby increasing the output power and gain of the main power amplifier and the auxiliary power amplifier.
  • the voltage of the signal output from the detector can be adjusted by adjusting the power distribution of the main power amplifier to adjust the output power of the main power amplifier. Therefore, the output power of the main power amplifier and the auxiliary power amplifier in the Doherty power amplifier can be adjusted by adapting to the instantaneous change of the RF input signal.
  • the power of the RF input signal is detected by the detector.
  • the power reflector does not start to work, and the RF input signal is all input to the main power amplifier. Zoom in.
  • the main power amplifier and the auxiliary power amplifier amplify the input RF input signal. Since the power of the RF input signal is less than the preset input power, the main power amplifier is in a state where the load impedance is well matched, and there is almost no echo.
  • the gain of the Doherty power amplifier is the gain of the main power amplifier minus the circulator and Insertion loss of the power reflector, when the power reflector is a limiter, since the insertion loss of the circulator and the limiter is very small, generally less than 0.2 dB, the same driving power is used compared with the prior art.
  • the gain and power amplifier efficiency of the Doherty power amplifier are improved.
  • the simulation results show that the gain of the Doherty power amplifier provided by this embodiment is at least 3 dB higher than that of the conventional Doherty power amplifier.
  • a power reflector and a circulator are used to adjust the RF input signals entering the main power amplifier and the peak power amplifier, thereby improving the gain and power amplifier efficiency of the Doherty power amplifier, thereby The gain and power amplifier efficiency of the entire power amplifier module is improved.
  • FIG. 3B is a circuit diagram of a Doherty power amplifier for implementing the RF power amplifier processing method according to Embodiment 3 of the present invention, with reference to FIG. 3B.
  • the RF power input 301 of the Doherty power amplifier is coupled to the first end of the circulator 302 in the Doherty power amplifier, the second end of the circulator 302 is coupled to the input of the main power amplifier 303, and the third end of the circulator 302 is coupled to
  • the input of the auxiliary power amplifier 304 is connected, the detection signal input of the detector 305 and the RF power input
  • the terminal 301 is connected, and the detection result output of the detector 305 is connected to the control end of the power reflector 306.
  • One end of the power reflector 306 is grounded and the control end of the power reflector 306 and the second end of the circulator 302 and the main power amplifier 303 The connection between the pathways.
  • the detection signal input end of the detector 305 is connected to the RF power input terminal 301, the detector 305 can detect the power of the RF input signal of the RF power input terminal 301 of the Doherty power amplifier, and the detector 305 detects the RF input signal.
  • the power reflector 306 does not start working, and the RF input signal is input to the main power amplifier 303 through the first end and the second end of the circulator 302 for amplification, and the main power amplifier 303 is input to the radio frequency.
  • the RF power is output through a 90-degree phase shift line.
  • the power reflector 306 When the detector 305 detects that the power of the RF input signal is greater than or equal to the preset input power, the power reflector 306 starts to work.
  • the RF input signal is input to the main power amplifier 303 through the first end of the circulator 302 and the second end of the circulator 302.
  • a power reflector 306 the power reflector 306 reflects the power of the RF input signal and the reflected power is input to the auxiliary power amplifier 304 through the second and third terminals of the circulator 302, and the auxiliary power amplifier 304 performs the input reflected power.
  • the main power amplifier 303 amplifies the radio frequency input signal input to the main power amplifier 303, and the main power amplifier 303 processes the RF power output after the 90-degree phase shift line is processed by the main power amplifier 303 and the reflected reflection of the auxiliary power amplifier 304. Power is output through the RF power output.
  • FIG. 4 is a schematic structural diagram of a Doherty power amplifier according to Embodiment 4 of the present invention.
  • the Doherty power amplifier includes: a main power amplifier 401 and an auxiliary power amplifier 402, a detection circuit 403, and a control circuit 404.
  • the detection circuit 403 is configured to detect the power level of the RF input signal of the Doherty power amplifier; and the control circuit 404 is configured to control the RF input signal to be input to the main power amplifier of the Doherty power amplifier if the power of the RF input signal is less than the preset input power. If the power of the RF input signal is greater than or equal to the preset input power, the RF input signal is input to the main power amplifier and the auxiliary power amplifier of the Doherty power amplifier, and the preset input power is determined according to the traction characteristic of the main power amplifier.
  • the Doherty power amplifier determines the power of the RF input signal. When the power of the RF input signal is less than the preset power, all the RF input signals enter the main power amplifier for amplification processing, which solves the prior art. When the power of the RF input signal is less than the preset power, since a part of the RF input signal enters the auxiliary power amplifier, the auxiliary power amplifier The problem of low efficiency of the power amplifier of the Doherty power amplifier is that it does not work, and the power efficiency of the Doherty power amplifier is improved.
  • FIG. 5 is a schematic structural diagram of a Doherty power amplifier according to Embodiment 5 of the present invention. The embodiment is further optimized based on the fourth embodiment described above.
  • the Doherty power amplifier of the embodiment includes: a main power amplifier 501 and an auxiliary power amplifier 502, a detector 503, a power reflector 504, and a circulator. 505.
  • the power reflector can be a limiter or a varactor.
  • the connection relationship between the main power amplifier 501, the auxiliary power amplifier 502, the detector 503, the power reflector 504, and the circulator 505 is as follows: the RF power input of the Doherty power amplifier and the first end of the circulator 505 in the Doherty power amplifier Connected, the second end of the circulator 505 is connected to the input end of the main power amplifier 501, the third end of the circulator 505 is connected to the input end of the auxiliary power amplifier 502, and the detection signal input end of the detector 503 is connected to the RF power input end.
  • the detection result output of the detector 503 is connected to the control end of the power reflector 504, one end of the power reflector 504 is grounded and the control end of the power reflector 504 is connected to the second end of the circulator 505 and the main power amplifier 501. Path connection.
  • the Doherty power amplifier provided in this embodiment is connected to the first end of the circulator by using a circulator with a small insertion loss, and the second end of the circulator is connected to the input end of the main power amplifier, the circulator The third end is connected to the input end of the auxiliary power amplifier, so that when the power of the detector detecting the RF input signal is less than the preset input power, all the RF input signals can pass through the first end of the circulator and the second end of the circulator
  • the terminal inputs the main power amplifier to improve the amplifier efficiency and gain of the Doherty power amplifier.
  • the detector detects that the power of the RF input signal is greater than or equal to the preset input power
  • the power reflected by the power reflector can be input to the auxiliary power amplifier through the second end of the circulator and the third end of the circulator to push the auxiliary power amplifier to load Traction, increasing the combined output power of the main power amplifier and the auxiliary power amplifier, thereby increasing the gain and power amplifier efficiency of the Doherty power amplifier, thereby increasing the gain and power amplifier efficiency of the entire power amplifier module.
  • the number of auxiliary power amplifiers may be at least two.
  • FIG. 6 is provided in Embodiment 6 of the present invention. Schematic diagram of the architecture of a multi-channel Doherty power amplifier. Referring to FIG. 6, FIG. 6 is substantially similar to FIG. 5, and the difference from FIG. 5 is that the third end of the circulator 505 can be connected to the input terminals of the two auxiliary power amplifiers. It should be noted that the present invention does not operate the circulator.
  • the number of auxiliary power amplifiers connected to the third end is limited, that is, auxiliary power amplification
  • the number of devices can be adjusted according to the actual situation, and only two auxiliary power amplifiers are connected at the third end of the circulator 505 for explanation.
  • the reflected power reflected from the power reflector 504 can cause one of the peak power amplifiers to start operating for load pulling. It can also be based on the actual situation, that is, when the maximum power output from the RF power output terminal cannot meet the actual needs, the peak power amplifier 502 and the peak power amplifier 502' can be activated to adjust the preset input power to perform load pulling.
  • the working principle and technical effect of the multi-channel Doherty power amplifier are similar to those of the Doherty power amplifier shown in FIG. 5, and will not be described here.
  • the embodiment of the present invention further provides a wireless transceiver device, which may be a user equipment, a base station, or a relay device.
  • the radio frequency circuit of the radio transceiver device may include any one of the Doherty power amplifiers mentioned in the above embodiments.
  • the Doherty power amplifier can be used to perform the technical solution of the method shown in any one of the embodiments shown in FIG. 1 to FIG. 3A. The implementation principle and the technical effect are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例提供一种射频功放处理方法、Doherty功率放大器与无线收发设备。本发明射频功放处理方法,包括:检测Doherty功率放大器的射频输入信号的功率大小;若射频输入信号的功率小于预设输入功率,则控制射频输入信号全部输入Doherty功率放大器的主功率放大器;若射频输入信号的功率大于等于预设输入功率,则控制射频输入信号输入Doherty功率放大器的主功率放大器和辅助功率放大器;其中,预设输入功率根据所述主功率放大器的牵引特性确定。本发明实施例提高了Doherty功率放大器的功放效率和增益。

Description

射频功放处理方法、 Doherty功率放大器与无线收发设备 技术领域 本发明实施例通信技术, 尤其涉及一种射频功放处理方法、 Doherty功率 放大器与无线收发设备。 背景技术 在基站等具有无线收发功能的设备中, 射频功率放大器(简称射频功放) 是收发机的核心单元。 射频功放负责把直流能量的信号转变为射频能量的信 号发射出去, 而如果能量损失过大, 则会降低功放效率。
为此, 现有技术提出了多赫尔蒂 (简称 Doherty) 功率放大器。 Doherty 功率放大器包括主功率放大器和辅助功率放大器,两个功放采用不同的类型, 分别承担不同的输入信号功率放大功能, 从而尽可能地保证两个功放都工作 在各自的饱和区中, 从而保证整个 Doherty功率放大器在尽量大的输入信号 功率范围内都保持有较高的输出信号功率。
现有 Doherty功率放大器中, 当输入辅助功率放大器的信号功率超过预 设值时, 辅助功率放大器和主功率放大器均工作, 但是当输入辅助功率放大 器的信号功率不超过预设值时, 则辅助功率放大器不工作, 仅主功率放大器 工作,在这种情况下, Doherty功率放大器的功放效率和增益不高, 由 Doherty 功率放大器和其他功率放大器组成的功放模块的功放效率和增益也不高。 发明内容 本发明实施例提供一种射频功放处理方法、 Doherty功率放大器与无线收 发设备, 以提高 Doherty功率放大器的功放效率和增益和整个功放模块的功 放效率和增益。
第一方面, 本发明实施例提供一种射频功放处理方法, 包括:
检测 Doherty功率放大器的射频输入信号的功率大小;
若所述射频输入信号的功率小于预设输入功率, 则控制所述射频输入信 号全部输入所述 Doherty功率放大器的主功率放大器;
若所述射频输入信号的功率大于等于预设输入功率, 则控制所述射频输 入信号输入所述 Doherty功率放大器的主功率放大器和辅助功率放大器; 其中, 所述预设输入功率根据所述主功率放大器的牵引特性确定。
在第一方面的第一种可能的实现方式中, 所述检测 Doherty功率放大器 的射频输入信号的功率的大小, 包括:
所述 Doherty功率放大器中的检测电路检测所述 Doherty功率放大器的射 频输入信号的功率的大小;
所述若所述射频输入信号的功率小于预设输入功率, 则控制所述射频输 入信号全部输入所述 Doherty功率放大器的主功率放大器, 包括:
若所述检测电路检测所述射频输入信号的功率小于预设输入功率, 则所 述 Doherty 功率放大器中的控制电路控制所述射频输入信号全部输入所述
Doherty功率放大器的主功率放大器;
所述若所述射频输入信号的功率大于等于预设输入功率, 则控制所述射 频输入信号输入所述 Doherty功率放大器的主功率放大器和辅助功率放大器, 包括:
若所述检测电路检测所述射频输入信号的功率大于等于预设输入功率, 则所述 Doherty功率放大器中的控制电路控制所述射频输入信号分流输入到 所述 Doherty功率放大器的主功率放大器和辅助功率放大器。
根据第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述检测电路为检波器, 所述控制电路为功率反射器;
所述 Doherty功率放大器的射频功率输入端与所述 Doherty功率放大器中 的环形器的第一端连接, 所述环形器的第二端与所述主功率放大器的输入端 连接, 所述环形器的第三端与所述辅助功率放大器的输入端连接, 所述检波 器的检测信号输入端与所述射频功率输入端连接, 所述检波器的检测结果输 出端与所述功率反射器的控制端连接, 所述功率反射器的一端接地且所述功 率反射器的控制端与所述环形器的第二端和所述主功率放大器之间的通路连 接;
所述 Doherty功率放大器中的检测电路检测所述 Doherty功率放大器的射 频输入信号的功率的大小, 包括:
所述检波器检测所述 Doherty功率放大器的射频输入信号的功率的大小; 所述若所述检测电路检测所述射频输入信号的功率小于预设输入功率, 则所述 Doherty功率放大器中的控制电路控制所述射频输入信号全部输入所 述 Doherty功率放大器的主功率放大器, 包括:
若所述检波器检测所述射频输入信号的功率小于预设输入功率, 则所述 功率反射器根据所述控制端的信号不启动工作, 所述射频输入信号通过所述 环形器的第一端、 所述环形器的第二端全部输入到所述主功率放大器;
所述若所述检测电路检测所述射频输入功率大于等于预设输入功率, 则 所述 Doherty功率放大器中的控制电路控制所述射频输入信号分流输入到所 述 Doherty功率放大器的主功率放大器和辅助功率放大器, 包括:
若所述检波器检测所述射频输入信号的功率大于等于预设输入功率, 则 所述功率反射器根据所述控制端的信号启动工作, 所述射频输入信号通过所 述环形器的第一端、 所述环形器的第二端输入到所述主功率放大器和所述功 率反射器, 且所述功率反射器将输入信号的功率反射且反射功率通过所述环 形器的第二端、 所述环形器的第三端输入到所述辅助功率放大器。
根据第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率反射器为限幅器或者变容二极管。
第二方面, 本发明实施例提供一种 Doherty功率放大器, 包括: 主功率 放大器和辅助功率放大器、 检测电路以及控制电路;
所述检测电路, 用于检测所述 Doherty功率放大器的射频输入信号的功 率大小;
所述控制电路, 用于若所述射频输入信号的功率小于预设输入功率, 则 控制所述射频输入信号全部输入所述 Doherty功率放大器的主功率放大器; 若所述射频输入信号的功率大于等于预设输入功率, 则控制所述射频输入信 号输入所述 Doherty功率放大器的主功率放大器和辅助功率放大器;
其中, 所述预设输入功率根据所述主功率放大器的牵引特性确定。
在第二方面的第一种可能的实现方式中, 所述检测电路为检波器, 所述 控制电路为功率反射器, 所述射频功率放大器, 还包括: 环形器;
所述 Doherty功率放大器的射频功率输入端与所述 Doherty功率放大器中 的环形器的第一端连接, 所述环形器的第二端与所述主功率放大器的输入端 连接, 所述环形器的第三端与所述辅助功率放大器的输入端连接, 所述检波 器的检测信号输入端与所述射频功率输入端连接, 所述检波器的检测结果输 出端与所述功率反射器的控制端连接, 所述功率反射器的一端接地且所述功 率反射器的控制端与所述环形器的第二端和所述主功率放大器之间的通路连 接。
根据第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述功率反射器为限幅器或者变容二极管。
根据第二方面、第二方面的第一种至第二种可能的实现方式的任意一种, 在第三种可能的实现方式中, 所述辅助功率放大器的个数为至少两个。
第三方面, 本发明实施例提供一种无线收发设备, 包括: 所述无线收发 设备的射频电路包括权利要求 5〜8中任一项所述的 Doherty功率放大器。
在第三方面的第一种可能的实现方式中, 所述设备包括:
用户设备、 基站、 中继设备。
本发明实施例射频功放处理方法、 Doherty功率放大器与无线收发设备, 通过判断射频输入信号的功率大小,在射频输入信号的功率小于预设功率时, 全部的射频输入信号进入到主功率放大器进行放大处理, 解决了现有技术中 当射频输入信号的功率小于预设功率时, 由于一部分射频输入信号进入辅助 功率放大器, 辅助功率放大器不工作造成 Doherty功率放大器的功放效率低 的问题, 提高了 Doherty功率放大器的功放效率和增益, 从而也提高了整个 功放模块的功放效率和增益。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一所提供的射频功放处理方法的流程图;
图 2为本发明实施例二所提供的射频功放处理方法的流程图;
图 3A为本发明实施例三所提供的射频功放处理方法的流程图; 图 3B为本发明实施例三所提供的实现射频功放处理方法的 Doherty功率 放大器的电路图;
图 4为本发明实施例四所提供的 Doherty功率放大器的架构示意图; 图 5为本发明实施例五所提供的 Doherty功率放大器的架构示意图; 图 6为本发明实施例六所提供的多路 Doherty功率放大器的架构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明实施例一所提供的射频功放处理方法的流程图。 本实施例 的方法适用于在提高射频功率放大器的功放效率和增益的前提下将射频输入 信号的功率通过射频功率放大器进行放大的情况。 该方法由配置在无线收发 设备中的 Doherty功率放大器执行。 本实施例的方法包括如下步骤:
步骤 110、 检测 Doherty功率放大器的射频输入信号的功率大小。
无线收发设备中配置有功率放大模块, 对于基站中配置的功率放大模块 一般由 2〜3级功率放大器组成, 才能将微弱的数字中频信号放大到所需要的 发射功率等级, 因此保证作为末级功率放大器的 Doherty功率放大器的高的 功放效率和增益对提高整个功放模块的功放效率和增益具有重要的意义。 在 整个功放模块中, 位于 Doherty功率放大器之前的前一级驱动功率放大器可 以为 Doherty功率放大器提供射频输入信号, 在步骤 110中, 对前一级驱动 功率放大器向 Doherty功率放大器提供的射频输入信号的功率进行检测, 以 检测射频输入信号的功率大小。
步骤 120、 若射频输入信号的功率小于预设输入功率, 则控制射频输入 信号全部输入 Doherty功率放大器的主功率放大器。
在步骤 120中, 若射频输入信号的功率小于预设输入功率, 则控制全部 的射频输入信号输入到 Doherty功率放大器的主功率放大器, 主功率放大器 对射频输入信号的功率进行放大。
步骤 130、 若射频输入信号的功率大于等于预设输入功率, 则控制射频 输入信号输入 Doherty功率放大器的主功率放大器和辅助功率放大器。
在步骤 130中, 若射频输入信号的功率大于等于预设输入功率, 则控制 射频输入信号输入 Doherty功率放大器的主功率放大器和辅助功率放大器, 主功率放大器和辅助功率放大器分别对输入的射频输入信号的功率进行放 大。
具体而言, 通过检测 Doherty功率放大器的射频输入信号的功率, 将检 测的射频输入信号的功率与预设输入功率进行比较, 若射频输入信号的功率 小于预设输入功率, 控制全部的射频输入信号输入到 Doherty功率放大器的 主功率放大器, 主功率放大器对射频输入信号的功率进行放大; 若射频输入 信号的功率大于等于预设输入功率, 则控制射频输入信号输入 Doherty功率 放大器的主功率放大器和辅助功率放大器, 主功率放大器和辅助功率放大器 分别对输入的射频输入信号的功率进行放大, 其中预设输入功率是指启动辅 助功率放大器开始工作的一个参考值, 当输入到辅助功率放大器的功率大于 等于预设输入功率时, 启动辅助功率放大器开始工作, 预设输入功率根据主 功率放大器的牵引特性确定, 主功率放大器的牵引特性是指主功率放大器牵 弓 I辅助功率放大器工作的特性。
本实施例提供的射频功放处理方法,通过判断射频输入信号的功率大小, 在射频输入信号的功率小于预设功率时, 全部的射频输入信号进入到主功率 放大器进行放大处理, 解决了现有技术中当射频输入信号的功率小于预设功 率时, 由于一部分射频输入信号进入辅助功率放大器, 辅助功率放大器又不 工作造成 Doherty功率放大器的功放效率低的问题,提高了 Doherty功率放大 器的功放效率和增益, 从而也提高了整个功放模块的功放效率和增益。
图 2为本发明实施例二所提供的射频功放处理方法的流程图。 本实施例 以上述实施例一为基础, 进一步进行了优化, 参照图 2, 本实施例的方法可 以包括:
步骤 210、 Doherty功率放大器中的检测电路检测 Doherty功率放大器的 射频输入信号的功率的大小。
步骤 220、 若检测电路检测射频输入信号的功率小于预设输入功率, 则 Doherty功率放大器中的控制电路控制射频输入信号全部输入 Doherty功率放 大器的主功率放大器。
步骤 230、 若检测电路检测射频输入信号的功率大于等于预设输入功率, 则 Doherty功率放大器中的控制电路控制射频输入信号分流输入到 Doherty功 率放大器的主功率放大器和辅助功率放大器。
本实施例提供的射频功放处理方法, 通过检测电路检测射频输入信号的 功率大小并将射频输入信号的功率与预设输入功率进行比较, 在射频输入信 号的功率小于预设功率时, 控制电路控制全部的射频输入信号进入到主功率 放大器进行放大处理, 解决了现有技术中当射频输入信号的功率小于预设功 率时, 由于一部分射频输入信号进入辅助功率放大器, 但是辅助功率放大器 不工作造成 Doherty功率放大器的功放增益低的问题,提高了 Doherty功率放 大器的功放增益, 从而也提高了整个功放模块的功放增益。
图 3A为本发明实施例三所提供的射频功放处理方法的流程图。 本实施 例以上述实施例二为基础, 进一步进行了优化, 上述实施例二中的检测电路 可以通过检波器实现, 控制电路可以通过功率反射器实现, 在本实施例中, 参照图 3A, 本实施例的方法可以包括:
步骤 310、检波器检测 Doherty功率放大器的射频输入信号的功率的大小。 步骤 320、 若检波器检测射频输入信号的功率小于预设输入功率, 则功 率反射器根据控制端的信号不启动工作,射频输入信号通过环形器的第一端、 环形器的第二端全部输入到主功率放大器。
举例来说, 功率反射器可以为限幅器或者变容二极管, 使用变容二极管 作为功率反射器时,若检波器检测的射频输入信号的功率小于预设输入功率, 从检波器输出的信号的电压不能使得变容二极管启动工作, 射频输入信号可 以通过环形器的第一端和第二端全部输入到主功率放大器的输入端, 即由于 变容二极管的 P型半导体端接地, 从检波器输出的信号的电压施加在变容二 极管的 N型半导体端, 相当于给变容二极管施加了正向电压, 使得变容二极 管的 PN结变薄, 甚至当变容二极管正向导通时变容二极管的 PN结消失, 因 此变容二极管不会对主功率放大器的负载阻抗产生影响, 这种情况下, 主功 率放大器在处于负载阻抗匹配很好的状态下将输入的全部射频输入信号进行 放大。 使用限幅器作为功率反射器与使用变容二极管作为功率反射器时的工 作原理类似, 此处不再赘述。
步骤 330、 若检波器检测射频输入信号的功率大于等于预设输入功率, 则功率反射器根据控制端的信号启动工作, 射频输入信号通过环形器的第一 端、 环形器的第二端输入到主功率放大器和功率反射器, 且功率反射器将输 入信号的功率反射且反射功率通过所述环形器的第二端、 环形器的第三端输 入到辅助功率放大器。
在步骤 330中, 同样以使用变容二极管作为功率反射器进行说明, 若检 波器检测射频输入信号的功率大于等于预设输入功率, 从检波器输出的信号 的电压使得变容二极管启动工作, 射频输入信号通过环形器的第一端、 环形 器的第二端输入到主功率放大器和变容二极管。 这里需要说明的是, 变容二 极管工作指的是能够将输入信号的功率进行反射, 详细而言, 由于变容二极 管的 P型半导体端接地, 从检波器输出的信号的电压施加在变容二极管的 N 型半导体端时, 相当于给变容二极管施加了反向电压, 此时的变容二极管处 于截止状态, 此状态下的变容二极管可以视为电容, 因此变容二极管的电容 值会影响主功率放大器的输入阻抗,使得主功率放大器的输入阻抗发生变化, 主功率放大器的输入阻抗发生变化时, 变容二极管将输入信号的功率反射。 经变容二极管反射的功率通过环形器的第二端、 环形器的第三端输入辅助功 率放大器, 推动辅助功率放大器开始工作, 进行负载牵引。 部分进入主功率 放大器的射频输入信号仍经主功率放大器进行放大。
进一步的, 由于现有的" Traffic Tracking"技术是通过调整电源供应装置 (Power Supply Unit, 简称 PSU) 的电压来调整主功率放大器和辅助功率放 大器的栅极电压, 从而调整 Doherty功率放大器的输出功率。 例如, 需要输 出的功率大时, 调高栅极电压。 需要输出的功率小时, 调低栅极电压。 但是 由于在射频功率放大器的栅极一般都有很大的滤波电容来保证 Doherty功率 放大器的性能, 而滤波电容基本在微法级, 对于这样大的容性负载, 目前的 PSU是无法达到这么大的带负载能力, 即不能根据宽带信号的瞬时变化迅速 调整栅极电压, 每调整一次栅极电压后就在一个较长的时间段内不再进行调 整, 例如, 在白天需要输出大功率时, 将栅极电压调高一次, 在夜晚需要输 出小功率时,将栅极电压调低一次。因此,在射频输入信号的带宽越宽时 PSU 就更难跟上射频输入信号的瞬时变化, 也就不能对栅极电压进行调整。然而。 本实施例提供的射频功放处理方法, 从检波器输出的信号的电压不仅可以控 制变容二极管是否启动工作, 而且可以对主功率放大器和辅助功率放大器的 功率分配进行调整,从检波器输出的信号的电压使得变容二极管启动工作时, 可以调整主功率放大器和辅助功率放大器之间的功率分配, 从而可以调整主 功率放大器和辅助功率放大器的输出功率, 因为从检波器输出的信号的电压 和射频输入信号的功率的大小有关, 射频输入信号的功率越大, 从检波器输 出的信号的电压也越大, 检波器输出的信号的电压可以通过功率反射器使主 功率放大器和辅助功率放大器获得理想的功率分配比, 从而提高主功率放大 器和辅助功率放大器的输出功率和增益。 从检波器输出的信号的电压不能使 得变容二极管启动工作时, 从检波器输出的信号的电压可以通过调整主功率 放大器的功率分配来调整主功率放大器的输出功率。 因此, 可以适应射频输 入信号的瞬时变化来调整 Doherty功率放大器中的主功率放大器和辅助功率 放大器的输出功率。
本实施例提供的射频功放处理方法, 通过检波器检测射频输入信号的功 率的大小, 射频输入信号的功率小于预设输入功率时, 功率反射器不启动工 作, 射频输入信号全部输入到主功率放大器进行放大。 射频输入信号的功率 大于等于预设输入功率时, 主功率放大器和辅助功率放大器对输入的射频输 入信号进行放大。 由于在射频输入信号的功率小于预设输入功率时, 主功率 放大器在处于负载阻抗匹配很好的状态, 几乎没有回波, 此时 Doherty功率 放大器的增益为主功率放大器的增益减去环形器和功率反射器的插损, 在功 率反射器为限幅器时, 由于环形器和限幅器的插损非常小, 一般在 0.2dB 以 下, 因此与现有技术相比, 如果采用同样的驱动功率放大器的情况下, 提高 了 Doherty 功率放大器的增益和功放效率, 仿真结果表明, 本实施提供的 Doherty功率放大器的增益比传统的 Doherty功率放大器的增益至少高 3dB。 在射频输入信号的功率大于等于预设输入功率时, 采用了功率反射器和环形 器来调节进入主功率放大器和峰值功率放大器的射频输入信号, 提高了 Doherty功率放大器的增益和功放效率,从而也提高了整个功放模块的增益和 功放效率。
为了更清楚的理解本实施例所提供的射频功放处理方法,在此配合图 3B 进行介绍, 图 3B 为本发明实施例三所提供的实现射频功放处理方法的 Doherty功率放大器的电路图, 参照图 3B, Doherty功率放大器的射频功率输 入端 301与 Doherty功率放大器中的环形器 302的第一端连接, 环形器 302 的第二端与主功率放大器 303的输入端连接, 环形器 302的第三端与辅助功 率放大器 304的输入端连接, 检波器 305的检测信号输入端与射频功率输入 端 301连接,检波器 305的检测结果输出端与功率反射器 306的控制端连接, 功率反射器 306的一端接地且功率反射器 306的控制端与环形器 302的第二 端和主功率放大器 303之间的通路连接。
具体而言, 通过检波器 305的检测信号输入端与射频功率输入端 301连 接, 检波器 305可以检测 Doherty功率放大器的射频功率输入端 301 的射频 输入信号的功率, 检波器 305检测到射频输入信号的功率小于预设输入功率 时, 功率反射器 306不启动工作, 射频输入信号通过环形器 302的第一端、 和第二端全部输入到主功率放大器 303进行放大, 主功率放大器 303对射频 输入信号处理后经过 90度移相线将射频功率输出。检波器 305检测到射频输 入信号的功率大于等于预设输入功率时, 功率反射器 306启动工作, 射频输 入信号通过环形器 302的第一端、 环形器 302的第二端输入到主功率放大器 303和功率反射器 306,功率反射器 306将射频输入信号的功率反射且反射功 率通过环形器 302的第二端和第三端射频输入到辅助功率放大器 304, 辅助 功率放大器 304将输入的反射功率进行放大, 主功率放大器 303将输入到主 功率放大器 303的射频输入信号进行放大, 主功率放大器 303对射频输入信 号处理后经过 90度移相线后输出的射频功率和辅助功率放大器 304处理后的 反射功率通过射频功率输出端输出。
图 4为本发明实施例四所提供的 Doherty功率放大器的架构示意图。 本 实施例中, Doherty功率放大器包括: 主功率放大器 401 和辅助功率放大器 402、 检测电路 403以及控制电路 404。
其中, 检测电路 403用于检测 Doherty功率放大器的射频输入信号的功 率大小; 控制电路 404用于若射频输入信号的功率小于预设输入功率, 则控 制射频输入信号全部输入 Doherty功率放大器的主功率放大器; 若射频输入 信号的功率大于等于预设输入功率, 则控制射频输入信号输入 Doherty功率 放大器的主功率放大器和辅助功率放大器, 预设输入功率根据主功率放大器 的牵引特性确定。
本实施例提供的 Doherty功率放大器, 通过判断射频输入信号的功率大 小, 在射频输入信号的功率小于预设功率时, 全部的射频输入信号进入到主 功率放大器进行放大处理, 解决了现有技术中当射频输入信号的功率小于预 设功率时, 由于一部分射频输入信号进入辅助功率放大器, 辅助功率放大器 又不工作造成 Doherty功率放大器的功放效率低的问题,提高了 Doherty功率 放大器的功放效率。
图 5为本发明实施例五所提供的 Doherty功率放大器的架构示意图。 本 实施例以上述实施例四为基础, 进一步进行了优化, 参照图 5, 本实施例的 Doherty功率放大器包括: 主功率放大器 501和辅助功率放大器 502、 检波器 503、 功率反射器 504和环形器 505。
其中, 功率反射器可以为限幅器或者变容二极管。 主功率放大器 501、 辅助功率放大器 502、检波器 503、功率反射器 504和环形器 505之间的连接 关系如下: Doherty功率放大器的射频功率输入端与 Doherty功率放大器中的 环形器 505的第一端连接, 环形器 505的第二端与主功率放大器 501的输入 端连接, 环形器 505的第三端与辅助功率放大器 502的输入端连接, 检波器 503 的检测信号输入端与射频功率输入端连接, 检波器 503 的检测结果输出 端与功率反射器 504的控制端连接, 功率反射器 504的一端接地且功率反射 器 504的控制端与环形器 505的第二端和主功率放大器 501之间的通路连接。
本实施例提供的 Doherty功率放大器, 通过使用插损小的环形器, 且将 射频功率输入端与环形器的第一端连接, 环形器的第二端与主功率放大器的 输入端连接, 环形器的第三端与辅助功率放大器的输入端连接, 从而实现在 检波器检测射频输入信号的功率小于预设输入功率时, 全部的射频输入信号 可以通过环形器的第一端、环形器的第二端输入主功率放大器, 提高 Doherty 功率放大器的功放效率和增益。 在检波器检测射频输入信号的功率大于等于 预设输入功率时, 通过功率反射器反射的功率可以通过环形器的第二端、 环 形器的第三端输入辅助功率放大器, 推动辅助功率放大器进行负载牵引, 提 高主功率放大器和辅助功率放大器的合路输出功率, 从而提高了 Doherty功 率放大器的增益和功放效率,从而也提高了整个功放模块的增益和功放效率。
进一步的, 辅助功率放大器的个数可以为至少两个, 当 Doherty功率放 大器中有两个峰值功率放大器时, Doherty功率放大器的架构示意图如图 6所 示, 图 6为本发明实施例六所提供的多路 Doherty功率放大器的架构示意图。 参照图 6, 图 6与图 5基本类似, 与图 5的区别在于, 在环形器 505的第三 端可以与两个辅助功率放大器的输入端连接, 这里需要说明的是, 本发明不 对环形器的第三端连接的辅助功率放大器的数目进行限制, 即辅助功率放大 器的数目可以根据实际情况进行调整, 在此仅以在环形器 505的第三端连接 两个辅助功率放大器进行说明。 从功率反射器 504反射的反射功率可以使其 中一个峰值功率放大器启动工作, 进行负载牵引。 也可以根据实际情况, 即 当从射频功率输出端输出的最大功率不能满足实际需要时, 可以通过调整预 设输入功率, 启动峰值功率放大器 502和峰值功率放大器 502'都工作, 进行 负载牵引。 该多路 Doherty功率放大器的工作原理与技术效果与图 5所示的 Doherty功率放大器的工作原理与技术效果类似, 此处不再赘述。
需要说明的是, 本发明实施例还提供一种无线收发设备, 该无线收发设 备可以为用户设备、 基站或中继设备。 该无线收发设备的射频电路可以包括 上述实施例中提到的任意一个 Doherty功率放大器。该 Doherty功率放大器可 以用于执行图 1〜3A 中任一实施例所示的方法技术方案, 其实现原理和技术 效果类似, 此处不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要 求
1、 一种射频功放处理方法, 其特征在于, 包括:
检测多赫尔蒂 Doherty功率放大器的射频输入信号的功率大小; 若所述射频输入信号的功率小于预设输入功率, 则控制所述射频输入信 号全部输入所述 Doherty功率放大器的主功率放大器;
若所述射频输入信号的功率大于等于预设输入功率, 则控制所述射频输 入信号输入所述 Doherty功率放大器的主功率放大器和辅助功率放大器; 其中, 所述预设输入功率根据所述主功率放大器的牵引特性确定。
2、 根据权利要求 1所述的方法, 其特征在于, 所述检测 Doherty功率放 大器的射频输入信号的功率的大小, 包括:
所述 Doherty功率放大器中的检测电路检测所述 Doherty功率放大器的射 频输入信号的功率的大小;
所述若所述射频输入信号的功率小于预设输入功率, 则控制所述射频输 入信号全部输入所述 Doherty功率放大器的主功率放大器, 包括:
若所述检测电路检测所述射频输入信号的功率小于预设输入功率, 则所 述 Doherty 功率放大器中的控制电路控制所述射频输入信号全部输入所述 Doherty功率放大器的主功率放大器;
所述若所述射频输入信号的功率大于等于预设输入功率, 则控制所述射 频输入信号输入所述 Doherty功率放大器的主功率放大器和辅助功率放大器, 包括:
若所述检测电路检测所述射频输入信号的功率大于等于预设输入功率, 则所述 Doherty功率放大器中的控制电路控制所述射频输入信号分流输入到 所述 Doherty功率放大器的主功率放大器和辅助功率放大器。
3、 根据权利要求 2所述的方法, 其特征在于, 所述检测电路为检波器, 所述控制电路为功率反射器;
所述 Doherty功率放大器的射频功率输入端与所述 Doherty功率放大器中 的环形器的第一端连接, 所述环形器的第二端与所述主功率放大器的输入端 连接, 所述环形器的第三端与所述辅助功率放大器的输入端连接, 所述检波 器的检测信号输入端与所述射频功率输入端连接, 所述检波器的检测结果输 出端与所述功率反射器的控制端连接, 所述功率反射器的一端接地且所述功 率反射器的控制端与所述环形器的第二端和所述主功率放大器之间的通路连 接;
所述 Doherty功率放大器中的检测电路检测所述 Doherty功率放大器的射 频输入信号的功率的大小, 包括:
所述检波器检测所述 Doherty功率放大器的射频输入信号的功率的大小; 所述若所述检测电路检测所述射频输入信号的功率小于预设输入功率, 则所述 Doherty功率放大器中的控制电路控制所述射频输入信号全部输入所 述 Doherty功率放大器的主功率放大器, 包括:
若所述检波器检测所述射频输入信号的功率小于预设输入功率, 则所述 功率反射器根据所述控制端的信号不启动工作, 所述射频输入信号通过所述 环形器的第一端、 所述环形器的第二端全部输入到所述主功率放大器;
所述若所述检测电路检测所述射频输入信号的功率大于等于预设输入功 率, 则所述 Doherty功率放大器中的控制电路控制所述射频输入信号分流输 入到所述 Doherty功率放大器的主功率放大器和辅助功率放大器, 包括: 若所述检波器检测所述射频输入信号的功率大于等于预设输入功率, 则 所述功率反射器根据所述控制端的信号启动工作, 所述射频输入信号通过所 述环形器的第一端、 所述环形器的第二端输入到所述主功率放大器和所述功 率反射器, 且所述功率反射器将输入信号的功率反射且反射功率通过所述环 形器的第二端、 所述环形器的第三端输入到所述辅助功率放大器。
4、 根据权利要求 3所述的方法, 其特征在于, 所述功率反射器为限幅器 或者变容二极管。
5、 一种 Doherty功率放大器, 其特征在于, 包括: 主功率放大器和辅助 功率放大器、 检测电路以及控制电路;
所述检测电路, 用于检测所述 Doherty功率放大器的射频输入信号的功 率大小;
所述控制电路, 用于若所述射频输入信号的功率小于预设输入功率, 则 控制所述射频输入信号全部输入所述 Doherty功率放大器的主功率放大器; 若所述射频输入信号的功率大于等于预设输入功率, 则控制所述射频输入信 号输入所述 Doherty功率放大器的主功率放大器和辅助功率放大器;
其中, 所述预设输入功率根据所述主功率放大器的牵引特性确定。
6、 根据权利要求 5所述的 Doherty功率放大器, 其特征在于, 所述检测 电路为检波器, 所述控制电路为功率反射器, 所述射频功率放大器, 还包括: 环形器;
所述 Doherty功率放大器的射频功率输入端与所述 Doherty功率放大器中 的环形器的第一端连接, 所述环形器的第二端与所述主功率放大器的输入端 连接, 所述环形器的第三端与所述辅助功率放大器的输入端连接, 所述检波 器的检测信号输入端与所述射频功率输入端连接, 所述检波器的检测结果输 出端与所述功率反射器的控制端连接, 所述功率反射器的一端接地且所述功 率反射器的控制端与所述环形器的第二端和所述主功率放大器之间的通路连 接。
7、 根据权利要求 6所述的 Doherty功率放大器, 其特征在于, 所述功率 反射器为限幅器或者变容二极管。
8、根据权利要求 5〜7中任一项所述的 Doherty功率放大器,其特征在于, 所述辅助功率放大器的个数为至少两个。
9、 一种无线收发设备, 其特征在于, 所述无线收发设备的射频电路包括 权利要求 5〜8中任一项所述的 Doherty功率放大器。
10、 根据权利要求 9所述的无线收发设备, 其特征在于, 所述设备包括: 用户设备、 基站、 中继设备。
PCT/CN2013/083554 2013-09-16 2013-09-16 射频功放处理方法、Doherty功率放大器与无线收发设备 WO2015035643A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380076710.6A CN105229922B (zh) 2013-09-16 2013-09-16 射频功放处理方法、Doherty功率放大器与无线收发设备
PCT/CN2013/083554 WO2015035643A1 (zh) 2013-09-16 2013-09-16 射频功放处理方法、Doherty功率放大器与无线收发设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083554 WO2015035643A1 (zh) 2013-09-16 2013-09-16 射频功放处理方法、Doherty功率放大器与无线收发设备

Publications (1)

Publication Number Publication Date
WO2015035643A1 true WO2015035643A1 (zh) 2015-03-19

Family

ID=52664971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083554 WO2015035643A1 (zh) 2013-09-16 2013-09-16 射频功放处理方法、Doherty功率放大器与无线收发设备

Country Status (2)

Country Link
CN (1) CN105229922B (zh)
WO (1) WO2015035643A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011721A (zh) * 2019-03-29 2019-07-12 睿高(广州)通信技术有限公司 卫星通信系统中的功放设备及功放系统
CN110504924A (zh) * 2019-07-19 2019-11-26 南京国博电子有限公司 一种多尔蒂功率放大器及其输入信号处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810023B (zh) * 2021-08-31 2023-05-09 电子科技大学 一种数字功率发射芯片的阻抗调制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488790A (zh) * 2009-02-24 2009-07-22 华为技术有限公司 功率放大装置和发射机
CN101567665A (zh) * 2008-12-26 2009-10-28 芯通科技(成都)有限公司 一种数字Doherty功率放大器
CN101834571A (zh) * 2010-05-13 2010-09-15 上海图越电子有限公司 高效线性功率放大电路
CN102064774A (zh) * 2009-11-18 2011-05-18 中兴通讯股份有限公司 一种功率放大电路实现方法及功率放大装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097252A (en) * 1997-06-02 2000-08-01 Motorola, Inc. Method and apparatus for high efficiency power amplification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567665A (zh) * 2008-12-26 2009-10-28 芯通科技(成都)有限公司 一种数字Doherty功率放大器
CN101488790A (zh) * 2009-02-24 2009-07-22 华为技术有限公司 功率放大装置和发射机
CN102064774A (zh) * 2009-11-18 2011-05-18 中兴通讯股份有限公司 一种功率放大电路实现方法及功率放大装置
CN101834571A (zh) * 2010-05-13 2010-09-15 上海图越电子有限公司 高效线性功率放大电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011721A (zh) * 2019-03-29 2019-07-12 睿高(广州)通信技术有限公司 卫星通信系统中的功放设备及功放系统
CN110011721B (zh) * 2019-03-29 2021-07-16 睿高(广州)通信技术有限公司 卫星通信系统中的功放设备及功放系统
CN110504924A (zh) * 2019-07-19 2019-11-26 南京国博电子有限公司 一种多尔蒂功率放大器及其输入信号处理方法

Also Published As

Publication number Publication date
CN105229922B (zh) 2018-01-09
CN105229922A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN103684306B (zh) 射频前馈功率放大器和环路自适应控制方法
US8258876B1 (en) Power amplifier protection circuit
KR101602567B1 (ko) 펄스 동적 부하 변조 전력 증폭 회로
CN103401517B (zh) 射频功率放大器系统
KR100957417B1 (ko) 무선 통신 시스템에서 스위칭 구조를 이용한 전력 증폭 장치 및 제어 방법
JPH07176965A (ja) 電力レベル制御用の方向性検波装置
WO2013078992A1 (zh) Doherty功率放大器及提高其功放效率的方法、设备
KR100450934B1 (ko) 부호분할다중접속 통신시스템의 고효율 단-전환식전력증폭기
JP2006217362A (ja) リミッタ回路
WO2015035643A1 (zh) 射频功放处理方法、Doherty功率放大器与无线收发设备
WO2014117402A1 (zh) 功率放大器、收发信机及基站
CN105227144A (zh) 一种固态功率放大器的过激励保护电路及其实现方法
WO2012146012A1 (zh) 基站射频系统和射频功率放大器的保护方法
WO2017015858A1 (zh) 功率放大器、功率放大方法、功率放大控制装置及方法
CN115003001B (zh) 一种用于固态微波源的阻抗匹配装置及阻抗匹配方法
CN107733379B (zh) 射频放大器输出端失配检测电路及其检测方法
CN113659998B (zh) 一种宽动态抗饱和低噪声电路及控制方法
CN205092828U (zh) 一种固态功率放大器的过激励保护电路
JP2014175761A (ja) ドハティ電力増幅器
CN201063634Y (zh) 光接收机
KR101118653B1 (ko) 송신기의 pin 다이오드 리미터 회로
CN204156818U (zh) 改进型低噪声放大器
CN221202557U (zh) 一种射频电路及其电子设备
CN112532256B (zh) 一种增益双向可配置的发射端自动增益控制电路
JP2000165164A (ja) 高周波増幅器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076710.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893471

Country of ref document: EP

Kind code of ref document: A1