WO2015029978A1 - 太陽光追尾装置 - Google Patents

太陽光追尾装置 Download PDF

Info

Publication number
WO2015029978A1
WO2015029978A1 PCT/JP2014/072248 JP2014072248W WO2015029978A1 WO 2015029978 A1 WO2015029978 A1 WO 2015029978A1 JP 2014072248 W JP2014072248 W JP 2014072248W WO 2015029978 A1 WO2015029978 A1 WO 2015029978A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
solar cell
solar
cell panel
tracking device
Prior art date
Application number
PCT/JP2014/072248
Other languages
English (en)
French (fr)
Inventor
廣田 淳
勇介 山口
忠 廣川
博一 田續
容平 雨宮
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2015029978A1 publication Critical patent/WO2015029978A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/50Arrangement of stationary mountings or supports for solar heat collector modules comprising elongate non-rigid elements, e.g. straps, wires or ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar light tracking device used for a solar power generation system or a solar thermal power generation system.
  • a solar power generation system directly converts solar energy into electricity using a solar cell panel.
  • fossil fuels such as oil and coal are depleted
  • the use of inexhaustible energy such as sunlight is utilized, and the use of solar power generation systems is expected to increase year after year.
  • a solar thermal power generation system condenses sunlight with a condensing panel such as a lens or a reflecting mirror and uses it as a heat source for steam power generation or a Stirling engine.
  • solar power generation is expected to increase year by year because solar power is an energy source.
  • a solar light tracking device in which a light receiving surface of a solar cell panel is tilted about two axes in accordance with the altitude and azimuth angle of the sun so that the light receiving surface of the solar cell panel is perpendicular to sunlight. This is because the power generation efficiency is highest when the light receiving surface of the solar cell panel is perpendicular to sunlight.
  • this solar tracking device turns the solar panel's light-receiving surface toward the east according to the sun rising from the east, and at noon the solar panel's light-receiving surface faces the south in the evening.
  • the light-receiving surface of the solar panel is turned to the west according to the sun setting in the west.
  • the solar panel is tilted according to the altitude of the sun.
  • the condensing panel is tracked by the sun instead of the solar cell panel.
  • Patent Document 1 discloses a solar cell panel in which the drive device has an elevation angle of 0 ° or less in the normal direction of the solar cell panel when the amount of power generation is lower than the amount of sunlight.
  • An invention has been proposed in which sand is removed from the light receiving surface of a solar cell panel.
  • the present invention provides a tracking device that can increase the negative elevation angle of a panel that receives or collects sunlight, and can efficiently remove dust accumulated on the light receiving or collecting surface of the panel. For the purpose.
  • the present invention is a solar light tracking device that tracks sunlight, a column, a panel that is supported by the column and receives or collects sunlight, and the altitude and direction of the sun.
  • a driving device that drives the panel so as to track at least one of the corners, and the panel is a solar light tracking device having an opening through which the column can pass.
  • the panel when the light-receiving surface or the light-collecting surface of the panel faces the ground, the panel has an opening through which the column can pass, so that the negative elevation angle of the panel can be increased, and the light-receiving surface of the panel The dust accumulated on the surface or the light collecting surface can be efficiently dropped.
  • FIG. 1 is a perspective view of a solar light tracking device according to a first embodiment of the present invention (showing a state in which a light receiving surface of a solar cell panel faces upward). It is a perspective view of the solar light tracking apparatus of 2nd embodiment of this invention (The state which has arrange
  • FIG. 7 is a perspective view of a solar light tracking device according to a fourth embodiment of the present invention (showing a state in which a light receiving surface of a solar cell panel is opposed to the ground, FIG. 7 (a) is a bottom perspective view, and FIG. (B) shows a top perspective view). It is a perspective view of the sunlight tracking apparatus of 5th embodiment of this invention (The state which has arrange
  • FIG. 1 to 3 show a solar light tracking device according to a first embodiment of the present invention.
  • the solar light tracking device of this embodiment is used for a solar power generation system.
  • FIG. 1 shows a state in which a solar cell panel 1 as a panel is arranged in a vertical plane.
  • FIG. 2 shows a state where the light receiving surface of the solar cell panel 1 faces the ground.
  • FIG. 3 shows a state in which the light receiving surface of the solar cell panel 1 faces upward.
  • the solar light tracking device of the present embodiment includes a support 2, a solar cell panel 1 supported by the support 2, and a drive device 4 that drives the solar cell panel 1.
  • the support column 2 is fixed to the foundation constructed on the ground, and stands upright from the ground.
  • the support column 2 includes a base 2a fixed to the foundation of the ground, and a support main body 2b coupled to the base 2a.
  • pillars 2 of this embodiment is one.
  • a driving device 4 is provided at the upper end of the column 2.
  • the drive device 4 includes a turning shaft (not shown) that faces the vertical direction, and an inclined shaft 5 that is orthogonal to the turning shaft and faces the horizontal direction.
  • the turning shaft is rotationally driven around a vertical line v by a speed reduction mechanism such as a motor or a worm gear.
  • a speed reduction mechanism such as a motor or a worm gear.
  • the inclined shaft 5 orthogonal to the turning axis turns around the vertical line v. Since the solar cell panel 1 is coupled to the tilt shaft 5, the solar cell panel 1 turns around the vertical line v together with the tilt shaft 5.
  • the tilt shaft 5 is rotationally driven around a horizontal line h by a speed reduction mechanism such as a motor or a worm gear.
  • the solar cell panel 1 When the tilt shaft 5 is rotationally driven, the solar cell panel 1 is tilted around the horizontal line h, and the tilt angle of the solar cell panel 1 is adjusted.
  • the solar cell panel 1 As shown in FIG. 3, the solar cell panel 1 is in a state in which the light receiving surface faces upward and the solar cell panel 1 is parallel to the ground (the elevation angle of the normal line of the solar cell panel 1 is + 90 °). Then, as shown in FIG. 2, the light receiving surface faces the ground and the solar cell panel 1 rotates in a state parallel to the ground (the elevation angle of the normal line of the solar cell panel 1 is ⁇ 90 °).
  • the driving device 4 controls the solar cell panel 1 so that the normal direction of the solar cell panel 1 coincides with the azimuth angle and altitude of the sun.
  • the azimuth angle of the sun is a horizontal direction sign when the sun is viewed from a point on the ground where the solar light tracking device is installed, and is represented by an angle from the standard direction.
  • the altitude of the sun is an angle obtained by measuring the direction of the sun from a reference horizontal plane.
  • the drive device 4 incorporates a control device that controls a motor that drives the turning shaft and a motor that drives the tilt shaft 5.
  • a program for tracking the solar cell panel 1 is recorded in the control device.
  • the solar cell panel 1 is supported on the upper end portion of the support 2 via the drive device 4.
  • the solar cell panel 1 includes a pair of first solar cell panels 1a and 1b arranged in the same plane.
  • a solar cell is an energy converter that absorbs solar light energy and converts it directly into electricity.
  • a solar cell element that is a basic unit of a solar cell is called a cell.
  • a module in which a required number of cells are arranged, protected with resin or tempered glass, and packaged is called a module.
  • the pair of first solar cell panels 1a and 1b is formed by arranging a plurality of modules.
  • the kind of solar cell is not specifically limited, For example, the concentrating solar cell which condenses using a lens and irradiates a cell can be used.
  • a pair of first solar cell panels 1 a and 1 b are provided on the left and right sides of the support column 2. Between the pair of first solar cell panels 1a and 1b, an opening 3 through which the support column 2 can pass is provided. The lateral width of the opening 3 is wider than the lateral width of the support 2 and the driving device 4 provided at the upper end of the support 2.
  • a synchronization frame 6 is connected between the pair of first solar cell panels 1a and 1b. As shown in FIG. 1, in a state where the pair of first solar cell panels 1a and 1b are arranged in the vertical plane, the tilt axis 5 of the drive device 4 is in the vertical direction of the pair of first solar cell panels 1a and 1b.
  • the synchronizing frame 6 provided above the support 2 and the driving device 4 is coupled to the upper ends of the pair of first solar cell panels 1a and 1b.
  • the first solar cell panels 1a and 1b are formed in a quadrangular shape and are provided with quadrangular frame-like frames 7a and 7b on the back surface thereof.
  • brackets 8 are provided at the four corners of the frames 7 a and 7 b, and the panel bodies of the pair of first solar battery panels 1 a and 1 b are attached to the brackets 8.
  • the operation of the solar light tracking device is as follows.
  • the solar light tracking device turns the solar cell panel 1 around the turning axis in accordance with the azimuth angle of the sun, and inclines the solar cell panel 1 around the inclination axis 5 in accordance with the altitude of the sun.
  • the tracking control of the solar cell panel 1 is performed by the driving device 4.
  • the driving device 4 when a strong wind of a predetermined wind speed or more blows during the daytime, the driving device 4 has the light receiving surface of the solar cell panel 1 facing upward and the solar cell panel in order to retract the solar cell panel 1 from the strong wind.
  • the solar cell panel 1 is rotated around the tilt axis 5 until 1 is parallel to the ground.
  • the reason why the solar cell panel is directed upward at daytime is that the rotation angle of the solar cell panel 1 until the solar cell panel 1 becomes parallel is small.
  • the elevation angle in the normal direction of the solar cell panel 1 at this time is + 90 °.
  • the driving device 4 rotates the solar cell panel 1 around the tilt axis 5 so that the light receiving surface faces the ground. Further, the driving device 4 rotates around the turning axis so that the normal direction of the solar cell panel 1 faces the south direction.
  • the position of the solar cell panel 1 at this time is the initial position.
  • the support column 2 passes through the opening 3 between the pair of first solar cell panels 1a and 1b.
  • pillar 2 can pass is provided between a pair of 1st solar cell panel 1a, 1b, and the support
  • the solar cell panel 1 By returning the solar cell panel 1 to the initial position at night, dust accumulated on the light receiving surface can be removed while securing the amount of power generation during the daytime. In addition, it is possible to prevent dust that has been swept in the wind at night from accumulating on the light receiving surface.
  • the dust accumulated on the light receiving surface at night is easy to get wet and adhere to the night dew at night, but it is possible to prevent the dust from sticking at night by preventing the accumulation of dust at night.
  • the solar light tracking device can be evacuated from strong winds at night.
  • the pair of first solar cell panels 1a and 1b can be inclined in synchronization.
  • the pair of first solar cell panels 1a and 1b can be supported in a well-balanced manner by coupling the driving device 4 to the vertical center of the pair of first solar cell panels 1a and 1b.
  • the self-weight moments of the first solar cell panels 1a and 1b can be canceled as much as possible.
  • the solar cell panel 1 can be provided with a cleaning function such as a wiper for cleaning the light receiving surface. As shown in FIG. 2, the dust removal efficiency of the light receiving surface is improved by cleaning the solar cell panel 1 with the light receiving surface facing downward. Further, only when the normal direction of the solar cell panel 1 is directed toward the south, the support column 2 can pass through the opening 3 of the pair of first solar cell panels 1a and 1b.
  • FIG. 4 shows a solar light tracking device according to the second embodiment of the present invention.
  • the point of providing the second solar cell panel 1c that receives sunlight and generates power between the pair of first solar cell panels 1a and 1b is the first embodiment.
  • the pair of first solar cell panels 1a and 1b and the second solar cell panel 1c are arranged in the same plane.
  • the second solar cell panel 1c is disposed between the pair of first solar cell panels 1a and 1b, and the support column 2 and the driving device 4. Is disposed above. Since the other configuration is the same as that of the solar light tracking device of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the power generation amount can be increased.
  • FIG. 5 shows a solar light tracking device according to a third embodiment of the present invention.
  • the solar tracking device of the third embodiment is different from the solar tracking device of the first embodiment in that the synchronization frame 6 is not connected between the pair of first solar cell panels 1a and 1b. Since the other configuration is the same as that of the solar light tracking device of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the solar light tracking device of the third embodiment it is possible to avoid the support column while the pair of first solar cell panels 1a and 1b rotate 360 degrees around the tilt axis 5. For this reason, various control of a pair of 1st solar cell panel 1a, 1b is attained.
  • FIG. 6 and 7 show a solar light tracking device according to a fourth embodiment of the present invention.
  • FIG. 6 shows a state in which the solar cell panel 11 is arranged in a vertical plane
  • FIG. 7 shows a state in which the light receiving surface of the solar cell panel 11 faces the ground.
  • the solar light tracking device of the fourth embodiment includes a support column 2, a solar cell panel 11 supported by the support column 2, and a drive device 4 (see FIG. 7B) for driving the solar cell panel 11. Since the structure of the support
  • the solar cell panel 11 in the state where the solar cell panel 11 is arranged in the vertical plane, the solar cell panel 11 has its vertical direction at the center in the width direction.
  • a notch 13 (see FIG. 7A) extending from the center to the lower end is formed.
  • the solar cell panel 11 is provided on both the left and right sides and above the notch 13.
  • the notch portion 13 is provided with a sub solar cell panel 15 (shown by hatching in the figure) that fits into the notch portion 13 and is rotatably connected to the solar cell panel 11 via a hinge 14. .
  • the sub solar cell panel 15 receives sunlight and generates power in the same manner as the solar cell panel 11.
  • the sub solar cell panel 15 arranged in the same plane as the solar cell panel 11 hits the support column.
  • the position of the sub solar cell panel 15 remains the same, and only the solar cell panel 11 is rotated downward. This is because the sub solar cell panel 15 remains in contact with the support 2.
  • the column 2 passes through the opening formed by the notch 13 of the solar cell panel 11.
  • the driving device 4 drives the solar cell panel 11 so that the light receiving surface of the solar cell panel 11 faces the ground and the normal direction faces the south direction at night. .
  • the notch portion 13 is provided in the solar cell panel 11, and the support column 2 passes through the opening formed by the notch portion 13 to receive light of the solar cell panel 11. Since the surface faces the ground, the negative elevation angle of the solar cell panel 11 can be increased, and dust accumulated on the light receiving surface of the solar cell panel 11 can be efficiently dropped. Moreover, the amount of power generation can be increased by providing the sub solar cell panel 15 in the notch 13.
  • 8 to 10 show a solar light tracking device according to a fifth embodiment of the present invention.
  • 8 and 9 show a state in which the solar cell panel 21 is disposed in a vertical plane
  • FIG. 10 shows a state in which the light receiving surface of the solar cell panel 21 faces downward.
  • the solar light tracking device of this embodiment also includes a support column 22, a solar cell panel 21 supported by the support column 22, and a driving device 24 that drives the solar cell panel 21.
  • the solar cell panel 21 includes a pair of first solar cell panels 21 a and 21 b disposed on the left and right sides of the column 22. Unlike the first solar cell panels 1a and 1b of the first embodiment, the first solar cell panels 21a and 21b are stepped panels.
  • the support column 22 is fixed to the foundation constructed on the ground and stands up vertically from the ground.
  • a driving device 24 is provided at the upper end of the column 22.
  • the drive device 24 includes a turning shaft (not shown) that faces in the vertical direction, and an inclined shaft 25 (see FIG. 9) that is orthogonal to the turning shaft and faces in the horizontal direction.
  • the turning shaft is driven to rotate, the tilt axis 25 orthogonal to the turn axis turns around the vertical line v, and the solar cell panel 21 turns around the vertical line v together with the tilt axis 25.
  • the tilt shaft 25 is rotationally driven, the solar cell panel 21 rotates around the horizontal line h.
  • the solar cell panel 21 has a light-receiving surface as shown in FIG.
  • the driving device 24 controls the solar cell panel 21 so that the normal direction of the solar cell panel 21 coincides with the azimuth angle and altitude of the sun.
  • the drive device 24 incorporates a motor that drives the turning shaft and a control device that controls the motor that drives the tilt shaft 25.
  • the solar cell panel 21 includes a pair of first solar cell panels 21 a and 21 b arranged on the left and right sides of the support column 22. Between the pair of first solar cell panels 21a and 21b, an opening 23 through which the column 22 can pass is provided.
  • Each of the first solar panels 21a and 21b includes a front panel 21-2 having a center of gravity W1 on the front side of the tilt axis 25, and a rear panel 21-1, 21-3 having a center of gravity W2 on the rear side of the tilt axis 25. (See FIG. 9).
  • the rear side panels 21-1 and 21-3 are arranged on the upper and lower stages of the first solar cell panels 21a and 21b. In this embodiment, the rear panels 21-1 and 21-3 are composed of a total of four modules.
  • the front panel 21-2 is arranged in the middle of the first solar cell panels 21a and 21b, and in this embodiment, is constituted by a total of two modules.
  • the front side and the rear side mean that the first solar cell panels 21a and 21b are arranged in a vertical plane and the light receiving surfaces of the first solar cell panels 21a and 21b face the front.
  • the solar cell panels 21a and 21b are front and rear sides when viewed from the front.
  • the rear panels 21-1, 21-3 include a rear panel body 27 and a planar frame 28 that supports the rear panel body 27, so that the rear panel
  • the center of gravity W2 of 21-1, 21-3 is the center of gravity of the rear panel body 27 and the planar frame 28 combined.
  • the front panel 21-2 includes a front panel body 29 and a three-dimensional frame 30 that supports the front panel body 29. Therefore, the center of gravity W1 of the front panel 21-2 is equal to the front panel body 29 and the three-dimensional frame. This is the center of gravity of the combined frame 30.
  • the planar frame 28 and the three-dimensional frame 30 will be described later.
  • the solar light tracking device of the present embodiment since the wind passes through the opening 23 between the pair of first solar cell panels 21a and 21b on the left and right sides of the support column 22, the moment due to the wind can be reduced. Therefore, the entire solar tracking device can be made compact. Moreover, since a pair of 1st solar cell panel 21a, 21b is arrange
  • the panel arrangement can be made such that the self-weight moments of the first solar cell panels 21a and 21b are balanced, and the drive device 24 can be made compact.
  • the rear side panels 21-1, 21-3 are arranged at the upper and lower stages of the first solar cell panels 21a, 21b, and the front panel 21-2 is an intermediate stage of the first solar cell panels 21a, 21b. Therefore, the self-weight moments of the front panel 21-2 and the rear panels 21-1, 21-3 are balanced over the entire length of the inclined shaft 25 in the axial direction. Note that the self-weight moments of the front panel 21-2 and the rear panels 21-1, 21-3 may be reduced even if they are not completely offset.
  • FIG. 11 shows a perspective view of the frame 31 of the solar light tracking device.
  • FIG. 11 shows a state in which the rear panel body 27 (see FIG. 9) and the front panel body 29 (see FIG. 9) are removed.
  • a pair of frames 31 a and 31 b are attached to the inclined shaft 25 via a connecting bracket 32.
  • Each of the frames 31a and 31b includes a planar frame 28 that supports a rear panel body 27 (see FIG. 9) disposed in the upper and lower stages, and a front panel that is coupled to the planar frame 28 and disposed in the middle stage.
  • a three-dimensional frame 30 that supports a main body 29 (see FIG. 9).
  • the planar frame 28 is formed in a frame shape arranged in one plane.
  • a rectangular rear panel support portion 28 a that supports the upper rear panel body 27 is formed on the upper portion of the planar frame 28.
  • a rectangular rear panel support portion 28 b that supports the lower rear panel body 27 at the lower stage is formed at the lower portion of the planar frame 28.
  • the three-dimensional frame 30 is formed in a box shape.
  • the three-dimensional frame 30 includes a frame-shaped front panel support portion 30a arranged on a parallel plane spaced a predetermined distance from the plane on which the flat frame 28 is arranged, and the four corners and the plane of the front panel support portion 30a. And four pillar portions 30b for joining the typical frame 28 to each other.
  • a reinforcing beam 33 is coupled to the frame-shaped front panel support portion 30a.
  • the reinforcing beam 34 is also coupled to a portion where the column portion 30b of the planar frame 28 is coupled.
  • the frame 31 is configured by the planar frame 28 and the three-dimensional frame 30, whereby the rigidity of the frame 31 can be increased. Accordingly, the tracking performance can be improved.
  • the operation of the solar light tracking device of the fifth embodiment of the present invention is the same as the operation of the solar light tracking device of the first embodiment. That is, the solar light tracking device turns the solar cell panel 21 around the turning axis in accordance with the azimuth angle of the sun, and inclines the solar cell panel 21 around the inclination axis 25 in accordance with the altitude of the sun.
  • the driving device 24 has the light receiving surface of the solar cell panel 21 facing upward and the solar cell panel 21 parallel to the ground in order to retract the solar cell panel 21 from the strong wind. Until the solar cell panel 21 is rotated about the tilt axis 25.
  • the driving device 24 rotates the solar cell panel 21 around the inclined axis 25 so that the light receiving surface faces the ground. Further, the driving device 24 rotates around the turning axis so that the normal direction of the solar cell panel 21 faces the south direction.
  • FIG. 12 and 13 show an example in which the deflection correcting structures 40a to 40d are added to the frame 31b of the solar light tracking device according to the fifth embodiment of the present invention.
  • 12 shows a perspective view of the frame 31b
  • FIG. 13 shows a side view of the frame 31b.
  • FIG. 12 shows an example in which the deflection correcting structures 40a to 40d are added to one of the pair of frames 31a and 31b of FIG. 11, but the deflection correcting structures 40a to 40d are also added to the frame 31a.
  • a total of four deflection correction structures 40a to 40d are provided so that the positions of the four corners of the planar frame 28 can be adjusted.
  • Each deflection correcting structure 40a to 40d includes a pair of first and second tension applying members 41a to 41d and 42a to 42d.
  • the frame 31b includes a planar frame 28 that supports the rear panels 21-1, 21-3 (see FIG. 8) disposed in the upper and lower stages, and a front panel disposed in the middle. And a box-shaped three-dimensional frame 30 supporting 21-2 (see FIG. 8).
  • the planar frame 28 has square rear panel support portions 28a and 28b to which upper and lower rear panels 21-1 and 21-3 (see FIG. 8) are attached.
  • the three-dimensional frame 30 has a frame-shaped front panel support portion 30a to which a middle front panel 21-2 (see FIG. 8) is attached.
  • There is a step between the panel mounting surface P1 (see FIG. 13) of the planar frame 28 and the panel mounting surface P2 (see FIG. 13) of the three-dimensional frame 30. 12 and 13 also show module frames 36a to 36c attached to the panel attachment surfaces P1 and P2.
  • a module main body composed of a plurality of cells is placed on the frames 36a to 36c.
  • the deflection correcting structures 40a to 40d include string-like or rod-like first tension applying members 41a to 41d whose both ends are connected to the frame 31b, and first tension applying members 41a to 41d.
  • first tension applying members 41a to 41d are arranged on one side S1 of the two spaces S1 and S2 defined by the panel mounting surface P1 of the planar frame 28.
  • the second tension applying members 42a to 42d are disposed on the other side S2 of the two spaces S1 and S2 defined by the panel mounting surface P1 of the planar frame 28.
  • the first tension applying members 41a to 41d pull the planar frame 28 so that the panel mounting surface P1 of the planar frame 28 is displaced to the one side S1.
  • the second tension applying members 42a to 42d pull the planar frame 28 so that the panel mounting surface P1 of the planar frame 28 is displaced to the other side S2.
  • the detailed structure of the deflection correcting structures 40a to 40d is as follows.
  • the first tension applying members 41 a to 41 d are bridged between the support column 37 coupled to the three-dimensional frame 30 and the front end portion of the planar frame 28. By bridging the first tension applying members 41a to 41d between the two 30 and 28, the position of the front end portion of the planar frame 28 can be adjusted.
  • the first tension applying members 41a to 41d are arranged on the outer side of the solar cell panel so as not to shadow the daylighting surface of the solar cell panel.
  • the first tension applying members 41a to 41d include a turnbuckle 43 as a tension adjusting mechanism so that the tension can be adjusted.
  • the first tension applying members 41 a to 41 d are supported by the bracket 45 rotatably connected to the support column 37 via the support shaft 44, the screw shaft 46 coupled to the bracket 45, and the planar frame 28.
  • a bracket 48 rotatably connected via a shaft 49, a screw shaft 47 coupled to the bracket 48, and a turnbuckle 43 screwed to the screw shaft 46 and the screw shaft 47 are provided.
  • One of the screw shafts 46 and 47 is a right-hand thread, and the other is a left-hand thread.
  • the second tension applying members 42a to 42d are bridged between the three-dimensional frame 30 and the front end portion of the planar frame 28.
  • the second tension applying members 42a to 42d are also arranged on the outside of the solar cell panel so as not to shadow the daylighting surface of the solar cell panel. Since the three-dimensional frame 30 is formed in a box shape, the rigidity is higher than that of the planar frame 28. By bridging the second tension applying members 42a to 42d between the two 30 and 28, the position of the front end portion of the planar frame 28 can be adjusted.
  • the second tension applying members 42a to 42d also include a turnbuckle 51 as a tension adjusting mechanism so that the tension can be adjusted.
  • the second tension applying members 42a to 42d include a bracket 53 that is rotatably connected to the three-dimensional frame 30 via a support shaft 52, a screw shaft 54 that is coupled to the bracket 53, and a planar frame. 28, a bracket 56 that is rotatably connected to the tip of the support shaft 57 via a support shaft 57, a screw shaft 55 that is coupled to the bracket 56, and a turnbuckle 51 that is screwed to the screw shaft 55.
  • One of the screw shafts 54 and 55 is a right-hand thread, and the other is a left-hand thread.
  • FIG. 12 shows an example in which the second tension applying members 42a to 42d are connected to the front end side of the frame 28 which is planar than the first tension applying members 41a to 41d. This is because the lengths of the first tension applying members 41a to 41d and the second tension applying members 42a to 42d are equalized.
  • the first tension applying members 41a to 41d are made longer than the second tension applying members 42a to 42d, and the first tension applying members 41a to 41d and the second tension applying members 42a to 42d are planar frames 28. It can also be connected to the same position of the tip of the.
  • the planar frame 28 has upper and lower rear panel support portions 28a and 28b.
  • third and fourth tension applying members 61 and 62 indicated by two-dot chain lines in FIG. it can.
  • the third tension applying member 61 is bridged between the three-dimensional frame 30 and the base end portion of the planar frame 28, and reinforces the frame 31b like a brace.
  • the fourth tension applying member 62 is bridged between the support column 37 coupled to the three-dimensional frame 30 and the base end portion of the planar frame 28, and reinforces the frame 31b like a brace. As shown in FIG.
  • the solar cell panel has the characteristic that the power generation efficiency decreases unless the light receiving surface is perpendicular to the sunlight.
  • a squareness with high accuracy of the light receiving surface and sunlight is required. Even if the sunlight is accurately tracked by the drive device 24 (see FIG. 8), if the frame 31b itself is bent or distorted, the squareness cannot be maintained. Even if the number of beams is larger than the design value considering the wind load and the weight of the solar battery panel and the column is thickened, the deflection and distortion of the frame 31b cannot be completely suppressed. When the frame 31b is long or when the frame 31b is plated, the deflection and distortion become larger.
  • the first and second tension applying members 41a to 41d and 42a to 42d are arranged on both sides of the panel mounting surface P1 of the planar frame 28, so that the plane is flat. It is possible to correct the deflection and distortion of the typical frame 28 and improve the flatness of the panel mounting surface P1 of the planar frame 28. Further, since the first and second tension applying members 41a to 41d and 42a to 42d can also have a role of reinforcing the frame 31b, when a force such as wind load is applied to the frame 31b, or to the frame 31b. Even when a heavy solar battery panel is placed, the frame 31b can be prevented from being bent.
  • a biaxial type solar tracking device that tracks the solar cell panel in both the azimuth angle and altitude of the sun is used, but the solar cell panel is only in one of the azimuth angle and altitude of the sun.
  • a single-axis type solar tracking device for tracking can also be used.
  • the turning axis of the driving device is parallel to the vertical line, but the turning axis of the driving device can be parallel to the ground axis.
  • the turning shaft and the tilt shaft of the drive device are rotationally driven by a speed reduction mechanism such as a motor or a worm gear, but can be rotationally driven by a link, cylinder, telescopic actuator, or the like.
  • one driving device is provided for one solar tracking device, but a single driving device may be provided for a plurality of solar tracking devices so that the driving devices can be shared.
  • the support column is fixed to the foundation of the ground, but the support column can also be fixed on a turnable pedestal.
  • the elevation angle of the normal line of the solar panel at the initial position at night is set to ⁇ 90 °, but it can be shifted from ⁇ 90 ° if dust can be dropped.
  • the light receiving surface of the solar cell panel is opposed to the ground at night, but the light receiving surface of the solar cell panel can be opposed to the ground at daytime.
  • the solar light tracking device is applied to the solar power generation system, but can also be applied to the solar thermal power generation system.
  • a condensing panel composed of a lens or a reflecting mirror is used instead of the solar cell panel.
  • the deflection correcting structures 40a to 40d of the fifth embodiment of the present invention include a panel mounting surface P1 of the planar frame 28 and a panel mounting surface P2 of the three-dimensional frame 30.
  • the present invention can also be applied to a frame in which all panel mounting surfaces P1 and P2 are arranged in the same plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽光を受光又は集光するパネルの負の仰角を大きくすることができ、パネルの受光面又は集光面に堆積した砂埃を効率的に落とすことができる追尾装置を提供する。 太陽光追尾装置は、支柱2と、支柱2に支持され、太陽光を受光又は集光するパネル1と、太陽の高度及び方位角の少なくとも一方に追尾するようにパネル1を駆動する駆動装置4と、を備える。パネル1は、支柱2を通過可能な開口部3を有する。パネル1が地面に対向する際、支柱2が開口部3を通過する。

Description

太陽光追尾装置
 本発明は、太陽光発電システム又は太陽熱発電システムに用いられる太陽光追尾装置に関する。
 太陽光発電システムは、太陽電池パネルを用いて太陽のエネルギを直接電気に変換する。石油又は石炭などの化石燃料の枯渇化が進むなか、太陽の光という無尽蔵のエネルギを活用し、しかもクリーンであることから、太陽光発電システムの導入量の増加が年々期待されている。一方、太陽熱発電システムは、太陽光をレンズ、反射鏡等の集光パネルで集光して汽力発電又はスターリングエンジンの熱源として利用する。太陽光発電システムと同様に太陽光がエネルギ源のため太陽熱発電システムも導入量の増加が年々期待されている。
 太陽は東から西へ高度及び方位角を変化させながら移動する。太陽電池パネルの受光面が太陽光に対して直角になるように、太陽電池パネルの受光面を太陽の高度及び方位角に合わせて二軸の回りを傾ける太陽光追尾装置が知られている。太陽電池パネルの受光面が太陽光に対して直角な場合が最も発電効率が高いからである。この太陽光追尾装置は、朝になると東から昇る太陽に合わせて太陽電池パネルの受光面を東に向け、昼になると南にある太陽に合わせて太陽電池パネルの受光面を南に向け、夕方になると西に沈む太陽に合わせて太陽電池パネルの受光面を西に向ける。それと同時に太陽の高度に合わせて太陽電池パネルを傾斜させる。一方、太陽熱発電システムでは、太陽に太陽電池パネルの替わりに集光パネルを追尾させる。
 ところで、太陽光発電システムを日照量の多い砂漠地帯に導入すれば大きな発電量を得ることができる。しかし、太陽光発電システムを砂漠地帯に導入すると、砂埃が風で舞って太陽電池パネルの受光面に堆積し、発電量が低下してしまう。このため、受光面に堆積する砂埃のクリーニングが重要な課題になっている。太陽光発電システムは、土砂や粉末等が飛び散る屋外で使用されるので、砂漠地帯以外に設置される太陽光発電システムにも同様な課題がある。
 この課題を解決するために、特許文献1には、日照量に比較して発電量が低下した場合、駆動装置が太陽電池パネルの法線方向の仰角が0度以下になるように太陽電池パネルを傾け、太陽電池パネルの受光面から砂埃を落とす発明が提案されている。
特開2008-21683号公報
 しかし、特許文献1に記載の太陽光追尾装置にあっては、太陽電池パネルが支柱の上端部に回転可能に設けられているので、傾けられる太陽電池パネルの負の仰角に制限があるという問題がある。太陽電池パネルが支柱に当たってしまうからである。特許文献1に記載の太陽光追尾装置にあっては、太陽電池パネルの負の仰角を-15度ぐらいまでしかとることができず、砂埃を効率的に落とすことができない。
 そこで本発明は、太陽光を受光又は集光するパネルの負の仰角を大きくすることができ、パネルの受光面又は集光面に堆積した砂埃を効率的に落とすことができる追尾装置を提供することを目的とする。
 上記課題を解決するために、本発明は、太陽光を追尾する太陽光追尾装置であって、支柱と、前記支柱に支持され、太陽光を受光又は集光するパネルと、太陽の高度及び方位角の少なくとも一方に追尾するように、前記パネルを駆動する駆動装置と、を備え、前記パネルは、前記支柱を通過可能な開口部を有する太陽光追尾装置である。
 本発明によれば、パネルの受光面又は集光面が地面に対向する際に、パネルは支柱を通過可能な開口部を有するので、パネルの負の仰角を大きくすることができ、パネルの受光面又は集光面に堆積した砂埃を効率的に落とすことができる。
本発明の第一の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを垂直面内に配置した状態を示す)。 本発明の第一の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを地面に対向させた状態を示す)。 本発明の第一の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルの受光面を上に向けた状態を示す)。 本発明の第二の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを垂直面内に配置した状態を示す)。 本発明の第三の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを垂直面内に配置した状態を示す)。 本発明の第四の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを垂直面内に配置した状態を示す)。 本発明の第四の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルの受光面を地面に対向させた状態を示し、図7(a)は下面側斜視図を示し、図7(b)は上面側斜視図を示す)。 本発明の第五の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを垂直面内に配置した状態を示す)。 本発明の第五の実施形態の太陽光追尾装置の側面図である(太陽電池パネルを垂直面内に配置した状態を示す)。 本発明の第五の実施形態の太陽光追尾装置の斜視図である(太陽電池パネルを地面に対向させた状態を示す)。 本発明の第五の実施形態の太陽光追尾装置のフレームの斜視図である。 本発明の第五の実施形態の太陽光追尾装置のフレームにたわみ矯正構造を付加した例の斜視図である。 図12の太陽光追尾装置のフレームの側面図である。
 以下添付図面に基づいて、本発明の太陽光追尾装置の実施形態を詳細に説明する。図1ないし図3は、本発明の第一の実施形態の太陽光追尾装置を示す。本実施形態の太陽光追尾装置は太陽光発電システムに用いられる。
 図1はパネルとしての太陽電池パネル1を垂直面内に配置した状態を示す。図2は太陽電池パネル1の受光面が地面に対向する状態を示す。図3は太陽電池パネル1の受光面が上を向いた状態を示す。
 本実施形態の太陽光追尾装置は、支柱2、支柱2に支持される太陽電池パネル1及び太陽電池パネル1を駆動させる駆動装置4を備える。
 支柱2は、地面に構築される基礎に固定され、地面から垂直方向に立ち上がる。支柱2は、地面の基礎に固定される基盤2aと、基盤2aに結合される支柱本体2bと、を備える。この実施形態の支柱2の数は一本である。
 支柱2の上端部には駆動装置4が設けられる。駆動装置4は、垂直方向を向く旋回軸(図示せず)と、旋回軸に直交し、水平方向を向く傾斜軸5を備える。旋回軸は、モータ、ウォームギヤ等の減速機構によって垂直線vの回りを回転駆動する。旋回軸を回転駆動すると、旋回軸に直交する傾斜軸5が垂直線vの回りを旋回するようになっている。傾斜軸5には太陽電池パネル1が結合されるので、傾斜軸5と一緒に太陽電池パネル1が垂直線vの回りを旋回する。傾斜軸5はモータ、ウォームギヤ等の減速機構によって水平線hの回りを回転駆動される。傾斜軸5を回転駆動すると、太陽電池パネル1が水平線hの回りを傾斜し、太陽電池パネル1の傾斜角度が調整される。この実施形態では、太陽電池パネル1は、図3に示すように受光面が上を向きかつ太陽電池パネル1が地面に平行な状態(太陽電池パネル1の法線の仰角が+90°の状態)から、図2に示すように、受光面が地面に対向し、かつ太陽電池パネル1が地面に平行な状態(太陽電池パネル1の法線の仰角が-90°の状態)まで回転する。
 駆動装置4は、太陽の方位角及び高度に太陽電池パネル1の法線方向が一致するように、太陽電池パネル1を制御する。太陽の方位角は、太陽光追尾装置が設置される地上の点から太陽を見たときの水平方向標示であり、標準方向からの角度で表される。太陽の高度は、基準となる水平面から太陽の方向を測定した角度である。駆動装置4には、旋回軸を駆動させるモータ及び傾斜軸5を駆動させるモータを制御する制御装置が組み込まれる。制御装置には太陽電池パネル1を追尾させるためのプログラムが記録されている。
 太陽電池パネル1は支柱2の上端部に駆動装置4を介して支持される。太陽電池パネル1は、同一平面内に配置される一対の第一の太陽電池パネル1a,1bを備える。太陽電池は、太陽の光エネルギを吸収して直接電気に変えるエネルギ変換器である。太陽電池の基本単位である太陽電池素子はセルと呼ばれる。セルを必要数配列して樹脂又は強化ガラスで保護し、パッケージ化したものはモジュールと呼ばれる。一対の第一の太陽電池パネル1a,1bは、モジュールを複数枚並べたものからなる。なお、太陽電池の種類は特に限定されるものではなく、例えばレンズを用いて集光してセルに照射する集光型太陽電池を用いることができる。
 支柱2の左右両側に一対の第一の太陽電池パネル1a,1bが設けられる。一対の第一の太陽電池パネル1a,1b間には、支柱2が通過可能な開口部3が設けられる。開口部3の横幅は支柱2及び支柱2の上端部に設けられる駆動装置4の横幅よりも広い。一対の第一の太陽電池パネル1a,1b間には同期フレーム6が連結される。図1に示すように、一対の第一の太陽電池パネル1a,1bを垂直面内に配置した状態において、駆動装置4の傾斜軸5が一対の第一の太陽電池パネル1a,1bの上下方向の中央部に結合され、支柱2及び駆動装置4の上方に設けられる同期フレーム6が一対の第一の太陽電池パネル1a,1bの上端部に結合される。第一の太陽電池パネル1a,1bは四角形に形成されていて、その背面に四角形の枠状のフレーム7a,7bを備える。図2に示すように、フレーム7a,7bの四隅にはブラケット8が設けられていて、このブラケット8に一対の第一の太陽電池パネル1a,1bのパネル本体が取り付けられる。
 本発明の第一の実施形態の太陽光追尾装置の動作は以下のとおりである。太陽光追尾装置は、太陽の方位角に合わせて太陽電池パネル1を旋回軸の回りを旋回させ、太陽の高度に合わせて太陽電池パネル1を傾斜軸5の回りを傾斜させる。この太陽電池パネル1の追尾制御は駆動装置4によって行われる。
 図3に示すように、昼間時に所定風速以上の強風が吹いたとき、太陽電池パネル1を強風から退避させるために、駆動装置4は太陽電池パネル1の受光面が上を向き且つ太陽電池パネル1が地面と平行になるまで、太陽電池パネル1を傾斜軸5の回りを回転させる。昼間時に太陽電池パネルを上に向けるのは、平行にするまでの太陽電池パネル1の回転角度が少なくて済むからである。このときの太陽電池パネル1の法線方向の仰角は+90°である。
 図2に示すように、夜間時には、駆動装置4は太陽電池パネル1を受光面が地面に対向するように傾斜軸5の回りを回転させる。また、駆動装置4は太陽電池パネル1の法線方向が南の方位を向くように旋回軸の周りを回転させる。このときの太陽電池パネル1の位置が初期位置である。太陽電池パネル1が初期位置に戻るとき、支柱2は一対の第一の太陽電池パネル1a,1b間の開口部3を通過する。
 本実施形態によれば、一対の第一の太陽電池パネル1a,1b間に支柱2が通過可能な開口部3を設け、支柱2が一対の第一の太陽電池パネル1a,1bの開口部3を通過して、一対の第一の太陽電池パネル1a,1bの受光面が地面に対向するので、一対の第一の太陽電池パネル1a,1bの負の仰角を大きくすることができ、一対の第一の太陽電池パネル1a,1bの受光面に堆積した砂埃を効率的に落とすことができる。
 夜間時に太陽電池パネル1を初期位置に戻すことで、昼間時の発電量を確保したまま、受光面に堆積した砂埃を除去することができる。また、夜間時に風で舞った砂埃が受光面に堆積するのを防止できる。夜間時に受光面に堆積した砂埃は夜間の夜露に濡れて固着し易いが、夜間時の砂埃の堆積を防止することで、夜間時の砂埃の固着を防止できる。さらに、夜間時の強風から太陽光追尾装置を退避させることができる。
 さらに、一対の第一の太陽電池パネル1a,1bを同期フレーム6で連結することで、一対の第一の太陽電池パネル1a,1bを同期して傾斜させることができる。
 さらに、駆動装置4を一対の第一の太陽電池パネル1a,1bの上下方向の中央部に結合することで、一対の第一の太陽電池パネル1a,1bをバランスよく支持することができ、一対の第一の太陽電池パネル1a,1bの自重モーメントを極力相殺することができる。
 なお、太陽電池パネル1に受光面を掃除するワイパ等の掃除機能を付けることもできる。図2に示すように、太陽電池パネル1の受光面が下を向いた状態で掃除することで、受光面の砂埃の除去効率が向上する。また、太陽電池パネル1の法線方向が南の方位を向いたときにだけ、支柱2が一対の第一の太陽電池パネル1a,1bの開口部3を通過できるようにすることもできる。
 図4は、本発明の第二の実施形態の太陽光追尾装置を示す。第二の実施形態の太陽光追尾装置では、一対の第一の太陽電池パネル1a,1b間に太陽光を受光して発電する第二の太陽電池パネル1cを設ける点が第一の実施形態の太陽光追尾装置と異なる。一対の第一の太陽電池パネル1a,1bと第二の太陽電池パネル1cとは同一平面内に配置される。一対の第一の太陽電池パネル1a,1bを垂直面内に配置した状態において、第二の太陽電池パネル1cは一対の第一の太陽電池パネル1a,1bの間に且つ支柱2及び駆動装置4の上方に配置される。その他の構成は第一の実施形態の太陽光追尾装置と同一なので、同一の符号を付してその説明を省略する。
 第二の実施形態の太陽光追尾装置によれば、一対の第一の太陽電池パネル1a,1bの間に第二の太陽電池パネル1cを設けるので、発電量を大きくすることができる。
 図5は、本発明の第三の実施形態の太陽光追尾装置を示す。第三の実施形態の太陽光追尾装置では、一対の第一の太陽電池パネル1a,1b間に同期フレーム6を連結していない点が、第一の実施形態の太陽光追尾装置と異なる。その他の構成は第一の実施形態の太陽光追尾装置と同一なので、同一の符号を付してその説明を省略する。
 第三の実施形態の太陽光追尾装置によれば、一対の第一の太陽電池パネル1a,1bが傾斜軸5の回りを360度回転する間、支柱を避けることができる。このため、一対の第一の太陽電池パネル1a,1bの多様な制御が可能になる。
 図6及び図7は、本発明の第四の実施形態の太陽光追尾装置を示す。図6は太陽電池パネル11を垂直面内に配置した状態を示し、図7は太陽電池パネル11の受光面が地面に対向した状態を示す。
 第四の実施形態の太陽光追尾装置は、支柱2、支柱2に支持される太陽電池パネル11、太陽電池パネル11を駆動する駆動装置4(図7(b)参照)を備える。支柱2、駆動装置4の構成は第一の実施形態の太陽光追尾装置と略同一であるので、同一の符号を付してその説明を省略する。図7(b)に示すように、駆動装置4の傾斜軸5は太陽電池パネルの全幅に亘って細長く形成される。この傾斜軸5に太陽電池パネル11が結合される。
 第四の実施形態の太陽光追尾装置では、図6に示すように、太陽電池パネル11を垂直面内に配置した状態において、太陽電池パネル11には、その幅方向の中央部にその上下方向の中央部から下端部まで至る切欠き部13(図7(a)参照)が形成される。太陽電池パネル11は、切欠き部13の左右両側及び上方に設けられる。切欠き部13には、切欠き部13に嵌まると共に、太陽電池パネル11にヒンジ14を介して相対的に回転可能に連結される副太陽電池パネル15(図中斜線で示す)が設けられる。副太陽電池パネル15は太陽電池パネル11と同様に太陽光を受光して発電する。
 図6に示すように、太陽電池パネル11を垂直面内に配置した状態において、太陽電池パネル11と同一平面内に配置される副太陽電池パネル15が支柱に当たる。この状態から太陽電池パネル11をさらに下を向くように回転させると、副太陽電池パネル15の位置はそのままで、太陽電池パネル11のみが下を向くように回転するようになる。副太陽電池パネル15は支柱2に当たったままであるからである。このとき、支柱2は太陽電池パネル11の切欠き部13によって形成される開口部を通過する。駆動装置4は夜間時に図7(a)に示すように、太陽電池パネル11がその受光面が地面に対向し、かつその法線方向が南の方位を向くように太陽電池パネル11を駆動する。
 第四の実施形態の太陽光追尾装置によれば、太陽電池パネル11に切欠き部13を設け、支柱2が切欠き部13によって形成される開口部を通過して、太陽電池パネル11の受光面が地面に対向するので、太陽電池パネル11の負の仰角を大きくすることができ、太陽電池パネル11の受光面に堆積した砂埃を効率的に落とすことができる。また、切欠き部13に副太陽電池パネル15を設けることで、発電量を大きくすることができる。
 図8ないし図10は、本発明の第五の実施形態の太陽光追尾装置を示す。図8及び図9は、太陽電池パネル21を垂直面内に配置した状態を示し、図10は太陽電池パネル21の受光面を下に向けた状態を示す。
 この実施形態の太陽光追尾装置も、第一の実施形態の太陽光追尾装置と同様に、支柱22、支柱22に支持される太陽電池パネル21、及び太陽電池パネル21を駆動させる駆動装置24を備える。太陽電池パネル21は、支柱22の左右両側に配置される一対の第一の太陽電池パネル21a,21bを備える。第一の実施形態の第一の太陽電池パネル1a,1bと異なり、各第一の太陽電池パネル21a,21bは段付きのパネルである。
 支柱22は、地面に構築される基礎に固定され、地面から垂直方向に立ち上がる。支柱22の上端部には駆動装置24が設けられる。駆動装置24は、垂直方向を向く旋回軸(図示せず)と、旋回軸に直交し、水平方向を向く傾斜軸25(図9参照)を備える。旋回軸を回転駆動すると、旋回軸に直交する傾斜軸25が垂直線vの回りを旋回し、傾斜軸25と一緒に太陽電池パネル21が垂直線vの回りを旋回する。傾斜軸25を回転駆動すると、太陽電池パネル21が水平線hの回りを回転する。太陽電池パネル21は、受光面が上を向きかつ太陽電池パネル21が地面に平行な状態(太陽電池パネル21の法線の仰角が+90°の状態)から、図10に示すように、受光面が地面に対向し、かつ太陽電池パネル21が地面に平行な状態(太陽電池パネル21の法線の仰角が-90°の状態)まで回転する。
 駆動装置24は、太陽の方位角及び高度に太陽電池パネル21の法線方向が一致するように、太陽電池パネル21を制御する。駆動装置24には、旋回軸を駆動させるモータ、傾斜軸25を駆動させるモータを制御する制御装置が組み込まれる。
 太陽電池パネル21は、支柱22の左右両側に配置される一対の第一の太陽電池パネル21a,21bを備える。一対の第一の太陽電池パネル21a,21b間には、支柱22が通過可能な開口部23が設けられる。各第一の太陽電池パネル21a,21bは、重心W1が傾斜軸25の前側にある前側パネル21-2と、重心W2が傾斜軸25の後ろ側にある後ろ側パネル21-1,21-3と、を備える(図9参照)。後ろ側パネル21-1,21-3は、第一の太陽電池パネル21a,21bの上段、及び下段に配置され、この実施形態では、合計四枚のモジュールから構成される。各モジュールは、縦5個、横5個、合計5×5=25個のセルから構成される。前側パネル21-2は、第一の太陽電池パネル21a,21bの中段に配置され、この実施形態では、合計二枚のモジュールから構成される。各モジュールは、縦5個、横5個、合計5×5=25個のセルから構成される。
 ここで、前側、後ろ側とは、第一の太陽電池パネル21a,21bを垂直面内に配置し、かつ第一の太陽電池パネル21a,21bの受光面を正面に向けた状態において、第一の太陽電池パネル21a,21bを正面から見たときの前側、後ろ側である。また、図9に示すように、後ろ側パネル21-1,21-3は、後ろ側パネル本体27と、後ろ側パネル本体27を支持する平面的なフレーム28と、を備えるので、後ろ側パネル21-1,21-3の重心W2は、後ろ側パネル本体27及び平面的なフレーム28を合わせたものの重心である。同様に、前側パネル21-2は、前側パネル本体29と、前側パネル本体29を支持する立体的なフレーム30と、を備えるので、前側パネル21-2の重心W1は、前側パネル本体29及び立体的なフレーム30を合わせたものの重心である。平面的なフレーム28及び立体的なフレーム30については、後述する。
 本実施形態の太陽光追尾装置によれば、支柱22の左右両側の一対の第一の太陽電池パネル21a,21b間の開口部23を風が通過するので、風によるモーメントを低減することができ、太陽光追尾装置全体のコンパクト化を図れる。また、支柱22の左右両側に一対の第一の太陽電池パネル21a,21bを配置し、各第一の太陽電池パネル21a,21bを傾斜軸25の前後に配置するので、駆動装置24の旋回軸、傾斜軸25の2軸に関して、第一の太陽電池パネル21a,21bの自重モーメントが釣り合うようなパネル配置にすることができ、駆動装置24のコンパクト化が図れる。さらに、後ろ側パネル21-1,21-3は、第一の太陽電池パネル21a,21bの上段、及び下段に配置され、前側パネル21-2は、第一の太陽電池パネル21a,21bの中段に配置されるので、傾斜軸25の軸方向の全長に亘って前側パネル21-2及び後ろ側パネル21-1,21-3の自重モーメントが釣り合うようになる。なお、前側パネル21-2及び後ろ側パネル21-1,21-3の自重モーメントは、完全に相殺されなくても、低減されればよい。
 図11は、太陽光追尾装置のフレーム31の斜視図を示す。この図11には、後ろ側パネル本体27(図9参照)及び前側パネル本体29(図9参照)を取り外した状態が示される。傾斜軸25には、連結ブラケット32を介して一対のフレーム31a,31bが取り付けられる。各フレーム31a,31bは、上段及び下段に配置される後ろ側パネル本体27(図9参照)を支持する平面的なフレーム28と、平面的なフレーム28に結合され、中段に配置される前側パネル本体29(図9参照)を支持する立体的なフレーム30と、を備える。
 平面的なフレーム28は、一平面内に配置される枠状に形成される。平面的なフレーム28の上部には、上段の後ろ側パネル本体27を支持する四角形の後ろ側パネル支持部28aが形成される。平面的なフレーム28の下部には、下段の後ろ側パネル本体27を支持する四角形の後ろ側パネル支持部28bが形成される。
 立体的なフレーム30は、箱形状に形成される。立体的なフレーム30は、平面的なフレーム28が配置される平面から所定の距離を空けた平行な平面に配置される枠状の前側パネル支持部30aと、前側パネル支持部30aの四隅と平面的なフレーム28とを結合する四本の柱部30bと、を備える。枠状の前側パネル支持部30aには、補強梁33が結合される。平面的なフレーム28の柱部30bが結合される部位にも、補強梁34が結合される。
 本実施形態の太陽光追尾装置によれば、フレーム31を平面的なフレーム28と立体的なフレーム30から構成することで、フレーム31の剛性を高くすることができる。したがって、追尾性能を向上させることができる。
 本発明の第五の実施形態の太陽光追尾装置の動作は、第一の実施形態の太陽光追尾装置の動作と同様である。すなわち、太陽光追尾装置は、太陽の方位角に合わせて太陽電池パネル21を旋回軸の回りを旋回させ、太陽の高度に合わせて太陽電池パネル21を傾斜軸25の回りを傾斜させる。昼間時に所定風速以上の強風が吹いたとき、太陽電池パネル21を強風から退避させるために、駆動装置24は太陽電池パネル21の受光面が上を向き且つ太陽電池パネル21が地面と平行になるまで、太陽電池パネル21を傾斜軸25の回りを回転させる。一方、夜間時には、受光面に堆積した砂埃を除去するために、駆動装置24は、太陽電池パネル21を受光面が地面に対向するように傾斜軸25の回りを回転させる。また、駆動装置24は、太陽電池パネル21の法線方向が南の方位を向くように旋回軸の周りを回転させる。
 図12及び図13は、本発明の第五の実施形態の太陽光追尾装置のフレーム31bにたわみ矯正構造40a~40dを付加した例を示す。図12はフレーム31bの斜視図を示し、図13はフレーム31bの側面図を示す。図12には、図11の一対のフレーム31a,31bのうちの一方31bにたわみ矯正構造40a~40dを付加した例が示されるが、たわみ矯正構造40a~40dはフレーム31aにも付加される。図12に示すように、平面的なフレーム28の四隅の位置を調節できるように、合計四個のたわみ矯正構造40a~40dが設けられる。各たわみ矯正構造40a~40dはペアの第一及び第二の張力付与部材41a~41d,42a~42dを備える。
 図12に示すように、フレーム31bは、上段及び下段に配置される後ろ側パネル21-1,21-3(図8参照)を支持する平面的なフレーム28と、中段に配置される前側パネル21-2(図8参照)を支持する箱形状の立体的なフレーム30と、を備える。平面的なフレーム28は、上段及び下段の後ろ側パネル21-1,21-3(図8参照)が取り付けられる四角形の後ろ側パネル支持部28a,28bを有する。立体的なフレーム30は、中段の前側パネル21-2(図8参照)が取り付けられる枠状の前側パネル支持部30aを有する。平面的なフレーム28のパネル取付け面P1(図13参照)と立体的なフレーム30のパネル取付け面P2(図13参照)との間には、段差がある。図12及び図13には、パネル取付け面P1,P2に取り付けられるモジュールのフレーム36a~36cも図示されている。このフレーム36a~36cに複数のセルからなるモジュール本体が載せられる。
 図12に示すように、たわみ矯正構造40a~40dは、フレーム31bに両端部が連結される紐状又は棒状の第一の張力付与部材41a~41dと、第一の張力付与部材41a~41dと同様にフレーム31bに両端部が連結される紐状又は棒状の第二の張力付与部材42a~42dと、を備える。図13に示すように、第一の張力付与部材41a~41dは、平面的なフレーム28のパネル取付け面P1によって区画される二つの空間S1,S2のうちの一方の側S1に配置される。第二の張力付与部材42a~42dは、平面的なフレーム28のパネル取付け面P1によって区画される二つの空間S1,S2のうちの他方の側S2に配置される。第一の張力付与部材41a~41dは、平面的なフレーム28のパネル取付け面P1が当該一方の側S1に変位するように、平面的なフレーム28を引っ張る。第二の張力付与部材42a~42dは、平面的なフレーム28のパネル取付け面P1が当該他方の側S2に変位するように、平面的なフレーム28を引っ張る。第一及び第二の張力付与部材41a~41d,42a~42dをペアで使用することで、平面的なフレーム28がS1,S2のいずれの側にたわみ又は歪んでも、平面的なフレーム28を矯正し、パネル取付け面P1の平面度を確保することができる。
 たわみ矯正構造40a~40dの詳細な構造は、以下のとおりである。第一の張力付与部材41a~41dは、立体的なフレーム30に結合される支柱37と平面的なフレーム28の先端部との間に架け渡される。両者30、28の間に第一の張力付与部材41a~41dを架け渡すことで、平面的なフレーム28の先端部の位置を調節できる。第一の張力付与部材41a~41dは、太陽電池パネルの採光面に影が出ないように、太陽電池パネルの外側に配置される。第一の張力付与部材41a~41dは、その張力を調節できるように、張力調節機構としてのターンバックル43を備える。すなわち、第一の張力付与部材41a~41dは、支柱37に支持軸44を介して回転可能に連結されるブラケット45と、ブラケット45に結合されるねじ軸46と、平面的なフレーム28に支持軸49を介して回転可能に連結されるブラケット48と、ブラケット48に結合されるねじ軸47と、ねじ軸46及びねじ軸47に螺合するターンバックル43と、を備える。ねじ軸46,47の一方は右ねじ、もう一方は左ねじである。ターンバックル43を回転させると、ターンバックル43の両端に螺合するねじ軸46,47が締め付けられ、又は緩められ、張力を調節することができる。
 第二の張力付与部材42a~42dは、立体的なフレーム30と平面的なフレーム28の先端部との間に架け渡される。第二の張力付与部材42a~42dも、太陽電池パネルの採光面に影が出ないように、太陽電池パネルの外側に配置される。立体的なフレーム30は箱形状に形成されるので、平面的なフレーム28に比べて剛性が高い。両者30,28の間に第二の張力付与部材42a~42dを架け渡すことで、平面的なフレーム28の先端部の位置を調節できる。第二の張力付与部材42a~42dも、その張力を調節できるように、張力調節機構としてのターンバックル51を備える。すなわち、第二の張力付与部材42a~42dは、立体的なフレーム30に支持軸52を介して回転可能に連結されるブラケット53と、ブラケット53に結合されるねじ軸54と、平面的なフレーム28の先端部に支持軸57を介して回転可能に連結されるブラケット56と、ブラケット56に結合されるねじ軸55と、ねじ軸54及びねじ軸55に螺合するターンバックル51と、を備える。ねじ軸54,55の一方は右ねじ、もう一方は左ねじである。ターンバックル51を回転させると、ターンバックル51の両端に螺合するねじ軸54,55が締め付けられ、又は緩められ、張力を調節することができる。
 なお、この図12には、第二の張力付与部材42a~42dが第一の張力付与部材41a~41dよりも平面的なフレーム28のより先端側に連結される例が示されているが、これは第一の張力付与部材41a~41dと第二の張力付与部材42a~42dの長さを等しくしたことに起因する。第一の張力付与部材41a~41dを第二の張力付与部材42a~42dよりも長くし、第一の張力付与部材41a~41dと第二の張力付与部材42a~42dとを平面的なフレーム28の先端部の同位置に連結することもできる。
 図13に示すように、第一の張力付与部材41a~41dのターンバックル43を例えば時計方向に回転させると、ねじ軸46,47が締め付けられ、平面的なフレーム28の先端部が矢印A1で示す方向に変形する。同様に、第二の張力付与部材42a~42dのターンバックル51を時計方向に回転させると、ねじ軸54,55が締め付けられ、平面的なフレーム28の先端部が矢印A2で示す方向に変形する。四ペアのたわみ矯正構造40a~40dで平面的なフレーム28の四隅の位置を調節することで、平面的なフレーム28の平面度を確保することができる。
 なお、図12に示すように、平面的なフレーム28は、上段及び下段の後ろ側パネル支持部28a,28bを有する。各後ろ側パネル支持部28a,28bのパネル取付け面P1の平面度をより向上させるために、さらに図12中の二点鎖線で示す第三及び第四の張力付与部材61,62を設けることもできる。第三の張力付与部材61は、立体的なフレーム30と平面的なフレーム28の基端部との間に架け渡され、筋交いのようにフレーム31bを補強する。第四の張力付与部材62は、立体的なフレーム30に結合された支柱37と平面的なフレーム28の基端部との間に架け渡され、筋交いのようにフレーム31bを補強する。図13に示すように、図示しないターンバックルによって第三及び第四の張力付与部材61,62の張力を調整することで、平面的なフレーム28の基端部を図13中矢印A3,A4で示す方向に変形させることができる。なお、図12及び図13には、分かり易くするために、一ペアの第三及び第四の張力付与部材61,62を示しているが、合計四ペアの第三及び第四の張力付与部材61,62が設けられる。
 太陽電池パネルは、受光面が太陽光に対して直角でないと、発電効率が落ちるという特性を持つ。特に集光型太陽電池パネルの場合は、受光面と太陽光の高い精度の直角度が要求される。たとえ駆動装置24(図8参照)で精度よく太陽光を追尾したとしても、フレーム31b自体にたわみや歪みがあると、直角度を保てなくなる。風荷重や太陽電池パネルの重量を考慮した設計値よりも梁を多くし、柱を太くしたとしても、フレーム31bのたわみや歪みを完全に抑えることはできない。フレーム31bが長尺であったり、フレーム31bにメッキ加工を施したりすると、たわみや歪みがより大きくなる。太陽電池パネルとフレーム31bとの間にシムやスペーサを挟めば、パネル取付け面P1,P2の平面度を向上させることができるが、平面度の調節に時間がかかったり、フレーム31bの経時的に変化するたわみや歪みを矯正できなかったりするという新たな課題が生ずる。
 本実施形態のたわみ矯正構造40a~40dのように、平面的なフレーム28のパネル取付け面P1の両側に第一及び第二の張力付与部材41a~41d,42a~42dを配置することで、平面的なフレーム28のたわみや歪みを矯正でき、平面的なフレーム28のパネル取付け面P1の平面度を向上させることができる。また、第一及び第二の張力付与部材41a~41d,42a~42dにフレーム31bを補強する役割も持たせることができるので、フレーム31bに風荷重等の力が働いたとき、又はフレーム31bに重い太陽電池パネルを載せたときでも、フレーム31bがたわむのを防止できる。
 なお、本発明は上記実施形態に限られることはなく、本発明の要旨を変更しない範囲で様々な実施形態に具現化することができる。
 上記実施形態では、太陽の方位角及び高度の両方に太陽電池パネルを追尾させる二軸タイプの太陽光追尾装置を用いているが、太陽の方位角及び高度のいずれか一方のみに太陽電池パネルを追尾させる一軸タイプの太陽光追尾装置を用いることもできる。
 上記実施形態では、駆動装置の旋回軸を垂直線と平行にしているが、駆動装置の旋回軸を地軸に平行にすることもできる。
 上記実施形態では、駆動装置の旋回軸及び傾斜軸をモータ、ウォームギヤ等の減速機構で回転駆動させているが、リンク、シリンダ、伸縮アクチュエータ等で回転駆動させることもできる。
 上記実施形態では、一台の太陽光追尾装置に一つの駆動装置を設けているが、複数台の太陽光追尾装置に一つの駆動装置を設け、駆動装置を共通化することもできる。
 上記実施形態では、支柱を地面の基礎に固定しているが、支柱を旋回可能な台座の上に固定することもできる。
 上記実施形態では、夜間時の初期位置の太陽電池パネルの法線の仰角を-90°に設定しているが、砂埃を落下させることができれば-90°からずらすことができる。
 上記実施形態では、夜間時に太陽電池パネルの受光面を地面に対向させているが、昼間時に太陽電池パネルの受光面を地面に対向させることもできる。
 上記実施形態では、太陽光追尾装置を太陽光発電システムに適用しているが、太陽熱発電システムに適用することもできる。この場合、太陽電池パネルの替わりにレンズ又は反射鏡等からなる集光パネルが用いられる。
 図12及び図13に示すうように、本発明の第五の実施形態のたわみ矯正構造40a~40dは、平面的なフレーム28のパネル取付け面P1と立体的なフレーム30のパネル取付け面P2との間に段差があるフレーム31bに適用されているが、全てのパネル取付け面P1,P2が同一の平面内に配置されるフレームにも適用することができる。
 本明細書は、2013年8月26日出願の特願2013-174771、2014年3月5日出願の特願2014-42383及び2014年8月25日出願の特願2014-170151に基づく。この内容はすべてここに含めておく。
1…太陽電池パネル,1a,1b…第一の太陽電池パネル,1c…第二の太陽電池パネル,2…支柱,3…開口部,4…駆動装置,5…傾斜軸,6…同期フレーム,11…太陽電池パネル,13…切欠き部,15…副太陽電池パネル,21…太陽電池パネル,21a,21b…第一の太陽電池パネル,21-2…前側パネル,21-1,21-3…後ろ側パネル,22…支柱,23…開口部,24…駆動装置,25…傾斜軸,27…後ろ側パネル本体,28…平面的なフレーム,29…前側パネル本体,30…立体的なフレーム,W1…前側パネルの重心,W2…後ろ側パネルの重心

Claims (9)

  1.  太陽光を追尾する太陽光追尾装置であって、
     支柱と、
     前記支柱に支持され、太陽光を受光又は集光するパネルと、
     太陽の高度及び方位角の少なくとも一方に追尾するように、前記パネルを駆動する駆動装置と、を備え、
     前記パネルは、前記支柱を通過可能な開口部を有する太陽光追尾装置。
  2.  前記駆動装置は、夜間時に前記パネルの受光面又は集光面が地面に対向するように前記パネルを駆動する請求項1に記載の太陽光追尾装置。
  3.  前記パネルは、前記支柱の左右両側に一対の第一のパネルを備え、
     前記支柱は、前記一対の第一のパネル間の前記開口部を通過することを特徴とする請求項1又は2に記載の太陽光追尾装置。
  4.  前記一対の第一のパネル間には、太陽光を受光又は集光する第二のパネルが設けられることを特徴とする請求項3に記載の太陽光追尾装置。
  5.  前記パネルを垂直面内に配置した状態において、前記一対の第一のパネルの上下方向の中央部が前記駆動装置に連結されることを特徴とする請求項3に記載の太陽光追尾装置。
  6.  前記パネルを垂直面内に配置した状態において、前記パネルには、その幅方向の中央部にその上下方向の中央部から下端部まで至る切欠き部が設けられ、
     前記支柱は、前記パネルの前記切欠き部によって形成される前記開口部を通過することを特徴とする請求項1に記載の太陽光追尾装置。
  7.  前記切欠き部には、前記切欠き部に嵌まり、太陽光を受光又は集光する副パネルが設けられ、
     前記副パネルは、前記パネルに相対的に回転可能に連結されることを特徴とする請求項6に記載の太陽光追尾装置。
  8.  前記駆動装置は、太陽の高度に追尾するように、前記パネルを駆動する傾斜軸を備え、
     前記パネルを垂直面内に配置し、かつ前記パネルの受光面又は集光面を正面に向けた状態において、前記パネルは、重心が前記傾斜軸の前側にある前側パネルと、重心が前記傾斜軸の後ろ側にある後ろ側パネルと、を備えることを特徴とする請求項1又は2に記載の太陽光追尾装置。
  9.  前記後ろ側パネルは、前記パネルの上段及び下段に配置される後ろ側パネル本体と、前記後ろ側パネル本体を支持する枠形状の平面的なフレームと、を備え、
     前記前側パネルは、前記パネルの中段に配置される前側パネル本体と、前記前側パネル本体を支持し、前記平面的なフレームに結合される箱形状の立体的なフレームと、を備えることを特徴とする請求項8に記載の太陽光追尾装置。
PCT/JP2014/072248 2013-08-26 2014-08-26 太陽光追尾装置 WO2015029978A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-174771 2013-08-26
JP2013174771 2013-08-26
JP2014042383 2014-03-05
JP2014-042383 2014-03-05
JP2014-170151 2014-08-25
JP2014170151A JP2015181324A (ja) 2013-08-26 2014-08-25 太陽光追尾装置

Publications (1)

Publication Number Publication Date
WO2015029978A1 true WO2015029978A1 (ja) 2015-03-05

Family

ID=52586535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072248 WO2015029978A1 (ja) 2013-08-26 2014-08-26 太陽光追尾装置

Country Status (2)

Country Link
JP (1) JP2015181324A (ja)
WO (1) WO2015029978A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634398A (zh) * 2016-03-02 2016-06-01 杭州品联科技有限公司 集成太阳能光伏智能控制系统的方法
CN106339009A (zh) * 2016-11-17 2017-01-18 江苏聚亿智能科技有限公司 双面双玻太阳能电池板跟踪支架
CN107104633A (zh) * 2017-07-04 2017-08-29 合肥庭鸾能源有限公司 一种便于安装的太阳能发电装置
JP2018107954A (ja) * 2016-12-27 2018-07-05 三菱電機株式会社 太陽光発電システム
CN110719065A (zh) * 2019-10-16 2020-01-21 崔富贯 一种热力驱动型光伏板两维追日装置
EP3477219A4 (en) * 2016-06-24 2020-01-29 SFI Corporation HELIOSTAT APPARATUS AND METHOD FOR GENERATING SOLAR ENERGY
CN111780041A (zh) * 2020-08-11 2020-10-16 郑州峻斯电子科技有限公司 一种能够随太阳转动的led路灯

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA40104B1 (fr) * 2017-03-13 2019-08-30 Akram Hadi Plate-forme vertical support de panneaux solaire autonomie
WO2020031349A1 (ja) * 2018-08-09 2020-02-13 住友電気工業株式会社 太陽光発電装置及び太陽光発電装置の制御方法
JP7168980B2 (ja) * 2019-02-04 2022-11-10 株式会社キャリースルー 太陽光発電装置
JP7206133B2 (ja) * 2019-02-28 2023-01-17 京セラ株式会社 太陽光発電システム及び太陽光発電装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126766A (en) * 1979-03-26 1980-09-30 Takashi Mori Sun light tracking apparatus
US4276872A (en) * 1978-11-13 1981-07-07 Atlantic Richfield Company Solar system employing ground level heliostats and solar collectors
JPH02233943A (ja) * 1989-03-03 1990-09-17 Takashi Mori 太陽光収集装置
JPH08130322A (ja) * 1994-10-31 1996-05-21 Kyocera Corp 太陽電池装置
US20060054162A1 (en) * 2004-09-03 2006-03-16 Romeo Manuel L Solar tracker
JP2008021683A (ja) * 2006-07-10 2008-01-31 Ntt Facilities Inc 太陽光発電装置及び太陽光発電方法
JP2012204471A (ja) * 2011-03-24 2012-10-22 Daido Steel Co Ltd 太陽光発電装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169173A (ja) * 1984-02-13 1985-09-02 Agency Of Ind Science & Technol 太陽光発電装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276872A (en) * 1978-11-13 1981-07-07 Atlantic Richfield Company Solar system employing ground level heliostats and solar collectors
JPS55126766A (en) * 1979-03-26 1980-09-30 Takashi Mori Sun light tracking apparatus
JPH02233943A (ja) * 1989-03-03 1990-09-17 Takashi Mori 太陽光収集装置
JPH08130322A (ja) * 1994-10-31 1996-05-21 Kyocera Corp 太陽電池装置
US20060054162A1 (en) * 2004-09-03 2006-03-16 Romeo Manuel L Solar tracker
JP2008021683A (ja) * 2006-07-10 2008-01-31 Ntt Facilities Inc 太陽光発電装置及び太陽光発電方法
JP2012204471A (ja) * 2011-03-24 2012-10-22 Daido Steel Co Ltd 太陽光発電装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634398A (zh) * 2016-03-02 2016-06-01 杭州品联科技有限公司 集成太阳能光伏智能控制系统的方法
CN105634398B (zh) * 2016-03-02 2018-01-16 杭州品联科技有限公司 集成太阳能光伏智能控制系统的方法
EP3477219A4 (en) * 2016-06-24 2020-01-29 SFI Corporation HELIOSTAT APPARATUS AND METHOD FOR GENERATING SOLAR ENERGY
CN106339009A (zh) * 2016-11-17 2017-01-18 江苏聚亿智能科技有限公司 双面双玻太阳能电池板跟踪支架
JP2018107954A (ja) * 2016-12-27 2018-07-05 三菱電機株式会社 太陽光発電システム
CN107104633A (zh) * 2017-07-04 2017-08-29 合肥庭鸾能源有限公司 一种便于安装的太阳能发电装置
CN110719065A (zh) * 2019-10-16 2020-01-21 崔富贯 一种热力驱动型光伏板两维追日装置
CN111780041A (zh) * 2020-08-11 2020-10-16 郑州峻斯电子科技有限公司 一种能够随太阳转动的led路灯

Also Published As

Publication number Publication date
JP2015181324A (ja) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2015029978A1 (ja) 太陽光追尾装置
US7968791B2 (en) Solar energy collection system
JP6333927B2 (ja) 太陽追尾式の光起電太陽集光器アレイ
KR100799771B1 (ko) 태양광 발전장치
EP2264377A2 (en) Apparatus for two-way tracing and concentrating sunlight of roof installation type
US20110114153A1 (en) Photovoltaic solar collection and tracking system
KR101679260B1 (ko) 태양광 발전 모듈의 각도 조절장치
KR100760043B1 (ko) 경사각도 조정형 태양광 발전장치
ITMI20101847A1 (it) Apparato inseguitore per captare energia solare e relativo meccanismo di movimentazione di un asse
KR101264846B1 (ko) 태양광 트랙커 및 태양광 발전장치
US20130206712A1 (en) Solar Assembly Structure
US20130008431A1 (en) Solar Energy Substrate Aerodynamic Flaps
KR101123279B1 (ko) 휨 방지 기능이 보강된 태양 전지판의 각도 조절 장치
AU2008318598B2 (en) Solar collector stabilized by cables and a compression element
KR100879031B1 (ko) 태양 추적식 태양광 발전장치
CN103208947B (zh) 一种屋顶太阳能聚光发电系统
KR200462612Y1 (ko) 태양전지판 고정 프레임 지주 고정 구조
KR101182832B1 (ko) 태양광 발전장치
WO2017222026A1 (ja) ヘリオスタット装置および太陽光発電方法
KR20100039480A (ko) 태양광 집광판의 고도변환장치
KR102427335B1 (ko) 회전 및 경사가 동시에 제어되는 태양광 추적장치
CN103283035B (zh) 太阳光跟踪装置
CN210518190U (zh) 一种极轴式光伏发电全跟踪架
WO2019097748A1 (ja) モジュール支持装置、及び太陽電池装置
TWM457156U (zh) 角度調整裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841307

Country of ref document: EP

Kind code of ref document: A1