WO2015032231A1 - 一种磁致伸缩导波检测信号处理方法及装置 - Google Patents

一种磁致伸缩导波检测信号处理方法及装置 Download PDF

Info

Publication number
WO2015032231A1
WO2015032231A1 PCT/CN2014/079703 CN2014079703W WO2015032231A1 WO 2015032231 A1 WO2015032231 A1 WO 2015032231A1 CN 2014079703 W CN2014079703 W CN 2014079703W WO 2015032231 A1 WO2015032231 A1 WO 2015032231A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
matrix
guided wave
energy
analysis
Prior art date
Application number
PCT/CN2014/079703
Other languages
English (en)
French (fr)
Inventor
武新军
唐铭希
孙鹏飞
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to JP2015535981A priority Critical patent/JP5994029B2/ja
Priority to EP14841923.7A priority patent/EP3088882B1/en
Priority to PCT/CN2014/079703 priority patent/WO2015032231A1/zh
Priority to US14/538,787 priority patent/US20150177294A1/en
Publication of WO2015032231A1 publication Critical patent/WO2015032231A1/zh
Priority to US15/687,536 priority patent/US20170356881A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/52Processing the detected response signal, e.g. electronic circuits specially adapted therefor using inversion methods other that spectral analysis, e.g. conjugated gradient inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0425Parallel to the surface, e.g. creep waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the invention belongs to the field of non-destructive testing, and particularly relates to a method and a device for processing a magnetostrictive guided wave detecting signal.
  • An invention patent disclosed in the publication No. CN101393173A discloses a magnetostrictive guided wave detecting system for a stay cable anchoring zone; and an invention patent disclosed in CN101451976A discloses a method for determining a working point in magnetostrictive guided wave detection;
  • the invention patent No. CN101710103A discloses a magnetostrictive guided wave single direction detecting method; the invention patent application with the publication number CN102520057A discloses a magnetostrictive guided wave sensor for detecting inside a heat exchange tube and a detecting method thereof.
  • the invention patent publication CN101126743A discloses a method for improving the signal-to-noise ratio of a magnetostrictive guided wave detection signal, but requires a defect-free sample to acquire a standard signal, which is inconvenient in field detection.
  • the present invention provides a method and apparatus for improving a magnetostrictive guided wave detection signal, which obtains a magnetically induced guided wave signal energy distribution by suppressing background noise at a certain threshold. It reduces the influence of external interference on the signal. This method does not require standard samples, which greatly facilitates field application.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a magnetostrictive guided wave detecting signal processing method for improving the accuracy of magnetostrictive guided wave detection, and the method includes the following steps: 51. Perform interception on the original magnetostrictive guided wave detection signal, and obtain an analysis signal u(n), n N, N is the length of the analysis signal u(n);
  • the method further includes the following steps:
  • step S8 drawing an energy distribution map z(n) according to the energy of the signal processed by the selected analysis region calculated in step S8; S10. Determine whether the member to be tested has defects according to the distortion of the energy distribution map z(n).
  • the present invention further provides a magnetostrictive guided wave detecting signal processing device for improving the accuracy of magnetostrictive guided wave detection, the device comprising:
  • a signal intercepting unit configured to intercept the original magnetostrictive guided wave signal, and obtain an analysis signal u(n), n N, N is a length of the analysis signal u(n);
  • a band pass filter connected to the signal intercepting unit, for band-pass filtering the analysis signal u(n) to obtain a signal x(n);
  • a signal processing unit coupled to the band pass filter, for denoising the signal x(n) and calculating a denoised energy distribution thereof;
  • the eigenvalues less than the median in the matrix ⁇ are zeroed to obtain the matrix C, and the inverse singular value transformation is performed on the matrix C to obtain the matrix 0,
  • the device further includes a defect detecting unit connected to the signal processing unit, wherein the defect detecting unit is configured to process the selected analyzed region according to the calculation
  • the energy of the signal is used to map the energy distribution map z (n), and according to the distortion of the energy distribution map z (n), it is judged whether the member to be tested has defects.
  • the principle of the present invention is that when a magnetostrictive guided wave propagates at a group velocity in a member, due to the presence of defects and other irregular structures, the elastic wave has changes in reflection, refraction, and transmission, thereby causing a corresponding position signal waveform and propagation energy.
  • the elastic wave has changes in reflection, refraction, and transmission, thereby causing a corresponding position signal waveform and propagation energy.
  • it is required to acquire a standard signal without a defect, and then differentially process the signal to be tested and the standard signal without defects, which is disadvantageous for on-site detection.
  • the energy distribution of the magnetostrictive guided wave signal is obtained by suppressing the background noise at a certain threshold value, thereby reducing the influence of external interference on the signal, and enhancing the sensitivity of the magnetostrictive guided wave signal detection by improving the signal to noise ratio.
  • This method does not require standard samples, which greatly facilitates field application.
  • FIG. 1 is a flow chart of a method for processing a magnetostrictive guided wave detection signal of the present invention
  • FIG. 2 is a schematic structural view of a magnetostrictive guided wave detecting signal processing apparatus of the present invention
  • FIG. 3 is an experimental layout diagram of a pipeline for detecting a defective standard in an embodiment of the present invention
  • FIG. 4 is an outer diameter of a specific embodiment of the present invention.
  • Figure 5 is an analysis signal diagram obtained by intercepting a defective pipeline detection signal
  • FIG. 6 is a diagram showing the result of the defective tube analysis signal processed by the method of the present invention
  • FIG. 7 is an experimental layout diagram of the pipeline for detecting a defect-free standard in a specific embodiment
  • Figure 8 is a diagram showing the original signal obtained on a non-defective pipe having an outer diameter of 25 mm and an inner diameter of 20 mm;
  • Figure 9 is an analysis signal diagram obtained by intercepting the detection signal of the defect-free pipeline
  • Figure 10 is a graph showing the results of a defect-free tube analysis signal processed by the method of the present invention.
  • Fig. 1 is a flow chart showing a method for improving the accuracy of magnetostrictive guided wave detection according to an embodiment of the present invention. As shown in FIG. 1, the method for enhancing the magnetostrictive guided wave detection signal of the present invention includes the following steps:
  • the magnetostrictive guided wave detecting signal processing apparatus of the present invention comprises a signal intercepting unit 1, a band pass filter 2 connected to the signal intercepting unit 1, and a signal processing unit 3 connected to the band pass filter 2, and A defect detecting unit connected to the signal processing unit 3.
  • the signal intercepting unit 1 is configured to intercept the original magnetostrictive guided wave signal, obtain an analysis signal u(n), n N, N is the length of the analysis signal u(n); the band pass filter 2 is used Band-pass filtering the analysis signal u(n) to obtain a signal x(n); the signal processing unit 3 is for denoising the signal x(n) and calculating the denoised energy distribution, wherein:
  • the signal y (i), y (i+l), ⁇ , y (i+M-l) is restored from the matrix D;
  • the defect detecting unit 4 is configured to draw an energy distribution map z (n) according to the calculated energy of the signal of the selected analysis region, and determine whether the component to be tested is based on the distortion of the energy distribution map z (n) defect.
  • the member to be tested is a defective heat exchange tube with an outer diameter of 25 mm and an inner diameter of 20 mm and a tube length of 2800 mm.
  • the excitation coil is 100 mm from the left end of the tube
  • the receiving coil is 600 mm from the left end of the tube
  • a diameter is 2000 mm from the left end of the tube.
  • the through hole defect of ⁇ 5 has an excitation frequency of 90 kHz, a sampling frequency of 2000 kHz, and a guided wave velocity of about 3200 m/s.
  • the original signal obtained on the defective heat exchange tube is as shown in Fig. 4, which includes the electromagnetic pulse signal M, the signal S passing through the receiving sensor for the first time, and the first end reflection signal S1.
  • FIG. 7 is the experimental layout of the defect-free tube.
  • Figure 8 shows the original signal obtained from the defect-free tube experiment. The signal between S and S1 in Figure 8 is taken as the analysis signal of the defect-free tube.
  • Figure 9 shows the analysis signal of the defect-free tube.
  • Figure 10 shows the energy distribution of the non-defective tube analysis signal after the method is processed. There is no obvious distortion in the similar defect tube energy distribution diagram (Fig. 6), so the method can be proved to be effective and reliable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种磁致伸缩导波检测信号处理方法及装置,方法截取原始检测信号得到分析信号u(n),再进行带通滤波得到x(n)。设激励信号长度为L,令M=[L/4],R=[M/2]。初始i=0,截取数据x(i),…,x(i+M-1),构造R*(M-R+1)的矩阵A,对矩阵A进行奇异值分解得到奇异矩阵B和特征值λ,将λ中小于中位数的值置零得到矩阵C,对矩阵C进行逆奇异变换得到矩阵D,从矩阵D中还原出处理后的信号y,计算其能量z。令i=i+1,重复上述步骤,直至计算完所选分析区域的信号经处理后的能量,根据能量分布图的畸变特征判断信号中有无缺陷。该方法及装置能有效提高磁致伸缩导波检测信号的信噪比及检测精度。

Description

一种磁致伸缩导波检测信号处理方法及装置
【技术领域】
本发明属于无损检测领域, 具体涉及一种磁致伸缩导波检测信号处理 方法及装置。
【背景技术】
由于磁致伸缩导波技术具有非接触, 表面无需打磨等优点, 近年来开 始在工业中得到应用。 如公开号为 CN101393173A的发明专利公开了一种 斜拉索锚固区磁致伸缩导波检测系统; 公开号为 CN101451976A的发明专 利公开了一种磁致伸缩导波检测中工作点的确定方法; 公开号为 CN101710103A的发明专利公开了磁致伸缩导波单方向检测方法;公开号为 CN102520057A 的发明专利申请公开了一种用于换热管内检测的磁致伸缩 导波传感器及其检测方法。 然而, 由于磁致伸缩导波技术的非接触性带来 的换能效率低, 信号信噪比低, 成为制约其应用的一个重要因素, 而一般 的滤波手段往往也无法满足要求。 公开号为 CN101126743A的发明专利公 开了一种提高磁致伸缩导波检测信号信噪比的方法, 但需要无缺陷的试样 采集标准信号, 而这在现场检测中是很不方便的。
【发明内容】
针对现有技术的以上缺陷或改进需求, 本发明提供了一种提高磁致伸 缩导波检测信号的方法及装置, 方法通过抑制某一阈值下的背景噪声得到 磁致伸缩导波信号能量分布, 降低了外界干扰对信号的影响, 该方法无须 标准试样, 极大地方便了现场应用。
本发明解决其技术问题所采用的技术方案是提供一种磁致伸缩导波检 测信号处理方法, 用于提高磁致伸缩导波检测精度, 所述方法包括以下歩 骤: 51、 对原始磁致伸缩导波检测信号进行截取, 获取分析信号 u(n), n N, N为所述分析信号 u(n)的长度;
52、 对分析信号 u(n)进行带通滤波得到信号 x(n) 同时初始化 i=0;
53、利用窗宽为 M的矩形窗截取信号 x(i), x(i+l), ··, x(i+M-l)进行处 理,其中 M=[L/4], L为激励信号长度;
54、 构造 R*(M-R+1)的矩阵 A, R=[M/2],矩阵 A为: 1
Figure imgf000004_0001
J
S5、 对矩阵 A进行奇异值分解, 得到奇异矩阵 B,
Figure imgf000004_0002
其中 为特征值, j=l,2,...R;
S6、将矩阵 B中小于中位数的特征值置零得到矩阵 C, 对矩阵 C进行逆 奇异值变换得到矩阵 D,
Figure imgf000004_0003
57、从矩阵 D中还原得到处理后的信号 y(i),y(i+l),〜,y(i+M-l), 并 计算处理后的信号的能量 z;
58、 令1=1+1, 重复歩骤 S3-S7直至 i=N+l-M, 计算完所选分析区域信 号经处理后的能量。
在本发明所述的磁致伸缩导波检测信号处理方法中, 所述方法还包括 以下歩骤:
59、 根据歩骤 S8中计算得到的所选分析区域处理后的信号的能量绘制 能量分布图 z(n); S10、 根据能量分布图 z(n)的畸变性, 判断待测构件有无缺陷。
相应地, 本发明还提供一种磁致伸缩导波检测信号处理装置, 用于提 高磁致伸缩导波检测精度, 所述装置包括:
信号截取单元, 用于对原始磁致伸缩导波信号进行截取, 获取分析信 号 u(n), n N,N为所述分析信号 u(n)的长度;
带通滤波器, 与所述信号截取单元相连, 用于对分析信号 u(n)进行带 通滤波得到信号 x(n) ;
信号处理单元, 与所述带通滤波器相连, 用于对信号 x(n)进行去噪并 计算其经过去噪后的能量分布;
所述信号处理单元利用 窗宽为 M 的矩形窗截取信号 x(i), X(i+l), 〜,x(i+M-l)进行处理,其中 M=[L/4],L为激励信号长度, 初 始化 i=0;
构造 R* (M-R+1)的矩阵 A, R= [M/2],矩阵 A为:
Figure imgf000005_0001
对矩阵 A进行奇异值分解, 得到奇异矩阵 B,
Figure imgf000005_0002
其中 为特征值, 」=1,2,...R;
将矩阵 Β中小于中位数的特征值置零得到矩阵 C,对矩阵 C进行逆奇异 值变换得到矩阵0,
Λ y(i) y(i十 1) … ν(ί― Μ― R)
D_ ν(ί - 1) ν(ί + 2) … y(i M—— Λ lj v i + 1— 1) y(i十 R) y(i— M— 1·) B
从矩阵 D中还原得到处理后的信号 y (i), y (i+1), …, y (i+M-1)并计算处 理后的信号的能量 Z ;
令 i=i+l, 重 复 利 用 窗 宽 为 M 的 矩 形 窗 截 取 数 据 x (i),X (i+l),〜,x (i+M-l)进行处理, 直至 i=N+l-M, 计算完信号所选分析 区域经处理后的能量。
在本发明所述的磁致伸缩导波检测信号处理装置中, 所述装置还包括 与信号处理单元相连的缺陷检测单元, 所述缺陷检测单元用于根据计算得 到的所选分析区域处理后的信号的能量绘制能量分布图 z (n), 并根据能量 分布图 z (n)的畸变性, 判断待测构件有无缺陷。
本发明的原理是当磁致伸缩导波在构件中以群速度进行传播, 由于缺 陷及其它非规则结构的存在, 弹性波存在反射、 折射和透射等变化, 从而 引起相应位置信号波形和传播能量的变化。 在现有技术中, 需要无缺陷的 试样采集标准信号, 再将待测信号与无缺陷标准信号进行差分等处理, 此 种方式不利于进行现场检测。 而在本发明中, 通过抑制某一阈值下的背景 噪声得到磁致伸缩导波信号能量分布, 降低了外界干扰对信号的影响, 通 过提高信噪比增强了磁致伸缩导波信号检测的灵敏度, 该方法无须标准试 样, 极大地方便了现场应用。
【附图说明】
下面将结合附图及实施例对本发明作进一歩说明, 附图中:
图 1是本发明磁致伸缩导波检测信号处理方法的流程图;
图 2是本发明磁致伸缩导波检测信号处理装置的结构示意图; 图 3是本发明一个具体实施例中检测有缺陷标样管道实验布置图; 图 4是本发明一个具体实施例中在外径 25mm、 内径 20mm的有缺陷 管道上检测所得的原始信号图;
图 5是截取有缺陷管道检测信号所得的分析信号图;
图 6是有缺陷管分析信号经本发明所述方法处理后的结果图; 图 7是具体实施例中检测无缺陷标样管道实验布置图; 图 8是在外径 25mm、 内径 20mm的无缺陷管道上检测所得原始信号 图;
图 9是截取无缺陷管道检测信号所得的分析信号图;
图 10是无缺陷管分析信号经本发明所述方法处理后的结果图。
【具体实施方式】
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图 及实施例, 对本发明进行进一歩详细说明。 应当理解, 此处所描述的具体 实施例仅用以解释本发明, 并不用于限定本发明。 此外, 下面所描述的本 发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以 相互组合。
图 1 是本发明一个实施例的提高磁致伸缩导波检测精度的方法流程 图。 如图 1所示, 本发明增强磁致伸缩导波检测信号的方法包括以下歩骤:
51、 对原始检测信号进行截取, 获取分析信号 u(n), n^N, N为分析 信号 u(n)的长度;
52、 对分析信号 u(n)进行带通滤波得到信号 x(n), 同时初始化 i=0;
53、利用窗宽为 M的矩形窗截取数据 x(i), x(i+l),…, x(i+M-l)进行处 理,其中 M=[L/4], L为激励信号长度;
54、 构造 R*(M-R+1)的矩阵 A, R=[M/2],矩阵 A为:
| x(i) π(1 + 1) ··· x(i + M— 1) "
x(i + 1) x(i + 2) ·** x i― M一 P、 1) x(i+ 1-1) x(i + R) - x(i + M- 1) ,
55、 对矩阵 A进行奇异值分解, 得到奇异矩阵 B,
Figure imgf000007_0001
其中 为特征值, j=l,2,...R;
S6、
Figure imgf000007_0002
...,1R),若 λ <Allied ( 1 < j < R) , 令 =0, 得 到矩阵 C, 即将矩阵 B中小于中位数的特征值置零得到矩阵 C, 对矩阵 C进 行逆奇异值变换得到矩阵 D,
" (£) i> - 1) … — γ(ί—Μ— Λ) "
D_ ~ 1) »(i + 2) ·*· y(i + M— R ~ 1)
,y(i + M— 1) y(l十 R) ·*· y(i — — i) ,
57、从矩阵 D中还原得到处理后的信号 y(i), y(i+l),…, y(i+M-l)并计 算出处理后的信号的能量 z;
58、 令1=1+1, 重复歩骤 S3-S7直至 i=N+l-M, 计算完所选分析区域的 信号经处理后的能量;
59、 根据歩骤 S8中计算得到的所选分析区域处理后的信号的能量绘制 能量分布图 z(n) ;
S10、 根据能量分布图 z(n)的畸变性, 判断待测构件有无缺陷。
图 2本发明磁致伸缩导波检测信号处理装置的结构示意图。 如图 2所 示, 本发明磁致伸缩导波检测信号处理装置包括信号截取单元 1, 与信号截 取单元 1相连的带通滤波器 2, 与带通滤波器 2相连的信号处理单元 3, 与 信号处理单元 3相连的缺陷检测单元。 其中, 信号截取单元 1用于对原始 磁致伸缩导波信号进行截取, 获取分析信号 u(n), n N,N为所述分析信号 u(n)的长度; 带通滤波器 2用于对分析信号 u(n)进行带通滤波, 得到信号 x(n); 信号处理单元 3用于对信号 x(n)进行去噪并计算其经过去噪后的能 量分布, 其中:
信号处理单元 3 利用 窗宽 为 M 的矩形窗截取数据 x(i),X(i+l),〜,x(i+M-l)进行处理,其中 M=[L/4],L为激励信号长度, 初 始 i=0;
构造 R* (M-R+1)的矩阵 A, R= [M/2],矩阵 A为:
x(l) x(i+ 1) ■■■ x(l + M— R) '
x(i + 1) x(i一 2) '■■·■■' χ(ϊ― M 一 — 1) x(i + 1— · 1) x(l + R) ',' x(i + — 1) , 对矩阵 A进行奇异值分解, 得到奇异矩阵 B,
Figure imgf000009_0001
其中 为特征值, 」=1,2,...R;
将矩阵 Β中小于中位数的特征值置零得到矩阵 C ,对矩阵 C进行逆奇异 值变换得到矩阵0,
Figure imgf000009_0002
从矩阵 D中还原出信号 y (i), y (i+l), ···, y (i+M-l);
令 i=i+l, 重 复 利 用 窗 宽 为 M 的 矩 形 窗 截 取 数 据 x (i),X (i+l),〜,x (i+M-l)进行处理, 直至 i=N+l-M, 计算完所选分析区域 的信号经处理后的能量;
缺陷检测单元 4用于根据所述计算得到的所选分析区域处理后的信号 的能量绘制能量分布图 z (n), 并根据能量分布图 z (n)的畸变性, 判断待测 构件有无缺陷。
以下结合本发明的内容提供一个具体实施例。
如图 3所示, 待测构件为外径 25mm, 内径 20mm管长为 2800mm的 有缺陷换热管, 激励线圈距管左端 100mm, 接收线圈距管左端 600mm, 距 管左端 2000mm处存在一个直径为 Φ 5的通孔缺陷, 激励频率为 90kHz, 采 样频率为 2000kHz, 导波波速约为 3200m/s。在有缺陷换热管上获得的原始 信号如图 4所示, 其中包括电磁脉冲信号M、 第一次通过接收传感器的信 号 S、 第一次端部反射信号 Sl。 为了便于分析, 截取图 4中 S与 S1之间的 信号作为有缺陷管的分析信号, 如图 5所示。 经计算得, 图 5中 t=1.03ms 处应存在缺陷信号, 然而从图中无法识别出缺陷。 选取窗宽为 6的矩形窗, 构造 3*4的矩阵用本方法对有缺陷管的分析信号进行处理, 图 6为有缺陷 管的分析信号经本方法处理后得到的能量分布图。 图 6中, 能量在 1.03ms 处存在明显畸变 P, P处峰值存在大幅度的突变, 而此处出现的时间与理论 上缺陷信号出现的时间相吻合, 因此确认该畸变由缺陷所导致。
另取一根与有缺陷管同一规格的无缺陷换热管, 其实验布置、 激励频 率、 采样频率、 导波波速与有缺陷管实验中的均相同, 图 7 为无缺陷管的 实验布置图。 图 8为无缺陷管实验所得原始信号, 截取图 8中 S与 S1之间 的信号作为无缺陷管分析信号, 图 9为截取所得无缺陷管的分析信号。 图 10为无缺陷管分析信号经本方法处理后的能量分布图, 图中并不存在类似 有缺陷管能量分布图 (图 6)中出现的明显畸变, 因此可以证明本方法是有效 可靠的。
本领域的技术人员容易理解, 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和原则之内所作的任何修改、 等 同替换和改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种磁致伸缩导波检测信号处理方法, 用于提高磁致伸缩导波检测 精度, 其特征在于, 所述方法包括以下歩骤:
51、 对原始磁致伸缩导波检测信号进行截取, 获取分析信号 u(n), n N, N为所述分析信号 u(n)的长度;
52、 对分析信号 u(n)进行带通滤波得到信号 x(n), 同时初始化 i=0;
53、利用窗宽为 M的矩形窗截取信号 x(i), x(i+l),…, x(i+M-l)进行处 理,其中 M=[L/4], L为激励信号长度;
54、 构造 R*(M-R+1)的矩阵 A, R=[M/2],矩阵 A为:
'■ χ(ί) χ 十 1) ■■· x(i + Μ— R) "
. _ χ(ί + 1) x(i十 2) ·■· χ(ί一 Μ— R— 1 )
Ά= , , , ;
x(i + 1— 1) x(i + R) ■*■ χ(ί + M - 1) .
55、 对矩阵 A进行奇异值分解, 得到奇异矩阵 B,
Figure imgf000011_0001
其中 为特征值, j=l,2,...R;
56、将矩阵 B中小于中位数的特征值置零得到矩阵 C, 对矩阵 C进行逆 奇异值变换得到矩阵 D,
" y(£) yi ― 1) … y( ί— Λί― R) '
D_ ν(ί― 1) y(i十 2) … y(i + M - R - 1) y i + R— ) y(i + R) … !― M - l) m
57、从矩阵 D中还原得到处理后的信号 y(i),y(i+l),〜,y(i+M-l), 并 计算处理后的信号的能量 z;
58、 令1=1+1, 重复歩骤 S3-S7直至 i=N+l-M, 计算完所选分析区域的 信号经处理后的能量。
2、如权利要求 1所述的磁致伸缩导波检测信号处理方法,其特征在于, 所述方法还包括以下歩骤:
S9、 根据歩骤 S8中计算得到的所选分析区域处理后的信号的能量绘制 能量分布图 z(n);
S10、 根据能量分布图 z(n)的畸变性, 判断待测构件有无缺陷。
3、 一种磁致伸缩导波检测信号处理装置, 用于提高磁致伸缩导波检测 精度, 其特征在于, 所述装置包括:
信号截取单元, 用于对原始磁致伸缩导波信号进行截取, 获取分析信 号 u(n), n N,N为所述分析信号 u(n)的长度;
带通滤波器, 与所述信号截取单元相连, 用于对分析信号 u(n)进行带 通滤波得到信号 x(n);
信号处理单元, 与所述带通滤波器相连, 用于对信号 x(n)进行去噪并 计算其经过去噪后的能量分布;
所述信号处理单元利用 窗宽为 M 的矩形窗截取信号 x(i),X(i+l),〜,x(i+M-l)进行处理,其中 M=[L/4],L为激励信号长度, 初 始化 i=0;
构造 R* (M-R+1)的矩阵 A, R= [M/2],矩阵 A为:
* x(i) x(i+ 1) ··· χ(Ι + M— R) "
x(l - 1) jc(i+ 2) ■■■ xf:i— M— R— 1)
Ά= , , , ;
x(i + R- 1) x(i + R) '-' x(i + ~ 1) .
对矩阵 A进行奇异值分解, 得到奇异矩阵 B,
Figure imgf000012_0001
其中 为特征值, j=l,2,...R;
将矩阵 B中小于中位数的特征值置零得到矩阵 C,对矩阵 C进行逆奇异 值变换得到矩阵0, ' y(i) vi ― l) … y(i + M—
D_ f(i + 1) y(i― 2) … y(i + — 12 y(i + I™ 1) v (i― R) y(i + ™
Figure imgf000013_0001
从矩阵 D中还原得到处理后的信号 y (i), y (i+1),…, y (i+M-1)并计算处 后的信号的能量 z;
令 i=i+l, 重 复 利 用 窗 宽 为 M 的 矩 形 窗 截 取 数 据 i),X(i+l),〜,x(i+M-l)进行处理, 直至 i=N+l-M, 计算完所选分析区域 言号经处理后的能量。
4、如权利要求 3所述的磁致伸缩导波检测信号处理装置,其特征在于, 述装置还包括与信号处理单元相连的缺陷检测单元, 所述缺陷检测单元 于根据所述计算得到的所选分析区域处理后的信号的能量绘制能量分布 z(n), 并根据能量分布图 z(n)的畸变性, 判断待测构件有无缺陷。
PCT/CN2014/079703 2013-12-24 2014-06-12 一种磁致伸缩导波检测信号处理方法及装置 WO2015032231A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015535981A JP5994029B2 (ja) 2013-12-24 2014-06-12 一種の磁歪導波検定信号処理方法及び装置
EP14841923.7A EP3088882B1 (en) 2013-12-24 2014-06-12 Magnetostrictive waveguide detection signal processing method and device
PCT/CN2014/079703 WO2015032231A1 (zh) 2013-12-24 2014-06-12 一种磁致伸缩导波检测信号处理方法及装置
US14/538,787 US20150177294A1 (en) 2013-12-24 2014-11-11 Method and device for processing magnetostrictive guided wave detection signals
US15/687,536 US20170356881A1 (en) 2013-12-24 2017-08-27 Method and device for processing magnetostrictive guided wave detection signals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310723746.0 2013-12-24
CN201310723746.0A CN103743810B (zh) 2013-12-24 2013-12-24 一种磁致伸缩导波检测信号处理方法及装置
PCT/CN2014/079703 WO2015032231A1 (zh) 2013-12-24 2014-06-12 一种磁致伸缩导波检测信号处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/538,787 Continuation-In-Part US20150177294A1 (en) 2013-12-24 2014-11-11 Method and device for processing magnetostrictive guided wave detection signals

Publications (1)

Publication Number Publication Date
WO2015032231A1 true WO2015032231A1 (zh) 2015-03-12

Family

ID=50500848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079703 WO2015032231A1 (zh) 2013-12-24 2014-06-12 一种磁致伸缩导波检测信号处理方法及装置

Country Status (5)

Country Link
US (1) US20150177294A1 (zh)
EP (1) EP3088882B1 (zh)
JP (1) JP5994029B2 (zh)
CN (1) CN103743810B (zh)
WO (1) WO2015032231A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764487B (zh) * 2015-03-05 2017-04-12 浙江大学 一种基于gprs的风电齿轮箱远程监测诊断方法
CN110568084B (zh) * 2019-09-19 2020-07-24 哈尔滨工业大学 一种适用于导波换能器阵列的低信噪比导波信号达到时刻的提取方法
CN112240910B (zh) * 2020-09-16 2021-08-10 华中科技大学 一种磁致伸缩导波拓扑信号处理方法及无损检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497151B1 (en) * 1999-12-20 2002-12-24 U.S. Pipe & Foundry Company Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects
CN101126743A (zh) 2007-09-13 2008-02-20 华中科技大学 一种磁致伸缩导波无损检测方法
CN101393173A (zh) 2008-08-29 2009-03-25 华中科技大学 一种斜拉索锚固区磁致伸缩导波检测系统
CN101451976A (zh) 2008-08-29 2009-06-10 华中科技大学 一种确定磁致伸缩导波检测工作点的方法
CN101710103A (zh) 2009-11-27 2010-05-19 华中科技大学 磁致伸缩导波单方向检测方法
US20120119732A1 (en) * 2010-11-17 2012-05-17 Fbs, Inc. Magnetostrictive sensor array for active or synthetic phased-array focusing of guided waves
CN102520057A (zh) 2011-12-12 2012-06-27 华中科技大学 用于换热管内检测的磁致伸缩导波传感器及其检测方法
CN103424471A (zh) * 2013-08-14 2013-12-04 哈尔滨工业大学深圳研究生院 一种基于磁致伸缩导波的检测装置及检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228104B2 (ja) * 2002-05-01 2009-02-25 独立行政法人理化学研究所 雑音除去システムおよび雑音除去方法
JP3777576B2 (ja) * 2002-08-27 2006-05-24 学校法人金沢工業大学 位置推定方法および装置
JP4494089B2 (ja) * 2004-06-02 2010-06-30 富士フイルム株式会社 超音波送受信装置
KR100677920B1 (ko) * 2005-10-20 2007-02-05 재단법인서울대학교산학협력재단 자기변형 효과를 이용하여 봉이나 축, 또는 배관 부재에비틀림파를 발생 및 측정하는 방법, 그 방법을 이용한자기변형 트랜스듀서, 및 구조 진단 장치
CN102520065A (zh) * 2011-12-14 2012-06-27 杭州浙大精益机电技术工程有限公司 磁致伸缩导波检测仪
FR2993362B1 (fr) * 2012-07-12 2016-07-01 Commissariat Energie Atomique Procede de traitement de signaux issus d'une acquisition par sondage ultrasonore, programme d'ordinateur et dispositif de sondage a ultrasons correspondants
CN103278558A (zh) * 2012-12-10 2013-09-04 重庆交通大学 一种基于磁致伸缩的锚固系统无损检测装置及方法
CN203241387U (zh) * 2013-05-20 2013-10-16 浙江宁波甬台温高速公路有限公司 用于大桥缆索的磁致伸缩导波检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497151B1 (en) * 1999-12-20 2002-12-24 U.S. Pipe & Foundry Company Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects
CN101126743A (zh) 2007-09-13 2008-02-20 华中科技大学 一种磁致伸缩导波无损检测方法
CN101393173A (zh) 2008-08-29 2009-03-25 华中科技大学 一种斜拉索锚固区磁致伸缩导波检测系统
CN101451976A (zh) 2008-08-29 2009-06-10 华中科技大学 一种确定磁致伸缩导波检测工作点的方法
CN101710103A (zh) 2009-11-27 2010-05-19 华中科技大学 磁致伸缩导波单方向检测方法
US20120119732A1 (en) * 2010-11-17 2012-05-17 Fbs, Inc. Magnetostrictive sensor array for active or synthetic phased-array focusing of guided waves
CN102520057A (zh) 2011-12-12 2012-06-27 华中科技大学 用于换热管内检测的磁致伸缩导波传感器及其检测方法
CN103424471A (zh) * 2013-08-14 2013-12-04 哈尔滨工业大学深圳研究生院 一种基于磁致伸缩导波的检测装置及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3088882A4

Also Published As

Publication number Publication date
JP5994029B2 (ja) 2016-09-21
US20150177294A1 (en) 2015-06-25
CN103743810B (zh) 2016-05-25
EP3088882A4 (en) 2017-08-02
EP3088882A1 (en) 2016-11-02
CN103743810A (zh) 2014-04-23
EP3088882B1 (en) 2021-07-21
JP2015534647A (ja) 2015-12-03

Similar Documents

Publication Publication Date Title
Shi et al. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis
CN103217478B (zh) 用于复合材料板状结构的无参考损伤识别方法
CN101571513A (zh) 用于复合材料层合板质量评定的超声导波检测装置
CN104833720B (zh) 单一线圈电磁谐振检测金属管道损伤的方法
CN104181234B (zh) 一种基于多重信号处理技术的无损检测方法
CN108152362B (zh) 一种基于伪随机序列的磁致伸缩检测钢结构缺陷的方法
WO2015032231A1 (zh) 一种磁致伸缩导波检测信号处理方法及装置
CN109632958A (zh) 一种考虑裂纹方位的Lamb波损伤检测方法
Sun et al. A performance improved ACFM-TMR detection system with tradeoff denoising algorithm
CN109212019A (zh) 一种远场涡流和磁致伸缩导波混合传感器及其检测方法
Yang et al. Development of a biaxial grid-coil-type electromagnetic acoustic transducer
CN104897578A (zh) 基于声表面波探测各向异性材料表层杨氏模量的检测方法
CN107576726B (zh) 用于导波检测的损伤判别和损伤扩展识别方法
Cui et al. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals
US20170356881A1 (en) Method and device for processing magnetostrictive guided wave detection signals
CN105004795A (zh) 伪缺陷信号识别及利用其提高管道无损检测精度的方法
CN110702800A (zh) 基于非线性超声异侧延时混频信号的微裂缝定位系统及方法
CN113466330A (zh) 一种用于涡流探伤过程的缺陷类型识别方法
Wang et al. An improved cross-correlation algorithm based on wavelet transform and energy feature extraction for pipeline leak detection
CN104132995A (zh) 一种基于解卷积技术的超声无损检测方法
Zhang et al. Impact identification using a passive imaging method
Tao et al. Research on a recognition algorithm for offshore-pipeline defects during magnetic-flux inspection
CN110068609A (zh) 一种漏磁粗检结合超声精测复合型承压设备内部探伤系统
She et al. Simultaneous measurements of metal plate thickness and defect depth using low frequency sweeping eddy current testing
Nuoke et al. Research on damage imaging accuracy of the guided wave

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015535981

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014841923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841923

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE