WO2015034906A1 - System and method for lung visualization using ultrasound - Google Patents
System and method for lung visualization using ultrasound Download PDFInfo
- Publication number
- WO2015034906A1 WO2015034906A1 PCT/US2014/053878 US2014053878W WO2015034906A1 WO 2015034906 A1 WO2015034906 A1 WO 2015034906A1 US 2014053878 W US2014053878 W US 2014053878W WO 2015034906 A1 WO2015034906 A1 WO 2015034906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- sensor
- model
- location
- ewc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/267—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
- A61B8/4254—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/467—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5261—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
Definitions
- the one or more processors 124 execute computer-executable instructions.
- the EM board 140 may be configured to be operatively coupled with the reference sensors 170 which are located on the chest of the patient 170.
- the reference sensors 170 move up and down following the chest while the patient 150 is inhaling and move down following the chest while the patient 150 is exhaling.
- the movement of the reference sensors 170 in the EM field is captured by the reference sensors 170 and transmitted to the tracking device 160 so that the breathing pattern of the patient 150 may be recognized.
- the tracking device 160 also receives outputs of the EM sensor 265, combines both outputs, and compensates the breathing pattern for the location of the EM sensor 265.
- the distance is measured in accordance with the coordinate system of the EM field. Since the coordinate system of the EM field is different from the coordinate system of the 3D model, there is a scaling factor to match the coordinate system of the EM field to the coordinate system of the 3D model. Thus, by multiplying a scale factor to the distance the EM sensor 265 travels, the coordinate system of the EM field is synchronized with the coordinate system of the 3D model. In this way, the EM field may be synchronized with the 3D model and 2D images of the navigation and procedure software. Or other suitable method may be employed to synchronize the coordinate system of the EM field with the coordinate system of the 3D model.
- the memory 126 also stores another program that can process and convert image data captured by an imaging modality associated with the catheter guide assembly 110, as will be described in detail below.
- This image data may be converted into visual images having sufficient resolutions to identify such targets and terminal bronchial branches or be incorporated into and used to update the data from the CT scans in an effort to provide a greater resolution and fill-in data that was missing in the CT scan.
- the US transducer 255 and the EM sensor 265 are separated by a distance, D OFF - This distance, D 0F F, may be sensed, coded into the navigation and procedure software, measured and sent by the clinician, or sensed by the US transducer 255 and the EM sensor 265.
- the computing device 120 uses the distance, D OFF , to adjust the incorporation of the US images into the 3D model or 2D images derived therefrom.
- the EM sensor 265 confirms its location at the target and a clinician may visually confirm the location at the target by looking at visual images generated from the US images.
- the LG catheter 220 may be removed from the catheter guide assembly 110 and a biopsy tool may be inserted into the EWC 230 to the target to retrieve sample of the target for confirmation of the disease.
- An anchoring tool may be employed to anchor the EWC 230 at the target.
- treatment tools such as an ablation catheter may be inserted through the EWC 230 and into the target.
- the US transducer 255 may be a sacrificial US transducer 255 which may be positioned in a forward looking manner to identify the target.
- the US transducer 255 is sacrificial because it may be rendered ineffective following treatments of the target by the application of microwave energy of the treatment device.
- one or more markers can be placed through the EWC 230 to identify the location of the target.
- the marker may assist in navigating to a desired location and confirming placement of the EWC 230, particularly after removal of the LG 220 and the EM sensor 265 when the EM navigation features of the present disclosure may not be effective.
- the marker may give a clinician an ability to re-visit the target after the target has been treated and to collect further samples.
- the marker may be a fiducial marker, fluorescent dye, or FLUOROGOLD ® . In the case of fluorescent dye markers, the US imaging capabilities may further increase the determination of sufficiency of treatment, or provide greater clarity as to the exact location of the target.
- Other markers for marking the location of a target may be employed by those of ordinary skill in the art without departing from the scope of the present disclosure.
- FIG. 3 illustrates a 3D model 300 for a patent's bronchial trees and the trachea together with the lung.
- the 3D model 300 may include information of most of the organs so that a clinician may selectively see particular organs or portions of organs of interest as shown in FIG. 3. In this case, these selected organs are the lungs including right lobe 310, the left lobe 320, the trachea 330 and bronchial trees 340.
- the right lobe 310 has three sub-lobes, i.e., superior lobe 312, middle lobe 314, and inferior lobe 316
- the left lobe 320 has two sub-lobes, i.e., superior lobe 322 and inferior lobe 324.
- FIG. 4A shows a planar view of bronchial trees of the 3D model or of the slices of images of the lung such as the bronchial trees of FIG. 3 and a pathway plan to a target.
- a pathway plan shows how to get to the target via the luminal network of the lung.
- an EM field is generated by an EM board, such as the EM field generating device 145 of the EM board 140 as shown in FIG. 1.
- an EM sensor 265 and a US transducer 255 are inserted into the lung via a natural orifice or an incision.
- the EM sensor 265 and the US transducer 255 may be located on the EWC 230 with a distance apart or may be located at different places.
- the EM sensor 265 may be located at or around the distal tip 260 of the LG 220 and the US transducer 255 may be located at or around the distal end 250 of the EWC 230, or vice versa.
- the location of the EM sensor 265 is synchronized to the 3D model and the 2D images derived therefrom.
- This location may be the starting location of the 3D model, or the entrance of the trachea of the 3D model. Even though the location is synchronized, the actual movement of the EM sensor 265 is not synchronized to the 3D model yet, here.
- the EM sensor 265 travels a certain distance (e.g., from the entrance of the trachea to the branching point at the bottom of the trachea). This distance may be measured in the coordinate system of the EM field after the EM sensor 265 starts to sense the EM field.
- step 535 the EM sensor 265, the LG 220, and the EWC 230 navigate the luminal network of the lung to the target following the pathway plan.
- step 540 it is determined whether the sensor 265 has reached the target. If it is determined that the EM sensor 265 has not reach the target, step 535, i.e., the navigation step, is continued until the target is reached following the pathway plan.
- step 1 when it is determined that the target is reached in step 1
- step 565 it is determined whether there is a new target along the pathway plan to the target.
- step 570 the new target is identified and registered to the 3D model for later treatment.
- step 575 the route to the new target, which is a part of the pathway plan to the target, is also saved as a pathway plan to the new target. Then, the method 535 goes back to step 565 to continue checking whether there are any further new targets.
- the computing device may generate images based on the processed reflected US waves. Since the US waves are reflected from an interface between tissues where density changes, the generated images show details both inside and outside of the bronchial tree. The generated images may depict a diseased or cancerous cells residing on the outside of the bronchial tree. In an aspect, when a treatment device penetrates the target for treatment purposes, the generated images can also be used to show whether the treatment device is in the center of the target.
- steps 605-615 of FIG. 5C may be applied for biopsy.
- the US transducer 255 is used to check whether the biopsy tool is at the correct location of the target. When it is determined that the biopsy tool is at the right place, then the biopsy tool takes samples. Or when it is determined that the biopsy tools is not at the target, the biopsy tool may be adjusted to reach correctly at the target.
- the treatment device treats the target.
- the US transducer 255 may be employed to image the target, determine the attributes of the target in step 625 (e.g., the size), and compares the attributes of the target with threshold values in step 630.
- the threshold size may be predetermined based on a type of disease and may indicate that the disease is treated completely.
- the input device 129 is used for inputting data or control information, such as setting values, or text information.
- the input device 129 includes a keyboard, mouse, scanning devices, or other data input devices.
- the input device 129 may be further used to manipulate displayed images or the 3D model to zoom in and out, and rotate in any direction.
- the monitoring device 130 is operatively connected with the bronchoscope 115 and the computing device 120.
- the monitoring device 130 includes buttons and switches for setting settable items of the monitoring device 130.
- the monitoring device 130 may be touch-sensitive and/or voice-activated, enabling the monitoring device 130 to serve as both an input and output device.
- settable items of the monitoring device 130 may be set, changed, or adjusted by using the buttons, touches to the screen of the monitoring device 130, or voices.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Pulmonology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Optics & Photonics (AREA)
- Otolaryngology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Endoscopes (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2923457A CA2923457A1 (en) | 2013-09-06 | 2014-09-03 | System and method for lung visualization using ultrasound |
| AU2014315356A AU2014315356B2 (en) | 2013-09-06 | 2014-09-03 | System and method for lung visualization using ultrasound |
| CN201480056086.8A CN105611881A (zh) | 2013-09-06 | 2014-09-03 | 用于利用超声进行肺部可视化的系统和方法 |
| EP14842294.2A EP3041415A4 (en) | 2013-09-06 | 2014-09-03 | System and method for lung visualization using ultrasound |
| JP2016540341A JP6335310B2 (ja) | 2013-09-06 | 2014-09-03 | 超音波を用いて肺を可視化するためのシステム |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361874881P | 2013-09-06 | 2013-09-06 | |
| US61/874,881 | 2013-09-06 | ||
| US201462041850P | 2014-08-26 | 2014-08-26 | |
| US201462041842P | 2014-08-26 | 2014-08-26 | |
| US62/041,842 | 2014-08-26 | ||
| US62/041,850 | 2014-08-26 | ||
| US14/469,718 | 2014-08-27 | ||
| US14/469,718 US10098565B2 (en) | 2013-09-06 | 2014-08-27 | System and method for lung visualization using ultrasound |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015034906A1 true WO2015034906A1 (en) | 2015-03-12 |
Family
ID=52626223
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/053878 Ceased WO2015034906A1 (en) | 2013-09-06 | 2014-09-03 | System and method for lung visualization using ultrasound |
| PCT/US2014/053882 Ceased WO2015034909A1 (en) | 2013-09-06 | 2014-09-03 | System and method for lung visualization using ultrasound |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/053882 Ceased WO2015034909A1 (en) | 2013-09-06 | 2014-09-03 | System and method for lung visualization using ultrasound |
Country Status (7)
| Country | Link |
|---|---|
| US (5) | US10098566B2 (enExample) |
| EP (2) | EP3041415A4 (enExample) |
| JP (3) | JP6387101B2 (enExample) |
| CN (2) | CN105611881A (enExample) |
| AU (2) | AU2014315356B2 (enExample) |
| CA (2) | CA2923457A1 (enExample) |
| WO (2) | WO2015034906A1 (enExample) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11759266B2 (en) | 2017-06-23 | 2023-09-19 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
| US11850008B2 (en) | 2017-10-13 | 2023-12-26 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
| US12029390B2 (en) | 2018-02-13 | 2024-07-09 | Auris Health, Inc. | System and method for driving medical instrument |
| US12075974B2 (en) | 2015-06-26 | 2024-09-03 | Auris Health, Inc. | Instrument calibration |
| US12226175B2 (en) | 2018-09-28 | 2025-02-18 | Auris Health, Inc. | Systems and methods for docking medical instruments |
| US12478444B2 (en) | 2019-03-21 | 2025-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for localization based on machine learning |
Families Citing this family (89)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
| US12414832B2 (en) | 2010-09-24 | 2025-09-16 | John R. Seitz, IV | Multifunctional enclosure for medical probes |
| US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
| US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
| US9271663B2 (en) | 2013-03-15 | 2016-03-01 | Hansen Medical, Inc. | Flexible instrument localization from both remote and elongation sensors |
| US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
| US9629595B2 (en) | 2013-03-15 | 2017-04-25 | Hansen Medical, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
| US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
| US10098566B2 (en) * | 2013-09-06 | 2018-10-16 | Covidien Lp | System and method for lung visualization using ultrasound |
| US9763741B2 (en) | 2013-10-24 | 2017-09-19 | Auris Surgical Robotics, Inc. | System for robotic-assisted endolumenal surgery and related methods |
| EP2923669B1 (en) | 2014-03-24 | 2017-06-28 | Hansen Medical, Inc. | Systems and devices for catheter driving instinctiveness |
| CN107427327A (zh) | 2014-09-30 | 2017-12-01 | 奥瑞斯外科手术机器人公司 | 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统 |
| CN112716521B (zh) | 2014-11-18 | 2024-03-01 | C·R·巴德公司 | 具有自动图像呈现的超声成像系统 |
| WO2016081023A1 (en) | 2014-11-18 | 2016-05-26 | C.R. Bard, Inc. | Ultrasound imaging system having automatic image presentation |
| EP3349649B1 (en) | 2015-09-18 | 2022-03-09 | Auris Health, Inc. | Navigation of tubular networks |
| CA2999804C (en) | 2015-10-06 | 2024-03-26 | Synaptive Medical (Barbados) Inc. | Method, system and apparatus for image-guided insertion of implant devices |
| US10709352B2 (en) * | 2015-10-27 | 2020-07-14 | Covidien Lp | Method of using lung airway carina locations to improve ENB registration |
| US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
| US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
| US10413272B2 (en) * | 2016-03-08 | 2019-09-17 | Covidien Lp | Surgical tool with flex circuit ultrasound sensor |
| US10478254B2 (en) * | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
| US10470839B2 (en) * | 2016-06-02 | 2019-11-12 | Covidien Lp | Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line |
| US20180049808A1 (en) * | 2016-08-17 | 2018-02-22 | Covidien Lp | Method of using soft point features to predict breathing cycles and improve end registration |
| US10238455B2 (en) * | 2016-08-31 | 2019-03-26 | Covidien Lp | Pathway planning for use with a navigation planning and procedure system |
| US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
| WO2018108742A1 (en) * | 2016-12-13 | 2018-06-21 | Koninklijke Philips N.V. | Target probe placement for lung ultrasound |
| US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
| US11793579B2 (en) | 2017-02-22 | 2023-10-24 | Covidien Lp | Integration of multiple data sources for localization and navigation |
| EP3600031A4 (en) | 2017-03-31 | 2021-01-20 | Auris Health, Inc. | ROBOTIC NAVIGATION SYSTEMS IN LUMINAL NETWORKS COMPENSATION FOR PHYSIOLOGICAL NOISE |
| JP7677608B2 (ja) | 2017-05-12 | 2025-05-15 | オーリス ヘルス インコーポレイテッド | 生検装置およびシステム |
| US11395703B2 (en) | 2017-06-28 | 2022-07-26 | Auris Health, Inc. | Electromagnetic distortion detection |
| AU2018292284B2 (en) | 2017-06-28 | 2023-03-23 | Auris Health, Inc. | Electromagnetic field generator alignment |
| AU2018290831A1 (en) | 2017-06-28 | 2019-12-19 | Auris Health, Inc. | Instrument insertion compensation |
| US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
| US11911144B2 (en) | 2017-08-22 | 2024-02-27 | C. R. Bard, Inc. | Ultrasound imaging system and interventional medical device for use therewith |
| US10925628B2 (en) | 2017-09-18 | 2021-02-23 | Novuson Surgical, Inc. | Tissue engagement apparatus for theapeutic ultrasound apparatus and method |
| US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
| US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
| WO2019113249A1 (en) * | 2017-12-06 | 2019-06-13 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
| US12004849B2 (en) * | 2017-12-11 | 2024-06-11 | Covidien Lp | Systems, methods, and computer-readable media for non-rigid registration of electromagnetic navigation space to CT volume |
| US11006852B2 (en) | 2017-12-11 | 2021-05-18 | Covidien Lp | Systems, methods, and computer-readable media of estimating thoracic cavity movement during respiration |
| WO2019118767A1 (en) | 2017-12-14 | 2019-06-20 | Auris Health, Inc. | System and method for estimating instrument location |
| JP7059377B2 (ja) | 2017-12-18 | 2022-04-25 | オーリス ヘルス インコーポレイテッド | 管腔ネットワーク内の器具の追跡およびナビゲーションの方法およびシステム |
| WO2019143729A1 (en) | 2018-01-16 | 2019-07-25 | Pacific Light & Hologram, Inc. | Three-dimensional displays using electromagnetic field computations |
| US10524866B2 (en) | 2018-03-28 | 2020-01-07 | Auris Health, Inc. | Systems and methods for registration of location sensors |
| WO2019191143A1 (en) | 2018-03-28 | 2019-10-03 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
| JP7250824B2 (ja) | 2018-05-30 | 2023-04-03 | オーリス ヘルス インコーポレイテッド | 位置センサベースの分岐予測のためのシステム及び方法 |
| CN110831538B (zh) | 2018-05-31 | 2023-01-24 | 奥瑞斯健康公司 | 基于图像的气道分析和映射 |
| JP7371026B2 (ja) | 2018-05-31 | 2023-10-30 | オーリス ヘルス インコーポレイテッド | 管状網の経路ベースのナビゲーション |
| JP7214757B2 (ja) | 2018-05-31 | 2023-01-30 | オーリス ヘルス インコーポレイテッド | 生理学的ノイズを検出する管腔網のナビゲーションのためのロボットシステム及び方法 |
| CN108846840B (zh) * | 2018-06-26 | 2021-11-09 | 张茂 | 肺部超声图像分析方法、装置、电子设备及可读存储介质 |
| US11944388B2 (en) | 2018-09-28 | 2024-04-02 | Covidien Lp | Systems and methods for magnetic interference correction |
| CN119924988A (zh) | 2018-09-28 | 2025-05-06 | 奥瑞斯健康公司 | 用于伴随内窥镜和经皮医学规程的机器人系统和方法 |
| US11957319B2 (en) | 2018-12-06 | 2024-04-16 | Verathon Inc. | Endobronchial ultrasound imaging |
| US10980025B2 (en) | 2019-01-31 | 2021-04-13 | Charter Communications Operating, Llc | Methods and apparatus for frequency transition management in a quasi-licensed wireless system |
| US11986352B2 (en) | 2019-02-05 | 2024-05-21 | Regents Of The University Of Michigan | Ultrasound speckle decorrelation estimation of lung motion and ventilation |
| US11111894B2 (en) * | 2019-04-03 | 2021-09-07 | Ford Global Technologies, Llc | Engine stop/start inhibit during vehicle service |
| CN110123379A (zh) * | 2019-06-03 | 2019-08-16 | 尚勇 | 一种临床用超声波检测系统 |
| WO2021038495A1 (en) | 2019-08-30 | 2021-03-04 | Auris Health, Inc. | Instrument image reliability systems and methods |
| WO2021038469A1 (en) | 2019-08-30 | 2021-03-04 | Auris Health, Inc. | Systems and methods for weight-based registration of location sensors |
| CN114641252B (zh) | 2019-09-03 | 2023-09-01 | 奥瑞斯健康公司 | 电磁畸变检测和补偿 |
| US11771505B2 (en) * | 2019-12-31 | 2023-10-03 | Biosense Webster (Israel) Ltd. | Three dimensional mapping system for cranial surgical pathways and method |
| US11413097B2 (en) * | 2019-12-31 | 2022-08-16 | Biosense Webster (Israel) Ltd. | Three dimensional mapping system for cranial surgical pathways with semi-targets and method |
| WO2021137072A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Anatomical feature identification and targeting |
| US11660147B2 (en) | 2019-12-31 | 2023-05-30 | Auris Health, Inc. | Alignment techniques for percutaneous access |
| KR20220123087A (ko) | 2019-12-31 | 2022-09-05 | 아우리스 헬스, 인코포레이티드 | 경피 접근을 위한 정렬 인터페이스 |
| US11737663B2 (en) | 2020-03-30 | 2023-08-29 | Auris Health, Inc. | Target anatomical feature localization |
| RU2729368C1 (ru) * | 2020-06-10 | 2020-08-06 | Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр хирургии имени А.В. Вишневского» Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ хирургии им. А.В.Вишневского" Минздрава России) | Способ оценки тяжести пневмонии при covid-19 с помощью ультразвукового метода исследования |
| DE102020208325A1 (de) * | 2020-07-02 | 2022-01-05 | Siemens Healthcare Gmbh | Verfahren und System zur Erstellung eines Navigationsplans für einen Katheter mit Roboter |
| RU2736341C1 (ru) * | 2020-08-21 | 2020-11-16 | Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр хирургии имени А.В. Вишневского» Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ хирургии им. А.В.Вишневского" Минздрава России) | Способ прогнозирования течения пневмонии при covid-19 на основании сопоставления результатов узи и мскт легких |
| US11360430B2 (en) | 2020-09-17 | 2022-06-14 | Pacific Light & Hologram, Inc. | Reconstructing objects with display zero order light suppression |
| RU2742429C1 (ru) * | 2020-11-21 | 2021-02-05 | Государственное Бюджетное Учреждение Здравоохранения Города Москвы "Городская Клиническая Больница N 67 Имени Л.А. Ворохобова Департамента Здравоохранения Города Москвы" | Способ экспресс-оценки изменений легочной ткани при COVID-19 без применения компьютерной томографии органов грудной клетки |
| CN113116475B (zh) * | 2020-12-31 | 2023-06-20 | 杭州堃博生物科技有限公司 | 经导管的导航处理方法、装置、介质、设备与导航系统 |
| CN114246563B (zh) * | 2021-12-17 | 2023-11-17 | 重庆大学 | 基于毫米波雷达的心肺功能智能监测设备 |
| US12254797B2 (en) | 2023-05-12 | 2025-03-18 | Pacific Light & Hologram, Inc. | Holographically displaying live scenes including three-dimensional objects |
| US12243453B2 (en) | 2023-05-12 | 2025-03-04 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12266279B2 (en) | 2023-05-12 | 2025-04-01 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects with optical devices having in-coupling and out-coupling diffractive structures |
| US12272279B2 (en) | 2023-05-12 | 2025-04-08 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12236816B2 (en) | 2023-05-12 | 2025-02-25 | Pacific Light & Hologram, Inc. | Holographically displaying live scenes including three-dimensional objects |
| US11900842B1 (en) | 2023-05-12 | 2024-02-13 | Pacific Light & Hologram, Inc. | Irregular devices |
| US12230176B2 (en) | 2023-05-12 | 2025-02-18 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12315403B2 (en) | 2023-05-12 | 2025-05-27 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12254798B2 (en) | 2023-05-12 | 2025-03-18 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12374247B2 (en) | 2023-05-12 | 2025-07-29 | Pacific Light & Hologram, Inc. | Holographically displaying live scenes including three-dimensional objects |
| US12266280B2 (en) | 2023-05-12 | 2025-04-01 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12288490B2 (en) | 2023-05-12 | 2025-04-29 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12300132B2 (en) | 2023-05-12 | 2025-05-13 | Pacific Light & Hologram, Inc. | Holographically displaying three-dimensional objects |
| US12293687B2 (en) | 2023-05-12 | 2025-05-06 | Pacific Light & Hologram, Inc. | Holographically displaying live scenes including three-dimensional objects |
| US12281984B1 (en) | 2023-12-21 | 2025-04-22 | Pacific Light & Hologram, Inc. | Optical measurements |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050283067A1 (en) * | 2004-06-21 | 2005-12-22 | Mediguide Ltd. | Inductor for catheter |
| US20080071140A1 (en) * | 2006-09-18 | 2008-03-20 | Abhishek Gattani | Method and apparatus for tracking a surgical instrument during surgery |
| US20080118135A1 (en) * | 2006-11-10 | 2008-05-22 | Superdimension, Ltd. | Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity |
| US20110301438A1 (en) * | 2008-08-04 | 2011-12-08 | University Of Utah Research Foundation | Dye application for confocal imaging of cellular microstructure |
| US20130231557A1 (en) * | 2007-05-16 | 2013-09-05 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
Family Cites Families (67)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6113954A (ja) * | 1984-06-30 | 1986-01-22 | 株式会社東芝 | 超音波治療装置 |
| US4669482A (en) * | 1985-10-28 | 1987-06-02 | Board Of Regents, The University Of Texas System | Pulse echo method and apparatus for sound velocity estimation in vivo |
| US5244462A (en) | 1990-03-15 | 1993-09-14 | Valleylab Inc. | Electrosurgical apparatus |
| DE69332042T2 (de) | 1992-12-18 | 2003-01-02 | Koninklijke Philips Electronics N.V., Eindhoven | Ortungszurückstellung von relativ elastisch verformten räumlichen Bildern durch übereinstimmende Flächen |
| US5569289A (en) | 1993-06-24 | 1996-10-29 | Yoon; Inbae | Safety penetrating instrument with penetrating member and cannula moving during penetration and triggered safety member protusion |
| US5531520A (en) | 1994-09-01 | 1996-07-02 | Massachusetts Institute Of Technology | System and method of registration of three-dimensional data sets including anatomical body data |
| US6019724A (en) * | 1995-02-22 | 2000-02-01 | Gronningsaeter; Aage | Method for ultrasound guidance during clinical procedures |
| US7778688B2 (en) | 1999-05-18 | 2010-08-17 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
| US6749606B2 (en) | 1999-08-05 | 2004-06-15 | Thomas Keast | Devices for creating collateral channels |
| US6379302B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies Inc. | Navigation information overlay onto ultrasound imagery |
| US6773402B2 (en) | 2001-07-10 | 2004-08-10 | Biosense, Inc. | Location sensing with real-time ultrasound imaging |
| US7883471B2 (en) | 2001-09-10 | 2011-02-08 | Pulmonx Corporation | Minimally invasive determination of collateral ventilation in lungs |
| EP1499235B1 (en) * | 2002-04-17 | 2016-08-17 | Covidien LP | Endoscope structures and techniques for navigating to a target in branched structure |
| JP4085314B2 (ja) | 2002-09-10 | 2008-05-14 | 株式会社日立メディコ | 超音波診断装置 |
| CN1791359A (zh) * | 2003-05-21 | 2006-06-21 | 皇家飞利浦电子股份有限公司 | 记录身体器官的运动的设备和方法 |
| EP2316328B1 (en) * | 2003-09-15 | 2012-05-09 | Super Dimension Ltd. | Wrap-around holding device for use with bronchoscopes |
| EP1691666B1 (en) * | 2003-12-12 | 2012-05-30 | University of Washington | Catheterscope 3d guidance and interface system |
| DE10358735B4 (de) | 2003-12-15 | 2011-04-21 | Siemens Ag | Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter |
| US8211019B2 (en) * | 2005-01-21 | 2012-07-03 | Chikayoshi Sumi | Clinical apparatuses |
| AU2006201646B2 (en) | 2005-04-26 | 2011-01-06 | Biosense Webster, Inc. | Display of catheter tip with beam direction for ultrasound system |
| US10143398B2 (en) | 2005-04-26 | 2018-12-04 | Biosense Webster, Inc. | Registration of ultrasound data with pre-acquired image |
| US7517318B2 (en) * | 2005-04-26 | 2009-04-14 | Biosense Webster, Inc. | Registration of electro-anatomical map with pre-acquired image using ultrasound |
| US7889905B2 (en) | 2005-05-23 | 2011-02-15 | The Penn State Research Foundation | Fast 3D-2D image registration method with application to continuously guided endoscopy |
| CN100445488C (zh) * | 2005-08-01 | 2008-12-24 | 邱则有 | 一种现浇砼成型用空腔构件 |
| WO2007025081A2 (en) * | 2005-08-24 | 2007-03-01 | Traxtal Inc. | System, method and devices for navigated flexible endoscopy |
| US7835785B2 (en) | 2005-10-04 | 2010-11-16 | Ascension Technology Corporation | DC magnetic-based position and orientation monitoring system for tracking medical instruments |
| WO2008005953A2 (en) | 2006-06-30 | 2008-01-10 | Broncus Technologies, Inc. | Airway bypass site selection and treatment planning |
| ATE497729T1 (de) * | 2006-10-02 | 2011-02-15 | Hansen Medical Inc | System für dreidimensionale ultraschall-abbildung |
| US7831076B2 (en) | 2006-12-08 | 2010-11-09 | Biosense Webster, Inc. | Coloring electroanatomical maps to indicate ultrasound data acquisition |
| US8672836B2 (en) | 2007-01-31 | 2014-03-18 | The Penn State Research Foundation | Method and apparatus for continuous guidance of endoscopy |
| US9629571B2 (en) * | 2007-03-08 | 2017-04-25 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
| US8690864B2 (en) * | 2007-03-09 | 2014-04-08 | Covidien Lp | System and method for controlling tissue treatment |
| WO2008111070A2 (en) | 2007-03-12 | 2008-09-18 | David Tolkowsky | Devices and methods for performing medical procedures in tree-like luminal structures |
| GB0708567D0 (en) | 2007-05-03 | 2007-06-13 | Univ Manchester | Imaging technique |
| US20090105579A1 (en) * | 2007-10-19 | 2009-04-23 | Garibaldi Jeffrey M | Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data |
| US8535306B2 (en) | 2007-11-05 | 2013-09-17 | Angiodynamics, Inc. | Ablation devices and methods of using the same |
| US10492854B2 (en) | 2007-12-05 | 2019-12-03 | Biosense Webster, Inc. | Catheter-based acoustic radiation force impulse system |
| US20090299352A1 (en) | 2007-12-21 | 2009-12-03 | Boston Scientific Scimed, Inc. | Steerable laser-energy delivery device |
| JP5701615B2 (ja) | 2008-03-03 | 2015-04-15 | コーニンクレッカ フィリップス エヌ ヴェ | 電磁トラッキング及び光針による生検誘導 |
| EP2348982B1 (en) * | 2008-12-03 | 2020-03-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for determining the positioin of the tip of a medical catheter within the body of a patient |
| US8468637B2 (en) | 2009-02-06 | 2013-06-25 | Endoclear Llc | Mechanically-actuated endotracheal tube cleaning device |
| US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
| US20100280363A1 (en) | 2009-04-24 | 2010-11-04 | Medtronic, Inc. | Electromagnetic Navigation of Medical Instruments for Cardiothoracic Surgery |
| EP2429400B1 (en) * | 2009-05-14 | 2014-01-01 | University Health Network | Quantitative endoscopy |
| JP5535313B2 (ja) | 2009-05-29 | 2014-07-02 | エックスルミナ, インコーポレイテッド | 隣接する組織層にわたってステントを展開するための装置および方法 |
| JP4709946B2 (ja) * | 2009-06-01 | 2011-06-29 | オリンパスメディカルシステムズ株式会社 | 医療機器システムおよび医療器具のキャリブレーション方法 |
| EP2437661B1 (en) * | 2009-06-05 | 2021-04-07 | Koninklijke Philips N.V. | System and method for integrated biopsy and therapy |
| US20120238806A1 (en) | 2009-08-24 | 2012-09-20 | Quali-Med Gmbh | Implantation system with handle and catheter and method of use thereof |
| WO2011062035A1 (ja) | 2009-11-17 | 2011-05-26 | オリンパスメディカルシステムズ株式会社 | 生検支援システム |
| KR20110078271A (ko) | 2009-12-31 | 2011-07-07 | 주식회사 사이버메드 | 전자기 센서를 통합한 혈관 내 초음파 프로브 |
| WO2011094518A2 (en) | 2010-01-28 | 2011-08-04 | The Penn State Research Foundation | Image-based global registration system and method applicable to bronchoscopy guidance |
| CN110801282B (zh) | 2010-05-03 | 2024-04-16 | 纽韦弗医疗设备公司 | 能量递送系统及其用途 |
| CN101862205A (zh) | 2010-05-25 | 2010-10-20 | 中国人民解放军第四军医大学 | 一种结合术前影像的术中组织跟踪方法 |
| EP2605693B1 (en) | 2010-08-20 | 2019-11-06 | Veran Medical Technologies, Inc. | Apparatus for four dimensional soft tissue navigation |
| EP2642917B1 (en) * | 2010-11-24 | 2019-12-25 | Edda Technology, Inc. | System and method for interactive three dimensional operation guidance system for soft organs based on anatomic map |
| US8688192B2 (en) * | 2011-01-31 | 2014-04-01 | Seiko Epson Corporation | High-resolution magnetocardiogram restoration for cardiac electric current localization |
| WO2012106310A1 (en) | 2011-02-04 | 2012-08-09 | The Penn State Research Foundation | Method and device for determining the location of an endoscope |
| US8795241B2 (en) | 2011-05-13 | 2014-08-05 | Spiration, Inc. | Deployment catheter |
| GB2511375B (en) | 2011-05-13 | 2017-07-26 | Spiration Inc | Deployment Catheter |
| CN102319117B (zh) | 2011-06-16 | 2013-04-03 | 上海交通大学医学院附属瑞金医院 | 基于磁导航融合实时超声信息的大血管内介入物植入系统 |
| US8840605B2 (en) | 2011-09-02 | 2014-09-23 | Katalyst Surgical, Llc | Steerable laser probe |
| CN107638635B (zh) * | 2012-01-12 | 2020-02-14 | 胜赛斯医疗股份有限公司 | 混合超声引导的表层放射治疗系统和方法 |
| US9439627B2 (en) * | 2012-05-22 | 2016-09-13 | Covidien Lp | Planning system and navigation system for an ablation procedure |
| US9014445B2 (en) | 2012-10-11 | 2015-04-21 | Vida Diagnostics, Inc. | Visualization and characterization of pulmonary lobar fissures |
| CN103027712A (zh) | 2012-11-28 | 2013-04-10 | 浙江大学 | 一种电磁定位的超声穿刺导航系统 |
| US10098566B2 (en) | 2013-09-06 | 2018-10-16 | Covidien Lp | System and method for lung visualization using ultrasound |
| US20160051221A1 (en) | 2014-08-25 | 2016-02-25 | Covidien Lp | System and Method for Planning, Monitoring, and Confirming Treatment |
-
2014
- 2014-08-27 US US14/469,728 patent/US10098566B2/en active Active
- 2014-08-27 US US14/469,718 patent/US10098565B2/en active Active
- 2014-09-03 JP JP2016540343A patent/JP6387101B2/ja not_active Expired - Fee Related
- 2014-09-03 AU AU2014315356A patent/AU2014315356B2/en not_active Ceased
- 2014-09-03 AU AU2014315359A patent/AU2014315359B2/en not_active Ceased
- 2014-09-03 CN CN201480056086.8A patent/CN105611881A/zh active Pending
- 2014-09-03 WO PCT/US2014/053878 patent/WO2015034906A1/en not_active Ceased
- 2014-09-03 EP EP14842294.2A patent/EP3041415A4/en not_active Withdrawn
- 2014-09-03 JP JP2016540341A patent/JP6335310B2/ja not_active Expired - Fee Related
- 2014-09-03 EP EP14842874.1A patent/EP3041416A4/en not_active Withdrawn
- 2014-09-03 CA CA2923457A patent/CA2923457A1/en not_active Abandoned
- 2014-09-03 WO PCT/US2014/053882 patent/WO2015034909A1/en not_active Ceased
- 2014-09-03 CA CA2923459A patent/CA2923459A1/en not_active Abandoned
- 2014-09-03 CN CN201480056083.4A patent/CN105636519A/zh active Pending
-
2018
- 2018-01-26 JP JP2018011132A patent/JP2018094438A/ja active Pending
- 2018-10-15 US US16/160,390 patent/US11931139B2/en active Active
- 2018-10-15 US US16/159,895 patent/US11925452B2/en active Active
-
2024
- 2024-03-08 US US18/600,465 patent/US20240206760A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050283067A1 (en) * | 2004-06-21 | 2005-12-22 | Mediguide Ltd. | Inductor for catheter |
| US20080071140A1 (en) * | 2006-09-18 | 2008-03-20 | Abhishek Gattani | Method and apparatus for tracking a surgical instrument during surgery |
| US20080118135A1 (en) * | 2006-11-10 | 2008-05-22 | Superdimension, Ltd. | Adaptive Navigation Technique For Navigating A Catheter Through A Body Channel Or Cavity |
| US20130231557A1 (en) * | 2007-05-16 | 2013-09-05 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
| US20110301438A1 (en) * | 2008-08-04 | 2011-12-08 | University Of Utah Research Foundation | Dye application for confocal imaging of cellular microstructure |
Non-Patent Citations (3)
| Title |
|---|
| LUO XIONGBIAO ET AL.: "Beyond Current Guided Bronchoscopy: A Robust and Real-Time Bronchoscopic Ultrasound Navigation System", LECTURE NOTES IN COMPUTER SCIENCE (LNCS): MEDICAL IMAGE COMPUTING AND COMPUTING-ASSISTED INTERVENTION - MICCAI 2013, vol. 8149, 22 September 2013 (2013-09-22), pages 388 - 395, XP047490882, DOI: doi:10.1007/978-3-642-40811-3_49 |
| See also references of EP3041415A4 |
| YEHUDA SCHWARZ: "Electromagnetic Navigation", CLINICS IN CHEST MEDICINE, vol. 31, no. 1, March 2010 (2010-03-01), pages 65 - 73, XP055131118, DOI: doi:10.1016/j.ccm.2009.08.005 |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12075974B2 (en) | 2015-06-26 | 2024-09-03 | Auris Health, Inc. | Instrument calibration |
| US11759266B2 (en) | 2017-06-23 | 2023-09-19 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
| US12295672B2 (en) | 2017-06-23 | 2025-05-13 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
| US11850008B2 (en) | 2017-10-13 | 2023-12-26 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
| US12029390B2 (en) | 2018-02-13 | 2024-07-09 | Auris Health, Inc. | System and method for driving medical instrument |
| US12226175B2 (en) | 2018-09-28 | 2025-02-18 | Auris Health, Inc. | Systems and methods for docking medical instruments |
| US12478444B2 (en) | 2019-03-21 | 2025-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for localization based on machine learning |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150073267A1 (en) | 2015-03-12 |
| US20190046071A1 (en) | 2019-02-14 |
| AU2014315359B2 (en) | 2018-12-06 |
| EP3041415A4 (en) | 2017-05-10 |
| CA2923457A1 (en) | 2015-03-12 |
| AU2014315359A1 (en) | 2016-03-24 |
| EP3041415A1 (en) | 2016-07-13 |
| US10098565B2 (en) | 2018-10-16 |
| WO2015034909A1 (en) | 2015-03-12 |
| US11925452B2 (en) | 2024-03-12 |
| CN105611881A (zh) | 2016-05-25 |
| JP6387101B2 (ja) | 2018-09-12 |
| AU2014315356A1 (en) | 2016-03-24 |
| AU2014315356B2 (en) | 2018-11-22 |
| CA2923459A1 (en) | 2015-03-12 |
| JP2016529063A (ja) | 2016-09-23 |
| US11931139B2 (en) | 2024-03-19 |
| US20240206760A1 (en) | 2024-06-27 |
| US20190046070A1 (en) | 2019-02-14 |
| CN105636519A (zh) | 2016-06-01 |
| EP3041416A4 (en) | 2017-05-10 |
| US10098566B2 (en) | 2018-10-16 |
| JP6335310B2 (ja) | 2018-05-30 |
| JP2016529062A (ja) | 2016-09-23 |
| JP2018094438A (ja) | 2018-06-21 |
| EP3041416A1 (en) | 2016-07-13 |
| US20150073266A1 (en) | 2015-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240206760A1 (en) | System and method for lung visualization using ultrasound | |
| US20200037925A1 (en) | System and method for light based lung visualization | |
| CN108451639B (zh) | 用于定位与导航的多数据源集成 | |
| EP4179994A2 (en) | Pre-procedure planning, intra-procedure guidance for biopsy, and ablation of tumors with and without cone-beam computed tomography or fluoroscopic imaging |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14842294 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2016540341 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2923457 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REEP | Request for entry into the european phase |
Ref document number: 2014842294 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014842294 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2014315356 Country of ref document: AU Date of ref document: 20140903 Kind code of ref document: A |