WO2015032095A1 - 光栅耦合器的光栅耦合方法、装置及系统 - Google Patents

光栅耦合器的光栅耦合方法、装置及系统 Download PDF

Info

Publication number
WO2015032095A1
WO2015032095A1 PCT/CN2013/083143 CN2013083143W WO2015032095A1 WO 2015032095 A1 WO2015032095 A1 WO 2015032095A1 CN 2013083143 W CN2013083143 W CN 2013083143W WO 2015032095 A1 WO2015032095 A1 WO 2015032095A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
lens
grating
grating coupler
surface side
Prior art date
Application number
PCT/CN2013/083143
Other languages
English (en)
French (fr)
Inventor
陈波
曾理
黄章超
曹权
宋小鹿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/083143 priority Critical patent/WO2015032095A1/zh
Priority to CN201380002332.7A priority patent/CN104838299B/zh
Publication of WO2015032095A1 publication Critical patent/WO2015032095A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a grating coupling method, apparatus and system for a grating coupler.
  • silicon waveguide As a basic material of electronic devices, silicon has been paid more and more attention to researchers in photonics in recent years. As a derivative material of silicon, silicon waveguide has strong binding ability to light waves transmitted in silicon waveguides. Therefore, it has been rapidly developed in the transmission of optical signals. However, in the process of coupling the fiber to the silicon waveguide, the mode field size of the existing standard single-mode fiber is almost 100 times that of the mode field of the silicon waveguide, which causes severe mode field mismatch in the coupling process. , resulting in great coupling losses.
  • Embodiments of the invention provide a grating coupling method, apparatus and system for a grating coupler that enable low loss coupling of a beam from an optical fiber to a silicon waveguide.
  • an embodiment of the present invention provides a grating coupler, including a first lens, a beam splitting element disposed on a side of the exit surface of the first lens, and a reflective component disposed on an exit surface side of the beam splitting element. a second lens and a third lens on the exit surface side of the reflective element, a first grating disposed on the second lens exit surface side, and a second grating disposed on the third lens exit surface side;
  • the first lens is configured to receive a first light beam propagating along a direction of the first transmission axis, and transmit the first light beam to the light splitting element;
  • the light splitting element is configured to receive the first light beam from the first lens, and divide the first light beam into a first sub beam and a second sub beam, and the first sub beam and the Transmitting a second sub-beam to the reflective element, wherein polarization directions of the first sub-beam and the second sub-beam are perpendicular to each other;
  • the reflective element for receiving the first sub-beam from the beam splitting element And the second sub-beam, and deflecting a propagation direction of the first sub-beam and the second sub-beam to propagate along a second transmission axis direction, and transmitting the first sub-beam to a second lens, Transmitting the second sub-beam to a third lens;
  • the second lens is configured to receive the first sub-beam from the reflective element and transmit the first sub-beam to a first grating;
  • the third lens is configured to receive the second sub-beam from the reflective element and transmit the second sub-beam to a second grating;
  • the first grating is configured to receive the first sub-beam from the second lens, and transmit the first sub-beam to a first silicon waveguide;
  • the second grating is configured to receive the second sub-beam from the third lens and transmit the second sub-beam to a second silicon waveguide.
  • the grating coupler further includes:
  • a half wave plate disposed between the light splitting element and the reflective element, configured to change a polarization direction of the first sub beam or a polarization direction of the second sub beam to make the second sub beam
  • the polarization direction is the same as the polarization direction of the first sub-beam.
  • the second transmission axis and the first transmission axis are perpendicular to each other.
  • the first possible implementation of the first aspect and the second possible implementation of the first aspect, in a third possible implementation, is ordinary light and the second sub-beam is extraordinary light.
  • the reflective component is Right angle reflector or plane mirror.
  • an embodiment of the present invention provides an optical coupling method of a grating coupler, where the grating coupler includes a first lens, a beam splitting component disposed on a side of the exit surface of the first lens, and is disposed at the splitting component. a reflective element on the front side, a second lens and a third lens disposed on the exit surface side of the reflective element, and disposed on the second lens a first grating on the front side and a second grating disposed on the side of the third lens exit surface, the method comprising:
  • the grating coupler receives the first light beam propagating along the first transmission axis direction
  • the grating coupler divides the first beam into a first sub-beam and a second sub-beam, wherein polarization directions of the first sub-beam and the second sub-beam are perpendicular to each other; the grating coupler will The propagation directions of the first sub-beam and the second sub-beam are deflected to propagate along a second transmission axis direction;
  • the grating coupler deflects the propagation directions of the deflected first sub-beam and the second sub-beam to propagate along the second transmission axis direction, and transmits the first sub-beam to the first silicon waveguide, The second sub-beam is transmitted to the second silicon waveguide.
  • the grating coupler further includes a half wave plate disposed between the light splitting element and the reflective element, the grating coupler to the first sub Before the beam and the second sub-beam are deflected, the grating coupler further comprises: the grating coupler changing a polarization direction of the first sub-beam or a polarization direction of the second sub-beam, so that the second sub-beam The polarization direction is the same as the polarization direction of the first sub-beam.
  • the second transmission axis and the first transmission axis are perpendicular to each other.
  • the reflective component is Right angle reflector or plane mirror.
  • an embodiment of the present invention provides an optical coupling system, including a plurality of grating couplers having any of the above features;
  • the plurality of grating couplers receive the light beams emitted by the optical fiber array, the optical fiber array comprising a plurality of optical fibers of the array, the plurality of optical fibers corresponding to the plurality of grating couplers.
  • the grating coupling method, device and system of the grating coupler provided by the embodiments of the present invention, according to the above technical solution, since the light beam outputted to the optical fiber or the optical fiber array is received by the lens, and the concentrated beam is transmitted to the low loss Spectroscopic component The two beams after the light change the direction of propagation of the two beams through the reflective element, and then transmit the light to the silicon waveguide through the grating, thereby achieving low-loss coupling of the beam from the fiber to the silicon waveguide while achieving low-loss splitting.
  • FIG. 1 is a schematic structural view of a grating coupler according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view 1 of a grating coupler according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view 2 of a grating coupler according to an embodiment of the present invention.
  • FIG. 4 is a schematic top plan view of the grating coupler of FIG. 3 according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of the grating coupler of FIG. 3 along a light transmission direction according to an embodiment of the present invention
  • FIG. 6 is a schematic perspective view of a grating coupler according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of an optical coupling method of a grating coupler according to an embodiment of the invention.
  • FIG. 8 is a schematic flow chart of an optical coupling method of a grating coupler according to an embodiment of the present invention.
  • the incident surface side of a certain unit refers to the side on which light is incident from the surface of the unit
  • the exit surface side of a unit refers to the side from which light exits from the surface of the unit.
  • An embodiment of the present invention provides a grating coupler.
  • the apparatus includes: a first lens 102, a beam splitting element 103, a reflective element 104, a second lens 106, a third lens 105, a first grating 108, and a first Two gratings 107.
  • the spectroscopic element 103 is disposed on the exit surface side of the first lens 102.
  • the reflective element 104 is disposed on the exit surface side of the spectroscopic element 103.
  • the second lens 106 and the third lens 105 are disposed on the exit surface side of the reflective element 104.
  • the first grating 108 and the second grating 7 are disposed on the side of the incident surface of the silicon waveguide.
  • the first lens 102 is configured to receive a first light beam propagating along a first transmission axis direction, and transmit the first light beam to the beam splitting element 103;
  • the light splitting element 103 is configured to receive the first light beam from the first lens 102, and divide the first light beam into a first sub beam and a second sub beam, and the first sub beam And transmitting the second sub-beam to the reflective element 104, wherein polarization directions of the first sub-beam and the second sub-beam are perpendicular to each other;
  • the reflective element 104 is configured to receive the first sub-beam and the second sub-beam from the beam splitting element 103, and deflect the propagation directions of the first sub-beam and the second sub-beam to Propagating along the second transmission axis direction, and transmitting the first sub-beam to the second lens 106, transmitting the second sub-beam to the third lens 105; the second lens 106, for receiving from the The first sub-beam of the reflective element 104, and the first sub-beam is transmitted to the first grating 108;
  • the third lens 105 is configured to receive the second sub-beam from the reflective element 104 and transmit the second sub-beam to the second grating 107;
  • the first grating 108 is configured to receive the first sub-beam from the second lens 106 and transmit the first sub-beam to the first silicon waveguide 109;
  • the second grating 107 is configured to receive the second sub-beam from the third lens 105 and transmit the second sub-beam to the second silicon waveguide 110.
  • the first light beam emitted by the optical fiber 101 is transmitted to the first lens 102, the first lens 102 converges the first light beam, and transmits the first light beam to the light splitting element 103, and the light splitting element 103
  • the first beam is split into two sub-beams, respectively a sub-beam and a second sub-beam, and transmitting the first sub-beam and the second sub-beam to the reflective element 104, the reflective element 104 respectively reflecting the first sub-beam and the second sub-beam, changing the first sub-beam and the second
  • the propagation direction of the sub-beam (specifically, the propagation directions of the first sub-beam and the second sub-beam are both rotated by 90 degrees), and the first sub-beam that changes the direction of propagation is transmitted to the second lens 106, which will change the direction of propagation.
  • the second sub-beam is transmitted to the third lens 105, and after the second sub-beams converge the first sub-beam, the first sub-beam is transmitted to the first grating 108, and the third sub-beam 105 converges the second sub-beam,
  • the two sub-beams are transmitted to a second grating 107, which couples the first sub-beam to the first silicon waveguide 109, and the second grating 107 couples the second sub-beam to the second silicon waveguide 110.
  • the first light beam is not limited to being output by an optical fiber, or may be output by an optical fiber array, as shown in FIG. 6, the optical fiber array 601.
  • fiber is a scene input by a single fiber and suitable for single beam input; fiber array refers to a scene in which multiple fibers are input in parallel for multi-beam input.
  • the polarization direction of the first beam output by the fiber or fiber array is unknown.
  • the first light beam output by the optical fiber is transmitted to the grating coupler of the embodiment of the present invention in the direction of the first transmission axis (the direction indicated by the arrow of the Z-axis as shown in Fig. 1).
  • the first light beam is divided into a first sub-beam and a second sub-beam by a beam splitting element 3 of the grating coupler, wherein the first sub-beam may be an ordinary light, and the second sub-beam It may be extraordinary light, and the spectroscopic element may be a birefringent crystal such as YV0 4 or LiNb0 3 .
  • ordinary light is usually called 0 light.
  • the refractive index of each direction is the same.
  • the extraordinary light is usually called e light, and the vibration direction of e light is perpendicular to 0 light.
  • the refractive index is different when propagating in different directions.
  • the optical axis of the birefringent crystal can be on the XZ plane as shown in FIG. 1, the light beam will be split into two beams on the XZ plane, and the polarization directions of the two beams on the exit surface side of the birefringent crystal are vertical;
  • the optical axis of the birefringent crystal can also be on the YZ plane. As shown in Fig. 4, the beam splits into two beams in the YZ plane, and the polarization directions of the two beams on the exit side of the birefringent crystal are vertical.
  • the beam splitting component 103 splits the light beam into the first sub-beam and the second sub-beam
  • the first sub-beam and the second sub-beam are transmitted to the reflective element 104, and the reflective element 104 will be along the first transmission axis direction (FIG. 1).
  • the first sub-beam and the second sub-beam propagating in the direction indicated by the arrow in the Z-axis are deflected to propagate in the direction of the second transmission axis (the opposite direction indicated by the arrow on the X-axis in Fig. 1).
  • the reflective element 104 may be a right angle reflective prism or a planar reflective prism.
  • the reflective element 104 transmits the deflected first sub-beam through the second lens 106 to the first grating 108, and the reflective element 104 transmits the deflected second sub-beam through the third lens 105 to the second grating 107.
  • the first grating 108 transmits the first sub-beam to the first silicon waveguide 109, and the second grating 107 transmits the second sub-beam to the second silicon waveguide 110.
  • the grating coupler of the embodiment of the present invention may further include:
  • a half-wave plate 204 disposed between the beam splitting element 203 and the reflective element 205.
  • the half wave plate 204 is configured to change a polarization direction of the first sub beam or a polarization direction of the second sub beam, so that a polarization direction of the second sub beam and a polarization direction of the first sub beam the same.
  • the half-wave plate 204 disposed between the beam splitting element 203 and the reflective element 205 changes the polarization direction of the extraordinary light of the first sub-beam.
  • the optical axis of the birefringent crystal is at the XZ.
  • the beam will be split into two beams on the XZ plane, and the polarization directions of the two beams on the exit face side of the birefringent crystal are vertical.
  • the polarization direction of the extraordinary light is along the X direction, after passing through the half wave plate 204.
  • the polarization direction of the extraordinary light is changed to the Y direction; as shown in FIG. 3, FIG. 4, and FIG.
  • the optical axis of the birefringent crystal can also be adjusted so that the YZ plane is divided into two beams, and the exit surface side of the birefringent crystal
  • the polarization directions of the two beams are vertical, and the polarization direction of the extraordinary light is in the X direction, and the polarization direction of the extraordinary light is changed to the Y direction after passing through the half wave plate.
  • the same coupling grating can be used for the subsequent coupling, and the two beams can be adapted to the same incident angle, ie, the two beams can be adapted to the same incidence.
  • the second transmission axis and the first transmission axis are perpendicular to each other.
  • the reflective element 104 deflects the first sub-beam and the second sub-beam propagating in the direction of the first transmission axis (the direction indicated by the arrow of the Z-axis in FIG. 1) to the direction along the second transmission axis. (The opposite direction of the arrow on the X-axis in Figure 1) propagates.
  • the second transmission axis and the first transmission axis may be perpendicular to each other or may not be perpendicular, as long as the reflective element 104 is adjusted such that the first sub-beam and the second sub-beam are deflected and incident on the grating are all protected by the present invention.
  • the scope is provided such that the first sub-beam and the second sub-beam are deflected and incident on the grating are all protected by the present invention.
  • the first sub-beam is ordinary light
  • the second sub-beam is extraordinary light
  • ordinary light is usually called 0 light.
  • the refractive index of each direction is the same.
  • the extraordinary light is usually called e light, and the vibration direction of e light is perpendicular to 0 light.
  • the refractive index is different when propagating in different directions.
  • the reflective element is a right angle reflective prism or a plane mirror.
  • the structure of the grating coupler proposed by the embodiment of the present invention can be seen that the grating coupler is a non-"4f system".
  • “4 f system” is composed of two sets of lenses with focal length f, the distance between the object point and the first group of lenses is f, the distance between the first group of lenses and the second group of lenses is 2 f, and the second group of lenses The distance from the pixel is f.
  • the object does not need to be placed at the focus position of the lens.
  • the optical fiber does not need to be placed at the focus of the first lens, which makes the position of the optical fiber. , and the angle of incidence of the beam from the fiber is easy to adjust.
  • the grating coupler outputted to the optical fiber or the optical fiber array is received by a lens, and the concentrated beam is transmitted to the spectroscopic component capable of low loss splitting, after the splitting
  • the two beams respectively change the propagation direction of the two beams through the reflection element, and then transmit the grating to the silicon waveguide, thereby realizing the low-loss splitting of the beam while achieving low-loss coupling of the beam from the fiber to the silicon waveguide.
  • An embodiment of the present invention provides an optical coupling method of a grating coupler, where the grating coupler includes a first lens, a spectroscopic component disposed on an exit surface side of the first lens, and a device a reflective element disposed on an exit surface side of the spectroscopic element, a second lens and a third lens disposed on an exit surface side of the reflective element, a first grating disposed on a second lens exit surface side, and a third grating a second grating on the exit surface side of the lens, as shown in FIG. 7, the method includes:
  • the grating coupler receives the first light beam propagating along the direction of the first transmission axis.
  • the first light beam is not limited to being output by the optical fiber, or may be output by the optical fiber array.
  • the light array 6001 the polarization direction of the first light beam output by the optical fiber or the optical fiber array is unknown. of.
  • the direction of the first transmission axis is in the Z-axis direction as shown in FIG.
  • the grating coupler divides the first beam into a first sub-beam and a second sub-beam, wherein polarization directions of the first sub-beam and the second sub-beam are perpendicular to each other.
  • the first beam splits the first beam into a first sub-beam and a second sub-beam through a beam splitting element of the grating coupler, and splits the first beam into a first sub-beam and a second sub-beam to A reflective element, which may be a birefringent crystal.
  • the grating coupler deflects a propagation direction of the first sub-beam and the second sub-beam to propagate along a second transmission axis direction.
  • the second transmission axis direction is an X-axis direction
  • a reflective element of the grating coupler deflects a propagation direction of the first sub-beam and the second sub-beam propagating along the Z-axis direction to an edge
  • the second transmission axis direction propagates in the X-axis direction
  • the reflective element may be a reflective prism.
  • the grating coupler deflects the propagation directions of the deflected first sub-beam and the second sub-beam to propagate along the second transmission axis, and transmits the first sub-beam to the first silicon a waveguide that transmits the second sub-beam to the second silicon waveguide.
  • the grating coupler deflects a propagation direction of the deflected first sub-beam to a first grating that propagates in the second transmission axis direction and is transmitted through the second lens to the grating coupler, the grating coupler Deviating the propagation direction of the deflected second sub-beam to a second grating transmitted to the grating coupler through the third lens after being propagated in the second transmission axis direction, the first grating transmitting the first sub-beam to First silicon waveguide, will be A second grating transmits the second sub-beam to the second silicon waveguide.
  • the optical coupling method of the above-mentioned grating coupler, between S102 and S103 further includes:
  • the grating coupler changes a polarization direction of the first sub-beam or a polarization direction of the second sub-beam to make a polarization direction of the second sub-beam and a polarization of the first sub-beam The same direction.
  • a half-wave plate 204 disposed between the beam splitting element 203 and the reflective element 205 changes the polarization direction of the extraordinary light of the first sub-beam, for example, a birefringent crystal
  • the optical axis is on the XZ plane, the beam will be split into two beams on the XZ plane, and the polarization directions of the two beams on the exit face side of the birefringent crystal are vertical.
  • the polarization direction of the extraordinary light is along the X direction.
  • the polarization direction of the extraordinary light is changed to the Y direction; as shown in the side view of Fig. 3, the top view of Fig. 4, as shown in the schematic diagram of the light propagation side of Fig.
  • the birefringent crystal can also be adjusted.
  • the optical axis is divided into two beams in the YZ plane, and the polarization directions of the two beams on the exit surface side of the birefringent crystal are vertical, and the polarization direction of the extraordinary light is in the X direction, which is changed after passing through the half wave plate.
  • the polarization direction of the light is the Y direction.
  • the second transmission axis and the first transmission axis are perpendicular to each other.
  • the reflective element 104 deflects the first sub-beam and the second sub-beam propagating in the direction of the first transmission axis (the direction indicated by the arrow of the Z-axis in FIG. 1) to the direction along the second transmission axis. (The opposite direction of the arrow on the X-axis in Figure 1) propagates.
  • the second transmission axis and the first transmission axis may be perpendicular to each other or may not be perpendicular, as long as the reflective element 104 is adjusted such that the first sub-beam and the second sub-beam are deflected and incident on the grating are all protected by the present invention.
  • the reflective element is a right angle reflective prism or a plane mirror.
  • the grating coupling method of the grating coupler provided by the embodiment of the invention, through the above technical solution, since the light beam outputted to the optical fiber or the optical fiber array is received by the lens, and the concentrated beam is transmitted to the light splitting component capable of low loss splitting After the splitting, the two beams of light are respectively changed by the reflecting element to change the direction of propagation of the two beams, and then transmitted to the silicon waveguide through the grating, thereby realizing the low-loss splitting and realizing the beam from the optical fiber to the silicon. Low loss coupling of the waveguide.
  • An embodiment of the present invention provides an optical coupling system, including a plurality of grating couplers having any of the above features, wherein a plurality of grating couplers receive a light beam emitted by an optical fiber array, and the optical fiber array includes a plurality of optical fibers of the array, A plurality of optical fibers correspond to the plurality of grating couplers.
  • the optical coupling system provided by the embodiment of the invention can receive the beam outputted by the fiber array, and the fiber array refers to a scenario in which multiple fibers are input in parallel and is suitable for multi-beam input.
  • the polarization direction of the first column of beams output by the fiber array is unknown.
  • the first column of light beams output by the fiber array is transmitted to the optical coupling system of the embodiment of the present invention.
  • a row of light beams emitted from the fiber array 601 is respectively transmitted to the first lens array 620, and the first lens array 620 respectively converges the light beams, and transmits the column light beams to the light splitting elements 603,
  • the beam splitting element 630 separates the column beams, and the split beamlets are respectively transmitted to the reflecting component 506.
  • the reflecting component 506 respectively reflects the sub-beams, changes the propagation direction of the sub-beams, and changes the propagation direction.
  • the sub-beams are respectively transmitted to the second lens array 607, the third lens array 610, and then transmitted to the first silicon waveguide array 610 and the second silicon waveguide array 611 via the grating array.
  • the concentrated light beams are transmitted to the light splitting elements capable of low loss splitting, and the split light beams respectively change the propagation direction of the light beams through the reflective elements. After grating transmission to the silicon waveguide array, low-loss coupling of the beam from the optical fiber to the silicon waveguide is realized while realizing low-loss splitting.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光栅耦合器的光耦合方法、装置及系统,涉及光通信领域,能够实现光束由光纤到硅波导的低损耗偏振分光耦合。光栅耦合器,包括:第一透镜、设置于所述第一透镜出射面侧的分光元件、设置于所述分光元件出射面侧的反射元件、设置于所述反射元件出射面侧的第二透镜及第三透镜、设置于所述第二透镜出射面侧的第一光栅以及设置于所述第三透镜出射面侧的第二光栅。

Description

光栅耦合器的光栅耦合方法、 装置及系统
技术领域
本发明涉及光通信领域,尤其涉及光栅耦合器的光栅耦合方法、 装置及系统。
背景技术
硅作为电子器件的基本材料, 近年来它在光子学方面的应用越 来越受到研究者们关注, 硅波导作为硅的衍生材料, 由于其对传输 在硅波导中的光波有着很强的约束能力, 因此在光信号传输方面得 到了迅速的发展。 但是, 在光纤与硅波导耦合的过程中, 现有的标 准单模光纤的模场大小几乎是硅波导的模场的 1 0 0 0倍, 这样造成在 耦合的过程中严重的模场失配, 从而带来极大的耦合损耗。
对于光纤与硅波导模场失配的问题, 目前业界也有相应的解决 方案, 然而都存在着损耗较大的问题。
发明内容
发明的实施例提供光栅耦合器的光栅耦合方法、 装置及系统, 能够实现光束由光纤到硅波导的低损耗的耦合。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 本发明实施例提供一种光栅耦合器, 包括第一透镜、 设置于所述第一透镜出射面侧的分光元件、 设置于所述分光元件出 射面侧的反射元件、 设置于所述反射元件出射面侧的第二透镜及第 三透镜、 设置于第二透镜出射面侧的第一光栅以及设置于所述第三 透镜出射面侧的第二光栅; 其中,
所述第一透镜, 用于接收沿第一传输轴方向传播的第一光束, 并将所述第一光束传输至所述分光元件;
所述分光元件, 用于接收来自所述第一透镜的所述第一光束, 并将所述第一光束分为第一子光束及第二子光束, 以及将所述第一 子光束与所述第二子光束传输至所述反射元件, 其中, 所述第一子 光束与所述第二子光束的偏振方向相互垂直;
所述反射元件, 用于接收来自所述分光元件的所述第一子光束 和所述第二子光束, 并将所述第一子光束和所述第二子光束的传播 方向偏转至沿第二传输轴方向传播, 以及将所述第一子光束传输至 第二透镜, 将所述第二子光束传输至第三透镜;
所述第二透镜,用于接收来自所述反射元件的所述第一子光束, 并将所述第一子光束传输至第一光栅;
所述第三透镜,用于接收来自所述反射元件的所述第二子光束, 并将所述第二子光束传输至第二光栅;
所述第一光栅,用于接收来自所述第二透镜的所述第一子光束, 并将所述第一子光束传输至第一硅波导;
所述第二光栅,用于接收来自所述第三透镜的所述第二子光束, 并将所述第二子光束传输至第二硅波导。
在第一方面的第一种可能的实现方式中, 所述光栅耦合器还包 括:
设置于所述分光元件及所述反射元件之间的半波片, 用于改变 所述第一子光束的偏振方向或所述第二子光束的偏振方向, 以使所 述第二子光束的偏振方向与所述第一子光束的偏振方向相同。
结合前述的第一方面或第一方面的第一种可能的实现方式, 在 第二种可能的实现方式中, 所述第二传输轴与所述第一传输轴相互 垂直。
结合前述的第一方面、 第一方面的第一种可能的实现方式以及 第一方面的第二种可能的实现方式中任一项, 在第三种可能的实现 方式中, 所述第一子光束为寻常光, 所述第二子光束为非寻常光。
结合前述的第一方面以及第一方面的第一种可能的实现方式至 第一方面的第三种可能的实现方式中任一项, 在第四种可能的实现 方式中, 所述反射元件为直角反射棱镜或者平面反射镜。
第二方面, 本发明实施例提供一种光栅耦合器的光耦合方法, 所述光栅耦合器包括第一透镜、 设置于所述第一透镜出射面侧 的分光元件、 设置于所述分光元件出射面侧的反射元件、 设置于所 述反射元件出射面侧的第二透镜及第三透镜、 设置于第二透镜出射 面侧的第一光栅以及设置于所述第三透镜出射面侧的第二光栅, 所 述方法包括:
光栅耦合器接收沿第一传输轴方向传播的第一光束;
所述光栅耦合器将所述第一光束分为第一子光束及第二子光 束, 其中, 所述第一子光束与所述第二子光束的偏振方向相互垂直; 所述光栅耦合器将所述第一子光束和第二子光束的传播方向偏 转至沿第二传输轴方向传播;
所述光栅耦合器将偏转后的第一子光束和第二子光束的传播方 向偏转至沿所述第二传输轴方向传播后, 将所述第一子光束传输至 第一硅波导, 将所述第二子光束传输至第二硅波导。
在第二方面的第一种可能的实现方式中, 所述光栅耦合器还包 括设置于所述分光元件及所述反射元件之间的半波片, 所述光栅耦 合器将所述第一子光束和第二子光束的传播方向偏转之前, 还包括: 所述光栅耦合器改变所述第一子光束的偏振方向或所述第二子 光束的偏振方向, 以使所述第二子光束的偏振方向与所述第一子光 束的偏振方向相同。
结合前述的第一方面或第一方面的第一种可能的实现方式, 在 第二种可能的实现方式中, 所述第二传输轴与所述第一传输轴相互 垂直。
结合前述的第一方面、 第一方面的第一种可能的实现方式以及 第一方面的第二种可能的实现方式中任一项, 在第三种可能的实现 方式中, 所述反射元件为直角反射棱镜或者平面反射镜。
第三方面, 本发明实施例提供一种光耦合系统, 包括多个具有 上述任意特征的光栅耦合器;
其中, 多个光栅耦合器接收光纤阵列发出的光束, 所述光纤阵列包括 阵列的多根光纤, 所述多根光纤与所述多个光栅耦合器——对应。
本发明实施例提供的光栅耦合器的光栅耦合方法、装置及系统, 通过以上的技术方案, 由于到光纤或光纤阵列输出的光束是有透镜 接收到的, 并将汇聚后光束传输至能够低损耗分光的分光元件, 分 光后的两束光分别通过反射元件改变两束光的传播方向后, 经过光 栅传输至硅波导, 从而在实现了低损耗的分光的同时, 实现了光束 从光纤到硅波导低损耗的耦合。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单的介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本发明实施例的光栅耦合器结构示意图;
图 2为本发明实施例的光栅耦合器结构示意图一;
图 3为本发明实施例的光栅耦合器结构示意图二;
图 4为本发明实施例的图 3的光栅耦合器俯视结构示意图; 图 5为本发明实施例的图 3 的光栅耦合器沿光传输方向的结构 示意图;
图 6为本发明实施例的光栅耦合器立体结构示意图;
图 7 为本发明实施例的光栅耦合器的光耦合方法流程示意图 图 8 为本发明实施例的光栅耦合器的光耦合方法流程示意图 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例中, 某个单元的入射面侧是指光从该单元的面入 射的一侧, 某个单元的出射面侧是指光从该单元的面出射的一侧。
需要说明的是: 本发明的 "上" "下" 只是参考附图对本发明进 行说明, 不作为限定用语。
本发明实施例提供一种光栅耦合器, 如图 1所示, 该装置包括: 第一透镜 102、 分光元件 103、 反射元件 104、 第二透镜 106、 第三 透镜 105、 第一光栅 108 以及第二光栅 107。
其中, 所述分光元件 103设置于所述第一透镜 102 出射面侧。 所述反射元件 104设置于所述分光元件 103 的出射面侧。 所述第二 透镜 106及所述第三透镜 105设置于所述反射元件 104的出射面侧。 所述第一光栅 108及所述第二光栅 7设置于硅波导入射面侧。
具体地, 第一透镜 102, 用于接收沿第一传输轴方向传播的第 一光束, 并将所述第一光束传输至分光元件 103;
所述分光元件 103, 用于接收来自所述第一透镜 102 的所述第 一光束, 并将所述第一光束分为第一子光束及第二子光束, 以及将 所述第一子光束与所述第二子光束传输至反射元件 104, 其中, 所 述第一子光束与所述第二子光束的偏振方向相互垂直;
所述反射元件 104, 用于接收来自所述分光元件 103 的所述第 一子光束和所述第二子光束, 并将所述第一子光束和所述第二子光 束的传播方向偏转至沿第二传输轴方向传播, 以及将所述第一子光 束传输至第二透镜 106, 将所述第二子光束传输至第三透镜 105; 所述第二透镜 106, 用于接收来自所述反射元件 104 的所述第 一子光束, 并将所述第一子光束传输至第一光栅 108;
所述第三透镜 105, 用于接收来自所述反射元件 104 的所述第 二子光束, 并将所述第二子光束传输至第二光栅 107;
所述第一光栅 108, 用于接收来自所述第二透镜 106 的所述第 一子光束, 并将所述第一子光束传输至所述第一硅波导 109;
所述第二光栅 107, 用于接收来自所述第三透镜 105 的所述第 二子光束, 并将所述第二子光束传输至第二硅波导 110。
如图 1所示,由光纤 101 出射的第一光束,传输至第一透镜 102, 第一透镜 102 对第一光束进行汇聚, 并将该第一光束传输至分光元 件 103, 分光元件 103 将该第一光束分为两束子光束, 分别为第一 子光束及第二子光束, 并将第一子光束及第二子光束传输至反射元 件 104, 反射元件 104 分别对第一子光束及第二子光束进行反射, 改变第一子光束及第二子光束的传播方向 (具体可以将第一子光束 及第二子光束的传播方向均旋转 90 度), 并将改变传播方向的第一 子光束传输至第二透镜 106, 将改变传播方向的第二子光束传输至 第三透镜 105, 第二透镜 106 将第一子光束进行汇聚后, 将第一子 光束传输至第一光栅 108, 第三透镜 105将第二子光束进行汇聚后, 将第二子光束传输至第二光栅 107, 第一光栅 108 将第一子光束耦 合至第一硅波导 109, 第二光栅 107 将第二子光束耦合至第二硅波 导 110。
需要说明的是, 所述的第一光束不仅限于是由光纤输出的, 也 可以是由光纤阵列输出的, 如图 6 所示, 光纤阵列 601。 其中, 光 纤是指由单根光纤输入, 适用于单光束输入的场景; 光纤阵列是指 由多根光纤并行输入, 适用于多光束输入的场景。 由光纤或光纤阵 列输出的第一光束的偏振方向是未知的。 由光纤输出的第一光束沿 所述第一传输轴的方向 (如图 1 所示的 Z轴的箭头所指的方向 ) 传 输至本发明实施例的光栅耦合器。
进一步地, 所述的第一光束通过所述光栅耦合器的分光元件 3 将第一光束分为第一子光束及第二子光束, 其中, 第一子光束可以 为寻常光, 第二子光束可以为非寻常光, 所述分光元件可以是双折 射晶体, 如 YV04或者 LiNb03
需要说明的是, 寻常光通常称为 0光, 在晶体中传播的时, 每 一个方向的折射率相同的, 非寻常光通常称为 e 光, e 光的振动方 向与 0光垂直, e光在不同的方向传播的时的折射率不同。
其中, 双折射晶体的光轴可以在如图 1 所示的 XZ面上, 光束将 在 XZ平面上分成两束光, 在双折射晶体的出射面侧的两束光的偏振 方向是垂直的; 双折射晶体的光轴也可以在 YZ面上, 如图 4所示, 光束在 YZ平面分成两束光, 双折射晶体的出射面侧的两束光的偏振 方向是垂直的。 进一步地, 分光元件 103将光束分为第一子光束及第二子光束 后, 将第一子光束及第二子光束传输至反射元件 104, 反射元件 104 将沿第一传输轴方向 ( 图 1 中的 Z轴的箭头所指的方向 ) 传播的第 一子光束及第二子光束偏转至沿第二传输轴方向 ( 图 1 中的 X轴的 箭头所指的反方向 ) 传播。 其中, 所述的反射元件 104 可以是直角 反射棱镜或者平面反射棱镜。
进一步地, 反射元件 104将偏转后的第一子光束通过第二透镜 106传输至第一光栅 108, 反射元件 104将偏转后的第二子光束通过 第三透镜 105 传输至第二光栅 107。 进而, 第一光栅 108 将所述第 一子光束传输至第一硅波导 109, 第二光栅 107 将所述第二子光束 传输至第二硅波导 110。
可选的, 如图 2 所示, 本发明实施例的光栅耦合器, 还可以包 括:
设置于所述分光元件 203 及所述反射元件 205 之间的半波片 204。 其中, 半波片 204用于改变所述第一子光束的偏振方向或所述 第二子光束的偏振方向, 以使所述第二子光束的偏振方向与所述第 一子光束的偏振方向相同。
如图 2 所示, 设置于所述分光元件 203 及所述反射元件 205 之间的半波片 204, 改变第一子光束非寻常光的偏振方向, 举例说 明, 双折射晶体的光轴在 XZ面上, 光束将在 XZ平面上分成两束光, 在双折射晶体的出射面侧的两束光的偏振方向是垂直的, 非寻常光 的偏振方向是沿 X方向, 通过半波片 204后, 非寻常光的偏振方向 改变为 Y方向; 如图 3、 图 4、 图 5所示, 也可调整双折射晶体的光 轴, 使得在 YZ平面分成两束光, 双折射晶体的出射面侧的两束光的 偏振方向是垂直的, 非寻常光的偏振方向是沿 X 方向, 通过半波片 后改变非寻常光的偏振方向为 Y 方向。 通过改变第二子光束的偏振 方向与第一子光束的相同, 使得在之后的耦合可以使用同样的耦合 光栅, 并且两束光可以适应同样的入射角度, 即, 两束光可以适应 同样的入射装置和条件。 可选的, 所述第二传输轴与所述第一传输轴相互垂直。 如图 1 所示, 反射元件 1 04将沿第一传输轴方向 ( 图 1 中的 Z 轴的箭头所指的方向 ) 传播的第一子光束及第二子光束偏转至沿第 二传输轴方向 ( 图 1 中的 X轴的箭头所指的反方向 ) 传播。 所述第 二传输轴与所述第一传输轴可以是相互垂直, 也可以不垂直, 只要 调整反射元件 1 04 使得第一子光束及第二子光束偏转入射至光栅都 是属于本发明所保护的范围。
可选的, 所述第一子光束为寻常光, 所述第二子光束为非寻常 光。
需要说明的是, 寻常光通常称为 0光, 在晶体中传播的时, 每 一个方向的折射率相同的, 非寻常光通常称为 e 光, e 光的振动方 向与 0光垂直, e光在不同的方向传播的时的折射率不同。
可选的, 所述反射元件为直角反射棱镜或者平面反射镜。
需要说明的是, 由本发明实施例所提出的光栅耦合器的结构可 以看出, 该光栅耦合器为一个非 " 4 f 系统"。 其中, " 4 f 系统" 是指 由两组焦距为 f 的透镜组成的, 物点与第一组透镜间距为 f , 第一 组透镜与第二组透镜的间距为 2 f , 第二组透镜与像点间距为 f。 由 此可知, 在非 " 4 f 系统" 下, 物体无需放置在透镜的焦点位置, 结 合本发明实施例的光栅耦合器而言, 光纤无需放置在第一透镜的焦 点处, 这使得光纤的位置, 以及光纤发出的光束的入射角度均易于 调节。
本发明实施例提供的光栅耦合器, 通过以上的技术方案, 由于 到光纤或光纤阵列输出的光束是有透镜接收到的, 并将汇聚后光束 传输至能够低损耗分光的分光元件, 分光后的两束光分别通过反射 元件改变两束光的传播方向后, 经过光栅传输至硅波导, 从而在实 现了低损耗的分光的同时, 实现了光束从光纤到硅波导低损耗的耦 合。
本发明实施例提供一种光栅耦合器的光耦合方法, 所述光栅耦 合器包括第一透镜、 设置于所述第一透镜出射面侧的分光元件、 设 置于所述分光元件出射面侧的反射元件、 设置于所述反射元件出射 面侧的第二透镜及第三透镜、 设置于第二透镜出射面侧的第一光栅 以及设置于所述第三透镜出射面侧的第二光栅, 如图 7 所示, 所述 方法包括:
5 1 0 1、 光栅耦合器接收沿第一传输轴方向传播的第一光束。 所述的第一光束不仅限于是由光纤输出的, 也可以是由光纤阵 列输出的, 如图 6 所示, 光线阵列 6 0 1 , 由光纤或光纤阵列输出的 第一光束的偏振方向是未知的。 所述第一传输轴的方向如图 1 所示 的 Z轴方向。
5 1 02、 所述光栅耦合器将所述第一光束分为第一子光束及第二 子光束, 其中, 所述第一子光束与所述第二子光束的偏振方向相互 垂直。
所述的第一光束通过所述光栅耦合器的分光元件将第一光束分 为第一子光束及第二子光束, 并将将第一光束分为第一子光束及第 二子光束传输到反射元件, 所述分光元件可以是双折射晶体。
5 1 0 3、 所述光栅耦合器将所述第一子光束和第二子光束的传播 方向偏转至沿第二传输轴方向传播。
如图 1 所示, 所述第二传输轴方向为 X轴方向, 所述光栅耦合 器的反射元件将所述沿 Z 轴方向传播的第一子光束和第二子光束的 传播方向偏转至沿第二传输轴方向的 X 轴方向传播, 所述的反射元 件可以是反射棱镜。
5 1 04、 所述光栅耦合器将偏转后的第一子光束和第二子光束的 传播方向偏转至沿所述第二传输轴方向传播后, 将所述第一子光束 传输至第一硅波导, 将所述第二子光束传输至第二硅波导。
所述光栅耦合器将偏转后的第一子光束的传播方向偏转至沿所 述第二传输轴方向传播后通过第二透镜传输至所述光栅耦合器的第 一光栅, 所述光栅耦合器将偏转后的第二子光束的传播方向偏转至 沿所述第二传输轴方向传播后通过第三透镜传输至所述光栅耦合器 的第二光栅, 第一光栅将所述第一子光束传输至第一硅波导, 将第 二光栅将所述第二子光束传输至第二硅波导。
进一步地, 如图 8 所示, 上述的光栅耦合器的光耦合方法, 在 S 1 02与 S 1 03之间, 还包括:
S 1 05、 所述光栅耦合器改变所述第一子光束的偏振方向或所述 第二子光束的偏振方向, 以使所述第二子光束的偏振方向与所述第 一子光束的偏振方向相同。
如图 2 所示, 设置于所述分光元件 2 0 3 及所述反射元件 2 05 之间的半波片 2 04 , 改变第一子光束非寻常光的偏振方向, 举例说 明, 双折射晶体的光轴在 XZ面上, 光束将在 XZ平面上分成两束光, 在双折射晶体的出射面侧的两束光的偏振方向是垂直的, 非寻常光 的偏振方向是沿 X方向, 通过半波片 2 04后改变非寻常光的偏振方 向为 Y方向; 如图 3 的侧视图所示, 图 4 的俯视图所示, 图 5 的光 传播方的的示意图所示, 也可调整双折射晶体的光轴, 使得在 YZ平 面分成两束光, 双折射晶体的出射面侧的两束光的偏振方向是垂直 的, 非寻常光的偏振方向是沿 X 方向, 通过半波片后改变非寻常光 的偏振方向为 Y方向。
可选的, 所述第二传输轴与所述第一传输轴相互垂直。
如图 1 所示, 反射元件 1 04将沿第一传输轴方向 ( 图 1 中的 Z 轴的箭头所指的方向 ) 传播的第一子光束及第二子光束偏转至沿第 二传输轴方向 ( 图 1 中的 X轴的箭头所指的反方向 ) 传播。 所述第 二传输轴与所述第一传输轴可以是相互垂直, 也可以不垂直, 只要 调整反射元件 1 04 使得第一子光束及第二子光束偏转入射至光栅都 是属于本发明所保护的范围。
可选的, 所述反射元件为直角反射棱镜或者平面反射镜。
本发明实施例提供的光栅耦合器的光栅耦合方法, 通过以上的 技术方案, 由于到光纤或光纤阵列输出的光束是有透镜接收到的, 并将汇聚后光束传输至能够低损耗分光的分光元件, 分光后的两束 光分别通过反射元件改变两束光的传播方向后, 经过光栅传输至硅 波导, 从而在实现了低损耗的分光的同时, 实现了光束从光纤到硅 波导低损耗的耦合。
本发明实施例提供一种光耦合系统, 包括多个具有上述任意特 征的光栅耦合器, 其中, 多个光栅耦合器接收光纤阵列发出的光束, 所述 光纤阵列包括阵列的多根光纤, 所述多根光纤与所述多个光栅耦合器—— 对应。
本发明实施例提供的光耦合系统, 可以接收光纤阵列输出的光 束, 光纤阵列是指由多根光纤并行输入, 适用于多光束输入的场景。 由光纤阵列输出的第一列光束的偏振方向是未知的。 由光纤阵列输 出的第一列光束传输至本发明实施例的光耦合系统。 如图 6 所示, 由光纤阵列 6 01 出射的一列光束, 分别传输至第一透镜阵列 6 02 , 第一透镜阵列 6 02 分别对光束进行汇聚, 并将该列光束传输至分光 元件 6 03 , 分光元件 6 03 分别将该列光束进行分束, 分束后的子光 束分别传输至反射元件 6 05 , 反射元件 6 05分别对子光束进行反射, 改变子光束的传播方向, 并将改变传播方向的子光束分别传输至第 二透镜阵列 6 07、 第三透镜阵列 6 06 , 再经过光栅阵列分别传输至第 一硅波导阵列 6 1 0、 第二硅波导阵列 6 1 1。 通过以上的技术方案, 由 于光纤阵列输出的光束是有透镜阵列接收到的, 并将分别汇聚后光 束传输至能够低损耗分光的分光元件, 分光后的光束分别通过反射 元件改变光束的传播方向后, 经过光栅传输至硅波导阵列, 从而在 实现了低损耗的分光的同时, 实现了光束从光纤到硅波导低损耗的 耦合。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一 种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽 略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦 合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可 以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实 际的需要选择其中的部分或者全部单元来实现本实施例方案的 目 的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以釆用硬件的形式 实现, 也可以釆用软件功能单元的形式实现。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种光栅耦合器, 其特征在于, 包括第一透镜、 设置于所述 第一透镜出射面侧的分光元件、设置于所述分光元件出射面侧的反射 元件、 设置于所述反射元件出射面侧的第二透镜及第三透镜、 设置于 第二透镜出射面侧的第一光栅以及设置于所述第三透镜出射面侧的 第二光栅; 其中,
所述第一透镜, 用于接收沿第一传输轴方向传播的第一光束, 并 将所述第一光束传输至所述分光元件;
所述分光元件, 用于接收来自所述第一透镜的所述第一光束, 并 将所述第一光束分为第一子光束及第二子光束, 以及将所述第一子光 束与所述第二子光束传输至所述反射元件, 其中, 所述第一子光束与 所述第二子光束的偏振方向相互垂直;
所述反射元件,用于接收来自所述分光元件的所述第一子光束和 所述第二子光束, 并将所述第一子光束和所述第二子光束的传播方向 偏转至沿第二传输轴方向传播, 以及将所述第一子光束传输至第二透 镜, 将所述第二子光束传输至第三透镜;
所述第二透镜, 用于接收来自所述反射元件的所述第一子光束, 并将所述第一子光束传输至第一光栅;
所述第三透镜, 用于接收来自所述反射元件的所述第二子光束, 并将所述第二子光束传输至第二光栅;
所述第一光栅, 用于接收来自所述第二透镜的所述第一子光束, 并将所述第一子光束传输至第一硅波导;
所述第二光栅, 用于接收来自所述第三透镜的所述第二子光束, 并将所述第二子光束传输至第二硅波导。
2、 根据权利要求 1所述的光栅耦合器, 其特征在于, 还包括: 设置于所述分光元件及所述反射元件之间的半波片,用于改变所 述第一子光束的偏振方向或所述第二子光束的偏振方向, 以使所述第 二子光束的偏振方向与所述第一子光束的偏振方向相同。
3、 根据权利要求 1或 2所述的光栅耦合器, 其特征在于, 所述 第二传输轴与所述第一传输轴相互垂直。
4、 根据权利要求 1 - 3 中任一项所述的光栅耦合器, 其特征在于, 所述第一子光束为寻常光, 所述第二子光束为非寻常光。
5、 根据权利要求 1 -4 中任一项所述的光栅耦合器, 其特征在于, 所述反射元件为直角反射棱镜或者平面反射镜。
6、 一种光栅耦合器的光耦合方法, 其特征在于, 所述光栅耦合 器包括第一透镜、 设置于所述第一透镜出射面侧的分光元件、 设置于 所述分光元件出射面侧的反射元件、设置于所述反射元件出射面侧的 第二透镜及第三透镜、设置于第二透镜出射面侧的第一光栅以及设置 于所述第三透镜出射面侧的第二光栅, 所述方法包括:
光栅耦合器接收沿第一传输轴方向传播的第一光束;
所述光栅耦合器将所述第一光束分为第一子光束及第二子光束, 其中, 所述第一子光束与所述第二子光束的偏振方向相互垂直;
所述光栅耦合器将所述第一子光束和第二子光束的传播方向偏转至 沿第二传输轴方向传播;
所述光栅耦合器将偏转后的第一子光束和第二子光束的传播方向 偏转至沿所述第二传输轴方向传播后, 将所述第一子光束传输至第一 硅波导, 将所述第二子光束传输至第二硅波导。
7、 根据权利要求 6 所述的光栅耦合器的光耦合方法, 其特征在 于, 所述光栅耦合器还包括设置于所述分光元件及所述反射元件之间 的半波片, 所述光栅耦合器将所述第一子光束和第二子光束的传播方 向偏转之前, 还包括:
所述光栅耦合器改变所述第一子光束的偏振方向或所述第二子 光束的偏振方向, 以使所述第二子光束的偏振方向与所述第一子光束 的偏振方向相同。
8、 根据权利要求 6或 7所述的光栅耦合器的光耦合方法, 其特 征在于, 所述第二传输轴与所述第一传输轴相互垂直。
9、根据权利要求 6- 8 中任一项所述的光栅耦合器的光耦合方法, 其特征在于, 所述反射元件为直角反射棱镜或者平面反射镜。
10、 一种光耦合系统, 其特征在于, 包括: 多个如权利要求 1-5 中任一项所述的光栅耦合器;
其中, 多个光栅耦合器接收光纤阵列发出的光束, 所述光纤阵列包括 阵列的多根光纤, 所述多根光纤与所述多个光栅耦合器——对应。
PCT/CN2013/083143 2013-09-09 2013-09-09 光栅耦合器的光栅耦合方法、装置及系统 WO2015032095A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/083143 WO2015032095A1 (zh) 2013-09-09 2013-09-09 光栅耦合器的光栅耦合方法、装置及系统
CN201380002332.7A CN104838299B (zh) 2013-09-09 2013-09-09 光栅耦合器的光栅耦合方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083143 WO2015032095A1 (zh) 2013-09-09 2013-09-09 光栅耦合器的光栅耦合方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015032095A1 true WO2015032095A1 (zh) 2015-03-12

Family

ID=52627731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083143 WO2015032095A1 (zh) 2013-09-09 2013-09-09 光栅耦合器的光栅耦合方法、装置及系统

Country Status (2)

Country Link
CN (1) CN104838299B (zh)
WO (1) WO2015032095A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3171207A1 (en) * 2015-11-20 2017-05-24 Google, Inc. Photonic chip grating couplers
US20170343739A1 (en) * 2016-05-25 2017-11-30 Jared Bauters Optical coupling device and method
CN107850743A (zh) * 2015-06-25 2018-03-27 华为技术有限公司 使用偏振束置换器的光耦合
US20190064457A1 (en) * 2017-08-24 2019-02-28 Juniper Networks, Inc. Optical coupler including a faraday rotator layer and at least one grating coupler
EP3647843A1 (en) * 2018-10-30 2020-05-06 Hewlett-Packard Enterprise Development LP Polarization diversity optical interface assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024738B (zh) * 2016-01-29 2018-12-14 华为技术有限公司 用于光纤束耦合的装置和方法
US10788632B2 (en) * 2019-01-29 2020-09-29 Google Llc Device and method for coupling laser to a photonic integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044718A (en) * 1989-03-20 1991-09-03 Hitachi, Ltd. Optical head used in optical information processor
CN101533128A (zh) * 2008-12-19 2009-09-16 中国科学院微电子研究所 一种硅纳米光波导与光纤的耦合封装方法
US20110305416A1 (en) * 2010-06-15 2011-12-15 Attila Mekia Method and system for multi-mode integrated receivers
CN102646927A (zh) * 2012-04-11 2012-08-22 四川马尔斯科技有限责任公司 基于波导反射光栅阵列的波长可调谐外腔激光器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160964A (ja) * 1996-11-27 1998-06-19 Idec Izumi Corp 光デバイス、光導入装置および光検出装置
EP1324301A3 (en) * 2001-11-14 2009-04-08 Samsung SDI Co. Ltd. Method and apparatus for driving plasma display panel
NL2003498C2 (nl) * 2009-09-15 2011-03-16 Genexis B V Opto-elektronische inrichting voor het bidirectioneel via glasvezels transporteren van informatie en werkwijze voor het vervaardigen van een dergelijke inrichting.
US8791405B2 (en) * 2009-12-03 2014-07-29 Samsung Electronics Co., Ltd. Optical waveguide and coupler apparatus and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044718A (en) * 1989-03-20 1991-09-03 Hitachi, Ltd. Optical head used in optical information processor
CN101533128A (zh) * 2008-12-19 2009-09-16 中国科学院微电子研究所 一种硅纳米光波导与光纤的耦合封装方法
US20110305416A1 (en) * 2010-06-15 2011-12-15 Attila Mekia Method and system for multi-mode integrated receivers
CN102646927A (zh) * 2012-04-11 2012-08-22 四川马尔斯科技有限责任公司 基于波导反射光栅阵列的波长可调谐外腔激光器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850743A (zh) * 2015-06-25 2018-03-27 华为技术有限公司 使用偏振束置换器的光耦合
EP3304154A4 (en) * 2015-06-25 2018-07-11 Huawei Technologies Co., Ltd. Optical coupling using polarization beam displacer
CN107850743B (zh) * 2015-06-25 2020-03-10 华为技术有限公司 使用偏振束置换器的光耦合
US9798084B2 (en) 2015-11-20 2017-10-24 Google Inc. Photonic chip grating couplers
EP3171207A1 (en) * 2015-11-20 2017-05-24 Google, Inc. Photonic chip grating couplers
EP3851889A1 (en) * 2016-05-25 2021-07-21 Juniper Networks, Inc. Optical coupling device and method
US20170343739A1 (en) * 2016-05-25 2017-11-30 Jared Bauters Optical coupling device and method
WO2017205553A1 (en) * 2016-05-25 2017-11-30 Bauters Jared Optical coupling device and method
US10151883B2 (en) 2016-05-25 2018-12-11 Juniper Networks, Inc. Optical coupling device and method
CN109154700A (zh) * 2016-05-25 2019-01-04 瞻博网络公司 光耦合设备和方法
CN114859471A (zh) * 2016-05-25 2022-08-05 瞻博网络公司 光耦合设备和方法
CN109154700B (zh) * 2016-05-25 2022-06-03 瞻博网络公司 光耦合设备和方法
US20190064457A1 (en) * 2017-08-24 2019-02-28 Juniper Networks, Inc. Optical coupler including a faraday rotator layer and at least one grating coupler
US11137555B2 (en) 2017-08-24 2021-10-05 Juniper Networks, Inc. Optical coupler including a faraday rotator layer and at least one grating coupler
US10551575B2 (en) * 2017-08-24 2020-02-04 Juniper Networks, Inc. Optical coupler including a faraday rotator layer and at least one grating coupler
US11668884B2 (en) 2017-08-24 2023-06-06 Openlight Photonics, Inc. Optical coupler including a Faraday rotator layer and at least one grating coupler
US10698163B2 (en) 2018-10-30 2020-06-30 Hewlett Packard Enterprise Development Lp Polarization diversity optical interface assembly
EP3647843A1 (en) * 2018-10-30 2020-05-06 Hewlett-Packard Enterprise Development LP Polarization diversity optical interface assembly

Also Published As

Publication number Publication date
CN104838299B (zh) 2017-12-22
CN104838299A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2015032095A1 (zh) 光栅耦合器的光栅耦合方法、装置及系统
US6014475A (en) Fiber optic circulator
US10151865B2 (en) Compact external grating PBS/PBC coupler
US6442310B1 (en) Optical coupling device and method
WO2016206537A1 (en) Optical coupling using polarization beam displacer
US11668884B2 (en) Optical coupler including a Faraday rotator layer and at least one grating coupler
US8660391B1 (en) Heterogeneous waveguide integrated optical isolator and circulator utilizing one or more optical grating couplers
EP3465303B1 (en) Optical coupling device and method
JP5623675B2 (ja) 光信号多重化方法および光多重化装置
JP2000028966A5 (zh)
JPH11326832A (ja) 偏光ビ―ム装置
CN104991320A (zh) 一种多波长单纤双向光收发模块及其工作方法
US10180523B2 (en) Grating and lens system for coupling light
CN109283696A (zh) 一种基于45°倾斜光纤光栅的偏振分束器件
JPH0321905A (ja) 偏波カプラ
JP2015169730A (ja) 光ビーム分岐素子
JP6233366B2 (ja) 光変調装置
CN1437037A (zh) 抗偏振相关损耗光束交换
CN102023397A (zh) 可调光滤波器
US20020191284A1 (en) Optical circulator
JP2005266362A (ja) 偏波無依存型光学機器
CN112444969B (zh) 一种大视场双层深度ar波导
CN102255666A (zh) 一种色散补偿器
US10578885B2 (en) Polarization coupling device and optical modulation device
US6624938B1 (en) Optical circulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893000

Country of ref document: EP

Kind code of ref document: A1