WO2015033922A1 - Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element - Google Patents

Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element Download PDF

Info

Publication number
WO2015033922A1
WO2015033922A1 PCT/JP2014/073041 JP2014073041W WO2015033922A1 WO 2015033922 A1 WO2015033922 A1 WO 2015033922A1 JP 2014073041 W JP2014073041 W JP 2014073041W WO 2015033922 A1 WO2015033922 A1 WO 2015033922A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
ring
aligning agent
carbon atoms
Prior art date
Application number
PCT/JP2014/073041
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
雅章 片山
幸司 巴
奈穂 国見
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015535478A priority Critical patent/JP6561834B2/en
Priority to CN201480060032.9A priority patent/CN105683829B/en
Priority to KR1020167008593A priority patent/KR102234876B1/en
Publication of WO2015033922A1 publication Critical patent/WO2015033922A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element used for a liquid crystal display element.
  • Liquid crystal display elements are now widely used as display devices that are thin and light.
  • a liquid crystal alignment film is used in a liquid crystal display element in order to determine the alignment state of the liquid crystal.
  • the pre-tilt angle of the liquid crystal which maintains the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface at an arbitrary value. It is known that the size of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film. Even in the technique of controlling the pretilt angle depending on the structure of the polyimide, the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle according to the use ratio of the diamine, so that the desired pretilt angle can be obtained. It is relatively easy and is useful as a means for increasing the pretilt angle (see, for example, Patent Document 1).
  • the diamine component for increasing the pretilt angle of the liquid crystal has been studied for improving the stability and process dependency of the pretilt angle, and its side chain structure includes a phenyl group and a cyclohexyl group.
  • the thing containing a ring structure is proposed (for example, refer to patent documents 2).
  • the liquid crystal alignment film used has a higher voltage holding ratio and a direct current voltage is applied from the viewpoint of suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon.
  • the characteristic that the accumulated charge at the time is small or the charge accumulated by the DC voltage is quickly relaxed is becoming increasingly important.
  • a liquid crystal alignment treatment agent containing a tertiary amine with a specific structure in addition to polyamic acid or imide group-containing polyamic acid is used as a short time until the afterimage generated by direct current voltage disappears.
  • a liquid crystal alignment treatment agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material for example, see Patent Document 4.
  • a compound containing one carboxylic acid group in the molecule In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amino group in the molecule (for example, Patent Document 5) is known.
  • the liquid crystal alignment film is also used for controlling the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal.
  • VA Vertical Alignment
  • PSA Polymer Sustained Alignment
  • the liquid crystal alignment film has the ability to align the liquid crystal vertically (vertical alignment and high pretilt). Called corners).
  • the liquid crystal alignment film has become important not only for high vertical alignment but also for its stability.
  • liquid crystal display elements that use backlights that generate a large amount of heat and have a large amount of light to obtain high brightness such as car navigation systems and large televisions, are exposed to high temperatures and light irradiation for long periods of time. May be used or left under. Under such severe conditions, when the vertical alignment property is lowered, problems such as inability to obtain initial display characteristics or occurrence of unevenness in display occur.
  • the liquid crystal alignment film is required not only to have good initial characteristics, but also to have a low voltage holding ratio even after being exposed to light irradiation for a long time. Furthermore, there is a need for a liquid crystal alignment film that can quickly relieve residual charges accumulated by a direct current voltage by light irradiation from a backlight, even for another surface burn-in, which is another burn-in defect.
  • the present invention can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time, and additionally suppresses a decrease in voltage holding ratio even after being exposed to light irradiation for a long time. And it aims at providing the liquid-crystal aligning agent from which the liquid crystal aligning film in which the residual electric charge accumulate
  • an object of the present invention is to provide a liquid crystal alignment film having the above characteristics and a liquid crystal display device including the liquid crystal alignment film.
  • the liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
  • Component (A) at least one selected from the group consisting of a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] and a tetracarboxylic acid component and a polyimide.
  • (B) component At least 1 sort (s) chosen from the group which consists of the polyimide precursor obtained by making the diamine component and tetracarboxylic acid component which do not contain the diamine which has a structure shown by following formula [1] react, and a polyimide.
  • (Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, where Y 2 represents a single bond.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—
  • Y 4 represents a divalent organic group having a carbon number of 17 to 51 having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton.
  • Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine atom having 1 to 3 carbon atoms optionally substituted with-containing alkoxyl group or a fluorine atom .
  • Y 5 is a benzene ring, cyclohexenone A divalent cyclic group selected from an aromatic ring and a heterocyclic ring, and any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, A fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
  • Formula (1a) (in the formula, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , n, Y 6 and m represent the same meaning as described above. 3.
  • the polyimide precursor obtained by reacting a diamine component containing a diamine having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) with a tetracarboxylic acid component. 3.
  • the liquid crystal aligning agent according to 1 or 2 above which is at least one polymer selected from the group consisting of a body and polyimide. 4).
  • the component (A) is a polymer used for a diamine component further comprising a diamine having a diamine having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group). 3.
  • the liquid crystal aligning agent according to 3 or 4 above, wherein the diamine having at least one substituent selected from the carboxyl group and the hydroxyl group is represented by the following formula [2a].
  • a 1 represents at least one substituent selected from the following formulas [2a-1] and [2a-2], and m1 represents an integer of 1 to 4).
  • D represents an integer of 0 to 4, and e represents an integer of 0 to 4). 6). 6.
  • the B 1 in the formula [3a] is —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO— or CON (CH 3 ) —.
  • B 2 in the formula [3a] is a single bond, alkylene having 1 to 5 carbon atoms, cyclohexane ring or benzene ring.
  • B 3 in the formula [3a] is a single bond, —O—, —OCO— or O (CH 2 ) 2 — (m2 is an integer of 1 to 5).
  • the liquid crystal aligning agent according to any one of 1 to 12 above which contains at least one solvent among N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and ⁇ -butyrolactone. 14 14.
  • the above 1 containing at least one solvent selected from 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether and dipropylene glycol dimethyl ether 15.
  • the liquid crystal aligning agent according to any one of 1 to 14. 16.
  • the liquid crystal aligning agent has at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. 16.
  • a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and between the electrodes 19.
  • the liquid crystal alignment film as described in 17 or 18 above which is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage therebetween. 22. 22. A liquid crystal display device having the liquid crystal alignment film as described in 20 or 21 above.
  • Liquid crystal alignment having two polymers of at least one polymer selected from polyimide precursors and polyimides containing a specific structure of the present invention and at least one polymer selected from polyimide precursors and polyimides not containing a specific structure
  • the treatment agent can provide a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time.
  • the liquid-crystal aligning agent of this invention contains the following (A) component and (B) component.
  • (A) component a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a side chain structure (also referred to as a specific side chain structure) represented by the above formula [1] with a tetracarboxylic acid component; A polymer containing at least one selected from polyimide (also referred to as a specific polymer (A)).
  • the liquid-crystal aligning agent of this invention contains the following (A) component and (B) component.
  • the diamine compound which has a specific side chain structure only for (A) component.
  • A) Component A polymer containing at least one selected from a polyimide precursor and a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component.
  • B) Component A polymer containing at least one selected from a polyimide precursor and a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component.
  • the specific side chain structure represented by the formula [1] contained in the specific polymer (A) of the present invention has at least one group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring at the side chain site, or a steroid skeleton. It has a divalent organic group having 17 to 51 carbon atoms.
  • the side chain structure of these rings and organic groups shows a rigid structure as compared with the side chain structure of long-chain alkyl groups, which is a conventional technique for vertically aligning liquid crystals.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent having a specific side chain structure can obtain a higher and more stable vertical alignment of liquid crystal than the conventional long chain alkyl group side chain structure.
  • the specific side chain structure is more stable to light such as ultraviolet rays than the conventional side chain structure of a long-chain alkyl group. Therefore, even if the specific side chain structure is exposed to light irradiation for a long time, it is possible to reduce a voltage holding ratio and to suppress a decomposition product of a side chain component that accumulates residual charges by a DC voltage.
  • the liquid crystal aligning agent of this invention is a liquid crystal aligning agent which has a specific polymer (A) and a specific polymer (B), and a specific polymer (B) does not contain a specific side chain structure. Therefore, in the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention, the amount of side chain components that increase the volume resistance of the liquid crystal alignment film is reduced, so that accumulation of residual charges due to DC voltage can be suppressed. . Thus, according to the liquid crystal alignment treatment agent of the present invention, it is possible to obtain a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time.
  • the specific polymer (A) of the present invention includes a polyimide precursor and a polyimide obtained by reacting a diamine component containing a diamine compound having a specific side chain structure represented by the following formula [1] with a tetracarboxylic acid component. It is a polymer containing at least one selected from. (In formula [1], the definitions of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n are as described above.)
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O, from the viewpoint of availability of raw materials and ease of synthesis.
  • —, —CH 2 O— or COO— is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO—.
  • Y 2 is preferably a single bond or (CH 2 ) b — (b is an integer of 1 to 10).
  • Y 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or COO— from the viewpoint of ease of synthesis. preferable. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or COO—.
  • Y 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis.
  • Y 5 is preferably a benzene ring or a cyclohexane ring.
  • n is preferably 0 to 3 from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 is preferably an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton.
  • An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
  • (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred.
  • Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
  • the specific polymer (A) and the specific polymer (B) are at least selected from a polyimide precursor obtained by reacting a diamine component and a tetracarboxylic acid component and a polyimide (also collectively referred to as a polyimide polymer). It is a polymer containing either one.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, which may be the same or different.
  • a 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, which may be the same or different
  • n2 represents a positive integer.
  • the diamine component is a diamine compound having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, or tetracarboxylic acid dihalide compound.
  • Tetracarboxylic acid dialkyl ester compounds or tetracarboxylic acid dialkyl ester dihalide compounds are examples of the tetracarboxylic acid dialkyl ester compounds.
  • the polyimide polymer of the present invention can be obtained relatively easily by using a tetracarboxylic dianhydride represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials. Therefore, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable. Especially, it is preferable to use a polyimide for a specific polymer (A) and a specific polymer (B) from the point of the physical and chemical stability of a liquid crystal aligning film.
  • the polymer of the formula [D] obtained above by the usual synthesis method is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A]. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
  • the specific polymer (A) is a polyimide polymer obtained by using a diamine component containing a diamine compound having a specific side chain structure. At that time, as a diamine compound having a specific side chain structure, it is preferable to use a diamine compound represented by the following formula [1a] (also referred to as a specific side chain diamine compound).
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n are the same as the respective definitions in the above formula [1], and the respective preferable definitions are also the same. . Also, preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n are the same as described for the above formula [1]. Note that m is an integer of 1 to 4. Preferably, it is an integer of 1.
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—
  • R 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, carbon A linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms.
  • R 3 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or CH 2 —
  • 4 is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms, or fluorine. Containing alkoxyl groups.
  • R 5 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O -Represents NH-
  • R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
  • R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • a 2 is an oxygen atom or COO- * (positive, a bond with “*” is bonded to A 3 ), and A 1 is an oxygen atom or COO— * (where “*” is a bond)
  • the hand binds to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • diamine compounds having particularly preferred structures are represented by the formulas [1a-1] to [1a-6] and the formulas [1a-9] to [1a-13]. Or they are the formulas [1a-22] to [1a-31].
  • the specific side chain diamine compound in the specific polymer (A) is preferably 10 mol% or more and 80 mol% or less of the entire diamine component. Particularly preferred is 10 mol% or more and 70 mol% or less.
  • the specific side chain diamine compound has characteristics such as the solubility of the specific polymer (A) in the solvent, the coating property of the liquid crystal alignment treatment agent, the liquid crystal alignment property, the voltage holding ratio, and the accumulated charge when the liquid crystal alignment film is used. Depending on the situation, one kind or a mixture of two or more kinds may be used.
  • diamine component in producing the specific polymer (A) and the specific polymer (B) it is preferable to use another diamine compound (also referred to as a specific second diamine compound) together with the specific side chain diamine compound. .
  • a diamine compound represented by the following formula [2a] it is preferable to use a diamine compound represented by the following formula [2a].
  • a 1 represents a substituent having at least one structure selected from the following formula [2a-1] and formula [2a-2]. Among these, a substituent having a structure represented by the formula [2a-1] is preferable.
  • m1 represents an integer of 1 to 4. Of these, 1 is preferable.
  • d represents an integer of 0 to 4. Of these, 0 or 1 is preferable.
  • e represents an integer of 0 to 4. Of these, 0 or 1 is preferable.
  • 2,4-diaminophenol 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid.
  • 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid is preferable.
  • diamine compounds represented by the following formulas [2b-1] to [2b-4] can also be used as the specific second diamine compound.
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—, wherein m 1 and m 2 each represent an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in formula [2b-2], m 3 and m 4 are Each represents an integer of 1 to 5, and in formula [2b-3], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, and formula [2b- 4], A 3 is a single bond,
  • the specific second diamine compound may be used for the diamine component of either the specific polymer (A) or the specific polymer (B) and the specific polymer (A) and the specific polymer (B). It can also be used for the diamine component of both of the specific polymers. Especially, it is preferable to use only for the diamine component of a specific polymer (A), or to use only for the diamine component of a specific polymer (B).
  • the specific second diamine compound is preferably 10 mol% or more of the entire diamine component. Especially, 20 mol% or more is preferable and 30 mol% or more is especially preferable.
  • the specific second diamine compound is the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal alignment property when the liquid crystal alignment film is used, and the voltage holding.
  • One type or a mixture of two or more types can be used depending on the characteristics such as rate and accumulated charge.
  • a diamine compound represented by the following formula [3a] (specific) together with a specific side chain diamine compound and a specific second diamine compound It is preferable to use a third diamine compound).
  • B 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) —. Or N (CH 3 ) CO—.
  • —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO— synthesize diamine compounds. Since it is easy to do, it is preferable.
  • B 2 represents a single bond, an alkylene group having 1 to 20 carbon atoms, a non-aromatic ring or an aromatic ring.
  • the alkylene group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. In particular, an alkylene group having 1 to 10 carbon atoms is preferable.
  • non-aromatic ring examples include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, and cyclotridecane ring.
  • Cyclotetradecane ring Cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosan ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene ring, norbornene And a ring or an adamantane ring.
  • a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, or an adamantane ring is preferable.
  • aromatic ring examples include benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring or phenalene ring.
  • a benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring is preferred.
  • Preferred B 2 in the formula [3a] is a single bond, an alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, an adamantane ring, a benzene ring, A naphthalene ring, a tetrahydronaphthalene ring, a fluorene ring or an anthracene ring; Of these, a single bond, an alkylene group having 1 to 5 carbon atoms, a cyclohexane ring or a benzene ring is preferable.
  • B 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ).
  • a single bond, —O—, —COO—, —OCO— or O (CH 2 ) m2 — (m2 is an integer of 1 to 5) is preferable, and a single bond, —O— is particularly preferable.
  • B 4 is a nitrogen-containing heterocycle, which is a heterocycle containing at least one structure selected from the following formula [a], formula [b] and formula [c].
  • Z represents an alkyl group having 1 to 5 carbon atoms.
  • a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, a benzimidazole ring or a benzimidazole ring are preferable, and a pyrrole ring or an imidazole ring is particularly preferable.
  • a pyrazole ring, a pyridine ring or a pyrimidine ring is particularly preferable.
  • B 3 in the formula [3a] are expressions included in the B 4 [a], is preferably bonded with a substituent nonadjacent the formula [b] and the formula [c].
  • Preferred combinations of B 1 , B 2 , B 3 and B 4 in the formula [3a] are as shown in Tables 1 to 31 below. In Tables 1 to 31, X 1 , X 2 , X 3 and X 4 are to be read as B 1 , B 2 , B 3 and B 4 , respectively.
  • n1 is an integer of 1 to 4, and is preferably 1 or 2 from the viewpoint of reactivity with the tetracarboxylic acid component.
  • B 1 , B 2 , B 3 , B 4 and n1 in the formula [3a] are such that B 1 represents —CONH—, B 2 represents an alkyl group having 1 to 5 carbon atoms, and B 3 represents A diamine compound which represents a single bond, B 4 represents an imidazole ring or a pyridine ring, and n 1 represents 1.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [3a] is not limited. Specifically, with respect to the linking group (B 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position or 3, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferable. Considering the ease in synthesizing the diamine compound, the positions 2, 4 or 2, 5 are more preferable.
  • the specific third diamine compound may be used for the diamine component of the polyimide polymer of either the specific polymer (A) or the specific polymer (B).
  • the specific polymer (A) and the specific polymer (B) It can also be used for the diamine component of both of the specific polymers.
  • a specific 2nd diamine compound is used for a specific polymer (A) for a diamine component
  • a specific 3rd diamine compound for the diamine component of a specific polymer (A) that is, it is preferable to use a specific 2nd diamine compound and a specific 3rd diamine compound for a diamine component separately with respect to each specific polymer.
  • the specific third diamine compound is preferably 5 mol% or more of the entire diamine component. Especially, 10 mol% or more is preferable and 15 mol% or more is especially preferable.
  • the specific third diamine compound is the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, the alignment property of the liquid crystal when the liquid crystal alignment film is used, and the voltage holding.
  • One type or a mixture of two or more types can be used depending on the characteristics such as rate and accumulated charge.
  • the specific side chain type diamine compound, the specific second diamine compound and the specific third diamine compound are used as long as the effects of the present invention are not impaired.
  • Other diamine compounds also referred to as other diamine compounds can be used.
  • diamine compounds include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3.
  • diamine compounds represented by the following formulas [D1] to [DA25] can also be used.
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—
  • a 2 is a straight chain having 1 to 22 carbon atoms. Alternatively, it represents a branched alkyl group or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • diamine compounds may be used for the diamine component of either the specific polymer (A) or the specific polymer (B), and both the specific polymer (A) and the specific polymer (B). It can also be used for the diamine component of the specific polymer.
  • diamine compounds include the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal alignment property and voltage holding ratio when used as a liquid crystal alignment film. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • tetracarboxylic acid component for producing the specific polymer (A) and the specific polymer (B), that is, these polyimide-based polymers a tetracarboxylic dianhydride represented by the following formula [4] ( It is preferable to use a specific tetracarboxylic dianhydride. At that time, not only the specific tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic dihalide compound, tetracarboxylic dialkyl ester compound or tetracarboxylic dialkyl ester Dihalide compounds can also be used.
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
  • the formula [4a], the formula [4c], the formula [4d], the formula [4] 4e], a formula [4f], a formula [4g] or a tetracarboxylic dianhydride having a structure represented by the formula [4k] and a tetracarboxylic acid derivative thereof are preferable. More preferred is a structure represented by the formula [4a], the formula [4e], the formula [4f], the formula [4g] or the formula [4k], and particularly preferred is the formula [4e], the formula [4]. 4f], formula [4g] or formula [4k].
  • tetracarboxylic acid components other than the specific tetracarboxylic dianhydride can also be used for the polyimide polymer of the present invention.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, and tetracarboxylic acid dialkyl ester dihalide compounds.
  • tetracarboxylic acid components include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalene.
  • Tetracarboxylic acid 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ', 4'-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2 2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinet
  • the specific tetracarboxylic dianhydride in each specific polymer is preferably 10 mol% or more of the tetracarboxylic acid component. Especially, 20 mol% or more is preferable and 30 mol% or more is especially preferable. All of the tetracarboxylic acid components may be a specific tetracarboxylic dianhydride.
  • the solubility of the specific polymer (A) and the specific polymer (B) in the solvent the coating property of the liquid crystal aligning agent, and the liquid crystal alignment film
  • One type or a mixture of two or more types can be used according to the characteristics such as the orientation of the liquid crystal, the voltage holding ratio, and the accumulated charge.
  • the specific polymer (A) in the present invention is obtained from a polyimide precursor and a polyimide obtained by reacting a diamine component containing a diamine compound having a specific side chain structure represented by the formula [1] with a tetracarboxylic acid component. At least one polymer selected from the group consisting of: At that time, as the diamine compound having a specific side chain structure, it is preferable to use the specific side chain diamine compound represented by the formula [1a].
  • the specific polymer (A) includes a specific side chain diamine compound, a diamine compound having at least one substituent selected from a carboxyl group and a hydroxyl group, and / or a specific compound represented by the formula [3a].
  • a third diamine compound may be used in combination.
  • the specific second diamine compound represented by the formula [2a] is preferably used for the diamine compound having at least one substituent selected from a carboxyl group and a hydroxyl group.
  • the use ratio is 10 to 80 mol% for the specific side chain diamine compound and 10 to 90 mol for the specific second diamine compound with respect to 100 mol% of the total diamine component. Mole% is preferred. More preferably, the specific side chain diamine compound is 10 to 80 mol%, and the specific second diamine compound is 20 to 70 mol%.
  • the use ratio is 10 to 80 mol% for the specific side chain type diamine compound and 10 to 90 for the specific third diamine compound with respect to 100 mol% of the total diamine component. Mole% is preferred. More preferably, the specific side chain diamine compound is 10 to 80 mol%, and the specific third diamine compound is 20 to 70 mol%.
  • the specific side chain type diamine compound is used in an amount of 10 to 80 mol% with respect to the total diamine component of 100 mol%.
  • the diamine compound is preferably 10 to 80 mol%, and the specific third diamine compound is preferably 10 to 80 mol%.
  • the specific side chain type diamine compound is 10 to 80 mol%
  • the specific second diamine compound is 20 to 70 mol%
  • the specific third diamine compound is 20 to 70 mol%.
  • the specific polymer (B) in the present invention is selected from the group consisting of a polyimide precursor obtained by reacting a diamine component not containing a diamine compound having a specific side chain structure with a tetracarboxylic acid component and a polyimide. At least one polymer. At that time, it is preferable to use a diamine compound having at least one substituent selected from a carboxyl group and a hydroxyl group for the specific polymer (B). More preferable is the specific second diamine compound represented by the formula [2a].
  • the use ratio of the specific second diamine compound is preferably 10 mol% or more with respect to 100 mol% of the entire diamine component. More preferred is 20 mol% or more, and particularly preferred is 30 mol% or more.
  • a specific 2nd diamine compound and a specific 3rd diamine compound can also be used together for a specific polymer (B).
  • the specific second diamine compound is 10 to 80 mol% and the specific third diamine compound is 10 to 80 mol% with respect to 100 mol% of the entire diamine component. More preferably, the specific second diamine compound is 20 to 70 mol%, and the specific third diamine compound is 20 to 70 mol%.
  • the specific polymer (A) and the specific polymer (B), that is, a method for producing these polyimide polymers is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. In general, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydride and its derivatives is reacted with a diamine component consisting of one or more diamine compounds. And a method of obtaining a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound
  • a method of obtaining a polyamic acid by reacting a tetracarboxylic acid dihalide with a primary or secondary diamine compound is a method of obtaining a polyamic acid by reacting a tetracarboxylic acid dihalide with a primary or secondary diamine compound.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and 1 A method of reacting with a secondary or secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • polyimide a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent with the diamine component and the tetracarboxylic acid component.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
  • the specific polymer (A) is 30 to 100% of the specific polymer because it can suppress a decrease in the voltage holding ratio after being exposed to light irradiation for a long time.
  • (B) is preferably 30 to 100%. More preferably, the specific polymer (A) is 40 to 90%, and the specific polymer (B) is 40 to 90%. Particularly preferably, the specific polymer (A) is 50 to 85%, and the specific polymer (B) is 50 to 85%.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the molecular weight of the polyimide polymer of the present invention is a weight average measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating properties.
  • the molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film (also referred to as a resin film), and a liquid crystal alignment film containing a specific polymer (A), a specific polymer (B) and a solvent. It is a coating solution for forming.
  • the ratio of the specific polymer (A) and the specific polymer (B) in the liquid crystal aligning agent is 10 to 900 parts by mass of the specific polymer (B) with respect to 100 parts by mass of the specific polymer (A). It is preferable that The specific polymer (B) is more preferably 20 to 800 parts by mass.
  • the specific polymer (B) is particularly preferably 30 to 700 parts by mass.
  • All of the polymer components in the liquid crystal aligning agent of the present invention may be the specific polymer (A) and the specific polymer (B) of the present invention, and other polymers are mixed. May be. At that time, the content of the other polymer is 0.5 to 15 parts by mass, preferably 100 parts by mass of the specific polymer (A) and the specific polymer (B). Is 1 to 10 parts by mass.
  • the other polymer include a cellulose polymer, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or polysiloxane.
  • the solvent in the liquid crystal aligning agent of the present invention is preferably 70 to 99.9% by mass of the solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform liquid crystal aligning film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the solvent used for the liquid crystal aligning agent of the present invention is not particularly limited as long as it is a solvent (also referred to as a good solvent) that dissolves the specific polymer (A) and the specific polymer (B).
  • a solvent also referred to as a good solvent
  • the specific example of a good solvent is given to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferably used.
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied unless the effects of the present invention are impaired. be able to.
  • a solvent also referred to as a poor solvent
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • These poor solvents are preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
  • the liquid crystal alignment treatment agent of the present invention has at least one substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4A].
  • crosslinkable compounds represented by the formulas [4a] to [4k] described in the paragraphs 58 to 59 of the international publication WO2011 / 132751 (published 2011.10.27) can be mentioned.
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
  • crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. WO2012 / 014898 (published in 2012.2.2) are listed. It is done.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include, for example, an amino resin having at least one substituent selected from a hydroxyl group and an alkoxyl group, such as a melamine resin.
  • urea resin, guanamine resin, glycoluril-formaldehyde resin, succinylamide-formaldehyde resin, and ethyleneurea-formaldehyde resin Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring and a phenanthrene ring;
  • 2 represents a group selected from the following formulas [7a] and [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for the liquid-crystal aligning agent of this invention may be 1 type, and may be combined 2 or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • liquid crystal alignment treatment agent of the present invention a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired.
  • Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
  • liquid crystal alignment treatment agent of the present invention as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of the element, page 69 of International Publication No. WO2011 / 132751 (published 2011.10.20). It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are listed on page 73.
  • This amine compound may be added directly to the liquid crystal aligning agent, but it is added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer (A) and the specific polymer (B) described above.
  • the liquid crystal alignment treatment agent of the present invention includes, in addition to the above poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, and a compound that promotes charge removal, As long as the effects of the present invention are not impaired, a dielectric or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
  • a dielectric or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate, and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the application method of the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the liquid crystal alignment treatment agent After the liquid crystal alignment treatment agent is applied on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
  • the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
  • the liquid crystal composition is also preferably used for a liquid crystal display element produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
  • the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • liquid crystal display element of the present invention after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent by the above-described method, a liquid crystal cell is prepared, and a polymerizable compound is polymerized by at least one of ultraviolet irradiation and heating.
  • a polymerizable compound is polymerized by at least one of ultraviolet irradiation and heating.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure and sealed, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed and then the substrate is bonded and sealed.
  • the liquid crystal alignment film surface on which the spacers are dispersed is bonded and sealed.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. The seizure characteristics of the steel deteriorate.
  • the polymerizable compound After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating with heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferable to use it for a liquid crystal display element manufactured through a step of arranging a liquid crystal alignment film containing a group and applying a voltage between electrodes, that is, an SC-PVA mode.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C.
  • a method of adding a compound containing this polymerizable group to the liquid crystal aligning agent A method using a coalescing component may be mentioned.
  • SC-PVA mode liquid crystal cell preparation a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is prepared.
  • the other substrate is bonded so that the inner side is inside, the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed
  • the method of performing etc. is mentioned.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal alignment treatment agent of the present invention it is possible to provide a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time.
  • the liquid crystal alignment treatment agent of the present invention is useful for a liquid crystal alignment film of a liquid crystal display element using a PSA mode or an SC-PVA mode. Therefore, the liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for large liquid crystal televisions, small and medium car navigation systems, smartphones, and the like. .
  • Specific second diamine compound B1 3,5-diaminobenzoic acid (a specific second diamine compound having a carboxyl group (COOH group))
  • C1 Diamine compound represented by the following formula [C1]
  • C2 Diamine compound represented by the following formula [C2]
  • E1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • E2 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • E3 the following formula [E3
  • E4 tetracarboxylic dianhydride represented by the following formula [E4]
  • E5 tetracarboxylic dianhydride represented by the following formula [E5]
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • PB propylene glycol monobutyl ether
  • EC diethylene glycol monoethyl ether
  • DME Dipropylene glycol dimethyl ether
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 81%, Mn was 18,200, and Mw was 51,600.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 65%, Mn was 18,500, and Mw was 50,200.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 75%, Mn was 19,800, and Mw was 53,900.
  • liquid crystal aligning agent (4) obtained in Example 4 the liquid crystal aligning agent (7) obtained in Example 10, the liquid crystal aligning agent (10) obtained in Example 10, and Example 13
  • the liquid crystal alignment treatment agent (13) obtained in the above and the liquid crystal alignment treatment agent (18) obtained in Example 18 were subjected to liquid crystal alignment under the same conditions as in the above-mentioned “Evaluation of Ink-jet Coating Properties of Liquid Crystal Alignment Treatment Agent”.
  • a substrate with a film was prepared, and then heat-treated at 230 ° C. for 30 minutes in a thermal circulation clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm.
  • the surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
  • Two ITO substrates with the obtained liquid crystal alignment film were prepared, combined with a 6 ⁇ m spacer sandwiched with the liquid crystal alignment film surface on the inside, and the periphery was adhered with a sealant to prepare an empty cell.
  • MLC-6608 manufactured by Merck Japan
  • the pretilt angle of this liquid crystal cell was measured.
  • the pretilt angle was measured after the liquid crystal cell was subjected to isotropic treatment (heat treatment at 95 ° C. for 5 minutes) and then heat treatment (heat treatment at 120 ° C. for 5 hours). Furthermore, after the isotropic treatment was performed on the liquid crystal cell produced under the same conditions as described above, the liquid crystal cell after being irradiated with ultraviolet rays of 10 J / cm 2 in terms of 365 nm was also measured.
  • the pretilt angle was measured at room temperature using PAS-301 (manufactured by ELSICON).
  • ultraviolet irradiation was performed using a tabletop UV curing device (HCT3B28HEX-1) (manufactured by Senlite). Evaluation is performed with respect to the pretilt angle after the liquid crystal isotropic treatment (also referred to after the Iso treatment) and after the heat treatment (also referred to as the high temperature treatment) and after the ultraviolet irradiation (also referred to as the ultraviolet irradiation). The smaller the change in angle, the better.
  • Tables 38 to 40 show pretilt angle values after Iso treatment, after high temperature treatment and after ultraviolet irradiation). Tables 38 to 40 show the results obtained in the examples and comparative examples.
  • the measurement was performed using a voltage holding ratio measuring device (VHR-1, manufactured by Toyo Technica Co., Ltd.) with settings of Voltage: ⁇ 1 V, Pulse Width: 60 ⁇ s, and Frame Period: 50 ms. Furthermore, the liquid crystal cell whose voltage holding ratio was measured immediately after the liquid crystal cell was manufactured was irradiated with ultraviolet rays of 50 J / cm 2 in terms of 365 nm using a desktop UV curing device (HCT3B28HEX-1, manufactured by Senlite). The voltage holding ratio was measured under the same conditions as described above.
  • VHR-1 voltage holding ratio measuring device
  • Table 41 shows values of VHR immediately after the liquid crystal cell was produced and after UV irradiation. Tables 41 to 43 show the results obtained in Examples and Comparative Examples.
  • This solution was washed with pure water and IPA at the center with a 10 ⁇ 10 mm substrate with an ITO electrode having a pattern spacing of 20 ⁇ m (length 40 mm ⁇ width 30 mm, thickness 0.7 mm) and a substrate with an ITO electrode 10 ⁇ 40 mm at the center.
  • Spin coated on ITO surface (length 40mm x width 30mm, thickness 0.7mm), heat-treated on a hot plate at 100 ° C for 5 minutes, and heat-circulating clean oven at 230 ° C for 30 minutes to form a film A polyimide coating film having a thickness of 100 nm was obtained.
  • This substrate with a liquid crystal alignment film was combined with a 6 ⁇ m spacer sandwiched with the liquid crystal alignment film surface inside, and the periphery was adhered with a sealant to produce an empty cell.
  • a nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) was added to the empty cell by a reduced pressure injection method, and a polymerizable compound (1) represented by the following formula was added to 100% by mass of the nematic liquid crystal (MLC-6608). Liquid crystal mixed with 0.3% by mass of the polymerizable compound (1) was injected, and the injection port was sealed to obtain a liquid crystal cell.
  • the PSA cell obtained in any of the examples confirmed that the alignment direction of the liquid crystal was controlled because the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. . Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
  • ECLIPSE E600WPOL polarizing microscope
  • Example 1 Polyamic acid solution (1) (5.00 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 1 and a polyamic acid solution (7) (3) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 7 .30 g), NEP (13.3 g), BCS (9.80 g), EC (3.30 g) and M1 (0.21 g) were added and stirred at 25 ° C. for 6 hours to obtain a liquid crystal alignment treatment agent (1 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 2 Polyamic acid solution (2) (6.50 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 2 and a polyamic acid solution (7) (2) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 7 NEP (14.9 g) and BCS (14.5 g) were added to .80 g), and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (2).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (17.2 g) is added to the polyimide powder (3) (1.00 g) obtained in Synthesis Example 3 and the polyimide powder (8) (1.00 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • PB (14.1 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (3).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (19.2 g) is added to the polyimide powder (3) (0.65 g) obtained in Synthesis Example 3 and the polyimide powder (8) (0.65 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • BCS (7.20 g) and PB (10.8 g) were added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (4).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NMP (18.5 g) is added to the polyimide powder (4) (1.65 g) obtained in Synthesis Example 4 and the polyimide powder (8) (0.71 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • BCS (18.5g) and M1 (0.12g) were added to this solution, and it stirred at 40 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (5).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NMP (2.96 g) and NEP (4.48 g) were added to the polyimide powder (5) (0.95 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • PB (7.44 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
  • NMP (4.44 g) and NEP (6.72 g) were added to the polyimide powder (9) (1.43 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours.
  • PB (11.2 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
  • the two solutions obtained above were mixed and stirred at 25 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (6).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 7 NMP (4.10 g) and NEP (20.7 g) were added to the polyimide powder (5) (0.45 g) obtained in Synthesis Example 5 and the polyimide powder (9) (1.05 g) obtained in Synthesis Example 9. And dissolved by stirring at 70 ° C. for 24 hours. PB (16.5g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NMP (21.5 g) was added to the polyimide powder (5) (0.75 g) obtained in Synthesis Example 5 and the polyimide powder (17) (1.75 g) obtained in Synthesis Example 17, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • BCS (13.7 g)
  • DME (3.90 g)
  • M1 (0.25 g)
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (11.8 g) was added to the polyimide powder (6) (1.25 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (1.98 g) and PB (5.89 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
  • NEP (9.60 g) was added to the polyimide powder (12) (1.02 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (1.62 g) and PB (4.81 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
  • Example 11 To the polyimide powder (10) (0.65 g) obtained in Synthesis Example 10 and the polyimide powder (8) (1.52 g) obtained in Synthesis Example 8, NMP (3.40 g) and NEP (17.0 g) And dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.40 g) and PB (10.2 g) were added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (11). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 12 To the polyimide powder (11) (1.65 g) obtained in Synthesis Example 11 and the polyimide powder (12) (0.71 g) obtained in Synthesis Example 12, NEP (16.6 g) and ⁇ -BL (3. 70 g) was added and dissolved by stirring at 70 ° C. for 24 hours. PB (16.6g) and M1 (0.24g) were added to this solution, and it stirred at 40 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 13 NMP (3.90 g) and NEP (15.6 g) were added to the polyimide powder (11) (0.85 g) obtained in Synthesis Example 11 and the polyimide powder (12) (0.57 g) obtained in Synthesis Example 12. And dissolved by stirring at 70 ° C. for 24 hours. PB (19.5g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. went.
  • NMP (7.50 g) and NEP (3.75 g) were added to the polyimide powder (13) (1.20 g) obtained in Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (3.75 g) and DME (3.75 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
  • NMP (7.50 g) and NEP (3.75 g) were added to the polyimide powder (9) (1.20 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours.
  • Example 15 NMP (5.70 g) and NEP (15.1 g) were added to the polyimide powder (14) (1.45 g) obtained in Synthesis Example 14 and the polyimide powder (8) (0.97 g) obtained in Synthesis Example 8. And dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (17.0 g) and M1 (0.07 g) were added and stirred at 40 ° C. for 6 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NMP (6.90 g) and NEP (13.7 g) were added to the polyimide powder (15) (1.75 g) obtained in Synthesis Example 15 and the polyimide powder (9) (0.44 g) obtained in Synthesis Example 9. And dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (13.7 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 17 > NMP (11.9 g) and NEP (6.80 g) were added to the polyimide powder (16) (0.65 g) obtained in Synthesis Example 16 and the polyimide powder (17) (1.52 g) obtained in Synthesis Example 17. And dissolved by stirring at 70 ° C. for 24 hours. BCS (15.3 g) was added to this solution and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 18 To the polyimide powder (16) (0.35 g) obtained in Synthesis Example 16 and the polyimide powder (17) (1.05 g) obtained in Synthesis Example 17, NEP (11.6 g) and ⁇ -BL (5. 80 g) was added and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (21.2 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NMP (7.80 g) and NEP (13.7 g) were added to the polyimide powder (16) (0.75 g) obtained in Synthesis Example 16 and the polyimide powder (8) (1.75 g) obtained in Synthesis Example 8. And dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (13.7 g), EC (3.90 g) and M1 (0.13 g) were added and stirred at 40 ° C. for 6 hours to obtain a liquid crystal aligning agent (19). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 20 To the polyamic acid solution (2) (1.88 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 2 and the polyimide powder (17) (0.50 g) obtained in Synthesis Example 17, NEP (15. 7 g) was added and dissolved by stirring at 70 ° C. for 24 hours. BCS (7.40g) and PB (7.40g) were added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (20). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (18.1 g) is added to the polyimide powder (3) (1.05 g) obtained in Synthesis Example 3 and the polyimide powder (19) (1.05 g) obtained in Synthesis Example 19, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • PB (14.8 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (26).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (17.2 g) was added to the polyimide powder (20) (1.00 g) obtained in Synthesis Example 20 and the polyimide powder (8) (1.00 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • PB (14.1 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (27).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • the liquid crystal alignment treatment agents of the examples showed a stable pretilt angle even when the liquid crystal cell was subjected to high temperature treatment and ultraviolet irradiation, as compared with the comparative example. Furthermore, even if ultraviolet irradiation is performed, the decrease in the voltage holding ratio is suppressed, and the residual charge accumulated by the DC voltage is quickly relaxed. That is, the liquid crystal composition treating agent of the present invention becomes a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time, and in addition, has been exposed to light irradiation for a long time. Even after this, a liquid crystal alignment film is obtained in which the decrease in the voltage holding ratio is suppressed and the residual charge accumulated by the DC voltage is quickly relaxed.
  • Examples of liquid crystal alignment treatment agents using Example specific polymer (A) and specific polymer (B), specific polymer (A) and specific side chain structure represented by the above formula [1] Comparison with a comparative example of a liquid crystal aligning agent using a polymer using a specific side chain type diamine compound having a difference, that is, a comparison between Example 2 and Comparative Example 5, Example 3 and Comparative Example 6 It is a comparison.
  • the change width of the pretilt angle after performing high temperature treatment and ultraviolet irradiation is larger than that of the corresponding examples, and the voltage holding ratio is greatly reduced with respect to these treatments.
  • the charge value also increased. In particular, the decrease in voltage holding ratio and the value of residual charge were large.
  • a liquid crystal aligning agent using the specific polymer (A) and the specific polymer (B), a polymer having a conventional side chain structure, and the specific polymer (B) were used. It is a comparison with a comparative example of a liquid crystal aligning agent, that is, a comparison between Example 3 and Comparative Example 7. Compared with Example 3, the comparative example 7 has a large change width of the pretilt angle after the high temperature treatment and the ultraviolet irradiation, and the voltage holding ratio is greatly reduced with respect to these treatments. The charge value also increased. In particular, the change width of the pretilt angle after the ultraviolet irradiation was large.
  • the liquid crystal alignment treatment agent of the present invention can provide a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time.
  • the liquid crystal display element which has said liquid crystal aligning film, and the liquid-crystal aligning agent which can provide said liquid crystal aligning film can be provided.
  • the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element. That is, a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes, and further comprising a liquid crystal layer between a pair of substrates provided with electrodes, A liquid crystal produced through a step of placing a liquid crystal alignment film containing a polymerizable group that polymerizes at least one of active energy rays and heat between substrates and polymerizing the polymerizable group while applying a voltage between the electrodes. It is also useful for display elements.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-182352 filed on September 3, 2013 are incorporated herein as the disclosure of the specification of the present invention. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided are: a liquid-crystal orientation treatment agent from which a liquid-crystal orientation film can be obtained which, even after being exposed to light and high temperatures for a long period of time, exhibits a stable pretilt angle, suppresses a decline in voltage retention rate, and quickly reduces an accumulated residual charge; a liquid-crystal orientation film; and a liquid-crystal display element. This liquid-crystal orientation treatment agent contains an (A) component and a (B) component. (A) component: a polyimide precursor obtained by reacting a tetracarboxylic acid component and a diamine component containing a diamine compound having a sidechain structure represented by formula (1); and a polymer containing one or more of the polyimides. (B) component: a polyimide precursor obtained by reacting a tetracarboxylic acid component and a diamine component not containing a diamine compound having a sidechain structure represented by formula (1); and a polymer containing one or more of the polyimides. (Y1, Y2 and Y3 represent a single bond, an alkylene, etc.; Y4 and Y5 represent a divalent cyclic group such as a benzene ring; n is an integer of 0-4; and Y6 represents a C1-18 alkyl group, etc.)

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶表示素子に用いられる液晶配向処理剤、液晶配向膜、及び液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element used for a liquid crystal display element.
 液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在、広く使用されている。通常、液晶表示素子には、液晶の配向状態を決定づけるために液晶配向膜が使用されている。 Liquid crystal display elements are now widely used as display devices that are thin and light. Usually, a liquid crystal alignment film is used in a liquid crystal display element in order to determine the alignment state of the liquid crystal.
 液晶配向膜に求められる特性の一つとして、基板面に対する液晶分子の配向傾斜角を任意の値に保つ、所謂液晶のプレチルト角の制御がある。プレチルト角の大きさは、液晶配向膜を構成しているポリイミドの構造を選択することで変更できることが知られている。ポリイミドの構造によってプレチルト角を制御する技術でも、側鎖を有するジアミンをポリイミド原料の一部として用いる方法は、ジアミンの使用割合に応じてプレチルト角が制御できるので、目的のプレチルト角を得ることが比較的容易であり、プレチルト角を大きくする手段として有用である(例えば、特許文献1参照)。また、液晶のプレチルト角を大きくするためのジアミン成分は、プレチルト角の安定性やプロセス依存性を改善するための構造検討もされており、その側鎖構造としては、フェニル基やシクロヘキシル基などの環構造を含むものが提案されている(例えば、特許文献2参照)。 As one of the characteristics required for the liquid crystal alignment film, there is control of the so-called pre-tilt angle of the liquid crystal, which maintains the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface at an arbitrary value. It is known that the size of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film. Even in the technique of controlling the pretilt angle depending on the structure of the polyimide, the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle according to the use ratio of the diamine, so that the desired pretilt angle can be obtained. It is relatively easy and is useful as a means for increasing the pretilt angle (see, for example, Patent Document 1). In addition, the diamine component for increasing the pretilt angle of the liquid crystal has been studied for improving the stability and process dependency of the pretilt angle, and its side chain structure includes a phenyl group and a cyclohexyl group. The thing containing a ring structure is proposed (for example, refer to patent documents 2).
 また、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった観点から、使用される液晶配向膜においても電圧保持率が高いことや、直流電圧を印加した際の蓄積電荷が少ない又は直流電圧により蓄積した電荷の緩和が早いといった特性が次第に重要となっている。 In addition, as the liquid crystal display elements have become higher in definition, the liquid crystal alignment film used has a higher voltage holding ratio and a direct current voltage is applied from the viewpoint of suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon. The characteristic that the accumulated charge at the time is small or the charge accumulated by the DC voltage is quickly relaxed is becoming increasingly important.
 ポリイミド系の液晶配向膜において、直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向処理剤を使用したもの(例えば、特許文献3参照)や、ピリジン骨格などを有する特定ジアミンを原料に使用した可溶性ポリイミドを含有する液晶配向処理剤を使用したもの(例えば、特許文献4参照)などが知られている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やそのイミド化重合体などに加えて分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向処理剤を使用したもの(例えば特許文献5参照)が知られている。 In a polyimide-based liquid crystal alignment film, a liquid crystal alignment treatment agent containing a tertiary amine with a specific structure in addition to polyamic acid or imide group-containing polyamic acid is used as a short time until the afterimage generated by direct current voltage disappears. (For example, see Patent Document 3) and those using a liquid crystal alignment treatment agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material (for example, see Patent Document 4). Yes. In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amino group in the molecule (for example, Patent Document 5) is known.
特開平2-282726号公報JP-A-2-282726 特開平9-278724号公報JP-A-9-278724 特開平9-316200号公報JP-A-9-316200 特開平10-104633号公報JP-A-10-104633 特開平8-76128号公報JP-A-8-76128
 液晶配向膜は、基板に対する液晶の角度、即ち液晶のプレチルト角の制御を行うためにも用いられている。特に、VA(Vertical Alignment)モードやPSA(Polymer Sustained Alignment)モードなどでは、液晶を垂直に配向させる必要があるため、液晶配向膜には、液晶を垂直に配向させる能力(垂直配向性や高いプレチルト角ともいう)が求められる。更に、液晶配向膜には、高い垂直配向性だけではなく、その安定性に対しても重要となってきている。特に、高輝度を得るために発熱量が大きく、光の照射量が多いバックライトを使用する液晶表示素子、例えば、カーナビゲーションシステムや大型テレビでは、長時間高温及び光の照射に曝された環境下で使用あるいは放置される場合がある。そのような過酷条件において、垂直配向性が低下した場合、初期の表示特性が得られない、或いは、表示にムラが発生するなどの問題が起こる。 The liquid crystal alignment film is also used for controlling the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal. Especially in the VA (Vertical Alignment) mode and PSA (Polymer Sustained Alignment) mode, etc., it is necessary to align the liquid crystal vertically, so the liquid crystal alignment film has the ability to align the liquid crystal vertically (vertical alignment and high pretilt). Called corners). Furthermore, the liquid crystal alignment film has become important not only for high vertical alignment but also for its stability. In particular, liquid crystal display elements that use backlights that generate a large amount of heat and have a large amount of light to obtain high brightness, such as car navigation systems and large televisions, are exposed to high temperatures and light irradiation for long periods of time. May be used or left under. Under such severe conditions, when the vertical alignment property is lowered, problems such as inability to obtain initial display characteristics or occurrence of unevenness in display occur.
 更に、液晶表示素子の電気特性の1つである電圧保持率に関しても、上記の過酷条件下での高い安定性も求められている。即ち、電圧保持率が、バックライトからの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼き付き不良(線焼き付きともいわれる)が発生しやすくなってしまい、信頼性の高い液晶表示素子を得ることができない。従って、液晶配向膜は、初期特性が良好なことに加え、長時間、光の照射に曝された後でも、電圧保持率が低下しにくいことが求められている。更に、もう1つの焼き付き不良である面焼付きに対しても、バックライトからの光照射によって、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜が求められている。 Furthermore, regarding the voltage holding ratio which is one of the electrical characteristics of the liquid crystal display element, high stability under the above severe conditions is also required. That is, if the voltage holding ratio is reduced by light irradiation from the backlight, a burn-in defect (also referred to as line burn-in), which is one of display defects of the liquid crystal display element, is likely to occur. A high liquid crystal display element cannot be obtained. Accordingly, the liquid crystal alignment film is required not only to have good initial characteristics, but also to have a low voltage holding ratio even after being exposed to light irradiation for a long time. Furthermore, there is a need for a liquid crystal alignment film that can quickly relieve residual charges accumulated by a direct current voltage by light irradiation from a backlight, even for another surface burn-in, which is another burn-in defect.
 そこで、本発明は、長時間高温及び光の照射に曝された後でも、安定なプレチルト角が発現でき、加えて、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜が得られる液晶配向処理剤を提供することを目的とする。
 加えて、本発明は、上記の特性を有する液晶配向膜、及び該液晶配向膜を備えた液晶表示素子を提供することを目的とする。
Therefore, the present invention can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time, and additionally suppresses a decrease in voltage holding ratio even after being exposed to light irradiation for a long time. And it aims at providing the liquid-crystal aligning agent from which the liquid crystal aligning film in which the residual electric charge accumulate | stored with a DC voltage is quick is obtained.
In addition, an object of the present invention is to provide a liquid crystal alignment film having the above characteristics and a liquid crystal display device including the liquid crystal alignment film.
 本発明者は、鋭意研究を行った結果、特定構造を有する2つの重合体を有する液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found that a liquid crystal alignment treatment agent having two polymers having a specific structure is extremely effective for achieving the above object, and completes the present invention. It came.
 即ち、本発明は、以下の要旨を有するものである。
1.下記の(A)成分及び(B)成分を含有することを特徴とする液晶配向処理剤。
(A)成分:下記の式[1]で示される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体。
(B)成分:下記の式[1]で示される構造を有するジアミンを含まないジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000009
(Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示す。Yは単結合又は(CH-(bは1~15の整数である)を示す。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示す。Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよ。nは0~4の整数を示す。Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す)。
2.前記式[1]で示される構造を有するジアミンが、下記の式[1a]で表される上記1に記載の液晶配向処理剤。式(1a)(中、Y、Y、Y、Y、Y、n、Y及びmは前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000010
3.前記(B)成分が、カルボキシル基(COOH基)及びヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミンを含むジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である上記1又は2に記載の液晶配向処理剤。
4.前記(A)成分が、さらに、カルボキシル基(COOH基)及びヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミンを含むジアミン成分に用いた重合体である上記1、2又は3に記載の液晶配向処理剤。
5.前記カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種の置換基を有するジアミンが、下記の式[2a]で表される上記3又は4に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000011
(Aは、下記の式[2a-1]及び式[2a-2]から選ばれる少なくとも1つの置換基を示し、m1は1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000012
(dは0~4の整数を示し、eは0~4の整数を示す)。
6.前記(A)成分及び(B)成分の重合体が、下記の式[3a]で示されるジアミンをジアミン成分に用いた重合体である上記1~5のいずれか一項に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000013
(Bは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-又はN(CH)CO-を示す。Bは単結合、炭素数1~20のアルキレン、非芳香族環又は芳香族環を示す。Bは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、N(CH)CO-、又は-O(CHm2-(m2は1~5の整数である)を示す。Bは窒素含有複素環を示す。n1は1~4の整数を示し、n1が2以上の場合、-B-B-B-Bは互いに同一でも異なっていてもよい)。
7.前記式[3a]中のBが、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCO-又はCON(CH)-である上記6に記載の液晶配向処理剤。
8.前記式[3a]中のBが、単結合、炭素数1~5のアルキレン、シクロヘキサン環又はベンゼン環である上記6又は7に記載の液晶配向処理剤。
9.前記式[3a]中のBが、単結合、-O-、-OCO-又はO(CH-(m2は1~5の整数である)である上記6~8のいずれか一項に記載の液晶配向処理剤。
10.前記式[3a]中のBが、ピロール環、イミダゾール環、ピラゾール環、ピリジン環又はピリミジン環である上記6~9のいずれか一項に記載の液晶配向処理剤。
11.前記式[3a]中のBが、-CONH-を示し、Bが炭素数1~5のアルキレンを示し、Bが単結合を示し、Bがイミダゾール環又はピリジン環を示し、n1が1である上記6に記載の液晶配向処理剤。
12.前記(A)成分及び(B)成分の少なくとも一方におけるテトラカルボン酸成分が、下記の式[4]で示されるテトラカルボン酸二無水物を含む上記1~11のいずれか一項に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000014
(Zは下記の式[4a]~式[4k]から選ばれる基である)。
Figure JPOXMLDOC01-appb-C000015
(Z~Zはそれぞれ独立して、水素原子、メチル基、塩素原子又はベンゼン環を示し、Z、Zはそれぞれ独立して、水素原子又はメチル基を示す。)
13.N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンのうち少なくとも1種の溶媒を含有する上記1~12のいずれか一項に記載の液晶配向処理剤。
14.下記の式[D-1]~式[D-3]から選ばれる少なくとも1種の溶媒を含有する上記1~13のいずれか一項に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000016
(Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す)。
15.1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル及びジプロピレングリコールジメチルエーテルから選ばれる少なくとも1種の溶媒を含有する上記1~14のいずれか一項に記載の液晶配向処理剤。
16.液晶配向処理剤中に、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、及び重合性不飽和結合を有する架橋性化合物から選ばれる少なくとも1種の架橋性化合物を含む上記1~15のいずれか一項に記載の液晶配向処理剤。
17.上記1~16のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。
18.上記1~16のいずれか一項に記載の液晶配向処理剤をインクジェット法により印刷して得られる液晶配向膜。
19.上記17又は18に記載の液晶配向膜を有する液晶表示素子。
20.電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる上記17又は18に記載の液晶配向膜。
21.電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられる上記17又は18に記載の液晶配向膜。
22.上記20又は21に記載の液晶配向膜を有する液晶表示素子。
That is, the present invention has the following gist.
1. The liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
Component (A): at least one selected from the group consisting of a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] and a tetracarboxylic acid component and a polyimide. Polymer.
(B) component: At least 1 sort (s) chosen from the group which consists of the polyimide precursor obtained by making the diamine component and tetracarboxylic acid component which do not contain the diamine which has a structure shown by following formula [1] react, and a polyimide. Polymer.
Figure JPOXMLDOC01-appb-C000009
(Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, where Y 2 represents a single bond. Or (CH 2 ) b — (b is an integer of 1 to 15) Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— Y 4 represents a divalent organic group having a carbon number of 17 to 51 having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine atom having 1 to 3 carbon atoms optionally substituted with-containing alkoxyl group or a fluorine atom .Y 5 is a benzene ring, cyclohexenone A divalent cyclic group selected from an aromatic ring and a heterocyclic ring, and any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. 3 may be substituted with a fluorine-containing alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4. Y 6 is an alkyl group having 1 to 18 carbon atoms, A fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
2. 2. The liquid crystal aligning agent according to 1 above, wherein the diamine having the structure represented by the formula [1] is represented by the following formula [1a]. Formula (1a) (in the formula, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , n, Y 6 and m represent the same meaning as described above.
Figure JPOXMLDOC01-appb-C000010
3. The polyimide precursor obtained by reacting a diamine component containing a diamine having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) with a tetracarboxylic acid component. 3. The liquid crystal aligning agent according to 1 or 2 above, which is at least one polymer selected from the group consisting of a body and polyimide.
4). The component (A) is a polymer used for a diamine component further comprising a diamine having a diamine having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group). 3. The liquid crystal aligning agent according to 3.
5. The liquid crystal aligning agent according to 3 or 4 above, wherein the diamine having at least one substituent selected from the carboxyl group and the hydroxyl group is represented by the following formula [2a].
Figure JPOXMLDOC01-appb-C000011
(A 1 represents at least one substituent selected from the following formulas [2a-1] and [2a-2], and m1 represents an integer of 1 to 4).
Figure JPOXMLDOC01-appb-C000012
(D represents an integer of 0 to 4, and e represents an integer of 0 to 4).
6). 6. The liquid crystal alignment treatment according to any one of 1 to 5, wherein the polymer of the component (A) and the component (B) is a polymer using a diamine represented by the following formula [3a] as a diamine component. Agent.
Figure JPOXMLDOC01-appb-C000013
(B 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO— B 2 represents a single bond, alkylene having 1 to 20 carbon atoms, non-aromatic ring or aromatic ring B 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, N (CH 3 ) CO—, or —O (CH 2 ) m2 — (where m2 is 1 to 5) B 4 represents a nitrogen-containing heterocyclic ring, n1 represents an integer of 1 to 4, and when n1 is 2 or more, -B 1 -B 2 -B 3 -B 4 are the same as each other But it may be different).
7). The B 1 in the formula [3a] is —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO— or CON (CH 3 ) —. Liquid crystal aligning agent.
8). 8. The liquid crystal aligning agent according to 6 or 7 above, wherein B 2 in the formula [3a] is a single bond, alkylene having 1 to 5 carbon atoms, cyclohexane ring or benzene ring.
9. Any one of 6 to 8 above, wherein B 3 in the formula [3a] is a single bond, —O—, —OCO— or O (CH 2 ) 2 — (m2 is an integer of 1 to 5). The liquid crystal aligning agent according to item.
10. 10. The liquid crystal aligning agent according to any one of 6 to 9, wherein B 4 in the formula [3a] is a pyrrole ring, imidazole ring, pyrazole ring, pyridine ring or pyrimidine ring.
11. B 1 in the formula [3a] represents —CONH—, B 2 represents alkylene having 1 to 5 carbon atoms, B 3 represents a single bond, B 4 represents an imidazole ring or a pyridine ring, and n 1 7. The liquid crystal aligning agent according to 6, wherein 1 is 1.
12 The liquid crystal according to any one of 1 to 11 above, wherein the tetracarboxylic acid component in at least one of the component (A) and the component (B) contains a tetracarboxylic dianhydride represented by the following formula [4]. Alignment treatment agent.
Figure JPOXMLDOC01-appb-C000014
(Z 1 is a group selected from the following formulas [4a] to [4k]).
Figure JPOXMLDOC01-appb-C000015
(Z 2 to Z 5 each independently represents a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and Z 6 and Z 7 each independently represents a hydrogen atom or a methyl group.)
13. 13. The liquid crystal aligning agent according to any one of 1 to 12 above, which contains at least one solvent among N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone.
14 14. The liquid crystal aligning agent according to any one of 1 to 13, which contains at least one solvent selected from the following formulas [D-1] to [D-3].
Figure JPOXMLDOC01-appb-C000016
(D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms).
15. The above 1 containing at least one solvent selected from 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether and dipropylene glycol dimethyl ether 15. The liquid crystal aligning agent according to any one of 1 to 14.
16. The liquid crystal aligning agent has at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. 16. The liquid crystal aligning agent according to any one of the above 1 to 15, comprising at least one crosslinkable compound selected from a crosslinkable compound and a crosslinkable compound having a polymerizable unsaturated bond.
17. A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of 1 to 16 above.
18. A liquid crystal alignment film obtained by printing the liquid crystal aligning agent according to any one of the above 1 to 16 by an inkjet method.
19. 19. A liquid crystal display device having the liquid crystal alignment film as described in 17 or 18 above.
20. A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and between the electrodes 19. The liquid crystal alignment film as described in 17 or 18 above, which is used in a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage.
21. A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; 19. The liquid crystal alignment film as described in 17 or 18 above, which is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage therebetween.
22. 22. A liquid crystal display device having the liquid crystal alignment film as described in 20 or 21 above.
 本発明の特定構造を含むポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体及び特定構造を含まないポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体の2つの重合体を有する液晶配向処理剤は、長時間高温及び光の照射に曝された後でも、安定なプレチルト角を発現できる液晶配向膜を得ることができる。加えて、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜が得られる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 Liquid crystal alignment having two polymers of at least one polymer selected from polyimide precursors and polyimides containing a specific structure of the present invention and at least one polymer selected from polyimide precursors and polyimides not containing a specific structure The treatment agent can provide a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time. In addition, it is possible to obtain a liquid crystal alignment film that suppresses the decrease in the voltage holding ratio even after being exposed to light irradiation for a long period of time and quickly relaxes the residual charges accumulated by the DC voltage. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
 本発明の液晶配向処理剤は、下記の(A)成分及び(B)成分を含有する。
(A)成分:上記の式[1]で示される側鎖構造(特定側鎖構造ともいう)を有するジアミン化合物を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドから選ばれる少なくともいずれか一方を含有する重合体(特定重合体(A)ともいう)。
(B)成分:上記の式[1]で示される側鎖構造を有するジアミン化合物を含まないジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドから選ばれる少なくともいずれか一方を含有する重合体(特定重合体(B)ともいう)。
 本発明の液晶配向処理剤は、なかでも、下記の(A)成分及び(B)成分を含有する。その際、(A)成分にのみ、特定側鎖構造を有するジアミン化合物を用いることが好ましい。
(A)成分:ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドから選ばれる少なくともいずれか一方を含有する重合体。
(B)成分:ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドから選ばれる少なくともいずれか一方を含有する重合体。
The liquid-crystal aligning agent of this invention contains the following (A) component and (B) component.
(A) component: a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a side chain structure (also referred to as a specific side chain structure) represented by the above formula [1] with a tetracarboxylic acid component; A polymer containing at least one selected from polyimide (also referred to as a specific polymer (A)).
Component (B): At least one selected from a polyimide precursor obtained by reacting a diamine component not containing a diamine compound having a side chain structure represented by the above formula [1] and a tetracarboxylic acid component, and a polyimide. Containing a polymer (also referred to as a specific polymer (B)).
Especially the liquid-crystal aligning agent of this invention contains the following (A) component and (B) component. In that case, it is preferable to use the diamine compound which has a specific side chain structure only for (A) component.
(A) Component: A polymer containing at least one selected from a polyimide precursor and a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component.
(B) Component: A polymer containing at least one selected from a polyimide precursor and a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component.
 本発明の特定重合体(A)に含まれる式[1]で示される特定側鎖構造は、側鎖部位にベンゼン環、シクロヘキシル環及び複素環から選ばれる少なくとも1種の基、又はステロイド骨格を有する炭素数17~51の2価の有機基を有する。これら環及び有機基の側鎖構造は、液晶を垂直に配向させる従来技術である長鎖アルキル基の側鎖構造に比べて剛直な構造を示す。これにより、特定側鎖構造を有する液晶配向処理剤から得られる液晶配向膜は、従来の長鎖アルキル基の側鎖構造のものに比べて、高くて安定な液晶の垂直配向性を得ることができる。
 また、特定側鎖構造は、従来の長鎖アルキル基の側鎖構造に比べて、紫外線などの光に対して安定である。そのため、特定側鎖構造は、長時間光の照射に曝されても、電圧保持率を低下させ、かつ直流電圧により残留電荷を蓄積させる側鎖成分の分解物を抑制することができる。
The specific side chain structure represented by the formula [1] contained in the specific polymer (A) of the present invention has at least one group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring at the side chain site, or a steroid skeleton. It has a divalent organic group having 17 to 51 carbon atoms. The side chain structure of these rings and organic groups shows a rigid structure as compared with the side chain structure of long-chain alkyl groups, which is a conventional technique for vertically aligning liquid crystals. As a result, the liquid crystal alignment film obtained from the liquid crystal aligning agent having a specific side chain structure can obtain a higher and more stable vertical alignment of liquid crystal than the conventional long chain alkyl group side chain structure. it can.
Further, the specific side chain structure is more stable to light such as ultraviolet rays than the conventional side chain structure of a long-chain alkyl group. Therefore, even if the specific side chain structure is exposed to light irradiation for a long time, it is possible to reduce a voltage holding ratio and to suppress a decomposition product of a side chain component that accumulates residual charges by a DC voltage.
 加えて、本発明の液晶配向処理剤は、特定重合体(A)及び特定重合体(B)を有する液晶配向処理剤であり、特定重合体(B)は、特定側鎖構造を含まない。そのため、本発明の液晶配向処理剤から得られる液晶配向膜は、液晶配向膜の体積抵抗が高くなる側鎖成分の量が少なくなることから、直流電圧による残留電荷の蓄積を抑制することができる。
 かくして、本発明の液晶配向処理剤によれば、長時間高温及び光の照射に曝された後でも、安定なプレチルト角が発現できる液晶配向膜を得ることができる。加えて、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜が得られる。
<特定側鎖構造>
In addition, the liquid crystal aligning agent of this invention is a liquid crystal aligning agent which has a specific polymer (A) and a specific polymer (B), and a specific polymer (B) does not contain a specific side chain structure. Therefore, in the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention, the amount of side chain components that increase the volume resistance of the liquid crystal alignment film is reduced, so that accumulation of residual charges due to DC voltage can be suppressed. .
Thus, according to the liquid crystal alignment treatment agent of the present invention, it is possible to obtain a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time. In addition, it is possible to obtain a liquid crystal alignment film that suppresses the decrease in the voltage holding ratio even after being exposed to light irradiation for a long period of time and quickly relaxes the residual charges accumulated by the DC voltage.
<Specific side chain structure>
 本発明の特定重合体(A)は、下記の式[1]で示される特定側鎖構造を有するジアミン化合物を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドから選ばれる少なくともいずれか一方を含有する重合体である。
Figure JPOXMLDOC01-appb-C000017
(式[1]中、Y、Y、Y、Y、Y、Y、及びnの定義は、上記した通りである。)
The specific polymer (A) of the present invention includes a polyimide precursor and a polyimide obtained by reacting a diamine component containing a diamine compound having a specific side chain structure represented by the following formula [1] with a tetracarboxylic acid component. It is a polymer containing at least one selected from.
Figure JPOXMLDOC01-appb-C000017
(In formula [1], the definitions of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n are as described above.)
 式[1]中、Yは、なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又はCOO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又はCOO-である。Yは、なかでも、単結合又は(CH-(bは1~10の整数である)が好ましい。Yは、なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又はCOO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又はCOO-である。Yは、なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17~51の有機基が好ましい。Yは、なかでも、ベンゼン環又はシクロへキサン環が好ましい。nは、なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。Yは、なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。 In the formula [1], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O, from the viewpoint of availability of raw materials and ease of synthesis. —, —CH 2 O— or COO— is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO—. Among them, Y 2 is preferably a single bond or (CH 2 ) b — (b is an integer of 1 to 10). Y 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or COO— from the viewpoint of ease of synthesis. preferable. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or COO—. Among these, Y 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis. Among them, Y 5 is preferably a benzene ring or a cyclohexane ring. In particular, n is preferably 0 to 3 from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2. Y 6 is preferably an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。また、国際公開公報の各表に掲載される(2-605)~(2-629)では、本発明におけるステロイド骨格を有する炭素数17~51の有機基が、ステロイド骨格を有する炭素数12~25の有機基と示されているが、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。 As a preferable combination of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [1], pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27). The same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the above are listed. In each table of the International Publication, Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 . Further, in (2-605) to (2-629) listed in each table of the International Publication, the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton. An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
 なかでも、(2-25)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-268)~(2-315)、(2-364)~(2-387)、(2-436)~(2-483)又は(2-603)~(2-615)の組み合わせが好ましい。特に好ましい組み合わせは、(2-49)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-603)~(2-606)、(2-607)~(2-609)、(2-611)、(2-612)又は(2-624)である。 Among them, (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred. Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
<特定重合体(A)・特定重合体(B)>
 特定重合体(A)及び特定重合体(B)は、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミド(総称してポリイミド系重合体ともいう。)から選ばれる少なくともいずれか一方を含有する重合体である。
 ポリイミド前駆体とは、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000018
(Rは4価の有機基であり、Rは2価の有機基であり、A及びAは水素原子又は炭素数1~8のアルキル基を示し、それぞれ同じであっても異なってもよく、A及びAは水素原子、炭素数1~5のアルキル基又はアセチル基を示し、それぞれ同じであっても異なってもよく、n2は正の整数を示す。)
<Specific polymer (A) / Specific polymer (B)>
The specific polymer (A) and the specific polymer (B) are at least selected from a polyimide precursor obtained by reacting a diamine component and a tetracarboxylic acid component and a polyimide (also collectively referred to as a polyimide polymer). It is a polymer containing either one.
The polyimide precursor has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000018
(R 1 is a tetravalent organic group, R 2 is a divalent organic group, A 1 and A 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, which may be the same or different. A 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, which may be the same or different, and n2 represents a positive integer.)
 前記ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミン化合物であり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。 The diamine component is a diamine compound having two primary or secondary amino groups in the molecule, and the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, or tetracarboxylic acid dihalide compound. , Tetracarboxylic acid dialkyl ester compounds or tetracarboxylic acid dialkyl ester dihalide compounds.
 本発明のポリイミド系重合体は、下記の式[B]で示されるテトラカルボン酸二無水物と下記の式[C]で示されるジアミン化合物とを原料とすることで、比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。なかでも、特定重合体(A)及び特定重合体(B)には、液晶配向膜の物理的及び化学的安定性の点から、ポリイミドを用いることが好ましい。 The polyimide polymer of the present invention can be obtained relatively easily by using a tetracarboxylic dianhydride represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials. Therefore, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable. Especially, it is preferable to use a polyimide for a specific polymer (A) and a specific polymer (B) from the point of the physical and chemical stability of a liquid crystal aligning film.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(R及びRは式[A]で定義したものと同意義である。) (R 1 and R 2 have the same meaning as defined in formula [A].)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(R、R及びn2は式[A]で定義したものと同意義である。) (R 1 , R 2 and n2 are the same as defined in formula [A].)
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるA及びAの炭素数1~8のアルキル基、及び式[A]で示されるA及びAの炭素数1~5のアルキル基又はアセチル基を導入することもできる。 In addition, the polymer of the formula [D] obtained above by the usual synthesis method is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A]. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
 特定重合体(A)は、特定側鎖構造を有するジアミン化合物を含有するジアミン成分を用いて得られるポリイミド系重合体である。その際、特定側鎖構造を有するジアミン化合物としては、下記の式[1a]で示されるジアミン化合物(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。 The specific polymer (A) is a polyimide polymer obtained by using a diamine component containing a diamine compound having a specific side chain structure. At that time, as a diamine compound having a specific side chain structure, it is preferable to use a diamine compound represented by the following formula [1a] (also referred to as a specific side chain diamine compound).
Figure JPOXMLDOC01-appb-C000021
 式[1a]において、Y、Y、Y、Y、Y、Y、及びnは、上記式[1]におけるそれぞれの定義と同じであり、それぞれの好ましい定義も同じである。
 また、Y、Y、Y、Y、Y、Y及びnの好ましい組み合わせも、上記式[1]について記載したのと同じである。なお、mは1~4の整数である。好ましくは、1の整数である。
Figure JPOXMLDOC01-appb-C000021
In the formula [1a], Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n are the same as the respective definitions in the above formula [1], and the respective preferable definitions are also the same. .
Also, preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n are the same as described for the above formula [1]. Note that m is an integer of 1 to 4. Preferably, it is an integer of 1.
 具体的には、例えば、下記の式[1a-1]~式[1a-31]で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000022
Specific examples include structures represented by the following formulas [1a-1] to [1a-31].
Figure JPOXMLDOC01-appb-C000022
(Rは-O-、-OCH-、-CHO-、-COOCH-又はCHOCO-を示し、Rは炭素数1~22の直鎖状又は分岐状アルキル基、炭素数1~22の直鎖状又は分岐状アルコキシル基、炭素数1~22の直鎖状又は分岐状フッ素含有アルキル基又はフッ素含有アルコキシル基である。) (R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—, and R 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, carbon A linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又はCH-を示し、Rは炭素数1~22の直鎖状又は分岐状アルキル基、炭素数1~22の直鎖状又は分岐状アルコキシル基、炭素数1~22の直鎖状又は分岐状フッ素含有アルキル基又はフッ素含有アルコキシル基である。) (R 3 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or CH 2 —, 4 is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms, or fluorine. Containing alkoxyl groups.)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-又はNH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。) (R 5 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O -Represents NH-, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。) (R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。) (R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(Aはフッ素原子で置換されていてもよい炭素数3~20の直鎖状又は分岐状アルキル基であり、Aは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Aは酸素原子又はCOO-*(正、「*」を付した結合手がAと結合する)であり、Aは酸素原子又はCOO-*(但し、「*」を付した結合手が(CH)a)と結合する)である。また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である。) (A 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group. , A 2 is an oxygen atom or COO- * (positive, a bond with “*” is bonded to A 3 ), and A 1 is an oxygen atom or COO— * (where “*” is a bond) The hand binds to (CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1. )
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式[1a-1]~[1a-31]中、特に好ましい構造のジアミン化合物は、式[1a-1]~式[1a-6]、式[1a-9]~式[1a-13]又は式[1a-22]~式[1a-31]である。 Among the above formulas [1a-1] to [1a-31], diamine compounds having particularly preferred structures are represented by the formulas [1a-1] to [1a-6] and the formulas [1a-9] to [1a-13]. Or they are the formulas [1a-22] to [1a-31].
 特定重合体(A)における特定側鎖型ジアミン化合物は、ジアミン成分全体の10モル%以上80モル%以下であることが好ましい。特に好ましいのは、10モル%以上70モル%以下である。 The specific side chain diamine compound in the specific polymer (A) is preferably 10 mol% or more and 80 mol% or less of the entire diamine component. Particularly preferred is 10 mol% or more and 70 mol% or less.
 特定側鎖型ジアミン化合物は、特定重合体(A)の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The specific side chain diamine compound has characteristics such as the solubility of the specific polymer (A) in the solvent, the coating property of the liquid crystal alignment treatment agent, the liquid crystal alignment property, the voltage holding ratio, and the accumulated charge when the liquid crystal alignment film is used. Depending on the situation, one kind or a mixture of two or more kinds may be used.
 特定重合体(A)及び特定重合体(B)を作製する際のジアミン成分には、特定側鎖型ジアミン化合物とともに、その他のジアミン化合物(特定第2のジアミン化合物ともいう)を用いることが好ましい。 As the diamine component in producing the specific polymer (A) and the specific polymer (B), it is preferable to use another diamine compound (also referred to as a specific second diamine compound) together with the specific side chain diamine compound. .
 なかでも、カルボキシル基(COOH基)及びヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミン化合物を用いることが好ましい。
 具体的には、下記の式[2a]で示されるジアミン化合物を用いることが好ましい。
Among these, it is preferable to use a diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group).
Specifically, it is preferable to use a diamine compound represented by the following formula [2a].
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式[2a]中、Aは下記の式[2a-1]及び式[2a-2]から選ばれる少なくとも1つの構造の置換基を示す。なかでも、式[2a-1]で示される構造の置換基が好ましい。 In formula [2a], A 1 represents a substituent having at least one structure selected from the following formula [2a-1] and formula [2a-2]. Among these, a substituent having a structure represented by the formula [2a-1] is preferable.
 式[2a]中、m1は1~4の整数を示す。なかでも、1が好ましい。 In the formula [2a], m1 represents an integer of 1 to 4. Of these, 1 is preferable.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式[2a-1]中、dは0~4の整数を示す。なかでも、0又は1が好ましい。
 式[2a-2]中、eは0~4の整数を示す。なかでも、0又は1が好ましい。
In the formula [2a-1], d represents an integer of 0 to 4. Of these, 0 or 1 is preferable.
In the formula [2a-2], e represents an integer of 0 to 4. Of these, 0 or 1 is preferable.
 より具体的には、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸又は3,5-ジアミノ安息香酸を挙げることができる。なかでも、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸又は3,5-ジアミノ安息香酸が好ましい。
 また、特定第2のジアミン化合物としては、下記の式[2b-1]~式[2b-4]で示されるジアミン化合物を用いることもできる。
More specifically, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid. Of these, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid is preferable.
As the specific second diamine compound, diamine compounds represented by the following formulas [2b-1] to [2b-4] can also be used.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-を示し、m及びmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示し、式[2b-2]中、m及びmはそれぞれ1~5の整数を示し、式[2b-3]中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、mは1~5の整数を示し、式[2b-4]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-を示し、mは1~4の整数を示す。)
 特定第2のジアミン化合物は、特定重合体(A)又は特定重合体(B)のどちらのポリイミド系重合体のジアミン成分に用いても良く、特定重合体(A)及び特定重合体(B)の両方の特定重合体のジアミン成分に用いることもできる。なかでも、特定重合体(A)のジアミン成分のみに用いる、あるいは特定重合体(B)のジアミン成分にのみに用いることが好ましい。
(A 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—, wherein m 1 and m 2 each represent an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in formula [2b-2], m 3 and m 4 are Each represents an integer of 1 to 5, and in formula [2b-3], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, and formula [2b- 4], A 3 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, — CO-, NH -, - N (CH 3 ) -, - CONH -, - NHCO -, - CH 2 O -, - OCH 2 -, - COO -, - OCO -, - CON (CH 3) - or N (CH 3 ) Represents CO—, and m 6 represents an integer of 1 to 4.
The specific second diamine compound may be used for the diamine component of either the specific polymer (A) or the specific polymer (B) and the specific polymer (A) and the specific polymer (B). It can also be used for the diamine component of both of the specific polymers. Especially, it is preferable to use only for the diamine component of a specific polymer (A), or to use only for the diamine component of a specific polymer (B).
 特定第2のジアミン化合物は、ジアミン成分全体の10モル%以上であることが好ましい。なかでも、20モル%以上が好ましく、特に好ましいのは、30モル%以上である。 The specific second diamine compound is preferably 10 mol% or more of the entire diamine component. Especially, 20 mol% or more is preferable and 30 mol% or more is especially preferable.
 特定第2のジアミン化合物は、特定重合体(A)及び特定重合体(B)の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The specific second diamine compound is the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal alignment property when the liquid crystal alignment film is used, and the voltage holding. One type or a mixture of two or more types can be used depending on the characteristics such as rate and accumulated charge.
 本発明の特定重合体(A)及び特定重合体(B)のジアミン成分としては、特定側鎖型ジアミン化合物と特定第2のジアミン化合物とともに、下記の式[3a]で示されるジアミン化合物(特定第3のジアミン化合物ともいう)を用いることが好ましい。 As a diamine component of the specific polymer (A) and the specific polymer (B) of the present invention, a diamine compound represented by the following formula [3a] (specific) together with a specific side chain diamine compound and a specific second diamine compound It is preferable to use a third diamine compound).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式[3a]中、Bは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-又はN(CH)CO-を示す。なかでも、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-又はN(CH)CO-は、ジアミン化合物を合成し易いので好ましい。特に好ましいのは、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCO-又はCON(CH)-である。より好ましいのは、-O-、-CONH-又はCHO-である。 In the formula [3a], B 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) —. Or N (CH 3 ) CO—. Among them, —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO— synthesize diamine compounds. Since it is easy to do, it is preferable. Particularly preferred is —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO— or CON (CH 3 ) —. More preferred is —O—, —CONH— or CH 2 O—.
 式[3a]中、Bは単結合、炭素数1~20アルキレン基、非芳香族環又は芳香族環を示す。 In the formula [3a], B 2 represents a single bond, an alkylene group having 1 to 20 carbon atoms, a non-aromatic ring or an aromatic ring.
 炭素数1~20アルキレン基は、直鎖状でも良いし、分岐していても良い。また、不飽和結合を有していても良い。特に、炭素数1~10のアルキレン基が好ましい。 The alkylene group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. In particular, an alkylene group having 1 to 10 carbon atoms is preferable.
 非芳香族環の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環又はアダマンタン環などが挙げられる。なかでも、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環又はアダマンタン環が好ましい。 Specific examples of the non-aromatic ring include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, and cyclotridecane ring. , Cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosan ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene ring, norbornene And a ring or an adamantane ring. Among these, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, or an adamantane ring is preferable.
 芳香族環の具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環又はフェナレン環などが挙げられる。なかでも、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環又はアントラセン環が好ましい。 Specific examples of the aromatic ring include benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring or phenalene ring. Of these, a benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring is preferred.
 式[3a]における好ましいBとしては、単結合、炭素数1~10のアルキレン基、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環又はアントラセン環である。なかでも、単結合、炭素数1~5のアルキレン基、シクロヘキサン環又はベンゼン環が好ましい。 Preferred B 2 in the formula [3a] is a single bond, an alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, an adamantane ring, a benzene ring, A naphthalene ring, a tetrahydronaphthalene ring, a fluorene ring or an anthracene ring; Of these, a single bond, an alkylene group having 1 to 5 carbon atoms, a cyclohexane ring or a benzene ring is preferable.
 式[3a]中、Bは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-、-O(CHm2-(m2は1~5の整数である)を示す。なかでも、単結合、-O-、-COO-、-OCO-又はO(CHm2-(m2は1~5の整数である)が好ましく、特に好ましいのは、単結合、-O-、-OCO-又はO(CHm2-(m2は1~5の整数である)である。
 式[3a]中、Bは窒素含有複素環であり、下記の式[a]、式[b]及び式[c]から選ばれる少なくとも1個の構造を含有する複素環である。
In the formula [3a], B 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ). — Or N (CH 3 ) CO—, —O (CH 2 ) m2 — (m2 is an integer of 1 to 5). Among these, a single bond, —O—, —COO—, —OCO— or O (CH 2 ) m2 — (m2 is an integer of 1 to 5) is preferable, and a single bond, —O— is particularly preferable. , —OCO— or O (CH 2 ) m2 — (m2 is an integer of 1 to 5).
In formula [3a], B 4 is a nitrogen-containing heterocycle, which is a heterocycle containing at least one structure selected from the following formula [a], formula [b] and formula [c].
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式[c]中、Zは炭素数1~5のアルキル基を示す。)
 より具体的には、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、シンノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環又はアクリジン環などを挙げることができる。なかでも、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環又はベンゾイミダゾール環が好ましく、特に好ましいのは、ピロール環、イミダゾール環、ピラゾール環、ピリジン環又はピリミジン環である。
(In the formula [c], Z represents an alkyl group having 1 to 5 carbon atoms.)
More specifically, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, pyrazoline ring , Triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, cinnoline ring, phenanthroline ring, indole ring, quinoxaline ring, benzothiazole ring, phenothiazine ring, oxadiazole ring or acridine ring be able to. Among these, a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, a benzimidazole ring or a benzimidazole ring are preferable, and a pyrrole ring or an imidazole ring is particularly preferable. , A pyrazole ring, a pyridine ring or a pyrimidine ring.
 また、式[3a]におけるBは、Bに含まれる式[a]、式[b]及び式[c]と隣り合わない置換基と結合していることが好ましい。
 式[3a]における好ましいB、B、B及びBの組み合わせは、下記の表1~表31に示す通りである。なお、表1~表31におけるX、X、X及びXは、それぞれB、B、B及びBに読み替えるものとする。
Also, B 3 in the formula [3a] are expressions included in the B 4 [a], is preferably bonded with a substituent nonadjacent the formula [b] and the formula [c].
Preferred combinations of B 1 , B 2 , B 3 and B 4 in the formula [3a] are as shown in Tables 1 to 31 below. In Tables 1 to 31, X 1 , X 2 , X 3 and X 4 are to be read as B 1 , B 2 , B 3 and B 4 , respectively.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 式[3a]中、n1は1~4の整数であり、好ましくはテトラカルボン酸成分との反応性の点から、1又は2である。 In the formula [3a], n1 is an integer of 1 to 4, and is preferably 1 or 2 from the viewpoint of reactivity with the tetracarboxylic acid component.
 式[3a]における特に好ましいB、B、B、B及びn1の組み合わせは、Bが-CONH-を示し、Bが炭素数1~5のアルキル基を示し、Bが単結合を示し、Bがイミダゾール環又はピリジン環を示し、n1が1を示すジアミン化合物である。 Particularly preferred combinations of B 1 , B 2 , B 3 , B 4 and n1 in the formula [3a] are such that B 1 represents —CONH—, B 2 represents an alkyl group having 1 to 5 carbon atoms, and B 3 represents A diamine compound which represents a single bond, B 4 represents an imidazole ring or a pyridine ring, and n 1 represents 1.
 式[3a]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(B)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置又は3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置又は3,5の位置が好ましい。ジアミン化合物を合成する際の容易性も加味すると、2,4の位置又は2,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula [3a] is not limited. Specifically, with respect to the linking group (B 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position or 3, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferable. Considering the ease in synthesizing the diamine compound, the positions 2, 4 or 2, 5 are more preferable.
 特定第3のジアミン化合物は、特定重合体(A)又は特定重合体(B)のどちらのポリイミド系重合体のジアミン成分に用いても良く、特定重合体(A)及び特定重合体(B)の両方の特定重合体のジアミン成分に用いることもできる。なかでも、特定重合体(A)に特定第2のジアミン化合物をジアミン成分に用いた場合は、特定第3のジアミン化合物は特定重合体(B)のジアミン成分に用いることが好ましい。また、特定重合体(B)に特定第2のジアミン化合物をジアミン成分に用いる場合は、特定第3のジアミン化合物は特定重合体(A)のジアミン成分に用いることが好ましい。即ち、各特定重合体に対して、別々に、特定第2のジアミン化合物と特定第3のジアミン化合物をジアミン成分に用いることが好ましい。 The specific third diamine compound may be used for the diamine component of the polyimide polymer of either the specific polymer (A) or the specific polymer (B). The specific polymer (A) and the specific polymer (B) It can also be used for the diamine component of both of the specific polymers. Especially, when a specific 2nd diamine compound is used for a specific polymer (A) for a diamine component, it is preferable to use a specific 3rd diamine compound for a diamine component of a specific polymer (B). Moreover, when using a specific 2nd diamine compound for a specific polymer (B) for a diamine component, it is preferable to use a specific 3rd diamine compound for the diamine component of a specific polymer (A). That is, it is preferable to use a specific 2nd diamine compound and a specific 3rd diamine compound for a diamine component separately with respect to each specific polymer.
 特定第3のジアミン化合物は、ジアミン成分全体の5モル%以上であることが好ましい。なかでも、10モル%以上が好ましく、特に好ましいのは、15モル%以上である。 The specific third diamine compound is preferably 5 mol% or more of the entire diamine component. Especially, 10 mol% or more is preferable and 15 mol% or more is especially preferable.
 特定第3のジアミン化合物は、特定重合体(A)及び特定重合体(B)の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The specific third diamine compound is the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, the alignment property of the liquid crystal when the liquid crystal alignment film is used, and the voltage holding. One type or a mixture of two or more types can be used depending on the characteristics such as rate and accumulated charge.
 特定重合体(A)及び特定重合体(B)のジアミン成分としては、本発明の効果を損なわない限りにおいて、特定側鎖型ジアミン化合物、特定第2のジアミン化合物及び特定第3のジアミン化合物とともに、その他のジアミン化合物(その他ジアミン化合物ともいう)を用いることもできる。 As a diamine component of the specific polymer (A) and the specific polymer (B), the specific side chain type diamine compound, the specific second diamine compound and the specific third diamine compound are used as long as the effects of the present invention are not impaired. Other diamine compounds (also referred to as other diamine compounds) can be used.
 その他ジアミン化合物としては、具体的には、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン又は1,12-ジアミノドデカンなどが挙げられる。 Specific examples of other diamine compounds include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3. '-Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy- 4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3 '-Diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3 -Diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diamino Diphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-amino Phenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3, 3'-Diaminodiphenyla 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3'-diamino) Diphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4 ' -Diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene 2,2-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3 -Aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis ( 3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1, 4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenyl) Noxy) benzene, 4,4 '-[1,4-phenylenebis (methylene)] dianiline, 4,4'-[1,3-phenylenebis (methylene)] dianiline, 3,4 '-[1,4- Phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[ 1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1, -Phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-amino Phenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-( 1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3- Aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalate Luamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′- Bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoro Propane, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis 3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) Hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7-bis (3-aminophenoxy) heptane, 1,8-bis (4 -Aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminopheno) C) Nonane, 1,10-bis (4-aminophenoxy) decane, 1,10-bis (3-aminophenoxy) decane, 1,11-bis (4-aminophenoxy) undecane, 1,11-bis (3 -Aminophenoxy) undecane, 1,12-bis (4-aminophenoxy) dodecane, 1,12-bis (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methyl) (Cyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9 -Diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, etc. It is.
 また、その他ジアミン化合物としては、下記の式[D1]~式[DA25]で示されるジアミン化合物を用いることもできる。 Further, as other diamine compounds, diamine compounds represented by the following formulas [D1] to [DA25] can also be used.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
(Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000071
(A 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
(Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又はNH-を示し、Aは炭素数1~22の直鎖状もしくは分岐状のアルキル基又は炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000074
(A 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—, and A 2 is a straight chain having 1 to 22 carbon atoms. Alternatively, it represents a branched alkyl group or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000075
(pは1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000075
(P represents an integer of 1 to 10)
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
(mは0~3の整数を示し、nは1~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000077
(M represents an integer of 0 to 3, and n represents an integer of 1 to 5.)
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 その他ジアミン化合物は、特定重合体(A)又は特定重合体(B)のどちらのポリイミド系重合体のジアミン成分に用いても良く、特定重合体(A)及び特定重合体(B)の両方の特定重合体のジアミン成分に用いることもできる。 Other diamine compounds may be used for the diamine component of either the specific polymer (A) or the specific polymer (B), and both the specific polymer (A) and the specific polymer (B). It can also be used for the diamine component of the specific polymer.
 また、その他ジアミン化合物は、特定重合体(A)及び特定重合体(B)の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 Other diamine compounds include the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal alignment property and voltage holding ratio when used as a liquid crystal alignment film. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
 特定重合体(A)及び特定重合体(B)、即ち、これらのポリイミド系重合体を作製するためのテトラカルボン酸成分としては、下記の式[4]で示されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物)を用いることが好ましい。その際、式[4]で示される特定テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物を用いることもできる。 As the tetracarboxylic acid component for producing the specific polymer (A) and the specific polymer (B), that is, these polyimide-based polymers, a tetracarboxylic dianhydride represented by the following formula [4] ( It is preferable to use a specific tetracarboxylic dianhydride. At that time, not only the specific tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic dihalide compound, tetracarboxylic dialkyl ester compound or tetracarboxylic dialkyl ester Dihalide compounds can also be used.
Figure JPOXMLDOC01-appb-C000079
(Zは下記の式[4a]~式[4k]から選ばれる構造の基である。)
Figure JPOXMLDOC01-appb-C000079
(Z 1 is a group having a structure selected from the following formulas [4a] to [4k].)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 式[4a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよい。
 式[4g]中、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。
 式[4]中のZのなかで、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]、式[4d]、式[4e]、式[4f]、式[4g]又は式[4k]で示される構造のテトラカルボン酸二無水物及びそのテトラカルボン酸誘導体が好ましい。より好ましいのは、式[4a]、式[4e]、式[4f]、式[4g]又は式[4k]で示される構造のものであり、特に好ましいのは、式[4e]、式[4f]、式[4g]又は式[4k]のものである。
In the formula [4a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
In the formula [4g], Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
Among Z 1 in the formula [4], from the viewpoint of easy synthesis and ease of polymerization reactivity when producing a polymer, the formula [4a], the formula [4c], the formula [4d], the formula [4] 4e], a formula [4f], a formula [4g] or a tetracarboxylic dianhydride having a structure represented by the formula [4k] and a tetracarboxylic acid derivative thereof are preferable. More preferred is a structure represented by the formula [4a], the formula [4e], the formula [4f], the formula [4g] or the formula [4k], and particularly preferred is the formula [4e], the formula [4]. 4f], formula [4g] or formula [4k].
 本発明のポリイミド系重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸成分を用いることもできる。
 その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
As long as the effects of the present invention are not impaired, other tetracarboxylic acid components other than the specific tetracarboxylic dianhydride can also be used for the polyimide polymer of the present invention.
Examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, and tetracarboxylic acid dialkyl ester dihalide compounds.
 即ち、その他のテトラカルボン酸成分としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。 That is, other tetracarboxylic acid components include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalene. Tetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ', 4'-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2 2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetra Carboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, or 1, Examples include 3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
 特定重合体(A)及び特定重合体(B)におけるテトラカルボン酸成分においては、各特定重合体における特定テトラカルボン酸二無水物は、テトラカルボン酸成分の10モル%以上であることが好ましい。なかでも、20モル%以上が好ましく、特に好ましいのは、30モル%以上である。テトラカルボン酸成分のすべてが、特定テトラカルボン酸二無水物であっても良い。
 特定テトラカルボン酸二無水物及びその他のテトラカルボン酸成分は、特定重合体(A)及び特定重合体(B)の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
In the tetracarboxylic acid component in the specific polymer (A) and the specific polymer (B), the specific tetracarboxylic dianhydride in each specific polymer is preferably 10 mol% or more of the tetracarboxylic acid component. Especially, 20 mol% or more is preferable and 30 mol% or more is especially preferable. All of the tetracarboxylic acid components may be a specific tetracarboxylic dianhydride.
When the specific tetracarboxylic dianhydride and other tetracarboxylic acid components are used as the solubility of the specific polymer (A) and the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal alignment film One type or a mixture of two or more types can be used according to the characteristics such as the orientation of the liquid crystal, the voltage holding ratio, and the accumulated charge.
<特定重合体(A)及び特定重合体(B)の製造方法>
 本発明における特定重合体(A)は、前記式[1]で示される特定側鎖構造を有するジアミン化合物を含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である。その際、特定側鎖構造を有するジアミン化合物としては、前記式[1a]で示される特定側鎖型ジアミン化合物を用いることが好ましい。
 また、特定重合体(A)には、特定側鎖型ジアミン化合物と共に、カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種の置換基を有するジアミン化合物、及び/又は前記式[3a]で示される特定第3のジアミン化合物を併用しても良い。その際、カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種の置換基を有するジアミン化合物には、前記式[2a]で示される特定第2のジアミン化合物を用いることが好ましい。
 特定第2のジアミン化合物を併用した場合の使用割合は、ジアミン成分全体100モル%に対して、特定側鎖型ジアミン化合物は、10~80モル%、特定第2のジアミン化合物は、10~90モル%が好ましい。より好ましいのは、特定側鎖型ジアミン化合物は、10~80モル%、特定第2のジアミン化合物は、20~70モル%である。
<The manufacturing method of a specific polymer (A) and a specific polymer (B)>
The specific polymer (A) in the present invention is obtained from a polyimide precursor and a polyimide obtained by reacting a diamine component containing a diamine compound having a specific side chain structure represented by the formula [1] with a tetracarboxylic acid component. At least one polymer selected from the group consisting of: At that time, as the diamine compound having a specific side chain structure, it is preferable to use the specific side chain diamine compound represented by the formula [1a].
The specific polymer (A) includes a specific side chain diamine compound, a diamine compound having at least one substituent selected from a carboxyl group and a hydroxyl group, and / or a specific compound represented by the formula [3a]. A third diamine compound may be used in combination. At that time, the specific second diamine compound represented by the formula [2a] is preferably used for the diamine compound having at least one substituent selected from a carboxyl group and a hydroxyl group.
When the specific second diamine compound is used in combination, the use ratio is 10 to 80 mol% for the specific side chain diamine compound and 10 to 90 mol for the specific second diamine compound with respect to 100 mol% of the total diamine component. Mole% is preferred. More preferably, the specific side chain diamine compound is 10 to 80 mol%, and the specific second diamine compound is 20 to 70 mol%.
 特定第3のジアミン化合物を併用した場合の使用割合は、ジアミン成分全体100モル%に対して、特定側鎖型ジアミン化合物は、10~80モル%、特定第3のジアミン化合物は、10~90モル%が好ましい。より好ましいのは、特定側鎖型ジアミン化合物は、10~80モル%、特定第3のジアミン化合物は、20~70モル%である。
 特定第2のジアミン化合物及び特定第3のジアミン化合物を併用した場合の使用割合は、ジアミン成分全体100モル%に対して、特定側鎖型ジアミン化合物は、10~80モル%、特定第2のジアミン化合物は、10~80モル%、特定第3のジアミン化合物は、10~80モル%が好ましい。より好ましいのは、特定側鎖型ジアミン化合物は、10~80モル%、特定第2のジアミン化合物は、20~70モル%、特定第3のジアミン化合物は、20~70モル%である。本発明において、特定重合体(A)には、特定第3のジアミン化合物を併用することが好ましい。
When the specific third diamine compound is used in combination, the use ratio is 10 to 80 mol% for the specific side chain type diamine compound and 10 to 90 for the specific third diamine compound with respect to 100 mol% of the total diamine component. Mole% is preferred. More preferably, the specific side chain diamine compound is 10 to 80 mol%, and the specific third diamine compound is 20 to 70 mol%.
When the specific second diamine compound and the specific third diamine compound are used in combination, the specific side chain type diamine compound is used in an amount of 10 to 80 mol% with respect to the total diamine component of 100 mol%. The diamine compound is preferably 10 to 80 mol%, and the specific third diamine compound is preferably 10 to 80 mol%. More preferably, the specific side chain type diamine compound is 10 to 80 mol%, the specific second diamine compound is 20 to 70 mol%, and the specific third diamine compound is 20 to 70 mol%. In the present invention, it is preferable to use a specific third diamine compound in combination with the specific polymer (A).
 本発明における特定重合体(B)は、特定側鎖構造を有するジアミン化合物をジアミン成分に含まないジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である。その際、特定重合体(B)には、カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種の置換基を有するジアミン化合物を用いることが好ましい。より好ましいのは、前記式[2a]で示される特定第2のジアミン化合物である。 The specific polymer (B) in the present invention is selected from the group consisting of a polyimide precursor obtained by reacting a diamine component not containing a diamine compound having a specific side chain structure with a tetracarboxylic acid component and a polyimide. At least one polymer. At that time, it is preferable to use a diamine compound having at least one substituent selected from a carboxyl group and a hydroxyl group for the specific polymer (B). More preferable is the specific second diamine compound represented by the formula [2a].
 特定第2のジアミン化合物の使用割合は、上述の通り、ジアミン成分全体100モル%に対して、10モル%以上であることが好ましい。より好ましいのは、20モル%以上であり、特に好ましいのは、30モル%以上である。
 また、特定重合体(B)には、特定第2のジアミン化合物と特定第3のジアミン化合物とを併用することもできる。その際の使用割合は、ジアミン成分全体100モル%に対して、特定第2のジアミン化合物は、10~80モル%、特定第3のジアミン化合物は、10~80モル%が好ましい。より好ましいのは、特定第2のジアミン化合物は、20~70モル%、特定第3のジアミン化合物は、20~70モル%である。
As described above, the use ratio of the specific second diamine compound is preferably 10 mol% or more with respect to 100 mol% of the entire diamine component. More preferred is 20 mol% or more, and particularly preferred is 30 mol% or more.
Moreover, a specific 2nd diamine compound and a specific 3rd diamine compound can also be used together for a specific polymer (B). In this case, it is preferable that the specific second diamine compound is 10 to 80 mol% and the specific third diamine compound is 10 to 80 mol% with respect to 100 mol% of the entire diamine component. More preferably, the specific second diamine compound is 20 to 70 mol%, and the specific third diamine compound is 20 to 70 mol%.
 本発明において、特定重合体(A)及び特定重合体(B)、即ち、これらのポリイミド系重合体を作製するための方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミン化合物とを脱水重縮合反応させてポリアミド酸を得る方法又はテトラカルボン酸ジハライドと1級又は2級のジアミン化合物とを反応させてポリアミド酸を得る方法が用いられる。 In the present invention, the specific polymer (A) and the specific polymer (B), that is, a method for producing these polyimide polymers is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. In general, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydride and its derivatives is reacted with a diamine component consisting of one or more diamine compounds. And a method of obtaining a polyamic acid. Specifically, a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound, dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound Or a method of obtaining a polyamic acid by reacting a tetracarboxylic acid dihalide with a primary or secondary diamine compound.
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミン化合物とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドと1級又は2級のジアミン化合物とを反応させる方法又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
To obtain the polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and 1 A method of reacting with a secondary or secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent with the diamine component and the tetracarboxylic acid component. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.
Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
 また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000081
(Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す)。
When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] The indicated solvents can be used.
Figure JPOXMLDOC01-appb-C000081
(D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms).
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used. Moreover, when making it react with each using multiple types of diamine component or tetracarboxylic acid component, you may make it react in the state mixed beforehand, may make it react separately one by one, and it is further made to react individually. May be mixed and reacted to form a polymer. In this case, the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。 In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。なかでも、本発明においては、長時間光の照射に曝された後での電圧保持率の低下を抑制することができる点から、特定重合体(A)は、30~100%、特定重合体(B)は、30~100%であることが好ましい。より好ましいのは、特定重合体(A)は、40~90%、特定重合体(B)は、40~90%である。特に好ましいのは、特定重合体(A)は、50~85%、特定重合体(B)は、50~85%である。 The polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose. Among these, in the present invention, the specific polymer (A) is 30 to 100% of the specific polymer because it can suppress a decrease in the voltage holding ratio after being exposed to light irradiation for a long time. (B) is preferably 30 to 100%. More preferably, the specific polymer (A) is 40 to 90%, and the specific polymer (B) is 40 to 90%. Particularly preferably, the specific polymer (A) is 50 to 85%, and the specific polymer (B) is 50 to 85%.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When the polyimide precursor is thermally imidized in a solution, the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 本発明のポリイミド系重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polyimide polymer of the present invention is a weight average measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating properties. The molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜(樹脂被膜ともいう)を形成するための塗布溶液であり、特定重合体(A)、特定重合体(B)及び溶媒を含有する液晶配向膜を形成するための塗布溶液である。
 液晶配向処理剤における特定重合体(A)及び特定重合体(B)の割合は、特定重合体(A)100質量部に対して、特定重合体(B)は、質量部10~900質量部であることが好ましい。より好ましいのは、特定重合体(B)は、質量部20~800質量部である。特に好ましいのは、特定重合体(B)は、質量部30~700質量部である。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film (also referred to as a resin film), and a liquid crystal alignment film containing a specific polymer (A), a specific polymer (B) and a solvent. It is a coating solution for forming.
The ratio of the specific polymer (A) and the specific polymer (B) in the liquid crystal aligning agent is 10 to 900 parts by mass of the specific polymer (B) with respect to 100 parts by mass of the specific polymer (A). It is preferable that The specific polymer (B) is more preferably 20 to 800 parts by mass. The specific polymer (B) is particularly preferably 30 to 700 parts by mass.
 本発明の液晶配向処理剤におけるすべての重合体成分は、すべてが本発明の特定重合体(A)及び特定重合体(B)であってもよく、それ以外の他の重合体が混合されていても良い。その際、当該それ以外の他の重合体の含有量は、特定重合体(A)及び特定重合体(B)を合わせた100質量部に対して、0.5質量部~15質量部、好ましくは1質量部~10質量部である。当該それ以外の他の重合体としては、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド又はポリシロキサンなどが挙げられる。 All of the polymer components in the liquid crystal aligning agent of the present invention may be the specific polymer (A) and the specific polymer (B) of the present invention, and other polymers are mixed. May be. At that time, the content of the other polymer is 0.5 to 15 parts by mass, preferably 100 parts by mass of the specific polymer (A) and the specific polymer (B). Is 1 to 10 parts by mass. Examples of the other polymer include a cellulose polymer, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or polysiloxane.
 本発明の液晶配向処理剤中の溶媒は、塗布により均一な液晶配向膜を形成するという観点から、液晶配向処理剤中の溶媒の含有量が70~99.9質量%であることが好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。 The solvent in the liquid crystal aligning agent of the present invention is preferably 70 to 99.9% by mass of the solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform liquid crystal aligning film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
 本発明の液晶配向処理剤に用いる溶媒は、特定重合体(A)及び特定重合体(B)を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。 The solvent used for the liquid crystal aligning agent of the present invention is not particularly limited as long as it is a solvent (also referred to as a good solvent) that dissolves the specific polymer (A) and the specific polymer (B). Although the specific example of a good solvent is given to the following, it is not limited to these examples.
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどである。 For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone.
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。 Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone are preferably used.
 さらに、特定重合体(A)及び特定重合体(B)の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。 Furthermore, when the solubility of the specific polymer (A) and the specific polymer (B) in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
 本発明の液晶配向処理剤における良溶媒は、液晶配向処理剤に含まれる溶媒全体の10~100質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。 The good solvent in the liquid crystal aligning agent of the present invention is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。 The liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied unless the effects of the present invention are impaired. be able to. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。 For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1 , 2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, -Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene Carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1 -(Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, Methyl acetate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester, Examples thereof include isoamyl lactate and solvents represented by the above formulas [D-1] to [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル又は上述した前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。 Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, or the above-mentioned formula [D-1] to formula It is preferable to use a solvent represented by [D-3].
 これら貧溶媒は、液晶配向処理剤に含まれる溶媒全体の1~70質量%であることが好ましい。なかでも、1~60質量%が好ましい。より好ましいのは5~60質量%である。 These poor solvents are preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
 本発明の液晶配向処理剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を導入することが好ましい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。 The liquid crystal alignment treatment agent of the present invention has at least one substitution selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物は、下記の式[4A]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000082
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4A].
Figure JPOXMLDOC01-appb-C000082
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58項~59項に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。 Specifically, the crosslinkable compounds represented by the formulas [4a] to [4k] described in the paragraphs 58 to 59 of the international publication WO2011 / 132751 (published 2011.10.27) can be mentioned.
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000083
The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
Figure JPOXMLDOC01-appb-C000083
 具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76項~82項に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。 Specifically, crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. WO2012 / 014898 (published in 2012.2.2) are listed. It is done.
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基及びアルコキシル基から選ばれる少なくとも1種の置換基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include, for example, an amino resin having at least one substituent selected from a hydroxyl group and an alkoxyl group, such as a melamine resin. And urea resin, guanamine resin, glycoluril-formaldehyde resin, succinylamide-formaldehyde resin, and ethyleneurea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。 Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
 より具体的には、国際公開公報WO2011/132751.(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。 More specifically, International Publication No. WO2011-132751. (2011.10.27), pages 62 to 66, and crosslinkable compounds represented by the formulas [6-1] to [6-48].
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate or hydroxypivalic acid neo Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2 Crosslinkability having one polymerizable unsaturated group in the molecule such as hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide Compounds.
 加えて、下記の式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000084
(式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環及びフェナントレン環からからなる群から選ばれる基を示し、Eは下記の式[7a]及び式[7b]から選ばれる基を示し、nは1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000085
In addition, a compound represented by the following formula [7A] can also be used.
Figure JPOXMLDOC01-appb-C000084
(In the formula [7A], E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring and a phenanthrene ring; 2 represents a group selected from the following formulas [7a] and [7b], and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000085
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。 The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound used for the liquid-crystal aligning agent of this invention may be 1 type, and may be combined 2 or more types.
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。 In the liquid crystal aligning agent of the present invention, the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。 For the liquid crystal alignment treatment agent of the present invention, a compound that improves the uniformity of the film thickness and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。 Examples of compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
 さらに、本発明の液晶配向処理剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体(A)及び特定重合体(B)を溶解させる有機溶媒であれば特に限定されない。 Furthermore, in the liquid crystal alignment treatment agent of the present invention, as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of the element, page 69 of International Publication No. WO2011 / 132751 (published 2011.10.20). It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are listed on page 73. This amine compound may be added directly to the liquid crystal aligning agent, but it is added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer (A) and the specific polymer (B) described above.
 本発明の液晶配向処理剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物及び電荷抜けを促進させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
<液晶配向膜・液晶表示素子>
The liquid crystal alignment treatment agent of the present invention includes, in addition to the above poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, and a compound that promotes charge removal, As long as the effects of the present invention are not impaired, a dielectric or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
<Liquid crystal alignment film and liquid crystal display element>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。 The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate, and then subjected to alignment treatment by rubbing treatment or light irradiation. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。 The application method of the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング又は偏光紫外線照射などで処理する。 After the liquid crystal alignment treatment agent is applied on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 Furthermore, the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board | substrates provided with the electrode, The polymeric compound superposed | polymerized by at least one of an active energy ray and a heat | fever between a pair of board | substrates. The liquid crystal composition is also preferably used for a liquid crystal display element produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
 即ち、本発明の液晶表示素子は、上記した手法により液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。 That is, in the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent by the above-described method, a liquid crystal cell is prepared, and a polymerizable compound is polymerized by at least one of ultraviolet irradiation and heating. Thus, the alignment of liquid crystal molecules can be controlled.
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。 To give an example of manufacturing a PSA type liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure and sealed, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed and then the substrate is bonded and sealed. Can be mentioned.
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。 In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. The seizure characteristics of the steel deteriorate.
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。 After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating with heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 加えて、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子、即ち、SC-PVAモードにも用いることが好ましい。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 In addition, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferable to use it for a liquid crystal display element manufactured through a step of arranging a liquid crystal alignment film containing a group and applying a voltage between electrodes, that is, an SC-PVA mode. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。
 SC-PVAモードの液晶セル作製の一例を挙げるならば、本発明の液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
In order to obtain a liquid crystal alignment film containing a polymerizable group that is polymerized from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to the liquid crystal aligning agent, A method using a coalescing component may be mentioned.
To give an example of SC-PVA mode liquid crystal cell preparation, a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is prepared. The other substrate is bonded so that the inner side is inside, the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed The method of performing etc. is mentioned.
After the liquid crystal cell is manufactured, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
 以上のようにして、本発明の液晶配向処理剤を用いることで、長時間高温及び光の照射に曝された後でも、安定なプレチルト角が発現できる液晶配向膜を提供することができる。加えて、長時間高温及び光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を得ることができる。特に、本発明の液晶配向処理剤は、PSAモードやSC-PVAモードを用いた液晶表示素子の液晶配向膜に対して有用となる。そのため、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大型の液晶テレビ、中小型のカーナビゲーションシステム、スマートフォンなどに好適に利用することができる。 As described above, by using the liquid crystal alignment treatment agent of the present invention, it is possible to provide a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time. In addition, it is possible to obtain a liquid crystal alignment film that suppresses a decrease in the voltage holding ratio and quickly relaxes a residual charge accumulated by a DC voltage even after being exposed to high temperature and light irradiation for a long time. In particular, the liquid crystal alignment treatment agent of the present invention is useful for a liquid crystal alignment film of a liquid crystal display element using a PSA mode or an SC-PVA mode. Therefore, the liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for large liquid crystal televisions, small and medium car navigation systems, smartphones, and the like. .
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。なお、以下において用いる略語は、次ぎの通りである。
(特定側鎖型ジアミン化合物)
 A1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 A2:1,3-ジアミノ-5-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
 A3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 A4:下記の式[A4]で示されるジアミン化合物
The present invention will be described in more detail with reference to the following examples, but is not limited thereto. The abbreviations used below are as follows.
(Specific side chain diamine compounds)
A1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene A2: 1,3-diamino-5- [4- (trans-4-n-heptylcyclo) Hexyl) phenoxymethyl] benzene A3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene A4: Diamine compound represented by A4]
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
(特定第2のジアミン化合物)
 B1:3,5-ジアミノ安息香酸(カルボキシル基(COOH基)を有する特定第2のジアミン化合物)
Figure JPOXMLDOC01-appb-C000088
(Specific second diamine compound)
B1: 3,5-diaminobenzoic acid (a specific second diamine compound having a carboxyl group (COOH group))
Figure JPOXMLDOC01-appb-C000088
(特定第3のジアミン化合物)
 C1:下記の式[C1]で示されるジアミン化合物
 C2:下記の式[C2]で示されるジアミン化合物
Figure JPOXMLDOC01-appb-C000089
(Specific third diamine compound)
C1: Diamine compound represented by the following formula [C1] C2: Diamine compound represented by the following formula [C2]
Figure JPOXMLDOC01-appb-C000089
(その他ジアミン化合物)
 D1:p-フェニレンジアミン
 D2:m-フェニレンジアミン
 D3:1,3-ジアミノ-4-オクタデシルオキシベンゼン 
Figure JPOXMLDOC01-appb-C000090
(Other diamine compounds)
D1: p-phenylenediamine D2: m-phenylenediamine D3: 1,3-diamino-4-octadecyloxybenzene
Figure JPOXMLDOC01-appb-C000090
(特定テトラカルボン酸二無水物)
 E1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 E2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 E3:下記の式[E3]で示されるテトラカルボン酸二無水物
 E4:下記の式[E4]で示されるテトラカルボン酸二無水物
 E5:下記の式[E5]で示されるテトラカルボン酸二無水物
(Specific tetracarboxylic dianhydride)
E1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride E2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride E3: the following formula [E3 E4: tetracarboxylic dianhydride represented by the following formula [E4] E5: tetracarboxylic dianhydride represented by the following formula [E5]
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
<液晶配向処理剤中の導入する架橋性化合物>
 M1:下記の式[M1]で示される架橋性化合物
Figure JPOXMLDOC01-appb-C000092
<Crosslinkable compound to be introduced into the liquid crystal aligning agent>
M1: Crosslinkable compound represented by the following formula [M1]
Figure JPOXMLDOC01-appb-C000092
<本発明に用いる溶媒>
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
 EC:ジエチレングリコールモノエチルエーテル 
 DME:ジプロピレングリコールジメチルエーテル
<Solvent used in the present invention>
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone γ-BL: γ-butyrolactone BCS: ethylene glycol monobutyl ether PB: propylene glycol monobutyl ether EC: diethylene glycol monoethyl ether
DME: Dipropylene glycol dimethyl ether
「ポリイミド系重合体の分子量の測定」
 合成例におけるポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
"Measurement of molecular weight of polyimide polymer"
The molecular weights of the polyimide precursor and the polyimide in the synthesis example were determined using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
「ポリイミドのイミド化率の測定」
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
"Measurement of imidization ratio of polyimide"
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. Using the integrated value, the following formula was used.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
「ポリイミド系重合体の合成」
<合成例1>
 E1(5.21g,26.6mmol)、A1(5.12g,13.5mmol)及びB1(2.05g,13.5mmol)をNEP(37.1g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸のMn(数平均分子量)は、25,800、Mw(重量平均分子量)は、86,900であった。
"Synthesis of polyimide polymers"
<Synthesis Example 1>
E1 (5.21 g, 26.6 mmol), A1 (5.12 g, 13.5 mmol) and B1 (2.05 g, 13.5 mmol) were mixed in NEP (37.1 g) and reacted at 40 ° C. for 8 hours. To obtain a polyamic acid solution (1) having a resin solid content concentration of 25% by mass. Mn (number average molecular weight) of this polyamic acid was 25,800, and Mw (weight average molecular weight) was 86,900.
<合成例2>
 E2(3.22g,12.9mmol)、A2(4.62g,11.7mmol)、B1(1.78g,11.7mmol)及びD1(0.28g,2.60mmol)をNEP(24.8g)中で混合し、80℃で5時間反応させた後、E1(2.52g,12.9mmol)とNEP(12.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸のMnは23,100、Mwは76,400であった。
<Synthesis Example 2>
E2 (3.22 g, 12.9 mmol), A2 (4.62 g, 11.7 mmol), B1 (1.78 g, 11.7 mmol) and D1 (0.28 g, 2.60 mmol) with NEP (24.8 g) After mixing at 80 ° C. for 5 hours, E1 (2.52 g, 12.9 mmol) and NEP (12.4 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution (2) was obtained. Mn of this polyamic acid was 23,100 and Mw was 76,400.
<合成例3>
 合成例2で得られたポリアミド酸溶液(2)(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.95g)及びピリジン(2.40g)を加え、70℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は75%であり、Mnは21,100、Mwは57,500であった。
<Synthesis Example 3>
After adding NEP to the polyamic acid solution (2) (30.0 g) obtained in Synthesis Example 2 and diluting to 6% by mass, acetic anhydride (3.95 g) and pyridine (2.40 g) were used as imidization catalysts. In addition, the mixture was reacted at 70 ° C. for 3.5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 75%, Mn was 21,100, and Mw was 57,500.
<合成例4>
 E2(1.31g,5.23mmol)、A3(3.44g,7.94mmol)、C1(2.57g,10.6mmol)及びD2(0.86g,7.94mmol)をNMP(24.5g)中で混合し、80℃で5時間反応させた後、E1(4.10g,20.9mmol)とNMP(12.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は80%であり、Mnは15,900、Mwは43,800であった。
<Synthesis Example 4>
E2 (1.31 g, 5.23 mmol), A3 (3.44 g, 7.94 mmol), C1 (2.57 g, 10.6 mmol) and D2 (0.86 g, 7.94 mmol) NMP (24.5 g) After mixing at 80 ° C. for 5 hours, E1 (4.10 g, 20.9 mmol) and NMP (12.3 g) were added and reacted at 40 ° C. for 6 hours to give a resin solid concentration of 25 mass. % Polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidation catalyst, and 3. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 80%, Mn was 15,900, and Mw was 43,800.
<合成例5>
 E2(1.23g,4.91mmol)、A2(3.92g,9.94mmol)、C2(2.58g,9.94mmol)及びD2(0.54g,4.97mmol)をNMP(24.2g)中で混合し、80℃で5時間反応させた後、E1(3.85g,19.6mmol)とNMP(12.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.85g)及びピリジン(2.50g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は55%であり、Mnは16,900、Mwは46,900であった。
<Synthesis Example 5>
E2 (1.23 g, 4.91 mmol), A2 (3.92 g, 9.94 mmol), C2 (2.58 g, 9.94 mmol) and D2 (0.54 g, 4.97 mmol) to NMP (24.2 g) After mixing at 80 ° C. for 5 hours, E1 (3.85 g, 19.6 mmol) and NMP (12.1 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.85 g) and pyridine (2.50 g) were added as imidization catalysts, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 55%, Mn was 16,900, and Mw was 46,900.
<合成例6>
 E2(2.55g,10.2mmol)、A4(2.55g,5.17mmol)、B1(0.39g,2.58mmol)、C2(3.35g,12.9mmol)及びD2(0.56g,5.17mmol)をNEP(24.8g)中で混合し、80℃で5時間反応させた後、E1(3.00g,15.3mmol)とNEP(12.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.5g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.95g)及びピリジン(2.55g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は61%であり、Mnは16,000、Mwは44,800であった。
<Synthesis Example 6>
E2 (2.55 g, 10.2 mmol), A4 (2.55 g, 5.17 mmol), B1 (0.39 g, 2.58 mmol), C2 (3.35 g, 12.9 mmol) and D2 (0.56 g, 5.17 mmol) was mixed in NEP (24.8 g) and reacted at 80 ° C. for 5 hours, then E1 (3.00 g, 15.3 mmol) and NEP (12.4 g) were added, and 6 ° C. The reaction was carried out for a time to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
To the obtained polyamic acid solution (30.5 g), NEP was added to dilute to 6% by mass, then acetic anhydride (3.95 g) and pyridine (2.55 g) were added as an imidization catalyst, and the mixture was heated at 60 ° C. for 3 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 61%, Mn was 16,000, and Mw was 44,800.
<合成例7>
 E2(3.40g,13.6mmol)、B1(4.19g,27.6mmol)及びD1(0.74g,6.89mmol)をNEP(24.7g)中で混合し、80℃で5時間反応させた後、E1(4.00g,20.4mmol)とNEP(12.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(7)を得た。このポリアミド酸のMnは27,500、Mwは90,100であった。
<Synthesis Example 7>
E2 (3.40 g, 13.6 mmol), B1 (4.19 g, 27.6 mmol) and D1 (0.74 g, 6.89 mmol) were mixed in NEP (24.7 g) and reacted at 80 ° C. for 5 hours. After that, E1 (4.00 g, 20.4 mmol) and NEP (12.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (7) having a resin solid content concentration of 25 mass%. . Mn of this polyamic acid was 27,500, and Mw was 90,100.
<合成例8>
 合成例7で得られたポリアミド酸溶液(7)(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.40g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は80%であり、Mnは23,400、Mwは64,500であった。
<Synthesis Example 8>
After adding NEP to the polyamic acid solution (7) (30.0 g) obtained in Synthesis Example 7 and diluting to 6% by mass, acetic anhydride (4.40 g) and pyridine (3.30 g) were used as imidization catalysts. In addition, it was reacted at 80 ° C. for 3.5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 80%, Mn was 23,400, and Mw was 64,500.
<合成例9>
 E2(3.96g,15.8mmol)、B1(4.14g,27.2mmol)、C1(0.39g,1.60mmol)及びD2(0.35g,3.20mmol)をNEP(24.2g)中で混合し、80℃で5時間反応させた後、E1(3.10g,15.8mmol)とNEP(12.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(2.50g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は53%であり、Mnは19,900、Mwは55,100であった。
<Synthesis Example 9>
E2 (3.96 g, 15.8 mmol), B1 (4.14 g, 27.2 mmol), C1 (0.39 g, 1.60 mmol) and D2 (0.35 g, 3.20 mmol) NEP (24.2 g) After mixing at 80 ° C. for 5 hours, E1 (3.10 g, 15.8 mmol) and NEP (12.1 g) were added and reacted at 40 ° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution was obtained.
After adding NEP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.00 g) and pyridine (2.50 g) were added as imidization catalysts, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (9). The imidation ratio of this polyimide was 53%, Mn was 19,900, and Mw was 55,100.
<合成例10>
 E3(5.90g,26.3mmol)、A2(4.21g,10.7mmol)、B1(0.41g,2.67mmol)及びD2(1.44g,13.3mmol)をNMP(35.9g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.35g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は81%であり、Mnは18,200、Mwは51,600であった。
<Synthesis Example 10>
E3 (5.90 g, 26.3 mmol), A2 (4.21 g, 10.7 mmol), B1 (0.41 g, 2.67 mmol) and D2 (1.44 g, 13.3 mmol) were added to NMP (35.9 g). Then, the mixture was reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.35 g) were added as an imidization catalyst, and 3. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 81%, Mn was 18,200, and Mw was 51,600.
<合成例11>
 E3(5.50g,24.5mmol)、A4(2.45g,4.97mmol)、B1(0.19g,1.24mmol)、C2(3.54g,13.7mmol)及びD2(0.54g,4.97mmol)をNMP(36.7g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.5g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(3.90g)及びピリジン(2.60g)を加え、60℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は65%であり、Mnは18,500、Mwは50,200であった。
<Synthesis Example 11>
E3 (5.50 g, 24.5 mmol), A4 (2.45 g, 4.97 mmol), B1 (0.19 g, 1.24 mmol), C2 (3.54 g, 13.7 mmol) and D2 (0.54 g, 4.97 mmol) was mixed in NMP (36.7 g) and reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
After adding NMP to the obtained polyamic acid solution (30.5 g) and diluting to 6% by mass, acetic anhydride (3.90 g) and pyridine (2.60 g) were added as an imidization catalyst, and 3. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (11). The imidation ratio of this polyimide was 65%, Mn was 18,500, and Mw was 50,200.
<合成例12>
 E3(7.50g,33.5mmol)、B1(3.61g,23.7mmol)、C1(0.41g,1.69mmol)及びD1(0.92g,8.47mmol)をNMP(37.3g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)及びピリジン(3.10g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は75%であり、Mnは19,800、Mwは53,900であった。
<Synthesis Example 12>
E3 (7.50 g, 33.5 mmol), B1 (3.61 g, 23.7 mmol), C1 (0.41 g, 1.69 mmol) and D1 (0.92 g, 8.47 mmol) to NMP (37.3 g) Then, the mixture was reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.10 g) were added as an imidization catalyst, and 2. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (12). The imidation ratio of this polyimide was 75%, Mn was 19,800, and Mw was 53,900.
<合成例13>
 E4(5.21g,17.3mmol)、A1(4.60g,12.1mmol)、B1(0.67g,4.39mmol)及びD1(0.59g,5.49mmol)をNEP(23.8g)中で混合し、80℃で6時間反応させた後、E1(0.85g,4.33mmol)とNEP(11.9g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.80g)及びピリジン(2.50g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は55%であり、Mnは16,800、Mwは45,300であった。
<Synthesis Example 13>
E4 (5.21 g, 17.3 mmol), A1 (4.60 g, 12.1 mmol), B1 (0.67 g, 4.39 mmol) and D1 (0.59 g, 5.49 mmol) to NEP (23.8 g) After mixing at 80 ° C. for 6 hours, E1 (0.85 g, 4.33 mmol) and NEP (11.9 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution was obtained.
To the obtained polyamic acid solution (30.0 g), NEP was added and diluted to 6% by mass, and then acetic anhydride (3.80 g) and pyridine (2.50 g) were added as an imidization catalyst, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 55%, Mn was 16,800, and Mw was 45,300.
<合成例14>
 E4(3.29g,11.0mmol)、A2(3.51g,8.88mmol)、C1(1.61g,6.66mmol)、C2(1.15g,4.44mmol)及びD2(0.24g,2.22mmol)をNMP(23.9g)中で混合し、80℃で6時間反応させた後、E1(2.15g,11.0mmol)とNMP(12.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.1g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)及びピリジン(3.15g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は73%であり、Mnは15,900、Mwは43,800であった。
<Synthesis Example 14>
E4 (3.29 g, 11.0 mmol), A2 (3.51 g, 8.88 mmol), C1 (1.61 g, 6.66 mmol), C2 (1.15 g, 4.44 mmol) and D2 (0.24 g, 2.22 mmol) was mixed in NMP (23.9 g) and reacted at 80 ° C. for 6 hours, and then E1 (2.15 g, 11.0 mmol) and NMP (12.0 g) were added. The reaction was carried out for a time to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
After adding NMP to the obtained polyamic acid solution (30.1 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.15 g) were added as an imidization catalyst, and 2. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (14). The imidation ratio of this polyimide was 73%, Mn was 15,900, and Mw was 43,800.
<合成例15>
 E5(4.30g,20.3mmol)、A3(3.89g,8.98mmol)、C2(1.33g,5.13mmol)及びD2(1.25g,11.6mmol)をNMP(23.5g)中で混合し、80℃で6時間反応させた後、E1(0.99g,5.07mmol)とNMP(11.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.85g)及びピリジン(2.40g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は51%であり、Mnは15,700、Mwは44,500であった。
<Synthesis Example 15>
E5 (4.30 g, 20.3 mmol), A3 (3.89 g, 8.98 mmol), C2 (1.33 g, 5.13 mmol) and D2 (1.25 g, 11.6 mmol) NMP (23.5 g) After mixing at 80 ° C. for 6 hours, E1 (0.99 g, 5.07 mmol) and NMP (11.8 g) were added and reacted at 40 ° C. for 6 hours. The resin solid content concentration was 25 mass. % Polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.85 g) and pyridine (2.40 g) were added as an imidization catalyst, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (15). The imidation ratio of this polyimide was 51%, Mn was 15,700, and Mw was 44,500.
<合成例16>
 E5(2.95g,13.9mmol)、A2(3.71g,9.39mmol)、B1(0.36g,2.35mmol)、C1(1.14g,4.70mmol)、C2(1.22g,4.70mmol)及びD1(0.25g,2.35mmol)をNEP(23.9g)中で混合し、80℃で6時間反応させた後、E2(2.32g,9.27mmol)とNEP(11.9g)を加え、80℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)及びピリジン(3.20g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は68%であり、Mnは15,500、Mwは45,100であった。
<Synthesis Example 16>
E5 (2.95 g, 13.9 mmol), A2 (3.71 g, 9.39 mmol), B1 (0.36 g, 2.35 mmol), C1 (1.14 g, 4.70 mmol), C2 (1.22 g, 4.70 mmol) and D1 (0.25 g, 2.35 mmol) were mixed in NEP (23.9 g), reacted at 80 ° C. for 6 hours, and then E2 (2.32 g, 9.27 mmol) and NEP ( 11.9 g) was added and reacted at 80 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.20 g) were added as imidization catalysts, and the mixture was heated at 80 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (16). The imidation ratio of this polyimide was 68%, Mn was 15,500, and Mw was 45,100.
<合成例17>
 E5(4.10g,19.3mmol)、B1(4.47g,29.4mmol)及びD2(0.35g,3.26mmol)をNMP(24.3g)中で混合し、80℃で6時間反応させた後、E2(3.22g,12.9mmol)とNMP(12.1g)を加え、80℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)及びピリジン(3.20g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(17)を得た。このポリイミドのイミド化率は73%であり、Mnは16,200、Mwは48,100であった。
<Synthesis Example 17>
E5 (4.10 g, 19.3 mmol), B1 (4.47 g, 29.4 mmol) and D2 (0.35 g, 3.26 mmol) were mixed in NMP (24.3 g) and reacted at 80 ° C. for 6 hours. After that, E2 (3.22 g, 12.9 mmol) and NMP (12.1 g) were added and reacted at 80 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
After adding NMP to the obtained polyamic-acid solution (30.0g) and diluting to 6 mass%, acetic anhydride (4.20g) and a pyridine (3.20g) are added as an imidation catalyst, and 2. at 80 degreeC. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (17). The imidation ratio of this polyimide was 73%, Mn was 16,200, and Mw was 48,100.
<合成例18>
 E2(2.85g,11.4mmol)、A1(2.20g,5.77mmol)及びB1(3.51g,23.1mmol)をNEP(23.8g)中で混合し、80℃で5時間反応させた後、E1(3.35g,17.1mmol)とNEP(11.9g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(18)を得た。このポリアミド酸のMnは、24,800、Mwは、80,200であった。
<Synthesis Example 18>
E2 (2.85 g, 11.4 mmol), A1 (2.20 g, 5.77 mmol) and B1 (3.51 g, 23.1 mmol) were mixed in NEP (23.8 g) and reacted at 80 ° C. for 5 hours. After that, E1 (3.35 g, 17.1 mmol) and NEP (11.9 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (18) having a resin solid content concentration of 25 mass%. . Mn of this polyamic acid was 24,800, and Mw was 80,200.
<合成例19>
 合成例18で得られたポリアミド酸溶液(18)(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.40g)及びピリジン(3.35g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(19)を得た。このポリイミドのイミド化率は79%であり、Mnは18,400、Mwは47,200であった。
<Synthesis Example 19>
After adding NEP to the polyamic acid solution (18) (30.0 g) obtained in Synthesis Example 18 and diluting to 6% by mass, acetic anhydride (4.40 g) and pyridine (3.35 g) were used as imidization catalysts. In addition, it was reacted at 80 ° C. for 3.5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (19). The imidation ratio of this polyimide was 79%, Mn was 18,400, and Mw was 47,200.
<合成例20>
 E2(3.25g,13.0mmol)、B1(1.80g,11.9mmol)、D1(0.28g,2.60mmol)及びD3(4.46g,11.9mmol)をNMP(24.7g)中で混合し、80℃で5時間反応させた後、E1(2.55g,13.0mmol)とNMP(12.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)及びピリジン(3.20g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(20)を得た。このポリイミドのイミド化率は75%であり、Mnは14,600、Mwは41,200であった。
 ポリイミド系重合体を表32~表34に示す。
<Synthesis Example 20>
E2 (3.25 g, 13.0 mmol), B1 (1.80 g, 11.9 mmol), D1 (0.28 g, 2.60 mmol) and D3 (4.46 g, 11.9 mmol) were added to NMP (24.7 g). After mixing at 80 ° C. for 5 hours, E1 (2.55 g, 13.0 mmol) and NMP (12.4 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.20 g) were added as an imidization catalyst, and the mixture was heated at 80 ° C. for 3 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (20). The imidation ratio of this polyimide was 75%, Mn was 14,600, and Mw was 41,200.
Tables 32 to 34 show the polyimide polymers.
Figure JPOXMLDOC01-appb-T000093
*1:ポリアミド酸。
Figure JPOXMLDOC01-appb-T000093
* 1: Polyamic acid.
Figure JPOXMLDOC01-appb-T000094
*2:ポリアミド酸。
Figure JPOXMLDOC01-appb-T000094
* 2: Polyamic acid.
Figure JPOXMLDOC01-appb-T000095
*3:ポリアミド酸。
Figure JPOXMLDOC01-appb-T000095
* 3: Polyamic acid.
「液晶配向処理剤の製造」
 下記する実施例1~20及び比較例1~7では、液晶配向処理剤の製造例を記載する。また、この液晶配向処理剤は、評価のためにも使用された。
 得られた液晶配向処理剤を表35~表37に示す。なお、表35~表37における下記の*1~*5はそれぞれ、下記の意味を表す。
*1:全ての重合体100質量部に対する特定重合体(A)の導入量(質量部)を示す。
*2:全ての重合体100質量部に対する特定重合体(B)の導入量(質量部)を示す。
*3:全ての溶媒100質量部に対する各溶媒の導入量(質量部)を示す。
*4:液晶配向処理剤中のすべての重合体の占める割合を示す。
*5:液晶配向処理剤中のすべての重合体の占める割合を示す。
"Manufacture of liquid crystal alignment treatment agent"
In Examples 1 to 20 and Comparative Examples 1 to 7 described below, production examples of liquid crystal aligning agents are described. Moreover, this liquid crystal aligning agent was used also for evaluation.
The obtained liquid crystal aligning agents are shown in Table 35 to Table 37. In Tables 35 to 37, the following * 1 to * 5 represent the following meanings, respectively.
* 1: An introduction amount (parts by mass) of the specific polymer (A) with respect to 100 parts by mass of all polymers.
* 2: An introduction amount (parts by mass) of the specific polymer (B) with respect to 100 parts by mass of all polymers.
* 3: Indicates the introduction amount (parts by mass) of each solvent with respect to 100 parts by mass of all the solvents.
* 4: Indicates the ratio of all the polymers in the liquid crystal aligning agent.
* 5: Indicates the proportion of all polymers in the liquid crystal alignment treatment agent.
 実施例及び比較例で得られた液晶配向処理剤を用い、下記のようにして、「液晶配向処理剤のインクジェット塗布性の評価」、「液晶セルの作製及びプレチルト角の評価(通常セル)」、「電圧保持率の評価(通常セル)」、「残留電荷の緩和の評価(通常セル)」及び「液晶セルの作製及び液晶配向性の評価(PSAセル)」を行った。
「液晶配向処理剤のインクジェット塗布性の評価」
 実施例4で得られた液晶配向処理剤(4)、実施例7で得られた液晶配向処理剤(7)、実施例10で得られた液晶配向処理剤(10)、実施例13で得られた液晶配向処理剤(13)及び実施例18で得られた液晶配向処理剤(18)を細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水及びIPAにて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間の条件で行った。
 得られた液晶配向膜付き基板の塗膜性を確認した。具体的には、塗膜をナトリウムランプの下で目視観察することで行い、ピンホールの有無を確認した。その結果、いずれの実施例で得られた液晶配向膜とも、塗膜上にピンホールは見られず、塗膜性に優れた液晶配向膜が得られた。
Using the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples, “Evaluation of Ink-jet Coating Properties of Liquid Crystal Alignment Treatment Agents”, “Preparation of Liquid Crystal Cell and Evaluation of Pretilt Angle (Normal Cell)” “Evaluation of voltage holding ratio (normal cell)”, “Evaluation of relaxation of residual charge (normal cell)” and “Preparation of liquid crystal cell and evaluation of liquid crystal orientation (PSA cell)” were performed.
"Evaluation of inkjet coating properties of liquid crystal alignment treatment agents"
Liquid crystal aligning agent (4) obtained in Example 4, liquid crystal aligning agent (7) obtained in Example 7, liquid crystal aligning agent (10) obtained in Example 10, obtained in Example 13 The obtained liquid crystal aligning agent (13) and the liquid crystal aligning agent (18) obtained in Example 18 were subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm, and ink jet coatability was evaluated. As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA, the application area is 70 × 70 mm, the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, and the application speed is 40 mm / Second, the time from application to provisional drying was 60 seconds, and provisional drying was performed on a hot plate at 70 ° C. for 5 minutes.
The coating properties of the obtained substrate with a liquid crystal alignment film were confirmed. Specifically, the coating film was visually observed under a sodium lamp to confirm the presence or absence of pinholes. As a result, in any of the liquid crystal alignment films obtained in any of the examples, no pinhole was found on the coating film, and a liquid crystal alignment film having excellent coating properties was obtained.
「液晶セルの作製及びプレチルト角の評価(通常セル)」
 実施例及び比較例で得られた液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製(通常セル)を行った。この溶液を純水及びIPAにて洗浄を行った100×100mmITO電極付き基板(縦100mm×横100mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。なお、実施例4で得られた液晶配向処理剤(4)、実施例7で得られた液晶配向処理剤(7)、実施例10で得られた液晶配向処理剤(10)、実施例13で得られた液晶配向処理剤(13)及び実施例18で得られた液晶配向処理剤(18)は、上記の「液晶配向処理剤のインクジェット塗布性の評価」と同様の条件で、液晶配向膜付き基板を作製し、その後、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。
 このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン製)を注入し、注入口を封止して液晶セル(通常セル)を得た。
 次に、この液晶セル(通常セル)のプレチルト角の測定を行った。プレチルト角は、液晶のアイソトロピック処理(95℃で5分間加熱処理)を行った後、それを加熱処理(120℃で5時間加熱処理)した後の液晶セルを測定した。
 さらに、上記と同様の条件で作製した液晶セルにアイソトロピック処理を行った後に、365nm換算で10J/cmの紫外線を照射した後の液晶セルも測定した。なお、プレチルト角は、PAS-301(ELSICON製)を用いて室温で測定した。さらに、紫外線の照射は、卓上型UV硬化装置(HCT3B28HEX-1)(センライト製)を用いて行った。
 評価は、液晶のアイソトロピック処理した後(Iso処理後ともいう)のプレチルト角に対して、加熱処理した後(高温処理後ともいう)及び紫外線を照射した後(紫外線照射後ともいう)のプレチルト角の変化が小さいものほど、良好とした(表38~表40に、Iso処理後、高温処理後及び紫外線照射後のプレチルト角の値を示す)。
 表38~表40に、実施例及び比較例で得られた結果を示す。
"Production of liquid crystal cell and evaluation of pretilt angle (normal cell)"
The liquid crystal aligning agents obtained in the examples and comparative examples were filtered under pressure through a membrane filter having a pore diameter of 1 μm to prepare a liquid crystal cell (normal cell). This solution was spin-coated on the ITO surface of a substrate with 100 × 100 mm ITO electrodes (length 100 mm × width 100 mm, thickness 0.7 mm) washed with pure water and IPA, and then on a hot plate at 100 ° C. for 5 minutes. Then, heat treatment was performed at 230 ° C. for 30 minutes in a heat circulation clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm. In addition, the liquid crystal aligning agent (4) obtained in Example 4, the liquid crystal aligning agent (7) obtained in Example 10, the liquid crystal aligning agent (10) obtained in Example 10, and Example 13 The liquid crystal alignment treatment agent (13) obtained in the above and the liquid crystal alignment treatment agent (18) obtained in Example 18 were subjected to liquid crystal alignment under the same conditions as in the above-mentioned “Evaluation of Ink-jet Coating Properties of Liquid Crystal Alignment Treatment Agent”. A substrate with a film was prepared, and then heat-treated at 230 ° C. for 30 minutes in a thermal circulation clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm.
The surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
Two ITO substrates with the obtained liquid crystal alignment film were prepared, combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface on the inside, and the periphery was adhered with a sealant to prepare an empty cell. MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell (ordinary cell).
Next, the pretilt angle of this liquid crystal cell (normal cell) was measured. The pretilt angle was measured after the liquid crystal cell was subjected to isotropic treatment (heat treatment at 95 ° C. for 5 minutes) and then heat treatment (heat treatment at 120 ° C. for 5 hours).
Furthermore, after the isotropic treatment was performed on the liquid crystal cell produced under the same conditions as described above, the liquid crystal cell after being irradiated with ultraviolet rays of 10 J / cm 2 in terms of 365 nm was also measured. The pretilt angle was measured at room temperature using PAS-301 (manufactured by ELSICON). Furthermore, ultraviolet irradiation was performed using a tabletop UV curing device (HCT3B28HEX-1) (manufactured by Senlite).
Evaluation is performed with respect to the pretilt angle after the liquid crystal isotropic treatment (also referred to after the Iso treatment) and after the heat treatment (also referred to as the high temperature treatment) and after the ultraviolet irradiation (also referred to as the ultraviolet irradiation). The smaller the change in angle, the better. (Tables 38 to 40 show pretilt angle values after Iso treatment, after high temperature treatment and after ultraviolet irradiation).
Tables 38 to 40 show the results obtained in the examples and comparative examples.
「電圧保持率の評価(通常セル)」
 上記の「液晶セルの作製及びプレチルト角の評価(通常セル)」と同様の条件で作製した液晶セル(通常セル)を用いて、電圧保持率の評価を行った。具体的には、上記の手法で得られた液晶セル(通常セル)に、80℃の温度下で1Vの電圧を60μs印加し、50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHRともいう)として計算した。なお、測定は、電圧保持率測定装置(VHR-1、東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:50msの設定で行った。
 さらに、上記の液晶セル作製直後の電圧保持率の測定が終わった液晶セルに、卓上型UV硬化装置(HCT3B28HEX-1、センライト社製)を用いて、365nm換算で50J/cmの紫外線を照射し、上記と同様の条件で電圧保持率の測定を行った。
 評価は、液晶セル作製直後の電圧保持率の値が高く、さらに、液晶セル作製直後の電圧保持率の値に対して、紫外線照射後の値の低下が小さいものほど、良好とした(表41~表43に、液晶セル作製直後及び紫外線照射後のVHRの値を示す)。表41~表43に、実施例及び比較例で得られた結果を示す。
"Evaluation of voltage holding ratio (normal cell)"
The voltage holding ratio was evaluated using a liquid crystal cell (ordinary cell) produced under the same conditions as the above-mentioned “Preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”. Specifically, a voltage of 1 V is applied to the liquid crystal cell (ordinary cell) obtained by the above method at a temperature of 80 ° C. for 60 μs, the voltage after 50 ms is measured, and how much the voltage is maintained. It was calculated as a voltage holding ratio (also referred to as VHR). The measurement was performed using a voltage holding ratio measuring device (VHR-1, manufactured by Toyo Technica Co., Ltd.) with settings of Voltage: ± 1 V, Pulse Width: 60 μs, and Frame Period: 50 ms.
Furthermore, the liquid crystal cell whose voltage holding ratio was measured immediately after the liquid crystal cell was manufactured was irradiated with ultraviolet rays of 50 J / cm 2 in terms of 365 nm using a desktop UV curing device (HCT3B28HEX-1, manufactured by Senlite). The voltage holding ratio was measured under the same conditions as described above.
The value of the voltage holding ratio immediately after the production of the liquid crystal cell is high, and the smaller the decrease in the value after the ultraviolet irradiation with respect to the voltage holding ratio immediately after the production of the liquid crystal cell, the better (Table 41). Table 43 shows values of VHR immediately after the liquid crystal cell was produced and after UV irradiation. Tables 41 to 43 show the results obtained in Examples and Comparative Examples.
「残留電荷の緩和の評価(通常セル)」
 上記の「液晶セルの作製及びプレチルト角の評価(通常セル)」と同様の条件で作製した液晶セル(通常セル)を用いて、残留電荷の緩和の評価を行った。具体的には、液晶セルに、直流電圧10Vを30分印加し、1秒間短絡させた後、液晶セル内に発生している電位を1800秒間測定した。そのなかで、50秒後の残留電荷の値を用いて、残留電荷の緩和の評価とした。なお、測定は、6254型液晶物性評価装置(東陽テクニカ社製)を用いた。
 さらに、上記の液晶セル作製直後の残留電荷の測定が終わった液晶セルに、卓上型UV硬化装置(HCT3B28HEX-1)(センライト社製)を用いて、365nm換算で30J/cmの紫外線を照射し、上記と同様の条件で残留電荷の測定を行った。
 評価は、液晶セル作製直後及び紫外線照射後の残留電荷の値が小さいものほど、良好とした(表41~表43に、液晶セル作製直後及び紫外線照射後のVHRの値を示す)。表41~表43に、実施例及び比較例で得られた結果を示す。
"Evaluation of residual charge relaxation (normal cell)"
Evaluation of relaxation of residual charges was performed using a liquid crystal cell (normal cell) manufactured under the same conditions as the above-mentioned “Preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”. Specifically, a DC voltage of 10 V was applied to the liquid crystal cell for 30 minutes and short-circuited for 1 second, and then the potential generated in the liquid crystal cell was measured for 1800 seconds. Among them, the value of the residual charge after 50 seconds was used to evaluate the relaxation of the residual charge. In addition, the measurement used the 6254 type liquid crystal physical-property evaluation apparatus (Toyo Technica company make).
Furthermore, the residual charge immediately after the above liquid crystal cell was measured was irradiated with 30 J / cm 2 of UV converted to 365 nm using a desktop UV curing device (HCT3B28HEX-1) (manufactured by Senlite). Then, the residual charge was measured under the same conditions as described above.
In the evaluation, the smaller the value of the residual charge immediately after the production of the liquid crystal cell and after the ultraviolet irradiation, the better the results (Tables 41 to 43 show the VHR values immediately after the production of the liquid crystal cell and after the ultraviolet irradiation). Tables 41 to 43 show the results obtained in Examples and Comparative Examples.
「液晶セルの作製及び液晶配向性の評価(PSAセル)」
 実施例2で得られた液晶配向処理剤(2)、実施例3で得られた液晶配向処理剤(3)、実施例9で得られた液晶配向処理剤(9)、実施例11で得られた液晶配向処理剤(11)及び実施例14で得られた液晶配向処理剤(14)を細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製及び液晶配向性の評価(PSAセル)を行った。この溶液を、純水及びIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド塗膜を得た。
 この液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)に、下記の式で示される重合性化合物(1)を、ネマティック液晶(MLC-6608)の100質量%に対して重合性化合物(1)を0.3質量%混合した液晶を注入し、注入口を封止して、液晶セルを得た。
Figure JPOXMLDOC01-appb-C000096
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。
 いずれの実施例で得られたPSAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されたことを確認した。また、いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。
"Production of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell)"
Liquid crystal aligning agent (2) obtained in Example 2, liquid crystal aligning agent (3) obtained in Example 3, liquid crystal aligning agent (9) obtained in Example 9, and obtained in Example 11 The obtained liquid crystal aligning agent (11) and the liquid crystal aligning agent (14) obtained in Example 14 were pressure filtered through a membrane filter having a pore diameter of 1 μm to prepare a liquid crystal cell and evaluate liquid crystal alignment (PSA cell). ) This solution was washed with pure water and IPA at the center with a 10 × 10 mm substrate with an ITO electrode having a pattern spacing of 20 μm (length 40 mm × width 30 mm, thickness 0.7 mm) and a substrate with an ITO electrode 10 × 40 mm at the center. Spin coated on ITO surface (length 40mm x width 30mm, thickness 0.7mm), heat-treated on a hot plate at 100 ° C for 5 minutes, and heat-circulating clean oven at 230 ° C for 30 minutes to form a film A polyimide coating film having a thickness of 100 nm was obtained.
This substrate with a liquid crystal alignment film was combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface inside, and the periphery was adhered with a sealant to produce an empty cell. A nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) was added to the empty cell by a reduced pressure injection method, and a polymerizable compound (1) represented by the following formula was added to 100% by mass of the nematic liquid crystal (MLC-6608). Liquid crystal mixed with 0.3% by mass of the polymerizable compound (1) was injected, and the injection port was sealed to obtain a liquid crystal cell.
Figure JPOXMLDOC01-appb-C000096
While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
The response speed of the liquid crystal before and after the ultraviolet irradiation of the liquid crystal cell was measured. As the response speed, T90 → T10 from 90% transmittance to 10% transmittance was measured.
The PSA cell obtained in any of the examples confirmed that the alignment direction of the liquid crystal was controlled because the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. . Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
<実施例1>
 合成例1で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(1)(5.00g)及び合成例7で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(7)(3.30g)に、NEP(13.3g)、BCS(9.80g)、EC(3.30g)及びM1(0.21g)を加え、25℃で6時間攪拌して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
Polyamic acid solution (1) (5.00 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 1 and a polyamic acid solution (7) (3) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 7 .30 g), NEP (13.3 g), BCS (9.80 g), EC (3.30 g) and M1 (0.21 g) were added and stirred at 25 ° C. for 6 hours to obtain a liquid crystal alignment treatment agent (1 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例2>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(6.50g)及び合成例7で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(7)(2.80g)に、NEP(14.9g)及びBCS(14.5g)を加え、25℃で4時間攪拌して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2>
Polyamic acid solution (2) (6.50 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 2 and a polyamic acid solution (7) (2) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 7 NEP (14.9 g) and BCS (14.5 g) were added to .80 g), and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例3>
 合成例3で得られたポリイミド粉末(3)(1.00g)及び合成例8で得られたポリイミド粉末(8)(1.00g)に、NEP(17.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(14.1g)を加え、40℃で4時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 3>
NEP (17.2 g) is added to the polyimide powder (3) (1.00 g) obtained in Synthesis Example 3 and the polyimide powder (8) (1.00 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve. To this solution, PB (14.1 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (3). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例4>
 合成例3で得られたポリイミド粉末(3)(0.65g)及び合成例8で得られたポリイミド粉末(8)(0.65g)に、NEP(19.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(7.20g)及びPB(10.8g)を加え、40℃で4時間攪拌して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 4>
NEP (19.2 g) is added to the polyimide powder (3) (0.65 g) obtained in Synthesis Example 3 and the polyimide powder (8) (0.65 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve. To this solution, BCS (7.20 g) and PB (10.8 g) were added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例5>
 合成例4で得られたポリイミド粉末(4)(1.65g)及び合成例8で得られたポリイミド粉末(8)(0.71g)に、NMP(18.5g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(18.5g)及びM1(0.12g)を加え、40℃で6時間攪拌して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 5>
NMP (18.5 g) is added to the polyimide powder (4) (1.65 g) obtained in Synthesis Example 4 and the polyimide powder (8) (0.71 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve. BCS (18.5g) and M1 (0.12g) were added to this solution, and it stirred at 40 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例6>
 合成例5で得られたポリイミド粉末(5)(0.95g)に、NMP(2.96g)及びNEP(4.48g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(7.44g)を加え、40℃で4時間攪拌して、溶液を得た。
 一方、合成例9で得られたポリイミド粉末(9)(1.43g)に、NMP(4.44g)及びNEP(6.72g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(11.2g)を加え、40℃で4時間攪拌して、溶液を得た。
 上記で得られた2つの溶液を混合し、25℃で4時間攪拌して、液晶配配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 6>
NMP (2.96 g) and NEP (4.48 g) were added to the polyimide powder (5) (0.95 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (7.44 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NMP (4.44 g) and NEP (6.72 g) were added to the polyimide powder (9) (1.43 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (11.2 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
The two solutions obtained above were mixed and stirred at 25 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例7>
 合成例5で得られたポリイミド粉末(5)(0.45g)及び合成例9で得られたポリイミド粉末(9)(1.05g)に、NMP(4.10g)及びNEP(20.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(16.5g)を加え、40℃で4時間攪拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 7>
NMP (4.10 g) and NEP (20.7 g) were added to the polyimide powder (5) (0.45 g) obtained in Synthesis Example 5 and the polyimide powder (9) (1.05 g) obtained in Synthesis Example 9. And dissolved by stirring at 70 ° C. for 24 hours. PB (16.5g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例8>
 合成例5で得られたポリイミド粉末(5)(0.75g)及び合成例17で得られたポリイミド粉末(17)(1.75g)に、NMP(21.5g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(13.7g)、DME(3.90g)及びM1(0.25g)を加え、40℃で6時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 8>
NMP (21.5 g) was added to the polyimide powder (5) (0.75 g) obtained in Synthesis Example 5 and the polyimide powder (17) (1.75 g) obtained in Synthesis Example 17, and 24 ° C. at 24 ° C. Stir for hours to dissolve. To this solution, BCS (13.7 g), DME (3.90 g) and M1 (0.25 g) were added and stirred at 40 ° C. for 6 hours to obtain a liquid crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例9>
 合成例6で得られたポリイミド粉末(6)(1.25g)に、NEP(11.8g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.98g)及びPB(5.89g)を加え、40℃で4時間攪拌して、溶液を得た。
 一方、合成例12で得られたポリイミド粉末(12)(1.02g)に、NEP(9.60g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.62g)及びPB(4.81g)を加え、40℃で4時間攪拌して、溶液を得た。
 上記で得られた2つの溶液を混合し、それにM1(0.07g)を加え、40℃で4時間攪拌して、液晶配配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 9>
NEP (11.8 g) was added to the polyimide powder (6) (1.25 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.98 g) and PB (5.89 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (9.60 g) was added to the polyimide powder (12) (1.02 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.62 g) and PB (4.81 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The two solutions obtained above were mixed, M1 (0.07 g) was added thereto, and the mixture was stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (9). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例10>
 合成例6で得られたポリイミド粉末(6)(0.55g)及び合成例12で得られたポリイミド粉末(12)(0.83g)に、NMP(19.0g)及びγ-BL(3.80g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(15.2g)を加え、40℃で4時間攪拌して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 10>
To the polyimide powder (6) (0.55 g) obtained in Synthesis Example 6 and the polyimide powder (12) (0.83 g) obtained in Synthesis Example 12, NMP (19.0 g) and γ-BL (3. 80 g) was added and dissolved by stirring at 70 ° C. for 24 hours. PB (15.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例11>
 合成例10で得られたポリイミド粉末(10)(0.65g)及び合成例8で得られたポリイミド粉末(8)(1.52g)に、NMP(3.40g)及びNEP(17.0g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.40g)及びPB(10.2g)を加え、40℃で4時間攪拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 11>
To the polyimide powder (10) (0.65 g) obtained in Synthesis Example 10 and the polyimide powder (8) (1.52 g) obtained in Synthesis Example 8, NMP (3.40 g) and NEP (17.0 g) And dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.40 g) and PB (10.2 g) were added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (11). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例12>
 合成例11で得られたポリイミド粉末(11)(1.65g)及び合成例12で得られたポリイミド粉末(12)(0.71g)に、NEP(16.6g)及びγ-BL(3.70g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(16.6g)及びM1(0.24g)を加え、40℃で6時間攪拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 12>
To the polyimide powder (11) (1.65 g) obtained in Synthesis Example 11 and the polyimide powder (12) (0.71 g) obtained in Synthesis Example 12, NEP (16.6 g) and γ-BL (3. 70 g) was added and dissolved by stirring at 70 ° C. for 24 hours. PB (16.6g) and M1 (0.24g) were added to this solution, and it stirred at 40 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例13>
 合成例11で得られたポリイミド粉末(11)(0.85g)及び合成例12で得られたポリイミド粉末(12)(0.57g)に、NMP(3.90g)及びNEP(15.6g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(19.5g)を加え、40℃で4時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
行った。
<Example 13>
NMP (3.90 g) and NEP (15.6 g) were added to the polyimide powder (11) (0.85 g) obtained in Synthesis Example 11 and the polyimide powder (12) (0.57 g) obtained in Synthesis Example 12. And dissolved by stirring at 70 ° C. for 24 hours. PB (19.5g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
went.
<実施例14>
 合成例13で得られたポリイミド粉末(13)(1.20g)に、NMP(7.50g)及びNEP(3.75g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.75g)及びDME(3.75g)を加え、40℃で4時間攪拌して、溶液を得た。
 一方、合成例9で得られたポリイミド粉末(9)(1.20g)に、NMP(7.50g)及びNEP(3.75g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.75g)及びDME(3.75g)を加え、40℃で4時間攪拌して、溶液を得た。
 上記で得られた2つの溶液を混合し、25℃で4時間攪拌して、液晶配配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 14>
NMP (7.50 g) and NEP (3.75 g) were added to the polyimide powder (13) (1.20 g) obtained in Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.75 g) and DME (3.75 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NMP (7.50 g) and NEP (3.75 g) were added to the polyimide powder (9) (1.20 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.75 g) and DME (3.75 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The two solutions obtained above were mixed and stirred at 25 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (14). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例15>
 合成例14で得られたポリイミド粉末(14)(1.45g)及び合成例8で得られたポリイミド粉末(8)(0.97g)に、NMP(5.70g)及びNEP(15.1g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(17.0g)及びM1(0.07g)を加え、40℃で6時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 15>
NMP (5.70 g) and NEP (15.1 g) were added to the polyimide powder (14) (1.45 g) obtained in Synthesis Example 14 and the polyimide powder (8) (0.97 g) obtained in Synthesis Example 8. And dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (17.0 g) and M1 (0.07 g) were added and stirred at 40 ° C. for 6 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例16>
 合成例15で得られたポリイミド粉末(15)(1.75g)及び合成例9で得られたポリイミド粉末(9)(0.44g)に、NMP(6.90g)及びNEP(13.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(13.7g)を加え、40℃で4時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 16>
NMP (6.90 g) and NEP (13.7 g) were added to the polyimide powder (15) (1.75 g) obtained in Synthesis Example 15 and the polyimide powder (9) (0.44 g) obtained in Synthesis Example 9. And dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (13.7 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例17>
 合成例16で得られたポリイミド粉末(16)(0.65g)及び合成例17で得られたポリイミド粉末(17)(1.52g)に、NMP(11.9g)及びNEP(6.80g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(15.3g)を加え、40℃で4時間攪拌して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 17>
NMP (11.9 g) and NEP (6.80 g) were added to the polyimide powder (16) (0.65 g) obtained in Synthesis Example 16 and the polyimide powder (17) (1.52 g) obtained in Synthesis Example 17. And dissolved by stirring at 70 ° C. for 24 hours. BCS (15.3 g) was added to this solution and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例18>
 合成例16で得られたポリイミド粉末(16)(0.35g)及び合成例17で得られたポリイミド粉末(17)(1.05g)に、NEP(11.6g)及びγ-BL(5.80g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(21.2g)を加え、40℃で4時間攪拌して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 18>
To the polyimide powder (16) (0.35 g) obtained in Synthesis Example 16 and the polyimide powder (17) (1.05 g) obtained in Synthesis Example 17, NEP (11.6 g) and γ-BL (5. 80 g) was added and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (21.2 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例19>
 合成例16で得られたポリイミド粉末(16)(0.75g)及び合成例8で得られたポリイミド粉末(8)(1.75g)に、NMP(7.80g)及びNEP(13.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(13.7g)、EC(3.90g)及びM1(0.13g)を加え、40℃で6時間攪拌して、液晶配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 19>
NMP (7.80 g) and NEP (13.7 g) were added to the polyimide powder (16) (0.75 g) obtained in Synthesis Example 16 and the polyimide powder (8) (1.75 g) obtained in Synthesis Example 8. And dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (13.7 g), EC (3.90 g) and M1 (0.13 g) were added and stirred at 40 ° C. for 6 hours to obtain a liquid crystal aligning agent (19). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例20>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(1.88g)及び合成例17で得られたポリイミド粉末(17)(0.50g)に、NEP(15.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(7.40g)及びPB(7.40g)を加え、40℃で4時間攪拌して、液晶配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 20>
To the polyamic acid solution (2) (1.88 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 2 and the polyimide powder (17) (0.50 g) obtained in Synthesis Example 17, NEP (15. 7 g) was added and dissolved by stirring at 70 ° C. for 24 hours. BCS (7.40g) and PB (7.40g) were added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (20). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例1>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(9.50g)に、NEP(15.2g)及びBCS(14.9g)を加え、25℃で4時間攪拌して、液晶配向処理剤(21)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
NEP (15.2 g) and BCS (14.9 g) were added to the polyamic acid solution (2) (9.50 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 4 hours. And the liquid-crystal aligning agent (21) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例2>
 合成例7で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(7)(9.00g)に、NEP(14.4g)及びBCS(14.1g)を加え、25℃で4時間攪拌して、液晶配向処理剤(22)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 2>
NEP (14.4 g) and BCS (14.1 g) were added to the polyamic acid solution (7) (9.00 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 7, and the mixture was stirred at 25 ° C. for 4 hours. As a result, a liquid crystal aligning agent (22) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例3>
 合成例3で得られたポリイミド粉末(3)(2.25g)に、NEP(19.4g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(15.9g)を加え、40℃で4時間攪拌して、液晶配向処理剤(23)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 3>
NEP (19.4 g) was added to the polyimide powder (3) (2.25 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (15.9 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (23). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例4>
 合成例8で得られたポリイミド粉末(8)(2.20g)に、NEP(19.0g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(15.5g)を加え、40℃で4時間攪拌して、液晶配向処理剤(24)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 4>
NEP (19.0 g) was added to the polyimide powder (8) (2.20 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (15.5 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (24). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例5>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(7.00g)及び合成例18で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(18)(3.00g)に、NEP(16.0g)及びBCS(15.7g)を加え、25℃で4時間攪拌して、液晶配向処理剤(25)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 5>
Polyamic acid solution (2) (7.00 g) with a resin solid content concentration of 25% by mass obtained in Synthesis Example 2 and a polyamic acid solution (18) (3) with a resin solid content concentration of 25% by mass obtained in Synthesis Example 18 NEP (16.0 g) and BCS (15.7 g) were added to 0.000 g), and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (25). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例6>
 合成例3で得られたポリイミド粉末(3)(1.05g)及び合成例19で得られたポリイミド粉末(19)(1.05g)に、NEP(18.1g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(14.8g)を加え、40℃で4時間攪拌して、液晶配向処理剤(26)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 6>
NEP (18.1 g) is added to the polyimide powder (3) (1.05 g) obtained in Synthesis Example 3 and the polyimide powder (19) (1.05 g) obtained in Synthesis Example 19, and 24 ° C. at 24 ° C. Stir for hours to dissolve. To this solution, PB (14.8 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (26). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例7>
 合成例20で得られたポリイミド粉末(20)(1.00g)及び合成例8で得られたポリイミド粉末(8)(1.00g)に、NEP(17.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(14.1g)を加え、40℃で4時間攪拌して、液晶配向処理剤(27)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<液晶配向処理剤の評価>
 上記した実施例1~20及び比較例1~7でそれぞれ得られた各液晶配向処理剤を用いて、「液晶セルの作製及びプレチルト角の評価(通常セル)」、「電圧保持率の評価(通常セル)」及び「残留電荷の緩和の評価(通常セル)」を行った。なお、実施例4、7、10、13、18でそれぞれ得られた各液晶配向処理剤については、そのインクジェット塗布性の評価も行った。
 これらの評価の結果を以下の表39~表43にまとめて示す。
<Comparative Example 7>
NEP (17.2 g) was added to the polyimide powder (20) (1.00 g) obtained in Synthesis Example 20 and the polyimide powder (8) (1.00 g) obtained in Synthesis Example 8, and 24 ° C. at 24 ° C. Stir for hours to dissolve. To this solution, PB (14.1 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (27). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<Evaluation of liquid crystal aligning agent>
Using each liquid crystal alignment treatment agent obtained in each of Examples 1 to 20 and Comparative Examples 1 to 7, “Preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”, “Evaluation of voltage holding ratio ( "Normal cell)" and "Evaluation of relaxation of residual charge (normal cell)". In addition, about each liquid-crystal aligning agent obtained in Example 4, 7, 10, 13, 18, respectively, the inkjet applicability | paintability was also evaluated.
The results of these evaluations are summarized in Table 39 to Table 43 below.
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
*1:液晶が垂直配向しなかった。
Figure JPOXMLDOC01-appb-T000102
* 1: The liquid crystal was not vertically aligned.
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
*1:液晶が垂直配向しなかったため、測定できなかった。
Figure JPOXMLDOC01-appb-T000105
* 1: Measurement was not possible because the liquid crystal was not vertically aligned.
 上記の結果からわかるように、実施例の液晶配向処理剤は、比較例に比べて、液晶セルに、高温処理及び紫外線照射を行っても、安定なプレチルト角を示した。更には、紫外線照射を行っても、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い。即ち、本発明の液晶配考処理剤は、長時間高温及び光の照射に曝された後でも、安定なプレチルト角が発現できる液晶配向膜となり、加えて、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜となる。 As can be seen from the above results, the liquid crystal alignment treatment agents of the examples showed a stable pretilt angle even when the liquid crystal cell was subjected to high temperature treatment and ultraviolet irradiation, as compared with the comparative example. Furthermore, even if ultraviolet irradiation is performed, the decrease in the voltage holding ratio is suppressed, and the residual charge accumulated by the DC voltage is quickly relaxed. That is, the liquid crystal composition treating agent of the present invention becomes a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time, and in addition, has been exposed to light irradiation for a long time. Even after this, a liquid crystal alignment film is obtained in which the decrease in the voltage holding ratio is suppressed and the residual charge accumulated by the DC voltage is quickly relaxed.
 具体的には、特定重合体(A)と特定重合体(B)とを用いた液晶配向処理剤の実施例と、それらのどちらか一方しか用いていない液晶配向処理剤の実施例との比較、即ち、実施例2と比較例1又は比較例2との比較、実施例3と比較例3又は比較例4との比較である。これら特定重合体(A)のみを用いた比較例1及び比較例3は、対応する実施例に比べて、高温処理及び紫外線照射を行った後のプレチルト角の変化幅が大きく、かつ、これら処理に対して、電圧保持率が大きく低下し、さらに、残留電荷の値も大きくなった。なかでも、特に、電圧保持率の低下が大きかった。また、比較例2及び比較例4では、液晶が垂直に配向しなかった。 Specifically, a comparison between an example of a liquid crystal aligning agent using a specific polymer (A) and a specific polymer (B) and an example of a liquid crystal aligning agent using only one of them. That is, a comparison between Example 2 and Comparative Example 1 or Comparative Example 2, and a comparison between Example 3 and Comparative Example 3 or Comparative Example 4. Comparative Example 1 and Comparative Example 3 using only these specific polymers (A) have a larger range of change in the pretilt angle after high temperature treatment and ultraviolet irradiation compared to the corresponding examples, and these treatments On the other hand, the voltage holding ratio was greatly reduced, and the residual charge value was also increased. In particular, the decrease in the voltage holding ratio was particularly large. In Comparative Examples 2 and 4, the liquid crystal was not aligned vertically.
 さらには、実施例特定重合体(A)と特定重合体(B)とを用いた液晶配向処理剤の実施例と、特定重合体(A)と前記式[1]で示される特定側鎖構造を有する特定側鎖型ジアミン化合物を用いた重合体とを用いた液晶配向処理剤の比較例との比較、即ち、実施例2と比較例5との比較、実施例3と比較例6との比較である。これら比較例は、対応する実施例に比べて、高温処理及び紫外線照射を行った後のプレチルト角の変化幅が大きく、かつ、これら処理に対して、電圧保持率が大きく低下し、さらに、残留電荷の値も大きくなった。特に、電圧保持率の低下と残留電荷の値が大きかった。 Furthermore, Examples of liquid crystal alignment treatment agents using Example specific polymer (A) and specific polymer (B), specific polymer (A) and specific side chain structure represented by the above formula [1] Comparison with a comparative example of a liquid crystal aligning agent using a polymer using a specific side chain type diamine compound having a difference, that is, a comparison between Example 2 and Comparative Example 5, Example 3 and Comparative Example 6 It is a comparison. In these comparative examples, the change width of the pretilt angle after performing high temperature treatment and ultraviolet irradiation is larger than that of the corresponding examples, and the voltage holding ratio is greatly reduced with respect to these treatments. The charge value also increased. In particular, the decrease in voltage holding ratio and the value of residual charge were large.
 加えて、特定重合体(A)と特定重合体(B)とを用いた液晶配向処理剤の実施例と、従来型の側鎖構造を有する重合体と特定重合体(B)とを用いた液晶配向処理剤の比較例との比較、即ち、実施例3と比較例7との比較である。この比較例7は、実施例3に比べて、高温処理及び紫外線照射を行った後のプレチルト角の変化幅が大きく、かつ、これら処理に対して、電圧保持率が大きく低下し、さらに、残留電荷の値も大きくなった。特に、紫外線照射を行った後のプレチルト角の変化幅が大きかった。 In addition, an example of a liquid crystal aligning agent using the specific polymer (A) and the specific polymer (B), a polymer having a conventional side chain structure, and the specific polymer (B) were used. It is a comparison with a comparative example of a liquid crystal aligning agent, that is, a comparison between Example 3 and Comparative Example 7. Compared with Example 3, the comparative example 7 has a large change width of the pretilt angle after the high temperature treatment and the ultraviolet irradiation, and the voltage holding ratio is greatly reduced with respect to these treatments. The charge value also increased. In particular, the change width of the pretilt angle after the ultraviolet irradiation was large.
 本発明の液晶配向処理剤は、長時間高温及び光の照射に曝された後でも、安定なプレチルト角が発現できる液晶配向膜を提供することができる。加えて、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を提供することができる。加えて、上記の液晶配向膜を有する液晶表示素子、上記の液晶配向膜を提供することのできる液晶配向処理剤を提供することができる。 The liquid crystal alignment treatment agent of the present invention can provide a liquid crystal alignment film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time. In addition, it is possible to provide a liquid crystal alignment film that suppresses a decrease in the voltage holding ratio even after being exposed to light irradiation for a long time and quickly relaxes residual charges accumulated by a DC voltage. In addition, the liquid crystal display element which has said liquid crystal aligning film, and the liquid-crystal aligning agent which can provide said liquid crystal aligning film can be provided.
 よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。 Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.
 さらに、本発明の液晶配向処理剤から得られた液晶配向膜は、液晶表示素子を作製する際に、紫外線を照射する必要がある液晶表示素子に対しても有用である。即ち、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子、さらには、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方で重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に対しても有用である。
 なお、2013年9月3日に出願された日本特許出願2013-182352号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Furthermore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element. That is, a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. A liquid crystal display element manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes, and further comprising a liquid crystal layer between a pair of substrates provided with electrodes, A liquid crystal produced through a step of placing a liquid crystal alignment film containing a polymerizable group that polymerizes at least one of active energy rays and heat between substrates and polymerizing the polymerizable group while applying a voltage between the electrodes. It is also useful for display elements.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-182352 filed on September 3, 2013 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (22)

  1.  下記の(A)成分及び(B)成分を含有することを特徴とする液晶配向処理剤。
    (A)成分:下記の式[1]で示される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体。
    (B)成分:下記の式[1]で示される構造を有するジアミンを含まないジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示す。Yは単結合又は(CH-(bは1~15の整数である)を示す。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示す。Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよ。nは0~4の整数を示す。Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す)。
    The liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
    Component (A): at least one selected from the group consisting of a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure represented by the following formula [1] and a tetracarboxylic acid component and a polyimide. Polymer.
    (B) component: At least 1 sort (s) chosen from the group which consists of the polyimide precursor obtained by making the diamine component and tetracarboxylic acid component which do not contain the diamine which has a structure shown by following formula [1] react, and a polyimide. Polymer.
    Figure JPOXMLDOC01-appb-C000001
    (Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, where Y 2 represents a single bond. Or (CH 2 ) b — (b is an integer of 1 to 15) Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— Y 4 represents a divalent organic group having a carbon number of 17 to 51 having a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine atom having 1 to 3 carbon atoms optionally substituted with-containing alkoxyl group or a fluorine atom .Y 5 is a benzene ring, cyclohexenone A divalent cyclic group selected from an aromatic ring and a heterocyclic ring, and any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. 3 may be substituted with a fluorine-containing alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4. Y 6 is an alkyl group having 1 to 18 carbon atoms, A fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
  2.  前記式[1]で示される構造を有するジアミンが、下記の式[1a]で表される請求項1に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000002
    (Y、Y、Y、Y、Y、n、Y及びmは前記と同じ意味を表す。)。
    The liquid crystal aligning agent according to claim 1, wherein the diamine having the structure represented by the formula [1] is represented by the following formula [1a].
    Figure JPOXMLDOC01-appb-C000002
    (Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , n, Y 6 and m have the same meaning as described above).
  3.  前記(B)成分が、カルボキシル基(COOH基)及びヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミンを含むジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である請求項1又は2に記載の液晶配向処理剤。 The polyimide precursor obtained by reacting a diamine component containing a diamine having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) with a tetracarboxylic acid component. The liquid-crystal aligning agent of Claim 1 or 2 which is at least 1 sort (s) of polymer chosen from the group which consists of a body and a polyimide.
  4.  前記(A)成分が、さらに、カルボキシル基(COOH基)及びヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミンを含むジアミン成分に用いた重合体である請求項1、2又は3に記載の液晶配向処理剤。 The polymer (A) is a polymer used for a diamine component further comprising a diamine having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group). Or the liquid-crystal aligning agent of 3.
  5.  前記カルボキシル基及びヒドロキシル基から選ばれる少なくとも1種の置換基を有するジアミンが、下記の式[2a]で表される請求項3又は4に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (Aは、下記の式[2a-1]及び式[2a-2]から選ばれる少なくとも1つの置換基を示し、m1は1~4の整数を示す)。
    Figure JPOXMLDOC01-appb-C000004
    (dは0~4の整数を示し、eは0~4の整数を示す)。
    The liquid crystal aligning agent according to claim 3 or 4, wherein the diamine having at least one substituent selected from the carboxyl group and the hydroxyl group is represented by the following formula [2a].
    Figure JPOXMLDOC01-appb-C000003
    (A 1 represents at least one substituent selected from the following formulas [2a-1] and [2a-2], and m1 represents an integer of 1 to 4).
    Figure JPOXMLDOC01-appb-C000004
    (D represents an integer of 0 to 4, and e represents an integer of 0 to 4).
  6.  前記(A)成分及び(B)成分の重合体が、下記の式[3a]で示されるジアミンをジアミン成分に用いた重合体である請求項1~5のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000005
    (Bは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-又はN(CH)CO-を示す。Bは単結合、炭素数1~20アルキレン、非芳香族環又は芳香族環を示す。Bは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、N(CH)CO-、又は-O(CHm2-(m2は1~5の整数である)を示す。Bは窒素含有複素環を示す。n1は1~4の整数を示し、n1が2以上の場合、-B-B-B-Bは互いに同一でも異なっていてもよい)。
    6. The liquid crystal alignment according to claim 1, wherein the polymer of the component (A) and the component (B) is a polymer using a diamine represented by the following formula [3a] as a diamine component. Processing agent.
    Figure JPOXMLDOC01-appb-C000005
    (B 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO— B 2 represents a single bond, alkylene having 1 to 20 carbon atoms, non-aromatic ring or aromatic ring B 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, N (CH 3 ) CO—, or —O (CH 2 ) m2 — (where m2 is 1 to 5) B 4 represents a nitrogen-containing heterocyclic ring, n1 represents an integer of 1 to 4, and when n1 is 2 or more, -B 1 -B 2 -B 3 -B 4 may be the same as each other May be different).
  7.  前記式[3a]中のBが、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCO-又はCON(CH)-である請求項6に記載の液晶配向処理剤。 The B 1 in the formula [3a] is —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO— or CON (CH 3 ) —. Liquid crystal alignment treatment agent.
  8.  前記式[3a]中のBが、単結合、炭素数1~5のアルキレン、シクロヘキサン環又はベンゼン環である請求項6又は7に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 6 or 7, wherein B 2 in the formula [3a] is a single bond, an alkylene having 1 to 5 carbon atoms, a cyclohexane ring or a benzene ring.
  9.  前記式[3a]中のBが、単結合、-O-、-OCO-又はO(CH-(m2は1~5の整数である)である請求項6~8のいずれか一項に記載の液晶配向処理剤。 B 3 in the formula [3a] is a single bond, —O—, —OCO—, or O (CH 2 ) 2 — (m2 is an integer of 1 to 5). The liquid crystal aligning agent according to one item.
  10.  前記式[3a]中のBが、ピロール環、イミダゾール環、ピラゾール環、ピリジン環又はピリミジン環である請求項6~9のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 6 to 9, wherein B 4 in the formula [3a] is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring or a pyrimidine ring.
  11.  前記式[3a]中のBが、-CONH-を示し、Bが炭素数1~5のアルキレンを示し、Bが単結合を示し、Bがイミダゾール環又はピリジン環を示し、n1が1である請求項6に記載の液晶配向処理剤。 B 1 in the formula [3a] represents —CONH—, B 2 represents alkylene having 1 to 5 carbon atoms, B 3 represents a single bond, B 4 represents an imidazole ring or a pyridine ring, and n 1 The liquid crystal aligning agent according to claim 6, wherein is 1.
  12.  前記(A)成分及び(B)成分の少なくとも一方におけるテトラカルボン酸成分が、下記の式[4]で示されるテトラカルボン酸二無水物を含む請求項1~11のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000006
    (Zは下記の式[4a]~式[4k]から選ばれる基である)。
    Figure JPOXMLDOC01-appb-C000007
    (Z~Zはそれぞれ独立して、素原子、メチル基、塩素原子又はベンゼン環を示し、Z、Zはそれぞれ独立して、水素原子又はメチル基を示す。)
    The tetracarboxylic acid component in at least one of the component (A) and the component (B) contains a tetracarboxylic dianhydride represented by the following formula [4]. Liquid crystal aligning agent.
    Figure JPOXMLDOC01-appb-C000006
    (Z 1 is a group selected from the following formulas [4a] to [4k]).
    Figure JPOXMLDOC01-appb-C000007
    (Z 2 to Z 5 each independently represents an elementary atom, a methyl group, a chlorine atom or a benzene ring, and Z 6 and Z 7 each independently represents a hydrogen atom or a methyl group.)
  13.  N-メチル-2-ピロリドン、N-エチル-2-ピロリドン及びγ-ブチロラクトンのうち少なくとも1種の溶媒を含有する請求項1~12のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 12, comprising at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone.
  14.  下記の式[D-1]~式[D-3]から選ばれる少なくとも1種の溶媒を含有する請求項1~13のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000008
    (Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す)。
    The liquid crystal aligning agent according to any one of claims 1 to 13, comprising at least one solvent selected from the following formulas [D-1] to [D-3].
    Figure JPOXMLDOC01-appb-C000008
    (D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms).
  15.  1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル及びジプロピレングリコールジメチルエーテルから選ばれる少なくとも1種の溶媒を含有する請求項1~14のいずれか一項に記載の液晶配向処理剤。 Containing at least one solvent selected from 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether and dipropylene glycol dimethyl ether; 14. The liquid crystal aligning agent as described in any one of 14.
  16.  液晶配向処理剤中に、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、及び重合性不飽和結合を有する架橋性化合物から選ばれる少なくとも1種の架橋性化合物を含む請求項1~15のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent has at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. The liquid crystal aligning agent according to any one of claims 1 to 15, comprising at least one crosslinkable compound selected from a crosslinkable compound and a crosslinkable compound having a polymerizable unsaturated bond.
  17.  請求項1~16のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of claims 1 to 16.
  18.  請求項1~16のいずれか一項に記載の液晶配向処理剤をインクジェット法により印刷して得られる液晶配向膜。 A liquid crystal alignment film obtained by printing the liquid crystal aligning agent according to any one of claims 1 to 16 by an ink jet method.
  19.  請求項17又は18に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 17 or 18.
  20.  電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる請求項17又は18に記載の液晶配向膜。 A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and between the electrodes 19. The liquid crystal alignment film according to claim 17, wherein the liquid crystal alignment film is used in a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage.
  21.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられる請求項17又は18に記載の液晶配向膜。 A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; The liquid crystal alignment film according to claim 17 or 18, which is used for a liquid crystal display element produced through a step of polymerizing the polymerizable group while applying a voltage therebetween.
  22.  請求項20又は21に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 20 or 21.
PCT/JP2014/073041 2013-09-03 2014-09-02 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element WO2015033922A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015535478A JP6561834B2 (en) 2013-09-03 2014-09-02 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201480060032.9A CN105683829B (en) 2013-09-03 2014-09-02 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
KR1020167008593A KR102234876B1 (en) 2013-09-03 2014-09-02 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013182352 2013-09-03
JP2013-182352 2013-09-03

Publications (1)

Publication Number Publication Date
WO2015033922A1 true WO2015033922A1 (en) 2015-03-12

Family

ID=52628396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073041 WO2015033922A1 (en) 2013-09-03 2014-09-02 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element

Country Status (5)

Country Link
JP (1) JP6561834B2 (en)
KR (1) KR102234876B1 (en)
CN (1) CN105683829B (en)
TW (1) TWI628232B (en)
WO (1) WO2015033922A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104635A1 (en) * 2014-12-25 2016-06-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2016104636A1 (en) * 2014-12-25 2016-06-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2019203037A1 (en) * 2018-04-16 2019-10-24 コニカミノルタ株式会社 Polymer blend composition and polymer film
CN111386493A (en) * 2017-11-21 2020-07-07 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
JP7552582B2 (en) 2019-03-12 2024-09-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180003422A (en) * 2016-06-30 2018-01-09 제이엔씨 주식회사 Liquid crystal aligning agents for forming photo-aligning liquid crystal alignment layer, liquid crystal alignment layers and liquid crystal display devices using the same
CN109643038B (en) * 2016-08-24 2022-01-25 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN110178076B (en) * 2016-11-15 2022-04-19 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI767870B (en) * 2017-03-02 2022-06-11 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN110520789A (en) * 2017-03-31 2019-11-29 夏普株式会社 Liquid crystal display device, the manufacturing method of liquid crystal display device, electronic equipment
JP7256472B2 (en) * 2017-10-25 2023-04-12 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099937A1 (en) * 2011-12-28 2013-07-04 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment membrane, liquid crystal display element, and method for manufacturing liquid crystal display element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762551B2 (en) 1989-04-25 1998-06-04 東レ株式会社 Liquid crystal alignment film and liquid crystal display device
JP3201172B2 (en) 1994-09-08 2001-08-20 ジェイエスアール株式会社 Liquid crystal alignment agent
JP4085206B2 (en) 1996-02-15 2008-05-14 日産化学工業株式会社 Diaminobenzene derivative, polyimide and liquid crystal alignment film using the same
JP3613421B2 (en) 1996-05-31 2005-01-26 Jsr株式会社 Liquid crystal alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP3931581B2 (en) * 2001-04-26 2007-06-20 日立電線株式会社 Polyimide varnish for liquid crystal alignment film
JP4844728B2 (en) * 2006-05-15 2011-12-28 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
TWI367233B (en) * 2008-02-01 2012-07-01 Liquid crystal alignment solution
KR101656541B1 (en) * 2008-12-26 2016-09-09 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN103782231B (en) * 2011-09-08 2017-05-10 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099937A1 (en) * 2011-12-28 2013-07-04 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment membrane, liquid crystal display element, and method for manufacturing liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104635A1 (en) * 2014-12-25 2016-06-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2016104636A1 (en) * 2014-12-25 2016-06-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN111386493A (en) * 2017-11-21 2020-07-07 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
WO2019203037A1 (en) * 2018-04-16 2019-10-24 コニカミノルタ株式会社 Polymer blend composition and polymer film
JPWO2019203037A1 (en) * 2018-04-16 2021-04-30 コニカミノルタ株式会社 Polymer blend composition and polymer film
JP7552582B2 (en) 2019-03-12 2024-09-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same

Also Published As

Publication number Publication date
KR102234876B1 (en) 2021-03-31
JPWO2015033922A1 (en) 2017-03-02
KR20160052632A (en) 2016-05-12
JP6561834B2 (en) 2019-08-21
TW201514248A (en) 2015-04-16
CN105683829A (en) 2016-06-15
CN105683829B (en) 2019-08-20
TWI628232B (en) 2018-07-01

Similar Documents

Publication Publication Date Title
JP6561834B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102224531B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2020056034A (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP6497520B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6501073B2 (en) Liquid crystal aligning agent and liquid crystal display device using the same
JP6668754B2 (en) Composition, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6299977B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6281567B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014061781A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6281568B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014119682A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6102752B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6575770B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6683955B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008593

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14842032

Country of ref document: EP

Kind code of ref document: A1