WO2015030196A1 - Electrolytic solution - Google Patents

Electrolytic solution Download PDF

Info

Publication number
WO2015030196A1
WO2015030196A1 PCT/JP2014/072793 JP2014072793W WO2015030196A1 WO 2015030196 A1 WO2015030196 A1 WO 2015030196A1 JP 2014072793 W JP2014072793 W JP 2014072793W WO 2015030196 A1 WO2015030196 A1 WO 2015030196A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
electrolytic solution
group
carbon atoms
imidazolidinone
Prior art date
Application number
PCT/JP2014/072793
Other languages
French (fr)
Japanese (ja)
Inventor
正男 三宅
厚志 遠藤
平藤 哲司
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2015534343A priority Critical patent/JPWO2015030196A1/en
Publication of WO2015030196A1 publication Critical patent/WO2015030196A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution. More specifically, the present invention relates to an electrolytic solution for aluminum plating useful as a plating solution for aluminum plating, an electrolytic solution for aluminum secondary battery useful as an electrolytic solution for an aluminum secondary battery, and production of an aluminum material using the electrolytic solution. Regarding the method.
  • the electrolytic solution for aluminum plating of the present invention can perform electrodeposition of aluminum at a temperature near room temperature, it can be used for the production of aluminum materials and the formation of an aluminum plating film on the surface of an object to be plated. Used as a liquid.
  • the electrolytic solution for aluminum plating of the present invention is expected to be used, for example, for the manufacture of inexpensive, light and high strength structural members, electronic components, optical components and the like.
  • the electrolytic solution for an aluminum secondary battery of the present invention is easy to handle and can perform a charge / discharge reaction at a temperature near room temperature, for example, without being heated to a high temperature. Used as an electrolyte solution.
  • the electrolytic solution for an aluminum secondary battery of the present invention is expected to be used, for example, in the production of secondary batteries used in portable equipment, electric vehicles and the like.
  • an aluminum material can be efficiently produced at a temperature near room temperature, for example, without heating to a high temperature. It is expected to be used when developing inexpensive, lightweight, high-strength structural members, electronic / optical components, and the like.
  • Aluminum is expected to be used as a metal plating material in place of zinc and chromium because it has a large amount of reserves on the earth, has excellent corrosion resistance, and has a low load on humans. Since the electrodeposition potential of aluminum is significantly lower than the potential for hydrogen generation, it is difficult to deposit from an aqueous solution. Therefore, in the electrodeposition of aluminum, use of an electrolytic solution containing a non-aqueous organic solvent such as toluene as a solvent or an electrolytic solution containing a room temperature ionic liquid such as an imidazolium salt as a solvent has been studied (for example, non-patent) Reference 1). However, the electrolytic solution has many problems in terms of ease of handling and manufacturing cost.
  • an electrolytic aluminum plating solution containing dimethyl sulfone, which is a molecular organic solvent, as a solvent has been proposed (for example, see Patent Document 1).
  • the melting point of dimethyl sulfone is 110 ° C.
  • the electrolytic aluminum plating solution has a drawback that a great deal of energy is consumed when aluminum is electrodeposited.
  • the present invention has been made in view of the above prior art, is easy to handle, and can be efficiently electroplated with aluminum without being heated to a high temperature.
  • An electrolytic solution for an aluminum secondary battery that can efficiently perform a charge / discharge reaction without heating to a high temperature, and an aluminum material that can efficiently produce an aluminum material without heating to a high temperature It is an object to provide a manufacturing method.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75.
  • the present invention relates to an electrolytic solution for an aluminum secondary battery that is ⁇ 50 / 50.
  • the electrolytic solution for aluminum plating of the present invention is easy to handle and has an excellent effect of being able to efficiently deposit aluminum without being heated to a high temperature.
  • the electrolytic solution for an aluminum secondary battery of the present invention is easy to handle, and exhibits an excellent effect that a charge / discharge reaction can be performed without heating to a high temperature.
  • the manufacturing method of the aluminum material of this invention even if it does not heat at high temperature, the outstanding effect that an aluminum material can be manufactured efficiently is show
  • (A) is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 1 by cyclic voltammetry
  • (B) is the result after electrodeposition using the electrolytic solution obtained in Example 1. It is a drawing substitute photograph of the cathode surface.
  • 6 is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 2 by cyclic voltammetry.
  • (A) is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 3 by cyclic voltammetry, and (B) is the result after electrodeposition using the electrolytic solution obtained in Example 3. It is a drawing substitute photograph of the cathode surface.
  • FIG. 5 is a drawing-substituting photograph of the cathode surface after electrodeposition at a current density of 0.5 mA / cm 2 using a liquid.
  • (A) is a drawing-substituting photograph of the cathode surface after electrodepositing at a current density of 0.75 mA / cm 2 using the electrolytic solution obtained in Example 6, and (B) is an electrolysis obtained in Example 7.
  • (C) is a substitute for a drawing of the cathode surface when electrodeposited at a current density of 0.5 mA / cm 2 , and the electrolyte obtained in Example 7 is used at a current density of 1 mA / cm 2.
  • (D) is a drawing substitute photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 3 at a current density of 0.5 mA / cm 2. is there.
  • FIG. 6 is an X-ray diffraction pattern of an aluminum plating film obtained in Experiment No. 15.
  • FIG. 6 is a drawing-substituting photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 8.
  • (A) is a graph showing the results of cyclic voltammetry measurement of the oxidation-reduction potential of the electrolytic solution obtained in Example 9, and (B) is the result after electrodeposition using the electrolytic solution obtained in Example 9.
  • It is a drawing substitute photograph of the cathode surface.
  • 6 is a drawing-substituting photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 10.
  • the present invention provides formula (I):
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75.
  • an electrolytic solution for aluminum plating of ⁇ 50 / 50 It is an electrolytic solution for aluminum plating of ⁇ 50 / 50.
  • an aluminum halide is dissolved in the imidazolidinone compound represented by the formula (I), and the mole of the imidazolidinone compound represented by the formula (I) and the aluminum halide is An electrolytic solution for an aluminum secondary battery having a ratio [imidazolidinone compound / aluminum halide] of 25/75 to 50/50.
  • electrolytic solution for aluminum plating and the electrolytic solution for aluminum secondary battery are referred to as “electrolytic solution”.
  • an aluminum halide is dissolved in an imidazolidinone compound represented by the formula (I) [hereinafter simply referred to as an imidazolidinone compound], and an imidazolidinone compound / aluminum halide (molar ratio).
  • Is 25/75 to 50/50 for example, aluminum can be deposited (reduction of aluminum ions) and dissolved (aluminum oxidation) even at a temperature near room temperature without being heated to a high temperature. Accordingly, by using the electrolytic solution of the present invention, for example, electrodeposition of aluminum and charge / discharge reaction (oxidation-reduction reaction) can be performed even at a temperature near room temperature without heating to a high temperature.
  • the imidazolidinone compound is used as a solvent for dissolving the aluminum halide.
  • the imidazolidinone compound has a higher flash point and lower volatility than toluene, which is used as a solvent for the conventional electrolytic solution for aluminum electrodeposition, in the temperature range where the electrolytic solution is normally used. Is easy.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, or an alkyl having 1 to 4 carbon atoms which may have a substituent.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the present invention is not limited to such examples.
  • the optionally substituted alkyl group having 1 to 4 carbon atoms has 1 or more carbon atoms, and from the viewpoint of improving the ease of handling of the electrolytic solution, 4 or less, Preferably it is 2 or less.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. It is not limited to illustration only.
  • the substituent include a halogen atom and a hydroxyl group, but the present invention is not limited to such examples.
  • the carbon number of the alkenyl group having 1 to 4 carbon atoms which may have a substituent is 2 or more, and from the viewpoint of improving the ease of handling of the electrolytic solution, 4 or less, Preferably it is 3 or less.
  • the alkenyl group having 2 to 4 carbon atoms include a vinyl group, an isopropenyl group, an allyl group, and a butenyl group, but the present invention is not limited to such examples.
  • the substituent in the alkenyl group having 1 to 4 carbon atoms which may have a substituent is the same as the substituent in the alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • the alkoxy group has 1 or more carbon atoms, and is 4 or less, preferably 3 or less, from the viewpoint of improving the ease of handling of the electrolytic solution.
  • the alkoxy group having 2 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and the like, but the present invention is not limited to such examples.
  • the aryl group has 6 or more carbon atoms, and is 12 or less, preferably 8 or less, more preferably 7 or less, from the viewpoint of improving the ease of handling of the electrolytic solution.
  • the aryl group having 6 to 8 carbon atoms include a phenyl group and a tolyl group, but the present invention is not limited to such examples.
  • the aralkyl group has 7 or more carbon atoms, and is 13 or less, preferably 10 or less, more preferably 9 or less, from the viewpoint of improving the ease of handling of the electrolytic solution.
  • the aralkyl group having 7 to 13 carbon atoms include a phenylmethyl group, a 2-phenylethyl group, a 3-phenylpropyl group, and a 4-phenylbutyl group.
  • the present invention is limited to such examples. It is not something.
  • the alkoxy group of the alkoxycarbonyl group has 1 or more carbon atoms, and is 4 or less, preferably 3 or less from the viewpoint of improving the ease of handling of the electrolytic solution.
  • the alkoxycarbonyl group having 1 to 4 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group.
  • the present invention is not limited to such examples.
  • an alkyl group having 1 to 4 carbon atoms is preferable, a methyl group and an ethyl group are more preferable, and methyl More preferred are groups.
  • imidazolidinone compound examples include 1,3-dimethyl-2-imidazolidinone, 1-methyl-3-ethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3 Dialkylimidazolidinone compounds such as di (n-propyl) -2-imidazolidinone and 1,3-di (n-butyl) -2-imidazolidinone, 1,3-divinyl-2-imidazolidinone, etc.
  • 1,3-dialkenylimidazolidinone compounds 1-methyl-3-phenyl-2-imidazolidinone, 1-methyl-3-phenyl-4-imidazolidinone, 3-methyl-1-phenyl-4- Alkyl aryl imidazolidinone compounds such as imidazolidinone; 1,3-diphenyl-2-imidazolidinone, 1,3-diphenyl-4-imidazolidinone, etc.
  • diaryl imidazolidinone compounds the present invention is not limited only to those exemplified.
  • imidazolidinone compounds since both the efficiency of electrodeposition of aluminum and charge / discharge reaction and economy are satisfied, dialkylimidazolidinone compounds are preferred, and 1,3-dimethyl-2 is more preferred. -Imidazolidinone.
  • Examples of the aluminum halide include aluminum fluoride, aluminum chloride, aluminum bromide, aluminum iodide, and the like, but the present invention is not limited to such examples.
  • aluminum chloride and aluminum bromide are preferable from the viewpoint of efficiently performing aluminum electrodeposition and charge / discharge reaction, and satisfy both the efficiency and economic efficiency of aluminum electrodeposition and charge / discharge reaction.
  • Aluminum chloride is more preferred.
  • the molar ratio of the imidazolidinone compound and the aluminum halide is 25/75 or more, preferably 33/67 or more, from the viewpoint of sufficiently ensuring the ease of handling of the electrolytic solution. More preferably, it is 38/62 or more, and it is 50/50 or less, preferably 49/51 or less, more preferably 46/54 or less, from the viewpoint of efficiently performing aluminum electrodeposition and charge / discharge reaction.
  • the electrolytic solution of the present invention is used for production of an aluminum material, that is, when the electrolytic solution of the present invention is an electrolytic solution for aluminum plating, from the viewpoint of improving the smoothness of the aluminum plating film, for example, tetraethylammonium chloride, It is preferable to include an organic solvent such as ethylenetetramine, benzene, toluene, xylene in the electrolytic solution of the present invention.
  • an organic solvent such as ethylenetetramine, benzene, toluene, xylene
  • the amount of the organic solvent in the electrolytic solution of the present invention varies depending on the type of the organic solvent, the use of the electrolytic solution, etc., and thus cannot be determined unconditionally. For this reason, it is preferable to determine appropriately depending on the type of the organic solvent, the use of the electrolyte, and the like.
  • the total amount of imidazolidinone compound and aluminum halide is 100 mol.
  • the amount of per organic solvent is usually preferably 0.1 to 2 mol, more preferably 0.5 to 1.5 mol.
  • the total amount of imidazolidinone compound and aluminum halide is preferably 0.1 to 150 moles, more preferably 50 to 120 moles.
  • the electrolytic solution for aluminum plating of the present invention is easy to handle. Moreover, according to the electrolytic solution for aluminum plating of the present invention, aluminum can be deposited and dissolved efficiently even at a temperature near room temperature, for example, without heating to a high temperature. Therefore, according to the electrolytic solution for aluminum plating of the present invention, it is possible to efficiently deposit aluminum, for example, even at a temperature near room temperature, without heating to a high temperature. As described above, according to the electrolytic solution for aluminum plating of the present invention, aluminum can be efficiently electrodeposited even at a temperature near room temperature without being heated to a high temperature. It is expected to be used for forming an aluminum plating film on the surface of a plated object.
  • the electrolytic solution for an aluminum secondary battery of the present invention is easy to handle. Further, according to the electrolytic solution of the present invention, it is possible to efficiently reduce aluminum ions and oxidize aluminum even at a temperature near room temperature, for example, without heating to a high temperature. Therefore, according to the electrolytic solution of the present invention, the charge / discharge reaction (oxidation-reduction reaction) can be performed efficiently even at a temperature near room temperature, for example, without heating to a high temperature. As described above, according to the electrolytic solution of the present invention, the charge / discharge reaction can be performed efficiently even at a temperature near room temperature, for example, without being heated to a high temperature. It is expected to be used for the production of secondary batteries and the like.
  • the method for producing an aluminum material of the present invention is a method for producing an aluminum material in which an aluminum plating film is formed on the surface of an object to be plated, and the object to be plated is immersed in the electrolytic solution for aluminum plating. Aluminum is deposited on the surface of the object to be plated from the electrolytic solution for forming an aluminum plating film.
  • the operation of electrodepositing aluminum using the electrolytic solution for aluminum plating is employed. Therefore, even if it is not heated to a high temperature, for example, it is efficient even at a temperature near room temperature.
  • An aluminum plating film can be formed on the surface of the object to be plated. Therefore, according to the method for producing an aluminum material of the present invention, an aluminum material can be produced efficiently even at a temperature near room temperature, for example, without heating to a high temperature.
  • Aluminum material is a material in which an aluminum plating film is formed on the surface of an object to be plated.
  • the material constituting the object to be plated include metals other than aluminum, conductive materials such as alloys, non-conductive materials such as plastics, etc., but the present invention is limited only to such examples. It is not a thing.
  • the non-conductive material such as plastic is used as the material of the object to be plated, the non-conductive material is pre-conductive by performing electroless plating on the object to be plated made of the non-conductive material, for example. It can be used with imparting properties.
  • Aluminum electrodeposition is performed in an inert gas atmosphere.
  • the inert gas include argon gas and nitrogen gas, but the present invention is not limited to such examples.
  • an electrolytic cell When aluminum is electrodeposited, an electrolytic cell is used.
  • the size and shape of the electrolytic cell may be any suitable size and shape of the intended aluminum material, and the present invention is related to this. It is not limited by the size and shape of the electrolytic cell.
  • the electrolytic solution for aluminum plating is placed in an electrolytic cell, an anode and a cathode are inserted into the electrolytic solution for aluminum plating in the electrolytic cell, and electricity is passed between the anode and the cathode. Can be done. By performing this operation, aluminum can be electrodeposited from the electrolytic solution for aluminum plating.
  • Examples of the anode include an electrode made of aluminum and an electrode made of a base material having a surface layer made of aluminum. However, the present invention is not limited to such examples.
  • Examples of the material constituting the substrate include a conductive metal other than aluminum, a conductive material such as a conductive alloy, and a nonconductive material such as a nonconductive plastic. It is not limited only to such illustration. An object to be plated can be used for the cathode.
  • the amount of electricity applied when electrodepositing aluminum varies depending on the intended use of the aluminum material and the thickness required for the aluminum plating film, etc., it cannot be determined unconditionally, so the intended use of the aluminum material, It is preferable to determine appropriately according to the thickness required for the aluminum plating film.
  • the current density when energizing between the anode and the cathode inserted into the aluminum plating electrolyte is the temperature of the aluminum plating electrolyte when performing electrodeposition (hereinafter referred to as electrodeposition temperature), It depends on the type of imidazolidinone compound, the type of aluminum halide used in the electrolytic solution for aluminum plating, and the molar ratio of the imidazolidinone compound and aluminum halide in the electrolytic solution for aluminum plating.
  • the electrodeposition temperature is the current density, the type of imidazolidinone compound, the type of aluminum halide used in the electrolytic solution for aluminum plating, and the molar ratio of the imidazolidinone compound and aluminum halide in the electrolytic solution for aluminum plating. Since it cannot be determined in general, it depends on the current density, type of imidazolidinone compound, type of aluminum halide used in the electrolytic solution for aluminum plating, and imidazolidin in the electrolytic solution for aluminum plating. It is preferable to determine appropriately according to the molar ratio between the non-compound and the aluminum halide.
  • the electrodeposition temperature is usually from room temperature (25 ° C.) to 100 ° C. As described above, according to the method for producing an aluminum material of the present invention, aluminum can be electrodeposited from the electrolytic solution for aluminum plating at a relatively low temperature. Aluminum materials can be produced even at temperatures.
  • an aluminum material of the present invention can be produced efficiently even at a temperature near room temperature, for example, without heating to a high temperature. Therefore, the electrolytic solution of the present invention and the method for producing the aluminum material of the present invention are expected to be used, for example, in the development of an inexpensive, lightweight and high-strength structural member.
  • Example 1 In a glove box maintained in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are both methyl groups in formula (I) and aluminum halogen Compound (aluminum chloride) was mixed with 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) to be 48.8 / 51.2 to obtain an electrolytic solution.
  • imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are both methyl groups in formula (I) and aluminum halogen Compound (aluminum chloride) was mixed with 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) to be 48.8 / 51.2 to obtain an electrolytic solution.
  • Example 2 Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 45.5 / 54.5. Similarly, an electrolytic solution was obtained.
  • Example 3 Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 40.0 / 60.0. Similarly, an electrolytic solution was obtained.
  • Example 4 Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 38.5 / 61.5. Similarly, an electrolytic solution was obtained.
  • Example 5 Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 33.3 / 66.7. Similarly, an electrolytic solution was obtained.
  • Example 1 Comparative Example 1 In Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 76.9 / 23.1, Similarly, an electrolytic solution was obtained.
  • a glassy carbon electrode (diameter: 3.0 mm, length: 55 mm) is polished with diamond paste, washed with distilled water and ethanol, and then cooled with cold air. A working electrode was obtained by drying.
  • Production Example 2 An aluminum plate (purity: 99% by mass, width: 20 mm, length: 30 mm, thickness: 1.0 mm) and silicon carbide polishing paper (P # 220) in a glove box maintained in an argon gas atmosphere Then, after washing with distilled water and ethanol, it was dried with cold air to obtain a counter electrode.
  • a copper plate material (purity: 99.99 mass%, width: 15 mm, length: 30 mm, thickness: 0.5 mm) was placed on a silicon carbide abrasive paper (P # 1200). No.), washed with distilled water and ethanol, and then dried with cold air. Next, the surface of the copper plate material was covered with a polytetrafluoroethylene tape so that the exposed portion of the copper plate material after drying was 1 cm 2 to obtain a cathode.
  • Test example 1 Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, Using the electrolytic solution obtained in Example 1, a three-electrode electrochemical cell (Experiment No. 1) was produced.
  • Example 1 instead of the electrolytic solution obtained in Example 1, the electrolytic solution obtained in Example 2 (Experiment No. 2), the electrolytic solution obtained in Example 3 (Experiment No. 3), and in Example 4 The same as above except that the obtained electrolytic solution (Experiment No. 4), the electrolytic solution obtained in Example 5 (Experiment No. 5) and the electrolytic solution obtained in Comparative Example 1 (Experiment No. 6) were used. By performing the above operations, a three-electrode electrochemical cell was produced.
  • the temperature of the electrolyte solution in the experiment numbers 3, 5, and 6 is different from the temperature of the electrolyte solution in the experiment numbers 1, 2, and 4.
  • the temperature of the electrolyte does not affect the appearance of current peaks caused by aluminum dissolution and precipitation, respectively. It is considered that the difference in the temperature of the electrolyte solution in Experiment Nos. 1 to 6 does not affect the presence or absence of aluminum dissolution and precipitation.
  • FIG. 1 (A) shows the results of measuring the redox potential of the electrolytic solution obtained in Example 1 by cyclic voltammetry
  • FIG. 2 shows the results measured by voltammetry
  • FIG. 3 (A) shows the results of the cyclic reduction of the redox potential of the electrolyte obtained in Example 3
  • FIG. 3A shows the oxidation of the electrolyte obtained in Example 4.
  • FIG. 4 shows the result of measuring the reduction potential by cyclic voltammetry
  • FIG. 5 shows the result of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 5
  • FIG. 5 shows the electrolytic solution obtained in Comparative Example 1.
  • the result of measuring the oxidation-reduction potential of the product by cyclic voltammetry is shown in FIG.
  • 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was 48.8 / 51.2 (Example 1), 45.5 / 54.5 (Example 2), In the case of using electrolytic solutions of 40.0 / 60.0 (Example 3), 38.5 / 61.5 (Example 4) and 33.3 / 66.7 (Example 5), aluminum was used. Since it is possible to perform ion reduction and aluminum oxidation, it can be seen that aluminum electrodeposition and charge / discharge reactions can be performed.
  • Electrodeposition of aluminum The electrolytic solution (experiment number 7) obtained in Example 1 was put in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4, the anode obtained in Production Example 5 and the reference electrode obtained in Production Example 3 were inserted into the electrolytic solution in the electrolytic cell, and the anode was subjected to the conditions shown in Table 2. Electrodeposition was carried out by energizing between the cathode and the cathode. At this time, it was confirmed that the current between the anode and the cathode was 4.3 mA / cm 2 .
  • the electrolytic solution (experiment number 8) obtained in Example 3 was placed in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, and electricity was passed between the anode and the cathode under the conditions shown in Table 2. Electrodeposited.
  • Test Example 1 an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 1 was electrodeposited using the electrolytic solution obtained in FIG. An optical photograph of the cathode surface is shown in FIG. In the figure, the scale bar indicates 10 mm.
  • an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 can be used to charge aluminum. It can be seen that it can be analyzed.
  • the imidazolidinone compound has a high flash point and low volatility in the temperature range in which the electrolytic solution is usually used, as compared with toluene used as a solvent for an electrolytic solution for conventional aluminum electrodeposition. Since the handling is easy, the electrolytic solution is easy to handle.
  • the electrolytic solution is a conventional electrolytic solution containing dimethylsulfone. It is considered that aluminum can be electrodeposited at a lower temperature range.
  • Test example 2 (1) Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, A three-electrode electrochemical cell was prepared using the electrolytic solution obtained in Example 3 (Experiment No. 9) or the electrolytic solution obtained in Example 4 (Experiment No. 10).
  • Example 2 the temperature of the electrolytic solution obtained in Example 3 was adjusted to 25 ° C., and the result of measuring the oxidation-reduction potential of the electrolytic solution by cyclic voltammetry was obtained in FIG.
  • FIG. 8 shows the results of adjusting the temperature of the obtained electrolyte to 25 ° C. and measuring the oxidation-reduction potential of the electrolyte by cyclic voltammetry.
  • Example 3 when the electrolytic solution obtained in Example 3 was used and the temperature of the electrolytic solution was adjusted to 25 ° C., the electrolytic solution obtained in Example 3 was used.
  • the temperature of the electrolyte is adjusted to 80 ° C. (see FIG. 3A)
  • the sweep is turned back at a potential of ⁇ 1 V or less, and when the potential is swept to the anode side, the potential is around 0 V [see FIG. 7 (A), see arrow B], the rising of the anode current is seen, indicating that the precipitated aluminum is dissolved.
  • Example 4 when the electrolytic solution obtained in Example 4 was used and the temperature of the electrolytic solution was adjusted to 25 ° C., the electrolytic solution obtained in Example 4 was used, and the electrolytic solution Similar to when the temperature of the liquid was adjusted to 60 ° C. (see FIG. 4), the sweep was turned back at a potential of ⁇ 1 V or less, and when the potential was swept to the anode side, the potential was around 0 V (see arrow B in FIG. 8). ) Shows that the anode current rises, indicating that the precipitated aluminum is dissolved.
  • Electrodeposition of aluminum After the electrolytic solution obtained in Example 3 was put in the electrolytic cell, the cathode obtained in Production Example 4 and the obtained in Production Example 5 in the electrolytic solution in the electrolytic cell Electrodeposition was performed by inserting an anode and applying current between the anode and the cathode under the conditions shown in Table 3.
  • Example 2 the temperature of the electrolytic solution obtained in Example 3 was adjusted to 25 ° C., and an optical photograph of the cathode surface after electrodeposition using the electrolytic solution is shown in FIG.
  • the temperature of the electrolyte solution obtained was adjusted to 40 ° C., and an optical photograph of the cathode surface after electrodeposition using the electrolyte solution was adjusted to 50 ° C. in FIG. 9 and the electrolyte solution obtained in Example 3
  • FIG. 10 shows an optical photograph of the cathode surface after electrodeposition using the electrolytic solution.
  • the scale bar indicates 10 mm.
  • the state of the cathode surface was evaluated based on the following evaluation criteria. The results are shown in Table 3.
  • AA An aluminum plating film having a silvery white surface and a smooth surface is formed on the cathode surface.
  • an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 was used. It can be seen that aluminum can be electrodeposited when the temperature is adjusted to 25-80 ° C.
  • Test example 3 After putting the electrolytic solution obtained in Example 3 into the electrolytic cell, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, Electrodeposition was performed by applying current between the anode and the cathode under the conditions shown in Table 4 (experiment numbers 14 and 12).
  • FIG. 11B shows an optical photograph of the cathode surface after electrodeposition (Experiment No. 12) using the electrolytic solution obtained in Example 3 at a current density of 0.5 mA / cm 2 .
  • the scale bar indicates 10 mm.
  • the state of the cathode surface was evaluated based on the following evaluation criteria. The results are shown in Table 4.
  • AA An aluminum plating film having a silvery white surface and a smooth surface is formed on the cathode surface.
  • Example 6 In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( Aluminum chloride) and an additive (tetraethylammonium chloride) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / tetraethylammonium chloride (molar ratio) is 40/60/1. A liquid was obtained.
  • Example 6 is the same as Example 6 except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / tetraethylammonium chloride (molar ratio) was changed from 40/60/1 to 40/60/2 in Example 6. The electrolyte solution was obtained by performing the same operation.
  • Test example 4 Electrodeposition of aluminum The electrolytic solution obtained in Example 6 (Experiment No. 15), the electrolytic solution obtained in Example 7 (Experiment No. 16 and Experimental No. 17), or the electrolytic solution obtained in Example 3 (Experiment No. 12) was placed in the electrolytic cell, and then the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell. Electrodeposition was performed by applying current between the anode and the cathode under conditions.
  • Example 4 using the electrolytic solution obtained in Example 6, an optical photograph of the cathode surface after electrodeposition (experiment number 15) at a current density of 0.75 mA / cm 2 is shown in FIG. Using the electrolytic solution obtained in Example 7, an optical photograph of the cathode surface after electrodeposition (experiment number 16) at a current density of 0.5 mA / cm 2 was obtained in FIG. Using the electrolytic solution, an optical photograph of the cathode surface after electrodeposition (experiment number 17) at a current density of 1 mA / cm 2 is 0.5 mA using the electrolytic solution obtained in FIG. 12 (C) and Example 3.
  • Example 6 the electrolytic solution obtained in Example 6 containing 1 mol of tetraethylammonium chloride as an additive was used for electrodeposition by adjusting the current density to 0.75 mA / cm 2 .
  • Example No. 15 when using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an additive and adjusting the current density to 0.5 mA / cm 2 for electrodeposition
  • Example No. 16 Using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an additive and adjusting the current density to 1 mA / cm 2 for electrodeposition (Experiment No.
  • Example 15 Using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an agent, the current density was adjusted to 0.5 mA / cm 2 for electrodeposition (Experiment No. 16), and tetraethylammonium as an additive
  • Example 3 containing no chloride was used for electrodeposition with the current density adjusted to 0.5 mA / cm 2 (Experiment No. 12)
  • a silver-white smooth surface was formed on the cathode surface. It can be seen that an aluminum plating film having s is formed.
  • an imidazolidinone compound and an aluminum halide contains an imidazolidinone compound and an aluminum halide, an imidazolidinone compound / aluminum halide (molar ratio) is 25/75 to 50/50, and contains tetraethylammonium chloride as an additive. According to the electrolytic solution, it can be seen that an aluminum plating film having a smoother surface can be obtained.
  • Example 8 In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( Aluminum chloride) and an additive (triethylenetetramine) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / triethylenetetramine (molar ratio) is 40/60/1.
  • Test Example 5 The electrolytic solution obtained in Example 8 was placed in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, and the temperature of the electrolytic solution: 40 ° C., current density: 0.75 mA / cm. 2 and the amount of energization: Electrodeposition was performed by constant current electrolysis energized between the anode and the cathode at 10 C / cm 2 .
  • Test Example 5 an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 8 is shown in FIG. In the figure, the scale bar indicates 10 mm.
  • an electrolytic solution containing an imidazolidinone compound and an aluminum halide, an imidazolidinone compound / aluminum halide (molar ratio) is 25/75 to 50/50, and contains triethylenetetramine as an additive. It turns out that the aluminum plating film which has a smoother surface can be obtained by using.
  • Example 9 In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( Aluminum chloride) and the additive (toluene) were mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / toluene (molar ratio) was 40/60/120 to obtain an electrolytic solution. .
  • Test Example 6 Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, Using the electrolytic solution obtained in Example 9, a three-electrode electrochemical cell was produced.
  • Test Example 6 the results of measuring the redox potential of the electrolytic solution obtained in Example 9 by cyclic voltammetry are shown in FIG.
  • Electrodeposition of aluminum The electrolytic solution obtained in Example 9 was put in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, and the electrolyte temperature: 40 ° C., current density: 1 mA / cm 2 and Electrodeposition was carried out by constant current electrolysis in which current was applied between the anode and the cathode at an energization amount of 10 C / cm 2 .
  • Test Example 6 an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 9 is shown in FIG. In the figure, the scale bar indicates 10 mm.
  • an electrolytic solution containing an imidazolidinone compound and an aluminum halide, an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50, and toluene as an additive. It can be seen that an aluminum plating film having a smoother surface can be obtained.
  • Example 10 In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( (Aluminum chloride) and additive (m-xylene) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / m-xylene (molar ratio) is 40/60/100. The electrolyte solution was obtained.
  • an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide (Aluminum chloride) and additive (m-xylene) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / m-xylene (molar ratio) is 40/60/100.
  • the electrolyte solution was obtained.
  • Test Example 7 After putting the electrolytic solution obtained in Example 10 into the electrolytic cell, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, Electrodeposition was performed by constant-current electrolysis in which an electric current was passed between the anode and the cathode at an electrolyte temperature of 40 ° C., a current density of 1 mA / cm 2 and an energization amount of 20 C / cm 2 .
  • Test Example 7 an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 10 is shown in FIG. In the figure, the scale bar indicates 10 mm.
  • Electrodeposition is performed using an electrolyte containing benzene as an additive instead of using an electrolyte containing tetraethylammonium chloride, triethylenetetramine, toluene or m-xylene as an additive, Similar results are obtained when using an electrolyte containing ethylammonium chloride, triethylenetetramine, toluene or m-xylene.
  • imidazolidinone compound and aluminum halide are contained, imidazolidinone compound / aluminum halide (molar ratio) is 25 / 75-50 / 50, tetraethylammonium chloride, triethylenetetramine It can be seen that an aluminum plating film having a smoother surface can be obtained with an electrolytic solution containing a solvent such as toluene, m-xylene, or benzene.
  • Example 2 In Example 1, electrolysis was performed in the same manner as in Example 1 except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 52/48. A liquid was obtained.
  • Test Example 8 (1) Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, Using the electrolytic solution obtained in Example 2 or Comparative Example 2, a three-electrode electrochemical cell was produced.
  • Test Example 8 the temperature of the electrolytic solution obtained in Example 2 or Comparative Example 2 was adjusted to 80 ° C., and the results of measuring the oxidation-reduction potential of the electrolytic solution by cyclic voltammetry are shown in FIG.
  • A is the result of measuring the redox potential of the electrolytic solution obtained in Example 2 by cyclic voltammetry
  • B is the result of measuring the redox potential of the electrolytic solution obtained in Comparative Example 2 by cyclic voltammetry. Indicates.
  • an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 is easy to handle. It can be used as an electrolytic solution for aluminum secondary batteries, production of aluminum materials, formation of aluminum plating film on the surface of the object to be plated, etc. Therefore, for example, it is expected to be used for development of secondary batteries for use in portable devices, electric vehicles, and the like, development of inexpensive, high-strength structural members, and the like.

Abstract

Disclosed are an aluminum-plating electrolytic solution and an aluminum-secondary-battery electrolytic solution, wherein an aluminum halide is dissolved in an imidazolidinone compound represented by formula (I) (wherein R1 and R2 each independently represent a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, a C1-4 alkyl group that may have a substituent, a C2-4 alkenyl group that may have a substituent, a C1-4 alkoxy group, a C6-12 aryl group, a C7-13 aralkyl group, or a C1-4 alkoxycarbonyl group), and the ratio (molar ratio) of said imidazolidinone compound/said aluminum halide is from 25/75 to 50/50. Also disclosed is a method for producing an aluminum material using said aluminum-plating electrolytic solution.

Description

電解液Electrolyte
 本発明は、電解液に関する。さらに詳しくは、本発明は、アルミニウムめっきのめっき液などとして有用なアルミニウムめっき用電解液、アルミニウム二次電池の電解液として有用なアルミニウム二次電池用電解液および当該電解液を用いるアルミニウム材料の製造方法に関する。 The present invention relates to an electrolytic solution. More specifically, the present invention relates to an electrolytic solution for aluminum plating useful as a plating solution for aluminum plating, an electrolytic solution for aluminum secondary battery useful as an electrolytic solution for an aluminum secondary battery, and production of an aluminum material using the electrolytic solution. Regarding the method.
 本発明のアルミニウムめっき用電解液は、室温付近の温度でアルミニウムの電析を行なうことができることから、アルミニウム材料の製造、被めっき物の表面へのアルミニウムめっき皮膜の形成などの際に用いられる電解液として用いられる。本発明のアルミニウムめっき用電解液は、例えば、安価で軽量で高強度の構造部材、電子部品、光学部品などの製造に用いることが期待される。 Since the electrolytic solution for aluminum plating of the present invention can perform electrodeposition of aluminum at a temperature near room temperature, it can be used for the production of aluminum materials and the formation of an aluminum plating film on the surface of an object to be plated. Used as a liquid. The electrolytic solution for aluminum plating of the present invention is expected to be used, for example, for the manufacture of inexpensive, light and high strength structural members, electronic components, optical components and the like.
 また、本発明のアルミニウム二次電池用電解液は、取り扱いが容易であり、しかも高温に加熱しなくても、例えば、室温付近の温度で充放電反応を行なうことができることから、アルミニウム二次電池の電解液として用いられる。本発明のアルミニウム二次電池用電解液は、例えば、ポータブル機器、電気自動車などに用いられる二次電池などの製造に用いることが期待される。 In addition, the electrolytic solution for an aluminum secondary battery of the present invention is easy to handle and can perform a charge / discharge reaction at a temperature near room temperature, for example, without being heated to a high temperature. Used as an electrolyte solution. The electrolytic solution for an aluminum secondary battery of the present invention is expected to be used, for example, in the production of secondary batteries used in portable equipment, electric vehicles and the like.
 さらに、本発明のアルミニウム材料の製造方法によれば、高温に加熱しなくても、例えば、室温付近の温度で効率よくアルミニウム材料を製造することができることから、本発明のアルミニウム材料の製造方法は、安価で軽量で高強度の構造部材、電子・光学部品などを開発する際などに用いることが期待される。 Furthermore, according to the method for producing an aluminum material of the present invention, an aluminum material can be efficiently produced at a temperature near room temperature, for example, without heating to a high temperature. It is expected to be used when developing inexpensive, lightweight, high-strength structural members, electronic / optical components, and the like.
 アルミニウムは、地球における埋蔵量が多く、耐食性に優れ、ヒトへの負荷が小さいことから、亜鉛およびクロムに代わる金属めっき材料として用いることが期待されている。アルミニウムの電析電位は、水素発生の電位よりも著しく卑であるため、水溶液から電析させることが困難である。そこで、アルミニウムの電析に際し、トルエンなどの非水有機溶媒を溶媒として含む電解液、イミダゾリウム塩などの常温イオン液体を溶媒として含む電解液などを用いることが検討されている(例えば、非特許文献1参照)。しかし、前記電解液は、取り扱いの容易性、製造コストなどの点で課題が多い。 Aluminum is expected to be used as a metal plating material in place of zinc and chromium because it has a large amount of reserves on the earth, has excellent corrosion resistance, and has a low load on humans. Since the electrodeposition potential of aluminum is significantly lower than the potential for hydrogen generation, it is difficult to deposit from an aqueous solution. Therefore, in the electrodeposition of aluminum, use of an electrolytic solution containing a non-aqueous organic solvent such as toluene as a solvent or an electrolytic solution containing a room temperature ionic liquid such as an imidazolium salt as a solvent has been studied (for example, non-patent) Reference 1). However, the electrolytic solution has many problems in terms of ease of handling and manufacturing cost.
 そこで、比較的安価なアルミニウム電析用非水電解液として、例えば、分子性有機溶媒であるジメチルスルホンを溶媒として含む電解アルミニウムめっき液が提案されている(例えば、特許文献1参照)。しかし、ジメチルスルホンの融点が110℃であることから、ジメチルスルホンを溶媒にとして含む電解アルミニウムめっき液をアルミニウムの電析の際に用いるとき、めっき液を110℃程度に加熱する必要があるため、当該電解アルミニウムめっき液には、アルミニウムの電析する際に多大なエネルギーを消費するという欠点がある。 Therefore, as a relatively inexpensive non-aqueous electrolytic solution for aluminum electrodeposition, for example, an electrolytic aluminum plating solution containing dimethyl sulfone, which is a molecular organic solvent, as a solvent has been proposed (for example, see Patent Document 1). However, since the melting point of dimethyl sulfone is 110 ° C., it is necessary to heat the plating solution to about 110 ° C. when an electrolytic aluminum plating solution containing dimethyl sulfone as a solvent is used for electrodeposition of aluminum. The electrolytic aluminum plating solution has a drawback that a great deal of energy is consumed when aluminum is electrodeposited.
特開2006-161154号公報JP 2006-161154 A
 本発明は、前記従来技術に鑑みてなされたものであり、取り扱いが容易であり、高温に加熱しなくても、効率よくアルミニウムの電析を行なうことができるアルミニウムめっき用電解液、取り扱いが容易であり、高温に加熱しなくても、効率よく充放電反応を行なうことができるアルミニウム二次電池用電解液および高温に加熱しなくても、効率よくアルミニウム材料を製造することができるアルミニウム材料の製造方法を提供することを課題とする。 The present invention has been made in view of the above prior art, is easy to handle, and can be efficiently electroplated with aluminum without being heated to a high temperature. An electrolytic solution for an aluminum secondary battery that can efficiently perform a charge / discharge reaction without heating to a high temperature, and an aluminum material that can efficiently produce an aluminum material without heating to a high temperature It is an object to provide a manufacturing method.
 本発明は、
(1)式(I):
The present invention
(1) Formula (I):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R1およびR2は、それぞれ独立して水素原子、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、水酸基、置換基を有していてもよい炭素数1~4のアルキル基、置換基を有していてもよい炭素数2~4のアルケニル基、炭素数1~4のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基または炭素数1~4のアルコキシカルボニル基を示す)
で表わされるイミダゾリジノン化合物にアルミニウムハロゲン化物が溶解されてなり、式(I)で表わされるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比〔イミダゾリジノン化合物/アルミニウムハロゲン化物〕が25/75~50/50であるアルミニウムめっき用電解液、
(2)前記(1)に記載のアルミニウムめっき用電解液中に被めっき物を浸漬させ、前記アルミニウムめっき用電解液から被めっき物の表面にアルミニウムを電析させてアルミニウムめっき皮膜を形成させることを特徴とするアルミニウム材料の製造方法、ならびに
(3)式(I):
(Wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of
An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75. An electrolytic solution for aluminum plating of 50/50,
(2) The object to be plated is immersed in the electrolytic solution for aluminum plating described in (1), and aluminum is electrodeposited on the surface of the object to be plated from the electrolytic solution for aluminum plating to form an aluminum plating film. And (3) Formula (I):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R1およびR2は、それぞれ独立して水素原子、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、水酸基、置換基を有していてもよい炭素数1~4のアルキル基、置換基を有していてもよい炭素数2~4のアルケニル基、炭素数1~4のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基または炭素数1~4のアルコキシカルボニル基を示す)
で表わされるイミダゾリジノン化合物にアルミニウムハロゲン化物が溶解されてなり、式(I)で表わされるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比〔イミダゾリジノン化合物/アルミニウムハロゲン化物〕が25/75~50/50であるアルミニウム二次電池用電解液
に関する。
(Wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of
An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75. The present invention relates to an electrolytic solution for an aluminum secondary battery that is ˜50 / 50.
 本発明のアルミニウムめっき用電解液は、取り扱いが容易であり、しかも高温に加熱しなくても、効率よくアルミニウムの電析を行なうことができるという優れた効果を奏する。本発明のアルミニウム二次電池用電解液は、取り扱いが容易であり、しかも高温に加熱しなくても、充放電反応を行なうことができるという優れた効果を奏する。また、本発明のアルミニウム材料の製造方法によれば、高温に加熱しなくても、効率よくアルミニウム材料を製造することができるという優れた効果が奏される。 The electrolytic solution for aluminum plating of the present invention is easy to handle and has an excellent effect of being able to efficiently deposit aluminum without being heated to a high temperature. The electrolytic solution for an aluminum secondary battery of the present invention is easy to handle, and exhibits an excellent effect that a charge / discharge reaction can be performed without heating to a high temperature. Moreover, according to the manufacturing method of the aluminum material of this invention, even if it does not heat at high temperature, the outstanding effect that an aluminum material can be manufactured efficiently is show | played.
(A)は実施例1で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフ、(B)は実施例1で得られた電解液を用いて電析した後のカソード表面の図面代用写真である。(A) is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 1 by cyclic voltammetry, and (B) is the result after electrodeposition using the electrolytic solution obtained in Example 1. It is a drawing substitute photograph of the cathode surface. 実施例2で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフである。6 is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 2 by cyclic voltammetry. (A)は実施例3で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフ、(B)は実施例3で得られた電解液を用いて電析した後のカソード表面の図面代用写真である。(A) is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 3 by cyclic voltammetry, and (B) is the result after electrodeposition using the electrolytic solution obtained in Example 3. It is a drawing substitute photograph of the cathode surface. 実施例4で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフである。It is a graph which shows the result of having measured the oxidation reduction potential of the electrolyte solution obtained in Example 4 by cyclic voltammetry. 実施例5で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフである。It is a graph which shows the result of having measured the oxidation reduction potential of the electrolyte solution obtained in Example 5 by cyclic voltammetry. 比較例1で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフである。6 is a graph showing the results of measuring the oxidation-reduction potential of the electrolytic solution obtained in Comparative Example 1 by cyclic voltammetry. (A)は実施例3で得られた電解液の温度を25℃に調整し、当該電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフ、(B)は実施例3で得られた電解液の温度を25℃に調整し、当該電解液を用いて電析した後のカソード表面の図面代用写真である。(A) is the graph which shows the result which adjusted the temperature of the electrolyte solution obtained in Example 3 to 25 degreeC, and measured the oxidation-reduction potential of the said electrolyte solution by cyclic voltammetry, (B) is obtained in Example 3. It is the drawing substitute photograph of the cathode surface after adjusting the temperature of the obtained electrolyte solution to 25 degreeC, and electrodepositing using the said electrolyte solution. 実施例4で得られた電解液の温度を25℃に調整し、当該電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフである。It is a graph which shows the result of having adjusted the temperature of the electrolyte solution obtained in Example 4 to 25 degreeC, and measuring the oxidation reduction potential of the said electrolyte solution by cyclic voltammetry. 実施例3で得られた電解液の温度を40℃に調整し、当該電解液を用いて電析した後のカソード表面の図面代用写真である。It is a drawing substitute photograph of the cathode surface after adjusting the temperature of the electrolyte solution obtained in Example 3 to 40 degreeC, and electrodepositing using the said electrolyte solution. 実施例3で得られた電解液の温度を50℃に調整し、当該電解液を用いて電析した後のカソード表面の図面代用写真である。It is a drawing substitute photograph of the cathode surface after adjusting the temperature of the electrolyte solution obtained in Example 3 to 50 degreeC, and electrodepositing using the said electrolyte solution. (A)は実施例3で得られた電解液を用い、0.25mA/cm2の電流密度で電析した後のカソード表面の図面代用写真、(B)は実施例3で得られた電解液を用い、0.5mA/cm2の電流密度で電析した後のカソード表面の図面代用写真である。(A) is a drawing-substituting photograph of the cathode surface after electrodepositing at a current density of 0.25 mA / cm 2 using the electrolytic solution obtained in Example 3, and (B) is an electrolysis obtained in Example 3. FIG. 5 is a drawing-substituting photograph of the cathode surface after electrodeposition at a current density of 0.5 mA / cm 2 using a liquid. (A)は実施例6で得られた電解液を用い、0.75mA/cm2の電流密度で電析した後のカソード表面の図面代用写真、(B)は実施例7で得られた電解液を用い、0.5mA/cm2の電流密度で電析したときのカソード表面の図面代用写真、(C)は実施例7で得られた電解液を用い、1mA/cm2の電流密度で電析した後のカソード表面の図面代用写真、(D)は実施例3で得られた電解液を用い、0.5mA/cm2の電流密度で電析した後のカソード表面の図面代用写真である。(A) is a drawing-substituting photograph of the cathode surface after electrodepositing at a current density of 0.75 mA / cm 2 using the electrolytic solution obtained in Example 6, and (B) is an electrolysis obtained in Example 7. (C) is a substitute for a drawing of the cathode surface when electrodeposited at a current density of 0.5 mA / cm 2 , and the electrolyte obtained in Example 7 is used at a current density of 1 mA / cm 2. (D) is a drawing substitute photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 3 at a current density of 0.5 mA / cm 2. is there. (A)は実験番号12で得られたアルミニウムめっき皮膜の表面の図面代用写真、(B)は実験番号15で得られたアルミニウムめっき皮膜の表面の図面代用写真、(C)は電析前のカソード表面の図面代用写真である。(A) is a drawing-substituting photograph of the surface of the aluminum plating film obtained in Experiment No. 12, (B) is a drawing-substituting photograph of the surface of the aluminum plating film obtained in Experiment No. 15, and (C) is before the electrodeposition. It is a drawing substitute photograph of the cathode surface. 実験番号15で得られたアルミニウムめっき皮膜のX線回折図である。6 is an X-ray diffraction pattern of an aluminum plating film obtained in Experiment No. 15. FIG. 実施例8で得られた電解液を用いて電析した後のカソード表面の図面代用写真である。6 is a drawing-substituting photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 8. FIG. (A)は実施例9で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフ、(B)は実施例9で得られた電解液を用いて電析した後のカソード表面の図面代用写真である。(A) is a graph showing the results of cyclic voltammetry measurement of the oxidation-reduction potential of the electrolytic solution obtained in Example 9, and (B) is the result after electrodeposition using the electrolytic solution obtained in Example 9. It is a drawing substitute photograph of the cathode surface. 実施例10で得られた電解液を用いて電析した後のカソード表面の図面代用写真である。6 is a drawing-substituting photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 10. FIG. 試験例8において、実施例2および比較例2で得られた電解液の温度を80℃に調整し、当該電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示すグラフである。In Experiment 8, it is a graph which shows the result of having adjusted the temperature of the electrolyte solution obtained in Example 2 and Comparative Example 2 to 80 degreeC, and measuring the oxidation-reduction potential of the said electrolyte solution by cyclic voltammetry.
(アルミニウムめっき用電解液およびアルミニウム二次電池用電解液)
 本発明は、1つの側面では、式(I):
(Electrolytic solution for aluminum plating and electrolytic solution for aluminum secondary battery)
In one aspect, the present invention provides formula (I):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R1およびR2は、それぞれ独立して水素原子、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、水酸基、置換基を有していてもよい炭素数1~4のアルキル基、置換基を有していてもよい炭素数2~4のアルケニル基、炭素数1~4のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基または炭素数1~4のアルコキシカルボニル基を示す)
で表わされるイミダゾリジノン化合物にアルミニウムハロゲン化物が溶解されており、式(I)で表わされるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比〔イミダゾリジノン化合物/アルミニウムハロゲン化物〕が25/75~50/50であるアルミニウムめっき用電解液である。また、本発明は、他の側面では、式(I)で表わされるイミダゾリジノン化合物にアルミニウムハロゲン化物が溶解されており、式(I)で表わされるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比〔イミダゾリジノン化合物/アルミニウムハロゲン化物〕が25/75~50/50であるアルミニウム二次電池用電解液である。以下において、特に断りのない限り、アルミニウムめっき用電解液およびアルミニウム二次電池用電解液を、「電解液」という。
(Wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of
An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75. It is an electrolytic solution for aluminum plating of ˜50 / 50. In another aspect of the present invention, an aluminum halide is dissolved in the imidazolidinone compound represented by the formula (I), and the mole of the imidazolidinone compound represented by the formula (I) and the aluminum halide is An electrolytic solution for an aluminum secondary battery having a ratio [imidazolidinone compound / aluminum halide] of 25/75 to 50/50. Hereinafter, unless otherwise specified, the electrolytic solution for aluminum plating and the electrolytic solution for aluminum secondary battery are referred to as “electrolytic solution”.
 本発明の電解液は、式(I)で表わされるイミダゾリジノン化合物〔以下、単にイミダゾリジノン化合物という〕にアルミニウムハロゲン化物が溶解されており、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50であるので、高温に加熱しなくても、例えば、室温付近の温度でもアルミニウムの析出(アルミニウムイオンの還元)および溶解(アルミニウムの酸化)を行なうことができる。したがって、本発明の電解液を用いることにより、高温に加熱しなくても、例えば、室温付近の温度でもアルミニウムの電析および充放電反応(酸化還元反応)を行なうことができる。 In the electrolytic solution of the present invention, an aluminum halide is dissolved in an imidazolidinone compound represented by the formula (I) [hereinafter simply referred to as an imidazolidinone compound], and an imidazolidinone compound / aluminum halide (molar ratio). Is 25/75 to 50/50, for example, aluminum can be deposited (reduction of aluminum ions) and dissolved (aluminum oxidation) even at a temperature near room temperature without being heated to a high temperature. Accordingly, by using the electrolytic solution of the present invention, for example, electrodeposition of aluminum and charge / discharge reaction (oxidation-reduction reaction) can be performed even at a temperature near room temperature without heating to a high temperature.
 イミダゾリジノン化合物は、アルミニウムハロゲン化物を溶解させる溶媒として用いられる。イミダゾリジノン化合物は、電解液が通常使用される温度範囲では従来のアルミニウムの電析用の電解液の溶媒として用いられているトルエンと比べて高い引火点および低い揮発性を有することから、取り扱いが容易である。 The imidazolidinone compound is used as a solvent for dissolving the aluminum halide. The imidazolidinone compound has a higher flash point and lower volatility than toluene, which is used as a solvent for the conventional electrolytic solution for aluminum electrodeposition, in the temperature range where the electrolytic solution is normally used. Is easy.
 式(I)において、R1およびR2は、それぞれ独立して水素原子、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、水酸基、置換基を有していてもよい炭素数1~4のアルキル基、置換基を有していてもよい炭素数2~4のアルケニル基、炭素数1~4のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基または炭素数1~4のアルコキシカルボニル基である。 In the formula (I), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, or an alkyl having 1 to 4 carbon atoms which may have a substituent. An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 carbon atom 4 to 4 alkoxycarbonyl groups.
 R1およびR2において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In R 1 and R 2 , examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. However, the present invention is not limited to such examples.
 R1およびR2において、置換基を有していてもよい炭素数1~4のアルキル基の炭素数は、1以上であり、電解液の取り扱いの容易性を向上させる観点から、4以下、好ましくは2以下である。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。置換基としては、例えば、ハロゲン原子、水酸基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In R 1 and R 2 , the optionally substituted alkyl group having 1 to 4 carbon atoms has 1 or more carbon atoms, and from the viewpoint of improving the ease of handling of the electrolytic solution, 4 or less, Preferably it is 2 or less. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. It is not limited to illustration only. Examples of the substituent include a halogen atom and a hydroxyl group, but the present invention is not limited to such examples.
 R1およびR2において、置換基を有していてもよい炭素数1~4のアルケニル基の炭素数は、2以上であり、電解液の取り扱いの容易性を向上させる観点から、4以下、好ましくは3以下である。炭素数2~4のアルケニル基としては、例えば、ビニル基、イソプロペニル基、アリル基、ブテニル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。置換基を有していてもよい炭素数1~4のアルケニル基における置換基は、置換基を有していてもよい炭素数1~4のアルキル基における置換基と同様である。 In R 1 and R 2 , the carbon number of the alkenyl group having 1 to 4 carbon atoms which may have a substituent is 2 or more, and from the viewpoint of improving the ease of handling of the electrolytic solution, 4 or less, Preferably it is 3 or less. Examples of the alkenyl group having 2 to 4 carbon atoms include a vinyl group, an isopropenyl group, an allyl group, and a butenyl group, but the present invention is not limited to such examples. The substituent in the alkenyl group having 1 to 4 carbon atoms which may have a substituent is the same as the substituent in the alkyl group having 1 to 4 carbon atoms which may have a substituent.
 R1およびR2において、アルコキシ基の炭素数は、1以上であり、電解液の取り扱いの容易性を向上させる観点から、4以下、好ましくは3以下である。炭素数2~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In R 1 and R 2 , the alkoxy group has 1 or more carbon atoms, and is 4 or less, preferably 3 or less, from the viewpoint of improving the ease of handling of the electrolytic solution. Examples of the alkoxy group having 2 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and the like, but the present invention is not limited to such examples.
 R1およびR2において、アリール基の炭素数は、6以上であり、電解液の取り扱いの容易性を向上させる観点から、12以下、好ましくは8以下、より好ましくは7以下である。炭素数6~8のアリール基としては、例えば、フェニル基、トリル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In R 1 and R 2 , the aryl group has 6 or more carbon atoms, and is 12 or less, preferably 8 or less, more preferably 7 or less, from the viewpoint of improving the ease of handling of the electrolytic solution. Examples of the aryl group having 6 to 8 carbon atoms include a phenyl group and a tolyl group, but the present invention is not limited to such examples.
 R1およびR2において、アラルキル基の炭素数は、7以上であり、電解液の取り扱いの容易性を向上させる観点から、13以下、好ましくは10以下、より好ましくは9以下である。炭素数7~13のアラルキル基としては、例えば、フェニルメチル基、2-フェニルエチル基、3-フェニルプロピル基、4-フェニルブチル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In R 1 and R 2 , the aralkyl group has 7 or more carbon atoms, and is 13 or less, preferably 10 or less, more preferably 9 or less, from the viewpoint of improving the ease of handling of the electrolytic solution. Examples of the aralkyl group having 7 to 13 carbon atoms include a phenylmethyl group, a 2-phenylethyl group, a 3-phenylpropyl group, and a 4-phenylbutyl group. However, the present invention is limited to such examples. It is not something.
 R1およびR2において、アルコキシカルボニル基のアルコキシ基の炭素数は、1以上であり、電解液の取り扱いの容易性を向上させる観点から、4以下、好ましくは3以下である。炭素数1~4のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基およびプロポキシカルボニル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In R 1 and R 2 , the alkoxy group of the alkoxycarbonyl group has 1 or more carbon atoms, and is 4 or less, preferably 3 or less from the viewpoint of improving the ease of handling of the electrolytic solution. Examples of the alkoxycarbonyl group having 1 to 4 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group. However, the present invention is not limited to such examples.
 R1およびR2に用いられるこれらの官能基のなかでは、電解液の取り扱いの容易性を向上させる観点から、炭素数1~4のアルキル基が好ましく、メチル基およびエチル基がより好ましく、メチル基がさらに好ましい。 Among these functional groups used for R 1 and R 2 , an alkyl group having 1 to 4 carbon atoms is preferable, a methyl group and an ethyl group are more preferable, and methyl More preferred are groups.
 イミダゾリジノン化合物としては、例えば、1,3-ジメチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジ(n-プロピル)-2-イミダゾリジノン、1,3-ジ(n-ブチル)-2-イミダゾリジノンなどのジアルキルイミダゾリジノン化合物、1,3-ジビニル-2-イミダゾリジノンなどの1,3-ジアルケニルイミダゾリジノン化合物;1-メチル-3-フェニル-2-イミダゾリジノン、1-メチル-3-フェニル-4-イミダゾリジノン、3-メチル-1-フェニル-4-イミダゾリジノンなどのアルキルアリールイミダゾリジノン化合物;1,3-ジフェニル-2-イミダゾリジノン、1,3-ジフェニル-4-イミダゾリジノンなどのジアリールイミダゾリジノン化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのイミダゾリジノン化合物のなかでは、アルミニウムの電析および充放電反応の効率性と経済性との双方を満たすことから、好ましくはジアルキルイミダゾリジノン化合物、より好ましくは1,3-ジメチル-2-イミダゾリジノンである。 Examples of the imidazolidinone compound include 1,3-dimethyl-2-imidazolidinone, 1-methyl-3-ethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3 Dialkylimidazolidinone compounds such as di (n-propyl) -2-imidazolidinone and 1,3-di (n-butyl) -2-imidazolidinone, 1,3-divinyl-2-imidazolidinone, etc. 1,3-dialkenylimidazolidinone compounds; 1-methyl-3-phenyl-2-imidazolidinone, 1-methyl-3-phenyl-4-imidazolidinone, 3-methyl-1-phenyl-4- Alkyl aryl imidazolidinone compounds such as imidazolidinone; 1,3-diphenyl-2-imidazolidinone, 1,3-diphenyl-4-imidazolidinone, etc. Although such diaryl imidazolidinone compounds, the present invention is not limited only to those exemplified. Among these imidazolidinone compounds, since both the efficiency of electrodeposition of aluminum and charge / discharge reaction and economy are satisfied, dialkylimidazolidinone compounds are preferred, and 1,3-dimethyl-2 is more preferred. -Imidazolidinone.
 アルミニウムハロゲン化物としては、フッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのなかでは、アルミニウムの電析および充放電反応を効率よく行なう観点から、塩化アルミニウム、臭化アルミニウムが好ましく、アルミニウムの電析および充放電反応の効率性および経済性の双方を満たすことから、塩化アルミニウムがより好ましい。 Examples of the aluminum halide include aluminum fluoride, aluminum chloride, aluminum bromide, aluminum iodide, and the like, but the present invention is not limited to such examples. Among these, aluminum chloride and aluminum bromide are preferable from the viewpoint of efficiently performing aluminum electrodeposition and charge / discharge reaction, and satisfy both the efficiency and economic efficiency of aluminum electrodeposition and charge / discharge reaction. Aluminum chloride is more preferred.
 イミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比(イミダゾリジノン化合物/アルミニウムハロゲン化物)は、電解液の取り扱いの容易性を十分に確保する観点から、25/75以上、好ましくは33/67以上、より好ましくは38/62以上であり、アルミニウムの電析および充放電反応を効率よく行なう観点から、50/50以下、好ましくは49/51以下、より好ましくは46/54以下である。 The molar ratio of the imidazolidinone compound and the aluminum halide (imidazolidinone compound / aluminum halide) is 25/75 or more, preferably 33/67 or more, from the viewpoint of sufficiently ensuring the ease of handling of the electrolytic solution. More preferably, it is 38/62 or more, and it is 50/50 or less, preferably 49/51 or less, more preferably 46/54 or less, from the viewpoint of efficiently performing aluminum electrodeposition and charge / discharge reaction.
 本発明の電解液をアルミニウム材料の製造に用いる場合、すなわち、本発明の電解液がアルミニウムめっき用電解液である場合、アルミニウムめっき皮膜の平滑性を向上させる観点から、例えば、テトラエチルアンモニウムクロリド、トリエチレンテトラミン、ベンゼン、トルエン、キシレンなどの有機溶媒を本発明の電解液に含有させることが好ましい。 When the electrolytic solution of the present invention is used for production of an aluminum material, that is, when the electrolytic solution of the present invention is an electrolytic solution for aluminum plating, from the viewpoint of improving the smoothness of the aluminum plating film, for example, tetraethylammonium chloride, It is preferable to include an organic solvent such as ethylenetetramine, benzene, toluene, xylene in the electrolytic solution of the present invention.
 本発明の電解液がアルミニウムめっき用電解液である場合、本発明の電解液中における前記有機溶媒の量は、有機溶媒の種類、電解液の用途などによって異なるので一概には決定することができないことから、有機溶媒の種類、電解液の用途などに応じて適宜決定することが好ましい。例えば、平滑な表面のアルミニウムめっき皮膜を有するアルミニウム材料を製造する際に本発明の電解液に有機溶媒としてトリエチレンテトラミンを用いる場合には、イミダゾリジノン化合物とアルミニウムハロゲン化物との合計量100モルあたりの有機溶媒の量は、通常、好ましくは0.1~2モル、より好ましくは0.5~1.5モルである。また、平滑な表面のアルミニウムめっき皮膜を有するアルミニウム材料を製造する際に本発明の電解液に有機溶媒としてベンゼン、トルエンまたはキシレンを用いる場合には、イミダゾリジノン化合物とアルミニウムハロゲン化物との合計量100モルあたりの有機溶媒の量は、好ましくは0.1~150モル、より好ましくは50~120モルである。 When the electrolytic solution of the present invention is an electrolytic solution for aluminum plating, the amount of the organic solvent in the electrolytic solution of the present invention varies depending on the type of the organic solvent, the use of the electrolytic solution, etc., and thus cannot be determined unconditionally. For this reason, it is preferable to determine appropriately depending on the type of the organic solvent, the use of the electrolyte, and the like. For example, when triethylenetetramine is used as the organic solvent in the electrolytic solution of the present invention when producing an aluminum material having a smooth surface aluminum plating film, the total amount of imidazolidinone compound and aluminum halide is 100 mol. The amount of per organic solvent is usually preferably 0.1 to 2 mol, more preferably 0.5 to 1.5 mol. In addition, in the case of using benzene, toluene or xylene as the organic solvent in the electrolytic solution of the present invention when producing an aluminum material having a smooth surface aluminum plating film, the total amount of imidazolidinone compound and aluminum halide The amount of the organic solvent per 100 moles is preferably 0.1 to 150 moles, more preferably 50 to 120 moles.
 以上説明したように、本発明のアルミニウムめっき用電解液は、取り扱いが容易である。また、本発明のアルミニウムめっき用電解液によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よくアルミニウムの析出および溶解を行なうことができる。したがって、本発明のアルミニウムめっき用電解液によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よくアルミニウムの電析を行なうことができる。このように、本発明のアルミニウムめっき用電解液によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よくアルミニウムの電析を行なうことができることから、アルミニウム材料の製造、被めっき物の表面へのアルミニウムめっき皮膜の形成などに利用されることが期待される。 As described above, the electrolytic solution for aluminum plating of the present invention is easy to handle. Moreover, according to the electrolytic solution for aluminum plating of the present invention, aluminum can be deposited and dissolved efficiently even at a temperature near room temperature, for example, without heating to a high temperature. Therefore, according to the electrolytic solution for aluminum plating of the present invention, it is possible to efficiently deposit aluminum, for example, even at a temperature near room temperature, without heating to a high temperature. As described above, according to the electrolytic solution for aluminum plating of the present invention, aluminum can be efficiently electrodeposited even at a temperature near room temperature without being heated to a high temperature. It is expected to be used for forming an aluminum plating film on the surface of a plated object.
 また、本発明のアルミニウム二次電池用電解液は、取り扱いが容易である。また、本発明の電解液によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よくアルミニウムイオンの還元およびアルミニウムの酸化を行なうことができる。したがって、本発明の電解液によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よく充放電反応(酸化還元反応)を行なうことができる。このように、本発明の電解液によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よく充放電反応を行なうことができることから、例えば、ポータブル機器、電気自動車などに用いられる二次電池などの製造に用いることが期待される。 Moreover, the electrolytic solution for an aluminum secondary battery of the present invention is easy to handle. Further, according to the electrolytic solution of the present invention, it is possible to efficiently reduce aluminum ions and oxidize aluminum even at a temperature near room temperature, for example, without heating to a high temperature. Therefore, according to the electrolytic solution of the present invention, the charge / discharge reaction (oxidation-reduction reaction) can be performed efficiently even at a temperature near room temperature, for example, without heating to a high temperature. As described above, according to the electrolytic solution of the present invention, the charge / discharge reaction can be performed efficiently even at a temperature near room temperature, for example, without being heated to a high temperature. It is expected to be used for the production of secondary batteries and the like.
(アルミニウム材料の製造方法)
 本発明のアルミニウム材料の製造方法は、被めっき物の表面にアルミニウムめっき皮膜が形成されたアルミニウム材料を製造する方法であり、前記アルミニウムめっき用電解液中に被めっき物を浸漬させ、前記アルミニウムめっき用電解液から被めっき物の表面にアルミニウムを電析させてアルミニウムめっき皮膜を形成させることを特徴とする。
(Method for producing aluminum material)
The method for producing an aluminum material of the present invention is a method for producing an aluminum material in which an aluminum plating film is formed on the surface of an object to be plated, and the object to be plated is immersed in the electrolytic solution for aluminum plating. Aluminum is deposited on the surface of the object to be plated from the electrolytic solution for forming an aluminum plating film.
 本発明のアルミニウム材料の製造方法は、前記アルミニウムめっき用電解液を用いてアルミニウムを電析させるという操作が採られているので、高温に加熱しなくても、例えば、室温付近の温度でも効率よく被めっき物の表面にアルミニウムめっき皮膜を形成させることができる。したがって、本発明のアルミニウム材料の製造方法によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よくアルミニウム材料を製造することができる。 In the method for producing an aluminum material of the present invention, the operation of electrodepositing aluminum using the electrolytic solution for aluminum plating is employed. Therefore, even if it is not heated to a high temperature, for example, it is efficient even at a temperature near room temperature. An aluminum plating film can be formed on the surface of the object to be plated. Therefore, according to the method for producing an aluminum material of the present invention, an aluminum material can be produced efficiently even at a temperature near room temperature, for example, without heating to a high temperature.
 アルミニウム材料は、被めっき物の表面にアルミニウムめっき皮膜が形成された材料である。被めっき物を構成する材料としては、例えば、アルミニウム以外の金属、合金などの導電性を有する材料、プラスチックなどの非導電性材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。なお、プラスチックなどの非導電性材料を被めっき物の材料にとして用いる場合には、当該非導電性材料は、例えば、当該非導電性材料からなる被めっき物に無電解めっきを施して予め導電性を付与して用いることができる。 Aluminum material is a material in which an aluminum plating film is formed on the surface of an object to be plated. Examples of the material constituting the object to be plated include metals other than aluminum, conductive materials such as alloys, non-conductive materials such as plastics, etc., but the present invention is limited only to such examples. It is not a thing. When a non-conductive material such as plastic is used as the material of the object to be plated, the non-conductive material is pre-conductive by performing electroless plating on the object to be plated made of the non-conductive material, for example. It can be used with imparting properties.
 アルミニウムの電析は、不活性ガスの雰囲気中で行なわれる。不活性ガスとしては、例えば、アルゴンガス、窒素ガスなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Aluminum electrodeposition is performed in an inert gas atmosphere. Examples of the inert gas include argon gas and nitrogen gas, but the present invention is not limited to such examples.
 アルミニウムを電析させる際には、電解槽が用いられるが、当該電解槽の大きさおよび形状は、目的とするアルミニウム材料の大きさおよび形状に適したものであればよく、本発明は、かかる電解槽の大きさおよび形状によって限定されるものではない。 When aluminum is electrodeposited, an electrolytic cell is used. The size and shape of the electrolytic cell may be any suitable size and shape of the intended aluminum material, and the present invention is related to this. It is not limited by the size and shape of the electrolytic cell.
 アルミニウムの電析は、例えば、電解槽内に前記アルミニウムめっき用電解液を入れ、電解槽内のアルミニウムめっき用電解液中にアノードとカソードとを挿入し、当該アノードとカソードとの間に通電することによって行なうことができる。かかる操作を行なうことにより、前記アルミニウムめっき用電解液からアルミニウムを電析させることができる。 For the electrodeposition of aluminum, for example, the electrolytic solution for aluminum plating is placed in an electrolytic cell, an anode and a cathode are inserted into the electrolytic solution for aluminum plating in the electrolytic cell, and electricity is passed between the anode and the cathode. Can be done. By performing this operation, aluminum can be electrodeposited from the electrolytic solution for aluminum plating.
 アノードとしては、例えば、アルミニウムからなる電極、アルミニウムからなる表面層を有する基材からなる電極などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記基材を構成する材料としては、例えば、アルミニウム以外の導電性金属、導電性合金などの導電性を有する材料、非導電性プラスチックなどの非導電性材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。カソードには、被めっき物を用いることができる。 Examples of the anode include an electrode made of aluminum and an electrode made of a base material having a surface layer made of aluminum. However, the present invention is not limited to such examples. Examples of the material constituting the substrate include a conductive metal other than aluminum, a conductive material such as a conductive alloy, and a nonconductive material such as a nonconductive plastic. It is not limited only to such illustration. An object to be plated can be used for the cathode.
 アルミニウムを電析させる際の通電量は、目的とするアルミニウム材料の用途、アルミニウムめっき皮膜に求められる厚さなどによって異なるので一概には決定することができないことから、目的とするアルミニウム材料の用途、アルミニウムめっき皮膜に求められる厚さなどに応じて適宜決定することが好ましい。 Since the amount of electricity applied when electrodepositing aluminum varies depending on the intended use of the aluminum material and the thickness required for the aluminum plating film, etc., it cannot be determined unconditionally, so the intended use of the aluminum material, It is preferable to determine appropriately according to the thickness required for the aluminum plating film.
 また、前記アルミニウムめっき用電解液に挿入されたアノードとカソードとの間に通電する際の電流密度は、電析を行なう際の前記アルミニウムめっき用電解液の温度(以下、電析温度という)、イミダゾリジノン化合物の種類、前記アルミニウムめっき用電解液に用いられるアルミニウムハロゲン化物の種類、前記アルミニウムめっき用電解液中におけるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比などによって異なるので一概には決定することができないことから、電析温度、イミダゾリジノン化合物の種類、前記アルミニウムめっき用電解液に用いられるアルミニウムハロゲン化物の種類、前記アルミニウムめっき用電解液中におけるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比などに応じて適宜決定することが好ましい。 The current density when energizing between the anode and the cathode inserted into the aluminum plating electrolyte is the temperature of the aluminum plating electrolyte when performing electrodeposition (hereinafter referred to as electrodeposition temperature), It depends on the type of imidazolidinone compound, the type of aluminum halide used in the electrolytic solution for aluminum plating, and the molar ratio of the imidazolidinone compound and aluminum halide in the electrolytic solution for aluminum plating. The electrodeposition temperature, the type of imidazolidinone compound, the type of aluminum halide used in the electrolytic solution for aluminum plating, the imidazolidinone compound and the aluminum halide in the electrolytic solution for aluminum plating, and Depending on the molar ratio of It is preferable to determine Yibin.
 電析温度は、電流密度、イミダゾリジノン化合物の種類、前記アルミニウムめっき用電解液に用いられるアルミニウムハロゲン化物の種類、前記アルミニウムめっき用電解液中におけるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比などによって異なるので一概には決定することができないことから、電流密度、イミダゾリジノン化合物の種類、前記アルミニウムめっき用電解液に用いられるアルミニウムハロゲン化物の種類、前記アルミニウムめっき用電解液中におけるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比などに応じて適宜決定することが好ましい。電析温度は、通常、室温(25℃)~100℃である。このように、本発明のアルミニウム材料の製造方法によれば、比較的低温で前記アルミニウムめっき用電解液からアルミニウムを電析させることができるので、高温に加熱しなくても、例えば、室温付近の温度でもアルミニウム材料を製造することができる。 The electrodeposition temperature is the current density, the type of imidazolidinone compound, the type of aluminum halide used in the electrolytic solution for aluminum plating, and the molar ratio of the imidazolidinone compound and aluminum halide in the electrolytic solution for aluminum plating. Since it cannot be determined in general, it depends on the current density, type of imidazolidinone compound, type of aluminum halide used in the electrolytic solution for aluminum plating, and imidazolidin in the electrolytic solution for aluminum plating. It is preferable to determine appropriately according to the molar ratio between the non-compound and the aluminum halide. The electrodeposition temperature is usually from room temperature (25 ° C.) to 100 ° C. As described above, according to the method for producing an aluminum material of the present invention, aluminum can be electrodeposited from the electrolytic solution for aluminum plating at a relatively low temperature. Aluminum materials can be produced even at temperatures.
 アルミニウムの電析に要する時間は、電流密度、電析温度、通電量などによって異なるので一概には決定することができないことから、電流密度、電析温度、通電量などに応じて適宜決定することが好ましい。 Since the time required for electrodeposition of aluminum varies depending on the current density, electrodeposition temperature, amount of energization, etc., it cannot be determined unconditionally, so it should be determined appropriately according to the current density, electrodeposition temperature, amount of energization, etc. Is preferred.
 以上説明したように、本発明のアルミニウム材料の製造方法によれば、高温に加熱しなくても、例えば、室温付近の温度でも効率よくアルミニウム材料を製造することができる。したがって、本発明の電解液および本発明のアルミニウム材料の製造方法は、例えば、安価で軽量で高強度の構造部材の開発などの際に利用することが期待されるものである。 As described above, according to the method for producing an aluminum material of the present invention, an aluminum material can be produced efficiently even at a temperature near room temperature, for example, without heating to a high temperature. Therefore, the electrolytic solution of the present invention and the method for producing the aluminum material of the present invention are expected to be used, for example, in the development of an inexpensive, lightweight and high-strength structural member.
 つぎに、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to such examples.
実施例1
 アルゴンガス雰囲気に保たれたグローブボックス内で、式(I)において、R1およびR2がいずれもメチル基であるイミダゾリジノン化合物(1,3-ジメチル-2-イミダゾリジノン)とアルミニウムハロゲン化物(塩化アルミニウム)とを、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)が48.8/51.2となるように混合し、電解液を得た。
Example 1
In a glove box maintained in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are both methyl groups in formula (I) and aluminum halogen Compound (aluminum chloride) was mixed with 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) to be 48.8 / 51.2 to obtain an electrolytic solution.
実施例2
 実施例1において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)を48.8/51.2から45.5/54.5に変更したことを除き、実施例1と同様にして電解液を得た。
Example 2
Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 45.5 / 54.5. Similarly, an electrolytic solution was obtained.
実施例3
 実施例1において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)を48.8/51.2から40.0/60.0に変更したことを除き、実施例1と同様にして電解液を得た。
Example 3
Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 40.0 / 60.0. Similarly, an electrolytic solution was obtained.
実施例4
 実施例1において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)を48.8/51.2から38.5/61.5に変更したことを除き、実施例1と同様にして電解液を得た。
Example 4
Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 38.5 / 61.5. Similarly, an electrolytic solution was obtained.
実施例5
 実施例1において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)を48.8/51.2から33.3/66.7に変更したことを除き、実施例1と同様にして電解液を得た。
Example 5
Example 1 and Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 33.3 / 66.7. Similarly, an electrolytic solution was obtained.
比較例1
 実施例1において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)を48.8/51.2から76.9/23.1に変更したことを除き、実施例1と同様にして電解液を得た。
Comparative Example 1
In Example 1, except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 76.9 / 23.1, Similarly, an electrolytic solution was obtained.
製造例1
 アルゴンガス雰囲気に保たれたグローブボックス内で、ガラス状カーボン製電極(直径:3.0mm、長さ:55mm)を、ダイヤモンドペーストを用いて研磨し、蒸留水およびエタノールで洗浄した後、冷風で乾燥させることにより、作用電極を得た。
Production Example 1
In a glove box maintained in an argon gas atmosphere, a glassy carbon electrode (diameter: 3.0 mm, length: 55 mm) is polished with diamond paste, washed with distilled water and ethanol, and then cooled with cold air. A working electrode was obtained by drying.
製造例2
 アルゴンガス雰囲気に保たれたグローブボックス内でアルミニウム製板材(純度:99質量%、幅:20mm、長さ:30mm、厚さ:1.0mm)を、炭化ケイ素製研磨紙(P#220番)で研磨し、蒸留水およびエタノールで洗浄した後、冷風で乾燥させることにより、対極を得た。
Production Example 2
An aluminum plate (purity: 99% by mass, width: 20 mm, length: 30 mm, thickness: 1.0 mm) and silicon carbide polishing paper (P # 220) in a glove box maintained in an argon gas atmosphere Then, after washing with distilled water and ethanol, it was dried with cold air to obtain a counter electrode.
製造例3
 アルゴンガス雰囲気に保たれたグローブボックス内で、アルミニウム製線材(純度:99質量%、直径:0.80mm、長さ:100mm)を、炭化ケイ素製研磨紙(P#220番)で研磨し、蒸留水およびエタノールで洗浄した後、冷風で乾燥させることにより、参照電極を得た。
Production Example 3
In a glove box maintained in an argon gas atmosphere, an aluminum wire (purity: 99 mass%, diameter: 0.80 mm, length: 100 mm) is polished with a silicon carbide polishing paper (P # 220), After washing with distilled water and ethanol, drying with cold air yielded a reference electrode.
製造例4
 アルゴンガス雰囲気に保たれたグローブボックス内で、銅製板材(純度:99.99質量%、幅:15mm、長さ:30mm、厚さ:0.5mm)を、炭化ケイ素製研磨紙(P#1200番)で研磨し、蒸留水およびエタノールで洗浄した後、冷風で乾燥させた。つぎに、乾燥後の銅製板材の露出部が1cm2となるように、当該銅製板材の表面をポリテトラフルオロエチレン製テープで覆い、カソードを得た。
Production Example 4
In a glove box maintained in an argon gas atmosphere, a copper plate material (purity: 99.99 mass%, width: 15 mm, length: 30 mm, thickness: 0.5 mm) was placed on a silicon carbide abrasive paper (P # 1200). No.), washed with distilled water and ethanol, and then dried with cold air. Next, the surface of the copper plate material was covered with a polytetrafluoroethylene tape so that the exposed portion of the copper plate material after drying was 1 cm 2 to obtain a cathode.
製造例5
 アルゴンガス雰囲気に保たれたグローブボックス内で、アルミニウム製板材(純度:99質量%、幅:20mm、長さ:30mm、厚さ:1.0mm)を、炭化ケイ素製研磨紙(P#220番)で研磨し、蒸留水およびエタノールで洗浄した後、冷風で乾燥させることにより、アノードを得た。
Production Example 5
In a glove box maintained in an argon gas atmosphere, an aluminum plate (purity: 99% by mass, width: 20 mm, length: 30 mm, thickness: 1.0 mm) is polished with silicon carbide abrasive paper (P # 220). ), Washed with distilled water and ethanol, and then dried with cold air to obtain an anode.
試験例1
(1)サイクリックボルタンメトリー
 アルゴンガス雰囲気に保たれたグローブボックス内で、製造例1で得られた作用電極と、製造例2で得られた対極と、製造例3で得られた参照電極と、実施例1で得られた電解液とを用い、3電極式電気化学セル(実験番号1)を作製した。
Test example 1
(1) Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, Using the electrolytic solution obtained in Example 1, a three-electrode electrochemical cell (Experiment No. 1) was produced.
 前記において、実施例1で得られた電解液の代わりに、実施例2で得られた電解液(実験番号2)、実施例3で得られた電解液(実験番号3)、実施例4で得られた電解液(実験番号4)、実施例5で得られた電解液(実験番号5)および比較例1で得られた電解液(実験番号6)を用いたことを除き、前記と同様の操作を行なうことにより、3電極式電気化学セルを作製した。 In the above, instead of the electrolytic solution obtained in Example 1, the electrolytic solution obtained in Example 2 (Experiment No. 2), the electrolytic solution obtained in Example 3 (Experiment No. 3), and in Example 4 The same as above except that the obtained electrolytic solution (Experiment No. 4), the electrolytic solution obtained in Example 5 (Experiment No. 5) and the electrolytic solution obtained in Comparative Example 1 (Experiment No. 6) were used. By performing the above operations, a three-electrode electrochemical cell was produced.
 実験番号1~6で得られた3電極式電気化学セルと、電気化学測定システム〔北斗電工(株)製、品番:HZ-5000〕とを用い、表1に示される条件でサイクリックボルタンメトリー測定を行なった。なお、表中、「DMI」は1,3-ジメチル-2-イミダゾリジノン、「AlCl3」は塩化アルミニウムを示す。 Using the three-electrode electrochemical cell obtained in Experiment Nos. 1 to 6 and the electrochemical measurement system [Hokuto Denko Co., Ltd., product number: HZ-5000], cyclic voltammetry measurement under the conditions shown in Table 1 Was done. In the table, “DMI” represents 1,3-dimethyl-2-imidazolidinone, and “AlCl 3 ” represents aluminum chloride.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、実験番号3、5および6における電解液の温度は、実験番号1、2および4における電解液の温度と異なっている。しかし、サイクリックボルタンメトリーにおいて、電解液の温度は、アルミニウムの溶解および析出それぞれに起因する電流のピークの出現に対して影響を与えないことから、実験番号1、2および4における電解液の温度と実験番号1~6における電解液の温度の違いは、アルミニウムの溶解および析出それぞれの有無に対して影響を与えないと考えられる。 In addition, the temperature of the electrolyte solution in the experiment numbers 3, 5, and 6 is different from the temperature of the electrolyte solution in the experiment numbers 1, 2, and 4. However, in cyclic voltammetry, the temperature of the electrolyte does not affect the appearance of current peaks caused by aluminum dissolution and precipitation, respectively. It is considered that the difference in the temperature of the electrolyte solution in Experiment Nos. 1 to 6 does not affect the presence or absence of aluminum dissolution and precipitation.
 試験例1において、実施例1で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図1(A)に、実施例2で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図2に、実施例3で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図3(A)に、実施例4で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図4に、実施例5で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図5に、比較例1で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図6に示す。 In Test Example 1, the results of measuring the redox potential of the electrolytic solution obtained in Example 1 by cyclic voltammetry are shown in FIG. 1 (A), and the redox potential of the electrolytic solution obtained in Example 2 is cyclic. FIG. 2 shows the results measured by voltammetry, FIG. 3 (A) shows the results of the cyclic reduction of the redox potential of the electrolyte obtained in Example 3, and FIG. 3A shows the oxidation of the electrolyte obtained in Example 4. FIG. 4 shows the result of measuring the reduction potential by cyclic voltammetry, FIG. 5 shows the result of measuring the oxidation-reduction potential of the electrolytic solution obtained in Example 5, and FIG. 5 shows the electrolytic solution obtained in Comparative Example 1. The result of measuring the oxidation-reduction potential of the product by cyclic voltammetry is shown in FIG.
 図1~5に示された結果から、自然電位(約0.3V)から電位をカソード側に掃引したとき、電位0V付近(図1~5中、矢印A参照)において、カソード電流の立ち上がりが見られることから、電解液中のアルミニウムイオンが還元され、アルミニウムが析出していることがわかる。 From the results shown in FIGS. 1 to 5, when the potential is swept from the natural potential (about 0.3 V) to the cathode side, the cathode current rises around the potential of 0 V (see arrow A in FIGS. 1 to 5). As can be seen, aluminum ions in the electrolytic solution are reduced and aluminum is deposited.
 一方、図1~5に示された結果から、-4Vまたは-1Vの電位で掃引を折り返し、電位をアノード側に掃引したとき電位0V付近(図1~5中、矢印B参照)からアノード電流の立ち上がりが見られることがわかる。試験例1では、3電極式電気化学セルの参照電極としてアルミニウム製線材からなる参照電極が用いられているので、作用電極の表面にアルミニウムが存在している場合、0V以上の電位でアルミニウムの酸化による溶解に起因する電流が生じることが予想される。したがって、図1~5に示された結果から、析出していたアルミニウムが溶解していることがわかる。 On the other hand, from the results shown in FIGS. 1 to 5, when the sweep is turned back at a potential of −4 V or −1 V and the potential is swept to the anode side, the anode current starts from around 0 V (see arrow B in FIGS. 1 to 5). It can be seen that the rise of is seen. In Test Example 1, since a reference electrode made of an aluminum wire is used as a reference electrode of a three-electrode electrochemical cell, when aluminum is present on the surface of the working electrode, the oxidation of aluminum is performed at a potential of 0 V or more. It is expected that an electric current will be generated due to dissolution by. Therefore, it can be seen from the results shown in FIGS. 1 to 5 that the precipitated aluminum is dissolved.
 以上の結果から、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)が48.8/51.2(実施例1)、45.5/54.5(実施例2)、40.0/60.0(実施例3)、38.5/61.5(実施例4)および33.3/66.7(実施例5)である電解液を用いた場合には、アルミニウムイオンの還元およびアルミニウムの酸化を行なうことができることから、アルミニウムの電析および充放電反応を行なうことができることがわかる。 From the above results, 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was 48.8 / 51.2 (Example 1), 45.5 / 54.5 (Example 2), In the case of using electrolytic solutions of 40.0 / 60.0 (Example 3), 38.5 / 61.5 (Example 4) and 33.3 / 66.7 (Example 5), aluminum was used. Since it is possible to perform ion reduction and aluminum oxidation, it can be seen that aluminum electrodeposition and charge / discharge reactions can be performed.
 これに対し、図6に示された結果から、自然電位(約0.3V)から電位をカソード側に掃引したとき、電位0V付近(図6中、矢印A参照)でカソード電流の立ち上がりが見られないことから、アルミニウムが析出していないことがわかる。また、図6に示された結果から、-4Vまたは-1Vの電位で掃引を折り返し、電位をアノード側に掃引したとき、電位0V付近(図6中、矢印B参照)でのアノード電流の立ち上がりが見られないことから、作用電極上にアルミニウムが存在していないことがわかる。これらの結果から、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)が76.9/23.1である電解液を用いてもアルミニウムイオンの還元およびアルミニウムの酸化を行なうことができないことがわかる。 On the other hand, from the result shown in FIG. 6, when the potential is swept from the natural potential (about 0.3 V) to the cathode side, the rise of the cathode current is observed around the potential of 0 V (see arrow A in FIG. 6). This indicates that no aluminum is deposited. Further, from the results shown in FIG. 6, when the sweep is turned back at a potential of −4V or −1V and the potential is swept to the anode side, the rise of the anode current near the potential of 0V (see arrow B in FIG. 6). From this, it can be seen that there is no aluminum on the working electrode. From these results, reduction of aluminum ions and oxidation of aluminum can be performed even with an electrolyte solution having a 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) of 76.9 / 23.1. I can't understand.
 以上の結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用いることにより、アルミニウムの電析および充放電反応を行なうことができることがわかる。 From the above results, the use of an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 can be used. It can be seen that deposition and charge / discharge reactions can be performed.
(2)アルミニウムの電析
 実施例1で得られた電解液(実験番号7)を電解槽内に入れた。その後、前記電解槽内の電解液中に製造例4で得られたカソードおよび製造例5で得られたアノードおよび製造例3で得られた参照電極を挿入し、表2に示される条件でアノードとカソードとの間に通電することにより、電析した。なお、このとき、アノードとカソードとの間の電流が4.3mA/cm2であることが確認された。
(2) Electrodeposition of aluminum The electrolytic solution (experiment number 7) obtained in Example 1 was put in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4, the anode obtained in Production Example 5 and the reference electrode obtained in Production Example 3 were inserted into the electrolytic solution in the electrolytic cell, and the anode was subjected to the conditions shown in Table 2. Electrodeposition was carried out by energizing between the cathode and the cathode. At this time, it was confirmed that the current between the anode and the cathode was 4.3 mA / cm 2 .
 実施例3で得られた電解液(実験番号8)を電解槽内に入れた。その後、前記電解槽内の電解液中に製造例4で得られたカソードおよび製造例5で得られたアノードを挿入し、表2に示される条件でアノードとカソードとの間に通電することにより、電析した。 The electrolytic solution (experiment number 8) obtained in Example 3 was placed in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, and electricity was passed between the anode and the cathode under the conditions shown in Table 2. Electrodeposited.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験例1において、実施例1で得られた電解液を用いて電析した後のカソード表面の光学写真を図1(B)、実施例3で得られた電解液を用いて電析した後のカソード表面の光学写真を図3(B)に示す。図中、スケールバーは、10mmを示す。 In Test Example 1, an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 1 was electrodeposited using the electrolytic solution obtained in FIG. An optical photograph of the cathode surface is shown in FIG. In the figure, the scale bar indicates 10 mm.
 図1(B)および図3(B)に示された結果から、実施例1で得られた電解液および実施例3で得られた電解液を用いて電析したとき、カソード表面にアルミニウムめっき皮膜が形成されていることがわかる。なお、実施例2で得られた電解液、実施例4で得られた電解液および実施例5で得られた電解液を用いた場合には、前記したように、アルミニウムイオンの還元およびアルミニウムの酸化を行なうことができることから、実施例1で得られた電解液および実施例3で得られた電解液を用いて電析したときと同様に、アルミニウムめっき皮膜が形成されるものと考えられる。 From the results shown in FIG. 1 (B) and FIG. 3 (B), when electrodeposition was performed using the electrolytic solution obtained in Example 1 and the electrolytic solution obtained in Example 3, the surface of the cathode was plated with aluminum. It can be seen that a film is formed. In addition, when using the electrolytic solution obtained in Example 2, the electrolytic solution obtained in Example 4, and the electrolytic solution obtained in Example 5, as described above, the reduction of aluminum ions and the aluminum Since oxidation can be performed, it is considered that an aluminum plating film is formed in the same manner as when electrodeposition is performed using the electrolytic solution obtained in Example 1 and the electrolytic solution obtained in Example 3.
 以上の結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用いることにより、アルミニウムを電析させることができることがわかる。イミダゾリジノン化合物は、電解液が通常使用される温度範囲では、従来のアルミニウムの電析用の電解液の溶媒として用いられているトルエンと対比して、引火点が高く、揮発性が小さく、取り扱いが容易であることから、前記電解液は、取り扱いが容易である。また、イミダゾリジノン化合物は、従来のアルミニウムの電析用の電解液の溶媒として用いられているジメチルスルホンと比べて融点が低いことから、前記電解液は、ジメチルスルホンを含有する従来の電解液よりも低い温度範囲でアルミニウムの電析することができると考えられる。 Based on the above results, it was found that an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 can be used to charge aluminum. It can be seen that it can be analyzed. The imidazolidinone compound has a high flash point and low volatility in the temperature range in which the electrolytic solution is usually used, as compared with toluene used as a solvent for an electrolytic solution for conventional aluminum electrodeposition. Since the handling is easy, the electrolytic solution is easy to handle. In addition, since the imidazolidinone compound has a lower melting point than dimethylsulfone used as a solvent for a conventional electrolytic solution for aluminum electrodeposition, the electrolytic solution is a conventional electrolytic solution containing dimethylsulfone. It is considered that aluminum can be electrodeposited at a lower temperature range.
試験例2
(1)サイクリックボルタンメトリー
 アルゴンガス雰囲気に保たれたグローブボックス内で、製造例1で得られた作用電極と、製造例2で得られた対極と、製造例3で得られた参照電極と、実施例3で得られた電解液(実験番号9)または実施例4で得られた電解液(実験番号10)とを用い、3電極式電気化学セルを作製した。
Test example 2
(1) Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, A three-electrode electrochemical cell was prepared using the electrolytic solution obtained in Example 3 (Experiment No. 9) or the electrolytic solution obtained in Example 4 (Experiment No. 10).
 前記で得られた3電極式電気化学セルと、電気化学測定システム〔北斗電工(株)製、品番:HZ-5000〕とを用い、電解液の温度:25℃、掃引速度:10mV/s、掃引範囲:アルミニウムに対して-1~2Vの条件でサイクリックボルタンメトリーを行なった。 Using the three-electrode electrochemical cell obtained above and an electrochemical measurement system (Hokuto Denko Co., Ltd., product number: HZ-5000), the temperature of the electrolyte solution: 25 ° C., sweep rate: 10 mV / s, Sweep range: Cyclic voltammetry was performed under the condition of −1 to 2 V with respect to aluminum.
 試験例2において、実施例3で得られた電解液の温度を25℃に調整し、当該電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図7(A)、実施例4で得られた電解液の温度を25℃に調整し、当該電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図8に示す。 In Test Example 2, the temperature of the electrolytic solution obtained in Example 3 was adjusted to 25 ° C., and the result of measuring the oxidation-reduction potential of the electrolytic solution by cyclic voltammetry was obtained in FIG. FIG. 8 shows the results of adjusting the temperature of the obtained electrolyte to 25 ° C. and measuring the oxidation-reduction potential of the electrolyte by cyclic voltammetry.
 図7(A)に示された結果から、実施例3で得られた電解液を用い、当該電解液の温度を25℃に調整したとき、実施例3で得られた電解液を用い、当該電解液の温度を80℃に調整したとき〔図3(A)参照〕と同様に、自然電位(約0.3V)から電位をカソード側に掃引した際に、電位0V付近〔図7(A)中、矢印A参照〕でカソード電流の立ち上がりが見られることから、電解液中のアルミニウムイオンが還元され、アルミニウムが析出していることがわかる。 From the results shown in FIG. 7 (A), when using the electrolytic solution obtained in Example 3 and adjusting the temperature of the electrolytic solution to 25 ° C., using the electrolytic solution obtained in Example 3, When the temperature of the electrolyte is adjusted to 80 ° C. (see FIG. 3A), when the potential is swept from the natural potential (about 0.3 V) to the cathode side, the potential is around 0 V [FIG. ), The rising edge of the cathode current is observed, indicating that aluminum ions in the electrolytic solution are reduced and aluminum is deposited.
 また、図7(A)に示された結果から、実施例3で得られた電解液を用い、当該電解液の温度を25℃に調整したとき、実施例3で得られた電解液を用い、当該電解液の温度を80℃に調整したとき〔図3(A)参照〕と同様に、-1V以下の電位で掃引を折り返し、電位をアノード側に掃引した際に、電位0V付近〔図7(A)中、矢印B参照〕からアノード電流の立ち上がりが見られることから、析出していたアルミニウムが溶解していることがわかる。 Further, from the result shown in FIG. 7A, when the electrolytic solution obtained in Example 3 was used and the temperature of the electrolytic solution was adjusted to 25 ° C., the electrolytic solution obtained in Example 3 was used. When the temperature of the electrolyte is adjusted to 80 ° C. (see FIG. 3A), the sweep is turned back at a potential of −1 V or less, and when the potential is swept to the anode side, the potential is around 0 V [see FIG. 7 (A), see arrow B], the rising of the anode current is seen, indicating that the precipitated aluminum is dissolved.
 一方、図8に示された結果から、実施例4で得られた電解液を用い、当該電解液の温度を25℃に調整したとき、実施例4で得られた電解液を用い、当該電解液の温度を60℃に調整したとき(図4参照)と同様に、自然電位(約0.3V)から電位をカソード側に掃引した際に、電位0V付近(図8中、矢印A参照)でカソード電流の立ち上がりが見られることから、電解液中のアルミニウムイオンが還元され、アルミニウムが析出していることがわかる。 On the other hand, from the results shown in FIG. 8, when the electrolytic solution obtained in Example 4 was used and the temperature of the electrolytic solution was adjusted to 25 ° C., the electrolytic solution obtained in Example 4 was used, and the electrolytic solution Similar to when the temperature of the liquid was adjusted to 60 ° C. (see FIG. 4), when the potential was swept from the natural potential (about 0.3 V) to the cathode side, the potential was around 0 V (see arrow A in FIG. 8). The rise of the cathode current can be seen in FIG. 3, indicating that aluminum ions in the electrolytic solution are reduced and aluminum is deposited.
 また、図8に示された結果から、実施例4で得られた電解液を用い、当該電解液の温度を25℃に調整したとき、実施例4で得られた電解液を用い、当該電解液の温度を60℃に調整したとき(図4参照)と同様に、-1V以下の電位で掃引を折り返し、電位をアノード側に掃引した際に、電位0V付近(図8中、矢印B参照)からアノード電流の立ち上がりが見られることから、析出していたアルミニウムが溶解していることがわかる。 Further, from the results shown in FIG. 8, when the electrolytic solution obtained in Example 4 was used and the temperature of the electrolytic solution was adjusted to 25 ° C., the electrolytic solution obtained in Example 4 was used, and the electrolytic solution Similar to when the temperature of the liquid was adjusted to 60 ° C. (see FIG. 4), the sweep was turned back at a potential of −1 V or less, and when the potential was swept to the anode side, the potential was around 0 V (see arrow B in FIG. 8). ) Shows that the anode current rises, indicating that the precipitated aluminum is dissolved.
 これらの結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用い、当該電解液の温度を25℃に調整したとき、アルミニウムを電析させることができることがわかる。 From these results, an electrolyte solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 was used. It can be seen that aluminum can be electrodeposited when the temperature is adjusted to 25 ° C.
(2)アルミニウムの電析
 実施例3で得られた電解液を電解槽内に入れた後、電解槽内の電解液中に製造例4で得られたカソードと、製造例5で得られたアノードとを挿入し、表3に示される条件にて当該アノードとカソードとの間に通電することにより、電析した。
(2) Electrodeposition of aluminum After the electrolytic solution obtained in Example 3 was put in the electrolytic cell, the cathode obtained in Production Example 4 and the obtained in Production Example 5 in the electrolytic solution in the electrolytic cell Electrodeposition was performed by inserting an anode and applying current between the anode and the cathode under the conditions shown in Table 3.
 試験例2において、実施例3で得られた電解液の温度を25℃に調整し、当該電解液を用いて電析した後のカソード表面の光学写真を図7(B)、実施例3で得られた電解液の温度を40℃に調整し、当該電解液を用いて電析した後のカソード表面の光学写真を図9、実施例3で得られた電解液の温度を50℃に調整し、当該電解液を用いて電析した後のカソード表面の光学写真を図10に示す。図中、スケールバーは、10mmを示す。また、カソード表面の状態を以下の評価基準に基づいて評価した。その結果を表3に示す。 In Test Example 2, the temperature of the electrolytic solution obtained in Example 3 was adjusted to 25 ° C., and an optical photograph of the cathode surface after electrodeposition using the electrolytic solution is shown in FIG. The temperature of the electrolyte solution obtained was adjusted to 40 ° C., and an optical photograph of the cathode surface after electrodeposition using the electrolyte solution was adjusted to 50 ° C. in FIG. 9 and the electrolyte solution obtained in Example 3 FIG. 10 shows an optical photograph of the cathode surface after electrodeposition using the electrolytic solution. In the figure, the scale bar indicates 10 mm. Moreover, the state of the cathode surface was evaluated based on the following evaluation criteria. The results are shown in Table 3.
<評価基準>
AA:カソード表面に銀白色を有し、平滑な表面を有するアルミニウムめっき皮膜が形成されている。
 A:カソード表面にアルミニウムめっき皮膜が形成されている。
<Evaluation criteria>
AA: An aluminum plating film having a silvery white surface and a smooth surface is formed on the cathode surface.
A: An aluminum plating film is formed on the cathode surface.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図7(B)、図9および図10に示された結果から、電解液の温度を25℃(実験番号11)、40℃(実験番号12)および50℃(実験番号13)に調整したとき、アルミニウムを電析させることができることがわかる。なかでも、表3に示された結果から、電解液の温度を40℃(実験番号12)および50℃(実験番号13)に調整したとき、カソード表面に銀白色のアルミニウムめっき皮膜(図中、矢印参照)が形成されていることがわかる。 From the results shown in FIG. 7B, FIG. 9 and FIG. 10, when the temperature of the electrolyte was adjusted to 25 ° C. (experiment number 11), 40 ° C. (experiment number 12) and 50 ° C. (experiment number 13). It can be seen that aluminum can be electrodeposited. In particular, from the results shown in Table 3, when the electrolyte temperature was adjusted to 40 ° C. (experiment number 12) and 50 ° C. (experiment number 13), a silver-white aluminum plating film (in the figure, It can be seen that an arrow is formed.
 これらの結果および図1~5に示された結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用い、当該電解液の温度を25~80℃に調整したとき、アルミニウムを良好に電析させることができることがわかる。したがって、前記電解液によれば、常温付近の温度でもアルミニウムを良好に電析させることができることから、エネルギー効率よくアルミニウム材料の製造およびアルミニウムめっき皮膜を形成させることができることがわかる。 From these results and the results shown in FIGS. 1 to 5, it contains an imidazolidinone compound and an aluminum halide, and the imidazolidinone compound / aluminum halide (molar ratio) is 25/75 to 50/50. It can be seen that when the electrolytic solution is used and the temperature of the electrolytic solution is adjusted to 25 to 80 ° C., aluminum can be electrodeposited well. Therefore, according to the said electrolyte solution, since aluminum can be electrodeposited favorable also at the temperature of normal temperature, it turns out that manufacture of an aluminum material and an aluminum plating film can be formed efficiently.
(3)アルミニウムめっき皮膜の元素分析
 走査型電子顕微鏡に付属のエネルギー分散型X線分析装置〔オックスフォード・インストゥルメンツ(OXFORD INSTRUMENTS)製、商品名:INCAxact)を用い、実験番号12で得られたアルミニウムめっき皮膜の元素分析を行なった。その結果、めっき皮膜は、アルミニウム99.71原子%および塩素0.29原子%で構成されていることが確認された。
(3) Elemental analysis of aluminum plating film Obtained by Experiment No. 12 using an energy dispersive X-ray analyzer (manufactured by Oxford Instruments, trade name: INCAxact) attached to a scanning electron microscope Elemental analysis of the aluminum plating film was performed. As a result, it was confirmed that the plating film was composed of 99.71 atomic% aluminum and 0.29 atomic% chlorine.
 なお、図1~5に示された結果から、電解液の温度を60~80℃に調整したとき、アルミニウムを電析させることができることがわかる。 The results shown in FIGS. 1 to 5 indicate that aluminum can be electrodeposited when the temperature of the electrolyte is adjusted to 60 to 80 ° C.
 以上の結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用い、当該電解液の温度を25~80℃に調整したとき、アルミニウムを電析させることができることがわかる。 Based on the above results, an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 was used. It can be seen that aluminum can be electrodeposited when the temperature is adjusted to 25-80 ° C.
試験例3
 実施例3で得られた電解液を電解槽内に入れた後、前記電解槽内の電解液中に製造例4で得られたカソードと、製造例5で得られたアノードとを挿入し、表4に示される条件にて当該アノードとカソードとの間に通電することにより、電析した(実験番号14および12)。
Test example 3
After putting the electrolytic solution obtained in Example 3 into the electrolytic cell, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, Electrodeposition was performed by applying current between the anode and the cathode under the conditions shown in Table 4 (experiment numbers 14 and 12).
 試験例3において、実施例3で得られた電解液を用い、0.25mA/cm2の電流密度で電析(実験番号14)した後のカソード表面の光学写真を図11(A)、実施例3で得られた電解液を用い、0.5mA/cm2の電流密度で電析(実験番号12)した後のカソード表面の光学写真を図11(B)に示す。図中、スケールバーは、10mmを示す。また、カソード表面の状態を以下の評価基準に基づいて評価した。その結果を表4に示す。 In Test Example 3, using the electrolytic solution obtained in Example 3, an optical photograph of the cathode surface after electrodeposition (experiment number 14) at a current density of 0.25 mA / cm 2 is shown in FIG. FIG. 11B shows an optical photograph of the cathode surface after electrodeposition (Experiment No. 12) using the electrolytic solution obtained in Example 3 at a current density of 0.5 mA / cm 2 . In the figure, the scale bar indicates 10 mm. Moreover, the state of the cathode surface was evaluated based on the following evaluation criteria. The results are shown in Table 4.
<評価基準>
AA:カソード表面に銀白色を有し、平滑な表面を有するアルミニウムめっき皮膜が形成されている。
 A:カソード表面に銀白色を有するアルミニウムめっき皮膜が形成されている。
<Evaluation criteria>
AA: An aluminum plating film having a silvery white surface and a smooth surface is formed on the cathode surface.
A: An aluminum plating film having a silver white color is formed on the cathode surface.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図11および表4に示された結果から、電流密度を0.25mA/cm2(実験番号14)および0.5mA/cm2(実験番号12)に調整したとき、カソード表面にアルミニウムめっき皮膜(図中、矢印参照)が形成されていることがわかる。なかでも、表4に示された結果から、電流密度を0.5mA/cm2(実験番号12)に調整したとき、カソード表面に銀白色を有し、平滑な表面を有するアルミニウムめっき皮膜(図中、矢印参照)が形成されていることがわかる。 From the results shown in FIG. 11 and Table 4, when the current density was adjusted to 0.25 mA / cm 2 (experiment number 14) and 0.5 mA / cm 2 (experiment number 12), an aluminum plating film ( It can be seen that (see the arrow in the figure) is formed. In particular, from the results shown in Table 4, when the current density was adjusted to 0.5 mA / cm 2 (Experiment No. 12), an aluminum plating film having a silver white color on the cathode surface and a smooth surface (see FIG. It can be seen that an arrow) is formed.
実施例6
 アルゴンガス雰囲気に保たれたグローブボックス内で、式(I)において、R1およびR2がメチル基であるイミダゾリジノン化合物(1,3-ジメチル-2-イミダゾリジノン)とアルミニウムハロゲン化物(塩化アルミニウム)と添加剤(テトラエチルアンモニウムクロリド)とを、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム/テトラエチルアンモニウムクロリド(モル比)が40/60/1となるように混合し、電解液を得た。
Example 6
In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( Aluminum chloride) and an additive (tetraethylammonium chloride) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / tetraethylammonium chloride (molar ratio) is 40/60/1. A liquid was obtained.
実施例7
 実施例6において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム/テトラエチルアンモニウムクロリド(モル比)を40/60/1から40/60/2に変更したことを除き、実施例6と同様の操作を行なうことにより、電解液を得た。
Example 7
Example 6 is the same as Example 6 except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / tetraethylammonium chloride (molar ratio) was changed from 40/60/1 to 40/60/2 in Example 6. The electrolyte solution was obtained by performing the same operation.
試験例4
(1)アルミニウムの電析
 実施例6で得られた電解液(実験番号15)、実施例7で得られた電解液(実験番号16および実験番号17)または実施例3で得られた電解液(実験番号12)を電解槽内に入れた後、電解槽内の電解液中に製造例4で得られたカソードと、製造例5で得られたアノードとを挿入し、表5に示される条件でアノードとカソードとの間に通電することにより、電析した。
Test example 4
(1) Electrodeposition of aluminum The electrolytic solution obtained in Example 6 (Experiment No. 15), the electrolytic solution obtained in Example 7 (Experiment No. 16 and Experimental No. 17), or the electrolytic solution obtained in Example 3 (Experiment No. 12) was placed in the electrolytic cell, and then the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell. Electrodeposition was performed by applying current between the anode and the cathode under conditions.
 試験例4において、実施例6で得られた電解液を用い、0.75mA/cm2の電流密度で電析(実験番号15)した後のカソード表面の光学写真を図12(A)、実施例7で得られた電解液を用い、0.5mA/cm2の電流密度で電析(実験番号16)した後のカソード表面の光学写真を図12(B)、実施例7で得られた電解液を用い、1mA/cm2の電流密度で電析(実験番号17)した後のカソード表面の光学写真を図12(C)、実施例3で得られた電解液を用い、0.5mA/cm2の電流密度で電析(実験番号12)した後のカソード表面の光学写真を図12(D)に示す。図中、スケールバーは、10mmを示す。また、カソード表面の状態を試験例2と同様にして評価した。その結果を表5に示す。 In Test Example 4, using the electrolytic solution obtained in Example 6, an optical photograph of the cathode surface after electrodeposition (experiment number 15) at a current density of 0.75 mA / cm 2 is shown in FIG. Using the electrolytic solution obtained in Example 7, an optical photograph of the cathode surface after electrodeposition (experiment number 16) at a current density of 0.5 mA / cm 2 was obtained in FIG. Using the electrolytic solution, an optical photograph of the cathode surface after electrodeposition (experiment number 17) at a current density of 1 mA / cm 2 is 0.5 mA using the electrolytic solution obtained in FIG. 12 (C) and Example 3. An optical photograph of the cathode surface after electrodeposition (experiment number 12) at a current density of / cm 2 is shown in FIG. In the figure, the scale bar indicates 10 mm. The state of the cathode surface was evaluated in the same manner as in Test Example 2. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図12に示された結果から、添加剤としてテトラエチルアンモニウムクロリド1モルを含有する実施例6で得られた電解液を用い、電流密度を0.75mA/cm2に調整して電析したとき〔実験番号15、図12(A)参照〕、添加剤としてテトラエチルアンモニウムクロリド2モルを含有する実施例7で得られた電解液を用い、電流密度を0.5mA/cm2に調整して電析したとき〔実験番号16、図12(B)参照〕、添加剤としてテトラエチルアンモニウムクロリド2モルを含有する実施例7で得られた電解液を用い、電流密度を1mA/cm2に調整して電析したとき〔実験番号17、図12(C)参照〕、添加剤としてテトラエチルアンモニウムクロリドを含有しない実施例3で得られた電解液を用い、電流密度を0.5mA/cm2に調整して電析したとき〔実験番号12、図12(D)参照〕、カソード表面にアルミニウムめっき皮膜(図中、矢印参照)されていることがわかる。 From the results shown in FIG. 12, when the electrolytic solution obtained in Example 6 containing 1 mol of tetraethylammonium chloride as an additive was used for electrodeposition while adjusting the current density to 0.75 mA / cm 2 [ Experiment No. 15, see FIG. 12 (A)], and using the electrolyte obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an additive, the current density was adjusted to 0.5 mA / cm 2 for electrodeposition. [Experiment No. 16, see FIG. 12 (B)], using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an additive, the current density was adjusted to 1 mA / cm 2 and the electric current was adjusted. When analyzed (see Experiment No. 17, FIG. 12C), the electrolyte obtained in Example 3 containing no tetraethylammonium chloride as an additive was used, and the current density was 0.5 mA / When electrodeposited adjusted to m 2 Experiment No. 12, FIG. 12 (D)], the aluminum plating film on the cathode surface (in the figure, see arrows) it can be seen that the.
 また、表5に示された結果から、添加剤としてテトラエチルアンモニウムクロリド1モルを含有する実施例6で得られた電解液を用い、電流密度を0.75mA/cm2に調整して電析したとき(実験番号15)、添加剤としてテトラエチルアンモニウムクロリド2モルを含有する実施例7で得られた電解液を用い、電流密度を0.5mA/cm2に調整して電析したとき(実験番号16)、添加剤としてテトラエチルアンモニウムクロリド2モルを含有する実施例7で得られた電解液を用い、電流密度を1mA/cm2に調整して電析したとき(実験番号17)および添加剤としてテトラエチルアンモニウムクロリドを含有しない実施例3で得られた電解液を用い、電流密度を0.5mA/cm2に調整して電析したとき(実験番号12)には、カソード表面にアルミニウムめっき皮膜(図中、矢印参照)が形成されていることがわかる。なかでも、添加剤としてテトラエチルアンモニウムクロリド1モルを含有する実施例6で得られた電解液を用い、電流密度を0.75mA/cm2に調整して電析したとき(実験番号15)、添加剤としてテトラエチルアンモニウムクロリド2モルを含有する実施例7で得られた電解液を用い、電流密度を0.5mA/cm2に調整して電析したとき(実験番号16)および添加剤としてテトラエチルアンモニウムクロリドを含有しない実施例3で得られた電解液を用い、電流密度を0.5mA/cm2に調整して電析したとき(実験番号12)には、カソード表面に銀白色の平滑な表面を有するアルミニウムめっき皮膜が形成されていることがわかる。 Moreover, from the results shown in Table 5, the electrolytic solution obtained in Example 6 containing 1 mol of tetraethylammonium chloride as an additive was used for electrodeposition by adjusting the current density to 0.75 mA / cm 2 . (Experiment No. 15), when using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an additive and adjusting the current density to 0.5 mA / cm 2 for electrodeposition (Experiment No. 16) Using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an additive and adjusting the current density to 1 mA / cm 2 for electrodeposition (Experiment No. 17) and as an additive using the obtained electrolyte solution in example 3 containing no tetraethylammonium chloride, when electrodeposited by adjusting the current density to 0.5 mA / cm 2 (Test No. 12) , The cathode surface (in the figure, see arrow) aluminum plating film it can be seen that is formed. In particular, when the electrolytic solution obtained in Example 6 containing 1 mol of tetraethylammonium chloride as an additive was used for electrodeposition with the current density adjusted to 0.75 mA / cm 2 (Experiment No. 15), Using the electrolytic solution obtained in Example 7 containing 2 mol of tetraethylammonium chloride as an agent, the current density was adjusted to 0.5 mA / cm 2 for electrodeposition (Experiment No. 16), and tetraethylammonium as an additive When the electrolytic solution obtained in Example 3 containing no chloride was used for electrodeposition with the current density adjusted to 0.5 mA / cm 2 (Experiment No. 12), a silver-white smooth surface was formed on the cathode surface. It can be seen that an aluminum plating film having s is formed.
 これらの結果から、添加剤としてテトラエチルアンモニウムクロリドを含有する実施例6および実施例7で得られた電解液によれば、添加剤を含有しない実施例3で得られた電解液と同様にアルミニウムの電析を行なうことができることがわかる。 From these results, according to the electrolytic solutions obtained in Example 6 and Example 7 containing tetraethylammonium chloride as an additive, aluminum was added in the same manner as the electrolytic solution obtained in Example 3 containing no additive. It can be seen that electrodeposition can be performed.
(2)アルミニウムめっき皮膜の観察
 走査型電子顕微鏡〔日本電子(株)製、商品名:JSM-6510LV〕を用い、実験番号15で得られたアルミニウムめっき皮膜、実験番号12で得られたアルミニウムめっき皮膜および電析前のカソード表面を観察した。試験例4において、実験番号12で得られたアルミニウムめっき皮膜の表面の光学写真を図13(A)、実験番号15で得られたアルミニウムめっき皮膜の表面の光学写真を図13(B)、電析前のカソード表面の光学写真を図13(C)に示す。図中、スケールバーは10μmを示す。
(2) Observation of aluminum plating film Using a scanning electron microscope [manufactured by JEOL Ltd., trade name: JSM-6510LV], the aluminum plating film obtained in Experiment No. 15 and the aluminum plating obtained in Experiment No. 12 The film and the cathode surface before electrodeposition were observed. In Test Example 4, an optical photograph of the surface of the aluminum plating film obtained in Experiment No. 12 is shown in FIG. 13A, an optical photograph of the surface of the aluminum plating film obtained in Experiment No. 15 is shown in FIG. An optical photograph of the cathode surface before analysis is shown in FIG. In the figure, the scale bar indicates 10 μm.
 図13に示された結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用いて電析したとき〔図13(A)および(B)参照〕、結晶が並んだ構造を有することがわかる。この構造は、電析を行なう前のカソード表面〔図13(C)参照〕には見られなかったことから、前記結晶は、アルミニウムの結晶であることがわかる。 From the results shown in FIG. 13, it was confirmed that an electrolyte solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 was used. When analyzed (see FIGS. 13A and 13B), it can be seen that it has a structure in which crystals are arranged. Since this structure was not found on the cathode surface before the electrodeposition (see FIG. 13C), it can be seen that the crystal is an aluminum crystal.
 また、図13に示された結果から、実験番号12で得られたアルミニウムめっき皮膜を構成する結晶の大きさ〔図13(A)参照〕と比べて、実験番号15で得られたアルミニウムめっき皮膜を構成する結晶の大きさ〔図13(B)参照〕が小さいことがわかる。 Further, from the results shown in FIG. 13, the aluminum plating film obtained in Experiment No. 15 compared with the size of the crystals constituting the aluminum plating film obtained in Experiment No. 12 (see FIG. 13A). It can be seen that the size of the crystals constituting the film [see FIG. 13B] is small.
 以上の結果から、添加剤としてテトラエチルアンモニウムクロリドを含有する実施例6で得られた電解液を用いて電析したとき(実験番号15)、添加剤を含有しない実施例3で得られた電解液を用いた場合(実験番号12)よりも、より平滑な表面を有するアルミニウムめっき皮膜を得ることができる傾向があることがわかる。 From the above results, when electrodepositing was performed using the electrolytic solution obtained in Example 6 containing tetraethylammonium chloride as an additive (Experiment No. 15), the electrolytic solution obtained in Example 3 containing no additive. It can be seen that there is a tendency that an aluminum plating film having a smoother surface can be obtained than in the case of using (Experiment No. 12).
(3)アルミニウムめっき皮膜の組成分析
 X線回折装置〔パナリティカル(PANalytical)製、商品名:X’Pert Pro-MPD PW 3040/60〕を用い、CuKα線の平行ビームにより、管電圧45kVおよび管電流40mAにて実験番号15で得られたアルミニウムめっき皮膜のX線回折を調べた。試験例4において、実験番号15で得られたアルミニウムめっき皮膜のX線回折を図14に示す。また、走査型電子顕微鏡に付属のエネルギー分散型X線分析装置〔オックスフォード・インストゥルメンツ(OXFORD INSTRUMENTS)製、商品名:INCAxact)を用い、実験番号15で得られたアルミニウムめっき皮膜の元素分析を行なった。その結果、このアルミニウムめっき皮膜は、アルミニウム原子99.5原子%および塩素0.5原子%で構成されていることが確認された。また、図14に示された結果から、実験番号15で得られたアルミニウムめっき皮膜は、アルミニウム原子を含有することがわかる。
(3) Composition analysis of aluminum plating film Using an X-ray diffractometer (trade name: X'Pert Pro-MPD PW 3040/60, manufactured by PANalytical), a tube voltage of 45 kV and a tube are generated by a parallel beam of CuKα rays. The X-ray diffraction of the aluminum plating film obtained in Experiment No. 15 at a current of 40 mA was examined. In Test Example 4, X-ray diffraction of the aluminum plating film obtained in Experiment No. 15 is shown in FIG. In addition, elemental analysis of the aluminum plating film obtained in Experiment No. 15 was performed using an energy dispersive X-ray analyzer (manufactured by OXFORD INSTRUMENTS, trade name: INCAxact) attached to the scanning electron microscope. I did it. As a result, it was confirmed that this aluminum plating film was composed of 99.5 atomic% of aluminum atoms and 0.5 atomic% of chlorine. Moreover, it can be seen from the results shown in FIG. 14 that the aluminum plating film obtained in Experiment No. 15 contains aluminum atoms.
 以上の結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50であり、添加剤としてテトラエチルアンモニウムクロリドを含有する電解液によれば、より平滑な表面を有するアルミニウムめっき皮膜を得ることができることがわかる。 From the above results, it contains an imidazolidinone compound and an aluminum halide, an imidazolidinone compound / aluminum halide (molar ratio) is 25/75 to 50/50, and contains tetraethylammonium chloride as an additive. According to the electrolytic solution, it can be seen that an aluminum plating film having a smoother surface can be obtained.
実施例8
 アルゴンガス雰囲気に保たれたグローブボックス内で、式(I)において、R1およびR2がメチル基であるイミダゾリジノン化合物(1,3-ジメチル-2-イミダゾリジノン)とアルミニウムハロゲン化物(塩化アルミニウム)と添加剤(トリエチレンテトラミン)とを1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム/トリエチレンテトラミン(モル比)が40/60/1となるように混合し、電解液を得た。
Example 8
In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( Aluminum chloride) and an additive (triethylenetetramine) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / triethylenetetramine (molar ratio) is 40/60/1. Got.
試験例5
 実施例8で得られた電解液を電解槽内に入れた。その後、前記電解槽内の電解液中に製造例4で得られたカソードと、製造例5で得られたアノードとを挿入し、電解液の温度:40℃、電流密度:0.75mA/cm2および通電量:10C/cm2にて当該アノードとカソードとの間に通電する定電流電解により、電析した。
Test Example 5
The electrolytic solution obtained in Example 8 was placed in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, and the temperature of the electrolytic solution: 40 ° C., current density: 0.75 mA / cm. 2 and the amount of energization: Electrodeposition was performed by constant current electrolysis energized between the anode and the cathode at 10 C / cm 2 .
 試験例5において、実施例8で得られた電解液を用いて電析した後のカソード表面の光学写真を図15に示す。図中、スケールバーは、10mmを示す。 In Test Example 5, an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 8 is shown in FIG. In the figure, the scale bar indicates 10 mm.
 図15に示された結果から、添加剤としてトリエチレンテトラミンを含有する電解液(実施例8)を用いて電析したとき、カソード表面に銀白色を有し、平滑な表面を有するアルミニウムめっき皮膜が形成されていることがわかる。 From the results shown in FIG. 15, an aluminum plating film having a smooth surface with silver white on the cathode surface when electrodeposited using an electrolytic solution containing triethylenetetramine as an additive (Example 8). It can be seen that is formed.
 したがって、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50であり、添加剤としてトリエチレンテトラミンを含有する電解液を用いることにより、より平滑な表面を有するアルミニウムめっき皮膜を得ることができることがわかる。 Therefore, an electrolytic solution containing an imidazolidinone compound and an aluminum halide, an imidazolidinone compound / aluminum halide (molar ratio) is 25/75 to 50/50, and contains triethylenetetramine as an additive. It turns out that the aluminum plating film which has a smoother surface can be obtained by using.
実施例9
 アルゴンガス雰囲気に保たれたグローブボックス内で、式(I)において、R1およびR2がメチル基であるイミダゾリジノン化合物(1,3-ジメチル-2-イミダゾリジノン)とアルミニウムハロゲン化物(塩化アルミニウム)と添加剤(トルエン)とを、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム/トルエン(モル比)が40/60/120となるように混合し、電解液を得た。
Example 9
In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( Aluminum chloride) and the additive (toluene) were mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / toluene (molar ratio) was 40/60/120 to obtain an electrolytic solution. .
試験例6
(1)サイクリックボルタンメトリー
 アルゴンガス雰囲気に保たれたグローブボックス内で、製造例1で得られた作用電極と、製造例2で得られた対極と、製造例3で得られた参照電極と、実施例9で得られた電解液とを用い、3電極式電気化学セルを作製した。
Test Example 6
(1) Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, Using the electrolytic solution obtained in Example 9, a three-electrode electrochemical cell was produced.
 前記で得られた3電極式電気化学セルと、電気化学測定システム〔北斗電工(株)製、商品名:HZ-5000〕とを用い、電解液の温度:25℃、電位の掃引速度:10mV/sおよび電位の掃引範囲:アルミニウムに対して-1~2Vの条件でサイクリックボルタンメトリーを行なった。 Using the three-electrode electrochemical cell obtained above and an electrochemical measurement system [Hokuto Denko Co., Ltd., trade name: HZ-5000], electrolyte temperature: 25 ° C., potential sweep rate: 10 mV / S and potential sweep range: cyclic voltammetry was performed under the condition of −1 to 2 V with respect to aluminum.
 試験例6において、実施例9で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図16(A)に示す。 In Test Example 6, the results of measuring the redox potential of the electrolytic solution obtained in Example 9 by cyclic voltammetry are shown in FIG.
 図16(A)に示された結果から、自然電位(約0.3V)から電位をカソード側に掃引したとき、電位0V付近(図中、矢印A参照)でカソード電流の立ち上がりが見られることから、電解液中のアルミニウムイオンが還元され、アルミニウムが析出していることがわかる。 From the result shown in FIG. 16A, when the potential is swept from the natural potential (about 0.3 V) to the cathode side, the cathode current rises around the potential of 0 V (see arrow A in the figure). From this, it can be seen that aluminum ions in the electrolytic solution are reduced and aluminum is deposited.
 また、図16(A)に示された結果から、-1Vの電位で掃引を折り返し、電位をアノード側に掃引したとき、電位0V付近(図中、矢印B参照)からアノード電流の立ち上がりが見られることから、析出していたアルミニウムが溶解していることがわかる。 Further, from the result shown in FIG. 16A, when the sweep is turned back at the potential of −1V and the potential is swept to the anode side, the rise of the anode current is observed from around the potential of 0V (see arrow B in the figure). From this, it can be seen that the precipitated aluminum is dissolved.
(2)アルミニウムの電析
 実施例9で得られた電解液を電解槽内に入れた。その後、前記電解槽内の電解液中に製造例4で得られたカソードと、製造例5で得られたアノードとを挿入し、電解液の温度:40℃、電流密度:1mA/cm2および通電量:10C/cm2にて当該アノードとカソードとの間に通電する定電流電解により、電析した。
(2) Electrodeposition of aluminum The electrolytic solution obtained in Example 9 was put in an electrolytic cell. Thereafter, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, and the electrolyte temperature: 40 ° C., current density: 1 mA / cm 2 and Electrodeposition was carried out by constant current electrolysis in which current was applied between the anode and the cathode at an energization amount of 10 C / cm 2 .
 試験例6において、実施例9で得られた電解液を用いて電析した後のカソード表面の光学写真を図16(B)に示す。図中、スケールバーは、10mmを示す。 In Test Example 6, an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 9 is shown in FIG. In the figure, the scale bar indicates 10 mm.
 図16(B)に示された結果から、添加剤としてトルエンを含有する電解液(実施例9)を用いて電析したとき、カソード表面に銀白色を有し、平滑な表面を有するアルミニウムめっき皮膜が形成されていることがわかる。 From the result shown in FIG. 16 (B), when electrodepositing using an electrolytic solution containing toluene as an additive (Example 9), an aluminum plating having a silver white color on the cathode surface and a smooth surface It can be seen that a film is formed.
 したがって、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50であり、添加剤としてトルエンを含有する電解液を用いることにより、より平滑な表面を有するアルミニウムめっき皮膜を得ることができることがわかる。 Therefore, use an electrolytic solution containing an imidazolidinone compound and an aluminum halide, an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50, and toluene as an additive. It can be seen that an aluminum plating film having a smoother surface can be obtained.
実施例10
 アルゴンガス雰囲気に保たれたグローブボックス内で、式(I)において、R1およびR2がメチル基であるイミダゾリジノン化合物(1,3-ジメチル-2-イミダゾリジノン)とアルミニウムハロゲン化物(塩化アルミニウム)と添加剤(m-キシレン)とを、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム/m-キシレン(モル比)が40/60/100となるように混合することにより、電解液を得た。
Example 10
In a glove box kept in an argon gas atmosphere, an imidazolidinone compound (1,3-dimethyl-2-imidazolidinone) in which R 1 and R 2 are methyl groups in formula (I) and an aluminum halide ( (Aluminum chloride) and additive (m-xylene) are mixed so that 1,3-dimethyl-2-imidazolidinone / aluminum chloride / m-xylene (molar ratio) is 40/60/100. The electrolyte solution was obtained.
試験例7
 実施例10で得られた電解液を電解槽内に入れた後、前記電解槽内の電解液中に製造例4で得られたカソードと、製造例5で得られたアノードとを挿入し、電解液の温度:40℃、電流密度:1mA/cm2および通電量:20C/cm2で当該アノードとカソードとの間に通電する定電流電解により、電析した。
Test Example 7
After putting the electrolytic solution obtained in Example 10 into the electrolytic cell, the cathode obtained in Production Example 4 and the anode obtained in Production Example 5 were inserted into the electrolytic solution in the electrolytic cell, Electrodeposition was performed by constant-current electrolysis in which an electric current was passed between the anode and the cathode at an electrolyte temperature of 40 ° C., a current density of 1 mA / cm 2 and an energization amount of 20 C / cm 2 .
 試験例7において、実施例10で得られた電解液を用いて電析した後のカソード表面の光学写真を図17に示す。図中、スケールバーは、10mmを示す。 In Test Example 7, an optical photograph of the cathode surface after electrodeposition using the electrolytic solution obtained in Example 10 is shown in FIG. In the figure, the scale bar indicates 10 mm.
 図17に示された結果から、添加剤としてm-キシレンを含有する電解液(実施例10)を用いて電析したとき、カソード表面に銀白色を有し、ほぼ平滑な表面を有するアルミニウムめっき皮膜が形成されていることがわかる。 From the results shown in FIG. 17, when electrodeposition was performed using an electrolytic solution containing m-xylene as an additive (Example 10), an aluminum plating having a silver-white surface on the cathode surface and a substantially smooth surface. It can be seen that a film is formed.
 なお、添加剤としてテトラエチルアンモニウムクロリド、トリエチレンテトラミン、トルエンまたはm-キシレンを含有する電解液を用いる代わりに添加剤としてベンゼンを含有する電解液を用いて電析したときにも、添加剤としてトラエチルアンモニウムクロリド、トリエチレンテトラミン、トルエンまたはm-キシレンを含有する電解液を用いたときと同様の結果が得られる。 It should be noted that when the electrodeposition is performed using an electrolyte containing benzene as an additive instead of using an electrolyte containing tetraethylammonium chloride, triethylenetetramine, toluene or m-xylene as an additive, Similar results are obtained when using an electrolyte containing ethylammonium chloride, triethylenetetramine, toluene or m-xylene.
 したがって、以上の結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50であり、テトラエチルアンモニウムクロリド、トリエチレンテトラミン、トルエン、m-キシレン、ベンゼンなどの溶媒を含有する電解液によれば、より平滑な表面を有するアルミニウムめっき皮膜を得ることができることがわかる。 Therefore, from the above results, imidazolidinone compound and aluminum halide are contained, imidazolidinone compound / aluminum halide (molar ratio) is 25 / 75-50 / 50, tetraethylammonium chloride, triethylenetetramine It can be seen that an aluminum plating film having a smoother surface can be obtained with an electrolytic solution containing a solvent such as toluene, m-xylene, or benzene.
比較例2
 実施例1において、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)を48.8/51.2から52/48に変更したことを除き、実施例1と同様にして電解液を得た。
Comparative Example 2
In Example 1, electrolysis was performed in the same manner as in Example 1 except that 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) was changed from 48.8 / 51.2 to 52/48. A liquid was obtained.
試験例8
(1)サイクリックボルタンメトリー
 アルゴンガス雰囲気に保たれたグローブボックス内で、製造例1で得られた作用電極と、製造例2で得られた対極と、製造例3で得られた参照電極と、実施例2または比較例2で得られた電解液とを用い、3電極式電気化学セルを作製した。
Test Example 8
(1) Cyclic voltammetry In a glove box kept in an argon gas atmosphere, the working electrode obtained in Production Example 1, the counter electrode obtained in Production Example 2, the reference electrode obtained in Production Example 3, Using the electrolytic solution obtained in Example 2 or Comparative Example 2, a three-electrode electrochemical cell was produced.
 前記で得られた3電極式電気化学セルと、電気化学測定システム〔北斗電工(株)製、品番:HZ-5000〕とを用い、電解液の温度:80℃、掃引速度:50mV/s、掃引範囲:アルミニウムに対して-4~2Vの条件でサイクリックボルタンメトリーを行なった。 Using the three-electrode electrochemical cell obtained above and an electrochemical measurement system (manufactured by Hokuto Denko Co., Ltd., product number: HZ-5000), the temperature of the electrolyte solution: 80 ° C., sweep rate: 50 mV / s, Sweep range: Cyclic voltammetry was performed on aluminum at -4 to 2V.
 試験例8において、実施例2または比較例2で得られた電解液の温度を80℃に調整し、当該電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を図18に示す。図中、Aは実施例2で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果、Bは比較例2で得られた電解液の酸化還元電位をサイクリックボルタンメトリーで測定した結果を示す。 In Test Example 8, the temperature of the electrolytic solution obtained in Example 2 or Comparative Example 2 was adjusted to 80 ° C., and the results of measuring the oxidation-reduction potential of the electrolytic solution by cyclic voltammetry are shown in FIG. In the figure, A is the result of measuring the redox potential of the electrolytic solution obtained in Example 2 by cyclic voltammetry, and B is the result of measuring the redox potential of the electrolytic solution obtained in Comparative Example 2 by cyclic voltammetry. Indicates.
 図18に示された結果から、電解液として実施例2で得られた電解液を用いた場合(図中、A参照)、自然電位(約0.3V)から電位をカソード側に掃引したとき、電位0V付近(矢印(a)参照)において、カソード電流の立ち上がりが見られることから、電解液中のアルミニウムイオンが還元され、アルミニウムが析出していることがわかる。一方、電位をアノード側に掃引したとき、電位0V付近からアノード電流の立ち上がりが見られることから、析出していたアルミニウムが溶解していることがわかる。 From the results shown in FIG. 18, when the electrolytic solution obtained in Example 2 was used as the electrolytic solution (see A in the figure), the potential was swept from the natural potential (about 0.3 V) to the cathode side. In the vicinity of the potential of 0 V (see arrow (a)), the rising of the cathode current is observed, which indicates that aluminum ions in the electrolytic solution are reduced and aluminum is deposited. On the other hand, when the potential is swept to the anode side, the rising of the anode current is observed from around the potential of 0 V, indicating that the precipitated aluminum is dissolved.
 これに対し、図18に示された結果から、電解液として比較例2で得られた電解液を用いた場合(図中、B参照)、自然電位(約0.3V)から電位をカソード側に掃引したとき、電位0V付近でカソード電流の立ち上がりが見られないことから、アルミニウムが析出していないことがわかる。また、電位をアノード側に掃引したとき、電位0V付近でのアノード電流の立ち上がりが見られないことから、作用電極上にアルミニウムが存在していないことがわかる。これらの結果から、1,3-ジメチル-2-イミダゾリジノン/塩化アルミニウム(モル比)が52/48である電解液を用いた場合、アルミニウムイオンの還元およびアルミニウムの酸化を行なうことができないことがわかる。 On the other hand, from the result shown in FIG. 18, when the electrolytic solution obtained in Comparative Example 2 was used as the electrolytic solution (see B in the figure), the potential was changed from the natural potential (about 0.3 V) to the cathode side. From the fact that no cathode current rises near the potential of 0 V, it can be seen that no aluminum is deposited. In addition, when the potential is swept to the anode side, no rising of the anode current is observed near the potential of 0 V, which indicates that aluminum is not present on the working electrode. From these results, when using an electrolytic solution having a 1,3-dimethyl-2-imidazolidinone / aluminum chloride (molar ratio) of 52/48, the reduction of aluminum ions and the oxidation of aluminum cannot be performed. I understand.
 以上の結果から、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液を用いることにより、アルミニウムの電析および充放電反応を行なうことができることがわかる。 From the above results, the use of an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 can be used. It can be seen that deposition and charge / discharge reactions can be performed.
 以上説明したように、イミダゾリジノン化合物とアルミニウムハロゲン化物とを含有し、イミダゾリジノン化合物/アルミニウムハロゲン化物(モル比)が25/75~50/50である電解液は、取り扱いが容易であり、エネルギー効率よくアルミニウムの電析および充放電反応を行なうことができることから、アルミニウム二次電池、アルミニウム材料の製造、被めっき物の表面へのアルミニウムめっき皮膜の形成などの電解液として用いることができることから、例えば、ポータブル機器、電気自動車などに用いるための二次電池の開発、安価で、高強度の構造部材の開発などに利用されることが期待されるものである。 As described above, an electrolytic solution containing an imidazolidinone compound and an aluminum halide and having an imidazolidinone compound / aluminum halide (molar ratio) of 25/75 to 50/50 is easy to handle. It can be used as an electrolytic solution for aluminum secondary batteries, production of aluminum materials, formation of aluminum plating film on the surface of the object to be plated, etc. Therefore, for example, it is expected to be used for development of secondary batteries for use in portable devices, electric vehicles, and the like, development of inexpensive, high-strength structural members, and the like.

Claims (3)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1およびR2は、それぞれ独立して水素原子、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、水酸基、置換基を有していてもよい炭素数1~4のアルキル基、置換基を有していてもよい炭素数2~4のアルケニル基、炭素数1~4のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基または炭素数1~4のアルコキシカルボニル基を示す)
    で表わされるイミダゾリジノン化合物にアルミニウムハロゲン化物が溶解されてなり、式(I)で表わされるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比〔イミダゾリジノン化合物/アルミニウムハロゲン化物〕が25/75~50/50であるアルミニウムめっき用電解液。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of
    An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75. Electrolytic solution for aluminum plating that is 50/50.
  2.  請求項1に記載のアルミニウムめっき用電解液中に被めっき物を浸漬させ、前記アルミニウムめっき用電解液から被めっき物の表面にアルミニウムを電析させてアルミニウムめっき皮膜を形成させることを特徴とするアルミニウム材料の製造方法。 An object to be plated is immersed in the electrolytic solution for aluminum plating according to claim 1, and aluminum is electrodeposited on the surface of the object to be plated from the electrolytic solution for aluminum plating to form an aluminum plating film. A method for producing an aluminum material.
  3.  式(I):
    Figure JPOXMLDOC01-appb-C000002

    (式中、R1およびR2は、それぞれ独立して水素原子、ハロゲン原子、ニトロ基、アミノ基、カルボキシル基、水酸基、置換基を有していてもよい炭素数1~4のアルキル基、置換基を有していてもよい炭素数2~4のアルケニル基、炭素数1~4のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基または炭素数1~4のアルコキシカルボニル基を示す)
    で表わされるイミダゾリジノン化合物にアルミニウムハロゲン化物が溶解されてなり、式(I)で表わされるイミダゾリジノン化合物とアルミニウムハロゲン化物とのモル比〔イミダゾリジノン化合物/アルミニウムハロゲン化物〕が25/75~50/50であるアルミニウム二次電池用電解液。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000002

    (Wherein R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a carboxyl group, a hydroxyl group, an optionally substituted alkyl group having 1 to 4 carbon atoms, An optionally substituted alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 13 carbon atoms, or 1 to 4 carbon atoms Represents an alkoxycarbonyl group of
    An aluminum halide is dissolved in the imidazolidinone compound represented by formula (I), and the molar ratio of the imidazolidinone compound represented by formula (I) to the aluminum halide [imidazolidinone compound / aluminum halide] is 25/75. An electrolytic solution for an aluminum secondary battery that is 50/50.
PCT/JP2014/072793 2013-08-30 2014-08-29 Electrolytic solution WO2015030196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534343A JPWO2015030196A1 (en) 2013-08-30 2014-08-29 Electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179372 2013-08-30
JP2013179372 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030196A1 true WO2015030196A1 (en) 2015-03-05

Family

ID=52586742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072793 WO2015030196A1 (en) 2013-08-30 2014-08-29 Electrolytic solution

Country Status (2)

Country Link
JP (1) JPWO2015030196A1 (en)
WO (1) WO2015030196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168755A1 (en) * 2021-02-04 2022-08-11 セントラル硝子株式会社 Nonaqueous electrolyte solution, nonaqueous electrolyte battery, and compound
WO2023287242A1 (en) * 2021-07-16 2023-01-19 주식회사 엘지에너지솔루션 Nonaqueous electrolyte solution and lithium secondary battery comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014248A (en) * 2002-06-05 2004-01-15 Sony Corp Nonaqueous electrolytic solution battery and manufacturing method thereof
WO2007055172A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and secondary battery containing same
JP2009067644A (en) * 2007-09-14 2009-04-02 Kyoto Univ Molten salt composition and application of the same
JP2010257704A (en) * 2009-04-23 2010-11-11 Sony Corp Electrolyte and secondary battery
JP2012089410A (en) * 2010-10-21 2012-05-10 Sony Corp Electrolyte and secondary battery
JP2012233216A (en) * 2011-04-28 2012-11-29 Hitachi Metals Ltd Electric aluminum plating liquid and method for forming aluminum plating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014248A (en) * 2002-06-05 2004-01-15 Sony Corp Nonaqueous electrolytic solution battery and manufacturing method thereof
WO2007055172A1 (en) * 2005-11-10 2007-05-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution and secondary battery containing same
JP2009067644A (en) * 2007-09-14 2009-04-02 Kyoto Univ Molten salt composition and application of the same
JP2010257704A (en) * 2009-04-23 2010-11-11 Sony Corp Electrolyte and secondary battery
JP2012089410A (en) * 2010-10-21 2012-05-10 Sony Corp Electrolyte and secondary battery
JP2012233216A (en) * 2011-04-28 2012-11-29 Hitachi Metals Ltd Electric aluminum plating liquid and method for forming aluminum plating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168755A1 (en) * 2021-02-04 2022-08-11 セントラル硝子株式会社 Nonaqueous electrolyte solution, nonaqueous electrolyte battery, and compound
WO2023287242A1 (en) * 2021-07-16 2023-01-19 주식회사 엘지에너지솔루션 Nonaqueous electrolyte solution and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JPWO2015030196A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Tsuda et al. Electrochemical surface finishing and energy storage technology with room-temperature haloaluminate ionic liquids and mixtures
JP5979117B2 (en) Aluminum foil manufacturing method and aluminum foil
Bobrova et al. Effects of temperature and water content on physicochemical properties of ionic liquids containing CrCl3· xH2O and choline chloride
Deng et al. Electrochemistry of Zn (II)/Zn on Mg alloy from the N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid
Lin et al. Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: mechanism studies of dendrite suppression and corrosion inhibition
US9692084B2 (en) Electrolyte for magnesium cell and magnesium cell containing the electrolyte
Li et al. Electrodeposition of aluminum from AlCl3/acetamide eutectic solvent
He et al. Electrochemical behavior of Co (II) reduction for preparing nanocrystalline Co catalyst for hydrogen evolution reaction from 1-ethyl-3-methylimidazolium bisulfate and ethylene glycol system
Kitada et al. AlCl3-dissolved diglyme as electrolyte for room-temperature aluminum electrodeposition
Katayama et al. Electrodeposition of lead from 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide ionic liquid
Liu et al. Electrodeposition of Pb from PbO in urea and 1-butyl-3-methylimidazolium chloride deep eutectic solutions
Li et al. Electrodeposition behavior of aluminum from urea-acetamide-lithium halide low-temperature molten salts
WO2007029663A1 (en) Method for electrodepositing metal
Basavanna et al. Study of the effect of new brightener on Zn–Ni alloy electrodeposition from acid sulphate bath
Saranya et al. Electrodeposition of Ni–Cu alloys from a protic ionic liquid medium-voltammetric and surface morphologic studies
JP4883534B2 (en) Molten salt bath, method for producing molten salt bath, and tungsten precipitate
Anicai et al. Electrodeposition of lead selenide films from ionic liquids based on choline chloride
WO2015030196A1 (en) Electrolytic solution
US20170121835A1 (en) Aluminum plating solution, method for manufacturing aluminum film, and porous aluminum object
Saravanan et al. Nucleation of copper on mild steel in copper chloride (CuCl 2· 2H 2 O)–1-ethyl-3-methylimidazolium chloride [EMIM] Cl–ethylene glycol (EG) ionic liquid
WO2017199564A1 (en) Aluminum alloy and aluminum alloy manufacturing method
JP6143005B2 (en) Aluminum plating solution and method for producing aluminum film
Wang et al. Electrochemical Study and Electrodeposition of Zn-Ni Alloys in an Imide-Type Hydrophobic Room-Temperature Ionic Liquid: Feasibility of Using Metal Chlorides as the Metal Sources
CN111108236A (en) Methods and compositions for electrochemical deposition of metal-rich layers in aqueous solutions
Andrew et al. Electrodeposition of Al-Mg Alloys from Acidic AlCl 3-EMIC-MgCl 2 room temperature ionic liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839512

Country of ref document: EP

Kind code of ref document: A1