WO2015034277A1 - 차량용 에어컨 시스템 및 그 제어방법 - Google Patents

차량용 에어컨 시스템 및 그 제어방법 Download PDF

Info

Publication number
WO2015034277A1
WO2015034277A1 PCT/KR2014/008299 KR2014008299W WO2015034277A1 WO 2015034277 A1 WO2015034277 A1 WO 2015034277A1 KR 2014008299 W KR2014008299 W KR 2014008299W WO 2015034277 A1 WO2015034277 A1 WO 2015034277A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
expansion valve
refrigerant
amount
discharge amount
Prior art date
Application number
PCT/KR2014/008299
Other languages
English (en)
French (fr)
Inventor
고재우
한규익
엄세동
윤길상
강인근
Original Assignee
한라비스테온공조 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130105955A external-priority patent/KR101717611B1/ko
Priority claimed from KR1020140049196A external-priority patent/KR101880979B1/ko
Application filed by 한라비스테온공조 주식회사 filed Critical 한라비스테온공조 주식회사
Priority to CN201480029624.4A priority Critical patent/CN105283331B/zh
Priority to US14/895,686 priority patent/US9702607B2/en
Priority to DE112014002751.0T priority patent/DE112014002751T5/de
Publication of WO2015034277A1 publication Critical patent/WO2015034277A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3239Cooling devices information from a variable is obtained related to flow
    • B60H2001/3242Cooling devices information from a variable is obtained related to flow of a refrigerant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3276Cooling devices output of a control signal related to a condensing unit
    • B60H2001/3279Cooling devices output of a control signal related to a condensing unit to control the refrigerant flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/023Compressor control controlling swash plate angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a vehicle air conditioner system and a control method thereof, and more particularly, to change the target superheat degree according to a change in the refrigerant discharge amount of the compressor, that is, to gradually reduce the target superheat degree as the refrigerant discharge amount of the compressor decreases. It relates to a vehicle air conditioner system to control the electronic expansion valve based on the descending, step-down target superheat degree and the control method thereof.
  • a vehicle air conditioner system as shown in Fig. 1, a compressor (1) for compressing and discharging the refrigerant, a condenser (2) for condensing the high-pressure refrigerant discharged from the compressor (1) And an expansion valve 3 for condensing the liquefied refrigerant condensed in the condenser 2, and a low pressure liquid refrigerant condensed by the expansion valve 3 with the air blown to the vehicle interior.
  • Evaporator (4) for cooling the air discharged to the room by the endothermic action by the latent heat of evaporation of the refrigerant by the evaporator is connected to the refrigerant pipe (5).
  • a receiver dryer (not shown) is provided between the condenser 2 and the expansion valve 3 to separate the refrigerant in the gas phase and the liquid phase, so that only the liquid refrigerant can be supplied to the expansion valve 3. .
  • the compressor (1) is a variable displacement swash plate type compressor (1), briefly described with reference to FIG. 2, a rotary shaft (10) installed inside the compressor (1) and rotated by driving of the engine, and the rotary shaft
  • the inclination angle of the swash plate 13 is installed on the swash plate 13 and the swash plate 13 connected to the plurality of pistons 14 and rotated together with the rotary shaft 10, and the inclination angle of the swash plate 13 is adjusted to adjust the amount of refrigerant discharged. It comprises an ECV (electronic control valve) 15 for regulating.
  • ECV electronic control valve
  • the ECV 15 is driven by electrical control and controls the pressure in the crank chamber 11 by controlling the flow rate while guiding the high pressure refrigerant discharged from the discharge chamber 12 to the crank chamber 11.
  • the pressure in the crank chamber 11 increases, the inclination angle of the swash plate 13 decreases.
  • the pressure in the crank chamber 11 decreases, the inclination angle of the swash plate 13 increases.
  • the inclination angle of the swash plate 13 is changed by the duty control of the ECV 15, and the amount of refrigerant discharged from the compressor 1 is determined according to the inclination angle of the swash plate 13.
  • the air conditioner load can be reduced through the duty control of the ECV 15.
  • the expansion valve 3 may be used a mechanical expansion valve or an electromagnetic expansion valve, hereinafter will be described as an example of the use of the electronic expansion valve.
  • the superheat degree is controlled by controlling the refrigerant flow rate through the control of the compressor 1 and the electromagnetic expansion valve 3 according to the air conditioner load.
  • the target superheat degree is set according to the outdoor temperature or the indoor temperature of the vehicle, and the refrigerant is adjusted by adjusting the ECV duty of the compressor 1 or increasing or decreasing the opening amount of the electromagnetic expansion valve 3 so as to converge to the target superheat degree. To adjust the flow rate.
  • the refrigerant flow rate is controlled by the control of the electromagnetic expansion valve 3. Sensitivity in time (in superheat control) rises rapidly, resulting in a change in superheat.
  • FIG 3 is a graph showing the superheat degree, the interior air discharge temperature, and the compressor ECV duty when controlling the superheat degree through the electronic expansion valve in the variable region of the compressor.
  • the vehicle discharge air temperature (° C) and the compressor (1) ECV duty (%; refrigerant discharge amount) are increased, and the electromagnetic expansion valve (3) reduces the superheat degree.
  • the opening amount (refrigerant flow rate) is greatly increased.
  • the opening amount of the electromagnetic expansion valve (3) is greatly increased, the superheat degree is lowered.
  • the vehicle discharge air temperature (° C) and the ECV duty (%) of the compressor (1) Refrigerant discharge amount is lowered again.
  • the air conditioning system cuts off to prevent icing of the evaporator 4. That is, when the compressor 1 is turned off and the compressor 1 is turned off, while the discharge air temperature of the evaporator 4 increases, the discharge air temperature inside the vehicle rises, thereby lowering cooling performance.
  • the cooling performance is deteriorated in the superheat degree (the superheat degree rise section) more than the optimum superheat degree section (optimum refrigerant flow rate), and the refrigerant compared to the high load condition in the low load condition (compressor variable region) of the air conditioner system. Since the flow rate is small, the superheat control range is narrow, and thus, the control width of the optimum superheat region is also narrow, thereby increasing the possibility of system instability when controlling the same target superheat.
  • the electromagnetic expansion valve 3 If you control the target overheating through), the system becomes unstable.
  • An object of the present invention for solving the above problems is to change the target superheat degree according to the variable refrigerant discharge amount of the compressor, that is, the target overheat degree is lowered as the refrigerant discharge amount of the compressor is smaller, and the lowered target superheat degree
  • the electronic expansion valve By controlling the electronic expansion valve based on the above, by providing a vehicle air conditioner system and a control method that can prevent the degradation of the air conditioner and stabilize the system by suppressing the fluctuation of the superheat degree in the region where the refrigerant discharge amount of the compressor is variable It is.
  • variable displacement swash plate type of variable refrigerant discharge amount the condenser for condensing the refrigerant discharged from the compressor, the refrigerant discharged from the condenser expands the control signal of the control unit
  • the air conditioning system for a vehicle is controlled to a target superheat by adjusting the opening amount of the electromagnetic expansion valve, the control unit And changing the target superheat degree according to the variable refrigerant discharge amount of the compressor, and controlling the electromagnetic expansion valve based on the changed target superheat degree.
  • variable displacement swash plate type compressor for varying a refrigerant discharge amount, a condenser for condensing the refrigerant discharged from the compressor, an electronic expansion valve for expanding the refrigerant discharged from the condenser and the opening degree is controlled by a control signal of the controller; And an evaporator for evaporating the refrigerant discharged from the electronic expansion valve, wherein the refrigerant discharge amount of the compressor is set in the first method by controlling the opening amount of the electronic expansion valve to be controlled to a target superheat.
  • the target superheat degree is changed according to the variable refrigerant discharge amount of the compressor, that is, as the refrigerant discharge amount of the compressor decreases, the target superheat degree is gradually lowered, and the electron is based on the stepped target superheat degree.
  • the expansion valve By controlling the expansion valve, it is possible to suppress the deterioration of the degree of superheat in the region in which the refrigerant discharge amount of the compressor is variable to prevent the deterioration of the air conditioner and stabilize the system.
  • the structure can prevent a sudden change in the refrigerant flow rate in the system, it is possible to prevent the hunting phenomenon caused by the sudden change in the refrigerant flow rate, thereby eliminating the difficulty of "coolant flow rate control" due to the hunting phenomenon. Therefore, there is an effect that can improve the cooling performance in the vehicle interior.
  • FIG. 1 is a block diagram showing a conventional vehicle air conditioner system
  • FIG. 2 is a cross-sectional view showing a compressor in FIG.
  • FIG. 3 is a graph showing the superheat degree, the interior discharge air temperature and the compressor ECV duty when controlling the superheat degree through the electronic expansion valve in the compressor variable region of the conventional vehicle air conditioner system,
  • FIG. 4 is a block diagram showing a vehicle air conditioner system according to a first embodiment of the present invention
  • FIG. 5 is a sectional perspective view showing an electronic expansion valve in a vehicle air conditioner system according to a first embodiment of the present invention
  • FIG. 6 is a flowchart illustrating a control method of a vehicle air conditioner system according to a first embodiment of the present invention
  • FIG. 8 is a flowchart illustrating a control method of a vehicle air conditioner system according to a second embodiment of the present invention.
  • the vehicle air conditioner system is configured by connecting the compressor 100-> condenser 110-> electromagnetic expansion valve 120-> evaporator 130 with a refrigerant pipe 105. And a control unit 160 for controlling the electronic expansion valve 120.
  • the compressor 100 is driven by receiving power from a power supply source (engine or motor, etc.) to suck and compress the gaseous refrigerant discharged from the evaporator 130 and discharge the gaseous refrigerant to a condenser 110 in a gas state of high temperature and high pressure.
  • a power supply source engine or motor, etc.
  • the compressor 100 is a variable displacement compressor 100, which will be briefly described with reference to FIG. 2, the rotary shaft 10 installed inside the compressor 100 and rotating by driving of an engine, and the rotary shaft 10
  • the swash plate 13 is installed on the variable rotation angle and is rotated together with the rotating shaft 10 and connected to the plurality of pistons 14, and the inclination angle of the swash plate 13 is adjusted to adjust the refrigerant discharge capacity.
  • ECV (electronic control valve) 15 is configured to include.
  • the ECV 15 is driven by electrical control and controls the pressure in the crank chamber 11 by controlling the flow rate while guiding the high pressure refrigerant discharged from the discharge chamber 12 to the crank chamber 11.
  • the pressure in the crank chamber 11 increases, the inclination angle of the swash plate 13 decreases.
  • the pressure in the crank chamber 11 decreases, the inclination angle of the swash plate 13 increases.
  • the inclination angle of the swash plate 13 is changed by the duty control of the ECV 15, and the refrigerant discharge capacity of the compressor 100 is determined according to the inclination angle of the swash plate 13.
  • the air conditioner load cooling load
  • the compressor 100 is to vary the refrigerant discharge amount according to the air conditioner load, that is, the inclination angle of the swash plate 13 is maximized under the air conditioner high load conditions, the refrigerant discharge amount is also the maximum, under low load conditions the ECV ( As the duty of 15) decreases, the inclination angle of the swash plate 13 decreases, so that the coolant discharge amount decreases.
  • the condenser 110 heat-exchanges the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 100 to the outside air to condense it into a liquid of high temperature and high pressure, and discharge the same to the electronic expansion valve 120.
  • the electronic expansion valve 120 expands the high temperature and high pressure liquid refrigerant discharged from the condenser 110 to be in a low temperature low pressure wet state, and at the same time, the opening degree is controlled by the controller 160 to control the flow rate of the refrigerant. By controlling the refrigerant flow rate, the air conditioning system is controlled to the target superheat.
  • the electronic expansion valve 120 by adjusting the opening amount according to the target overheat degree of the refrigerant to control the flow rate of the refrigerant, thereby actively changing the amount of refrigerant flow into the evaporator 130.
  • the inlet 126 and the outlet 127 are formed to be connected to the refrigerant pipe 105 and the refrigerant is introduced and discharged, and the inlet 126 and the outlet 127 are provided.
  • the orifice 125a is formed between the main body 125 and the orifice 125a of the main body 125 and the upper orifice (125a) between the upper and lower openings of the orifice (125a) to finely control the orifice (
  • the electronic expansion valve 120 expands the high temperature and high pressure liquid refrigerant discharged from the condenser 110 and controls the flow rate of the refrigerant to supply the evaporator 130.
  • a receiver dryer (not shown) is installed at the outlet side of the condenser 110 to separate the refrigerant in the gas phase and the liquid phase so that only the liquid refrigerant can be supplied to the electromagnetic expansion valve 120.
  • the evaporator 130 receives and evaporates the refrigerant discharged and expanded from the electronic expansion valve 120, and the refrigerant supplied to the evaporator 130 exchanges heat with air blown to the vehicle interior through the blower 140. After the evaporation, the air discharged into the vehicle interior is cooled by an endothermic action caused by the latent heat of evaporation of the refrigerant.
  • the evaporator 130 is installed inside the air conditioning case 150.
  • controller 160 controls the opening degree of the electronic expansion valve 120 to control the air conditioning system to a target superheat, that is, overheating through the temperature and pressure of the refrigerant discharged from the evaporator 130. It is to control the degree of opening of the electromagnetic expansion valve 120 to calculate the degree, to monitor the superheat degree to converge to the target superheat degree.
  • the target superheat degree is set according to the outdoor temperature, the indoor temperature or other surrounding variables of the vehicle, and if the opening amount of the electronic expansion valve 120 is increased, the superheat degree is lowered, and the opening amount is increased. Decreasing the temperature will increase.
  • the present invention is superheated in a variable region of the compressor 100, that is, a region in which the refrigerant discharge amount of the compressor 100 is variable while the refrigerant discharge amount of the compressor 100 decreases in a high load condition (maximum refrigerant discharge), such as in an air conditioner low load condition.
  • a high load condition maximum refrigerant discharge
  • the compressor refrigerant discharge amount detecting means 165 for detecting the refrigerant discharge amount of the compressor 100 is provided.
  • the compressor refrigerant discharge amount detecting unit 165 includes an ECV duty detection sensor (not shown) that detects an "ECV duty" of the compressor 100.
  • the ECV duty sensor detects the inclination angle of the swash plate 13 of the compressor 100 by detecting the "ECV duty" of the compressor 100, thereby detecting the current amount of refrigerant discharged from the compressor 100. You can do it.
  • the compressor refrigerant discharge amount detecting unit 165 preferably detects the refrigerant discharge amount of the compressor 100 in units of seconds.
  • the control unit 160 includes a calculation unit 161, and changes the target superheat degree according to the refrigerant discharge amount of the compressor 100 and changes the electronic expansion valve 120 based on the changed target superheat degree. Will be controlled.
  • the controller 160 controls the electronic expansion valve 120 in multiple stages based on the changed target superheat diagram, that is, the first target superheat diagram and the second target superheat diagram to be described later.
  • the controller 160 performs hysteresis control to decrease the target superheat step by step as the variable amount of the compressor 100 decreases, that is, the refrigerant discharge amount of the compressor 100 is smaller, in order to stabilize the air conditioner system.
  • the target superheat is also increased step by step.
  • control unit 160 when the amount of refrigerant discharged from the compressor 100 is equal to or less than a first predetermined value A, the electronic expansion valve based on the first target superheat diagram lower than the target superheat diagram.
  • the opening amount of 120 is controlled.
  • the first target superheat degree lower than the target superheat degree at the time of the normal control is calculated, and based on the first target superheat degree, The opening amount of the electromagnetic expansion valve 120 is controlled. At this time, the opening amount of the electromagnetic expansion valve 120 is increased to converge to the first target superheat degree lower than the target superheat degree.
  • the controller 160 controls the electromagnetic expansion valve based on the second target overheat degree lower than the first target overheat degree. 120).
  • the electromagnetic expansion valve 120 After controlling the electromagnetic expansion valve 120 to converge to the first target superheat, if the amount of refrigerant discharged from the compressor 100 is less than or equal to the second set value B, the first target superheat is lowered.
  • the second target overheat degree is calculated, and the opening amount of the electromagnetic expansion valve 120 is controlled based on the second target overheat degree. At this time, the opening amount of the electromagnetic expansion valve 120 is increased to be larger than the opening amount of the first target overheating diagram so as to converge to the second target overheat degree lower than the first target overheat degree.
  • the first set value A and the second set value B are previously input to the controller 160 as a predetermined value.
  • the compressor in the variable region of the compressor 100 in which the amount of refrigerant discharged from the compressor 100 decreases, the compressor is not controlled by the same superheat as the maximum discharge time of the compressor 100, but instead of controlling the electromagnetic expansion valve 120.
  • the target overheating degree is also lowered step by step, thereby controlling the superheating degree in the variable region of the compressor 100, thereby preventing deterioration of the performance of the air conditioner and stabilizing the system. It is.
  • the controller 160 When the air conditioner system is operated, the controller 160 will be described later while the superheat degree of the refrigerant discharged from the evaporator 130 converges to a target superheat degree by controlling the opening amount of the electronic expansion valve 120. You will perform each step.
  • a first step S1 of determining whether the amount of refrigerant discharged from the compressor 100 is equal to or less than a first predetermined value A is performed.
  • the compressor 100 is a variable refrigerant discharge state, not the maximum refrigerant discharge, that is, it is determined whether the variable refrigerant discharge amount is less than the first set value (A). .
  • the electronic expansion valve 120 is based on the first target superheat degree lower than the target superheat degree.
  • the second step (S2) of controlling the opening amount of) is performed.
  • the opening amount of the electromagnetic expansion valve 120 is controlled based on the target superheat degree. At this time, the opening amount of the electromagnetic expansion valve 120 is increased to converge to the first target superheat degree lower than the target superheat degree.
  • a third step S3 of determining whether the amount of refrigerant discharged from the compressor 100 is less than or equal to the second set value B is performed.
  • step (S3) it is determined whether the amount of refrigerant discharged from the compressor 100 is further reduced while the air conditioner system is controlled to the first target overheat, that is, the variable amount of refrigerant discharged is the second set value. (B) It is judged whether or not.
  • step S3 when the amount of refrigerant discharged from the compressor 100 is less than or equal to the second predetermined value B, the electronic expansion valve is based on the second target overheat degree lower than the first target overheat degree.
  • a fourth step S4 of controlling 120 is performed.
  • the refrigerant discharge amount of the compressor 100 is changed to a second set value ( B) or less, it calculates the 2nd target superheat degree lower than the said 1st target superheat degree, and controls the opening amount of the electromagnetic expansion valve 120 based on the 2nd target superheat degree.
  • the opening amount of the electromagnetic expansion valve 120 is increased to be larger than the opening amount of the first target overheating diagram so as to converge to the second target overheat degree lower than the first target overheat degree.
  • the target superheat degree is lowered step by step in accordance with the refrigerant discharge amount of the compressor 100 to control in multiple stages (hysteresis control), thereby suppressing the change in the superheat degree and It can prevent performance degradation and stabilize the system.
  • FIG. 8 is a flowchart illustrating a control method of a vehicle air conditioner system according to a second exemplary embodiment of the present invention.
  • the calculating unit 161 of the control unit 160 when the "compressor refrigerant discharge amount" from the compressor refrigerant discharge amount detecting unit 165 is input in seconds (Sec) unit, " The "compressor refrigerant discharge amount” is calculated to calculate the "coolant discharge amount change rate per unit time". For example, the "refrigerant discharge amount change rate" for two minutes from the time point two minutes before to the present time point is calculated.
  • the control unit 160 compares the calculated "change rate of refrigerant discharge amount per unit time" with the "built-in reference refrigerant discharge amount change rate", and "unit" It is determined whether or not the change rate of refrigerant discharge amount per hour "is equal to or greater than the" standard refrigerant discharge amount change rate ".
  • the controller 160 frequently changes the refrigerant discharge amount of the compressor 100, and thus, when the opening amount of the electromagnetic expansion valve 120 is also variable, the refrigerant flow rate is changed. We believe that there is a possibility that a severe hunting phenomenon will occur due to the rapid change of the.
  • the controller 160 forcibly controls the electromagnetic expansion valve 120 while entering the "hunting prevention mode".
  • the opening amount of the orifice 125a is forcibly controlled to keep the opening amount at the time of entry into the "hunting prevention mode" constant.
  • the change in the refrigerant discharge amount in the compressor 100 and the change in the discharge refrigerant flow rate in the electromagnetic expansion valve 120 are prevented from occurring at the same time. This prevents a sudden change in the total refrigerant flow rate due to the change in the refrigerant discharge amount in the compressor 100 and the change in the refrigerant flow rate in the electromagnetic expansion valve 120.
  • control unit 160 when the calculated "refrigerant discharge amount change rate per unit time" is lower than the "standard refrigerant discharge amount change rate", the refrigerant discharge amount of the compressor 100 is not frequently changed, the electronic Even if the opening amount of the expansion valve 120 is variable, it is determined that there is no sudden change in the flow rate of the refrigerant, whereby there is no fear that a hunting phenomenon may occur.
  • the controller 160 releases the forced control of the electronic expansion valve 120 while releasing from the "hunting prevention mode". As a result, the opening amount of the electromagnetic expansion valve 120 can be automatically controlled to its original state.
  • the refrigerant discharge amount of the compressor 100 is input from the compressor refrigerant discharge amount detecting unit 165 (S103).
  • control unit 160 calculates the "change rate of refrigerant discharge amount per unit time" by calculating the input "compressor refrigerant discharge amount” (S105).
  • the controller 160 determines whether the calculated “refrigerant discharge amount change rate per unit time" is equal to or greater than the preset "standard refrigerant discharge amount change rate” (S107).
  • the controller 160 forcibly controls the electromagnetic expansion valve 120 while entering the "hunting prevention mode” to keep the opening amount of the electromagnetic expansion valve 120 constant. (S109).
  • variable discharge amount of the refrigerant in the compressor 100 and the variable flow rate of the refrigerant in the electromagnetic expansion valve 120 are prevented from occurring at the same time.
  • the change in the refrigerant discharge amount of the compressor 100 and the sudden change in the refrigerant flow rate due to the change in the refrigerant flow rate in the electromagnetic expansion valve 120 are blocked.
  • hunting phenomenon due to a sudden change in refrigerant flow rate is prevented.
  • control unit 160 determines again that the calculated "refrigerant discharge amount change rate per unit time" is lower than the "standard refrigerant discharge amount change rate” while the electronic expansion valve 120 is controlled (S111).
  • the controller 160 releases the forced control of the electromagnetic expansion valve 120 while being released from the "hunting prevention mode” (S113).
  • the opening amount of the electromagnetic expansion valve 120 can be automatically controlled to its original state.
  • the flow rate of the refrigerant in the electromagnetic expansion valve 120 is maintained by keeping the opening amount of the electromagnetic expansion valve 120 constant. Since the structure is limited, the change in the refrigerant discharge amount in the compressor 100 and the change in the refrigerant flow rate in the electromagnetic expansion valve 120 are prevented from occurring at the same time.
  • the structure can prevent a sudden change in the refrigerant flow rate in the system, it is possible to prevent the hunting phenomenon caused by the sudden change in the refrigerant flow rate, thereby eliminating the difficulty of the "coolant flow rate control" due to the hunting phenomenon. Therefore, the cooling performance in a vehicle interior can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

본 발명은 차량용 에어컨 시스템 및 그 제어방법에 관한 것으로써, 더욱 상세하게는 압축기의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 다시말해 압축기의 냉매 토출량이 작아질수록 목표과열도를 단계적으로 하강하고, 상기 단계적으로 하강된 목표과열도를 토대로 상기 전자 팽창밸브를 제어하도록 함으로써, 상기 압축기의 냉매 토출량이 가변되는 영역에서 과열도의 변동을 억제하여 에어컨의 성능 저하를 방지하고 시스템을 안정화 할 수 있는 차량용 에어컨 시스템 및 그 제어방법에 관한 것이다.

Description

차량용 에어컨 시스템 및 그 제어방법
본 발명은 차량용 에어컨 시스템 및 그 제어방법에 관한 것으로써, 더욱 상세하게는 압축기의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 다시말해 압축기의 냉매 토출량이 작아질수록 목표과열도를 단계적으로 하강하고, 상기 단계적으로 하강된 목표과열도를 토대로 상기 전자 팽창밸브를 제어하도록 한 차량용 에어컨 시스템 및 그 제어방법에 관한 것이다.
일반적으로 차량용 에어컨 시스템은 통상, 도 1에 도시된 바와 같이, 냉매를 압축하여 토출하는 압축기(Compressor)(1), 압축기(1)에서 토출되는 고압의 냉매를 응축하는 응축기(Condenser)(2), 응축기(2)에서 응축되어 액화된 냉매를 교축하는 팽창밸브(Expansion Valve)(3), 그리고, 상기 팽창밸브(3)에 의해 교축된 저압의 액상 냉매를 차량 실내측으로 송풍되는 공기와 열교환하여 증발시킴으로써 냉매의 증발잠열에 의한 흡열작용으로 실내에 토출되는 공기를 냉각하는 증발기(Evaporator)(4) 등이 냉매 파이프(5)로 연결되어 이루어진다.
또한, 상기 응축기(2)와 팽창밸브(3)의 사이에는 기상과 액상의 냉매를 분리하는 리시버드라이어(미도시)가 설치되어 상기 팽창밸브(3)로 액상의 냉매만 공급될 수 있도록 하고 있다.
상기 압축기(1)는 가변 용량형 사판식 압축기(1)로서, 도 2를 참조하여 간략히 설명하면, 압축기(1)의 내부에 설치되어 엔진의 구동에 의해 회전하는 회전축(10)과, 상기 회전축(10)상에 설치되되 경사각이 가변되게 설치되어 회전축(10)과 함께 회전하며 복수개의 피스톤(14)과 연결되는 사판(13)과, 냉매 토출량의 조절을 위해 상기 사판(13)의 경사각을 조절하는 ECV(전자제어밸브)(15)를 포함하여 구성된다.
상기 ECV(15)는, 전기적 제어에 의해 구동되며, 토출실(12)에서 토출되는 고압의 냉매를 크랭크실(11)로 안내하면서 그 유량을 제어하는 것에 의하여 크랭크실(11)내의 압력을 제어하게 되며, 상기 크랭크실(11)내의 압력이 높아지면 사판(13)의 경사각이 작아지게 되고, 반대로 크랭크실(11)내의 압력이 낮아지면 사판(13)의 경사각이 커지게 되는 것이다.
따라서, 상기 ECV(15)의 듀티(Duty) 제어에 의해 사판(13)의 경사각이 변화하게 되며, 사판(13)의 경사각에 따라 압축기(1)의 냉매 토출량이 결정된다. 결과적으로 ECV(15)의 듀티 제어를 통해 에어컨 부하를 줄일 수 있는 것이다.
한편, 상기 팽창밸브(3)로는 기계식 팽창밸브 또는 전자 팽창밸브가 사용될 수 있으며, 이하 전자 팽창밸브가 사용된 경우를 일예로 설명하기로 한다.
상기한 에어컨 시스템에서는 에어컨 부하에 따라 상기 압축기(1)와 전자 팽창밸브(3)의 제어를 통해 냉매 유량을 조절하여 과열도를 조절하게 된다.
즉, 차량의 실외온도나 실내온도 등에 따라 목표과열도를 설정하고, 상기 목표과열도에 수렴하도록 상기 압축기(1)의 ECV 듀티를 조절하거나 상기 전자 팽창밸브(3)의 개도량을 증감하여 냉매 유량을 조절하는 것이다.
그러나, 상기한 에어컨 시스템은, 상기 압축기(1)의 가변 영역 즉, 저부하 조건에서와 같이 압축기(1)의 냉매 토출량이 감소하는 영역에서는 상기 전자 팽창밸브(3)의 제어에 의한 냉매 유량 조절시(과열도 제어시) 민감도가 급상승하여 과열도의 변동이 발생하게 된다.
이때, 상기 과열도의 변동이 발생하면 냉방 성능도 변하게 되면서 상기 압축기(1)의 가변량(냉매 토출량)에도 변동이 발생하게 되는데, 이러한 상태에서 전자 팽창밸브(3)의 개도량까지 변화될 경우 냉매 유량의 제어가 어려움은 물론 냉매 유량의 변화가 가중되는 단점이 있고, 이러한 단점 때문에 냉매가 울컥거리고 맥동이 발생되는 이른 바, 헌팅(Hunting) 현상이 발생하여 시스템이 불안정해지는 문제가 있다.
도 3은 압축기의 가변 영역에서 전자 팽창밸브를 통한 과열도 제어시, 과열도와 차실내 공기토출온도 및 압축기 ECV 듀티를 나타낸 그래프로서, 이를 간략히 설명하면,
먼저, 과열도 상승구간(A)에서는, 차실내 토출공기온도(℃) 및 압축기(1) ECV 듀티(%; 냉매 토출량)가 상승하게 되고, 이때 상기 전자 팽창밸브(3)는 과열도를 낮추기 위해 개도량(냉매 유량)을 크게 증가시키게 된다.
상기 전자 팽창밸브(3)의 개도량이 크게 증가함에 따라 과열도가 하강하게 되는데, 과열도가 하강하는 구간(B)에서는, 상기 차실내 토출공기온도(℃) 및 압축기(1) ECV 듀티(%; 냉매 토출량)가 다시 하강하게 되는데, 이때, 상기 증발기(4)의 토출공기온도(℃)가 0℃ 이하로 떨어지면 상기 증발기(4)의 아이싱 방지를 위해 에어컨 시스템이 컷 오프(Cut-off), 즉 압축기(1)가 오프 되며, 상기 압축기(1)가 오프 되면 상기 증발기(4)의 토출공기온도가 상승하면서 차실내 토출공기온도가 상승하여 냉방성능이 저하되게 된다.
계속해서 상기 증발기(4)의 토출공기온도 상승으로 인해 압축기(1)가 다시 온 되면 상기 증발기(4)의 토출공기온도가 다시 하강하면서 0℃ 이하로 떨어져 상기 압축기(1)가 다시 오프되는 현상이 발생하여 시스템이 불안정해지는 것이다.
상기와 같은 에어컨 시스템에서는, 최적 과열도 구간(최적 냉매유량) 이상의 과열도(과열도 과상승 구간)에서는 냉방 성능이 저하되고, 상기 에어컨 시스템의 저부하 조건(압축기 가변 영역)에서는 고부하 조건 대비 냉매 유량이 적어서 과열도 제어 폭이 좁고, 이로인해 최적 과열도 영역의 제어 폭도 좁아 동일 목표 과열도 제어시 시스템의 불안정 가능성이 커지게 되는 문제가 있다.
다시말해, 에어컨 시스템의 저부하 조건 즉, 압축기(1)의 가변 영역인 ECV 듀티가 하강하는 구간에서는 냉매 토출량이 적음에도 불구하고 고부하 조건시(압축기 최대 토출시)와 동일하게 전자 팽창밸브(3)를 통한 목표과열도 제어를 하게 되면, 시스템이 불안정해지는 문제가 있는 것이다.
상기한 문제점을 해결하기 위한 본 발명의 목적은 압축기의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 다시말해 압축기의 냉매 토출량이 작아질수록 목표과열도를 하강하고, 상기 하강된 목표과열도를 토대로 상기 전자 팽창밸브를 제어하도록 함으로써, 상기 압축기의 냉매 토출량이 가변되는 영역에서 과열도의 변동을 억제하여 에어컨의 성능 저하를 방지하고 시스템을 안정화 할 수 있는 차량용 에어컨 시스템 및 그 제어방법을 제공하는데 있다.
상기한 목적을 달성하기 위한 본 발명은, 냉매 토출량을 가변하는 가변 용량형 사판식 압축기와, 상기 압축기에서 토출된 냉매를 응축하는 응축기와, 상기 응축기에서 토출된 냉매를 팽창하며 제어부의 제어 신호에 의해 개도량이 조절되는 전자 팽창밸브와, 상기 전자 팽창밸브에서 토출된 냉매를 증발시키는 증발기를 포함하며, 상기 전자 팽창밸브의 개도량 조절에 의해 목표과열도로 제어되는 차량용 에어컨 시스템에 있어서, 상기 제어부는, 상기 압축기의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 상기 변경된 목표과열도를 토대로 상기 전자 팽창밸브를 제어하는 것을 특징으로 한다.
또한, 냉매 토출량을 가변하는 가변 용량형 사판식 압축기와, 상기 압축기에서 토출된 냉매를 응축하는 응축기와, 상기 응축기에서 토출된 냉매를 팽창하며 제어부의 제어 신호에 의해 개도량이 조절되는 전자 팽창밸브와, 상기 전자 팽창밸브에서 토출된 냉매를 증발시키는 증발기를 포함하며, 상기 전자 팽창밸브의 개도량 조절에 의해 목표과열도로 제어되는 차량용 에어컨 시스템의 제어방법에 있어서, 상기 압축기의 냉매 토출량이 제1설정값(A) 보다 작은지를 판단하는 제1단계와, 상기 제1단계의 판단결과, 상기 압축기의 냉매 토출량이 제1설정값(A) 보다 작으면, 상기 목표과열도 보다 하강된 제1목표과열도를 토대로 상기 전자 팽창밸브를 제어하는 제2단계를 수행하는 것을 특징으로 한다.
본 발명은, 압축기의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 다시말해 압축기의 냉매 토출량이 작아질수록 목표과열도를 단계적으로 하강하고, 상기 단계적으로 하강된 목표과열도를 토대로 상기 전자 팽창밸브를 제어하도록 함으로써, 상기 압축기의 냉매 토출량이 가변되는 영역에서 과열도의 변동을 억제하여 에어컨의 성능 저하를 방지하고 시스템을 안정화 할 수 있다.
그리고, 압축기에서의 냉매 토출량 변화가 심화될 시에는, 전자 팽창밸브의 개도량을 일정하게 유지시켜 전자 팽창밸브에서의 냉매 유량 변화를 제한하는 구조이므로, 압축기에서의 냉매 토출량 변화와, 전자 팽창밸브에서의 냉매 유량 변화가 동시에 일어나는 것을 방지할 수 있는 효과가 있다.
또한, 압축기에서의 냉매 토출량 변화와, 전자 팽창밸브에서의 냉매 유량 변화가 동시에 일어나는 것을 방지하는 구조이므로, 시스템내에서의 급격한 냉매 유량 변화를 방지할 수 있는 효과가 있다.
그리고, 시스템내에서의 급격한 냉매 유량 변화를 방지할 수 있는 구조이므로, 급격한 냉매 유량 변화로 인한 헌팅 현상을 방지할 수 있고, 이로써, 헌팅 현상으로 인한 "냉매 유량 제어"의 어려움을 해소할 수 있으며, 따라서, 차실내의 냉방성능을 향상시킬 수 있는 효과가 있다.
도 1은 종래의 차량용 에어컨 시스템을 나타내는 구성도,
도 2는 도 1에서 압축기를 나타내는 단면도,
도 3은 종래의 차량용 에어컨 시스템의 압축기 가변 영역에서 전자 팽창밸브를 통한 과열도 제어시, 과열도와 차실내 토출공기온도 및 압축기 ECV 듀티를 나타낸 그래프,
도 4는 본 발명의 제1실시예에 따른 차량용 에어컨 시스템을 나타내는 구성도,
도 5는 본 발명의 제1실시예에 따른 차량용 에어컨 시스템에서 전자 팽창밸브를 나타내는 단면 사시도,
도 6은 본 발명의 제1실시예에 따른 차량용 에어컨 시스템의 제어방법을 나타내는 순서도,
도 7은 본 발명의 제1실시예에 따른 차량용 에어컨 시스템에서 압축기 듀티에 따른 과열도를 나타내는 그래프,
도 8은 본 발명의 제2실시예에 따른 차량용 에어컨 시스템의 제어방법을 나타내는 순서도이다.
이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.
먼저, 본 발명의 제1실시예에 따른 차량용 에어컨 시스템은, 압축기(100) -> 응축기(110) -> 전자 팽창밸브(120) -> 증발기(130)를 냉매파이프(105)로 연결하여 구성되며, 상기 전자 팽창밸브(120)를 제어하는 제어부(160)를 포함하여 이루어진다.
상기 압축기(100)는 동력공급원(엔진 또는 모터 등)으로부터 동력을 전달받아 구동하면서 증발기(130)에서 토출된 기상 냉매를 흡입,압축하여 고온 고압의 기체 상태로 응축기(110)로 토출하게 된다.
상기 압축기(100)는 가변 용량형 압축기(100)로서, 도 2를 참조하여 간략히 설명하면, 압축기(100)의 내부에 설치되어 엔진의 구동에 의해 회전하는 회전축(10)과, 상기 회전축(10)상에 설치되되 경사각이 가변되게 설치되어 회전축(10)과 함께 회전하며 복수개의 피스톤(14)과 연결되는 사판(13)과, 냉매 토출용량의 조절을 위해 상기 사판(13)의 경사각을 조절하는 ECV(전자제어밸브)(15)를 포함하여 구성된다.
상기 ECV(15)는, 전기적 제어에 의해 구동되며, 토출실(12)에서 토출되는 고압의 냉매를 크랭크실(11)로 안내하면서 그 유량을 제어하는 것에 의하여 크랭크실(11)내의 압력을 제어하게 되며, 상기 크랭크실(11)내의 압력이 높아지면 사판(13)의 경사각이 작아지게 되고, 반대로 크랭크실(11)내의 압력이 낮아지면 사판(13)의 경사각이 커지게 되는 것이다.
따라서, 상기 ECV(15)의 듀티(Duty) 제어에 의해 사판(13)의 경사각이 변화하게 되며, 사판(13)의 경사각에 따라 압축기(100)의 냉매 토출용량이 결정된다. 결과적으로 ECV(15)의 듀티 제어를 통해 에어컨 부하(냉방 부하)를 줄일 수 있는 것이다.
한편, 상기 압축기(100)는, 에어컨 부하에 따라 냉매 토출량을 가변시키게 되는데, 즉, 에어컨 고부하 조건에서는 사판(13)의 경사각이 최대가 되어 냉매 토출량도 최대가 되며, 저부하 조건에서는 상기 ECV(15)의 듀티가 감소하여 사판(13)의 경사각도 작아지면서 가변하여 냉매 토출량도 감소하면서 가변하게 된다.
상기 응축기(110)는 상기 압축기(100)에서 토출된 고온 고압의 기상 냉매를 외기와 열교환시켜 고온 고압의 액체로 응축하여 전자 팽창밸브(120)로 토출하게 된다.
상기 전자 팽창밸브(120)는, 상기 응축기(110)에서 배출된 고온 고압의 액상 냉매를 팽창시켜 저온 저압의 습포화 상태가 되게 함과 동시에 상기 제어부(160)에 의해 개도량이 조절되어 냉매 유량을 조절하게 되며, 냉매 유량 조절을 통해 에어컨 시스템을 목표과열도로 제어하게 된다.
즉, 상기 전자 팽창밸브(120)는, 냉매의 목표과열도에 따라 개도량을 조절하여 냉매 유량을 조절하게 되며, 이로써 상기 증발기(130)로의 냉매 유입량을 능동적으로 가변시키게 된다.
여기서, 상기 전자 팽창밸브(120)를 설명하면, 상기 냉매파이프(105)와 연결됨과 아울러 냉매가 유입 및 배출되도록 유입구(126)와 배출구(127)가 형성되고 상기 유입구(126)와 배출구(127)의 사이에 오리피스(125a)가 형성된 본체(125)와, 상기 본체(125)의 오리피스(125a) 상부에 승하강 가능하게 설치됨과 아울러 상기 오리피스(125a)의 개도를 세밀하게 조절하여 상기 오리피스(125a)를 통과하는 냉매를 팽창시킴과 동시에 냉매의 유량을 조절하는 밸브샤프트(128)와, 상기 본체(125)의 상부에 설치되어 상기 밸브샤프트(128)를 승하강 작동시키는 스테핑모터(129)로 이루어진다.
따라서, 상기 전자 팽창밸브(120)는 상기 응축기(110)에서 배출된 고온 고압의 액상 냉매를 팽창시킴과 아울러 냉매의 유량을 조절하여 상기 증발기(130)측으로 공급하게 된다.
한편, 상기 응축기(110)의 출구측에는 기상과 액상의 냉매를 분리하는 리시버드라이어(미도시)가 설치되어 상기 전자 팽창밸브(120)로 액상의 냉매만 공급될 수 있도록 하는 것이 바람직하다.
상기 증발기(130)는 상기 전자 팽창밸브(120)에서 팽창되어 배출된 냉매를 공급받아 증발시키게 되며, 상기 증발기(130)로 공급되는 냉매는 블로어(140)를 통해 차량 실내측으로 송풍되는 공기와 열교환되어 증발됨으로써 냉매의 증발잠열에 의한 흡열작용으로 차량 실내에 토출되는 공기를 냉각하게 된다.
상기 증발기(130)는 공조케이스(150)의 내부에 설치된다.
그리고, 상기 제어부(160)는, 상기 전자 팽창밸브(120)의 개도량을 조절하여 에어컨 시스템을 목표과열도로 제어하게 되는데, 즉, 상기 증발기(130)에서 토출되는 냉매의 온도 및 압력을 통해 과열도를 연산하고, 상기 과열도를 모니터링하여 목표과열도에 수렴하도록 상기 전자 팽창밸브(120)의 개도량을 제어하는 것이다.
한편, 상기 목표과열도는, 차량의 실외온도나 실내온도 또는 기타 주변 변수에 따라 목표과열도가 설정되며, 상기 전자 팽창밸브(120)의 개도량을 증가시키면 과열도가 낮아지고, 개도량을 감소시키면 과열도가 높아지게 된다.
그리고, 본 발명은, 상기 압축기(100)의 가변 영역 즉, 에어컨 저부하 조건에서와 같이 압축기(100)의 냉매 토출량이 고부하 조건(최대 냉매 토출)시 보다 감소하면서 냉매 토출량이 가변하는 영역에서 과열도의 변동을 억제하여 에어컨의 성능 저하를 방지하고 시스템을 안정화 할 수 있도록 한 것이다.
이를 위해, 상기 압축기(100)의 냉매 토출량을 감지하는 압축기 냉매 토출량 감지수단(165)이 구비된다.
상기 압축기 냉매 토출량 감지수단(165)은, 상기 압축기(100)의 "ECV 듀티"를 감지하는 ECV 듀티 감지센서(미도시)를 포함한다.
상기 ECV 듀티 감지센서는, 압축기(100)의 "ECV 듀티"를 감지함으로써, 현재 압축기(100)의 사판(13) 경사각을 감지할 수 있게 되고, 이로써, 압축기(100)의 현재 냉매 토출량을 감지할 수 있게 된다.
한편, 이러한 압축기 냉매 토출량 감지수단(165)은, 압축기(100)의 냉매 토출량을 초(Sec) 단위로 감지하는 것이 바람직하다.
그리고, 상기 제어부(160)는, 연산부(161)를 포함하며, 상기 압축기(100)의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 상기 변경된 목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하게 된다.
이때, 상기 제어부(160)는, 상기 변경되는 목표과열도 즉, 후술하는 제1목표과열도 및 제2목표과열도를 토대로 상기 전자 팽창밸브(120)를 다단 제어하게 된다.
즉, 상기 제어부(160)는, 에어컨 시스템의 안정을 위해 상기 압축기(100)의 가변량 다시말해 압축기(100)의 냉매 토출량이 작을수록 목표과열도도 단계적으로 하강시키는 히스테리시스 제어를 하게 되는 것이다. 물론, 상기 압축기(100)의 냉매 토출량이 증가할수록 상기 목표과열도도 단계적으로 상승시키는 제어를 하게 된다.
좀더 구체적으로 설명하면, 상기 제어부(160)는, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하이면, 상기 목표과열도 보다 하강된 제1목표과열도를 토대로 상기 전자 팽창밸브(120)의 개도량을 제어하게 된다.
다시말해, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하이면, 이전 정상 제어시의 목표과열도 보다 하강된 제1목표과열도를 연산하고, 상기 제1목표과열도를 토대로 전자 팽창밸브(120)의 개도량을 제어하게 된다. 이때, 상기 목표과열도 보다 하강된 제1목표과열도에 수렴하도록 상기 전자 팽창밸브(120)의 개도량을 증가시키게 된다.
계속해서, 상기 제어부(160)는, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하이면, 상기 제1목표과열도 보다 하강된 제2목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하게 된다.
다시말해, 상기 제1목표과열도에 수렴하도록 전자 팽창밸브(120)를 제어한 이후, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하이면, 상기 제1목표과열도 보다 하강된 제2목표과열도를 연산하고, 상기 제2목표과열도를 토대로 전자 팽창밸브(120)의 개도량을 제어하게 된다. 이때, 상기 제1목표과열도 보다 하강된 제2목표과열도에 수렴하도록 상기 전자 팽창밸브(120)의 개도량을 제1목표과열도시의 개도량 보다 증가시키게 된다.
한편, 상기 제1설정값(A)과 제2설정값(B)은 정해진 값으로서 상기 제어부(160)에 미리 입력된다.
이와 같이, 상기 압축기(100)의 냉매 토출량이 감소하는 압축기(100)의 가변 영역에서, 상기 압축기(100)의 최대 토출시와 동일한 목표과열도로 전자 팽창밸브(120)를 제어하는 것이 아니라 상기 압축기(100)의 냉매 토출량이 감소할수록 상기 목표과열도도 단계적으로 하강하여 다단 제어함으로써, 상기 압축기(100)의 가변 영역에서 과열도의 변동을 억제하여 에어컨의 성능 저하를 방지하고 시스템을 안정화 할 수 있는 것이다.
한편, 상기 압축기(100)의 가변 영역에서 압축기(100)의 냉매 토출량이 증가할 경우에는, 상기 압축기(100)의 냉매 토출량이 증가할수록 상기 목표과열도도 단계적으로 상승시켜 다단 제어하는 것이 바람직하다.
이하, 본 발명의 제1실시예에 따른 차량용 에어컨 시스템의 제어방법을 설명하기로 한다.
상기 에어컨 시스템이 가동되면, 상기 제어부(160)는 상기 전자 팽창밸브(120)의 개도량 제어를 통해 상기 증발기(130)에서 토출된 냉매의 과열도가 목표 과열도에 수렴하도록 정상제어하면서 후술하는 각 단계를 수행하게 된다.
먼저, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하인지를 판단하는 제1단계(S1)를 수행한다.
상기 제1단계(S1)에서는, 상기 압축기(100)가 최대 냉매 토출이 아닌 가변 냉매 토출 상태인지를 판단하게 되며, 다시말해 가변하는 냉매 토출량이 제1설정값(A) 이하인지를 판단하게 된다.
상기 제1단계(S1)의 판단결과, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하이면, 상기 목표과열도 보다 하강된 제1목표과열도를 토대로 상기 전자 팽창밸브(120)의 개도량을 제어하는 제2단계(S2)를 수행하게 된다.
상기 제2단계(S2)에서는, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하이면, 이전 정상 제어시의 목표과열도 보다 하강된 제1목표과열도를 연산하고, 상기 제1목표과열도를 토대로 전자 팽창밸브(120)의 개도량을 제어하게 된다. 이때, 상기 목표과열도 보다 하강된 제1목표과열도에 수렴하도록 상기 전자 팽창밸브(120)의 개도량을 증가시키게 된다.
계속해서, 상기 제2단계(S2)를 거친 후, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하인지를 판단하는 제3단계(S3)를 수행한다.
상기 제3단계(S3)에서는, 에어컨 시스템이 상기 제1목표과열도로 제어되고 있는 상태에서 상기 압축기(100)의 냉매 토출량이 더욱 감소하였는지를 판단하게 되며, 다시말해 가변하는 냉매 토출량이 제2설정값(B) 이하인지를 판단하게 된다.
상기 제3단계(S3)의 판단결과, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하이면, 상기 제1목표과열도 보다 하강된 제2목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하는 제4단계(S4)를 수행하게 된다.
상기 제4단계(S4)에서는, 상기 제2단계(S2)에서 제1목표과열도에 수렴하도록 전자 팽창밸브(120)를 제어한 이후, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하이면, 상기 제1목표과열도 보다 하강된 제2목표과열도를 연산하고, 상기 제2목표과열도를 토대로 전자 팽창밸브(120)의 개도량을 제어하게 된다. 이때, 상기 제1목표과열도 보다 하강된 제2목표과열도에 수렴하도록 상기 전자 팽창밸브(120)의 개도량을 제1목표과열도시의 개도량 보다 증가시키게 된다.
한편, 상기에서는 상기 압축기(100)의 가변 영역에서 압축기(100)의 냉매 토출량이 감소하는 경우에 대해서만 설명하였지만, 상기 압축기(100)의 가변 영역에서 압축기(100)의 냉매 토출량이 증가할 경우에는 상기 압축기(100)의 냉매 토출량이 증가할수록 상기 목표과열도도 단계적으로 상승시켜 다단 제어하게 된다.
이때, 도 7과 같이, 상기 압축기(100)의 냉매 토출량 감소(압축기 듀티 하강)에 따라 목표과열도->제1목표과열도->제2목표과열도와 같이 과열도의 단계적 하강시와, 상기 압축기(100)의 냉매 토출량 상승(압축기 듀티 상승)에 따라 제2목표과열도->제1목표과열도->목표과열도와 같이 과열도의 단계적 상승시 히스테리시스 제어를 하게 된다.
이처럼, 상기 압축기(100)의 냉매 토출량이 가변하는 상태에서는, 상기 압축기(100)의 냉매 토출량에 따라 목표과열도를 단계적으로 하강하여 다단 제어(히스테리시스 제어)함으로써, 과열도의 변동을 억제하여 에어컨의 성능 저하를 방지하고 시스템을 안정화 할 수 있다.
도 8은, 본 발명의 제2실시예에 따른 차량용 에어컨 시스템의 제어방법을 나타내는 순서도이다.
제2실시예에서, 제어부(160)의 연산부(161)는, 압축기 냉매 토출량 감지수단(165)으로부터 "압축기 냉매 토출량"이 초(Sec)단위로 입력되면, 입력된 초(Sec)단위의 "압축기 냉매 토출량"들을 연산 처리하여 "단위시간당 냉매 토출량 변화율"을 산출한다. 예를 들면, 2분 이전의 시점에서부터 현재 시점까지의 2분동안의 "냉매 토출량 변화율"을 산출한다.
한편, 상기 제어부(160)는, 연산부(161)에서 "단위시간당 냉매 토출량 변화율"이 산출되면, 산출된 "단위시간당 냉매 토출량 변화율"과 미리 내장된 "기준 냉매 토출량 변화율"을 비교하여, "단위시간당 냉매 토출량 변화율"이, "기준 냉매 토출량 변화율" 이상인지를 판단한다.
판단 결과, "기준 냉매 토출량 변화율"이상이면, 상기 제어부(160)는, 현재 압축기(100)의 냉매 토출량이 빈번하게 가변되므로, 상기 전자 팽창밸브(120)의 개도량마저 가변될 경우, 냉매 유량의 급격한 변화가 유발되어 심한 헌팅 현상이 발생될 우려가 있다고 판단한다.
그리고 이러한 판단이 들면, 상기 제어부(160)는, "헌팅방지모드"로 진입하면서 전자 팽창밸브(120)를 강제 제어한다. 특히, 오리피스(125a)의 개도량이 "헌팅방지모드" 진입시점의 개도량을 일정하게 유지할 수 있도록 강제 제어한다.
따라서, 상기 압축기(100)에서의 냉매 토출량 변화와, 상기 전자 팽창밸브(120)에서의 토출 냉매 유량 변화가 동시에 일어나는 것을 방지한다. 이로써, 압축기(100)에서의 냉매 토출량 변화와, 전자 팽창밸브(120)에서의 냉매 유량 변화로 인한 전체 냉매 유량의 급격한 변화를 방지한다.
그 결과, 냉매 유량의 급격한 변화로 인한 헌팅 현상을 방지한다. 이에 따라, 헌팅 현상으로 인한 "냉매 유량 제어"의 어려움을 해소할 수 있고, 이로써, 차실내의 냉방성능을 향상시킬 수 있게 된다.
한편, 상기 제어부(160)는, 산출된 "단위시간당 냉매 토출량 변화율"이, "기준 냉매 토출량 변화율" 미만으로 저하될 시에는, 상기 압축기(100)의 냉매 토출량이 빈번하게 가변되지 않으므로, 상기 전자 팽창밸브(120)의 개도량이 가변되더라도, 냉매 유량의 급격한 변화가 없고, 이로써, 헌팅 현상이 발생될 우려가 없다고 판단한다.
그리고 이러한 판단이 들면, 상기 제어부(160)는 "헌팅방지모드"로부터 해제되면서 전자 팽창밸브(120)의 강제 제어를 해제한다. 이로써, 상기 전자 팽창밸브(120)의 개도량이 원래의 상태로 자동 제어될 수 있게 한다.
이하, 본 발명의 제2실시예에 따른 차량용 에어컨 시스템의 작용을 도 8을 참조하여 설명한다.
먼저, 공조장치가 온(ON)된 상태에서(S101), 압축기 냉매 토출량 감지수단(165)으로부터 압축기(100)의 냉매 토출량이 입력된다(S103).
그러면, 상기 제어부(160)는, 입력된 "압축기 냉매 토출량"을 연산 처리하여, "단위시간당 냉매 토출량 변화율"을 산출한다(S105).
그리고 "단위시간당 냉매 토출량 변화율"이 산출되면, 상기 제어부(160)는, 산출된 "단위시간당 냉매 토출량 변화율"이 미리 설정된 "기준 냉매 토출량 변화율" 이상인지의 여부를 판단한다(S107).
판단 결과, "기준 냉매 토출량 변화율"이상이면, 제어부(160)는, "헌팅방지모드"로 진입하면서 전자 팽창밸브(120)를 강제 제어하여 전자 팽창밸브(120)의 개도량을 일정하게 유지시킨다(S109).
그러면, 상기 압축기(100)에서의 냉매 토출량 가변 현상과, 전자 팽창밸브(120)에서의 냉매 유량 가변 현상이 동시에 발생되는 것을 방지한다. 이로써, 압축기(100)의 냉매 토출량 가변과, 전자 팽창밸브(120)에서의 냉매 유량 가변에 따른 급격한 냉매 유량 변화를 차단한다. 그 결과, 급격한 냉매 유량의 변화로 인한 헌팅 현상이 방지된다.
한편, 상기 제어부(160)는, 전자 팽창밸브(120)를 제어한 상태에서, 산출된 "단위시간당 냉매 토출량 변화율"이, "기준 냉매 토출량 변화율" 미만으로 저하되는 지를 다시 판단한다(S111).
판단 결과, "기준 냉매 토출량 변화율" 미만으로 저하되면, 상기 제어부(160)는 "헌팅방지모드"로부터 해제되면서 전자 팽창밸브(120)의 강제 제어를 해제한다(S113). 이로써, 전자 팽창밸브(120)의 개도량이 원래의 상태로 자동제어될 수 있게 한다.
이와 같은 구성의 본 발명에 의하면, 상기 압축기(100)에서의 냉매 토출량 변화가 심화될 시에는, 전자 팽창밸브(120)의 개도량을 일정하게 유지시켜 전자 팽창밸브(120)에서의 냉매 유량 변화를 제한하는 구조이므로, 상기 압축기(100)에서의 냉매 토출량 변화와, 전자 팽창밸브(120)에서의 냉매 유량 변화가 동시에 일어나는 것을 방지한다.
또한, 상기 압축기(100)에서의 냉매 토출량 변화와, 전자 팽창밸브(120)에서의 냉매 유량 변화가 동시에 일어나는 것을 방지하는 구조이므로, 시스템내에서의 급격한 냉매 유량 변화를 방지할 수 있다.
또한, 시스템내에서의 급격한 냉매 유량 변화를 방지할 수 있는 구조이므로, 급격한 냉매 유량 변화로 인한 헌팅 현상을 방지할 수 있고, 이로써, 헌팅 현상으로 인한 "냉매 유량 제어"의 어려움을 해소할 수 있으며, 따라서, 차실내의 냉방성능을 향상시킬 수 있다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주내에서 적절하게 변경 가능한 것이다.

Claims (9)

  1. 냉매 토출량을 가변하는 가변 용량형 압축기(100)와, 상기 압축기(100)에서 토출된 냉매를 응축하는 응축기(110)와, 상기 응축기에서 토출된 냉매를 팽창하며 제어부(160)의 제어 신호에 의해 개도량이 조절되는 전자 팽창밸브(120)와, 상기 전자 팽창밸브(120)에서 토출된 냉매를 증발시키는 증발기(130)를 포함하며, 상기 전자 팽창밸브(120)의 개도량 조절에 의해 목표과열도로 제어되는 차량용 에어컨 시스템에 있어서,
    상기 제어부(160)는, 상기 압축기(100)의 냉매 토출량 가변에 따라 상기 목표과열도를 변경하고, 상기 변경된 목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하는 것을 특징으로 하는 차량용 에어컨 시스템.
  2. 제 1 항에 있어서,
    상기 제어부(160)는, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하이면, 상기 목표과열도 보다 하강된 제1목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하는 것을 특징으로 하는 차량용 에어컨 시스템.
  3. 제 2 항에 있어서,
    상기 제어부(160)는, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하이면, 상기 제1목표과열도 보다 하강된 제2목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하는 것을 특징으로 하는 차량용 에어컨 시스템.
  4. 제 1 항에 있어서,
    상기 제어부(160)는, 상기 압축기(100) 냉매 토출량의 단위시간당 변화율이 미리 설정된 기준 냉매 토출량 변화율 이상으로 상승될 시에, 헌팅방지모드로 진입하면서 상기 전자 팽창밸브(120)의 개도량을 강제 제어하는 것을 특징으로 하는 차량용 에어컨 시스템.
  5. 제 4 항에 있어서,
    상기 제어부(160)는, 헌팅방지모드로 진입할 시에, 상기 전자 팽창밸브(120)의 개도량을 제어하되, 상기 헌팅방지모드 진입시점의 개도량이 일정하게 유지될 수 있도록 상기 전자 팽창밸브(120)를 제어하는 것을 특징으로 하는 차량용 에어컨 시스템.
  6. 제 5 항에 있어서,
    상기 제어부(160)는, 상기 압축기(100)의 단위시간당 냉매 토출량 변화율이 기준 냉매 토출량 변화율 미만으로 저하될 시에, 헌팅방지모드로부터 해제되면서 상기 전자 팽창밸브(120)의 강제 제어를 해제하는 것을 특징으로 하는 차량용 에어컨 시스템.
  7. 제 4 항에 있어서,
    상기 압축기(100)의 냉매 토출량을 초(Sec) 단위로 감지하는 압축기 냉매 토출량 감지수단(165)과,
    상기 압축기 냉매 토출량 감지수단(165)으로부터 초 단위로 입력된 상기 압축기(100)의 냉매 토출량을 통해 상기 압축기(100)의 단위시간당 냉매 토출량 변화율을 산출하는 연산부(161)를 더 포함하는 것을 특징으로 하는 차량용 에어컨 시스템.
  8. 냉매 토출량을 가변하는 가변 용량형 압축기(100)와, 상기 압축기(100)에서 토출된 냉매를 응축하는 응축기(110)와, 상기 응축기에서 토출된 냉매를 팽창하며 제어부(160)의 제어 신호에 의해 개도량이 조절되는 전자 팽창밸브(120)와, 상기 전자 팽창밸브(120)에서 토출된 냉매를 증발시키는 증발기(130)를 포함하며, 상기 전자 팽창밸브(120)의 개도량 조절에 의해 목표과열도로 제어되는 차량용 에어컨 시스템의 제어방법에 있어서,
    상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하인지를 판단하는 제1단계(S1)와,
    상기 제1단계(S1)의 판단결과, 상기 압축기(100)의 냉매 토출량이 제1설정값(A) 이하이면, 상기 목표과열도 보다 하강된 제1목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하는 제2단계(S2)를 수행하는 것을 특징으로 하는 차량용 에어컨 시스템의 제어방법.
  9. 제 8 항에 있어서,
    상기 제2단계(S2)를 거친 후, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하인지를 판단하는 제3단계(S3)를 수행하고,
    상기 제3단계(S3)의 판단결과, 상기 압축기(100)의 냉매 토출량이 제2설정값(B) 이하이면, 상기 제1목표과열도 보다 하강된 제2목표과열도를 토대로 상기 전자 팽창밸브(120)를 제어하는 제4단계(S4)를 수행하는 것을 특징으로 하는 차량용 에어컨 시스템의 제어방법.
PCT/KR2014/008299 2013-09-04 2014-09-04 차량용 에어컨 시스템 및 그 제어방법 WO2015034277A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480029624.4A CN105283331B (zh) 2013-09-04 2014-09-04 车用空调系统以及用于控制该车用空调系统的方法
US14/895,686 US9702607B2 (en) 2013-09-04 2014-09-04 Air-conditioner system for vehicle and method for controlling same
DE112014002751.0T DE112014002751T5 (de) 2013-09-04 2014-09-04 Klimaanlagen-System für ein Fahrzeug und Verfahren zu dessen Steuerung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130105955A KR101717611B1 (ko) 2013-09-04 2013-09-04 차량용 공조장치
KR10-2013-0105955 2013-09-04
KR10-2014-0049196 2014-04-24
KR1020140049196A KR101880979B1 (ko) 2014-04-24 2014-04-24 차량용 에어컨 시스템 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2015034277A1 true WO2015034277A1 (ko) 2015-03-12

Family

ID=52628659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008299 WO2015034277A1 (ko) 2013-09-04 2014-09-04 차량용 에어컨 시스템 및 그 제어방법

Country Status (4)

Country Link
US (1) US9702607B2 (ko)
CN (1) CN105283331B (ko)
DE (1) DE112014002751T5 (ko)
WO (1) WO2015034277A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288180B (zh) * 2016-08-12 2019-04-23 青岛海尔空调器有限总公司 一种用于空调的控制方法、装置及空调
US20180335243A1 (en) * 2017-05-18 2018-11-22 Antonio Vazquez Solano Hybrid console / fan air conditioner
KR102372489B1 (ko) * 2017-07-10 2022-03-08 엘지전자 주식회사 증기 분사 사이클을 이용한 공기조화장치 및 그 제어방법
CN107763813B (zh) * 2017-10-19 2020-04-21 广东美的制冷设备有限公司 空调器节能控温方法、空调器及存储介质
DE102022212047A1 (de) 2022-11-14 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betrieb einer Kraftwärmemaschine, Steuer- oder Regelvorrichtung und Kraftwärmemaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878355A (en) * 1989-02-27 1989-11-07 Honeywell Inc. Method and apparatus for improving cooling of a compressor element in an air conditioning system
KR20010048164A (ko) * 1999-11-25 2001-06-15 이계안 공기 조화 시스템
KR20060131178A (ko) * 2005-06-15 2006-12-20 엘지전자 주식회사 공기조화기의 전자팽창밸브 제어 방법
KR20080096821A (ko) * 2006-02-17 2008-11-03 다이킨 고교 가부시키가이샤 공기 조화 장치
KR20100027573A (ko) * 2008-09-03 2010-03-11 학교법인 두원학원 차량용 냉각 시스템 및 압축기의 냉매 토출용량 제어방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
US6044651A (en) * 1999-03-26 2000-04-04 Carrier Corporation Economy mode for transport refrigeration units
JP3855571B2 (ja) * 1999-12-24 2006-12-13 株式会社豊田自動織機 内燃機関の出力制御方法
KR20110092147A (ko) * 2010-02-08 2011-08-17 삼성전자주식회사 공기조화기 및 그 제어방법
KR101242192B1 (ko) * 2010-12-27 2013-03-11 조선대학교산학협력단 압축기의 회전수를 이용한 차량용 냉방 제어 시스템
CN103033004B (zh) * 2011-09-29 2016-03-30 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法
CN103033006B (zh) * 2011-09-29 2016-03-23 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法
CN103245154B (zh) * 2012-02-09 2016-08-31 杭州三花研究院有限公司 一种汽车空调系统电子膨胀阀的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878355A (en) * 1989-02-27 1989-11-07 Honeywell Inc. Method and apparatus for improving cooling of a compressor element in an air conditioning system
KR20010048164A (ko) * 1999-11-25 2001-06-15 이계안 공기 조화 시스템
KR20060131178A (ko) * 2005-06-15 2006-12-20 엘지전자 주식회사 공기조화기의 전자팽창밸브 제어 방법
KR20080096821A (ko) * 2006-02-17 2008-11-03 다이킨 고교 가부시키가이샤 공기 조화 장치
KR20100027573A (ko) * 2008-09-03 2010-03-11 학교법인 두원학원 차량용 냉각 시스템 및 압축기의 냉매 토출용량 제어방법

Also Published As

Publication number Publication date
US9702607B2 (en) 2017-07-11
DE112014002751T5 (de) 2016-03-03
US20160195322A1 (en) 2016-07-07
CN105283331A (zh) 2016-01-27
CN105283331B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2015034277A1 (ko) 차량용 에어컨 시스템 및 그 제어방법
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
US11180000B2 (en) Vehicle-mounted temperature controller
WO2010126329A2 (ko) 공기조화기 및 그 운전 방법
WO2019194371A1 (ko) 공기조화시스템의 제어방법
KR930005662B1 (ko) 공기 조화기
JP2018185104A (ja) 冷凍サイクル装置
WO2010131874A2 (ko) 공기조화기 및 그 운전 방법
WO2017185733A1 (zh) 空调系统及其阀体控制方法
WO2018147675A1 (ko) 냉동시스템
EP0355180A2 (en) Cooling apparatus and control method
WO2011002182A2 (en) Method for controlling temperature of refrigerator and refrigerator using the same
EP3412482B1 (en) Method for controlling vehicle grille device
JP3736969B2 (ja) 空気調和機
KR100625568B1 (ko) 멀티형 공기조화기
KR101270620B1 (ko) 공기조화기 및 그 제어방법
WO2017208438A1 (ja) 空気調和システム
KR20150123362A (ko) 차량용 에어컨 시스템 및 그 제어방법
JP2007145223A (ja) 車両用空調装置
KR101186326B1 (ko) 공기조화기 및 그 제어방법
JPS63297784A (ja) 冷凍装置の保護装置
KR20080013402A (ko) 인버터 압축기의 제어방법 및 그에 따른 공기조화기
KR100765726B1 (ko) 차량용 수동 에어컨의 컴프레서 제어 방법
WO2023058971A1 (ko) 차량용 공조장치
WO2022045604A1 (ko) 차량의 열관리 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029624.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14895686

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002751

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842707

Country of ref document: EP

Kind code of ref document: A1