WO2015033291A1 - Module photovoltaique semi-transparent et procédé d'obtention correspondant - Google Patents

Module photovoltaique semi-transparent et procédé d'obtention correspondant Download PDF

Info

Publication number
WO2015033291A1
WO2015033291A1 PCT/IB2014/064254 IB2014064254W WO2015033291A1 WO 2015033291 A1 WO2015033291 A1 WO 2015033291A1 IB 2014064254 W IB2014064254 W IB 2014064254W WO 2015033291 A1 WO2015033291 A1 WO 2015033291A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
holes
substrate
resin
face electrode
Prior art date
Application number
PCT/IB2014/064254
Other languages
English (en)
Inventor
Nicolas Karst
Pascal Faucherand
Simon Perraud
Frédéric Roux
Pierre-Yves Thoulon
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Crosslux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Crosslux filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to CN201480047697.6A priority Critical patent/CN105531831A/zh
Priority to ES14767142.4T priority patent/ES2687960T3/es
Priority to EP14767142.4A priority patent/EP3042398B1/fr
Priority to US14/914,507 priority patent/US20160211396A1/en
Publication of WO2015033291A1 publication Critical patent/WO2015033291A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of photovoltaic solar energy and more particularly to thin-film photovoltaic modules.
  • a “thin layer” will be a layer having a thickness of less than 5 ⁇ .
  • a photovoltaic module conventionally comprises a plurality of photovoltaic cells placed in series.
  • a thin-film photovoltaic cell has the structure of a stack successively comprising a transparent or non-transparent substrate, a back-side electrode (for example made of metal or a transparent conductive oxide), a layer of absorber material (for example a layer of CIGS, CZTS, hydrogenated amorphous silicon, hydrogenated microcrystalline silicon, cadmium telluride), and finally an electrode on the front face (for example metal or a transparent conductive oxide).
  • a buffer layer between the absorber and the front face electrode can be used.
  • serialization of several photovoltaic cells can be obtained by etching and deposition steps performed on the same substrate.
  • This monolithic interconnection of photovoltaic cells e thin layers is carried out in three stages, conventionally called P1, P2 and P3,
  • the second step (P2) makes it possible to connect the electrode on the front face of a given lens to the electrode on the rear face of the adjacent cell.
  • the third step (P3) consists of electrically isolating two adjacent cells at the front face electrode.
  • the document US 2010/0126559 describes a modulate!
  • the aperture obtained during the etching step P3 has a width adapted to the desired transparency for the final photovoltaic module. This opening is made through the absorbing layer and the front face electrode. This width may, for example, vary between 5 and 0% of the width of a photovoltaic cell.
  • the resulting module can transmit between about 5 and 50% of the incident light.
  • the openings made in the photovoltaic module are in the form of a line. They are then relatively visible and do not allow a uniform transmission of light. Indeed, so that the light is transmitted in a uniform way and that the whole of the module appear partially transparent, s! It is necessary that structures allowing light to pass are indistinguishable.
  • Document 68-2472808 proposes to produce a semitransparent photovoltaic cell from a stack comprising a substrate and a transparent rear face electrode and. an absorbent layer and an opaque front electrode.
  • Small holes are formed through the face electrode0. before and the active layer opaque, so as to allow the transmission of light through these holes.
  • an etching liquid is deposited on the surface of the cells photovoltaic by means of an inkjet head, so as to allow localized etching of at least the first layer of the stack
  • the stack consisting of layers of materials having a different chemical nature, i! It is necessary to successively use different etching liquids to allow the formation of holes on the desired depth.
  • US-7795067 discloses semi-transparent photovoltaic cells which are also obtained from a layer erapiiement in which a plurality of holes is made.
  • They can be made by mechanical means, for example by drilling or cutting.
  • the object of the invention is to overcome these drawbacks by proposing a method of obtaining a semi-transparent photovoltaic module which is of a simplified embodiment while making it possible to obtain a photovoltaic module ensuring a uniform transmissio of light and a continuous vision, without the risk of short-circuiting.
  • the invention also relates to a method for obtaining a photovoltaic module comprising a plurality of photovoitic cells in a thin-film structure, comprising the following steps;
  • a step of producing an intermediate product by depositing a layer of a conductive material on the assembly of a substrate, forming an absorbent layer on this layer with a conductive material, and forming holes through the stack constituted by the layer of a conductive material and the absorbent layer, the layer of conductive material forming the electrode on the rear face,
  • the holes have a cross section whose area is between 0.005 mm 2 and 0.2 mm 2 and the total area occupied by the holes is between 5% and 95% of the total surface of the substrate.
  • holes can be made through a mechanical process (including drilling) or chemical (including chemical etching, o possibly involving the use of a mask), or by any other method.
  • the step of depositing an insulating and iranspareni material in the intermediate product holes comprises the following operations:
  • the resin is an o-negative photoresist which is first subjected to an annealing step before being insoluble through the substrate, the layer of conductive material forming a mask.
  • the method comprises a step of depositing a buffer layer prior to deposition of the layer forming the front face electrode.
  • the crosslinked resin can be removed by the action of a solvent
  • the invention also relates to a semi-transparent photovoltaic module comprising a plurality of photovoltaic cells connected in series on a common substrate and comprising a front face electrode and a rear face electrode, in contact with said substrate and spaced from the front face by at least one absorbent layer, wherein the stack constituted by the back-face electrode and the absorbent layer comprises zones that are either empty or made of an insulating and transparent material, the front-face electrode forming a continuous layer.
  • the insulating material is a cross-linked transparent resin.
  • These zones have a cross section whose surface is between 0.005 mm 2 and 0.2 mm 2 and represent approximately between 5% and 95% of the total surface of the substrate,
  • the module may also include a buffer layer between the absorbent layer and the front face electrode.
  • the buffer layer is a continuous layer.
  • the rear face electrode is made of a metallic material, in particular molybdenum, or transparent conductive oxide, in particular a zinc oxide doped with aluminum, or any other conductive material.
  • the invention also relates to an intermediate product for obtaining a photovoltaic module according to invention, constituted, on a substrate, by a stack formed of a layer of conductive material and an absorbent layer and having holes therethrough. .
  • Figure 1 shows a substrate 1 which can be made of various transparent materials, typically glass or polymer.
  • the substrate 1 can be flexible or rigid.
  • this substrate is made of: sodocaic glass whose thickness is a few millimeters e in particular between 1 and 4 mm.
  • a layer of a conductive material 2 forming a rear face electrode for the different cells of the pnotovoltaic module that will be obtained by the method according to the invention.
  • This layer is for example made of a metal material and in particular molybdenum and its thickness is between 100 nm and 2 pm and in particular equal to 1 pm.
  • the deposition of the molybdenum layer may in particular be carried out by sputtering.
  • This layer 2 may also be made of a transparent conductive oxide, in particular a zinc oxide doped with aluminum.
  • This absorbent layer may be a layer of CIGS, CZTS, hydrogenated amorphous silicon, hydrogenated siliconized silicon, cadmium telluride.
  • the thickness of this absorbent layer is typically between 100 nm and 5 ⁇ m.
  • this absorbent layer is a thin layer of CIGS or CZTS, with a thickness of between 1 ⁇ m and 2 ⁇ m.
  • this absorbent layer may be formed by deposition by evaporation from elementary sources, or by a process sequential, as is well known in the field of thin-layer photovo-tics cells of CIGS or GZTS.
  • precursors are provided in the form of a layer, which will lead to the formation of the absorbent layer in CIGS or GZTS.
  • the precursors are preferably metals (Cu, in, Ga in the case of CIGS, Cu, Zn, Sn in the case of GZTS), but can also be compounds of metals and selenium, or compounds of metals and sulfur.
  • a thin layer of selenium or sulfur may be deposited on the precursor layer.
  • These precursors can be provided by various deposition methods. It may be a vacuum process, such as evaporation or cathodic sputtering or an off-vacuum process, such as doctor blading, spin coating, screen printing or electrodeposition.
  • a vacuum process such as evaporation or cathodic sputtering
  • an off-vacuum process such as doctor blading, spin coating, screen printing or electrodeposition.
  • At least one annealing step is carried out so as to convert the precursors into an absorber material, of the CIGS or GZTS type, by means of the addition of selenium or sulfur.
  • FIG. 2 illustrates another step of the method in which holes 4 are made in the stack constituted by the layer 2 made of conductive material and the absorbent layer 3,
  • Each hole has an area of between 0.005 mm 2 and 0.2 mm 2 and the total area occupied by the holes is between 5% and 95% of the total area of the substrate.
  • holes 4 can be made by known methods, such as those described in US-7,795,067 or G8-24728GS. These holes can be made by any other type of process.
  • Holes 4 can also be made by a method using a mask.
  • This mask may be deposited on the substrate 2 before the deposition of the layers 2 and 3 and then forms a positive stencil of the holes 4, After the deposition of the layers 2 and 3, the mask is removed, in particular by chemical etching, driving with it the part of the thin layers of which if is covered, those deposited directly on the substrate remaining in place,
  • Figure 2 shows that these holes are not through. In other words, they do not pass through the substrate which remains continuous after the formation of the holes.
  • the product illustrated in FIG. 2 constitutes an intermediate product which can be produced independently of the steps of the process which are implemented later.
  • FIGS. 3 to 7 illustrate the other steps of the method that make it possible to obtain a semi-transparent photovoltaic module.
  • a resin layer 5 is deposited on the entire substrate so as to fill the holes 4 and cover the absorbent layer 3.
  • the resin used is a negative photosensitive resin, that is to say a photosensitive resin for which the portion exposed to light becomes insoluble to the developer and where the unexposed portion remains light.
  • a resin of this type is mainly composed of three components: an epoxy resin, an organic solvent for solubilizing the resin and adjusting the viscosity of the formulation and a photoinitiator for initiating the cationic polymerization.
  • the resin marketed by Microchem under the name SU-8 may be used.
  • This layer 5 may for example be deposited by centrifugal coating or by strip casting.
  • the thickness from the substrate 1 will typically be between 1 ⁇ m and 100 ⁇ m.
  • the thickness of the layer 5 will be greater than the thickness of the stack formed by the layer 2 and the layer 3, as shown in FIG. 3.
  • the thickness of the layer 5 is greater than that of the layer 2.
  • the annealing temperature is between 25 and 150 ° C and preferably is 90 °.
  • the duration of this annealing step is between 1 and 60 minutes and preferably equal to 30 minutes.
  • the resin is then insulated through the substrate 1, thanks to a lamp whose wavelength is between 350 and 400 nm and, preferably, at 365 nm.
  • the layer 2 is opaque, it serves as a mask and thus prevents the light from reaching the resin present on the layer 3.
  • couch 3 is also opaque since it absorbs light radiation.
  • Figure 4 illustrates another step in which the resin present on the absorbent layer 3 is removed with the aid of a suitable solvent.
  • this solvent may be PGfVlEA (polypropylene-glycoi-methyl-ether-acetate).
  • FIG. 4 illustrates the stack obtained after removal of the non-crosslinked resin.
  • This product thus has zones 8 made of resin which is an insulating and transparent material.
  • zones 6 project from the plane defined by the absorbent layer 3.
  • the part of the zones 6 situated above the plane has a thickness of between 100 nm and 100 ⁇ m, depending on the thickness of the layer 5.
  • FIG. 5 illustrates another process step in which the part of the zones 8 situated above the absorbent layer has been eliminated, for example by mechanical polishing. It makes it possible to obtain zones 9 made of a transparent and insulating material which thus fills the holes 4. This step is optional.
  • a buffer layer that is to say a layer composed of an n-type semiconductor material.
  • the buffer layer 7 is a very thin layer whose thickness is generally between 5 nm and 100 nm and which is made of n-type semiconductor material with large bandgap width. It is therefore a layer with a high rate of optical transmission in the visible.
  • the material forming layer 7 may be based on cadmium sulphide (CdS), or zinc sulphide (ZnS).
  • This buffer layer may be deposited in particular by chemical bath, sputtering or evaporation.
  • It is preferably low zinc sulfide (ZnS) and has a thickness preferably between 5 and 100 nm.
  • This buffer layer 7 is optional.
  • a transparent electrode 8 is deposited on its buffer layer 7, or directly on the absorbent layer if the buffer layer is omitted.
  • the electrode 8 is generally made of a transparent conductive oxide and has a high optical transmission rate in the visible.
  • nO doped with aluminum It is preferably based on 2nO doped with aluminum and has a thickness preferably between 100 nm and 1 pm.
  • a layer of a transparent material may be deposited between layers 7 and 8. It is preferably made of ZnO.
  • the photovoltaic cell illustrated in FIG. 6 is then obtained. Thanks to the presence of the zones 9 made of a transparent material and to an appropriate distribution of these zones, this photovoltaic cell is semi-transparent.
  • the layers 7 and 8 are continuous and flat, since the zones 9 are at the same level as the surface of the layer 3.
  • the presence of an insulating material in the holes 4 makes it possible to prevent, after formation of the holes, the layer 7 or the layer 8 coming into contact with the electrode 2 on the rear face. This makes it possible to avoid any short circuit between the layer 7 or the layer 8 and the electrode 2 on the rear face, such short circuits greatly degrading the performance of the photovoltaic module.
  • the etching step P1 occurs after the deposition of the layer 2, the step P2 after the deposition of the layer 3 and the layer 7 and finally, the step P3 after the deposition of the layer 8.
  • the resin used in the context of the process according to the invention is very transparent, by ensuring a transmission of light, in particular greater than 90%, it can be maintained in the photovoltaic module, while allowing excellent transmission of light.
  • This removal of the cross-linked resin will be carried out using a solvent such as NMP (N-ethyl-2-pyrrolidinone). It is first necessary to provide an access of the solvent to the zones 9 made of resin.
  • NMP N-ethyl-2-pyrrolidinone
  • the excess resin located in the proionage of the holes above the level of its absorbent layer 3, that is to say of to be placed in the case illustrated in Figure 4.
  • the excess resin causes a localized rupture of the layers 7 and 8 during the deposition thereof, which allows the solvent to reach resin.
  • the removal of the cross-linked resin present in the holes 4 also causes the loss of the layers 7 and S located in the projection of the holes.
  • the stack obtained is illustrated in FIG. 7.
  • its holes 4 are practiced in the entirety of the stack and not only in the layers 2 and 3,
  • areas 9 are empty areas or still devoid of any material, the air present constituting an insulator.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un module photovoltaïque comportant une pluralité de cellules photovoltaïques dans une structure en couchés minces, comprenant tes étapes suivantes : - une étape de réalisation de réalisation d'un produit intermédiaire par le dépôt sur l'ensemble d'un substrat (i) d'une couche d'un matériau conducteur (2), fa formation d'une couché absorbante (3) sur cette couche d'un matériau conducteur (2), et la réalisation de trous (4) à travers l'empilement constitué par la couche (2) d'un matériau conducteur et la couche absorbante (3), la couche (2) en matériau conducteur formant l'électrode en face arrière, - une étape de dépôt d'un matériau (5) isolant et transparent dans les trous (4) du produit intermédiaire, la couche absorbante {3} étant dépourvue de ce matériau, et - une étape de dépôt d'une couche (8) formant l'électrode de face avant, sur l'ensemble du produit obtenu.

Description

MODULE PHQTQVOLTA 3UE SEMI-TRANSPARENT ET PROCEDE D'OBTENTION CORRESPONDANT.
L'invention concerne lé domaine technique de l'énergie solaire photovoltaïque et plus particulièrement les modules photovoltaïques en couches minces.
Dans le cadre de la présente demande,, une « couche mince » sera une couche présentant une épaisseur inférieure à 5μηΐ.
Pour faciliter{'intégration dés panneau photovoitaïques dan les bâtiments et optimiser la surface qu'ils occupent, il est souhaitable de dispose de panneaux photovoitaïques partiellement transparents. En effet, ils peuvent alors remplacer une partie du vitrage du bâtiment dans lequel ils sont intégrés.
Un module photovoltaïque comprend classiquement plusieurs ceiîules phoiovoltaïques mises en série.
Une cellule photovoltaïque en couches minces présente la structure d'un empilement comprenant successivement un substrat transparent ou non, un électrode en face arrière (par exemple en métal ou en u oxyde transparent conducteur), une couche de matériau absorbeur (par exemple une couche de CIGS, CZTS, silicium amorphe hydrogéné, silicium microcristailin hydrogéné, tellure de cadmium), et enfin une électrode en face avant (par exemple en métal ou en un oxyde transparent conducteur). Dans le cas notamment d'un absorbeur en CIGS ou CZTS, une couche tampon entre {'absorbeur et l'électrode en face avant peut être utilisée.
Par ailleurs, la mise en série de plusieurs cellules phoiovoltaïques peut être obtenue par des étapes de gravure et de dépô réalisées sur un même substrat. Cette interconnexion monolithique des cellules photovoltaïques e couches minces est réalisée en trois étapes, classiquement dénommées P1 , P2 et P3,
ta première étape (PI) assure l'isolation électrique de deux cellules adjacentes au niveau de étectrode en face arrière des cellules photovoltaïques. La deuxième étape (P2) permet de connecter l'électrode en face avant d'une ceiluie donnée à l'électrode en face arrière de ia cellule adjacente.
La troisième étape (P3) consiste à isoler électriquement deu 5 cellules adjacentes au niveau de l'électrode en face avant.
Plusieurs solutions ont déjà été proposées pour réaliser un une cellule' p otovoitaïque semi-transparente ou un module photovoitaïque semi-transparent.
Ainsi, le document US 2010/0126559 décrit un modulé ]!.! photovoitaïque du type supersîrat, dans laquelle le substrat et l'électrode en face arrière sont transparents, Par ailleurs, l'ouverture obtenue lors de l'étape de gravure P3 présente une largeur adaptée à la transparence souhaitée pour te module photovoitaïque final. Cette ouverture est réalisée à travers la couche absorbante et l'électrode de face avant. Cette largeur peut par s 5 exemple varier entre 5 et 0% d la largeur d'une ceiluie photovoitaïque.
De façon générale* le module photovoitaïque obtenu peut transmettre entre environ 5 et 50% de la lumière incidente.
Cette solution présente cependant des inconvénients.
En particulier, les ouvertures réalisées dans le module0 photovoitaïque sont en forme de ligné. Elles sont alors relativement visibles et ne permettent pas une transmission uniforme de la lumière. En effet, pour que la lumière soit transmise de manière uniforme et que l'ensemble du module apparaiss partiellement transparent, s! est nécessaire que les structures laissant passer la lumière soit indiscernables.
5 Le document 68-2472808 propose de réaliser une cellule photovoitaïque semi-transparente à partir d'un empilement comprenant un substrat et une électrode de face arrière transparents et. une couche absorbante et une électrode de fac avant opaques.
Des petits trous sont formés à travers l'électrode de face0. avant et la couche active opaques, de façon à permettre la transmission de lumière à travers ces trous.
Ces trous sont obtenus par des opérations de gravure humide. Ainsi, un liquide de gravure est déposé sur la surface des cellules phoiovoltaïques par l'intermédiaire d'une tête â jet d'encre, de façon à permettre une gravure localisée d'au moins la première couche de l'empilement
L'empilement étant constitué de couches de matériaux présentant une nature chimique différente, i! est nécessaire d'utiliser successivemen différents liquides de gravure pour permettre la formation de trous sur la profondeur souhaitée.
Le procédé décrit dans ce document permet d'éviter la formation de lignes qui sont tacitement visibles.
Cependant, l'utilisation de différents liquides de gravure rend ce procédé relativement complexe. Des problèmes de compatibilité entre les matériaux de l'empilement et les liquides de gravure utilisés peuvent également survenir.
Le document US-7795067 décrit des cellules photovoltaïques semi-transparentes qui sont également obtenues à partir d'un erapiiement de couches dans lequel est réalisée une pluralité de trous.
Contrairement aux cellules décrites dans le document GB~24726Q8, ces trous traversent complètement l'empilement.
Ils peuvent être réalisés par u moyen mécanique, par exemple par perçage ou découpage.
Ces procédés mécaniques présentent l'inconvénient, comme dans la plupart des procédés engendrant un retrait de matière, d'amener à la formation de courts-circuits localisés, du fait de la présence de résidus de matière au sein des trous ou de la formation de « lambeaux » de matière qui ne se sont pas totalement détachés et qui réalisent un pont électrique (dans le cas d'un matériau conducteur électrique comme le molybdène ou Poxyde transparent conducteur) entre l'électrode supérieure et l'électrode inférieure par exemple.
L'invention a pour objet de pallier ces inconvénients en proposant un procédé d'obtention d'un modul photovoltaïque semi- transparent qui est d'une réaiisation simplifiée tout en permettant d'obtenir un module photovoltaïque assurant une transmissio uniforme de la lumière et une vision continue, sans risque de courts-circuiîs. L'invention concerne également un procédé d'obtention d'un module phoîovoltaïque comportant une pluralité de cellules photovoîtaïques dans une structure en couches minces, comprenant les étapes suivantes ;
- une étape de réalisation d'un produit intermédiaire par le dépôt sur 5 l'ensemble d'un substrat d'une couche d'un matériau conducteur, la formatio d'une couche absorbante sur cette couche d'un matériau conducteur, et la réalisation de trous à travers l'empilement constitué par la couche d'un matériau conducteur et la couché absorbante, la couché en matériau conducteur formant l'électrode en face arrière,
o - une étape de dépôt d'un matériau isolant et transparent dans les trous du produit intermédiaire, la. couche absorbante étant dépourvue de ce matériau, et
- une étape de dépô d'une couche formant l'électrode de face avant sur l'ensemble du produit obtenu.
5 De préférence, les trous présentent une section dont la surface est comprise entre 0,005 mm2 et 0,2 mm2 et la surface totale occupé par les trous est comprise entre 5% et 95% de la surface totale du substrat.
Ces trous peuvent être réalisés grâce à un procédé mécanique (notamment perçage) ou chimique (notamment gravure chimique, o impliquant éventuellement l'utilisation d'un masque), ou par tout autre procédé.
De façon préférée, l'étape de dépôt d'un matériau isolant et iransparenî dans les trous d produit intermédiaire comprend les opérations suivantes :
5 - le dépôt d'une résine sur l'ensemble du substrat pour recouvrir la couche absorbante et remplir les trous du produit intermédiaire,
- la rétieulafio de la résine présente dans les trous, et
~ l'élimination de la résine non réticulée présente sur la couche absorbante.
D façon avantageuse, la résine est une résine photosensible o négative qui est tout d'abord soumise à une étape de recuit avant d'être ihsolée à travers le substrat, la couche en matériau conducteur formant un masque. En variante, le procédé comprend une étape de dépôt d'une couche tampon avant le dépôt de la couche formant l'électrode de face avant.
Après ie dépôt de la couche formant l'électrode de face avant et l'éventuelle couche tampon, la résine réticulée peut être éliminée par l'action d'un soivant
L'invention concerne également un module photovoltaïque semi-transparent comprenant une pluralité de cellules phoiovoltaïques connectées en série sur un substrat commun et comprenant une électrode de face avant et une électrode de face arrière, en contact avec ledit substrat et espacée de l'électrode de face avant par au moins une couche absorbante, dans lequel l'empilement constitué par l'électrode de face arrière et la couche absorbante comprend des zones soit vides, soit constituées d'un matériau isolant et transparent, l'électrode de face avant formant une couche continue.
De préférence, le matériau isolant est une résine transparente réticulée.
Ces zones présentent une section dont la surface est comprise entre 0,005 mm2 et 0,2 mm2 et représentent environ entre 5% et 95% de la surface totale du substrat,
Le module peut également comprendre une couche tampon entre la couche absorbante et l'électrode de face avant.
Dans un mode de réalisation, la couche tampon est une couche continue.
Enfin, l'électrode de face arrière est réalisée en un matériau métallique, notamment en molybdène, ou en u oxyde transparent conducteur, notamment un oxyde de zinc dopé à l'aluminium, ou en tout autre matériau conducteur.
L'invention concerne également un produit intermédiaire pour l'obtention d'un module photovoltaïque selon inveniion, constitué, sur un substrat, par un empilement formé d'une couche en matériau conducteur et d'une couche absorbante et qui comporte des trous le traversant.
L'invention sera mieux comprise et d'autres buts, avantages et caractéristiques de celle-ci apparaîtront plus clairement à la lecture de la description qui suit et qui est faite au regard des dessins annexés, sur lesquels les figures 1 à 7 représentent différentes étapes de mise en. œuvre du procédé selon l'invention.
Toutes ces figures sont des vues en coupe et les éléments communs au différentes figures seront désignés pa les mêmes références, Elies n'illustrent pas avec précision l'épaisseur relative des différentes couches représentées.
La figure 1 montre un substrat 1 qui peut être réaiisé en divers matériaux transparents, classiquement en verre ou en polymère.
Le substrat 1 peut être souple ou rigide.
En général, ce substrat est réaiisé en: verre sodocaicique dont l'épaisseur est de quelques millimètres e notamment comprise entre 1 et 4 mm.
Sur ce substrat 1 , est déposée une couche d'un matériau conducteur 2 formant une électrode de face arrière pour les différentes cellules du module pnotovoltaïque qui sera obtenu pa le procédé selon l'invention.
Cette couche est par exemple réalisée en un matériau métalliqu et notamment en molybdène et son épaisseur est comprise entre 100 nm et 2 pm et notamment égale à 1 pm.
Le dépôt de la couche de molybdène peut notamment être réalisé par pulvérisation cathodique.
Cette couche 2 peut également être réalisée en un oxyde transparent conducteur, notamment un oxyde de zinc dopé à l'aluminium.
Sur cette couche 2 est formée une couche absorbante 3. Cette couche absorbante peut être une couche de CIGS, CZTS, silicium amorphe hydrogéné, silicium microcnstaliin hydrogéné, tellure de cadmium. L'épaisseur de cette couche absorbante est typiquement comprise entre 100 nm et 5 pm.
Préférentiellement, cette couche absorbante est une couche mince de CIGS ou de CZTS, d'épaisseur comprise entre 1 pm et 2 pm, Dans ce cas, cette couche absorbante peut être formée par dépôt par eo- évaporation à partir de sources élémentaires, ou encore par un procédé séquentiel, comme cela est bien connu dans je domaine des cellules photovo taïques en couches minces de CIGS ou GZTS.
Dans le cas d'un procédé séquentiel, sur la couche 2, sont apportés, sous la forme d'une couche, les précurseurs qui conduiront à la formation de la couche absorbante en CIGS ou GZTS. Les précurseurs sont préférentiellement des métaux (Cu, in, Ga dans l cas du CIGS ; Cu, Zn, Sn dans le cas du GZTS), mais peuvent être également des composés de métaux et de sélénium, ou encore de composés de métaux et de soufre. Une couche mince de sélénium ou de soufre peut être déposée sur fa couche de précurseurs.
Ces précurseurs peuvent êtr apportés par différents procédés de dépôt. Il peut s'agir de procédé sous vide, comme févaporation ou la pulvérisation cathodique ou de procédé hors vide, comme le coulag en bande (doctor blading), f enduction centrifug (spin coatîng), la sérigraphie ou l'électrodépôt.
Au moins une étape de recuit est réalisée de façon à convertir les précurseurs en un matériau absorbeur, du type CIGS ou GZTS, grâce à l'apport de sélénium ou de soufre.
La couche 3 est obtenue à l'issue de l'étape de recuit
La figure 2 illustre une autre étape du procédé dans laquelle des trous 4 sont réalisés dans l'empilement constitué par la couche 2 en matériau conducteur et la couche absorbante 3,
Chaque trou présente une surface comprise entr 0,005 mm2 et 0,2 mm2 et ia surface totale occupée par les trous est comprise entre 5 % et 95 % de la surfac totale du substrat.
Ainsi ces trous sont suffisamment petits pou être invisibles pa un il humain, à une distance du panneau de l'ordre de quelques dizaines de centimètres.
Ces trous 4 peuvent être réalises par des procédés connus, tèis que ceux décrits dans le document US-7 795 067 ou G8-24728GS. Ces trous peuvent être réalisés par tout autre type de procédé.
Les trous 4 peuvent également être réalisés par une méthode utilisant un masque. Ce masque peut être déposé sur le substrat 2 avant le dépôt des couches 2 et 3 et forme aiors un pochoir en positif des trous 4, Après ie dépôt des couches 2 et 3, ie masque est retiré, notamment par gravure chimique, entraînant avec lui la partie des couches minces dont if est recouvert, celles déposées directement sur le substrat restant en place,
La figure 2 montre que ces trous ne sont pas traversants. En d'autres termes, ils ne passent pas à travers le substrat qui reste continu après la formation des trous.
Le produit illustré à la figure 2 constitue un produit intermédiaire qui peut être réalisé indépendamment des étapes du procédé qui sont mises en œuvre ultérieurement
Les figures 3 à 7 illustrent les autres étapes du procédé qui permettent d'obtenir un module photovoltaïque semi-transparent.
En référence à la figure 3, une couche de résine 5 est déposée sur l'ensemble du substrat de façon à remplir les trous 4 et recouvrir la couche absorbante 3.
Dans l'exemple illustré, la résine utilisée est une résine photosensible négative, c'est-à-dire une résine photosensible pour laquelle la partie exposée à la lumière devient insoluble au révélateur et où la partie non exposée à la lumière reste soiubie.
Une résine de ce type est principalement composée de trois composants : une résine époxy, un solvant organique permettant de solubiliser la résine et d'ajuster la viscosité de îa formulation et un photo- amorceur permettant d'amorcer la polymérisation cationique.
De telles résinés sont notamment décrites dans la thèse de
Feng Shi « Etudes et propriétés physico-chimie de surfaoes microsttvcturé&s » (Institut National Polytechnique de Toulouse, - 2006).
A titre d'exemple, pourra être utilisée îa résine commercialisée par la société Microchem sous îa dénomination SU-8.
Cette couche 5 pourra être par exemple déposée par enduction centrifuge ou par coulage en bande.
Son épaisseur depuis le substrat 1 sera typiquement comprise entre 1 um et 100 pm. De préférence, l'épaisseur de la couche 5 sera supérieure à l'épaisseur de l'empilement constitué par la couche 2 et la couche 3, comm cela est illustré à ia figure 3. Cependant, dans le cadre de l'invention, ii suffit que l'épaisseur de ia couche 5 soit supérieure à celle de la couche 2.
Après le dépôt de cette couche 5, une étape de recuit à basse température est réalisée.
La température du recuit est comprise entre 25 eî 150°C et, de préférence, égaie à 90 .
La durée de cett étape de recuit est comprise entre 1 et 60 mn et de préférence, égaie à 30 mn.
Une fois cette étape de recuit réalisée, la résine est ensuite insoiée au travers du substrat 1 , grâce à une lampe dont la longueur d'onde est comprise entre 350 et 400 nm et, de préférence, à 365 nm.
La couche 2 est opaque, elle sert de masque et empêche donc la lumière d'atteindre la résine présente sur ia couche 3.
En pratique, la couch 3 est également opaque puisqu'elle absorbe le rayonnement lumineux.
Ainsi, seule la résine présente dans les trous 4 sera réticulée.
La figure 4 illustre une autre étape dans laquelle la résine présente sur la couche absorbante 3 est retirée à l'aide d'un solvant approprié.
Ce retrait est possible puisque la résine présente sur fa couche absorbante 3 n'est pas réticulée.
A titre d'exemple, ce solvant pourra être du PGfvlEA (polypropylène-glycoi-métyl-ether-acétate) .
La figure 4 illustre l'empilement obtenu après retrait de ia résine non réticulée.
Ce produit présente donc des zones 8 constituées de résine qui est un matériau isolant et transparent.
Ces zones 6 sont en saillie par rapport au pian défini par la couche absorbante 3. La partie des zones 6 située au-dessus de c pian présente une épaisseur comprise entre 100 nm et 100 pm, suivant l'épaisseur de la couche 5.
La figure 5 illustre une autre étape du procédé dans laquelle la partie des zones 8 situées au-dessus de la couche absorbante a été éliminée, par exemple par polissage mécanique. Elle permet d'obtenir des zones 9 constituées d'un matériau transparent et isolant qui remplit donc lés trous 4, Cette étape est facultative.
La dernière étape du procédé est illustrée à la figure 6.
Elle consiste tout d'abord à déposer une couche tampon, c'est-à-dire une couche composée d'un matériau semi-conducteur de type n.
La couche tampon 7 est une couche très mince dont l'épaisseur est généralement comprise entre 5 nm et 100 nm et qui est réalisée e u matériau semi-conducteur de type n à grande largeur de bande interdite. Il s'agit donc d'une couche présentant un fort taux de transmission optique dans te visible.
Le matériau formant la couche 7 peu être à base de sulfure de cadmium (CdS), ou de sulfure de zinc (ZnS).
Cette couche tampon peut être déposée notamment par bain chimique, par pulvérisation cathodique ou encore êvaporation.
Ell est de préférence à bas de sulfure de zinc (ZnS) et présente une épaisseur de préférence comprise entre 5 et 100 nm.
Cette couche tampon 7 est facultative.
Enfin, une électrode transparente 8 est déposée sur Sa couch tampon 7, ou directement sur la couche absorbante si la couche tampon est omise.
L'électrode 8 est généralement réalisée en un oxyde transparent conducteur et présente un fort taux de transmission optique dans le visible.
Elle est de préférence à base d 2nO dopé à l'aluminium et présente une épaisseur de préférence comprise entre 100 nm et 1 pm. De façon facultative, une couche d'un matériau transparent peut être déposée entre les couches 7 et 8. Elle est de préférence réalisée en ZnO.
On obtient alors la cellule photovoltaïque illustrée à la figure 6, Grâce à la présence des zones 9 constituées d'un matériau transparent et à une répartition appropriée de ces zones, cette cellule photovoltaïque est semi- transparente.
Les couches 7 et 8 sont continues et planes, puisque les zones 9 sont au même niveau que la surface de la couche 3.
Par ailleurs, la présence d'un matériau isolant dans les trous 4 permet d'éviter que, après formation des trous, la couche 7 ou la couch 8 vienne en contac avec l'électrode 2 en face arrière. Ceci permet d'éviter tout court-circuit entre la couche 7 ou la couche 8 et l'électrode 2 en face arrière, de tels courts-circuits dégradant fortement les performances d module photovoltaïque.
Pour réaliser un module photovoltaïque (non illustré), il faut réaliser des étapes de gravure pour assure l'interconnexion monolithique des différentes cellules solaires formées sur le substrat. Par souci de simplification, ces étapes ne sont pas illustrées sur les différentes figures.
En pratique, ('étape de gravure PI intervient après le dépôt de la couche 2, l'étape P2 après le dépôt dé la couche 3 et de la couche 7 et enfin, l'étape P3 après îe dépôt de la couche 8.
Dans la mesure où la résine utilisée dans Se cadre du procédé selon l'invention est très transparente, en assurant une transmission de la lumière, notamment supérieure à 90%, celle-ci peut être maintenue dans le module photovoltatque, tout en permettant une excellente transmission de la lumière.
Cependant, il peut être envisagé de retirer la résine présente dans les trous 4, pour augmenter le taux de transmission optique.
Ge retrait de la résine interviendra après le dépôt des couches 7 et 8.
Ce retrait de la résine réticulée sera réalisé au moyen d'un solvant comme du NMP (N- étyî-2-Pyrroljdinone). H convient au préalable de ménager un accès du solvant vers les zones 9 constituées de résine.
Pour cela, il est préférable, avant le dépôt des couches 7 et $, de ne pas avoir retiré i'excédeni de résine situé dans le proiongement des trous au-dessus du niveau Sa couche absorbante 3, c'est-à-dire de s'être placé dans le cas illustré à Sa figure 4. En effet, dans ce cas, l'excédent de résine entraîne une rupture localisée des couches 7 et 8 lors du dépôt de celles-ci, ce qui permet au solvant d'atteindre la résine.
Le retrait de ia résine réticulée présente dans les trous 4 entraîne égaiement le lîft-off des couches 7 et S situées dans le proiongement des trous.
L'empilement obtenu est illustré à la figure 7. Ainsi, Ses trous 4 sont pratiqués dans l'ensemble dé l'empilement et non seulement dans les couches 2 et 3,
Une fois la résine retirée., les zones 9 sont des zones vides ou encor dépourvues de tout matériau, l'air présent constituant Un isolant.
Les signes de référence insérés après les caractéristiques- techniques figurant dans les revendications ont pour seul but de faciliter la compréhension de ces dernières et ne sauraient en Simiter Sa portée.

Claims

REVENDICATIONS
1, Procédé d'obtention d'un module phoîovoltaïque comportant une pluralité de cellules photovoltaïques dans une structure en couches minces, comprenant les étapes suivantes :
- une étape de réalisation d'un produit intermédiaire par le dépôt sur nsemble d'un substrat (1) d'une couche d'un matériau conducteur (2), la formation d'une couche absorbante {3) sur cette couche d'un matériau conducteur (2), et fa réalisation de trous (4) à travers l'empilement constitué pa la couche (2) d'un matériau conducteur et Sa couche absorbante (3), !a couche (2) en matériau conducteur formant l'électrode en face arrière,
- une étape de dépôt d'un matériau (5) Isolant et transparent dans ies trous (4) du produit intermédiaire, ia couche absorbante (3) étant dépourvue de ce matériau, et
- une étape de dépôt d'une couche (8) formant l'électrode d face avant, sur l'ensemble du produit obtenu.
2, Procédé selon la revendication 1 , dans lequel, lors de l'étape de réalisation d'un produit intermédiaire, les trous réalisés présentent une section dont la surface est comprise entre 0,005 mm2 et 0,2 mm2, la surface totale occupée par ies trous étant comprise entre 5% et 95% de la surface totale du substrat.
3. Procédé selon ia revendication 1 ou 2, dans lequel les trous sont réalisés par un procédé mécanique ou chimique, notamment par gravure chimique, impliquant éventuellement un masque.
4. Procédé selon l'une des revendications 1 à 3, dans lequel l'étape de dépô d'un matériau isolant et transparent dans ies trous (4) du produit intermédiaire comprend les opérations suivantes :
~ le dépôt d'une résine sur {'ensemble du substrat pour recouvrir la couche absorbante (3) et remplir les trous (4) du produit intermédiaire,
- la réticulation de la résine présente dans tes trous (4), et
- l'élimination de ia résine non réticulée présente sur la couché absorbante (3),
5. Procédé selon la revendication 4, dans lequel fa résine est une résine photosensible négative qui est soumise à une étape de recuit avant d'être insoiée à travers le substrat, la couche (2) formant un masque.
6. Procédé selon l'une des revendications 1 à 5, comprenant une étape de dépôt d'une couche tampon (7) avant le dépôt de la couche (8) formant l'électrode de face avant.
7. Procédé selon Tune des revendications 4 à 6, dans lequel après le dépôt dé la couche (8) formant l'électrode de face avant e dé l'éventuelle couche tampon (7), la résine réticulée est éliminée par faction d'un solvant
8. ivlodul photovoitaïque semi ransparent comprenant une pluralité de ceilules photovottaïqûes connectée en série sur un substrat commu (1) et comprenant une électrode de face avant (8) et une électrode de face arrière (2). en eontâct avec ledit substrat et espacée de l'électrod de face avant (8) par au moins une couche absorbante (3), dans lequel l'empilement constitué par l'électrode de face arrière (2) et la couche absorbante (3) comprend des zones
(9) vides ou constituées d'un matériau Isolant et transparent l'électrode de face avant formant une couche continue.
S, Module selon fa revendication 8, dans lequel Se matériau isolant est une résine transparente réticulée.
10, Module selon ia revendication 8 ou 9, dans lequel ces zones (9) présentent une section dont la surface est comprise entre 0,005 mm2 et 0,2 mm2 et représente environ 5% à 95% de la surface du substrat.
11. Module selon l'une des revendications 8 à 10, comprenant une couche tampon (7) entre la couche absorbante (3) et f électrode de face avant (8).
12. Module selon l'une des revendications 8 à 11, dans lequel l couche tampon est une couche continue,
13, Module selon l'une des revendications 8 à 12, dans lequel l'électrode de face arrière (2) est réalisée en un matériau métallique, notamment en molybdène, ou en un oxydant transparent conducteur, notamment un oxyde de zinc dopé a l'aluminium. 14, Produit intermédiaire pour l'obtention d'un module photovoitaïque selon l'une des revendications 8 à 13, constitué, sur un substrat (I), par un empilement formé d'une couche (2) en matériau conducteur et d'une couche absorbante (3), cet empilement comportant des trous le traversant.
PCT/IB2014/064254 2013-09-05 2014-09-04 Module photovoltaique semi-transparent et procédé d'obtention correspondant WO2015033291A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480047697.6A CN105531831A (zh) 2013-09-05 2014-09-04 半透明的光伏模块和相应的制造方法
ES14767142.4T ES2687960T3 (es) 2013-09-05 2014-09-04 Módulo fotovoltaico semitransparente y procedimiento de obtención correspondiente
EP14767142.4A EP3042398B1 (fr) 2013-09-05 2014-09-04 Module photovoltaïque semi-transparent et procédé d'obtention correspondant
US14/914,507 US20160211396A1 (en) 2013-09-05 2014-09-04 Semitransparent photovoltaic module and corresponding manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1358509 2013-09-05
FR1358509A FR3010232A1 (fr) 2013-09-05 2013-09-05 Module photovoltaique semi-transparent et procede d'obtention correspondant.

Publications (1)

Publication Number Publication Date
WO2015033291A1 true WO2015033291A1 (fr) 2015-03-12

Family

ID=49326775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/064254 WO2015033291A1 (fr) 2013-09-05 2014-09-04 Module photovoltaique semi-transparent et procédé d'obtention correspondant

Country Status (6)

Country Link
US (1) US20160211396A1 (fr)
EP (1) EP3042398B1 (fr)
CN (1) CN105531831A (fr)
ES (1) ES2687960T3 (fr)
FR (1) FR3010232A1 (fr)
WO (1) WO2015033291A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062773A1 (fr) * 2017-09-29 2019-04-04 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Module solaire semi-transparent à couches minces
US11715805B2 (en) 2017-09-29 2023-08-01 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module
US11837675B2 (en) 2017-09-29 2023-12-05 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044826B1 (fr) * 2015-12-02 2018-04-20 Commissariat Energie Atomique Agencement pour empilement de cellule photovoltaique en couches minces et procede de fabrication associe
FR3059940B1 (fr) 2016-12-12 2021-03-19 Commissariat Energie Atomique Procede de formation d'un empilement et empilement
US20220073424A1 (en) * 2018-11-14 2022-03-10 Saint-Gobain Glass France Method for the selective etching of a layer or a stack of layers on a glass substrate
EP3840059A1 (fr) * 2019-12-19 2021-06-23 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Dispositif photovoltaïque semi-translucide et son procédé de fabrication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
US20100126559A1 (en) 2008-11-26 2010-05-27 Applied Materials, Inc. Semi-Transparent Thin-Film Photovoltaic Modules and Methods of Manufacture
US7795067B1 (en) 2009-03-30 2010-09-14 Solopower, Inc. Semitransparent flexible thin film solar cells and modules
GB2472608A (en) 2009-08-12 2011-02-16 M Solv Ltd Partially Transparent Solar Cell
FR2997226A1 (fr) * 2012-10-23 2014-04-25 Crosslux Procede de fabrication d’un dispositif photovoltaique a couches minces, notamment pour vitrage solaire
FR2997227A1 (fr) * 2012-10-23 2014-04-25 Crosslux Dispositif photovoltaique a couches minces, notamment pour vitrage solaire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120152340A1 (en) * 2009-08-27 2012-06-21 Mitsubishi Heavy Industries, Ltd. Multi-junction photovoltaic device, integrated multi-junction photovoltaic device, and processes for producing same
CN201590426U (zh) * 2010-02-05 2010-09-22 保定天威集团有限公司 一种薄膜太阳能透光组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
US20100126559A1 (en) 2008-11-26 2010-05-27 Applied Materials, Inc. Semi-Transparent Thin-Film Photovoltaic Modules and Methods of Manufacture
US7795067B1 (en) 2009-03-30 2010-09-14 Solopower, Inc. Semitransparent flexible thin film solar cells and modules
GB2472608A (en) 2009-08-12 2011-02-16 M Solv Ltd Partially Transparent Solar Cell
FR2997226A1 (fr) * 2012-10-23 2014-04-25 Crosslux Procede de fabrication d’un dispositif photovoltaique a couches minces, notamment pour vitrage solaire
FR2997227A1 (fr) * 2012-10-23 2014-04-25 Crosslux Dispositif photovoltaique a couches minces, notamment pour vitrage solaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG SHI: "Etudes et propriétés physico-chimie de surfaces microstructurées", 2006, INSTITUT NATIONAL POLYTECHNIQUE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062773A1 (fr) * 2017-09-29 2019-04-04 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Module solaire semi-transparent à couches minces
US11515440B2 (en) 2017-09-29 2022-11-29 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module
US11715805B2 (en) 2017-09-29 2023-08-01 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module
US11837675B2 (en) 2017-09-29 2023-12-05 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module

Also Published As

Publication number Publication date
ES2687960T3 (es) 2018-10-30
CN105531831A (zh) 2016-04-27
US20160211396A1 (en) 2016-07-21
EP3042398B1 (fr) 2018-05-30
FR3010232A1 (fr) 2015-03-06
EP3042398A1 (fr) 2016-07-13

Similar Documents

Publication Publication Date Title
EP3042398B1 (fr) Module photovoltaïque semi-transparent et procédé d'obtention correspondant
EP2452369B1 (fr) Procédé de fabrication de cellules photovoltaiques multi-jonctions et multi-électrodes
EP0591500A1 (fr) Procede de realisation d'un composant photovoltaique multispectral a empilement de cellules
FR2985606A1 (fr) Procede pour realiser un module photovoltaique avec deux etapes de gravure p2 et p3 et module photovoltaique correspondant.
FR2961022A1 (fr) Cellule photovoltaïque pour application sous flux solaire concentre
WO2017051004A1 (fr) Procédé de fabrication de structures pour cellule photovoltaïque
EP2979306A1 (fr) Procédé de fabrication d'une structure à multijonctions pour cellule photovoltaïque
WO2013105024A1 (fr) Procede pour realiser un module photovoltaïque avec deux etapes de gravure p1 et p3 et module photovoltaïque correspondant
EP2834848A1 (fr) Procédé pour réaliser un module photovoltaïque avec une étape de gravure p3 et une éventuelle étape p1.
EP2831920B1 (fr) Structure de cellule photovoltaïque en couches minces avec une couche miroir.
EP3227925B1 (fr) Fil textile photovoltaïque
EP3103140A1 (fr) Procede de fabrication d'un empilement de couches minces decollable de son substrat
EP3195373A1 (fr) Dispositif photovoltaïque semi-transparent avec trou traversant
EP3005425B1 (fr) Procédé de réalisation de la jonction p-n d'une cellule photovoltaïque en couches minces et procédé d'obtention correspondant d'une cellule photovoltaïque
EP2834845A1 (fr) Procede pour realiser un module photovoltaïque avec une etape de gravure p3 et une eventuelle etape p2
EP0617841B1 (fr) Procédé de réalisation de composants semi-conducteurs avec récupération du substrat par voie électrochimique
WO2014029836A2 (fr) Procede de realisation de contacts electriques d'un dispositif semi-conducteur
WO2016042115A1 (fr) Dispositif semi-photovoltaïque semi-transparent a cellules en serie par interconnexion monolithique
FR3023062A1 (fr) Cellule photovoltaique a heterojonction de silicium et procede de fabrication d'une telle cellule
FR2675633A1 (fr) Dispositif photovoltauique a isolation renforcee et son procede de realisation.
WO2016075236A1 (fr) Procédé de fabrication d'une cellule photovoltaique
FR3015112A1 (fr) Cellule photovoltaique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047697.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14914507

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014767142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014767142

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767142

Country of ref document: EP

Kind code of ref document: A1