WO2015034906A1 - System and method for lung visualization using ultrasound - Google Patents

System and method for lung visualization using ultrasound Download PDF

Info

Publication number
WO2015034906A1
WO2015034906A1 PCT/US2014/053878 US2014053878W WO2015034906A1 WO 2015034906 A1 WO2015034906 A1 WO 2015034906A1 US 2014053878 W US2014053878 W US 2014053878W WO 2015034906 A1 WO2015034906 A1 WO 2015034906A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
sensor
model
location
ewc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2014/053878
Other languages
English (en)
French (fr)
Inventor
Joseph D. Brannan
William J. Dickhans
Casey M. Ladtkow
Darion R. Peterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to CA2923457A priority Critical patent/CA2923457A1/en
Priority to AU2014315356A priority patent/AU2014315356B2/en
Priority to CN201480056086.8A priority patent/CN105611881A/zh
Priority to EP14842294.2A priority patent/EP3041415A4/en
Priority to JP2016540341A priority patent/JP6335310B2/ja
Publication of WO2015034906A1 publication Critical patent/WO2015034906A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray

Definitions

  • the one or more processors 124 execute computer-executable instructions.
  • the EM board 140 may be configured to be operatively coupled with the reference sensors 170 which are located on the chest of the patient 170.
  • the reference sensors 170 move up and down following the chest while the patient 150 is inhaling and move down following the chest while the patient 150 is exhaling.
  • the movement of the reference sensors 170 in the EM field is captured by the reference sensors 170 and transmitted to the tracking device 160 so that the breathing pattern of the patient 150 may be recognized.
  • the tracking device 160 also receives outputs of the EM sensor 265, combines both outputs, and compensates the breathing pattern for the location of the EM sensor 265.
  • the distance is measured in accordance with the coordinate system of the EM field. Since the coordinate system of the EM field is different from the coordinate system of the 3D model, there is a scaling factor to match the coordinate system of the EM field to the coordinate system of the 3D model. Thus, by multiplying a scale factor to the distance the EM sensor 265 travels, the coordinate system of the EM field is synchronized with the coordinate system of the 3D model. In this way, the EM field may be synchronized with the 3D model and 2D images of the navigation and procedure software. Or other suitable method may be employed to synchronize the coordinate system of the EM field with the coordinate system of the 3D model.
  • the memory 126 also stores another program that can process and convert image data captured by an imaging modality associated with the catheter guide assembly 110, as will be described in detail below.
  • This image data may be converted into visual images having sufficient resolutions to identify such targets and terminal bronchial branches or be incorporated into and used to update the data from the CT scans in an effort to provide a greater resolution and fill-in data that was missing in the CT scan.
  • the US transducer 255 and the EM sensor 265 are separated by a distance, D OFF - This distance, D 0F F, may be sensed, coded into the navigation and procedure software, measured and sent by the clinician, or sensed by the US transducer 255 and the EM sensor 265.
  • the computing device 120 uses the distance, D OFF , to adjust the incorporation of the US images into the 3D model or 2D images derived therefrom.
  • the EM sensor 265 confirms its location at the target and a clinician may visually confirm the location at the target by looking at visual images generated from the US images.
  • the LG catheter 220 may be removed from the catheter guide assembly 110 and a biopsy tool may be inserted into the EWC 230 to the target to retrieve sample of the target for confirmation of the disease.
  • An anchoring tool may be employed to anchor the EWC 230 at the target.
  • treatment tools such as an ablation catheter may be inserted through the EWC 230 and into the target.
  • the US transducer 255 may be a sacrificial US transducer 255 which may be positioned in a forward looking manner to identify the target.
  • the US transducer 255 is sacrificial because it may be rendered ineffective following treatments of the target by the application of microwave energy of the treatment device.
  • one or more markers can be placed through the EWC 230 to identify the location of the target.
  • the marker may assist in navigating to a desired location and confirming placement of the EWC 230, particularly after removal of the LG 220 and the EM sensor 265 when the EM navigation features of the present disclosure may not be effective.
  • the marker may give a clinician an ability to re-visit the target after the target has been treated and to collect further samples.
  • the marker may be a fiducial marker, fluorescent dye, or FLUOROGOLD ® . In the case of fluorescent dye markers, the US imaging capabilities may further increase the determination of sufficiency of treatment, or provide greater clarity as to the exact location of the target.
  • Other markers for marking the location of a target may be employed by those of ordinary skill in the art without departing from the scope of the present disclosure.
  • FIG. 3 illustrates a 3D model 300 for a patent's bronchial trees and the trachea together with the lung.
  • the 3D model 300 may include information of most of the organs so that a clinician may selectively see particular organs or portions of organs of interest as shown in FIG. 3. In this case, these selected organs are the lungs including right lobe 310, the left lobe 320, the trachea 330 and bronchial trees 340.
  • the right lobe 310 has three sub-lobes, i.e., superior lobe 312, middle lobe 314, and inferior lobe 316
  • the left lobe 320 has two sub-lobes, i.e., superior lobe 322 and inferior lobe 324.
  • FIG. 4A shows a planar view of bronchial trees of the 3D model or of the slices of images of the lung such as the bronchial trees of FIG. 3 and a pathway plan to a target.
  • a pathway plan shows how to get to the target via the luminal network of the lung.
  • an EM field is generated by an EM board, such as the EM field generating device 145 of the EM board 140 as shown in FIG. 1.
  • an EM sensor 265 and a US transducer 255 are inserted into the lung via a natural orifice or an incision.
  • the EM sensor 265 and the US transducer 255 may be located on the EWC 230 with a distance apart or may be located at different places.
  • the EM sensor 265 may be located at or around the distal tip 260 of the LG 220 and the US transducer 255 may be located at or around the distal end 250 of the EWC 230, or vice versa.
  • the location of the EM sensor 265 is synchronized to the 3D model and the 2D images derived therefrom.
  • This location may be the starting location of the 3D model, or the entrance of the trachea of the 3D model. Even though the location is synchronized, the actual movement of the EM sensor 265 is not synchronized to the 3D model yet, here.
  • the EM sensor 265 travels a certain distance (e.g., from the entrance of the trachea to the branching point at the bottom of the trachea). This distance may be measured in the coordinate system of the EM field after the EM sensor 265 starts to sense the EM field.
  • step 535 the EM sensor 265, the LG 220, and the EWC 230 navigate the luminal network of the lung to the target following the pathway plan.
  • step 540 it is determined whether the sensor 265 has reached the target. If it is determined that the EM sensor 265 has not reach the target, step 535, i.e., the navigation step, is continued until the target is reached following the pathway plan.
  • step 1 when it is determined that the target is reached in step 1
  • step 565 it is determined whether there is a new target along the pathway plan to the target.
  • step 570 the new target is identified and registered to the 3D model for later treatment.
  • step 575 the route to the new target, which is a part of the pathway plan to the target, is also saved as a pathway plan to the new target. Then, the method 535 goes back to step 565 to continue checking whether there are any further new targets.
  • the computing device may generate images based on the processed reflected US waves. Since the US waves are reflected from an interface between tissues where density changes, the generated images show details both inside and outside of the bronchial tree. The generated images may depict a diseased or cancerous cells residing on the outside of the bronchial tree. In an aspect, when a treatment device penetrates the target for treatment purposes, the generated images can also be used to show whether the treatment device is in the center of the target.
  • steps 605-615 of FIG. 5C may be applied for biopsy.
  • the US transducer 255 is used to check whether the biopsy tool is at the correct location of the target. When it is determined that the biopsy tool is at the right place, then the biopsy tool takes samples. Or when it is determined that the biopsy tools is not at the target, the biopsy tool may be adjusted to reach correctly at the target.
  • the treatment device treats the target.
  • the US transducer 255 may be employed to image the target, determine the attributes of the target in step 625 (e.g., the size), and compares the attributes of the target with threshold values in step 630.
  • the threshold size may be predetermined based on a type of disease and may indicate that the disease is treated completely.
  • the input device 129 is used for inputting data or control information, such as setting values, or text information.
  • the input device 129 includes a keyboard, mouse, scanning devices, or other data input devices.
  • the input device 129 may be further used to manipulate displayed images or the 3D model to zoom in and out, and rotate in any direction.
  • the monitoring device 130 is operatively connected with the bronchoscope 115 and the computing device 120.
  • the monitoring device 130 includes buttons and switches for setting settable items of the monitoring device 130.
  • the monitoring device 130 may be touch-sensitive and/or voice-activated, enabling the monitoring device 130 to serve as both an input and output device.
  • settable items of the monitoring device 130 may be set, changed, or adjusted by using the buttons, touches to the screen of the monitoring device 130, or voices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Pulmonology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Optics & Photonics (AREA)
  • Otolaryngology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)
PCT/US2014/053878 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound Ceased WO2015034906A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2923457A CA2923457A1 (en) 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound
AU2014315356A AU2014315356B2 (en) 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound
CN201480056086.8A CN105611881A (zh) 2013-09-06 2014-09-03 用于利用超声进行肺部可视化的系统和方法
EP14842294.2A EP3041415A4 (en) 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound
JP2016540341A JP6335310B2 (ja) 2013-09-06 2014-09-03 超音波を用いて肺を可視化するためのシステム

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361874881P 2013-09-06 2013-09-06
US61/874,881 2013-09-06
US201462041850P 2014-08-26 2014-08-26
US201462041842P 2014-08-26 2014-08-26
US62/041,842 2014-08-26
US62/041,850 2014-08-26
US14/469,718 2014-08-27
US14/469,718 US10098565B2 (en) 2013-09-06 2014-08-27 System and method for lung visualization using ultrasound

Publications (1)

Publication Number Publication Date
WO2015034906A1 true WO2015034906A1 (en) 2015-03-12

Family

ID=52626223

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/053878 Ceased WO2015034906A1 (en) 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound
PCT/US2014/053882 Ceased WO2015034909A1 (en) 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2014/053882 Ceased WO2015034909A1 (en) 2013-09-06 2014-09-03 System and method for lung visualization using ultrasound

Country Status (7)

Country Link
US (5) US10098566B2 (enExample)
EP (2) EP3041415A4 (enExample)
JP (3) JP6387101B2 (enExample)
CN (2) CN105611881A (enExample)
AU (2) AU2014315356B2 (enExample)
CA (2) CA2923457A1 (enExample)
WO (2) WO2015034906A1 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759266B2 (en) 2017-06-23 2023-09-19 Auris Health, Inc. Robotic systems for determining a roll of a medical device in luminal networks
US11850008B2 (en) 2017-10-13 2023-12-26 Auris Health, Inc. Image-based branch detection and mapping for navigation
US12029390B2 (en) 2018-02-13 2024-07-09 Auris Health, Inc. System and method for driving medical instrument
US12075974B2 (en) 2015-06-26 2024-09-03 Auris Health, Inc. Instrument calibration
US12226175B2 (en) 2018-09-28 2025-02-18 Auris Health, Inc. Systems and methods for docking medical instruments
US12478444B2 (en) 2019-03-21 2025-11-25 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for localization based on machine learning

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US12414832B2 (en) 2010-09-24 2025-09-16 John R. Seitz, IV Multifunctional enclosure for medical probes
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
US10098566B2 (en) * 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
US9763741B2 (en) 2013-10-24 2017-09-19 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
EP2923669B1 (en) 2014-03-24 2017-06-28 Hansen Medical, Inc. Systems and devices for catheter driving instinctiveness
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
CN112716521B (zh) 2014-11-18 2024-03-01 C·R·巴德公司 具有自动图像呈现的超声成像系统
WO2016081023A1 (en) 2014-11-18 2016-05-26 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
EP3349649B1 (en) 2015-09-18 2022-03-09 Auris Health, Inc. Navigation of tubular networks
CA2999804C (en) 2015-10-06 2024-03-26 Synaptive Medical (Barbados) Inc. Method, system and apparatus for image-guided insertion of implant devices
US10709352B2 (en) * 2015-10-27 2020-07-14 Covidien Lp Method of using lung airway carina locations to improve ENB registration
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US11172895B2 (en) 2015-12-07 2021-11-16 Covidien Lp Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated
US10413272B2 (en) * 2016-03-08 2019-09-17 Covidien Lp Surgical tool with flex circuit ultrasound sensor
US10478254B2 (en) * 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10470839B2 (en) * 2016-06-02 2019-11-12 Covidien Lp Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line
US20180049808A1 (en) * 2016-08-17 2018-02-22 Covidien Lp Method of using soft point features to predict breathing cycles and improve end registration
US10238455B2 (en) * 2016-08-31 2019-03-26 Covidien Lp Pathway planning for use with a navigation planning and procedure system
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
WO2018108742A1 (en) * 2016-12-13 2018-06-21 Koninklijke Philips N.V. Target probe placement for lung ultrasound
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US11793579B2 (en) 2017-02-22 2023-10-24 Covidien Lp Integration of multiple data sources for localization and navigation
EP3600031A4 (en) 2017-03-31 2021-01-20 Auris Health, Inc. ROBOTIC NAVIGATION SYSTEMS IN LUMINAL NETWORKS COMPENSATION FOR PHYSIOLOGICAL NOISE
JP7677608B2 (ja) 2017-05-12 2025-05-15 オーリス ヘルス インコーポレイテッド 生検装置およびシステム
US11395703B2 (en) 2017-06-28 2022-07-26 Auris Health, Inc. Electromagnetic distortion detection
AU2018292284B2 (en) 2017-06-28 2023-03-23 Auris Health, Inc. Electromagnetic field generator alignment
AU2018290831A1 (en) 2017-06-28 2019-12-19 Auris Health, Inc. Instrument insertion compensation
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US11911144B2 (en) 2017-08-22 2024-02-27 C. R. Bard, Inc. Ultrasound imaging system and interventional medical device for use therewith
US10925628B2 (en) 2017-09-18 2021-02-23 Novuson Surgical, Inc. Tissue engagement apparatus for theapeutic ultrasound apparatus and method
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
WO2019113249A1 (en) * 2017-12-06 2019-06-13 Auris Health, Inc. Systems and methods to correct for uncommanded instrument roll
US12004849B2 (en) * 2017-12-11 2024-06-11 Covidien Lp Systems, methods, and computer-readable media for non-rigid registration of electromagnetic navigation space to CT volume
US11006852B2 (en) 2017-12-11 2021-05-18 Covidien Lp Systems, methods, and computer-readable media of estimating thoracic cavity movement during respiration
WO2019118767A1 (en) 2017-12-14 2019-06-20 Auris Health, Inc. System and method for estimating instrument location
JP7059377B2 (ja) 2017-12-18 2022-04-25 オーリス ヘルス インコーポレイテッド 管腔ネットワーク内の器具の追跡およびナビゲーションの方法およびシステム
WO2019143729A1 (en) 2018-01-16 2019-07-25 Pacific Light & Hologram, Inc. Three-dimensional displays using electromagnetic field computations
US10524866B2 (en) 2018-03-28 2020-01-07 Auris Health, Inc. Systems and methods for registration of location sensors
WO2019191143A1 (en) 2018-03-28 2019-10-03 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
JP7250824B2 (ja) 2018-05-30 2023-04-03 オーリス ヘルス インコーポレイテッド 位置センサベースの分岐予測のためのシステム及び方法
CN110831538B (zh) 2018-05-31 2023-01-24 奥瑞斯健康公司 基于图像的气道分析和映射
JP7371026B2 (ja) 2018-05-31 2023-10-30 オーリス ヘルス インコーポレイテッド 管状網の経路ベースのナビゲーション
JP7214757B2 (ja) 2018-05-31 2023-01-30 オーリス ヘルス インコーポレイテッド 生理学的ノイズを検出する管腔網のナビゲーションのためのロボットシステム及び方法
CN108846840B (zh) * 2018-06-26 2021-11-09 张茂 肺部超声图像分析方法、装置、电子设备及可读存储介质
US11944388B2 (en) 2018-09-28 2024-04-02 Covidien Lp Systems and methods for magnetic interference correction
CN119924988A (zh) 2018-09-28 2025-05-06 奥瑞斯健康公司 用于伴随内窥镜和经皮医学规程的机器人系统和方法
US11957319B2 (en) 2018-12-06 2024-04-16 Verathon Inc. Endobronchial ultrasound imaging
US10980025B2 (en) 2019-01-31 2021-04-13 Charter Communications Operating, Llc Methods and apparatus for frequency transition management in a quasi-licensed wireless system
US11986352B2 (en) 2019-02-05 2024-05-21 Regents Of The University Of Michigan Ultrasound speckle decorrelation estimation of lung motion and ventilation
US11111894B2 (en) * 2019-04-03 2021-09-07 Ford Global Technologies, Llc Engine stop/start inhibit during vehicle service
CN110123379A (zh) * 2019-06-03 2019-08-16 尚勇 一种临床用超声波检测系统
WO2021038495A1 (en) 2019-08-30 2021-03-04 Auris Health, Inc. Instrument image reliability systems and methods
WO2021038469A1 (en) 2019-08-30 2021-03-04 Auris Health, Inc. Systems and methods for weight-based registration of location sensors
CN114641252B (zh) 2019-09-03 2023-09-01 奥瑞斯健康公司 电磁畸变检测和补偿
US11771505B2 (en) * 2019-12-31 2023-10-03 Biosense Webster (Israel) Ltd. Three dimensional mapping system for cranial surgical pathways and method
US11413097B2 (en) * 2019-12-31 2022-08-16 Biosense Webster (Israel) Ltd. Three dimensional mapping system for cranial surgical pathways with semi-targets and method
WO2021137072A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Anatomical feature identification and targeting
US11660147B2 (en) 2019-12-31 2023-05-30 Auris Health, Inc. Alignment techniques for percutaneous access
KR20220123087A (ko) 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 경피 접근을 위한 정렬 인터페이스
US11737663B2 (en) 2020-03-30 2023-08-29 Auris Health, Inc. Target anatomical feature localization
RU2729368C1 (ru) * 2020-06-10 2020-08-06 Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр хирургии имени А.В. Вишневского» Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ хирургии им. А.В.Вишневского" Минздрава России) Способ оценки тяжести пневмонии при covid-19 с помощью ультразвукового метода исследования
DE102020208325A1 (de) * 2020-07-02 2022-01-05 Siemens Healthcare Gmbh Verfahren und System zur Erstellung eines Navigationsplans für einen Katheter mit Roboter
RU2736341C1 (ru) * 2020-08-21 2020-11-16 Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр хирургии имени А.В. Вишневского» Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ хирургии им. А.В.Вишневского" Минздрава России) Способ прогнозирования течения пневмонии при covid-19 на основании сопоставления результатов узи и мскт легких
US11360430B2 (en) 2020-09-17 2022-06-14 Pacific Light & Hologram, Inc. Reconstructing objects with display zero order light suppression
RU2742429C1 (ru) * 2020-11-21 2021-02-05 Государственное Бюджетное Учреждение Здравоохранения Города Москвы "Городская Клиническая Больница N 67 Имени Л.А. Ворохобова Департамента Здравоохранения Города Москвы" Способ экспресс-оценки изменений легочной ткани при COVID-19 без применения компьютерной томографии органов грудной клетки
CN113116475B (zh) * 2020-12-31 2023-06-20 杭州堃博生物科技有限公司 经导管的导航处理方法、装置、介质、设备与导航系统
CN114246563B (zh) * 2021-12-17 2023-11-17 重庆大学 基于毫米波雷达的心肺功能智能监测设备
US12254797B2 (en) 2023-05-12 2025-03-18 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US12243453B2 (en) 2023-05-12 2025-03-04 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12266279B2 (en) 2023-05-12 2025-04-01 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects with optical devices having in-coupling and out-coupling diffractive structures
US12272279B2 (en) 2023-05-12 2025-04-08 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12236816B2 (en) 2023-05-12 2025-02-25 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US11900842B1 (en) 2023-05-12 2024-02-13 Pacific Light & Hologram, Inc. Irregular devices
US12230176B2 (en) 2023-05-12 2025-02-18 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12315403B2 (en) 2023-05-12 2025-05-27 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12254798B2 (en) 2023-05-12 2025-03-18 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12374247B2 (en) 2023-05-12 2025-07-29 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US12266280B2 (en) 2023-05-12 2025-04-01 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12288490B2 (en) 2023-05-12 2025-04-29 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12300132B2 (en) 2023-05-12 2025-05-13 Pacific Light & Hologram, Inc. Holographically displaying three-dimensional objects
US12293687B2 (en) 2023-05-12 2025-05-06 Pacific Light & Hologram, Inc. Holographically displaying live scenes including three-dimensional objects
US12281984B1 (en) 2023-12-21 2025-04-22 Pacific Light & Hologram, Inc. Optical measurements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050283067A1 (en) * 2004-06-21 2005-12-22 Mediguide Ltd. Inductor for catheter
US20080071140A1 (en) * 2006-09-18 2008-03-20 Abhishek Gattani Method and apparatus for tracking a surgical instrument during surgery
US20080118135A1 (en) * 2006-11-10 2008-05-22 Superdimension, Ltd. Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity
US20110301438A1 (en) * 2008-08-04 2011-12-08 University Of Utah Research Foundation Dye application for confocal imaging of cellular microstructure
US20130231557A1 (en) * 2007-05-16 2013-09-05 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113954A (ja) * 1984-06-30 1986-01-22 株式会社東芝 超音波治療装置
US4669482A (en) * 1985-10-28 1987-06-02 Board Of Regents, The University Of Texas System Pulse echo method and apparatus for sound velocity estimation in vivo
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
DE69332042T2 (de) 1992-12-18 2003-01-02 Koninklijke Philips Electronics N.V., Eindhoven Ortungszurückstellung von relativ elastisch verformten räumlichen Bildern durch übereinstimmende Flächen
US5569289A (en) 1993-06-24 1996-10-29 Yoon; Inbae Safety penetrating instrument with penetrating member and cannula moving during penetration and triggered safety member protusion
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US6019724A (en) * 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US7778688B2 (en) 1999-05-18 2010-08-17 MediGuide, Ltd. System and method for delivering a stent to a selected position within a lumen
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US6773402B2 (en) 2001-07-10 2004-08-10 Biosense, Inc. Location sensing with real-time ultrasound imaging
US7883471B2 (en) 2001-09-10 2011-02-08 Pulmonx Corporation Minimally invasive determination of collateral ventilation in lungs
EP1499235B1 (en) * 2002-04-17 2016-08-17 Covidien LP Endoscope structures and techniques for navigating to a target in branched structure
JP4085314B2 (ja) 2002-09-10 2008-05-14 株式会社日立メディコ 超音波診断装置
CN1791359A (zh) * 2003-05-21 2006-06-21 皇家飞利浦电子股份有限公司 记录身体器官的运动的设备和方法
EP2316328B1 (en) * 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
EP1691666B1 (en) * 2003-12-12 2012-05-30 University of Washington Catheterscope 3d guidance and interface system
DE10358735B4 (de) 2003-12-15 2011-04-21 Siemens Ag Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter
US8211019B2 (en) * 2005-01-21 2012-07-03 Chikayoshi Sumi Clinical apparatuses
AU2006201646B2 (en) 2005-04-26 2011-01-06 Biosense Webster, Inc. Display of catheter tip with beam direction for ultrasound system
US10143398B2 (en) 2005-04-26 2018-12-04 Biosense Webster, Inc. Registration of ultrasound data with pre-acquired image
US7517318B2 (en) * 2005-04-26 2009-04-14 Biosense Webster, Inc. Registration of electro-anatomical map with pre-acquired image using ultrasound
US7889905B2 (en) 2005-05-23 2011-02-15 The Penn State Research Foundation Fast 3D-2D image registration method with application to continuously guided endoscopy
CN100445488C (zh) * 2005-08-01 2008-12-24 邱则有 一种现浇砼成型用空腔构件
WO2007025081A2 (en) * 2005-08-24 2007-03-01 Traxtal Inc. System, method and devices for navigated flexible endoscopy
US7835785B2 (en) 2005-10-04 2010-11-16 Ascension Technology Corporation DC magnetic-based position and orientation monitoring system for tracking medical instruments
WO2008005953A2 (en) 2006-06-30 2008-01-10 Broncus Technologies, Inc. Airway bypass site selection and treatment planning
ATE497729T1 (de) * 2006-10-02 2011-02-15 Hansen Medical Inc System für dreidimensionale ultraschall-abbildung
US7831076B2 (en) 2006-12-08 2010-11-09 Biosense Webster, Inc. Coloring electroanatomical maps to indicate ultrasound data acquisition
US8672836B2 (en) 2007-01-31 2014-03-18 The Penn State Research Foundation Method and apparatus for continuous guidance of endoscopy
US9629571B2 (en) * 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US8690864B2 (en) * 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
WO2008111070A2 (en) 2007-03-12 2008-09-18 David Tolkowsky Devices and methods for performing medical procedures in tree-like luminal structures
GB0708567D0 (en) 2007-05-03 2007-06-13 Univ Manchester Imaging technique
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US8535306B2 (en) 2007-11-05 2013-09-17 Angiodynamics, Inc. Ablation devices and methods of using the same
US10492854B2 (en) 2007-12-05 2019-12-03 Biosense Webster, Inc. Catheter-based acoustic radiation force impulse system
US20090299352A1 (en) 2007-12-21 2009-12-03 Boston Scientific Scimed, Inc. Steerable laser-energy delivery device
JP5701615B2 (ja) 2008-03-03 2015-04-15 コーニンクレッカ フィリップス エヌ ヴェ 電磁トラッキング及び光針による生検誘導
EP2348982B1 (en) * 2008-12-03 2020-03-25 St. Jude Medical, Atrial Fibrillation Division, Inc. System for determining the positioin of the tip of a medical catheter within the body of a patient
US8468637B2 (en) 2009-02-06 2013-06-25 Endoclear Llc Mechanically-actuated endotracheal tube cleaning device
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US20100280363A1 (en) 2009-04-24 2010-11-04 Medtronic, Inc. Electromagnetic Navigation of Medical Instruments for Cardiothoracic Surgery
EP2429400B1 (en) * 2009-05-14 2014-01-01 University Health Network Quantitative endoscopy
JP5535313B2 (ja) 2009-05-29 2014-07-02 エックスルミナ, インコーポレイテッド 隣接する組織層にわたってステントを展開するための装置および方法
JP4709946B2 (ja) * 2009-06-01 2011-06-29 オリンパスメディカルシステムズ株式会社 医療機器システムおよび医療器具のキャリブレーション方法
EP2437661B1 (en) * 2009-06-05 2021-04-07 Koninklijke Philips N.V. System and method for integrated biopsy and therapy
US20120238806A1 (en) 2009-08-24 2012-09-20 Quali-Med Gmbh Implantation system with handle and catheter and method of use thereof
WO2011062035A1 (ja) 2009-11-17 2011-05-26 オリンパスメディカルシステムズ株式会社 生検支援システム
KR20110078271A (ko) 2009-12-31 2011-07-07 주식회사 사이버메드 전자기 센서를 통합한 혈관 내 초음파 프로브
WO2011094518A2 (en) 2010-01-28 2011-08-04 The Penn State Research Foundation Image-based global registration system and method applicable to bronchoscopy guidance
CN110801282B (zh) 2010-05-03 2024-04-16 纽韦弗医疗设备公司 能量递送系统及其用途
CN101862205A (zh) 2010-05-25 2010-10-20 中国人民解放军第四军医大学 一种结合术前影像的术中组织跟踪方法
EP2605693B1 (en) 2010-08-20 2019-11-06 Veran Medical Technologies, Inc. Apparatus for four dimensional soft tissue navigation
EP2642917B1 (en) * 2010-11-24 2019-12-25 Edda Technology, Inc. System and method for interactive three dimensional operation guidance system for soft organs based on anatomic map
US8688192B2 (en) * 2011-01-31 2014-04-01 Seiko Epson Corporation High-resolution magnetocardiogram restoration for cardiac electric current localization
WO2012106310A1 (en) 2011-02-04 2012-08-09 The Penn State Research Foundation Method and device for determining the location of an endoscope
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
GB2511375B (en) 2011-05-13 2017-07-26 Spiration Inc Deployment Catheter
CN102319117B (zh) 2011-06-16 2013-04-03 上海交通大学医学院附属瑞金医院 基于磁导航融合实时超声信息的大血管内介入物植入系统
US8840605B2 (en) 2011-09-02 2014-09-23 Katalyst Surgical, Llc Steerable laser probe
CN107638635B (zh) * 2012-01-12 2020-02-14 胜赛斯医疗股份有限公司 混合超声引导的表层放射治疗系统和方法
US9439627B2 (en) * 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9014445B2 (en) 2012-10-11 2015-04-21 Vida Diagnostics, Inc. Visualization and characterization of pulmonary lobar fissures
CN103027712A (zh) 2012-11-28 2013-04-10 浙江大学 一种电磁定位的超声穿刺导航系统
US10098566B2 (en) 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
US20160051221A1 (en) 2014-08-25 2016-02-25 Covidien Lp System and Method for Planning, Monitoring, and Confirming Treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050283067A1 (en) * 2004-06-21 2005-12-22 Mediguide Ltd. Inductor for catheter
US20080071140A1 (en) * 2006-09-18 2008-03-20 Abhishek Gattani Method and apparatus for tracking a surgical instrument during surgery
US20080118135A1 (en) * 2006-11-10 2008-05-22 Superdimension, Ltd. Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity
US20130231557A1 (en) * 2007-05-16 2013-09-05 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
US20110301438A1 (en) * 2008-08-04 2011-12-08 University Of Utah Research Foundation Dye application for confocal imaging of cellular microstructure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LUO XIONGBIAO ET AL.: "Beyond Current Guided Bronchoscopy: A Robust and Real-Time Bronchoscopic Ultrasound Navigation System", LECTURE NOTES IN COMPUTER SCIENCE (LNCS): MEDICAL IMAGE COMPUTING AND COMPUTING-ASSISTED INTERVENTION - MICCAI 2013, vol. 8149, 22 September 2013 (2013-09-22), pages 388 - 395, XP047490882, DOI: doi:10.1007/978-3-642-40811-3_49
See also references of EP3041415A4
YEHUDA SCHWARZ: "Electromagnetic Navigation", CLINICS IN CHEST MEDICINE, vol. 31, no. 1, March 2010 (2010-03-01), pages 65 - 73, XP055131118, DOI: doi:10.1016/j.ccm.2009.08.005

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12075974B2 (en) 2015-06-26 2024-09-03 Auris Health, Inc. Instrument calibration
US11759266B2 (en) 2017-06-23 2023-09-19 Auris Health, Inc. Robotic systems for determining a roll of a medical device in luminal networks
US12295672B2 (en) 2017-06-23 2025-05-13 Auris Health, Inc. Robotic systems for determining a roll of a medical device in luminal networks
US11850008B2 (en) 2017-10-13 2023-12-26 Auris Health, Inc. Image-based branch detection and mapping for navigation
US12029390B2 (en) 2018-02-13 2024-07-09 Auris Health, Inc. System and method for driving medical instrument
US12226175B2 (en) 2018-09-28 2025-02-18 Auris Health, Inc. Systems and methods for docking medical instruments
US12478444B2 (en) 2019-03-21 2025-11-25 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for localization based on machine learning

Also Published As

Publication number Publication date
US20150073267A1 (en) 2015-03-12
US20190046071A1 (en) 2019-02-14
AU2014315359B2 (en) 2018-12-06
EP3041415A4 (en) 2017-05-10
CA2923457A1 (en) 2015-03-12
AU2014315359A1 (en) 2016-03-24
EP3041415A1 (en) 2016-07-13
US10098565B2 (en) 2018-10-16
WO2015034909A1 (en) 2015-03-12
US11925452B2 (en) 2024-03-12
CN105611881A (zh) 2016-05-25
JP6387101B2 (ja) 2018-09-12
AU2014315356A1 (en) 2016-03-24
AU2014315356B2 (en) 2018-11-22
CA2923459A1 (en) 2015-03-12
JP2016529063A (ja) 2016-09-23
US11931139B2 (en) 2024-03-19
US20240206760A1 (en) 2024-06-27
US20190046070A1 (en) 2019-02-14
CN105636519A (zh) 2016-06-01
EP3041416A4 (en) 2017-05-10
US10098566B2 (en) 2018-10-16
JP6335310B2 (ja) 2018-05-30
JP2016529062A (ja) 2016-09-23
JP2018094438A (ja) 2018-06-21
EP3041416A1 (en) 2016-07-13
US20150073266A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
US20240206760A1 (en) System and method for lung visualization using ultrasound
US20200037925A1 (en) System and method for light based lung visualization
CN108451639B (zh) 用于定位与导航的多数据源集成
EP4179994A2 (en) Pre-procedure planning, intra-procedure guidance for biopsy, and ablation of tumors with and without cone-beam computed tomography or fluoroscopic imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540341

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2923457

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014315356

Country of ref document: AU

Date of ref document: 20140903

Kind code of ref document: A