WO2015029872A1 - ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 - Google Patents

ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 Download PDF

Info

Publication number
WO2015029872A1
WO2015029872A1 PCT/JP2014/071892 JP2014071892W WO2015029872A1 WO 2015029872 A1 WO2015029872 A1 WO 2015029872A1 JP 2014071892 W JP2014071892 W JP 2014071892W WO 2015029872 A1 WO2015029872 A1 WO 2015029872A1
Authority
WO
WIPO (PCT)
Prior art keywords
nematode
cellular slime
slime mold
cellular
repellent
Prior art date
Application number
PCT/JP2014/071892
Other languages
English (en)
French (fr)
Inventor
玉緒 齊藤
デレック バートレム
Original Assignee
学校法人上智学院
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人上智学院, 国立大学法人北海道大学 filed Critical 学校法人上智学院
Priority to EP14840772.9A priority Critical patent/EP3056085B1/en
Priority to JP2015534169A priority patent/JP6172545B2/ja
Publication of WO2015029872A1 publication Critical patent/WO2015029872A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof

Definitions

  • the present invention relates to a substance for repelling nematode nematodes parasitic on the roots of crops, a method for producing the same, and a repellent method using the repellent.
  • Nematode is a general term for animals belonging to the linear phylum, and there are many species. Most of these nematodes are harmless to humans, but nematodes that parasitize and harm plants are known. Examples include Nekob nematodes, cyst nematodes, and negusale nematodes. Among them, the nematode nematodes, represented by the nematode nematode and the sweet potato nematode, parasitize the roots of crops such as potatoes, carrots, strawberries, etc. Contributes to the occurrence of soil diseases such as blight. About 5% of the pest damage to agricultural products worldwide is said to be caused by Kitanekobu nematodes. In order to deal with the damage caused by such nematode nematodes, highly toxic pesticides mainly composed of smoke agents (methyl bromide) and organophosphorus compounds, which are prohibited in Japan and Europe, are used. Yes.
  • Patent Document 1 discloses that alkylbenzene having a specific substituent is used to control nematodes such as cat nematodes.
  • Patent Document 2 discloses a nematode nematode control agent using an active ingredient of a raw coffee bean extract.
  • an active ingredient of the raw coffee bean extract for example, a phenolic compound such as chlorogenic acid is included, and since such an active ingredient is effective for controlling Negusale nematodes, on the other hand, it is a naturally derived ingredient. It has been shown to be highly safe for the human body and crops.
  • Patent Document 3 discloses a nematode nematode control agent comprising an extract of a specific Asteraceae plant as an active ingredient.
  • cellular slime molds are eukaryotic microorganisms that are universally inhabited in soil, and usually grow in a single cell state by using bacteria as food.
  • Caenorhabditis elegans a non-parasitic nematode with the same habitat as cellular slime molds, has a relationship between cellular slime molds and prey-predators, while the nematode larvae are It is known that when co-cultured with a kind of Dictyostelium ⁇ purpureum in the same container, it exhibits behavior that avoids cellular slime molds (Non-patent Document 1). However, the specific communication between the cellular slime mold and the plant nematode Nekob nematode has not been known so far.
  • An object of the present invention is to provide a repellent for repelling cat nematodes without adversely affecting crops and workers and a method using the same.
  • a repellent for repelling a nematode nematode comprising a substance secreted from a cellular slime mold belonging to the genus Dictyostelium as an active ingredient Is provided.
  • the substance secreted from the cellular slime mold may be a substance secreted from the multicellular stage cellular slime mold, particularly the fruiting body of the cellular slime mold.
  • the cellular slime mold may be a kind selected from the group consisting of D. discoideum, D. purpureum, D. mucoroides, D. fasciculatum, D. monochasioides, D. lacteum, and D. giganteum.
  • the substance secreted from the cellular slime mold may be obtained by culturing the cellular slime mold in a medium, removing the cultured cellular slime mold from the medium, and then extracting from the medium. Good.
  • the extraction from the culture medium may be extraction with an organic solvent or adsorption with an adsorbent.
  • the repellent of the present invention may further contain the cellular slime mold.
  • a method for repelling a nematode nematode by applying the repellent according to the first aspect of the present invention to an area where the nematode nematode is present is provided.
  • a method for producing a repellent for repelling a nematode nematode which is obtained by culturing a cellular slime mold belonging to the genus Dictyostelium and changing it to a multicellular cell slime mold.
  • a method for producing the repellent which comprises extracting the secretory substance of the multicellular cell slime mold from the multicellular cell slime mold using an organic solvent.
  • the organic solvent may be methanol or ethanol.
  • FIG. 1 (a) is a photomicrograph showing the behavior of a foxtail nematode in the absence of cellular slime molds (Control), and FIGS. 1 (b) to 1 (d) show D and D as cellular slime molds, respectively. It is a microscope composite photograph which shows the behavior of the Kitanekobu nematode when .discoideum, D.purpureum and D.mucoroides are present on the left side of the Kitaneko nematode.
  • Negusare nematodes As plant parasitic nematodes that parasitize the roots of crops, mainly Negusare nematodes, cyst nematodes, and nematode nematodes are known. Insect reeds such as insects (Meloidynehapla), sweet potato nematode nematodes (Meloidyneincognita), Javakonebu nematodes (Meloidynejavanica), arena nematode nematodes (Meloidynearenaria) are repellent. These nematode nematodes parasitize crops such as tomatoes, potatoes, sweet potatoes, melons, watermelons, pumpkins, cucumbers, spinach, carrots, etc. Harm while releasing.
  • Cellular slime molds are mainly classified into three genera, Dictyostelium genus, Polysphondylium genus, and Acytostelium genus.
  • Cellular slime molds used in the present invention are genus Dictyostelium (hereinafter abbreviated as D. or D genus as appropriate). And include D. discoideum, D. purpureum, D. mucoroides, D. fasciculatum, D. monochasioides, D. lacteum, and D. giganteum.
  • D. discoideum, D. fasciculatum, D. lacteum, D. giganteum are preferable in that they are easy to culture and can easily form fruiting bodies even at high density. giganteum is preferred.
  • D.giganteum is called the Japanese name Seita Katacho Mokobi and is known to produce large fruiting bodies.
  • the genus Dictyostelium is not morphologically branched, has a solid cellular pattern, and can support a spore mass with a single pattern.
  • the genus Ploysphondylium (hereinafter sometimes abbreviated as P. or P genus as appropriate) has a branched structure called Whorl (rotate branch) in the lateral direction, has a thin handle, and a genus Acytostelium (hereinafter, As appropriate, it may be abbreviated as A. or A genus) and has a tubular handle of cellulose without a cellular handle.
  • the spores are inactive because they are dormant, but the stalk cells are genetically dead but physiologically alive and synthesize and secrete compounds.
  • the present inventor presumes that the repellent activity of the nematode nematode is due to a substance secreted from the stalk cell, and the genus Dictyostelium has the firmest stalk cell among the above three genera. For this reason, it is considered that a large amount of a substance exhibiting repellent activity against the nematode nematode is secreted.
  • Cellular slime molds can also be divided into groups I to IV by genetic classification method (classification based on DNA base sequence) (P. Schaap et al. Science, 27 OCTOBER 2006, Vol. 314 no. 5799 pp. 661-663).
  • D. discoideum, D. purpureum, D. mucoroides, D. giganteum belong to group IV
  • D. lacteum belongs to group III
  • A. subglobosum belonging to the genus Acytostelium and P. pallidum belonging to the genus Polysphondylium are group II.
  • These cellular slime molds can be obtained, for example, from the National BioResource Project (NBRP) in the form of spores and cultured. Or what was extract
  • NBRP National BioResource Project
  • the present inventor suggested that the substance that repels Nekob nematodes (the active ingredient of the repellent) is not a cellular slime mold itself, but a substance secreted from cellular slime molds (cellular slime). It was found that the bacterial secretions are repellent to nematodes. Cellular slime molds, when obtained in the spore state, germinate and become unicellular, then become multicellular in the starved state, and fruit bodies are formed. According to the present inventors, it has been found that the cellular slime mold secretion that repels the nematode nematode can be obtained in large quantities from the fruiting body of the cellular slime mold.
  • the cellular slime mold secretion is considered to be a metabolite by the cellular slime mold, its compound (or biological material, microorganism) and the like have not been identified at this stage.
  • repellents substances capable of repelling nematode nematodes from cellular slime molds
  • hydrophobic substances for example, extracted from organic solvents
  • the cellular slime mold secretion which repels the nematode nematode can be obtained, for example, by the following method.
  • Cellular slime molds are usually available in powder (spore) form. Such powdery cellular slime molds are cultured with E. coli in agar. Cellular slime mold spores germinate in the agar medium to form amoeba (single cell). Amoeba grows using E. coli as food, but when the food runs out, it becomes starved and gathers to become multicellular and then becomes fruiting. The obtained fruit body is collected, added to an organic solvent such as methanol or ethanol, and allowed to stand.
  • an organic solvent such as methanol or ethanol
  • the fruiting body is precipitated in an organic solution, and a hydrophobic substance among the substances secreted from the fruiting body is dissolved or dispersed in the upper layer (supernatant) of ethanol.
  • the supernatant is separated from the fruit body by filtration or the like and removed to obtain a cellular slime mold secretion solution. As needed, it can also be taken out as solid content by drying a cellular slime mold secretion solution.
  • Cellular slime molds do not necessarily have to be cultured until the morphological changes to fruiting bodies (multicellular stage). However, substances secreted from single-cell-stage cellular slime molds have lower repellent activity than substances secreted from the multicellular stage.
  • cellular slime molds (or their fruit bodies) are cultured on a filter such as filter paper on a buffer containing an adsorbent such as an ion exchange resin (for example, Amberlite XAD-2 used for adsorption of E. coli).
  • an adsorbent such as an ion exchange resin (for example, Amberlite XAD-2 used for adsorption of E. coli).
  • the substance secreted from the cellular slime mold is separated from the cellular slime mold by passing through the filter and adsorbed on the adsorbent.
  • the adsorbent desirably adsorbs a hydrophobic substance.
  • a cellular slime mold secretion solution can be obtained by adding an adsorbent to an organic solvent such as ethanol and performing solvent extraction.
  • the cellular slime mold secretion solution can be further dried to obtain a solid content.
  • the obtained cellular slime mold secretion It is desirable to concentrate the product or its solution or dispersion or extract it in a concentrated form.
  • Necrotic nematodes can be repelled by applying the cellular slime mold secretion obtained as described above or a solution thereof to soil or plants such as farmland.
  • Agricultural land includes sweet potatoes, potatoes, peppers, eggplant, radish, Chinese cabbage, taro, soybeans, strawberries, tomatoes, watermelons, melons, onions, peanuts, carrots, burdock, potatoes, corn, asparagus, grapes, etc.
  • the present invention is not limited thereto, and may be any area where a cat nematode is or will be present.
  • a solution or dispersion of cellular slime mold secretions may be sprayed or sprayed as a powder, and can be sprayed in any form.
  • Arbitrary methods and apparatuses can be used for spraying and spraying.
  • the cellular slime mold secretion When the cellular slime mold secretion is sprayed as a powder, the cellular slime mold secretion may be supported on a carrier.
  • a carrier may be filter paper or beads used to separate cellular slime molds from their secretions, or may be supported on a soil modifier such as zeolite from the viewpoint of application to agricultural land. Good. Alternatively, it may be mixed with agricultural chemicals and fertilizers and sprayed on farmland.
  • the amount of the cellular slime mold secretion or solution thereof is not particularly limited as long as it is sufficient to repel the root-knot nematode inhabiting the soil.
  • the secretion of cellular slime mold per liter of soil. 100-500 mg of product can be used.
  • the cellular slime mold secretion or the solution thereof may be directly applied to the plant by immersing the root of the plant in a solution of the cellular slime mold secretion or spraying the solution on the root. Since the cellular slime mold secretion is a substance obtained by separating and extracting substances existing in nature, the nematode nematode can be effectively repelled without causing the crops to wither or killing the organisms.
  • the cellular slime mold secretion obtained as described above can be used as an active ingredient of a repellent of Nekobu nematode.
  • the repellent may be a cellular slime mold secretion alone or other components may be added. Examples of other components include fertilizers, agricultural chemicals, soil modifiers, carriers that carry cellular slime mold secretions, and the like.
  • the repellent may contain cellular slime molds from the viewpoint of ease of production and repellent effect.
  • Example 1 Repelling experiment of Nekobu nematode by cellular slime mold> The following experiment was conducted to investigate the repellent behaviors of the nematode nematode against four types of cellular slime molds (D. discoideum, D. purpureum, D. mucoroides, P. violaceum) shown in Table 1.
  • Four types of cellular slime molds were obtained from NBRP, etc., and the Kitanekobu nematode used was cultured in the Derek Goto laboratory of Hokkaido University, where Derek Goto, one of the present inventors, belongs.
  • Cellular slime molds are grown on an agar medium using E. coli or Klebsiella as food, recovered with a drug sag in the logarithmic growth phase, suspended in phosphate buffer, washed and removed by centrifugation, then starved. Went. Cellular slime molds thus pretreated were generated on the left side of the petri dish to which phytagel was added so as to be 1.0 ⁇ 10 8 cells / cm 2 . After 1.5 hours (single cell stage), as shown in FIG. 2 (a), 10 Kitanekobu nematodes were seeded at the center of the petri dish. The behavior of the nematode nematode was observed using a microscope (Nikon AZ100 Multizoom microscope).
  • FIG. 1 (a) shows the case where no cellular slime molds are present (Control)
  • Fig. 1 (b) shows the case where D. discoideum is present in the multicellular stage
  • Fig. 1 (c) shows the case of multi-cells.
  • FIG. 1 (d) is a photomicrograph showing the behavior of the nematode nematode when D. mucoroides is present. The photograph shows the entire petri dish by taking an image using a digital camera (Nikon DS-2MBWC camera head) and then performing image processing to connect the images. As shown in FIG.
  • the cell slime molds at the single cell stage are not as much as the cell slime molds at the multi-cell stage, but D. discoideum, D. purpureum, D. mucoroides It was confirmed to take a slight avoidance of genus slime molds.
  • ⁇ Experimental example 2 Quantitative analysis of repellent behavior of Kitanekobu nematode>
  • the behavior of Kita Nebu Nematode repelling cellular slime molds was visually followed by micrograph image processing.
  • the behavior of Kita Nebu Nematode was quantitatively analyzed as follows. did.
  • D. discoideum was generated as a cellular slime mold at a density of 1.0 ⁇ 10 8 cells / cm 2 on the left side of the petri dish to which phytagel was added.
  • 5 Kitanekobu nematodes were sown at a point 19 mm on the right side from the end of the cellular slime mold (see FIG. 2 (a)).
  • the behavior of the nematode nematode was analyzed as follows. As shown in FIG. 2 (b), regions 1 and 2 were set on both sides of the kitten nematode, and a region 3 was set on the side of the region 2 away from the kitten nematode. The size of each region was 0.75 ⁇ 1.78 cm, and the distance between region 1 and region 2 was 0.56 cm. Images were taken for 24 hours using a digital camera for microscope (Nikon DS-2MBWC camera head) for each region. Using the image analysis software ImageJ, the captured images were digitized by counting the number of dots and how much traces of the Kita-kobe nematode moved in each area.
  • FIG. 3 The results obtained by image analysis are shown in FIG. In FIG. 3, the left side is the result of the control, and the right is the result of the sample in which the cellular slime mold is present.
  • Control there was no significant difference in regions 1 to 3, but in samples with cellular slime molds, the value of region 1 was clearly lower than in regions 2 and 3, and the nematode nematode repelled D. discoideum. This can be confirmed quantitatively.
  • the relative amount of the vertical axis in the figure is expressed by the area ratio of each region with respect to the total of all regions for the movement locus (track) in which the nematode has moved.
  • Example 3 Confirmation of repellent behavior of Kita Nebu nematode by cellular slime mold secretions>
  • a filter paper having a diameter of 2 cm is placed on the end of the phytagel medium in the petri dish, and D. discoideum as a single cell cellular slime mold pretreated in the same manner as in Experimental Example 1 is placed on the filter paper. It was generated at 1.0 ⁇ 10 8 cells. 48 hours later, the filter paper was removed from the petri dish together with the fruit slime cell slime molds, and the cellular slime molds were removed from the phytagel medium.
  • FIG. 4 (a) a filter paper having a diameter of 2 cm is placed on the end of the phytagel medium in the petri dish, and D. discoideum as a single cell cellular slime mold pretreated in the same manner as in Experimental Example 1 is placed on the filter paper. It was generated at 1.0 ⁇ 10 8 cells. 48 hours later, the filter paper was removed from the petri dish together with the fruit slime
  • Results of quantitative analysis performed in the same manner as in Experimental Example 2 are shown in FIG. In FIG. 5, the left side is the result of the control, and the right side is the result of the sample from which the cellular slime mold is removed together with the filter paper.
  • the behavior of Kitanekobu nematode was confirmed to be almost the same in all regions, but in the sample from which cellular slime molds were removed together with the filter paper, the value of Region 1 was clearly lower than that of Region 2, and Kitanekobu nematode was the sample. It was possible to quantitatively confirm that they had evaded any substances present in them.
  • the cellular slime molds are multicellular bodies, and the substance that repels the nematode nematode is a child. It is considered as a substance secreted from the entity.
  • Example 4 Concentration dependence on repellent properties of cellular slime mold secretions> From the results of Experimental Example 3, it was clarified that it was a substance secreted or released from cellular slime molds that repels the Kita Nebu nematode, and the concentration of the cellular slime mold secretions in its repellent characteristics In this experimental example, it was investigated whether there was dependency.
  • FIG. 6C shows the observation results when 100 ⁇ l of a sample having a concentration of 4.0 mg / ml (corresponding to 0.4 mg of sample) is immersed in the filter paper. From FIG. 6 (c), it can be seen that the Kitaneko nematode hardly penetrates the region 1.
  • the graphs of FIGS. 7A to 7C show the results of quantitative analysis of the behavior of the nematode nematode in the region 1 and the region 2 with respect to the samples having three kinds of concentrations. In the sample 3 shown in FIG.
  • Example 5 Infection test of Kitaneko nematode on plants in the presence of cellular slime mold secretions>
  • Miyakogusa belonging to the leguminous family prepared as follows was used as a plant. The hulls of the seeds that had been previously water-retained and sterilized were removed, and the seeds were arranged on a medium prepared from Ca, P, iron citrate, and KNO 3 with an interval of 5 mm or more, and stored at 22 ° C. Two days later, the germinated Miyakogusa was transferred onto a new medium. As shown in FIG. 8, three Miyakogusa (sample Nos. 1 to 3) were juxtaposed on one plate at an interval of 35 mm to form an infection experiment plate.
  • the slime mold extract having a concentration of 4.0 mg / ml obtained in Experimental Example 4 was immersed in 100 ⁇ l of a piece of filter paper obtained by cutting a filter paper having a radius of 1 cm in half and air-dried in a clean bench for 1 hour. As shown in FIG. 8, the filter paper was placed at a point 2 mm from the root of the left-winged oyster (sample No. 1) among the oysters on the infection experiment plate. About 50 nematodes were sown at a point 10 mm away from the tip of the root of each nymph, and cultured at 23 ° C. for 48 hours. Lotus root was lightly washed with water and soaked in 25% antiformin for 3 minutes.
  • FIG. 10 is an enlarged photograph showing the infection state by the Kitanekobu nematode in the roots of three Lotus japonicus.
  • a plurality of slender line-shaped ones are Kitanekobu nematodes, and black ellipses and circular ones are bubbles.
  • Specimen No. The number of infections by the nematode nematode in 1-3 roots of the Lotus japonicus is shown in the graph of FIG. In Control, no slime mold extract exists, but sample No. The number 2 is significantly higher. This is sample no. Since sample 2 is located in the middle, sample no. It is considered that 2 is easier to access than the samples 1 and 3, which are easier to access to the nematode nematodes other than the nematode nematode present immediately below the sample. On the other hand, when slime mold extract is present, sample no. The number of nematode nematodes in 1 is significantly reduced.
  • Kita Nebu nematode repelled the invasion of the roots of Lotus japonicus close to the slime mold extract.
  • the cellular slime mold secretion or the liquid containing the same is sprayed on the soil or the like, thereby repelling the kitten nematode existing or trying to enter.
  • the infection test of the mosquito nematode to Miyakogusa was conducted in the same manner as in Experimental Example 5. That is, the hulls of precious water retentive and sterilized Miyakogusa seeds were removed, and the seeds were arranged at intervals of 5 mm or more on a medium prepared from Ca, P, iron citrate and KNO 3 and stored at 22 ° C. Two days later, the germinated Miyakogusa was transferred onto a new medium. As shown in FIG. 8, three Miyakogusa (test Nos. 1 to 3) were juxtaposed on one plate at an interval of 35 mm to form an infection experiment plate.
  • the slime mold extract having a concentration of 80 mg / ml obtained in this experimental example was immersed in 100 ⁇ l of a filter paper piece obtained by cutting a filter paper having a radius of 1 cm in half and air-dried in a clean bench for 1 hour.
  • the filter paper was placed at a point 2 mm to the left of the root of the Lotus japonicus (sample No. 1) growing on the left side among the Lotus fly on the infection experiment plate.
  • About 50 nematodes were sown at a point 10 mm below the tip of the root of each nymph, and cultured at 23 ° C. for 48 hours.
  • the roots of Lotus japonicus were lightly washed with water and soaked in 25% antiformin for 3 minutes.
  • the roots were thoroughly washed with water, put into the wells of a 6-well plate to which acidic fuchsin stock was added, and then heated in a thermostat at 100 ° C. for 5 minutes. Thereafter, heat was radiated for 10 minutes at room temperature, immersed in a petri dish with acid-added glycerin spread over one side, and heated at 95 ° C. for 20 minutes. Stained Kitanekobu Nematode was sample No. The roots 1 to 3 were crushed with a cover glass, and the number of nematodes was counted visually.
  • Specimen No. The number of infections by the nematode nematode in 1-3 roots of the Lotus japonicus is shown in the graph of FIG. In Control, no slime mold extract exists, but sample No. The number 2 is significantly higher. This is sample no. Since sample 2 is located in the middle, sample no. It is considered that 2 is easier to access than the samples 1 and 3, which are easier to access to the nematode nematodes other than the nematode nematode present immediately below the sample. On the other hand, when slime mold extract is present, sample no. The number of Kitanekobu nematodes in 1 is extremely small.
  • Kita Nebu nematode was repelled from invading the roots of Lotus japonicus close to the slime mold extract. Further, it should be noted that sample No. The number of Kitanekobu nematode of 3 is sample No. It is more than the number of 2 Kitanekobu nematodes. Compared with the result of Experimental Example 5 shown in FIG. 9 (the number of Kitanekobu nematodes of sample No. 3 is smaller than that of sample No. 2), the slime mold extract prepared in this experimental example It can be seen that the use of can further repel the nematode nematode from Miyakogusa.
  • Experimental Example 5 substances generated from the fruit bodies of cellular slime molds were collected with beads through a filter paper.
  • substances generated from the fruit bodies of cellular slime molds were directly extracted into methanol. Are collected.
  • the repellent substance of the nematode nematode is contained in the stem or spore portion more than the basal disc portion of the cellular slime mold. Based on this, it is possible to recover the repellent substance in a higher yield than by collecting the repellent substance directly from the handle or spore by dipping the fruit body in methanol and collecting it through the filter paper. Conceivable.
  • the present inventor speculates that the base of the fruiting body contains a growth inhibitory substance (not identified at this time) that inhibits the growth of roots of Lotus japonicus. It is believed that the growth inhibitory substance was able to pass through the filter paper at a relatively high rate because it was attached to the filter paper.
  • both the growth inhibitory substance and the repellent substance of the nematode nematode are extracted directly with methanol, of which the extraction ratio of the repellent substance to the growth inhibitory substance is higher than in the case of Experimental Example 5. It seems that it is getting higher.
  • the movement trajectory of many Kita Nebu nematodes is seen in a region away from the cellular slime molds (the right side of the drawing), which indicates that the Kita Nebu nematodes have repelled those D-type cell slime molds.
  • FIGS. 12 (a) and 12 (b) among P.pallidum and P.violaceum belonging to the genus P, the kitten nematode showed repellent behavior against P.pallidum. .violaceum showed no repellent behavior as in Experimental Example 1. Further, as shown in FIG. 13, for the A. subglobosum belonging to the genus A, the kitten Nematode showed no repellent behavior as in the case of Control shown in FIG. 14.
  • the cellular slime molds belonging to the genus D among the cellular slime molds are effective in repelling the Kita Nebu nematode.
  • the cellular slime mold secretion of the present invention is isolated and extracted from the cellular slime mold originally present in nature, it effectively repels the nematode nematode without damaging crops and organisms. Can do. Since the present invention can increase the productivity in the agricultural field of the whole world while maintaining the safety of crops and workers, a remarkable international contribution in the agricultural field is expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Biotechnology (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Mycology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Virology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

ネコブ線虫を忌避させるための忌避剤は、Dictyostelium属に属する細胞性粘菌から分泌された物質を有効成分とする。細胞性粘菌から分泌された物質は、例えば、細胞性粘菌を子実体に培養し、細胞性粘菌を分離して抽出して得られる。細胞性粘菌として、D.discoideum, D.purpureum, D.mucoroides,D.fasciculatum,D.monochasioides,D.lacteumまたはD.giganteumを使用し得る。農作物や作業者に悪影響を与えることなくネコブ線虫を忌避させることができる。

Description

ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法
 本発明は、農作物の根に寄生するネコブ線虫を忌避させるための物質及びその製造方法並びにその忌避剤を用いた忌避方法に関する。
 線虫は、線形動物門に属する動物の総称であり、極めて多くの種が実在している。これらの線虫の殆どは人間にとって無害であるが、植物に寄生して加害する線虫が知られている。例えば、ネコブ線虫類、シスト線虫類、ネグサレ線虫類が挙げられる。このうち、キタネコブ線虫やサツマイモネコブ線虫に代表されるネコブ線虫は、ジャガイモ、ニンジン、イチゴなどの農作物の根に寄生し、根にコブを作って構造を破壊して腐敗させるとともに、青枯病などの土壌病害の発生を助長する。全世界の農業生産物の害虫被害のうち約5%がキタネコブ線虫によるものといわれている。このようなネコブ線虫による被害に対処するため、日本では欧州や米国で使用が禁止されている燻煙剤(臭化メチル)と有機リン化合物を主体とした毒性の高い駆除剤が使用されている。
 しかしながら、このような化学物質の散布は、作物や作業者の安全性という見地から好ましくない。特に、作物の育成中に線虫の感染が見られた場合に、作物にそのような毒性が高い化学物質を使用することはできない。このため、作物や作業者の安全性を維持しつつ、ネコブ線虫を駆除する方法が望まれている。
 特許文献1には、ネコブ線虫などの線虫を駆除するために特定の置換基を有するアルキルベンゼンを使用することが開示されている。しかし、このような化合物が農作物に与える影響については、この文献に述べられていない。また、特許文献2には、生コーヒー豆抽出物の有効成分を用いたネグサレ線虫の防除剤が開示されている。生コーヒー豆抽出物の有効成分として、例えば、クロロゲン酸等のフェノール化合物が含まれており、このような有効成分がネグサレ線虫の駆除に効果的であり、一方、天然由来成分であるために人体や作物に対する安全性が高いことが示されている。特許文献3には、特定のキク科植物の抽出物を有効成分とするネコブ線虫防除剤が開示されている。
 ところで、細胞性粘菌は、土壌に普遍的に生息する真核微生物であり、通常は単細胞状態でバクテリアを餌として増殖する。細胞性粘菌と同じ生息域を持つ非寄生性線虫であるCaenorhabditis elegansは、細胞性粘菌と被食-捕食者の関係性を持つ一方で、この線虫の幼虫は細胞性粘菌の一種であるDictyostelium purpureumと同一容器内で共培養すると、細胞性粘菌を避けるような行動を示すことが知られている(非特許文献1)。しかし、細胞性粘菌と、植物寄生性線虫であるネコブ線虫との具体的なコミュニケーションはこれまでに知られていない。
R. Kessin, et al.  Proc. Natl. Acad. Sci. USAVol. 93, pp. 4857-4861, May 1996 Development Biology
特開平7-25707号公報 特開2012-232950号公報 特許第4528982号公報
 本発明の目的は、農作物や作業者に悪影響を与えることなくネコブ線虫を忌避させるための忌避剤及びそれを用いた方法を提供することにある。
 本発明者は、土壌中に生息する細胞性粘菌とキタネコブ線虫などのネコブ線虫が生物学的コミュニケーションを行っていることを発見し、この発見に基づいてネコブ線虫を忌避させる忌避剤を細胞性粘菌から製造することに成功した。本発明の第1の態様に従えば、ネコブ線虫を忌避させるための忌避剤であって、Dictyostelium属に属する細胞性粘菌から分泌された物質を有効成分とすることを特徴とする忌避剤が提供される。
 本発明の忌避剤において、前記細胞性粘菌から分泌された物質が、多細胞期の細胞性粘菌、特に細胞性粘菌の子実体から分泌された物質でもよい。また、前記細胞性粘菌が、D.discoideum,D.purpureum,D.mucoroides,D.fasciculatum,D.monochasioides,D.lacteum及びD.giganteumからなる群から選ばれる一種であり得る。
 本発明の忌避剤において、前記細胞性粘菌から分泌された物質は、細胞性粘菌を培地で培養させ、培養した細胞性粘菌を培地から除去した後に、培地から抽出して得てもよい。この場合、前記培地からの抽出が、有機溶媒による抽出であるか、あるいは、吸着剤による吸着であってもよい。本発明の忌避剤は、さらに、前記細胞性粘菌を含んでいてもよい。
 本発明の第2の態様に従えば、本発明の第1の態様に従う忌避剤を、ネコブ線虫が存在するエリアに適用することでネコブ線虫を忌避させる方法が提供される。
 本発明の第3の態様に従えば、ネコブ線虫を忌避させるための忌避剤の製造方法であって、Dictyostelium属に属する細胞性粘菌を培養して多細胞期の細胞性粘菌に変化させ、前記多細胞期の細胞性粘菌から有機溶媒によって前記多細胞期の細胞性粘菌の分泌物質を抽出することを含む前記忌避剤の製造方法が提供される。前記有機溶媒は、メタノールまたはエタノールであってもよい。
[規則91に基づく訂正 14.01.2015] 
図1(a)は、細胞性粘菌が不在の場合(Control)のキタネコブ線虫の挙動を示す顕微鏡写真であり、図1(b)~(d)は、それぞれ、細胞性粘菌としてD.discoideum、D.purpureum及びD.mucoroidesをキタネコブ線虫の左側に存在させた場合のキタネコブ線虫の挙動を示す顕微鏡合成写真である。 実験例2における操作と結果を示す図であり、(a)はシャーレ内におけるキタネコブ線虫と細胞性粘菌の配置を示す概念図であり、(b)は領域1~3に対するキタネコブ線虫の移動軌跡を示す顕微鏡写真である。 実験例2において領域1~3におけるキタネコブ線虫の存在を定量的に表したグラフである。 実験例3における操作と結果を示す図であり、(a)は、ろ紙上に発生させた細胞性粘菌が48時間経過後に子実体に形態変化した様子を示す図であり、(b)は子実体が存在しているろ紙を培地から除去して、培地内にキタネコブ線虫を播種した様子を示す概念図であり、(c)は顕微鏡写真で撮影したキタネコブ線虫の領域1、2に対する移動軌跡を示す図である。 実験例3において領域1及び2におけるキタネコブ線虫の行動軌跡を数値化して表したグラフである。 実験例4における操作と結果を示す図であり、(a)は、ビーズが存在する培地上に、細胞性粘菌を発生させたろ紙を配置した様子を示す図であり、(b)はビーズから抽出された細胞性粘菌抽出物が付いたろ紙を培地に設置するとともにキタネコブ線虫を播種した様子を示す概念図であり、(c)は領域1及び2に対するキタネコブ線虫の移動軌跡を示す顕微鏡写真である。 実験例4の結果を示し、(a)~(c)は濃度の異なる粘菌抽出物の試料1~3を用いた場合における領域1及び2におけるキタネコブ線虫の行動軌跡を数値化して比較したグラフである。 実験例5の実験条件を概念的に示す図である。 実験例5における3本のミヤコグサの根のキタネコブ線虫による感染数を表す表である。 実験例5における3本のミヤコグサの根のキタネコブ線虫による感染状態を示す写真である。 実験例7におけるDictyostelium属に属する細胞性粘菌に対するキタネコブ線虫の移動軌跡を示す顕微鏡写真であり、細胞性粘菌として(a)はD. fasciculatumを、(b)はD.monochasioidesを、(c)はD.lacteumを、(d)はD.giganteumをそれぞれ用いた場合を示す。 実験例7におけるPolysphondylium属に属する細胞性粘菌に対するキタネコブ線虫の移動軌跡を示す顕微鏡写真であり、細胞性粘菌として(a)はP.pallidumを、(b)はP.violaceumをそれぞれ用いた場合を示す。 実験例7におけるA.subglobosumに対するキタネコブ線虫の移動軌跡を示す顕微鏡写真である。 実験例7におけるcontrolの顕微鏡写真である。 実験例6における3本のミヤコグサの根のキタネコブ線虫による感染数を表す表である。
 以下、本発明のネコブ線虫の忌避剤及びそれを用いるネコブ線虫を忌避させる方法の実施形態について説明する。
<忌避対象物>
 農作物の根に寄生する植物寄生性線虫として、主に、ネグサレ線虫、シスト線虫、ネコブ線虫が知られているが、本発明では、ネコブ線虫を忌避対象とし、特に、キタネコブ線虫(Meloidogynehapla)、サツマイモネコブ線虫(Meloidogyneincognita)、ジャワネコブ線虫(Meloidogynejavanica)、アレナリアネコブ線虫(Meloidogynearenaria)のようなネコブ線虫を忌避対象とする。これらのネコブ線虫は、トマト、じゃがいも、さつまいも、メロン、すいか、かぼちゃ、きゅうり、ほうれんそう、にんじん等の農作物に寄生するが、根の中に定着して増やした次世代の線虫を土中に放出しながら加害する。
<細胞性粘菌及びその入手>
 細胞性粘菌は、主に、Dictyostelium属、Polysphondylium属、及びAcytostelium属の三つの属に分類され、本発明で用いる細胞性粘菌は、Dictyostelium属(以下、適宜、D.またはD属と略することがある)に属する細胞性粘菌であり、例えば、D.discoideum、D.purpureum、D.mucoroides、D.fasciculatum、D.monochasioides、D.lacteum、D.giganteumが挙げられる。これらのうち、D.discoideum、D.fasciculatum、D.lacteum、D.giganteumが、培養がしやすく、高密度でも子実体を作り易い点で好ましく、同様の観点で特に、D.discoideumまたはD.giganteumが好ましい。D.giganteumは和名セイタカタマホコリカビと呼ばれ、大きな子実体を作ることが知られている。
 Dictyostelium属は、形態的に枝分かれしておらず、細胞性のしっかりした柄を持ち、柄が1本で胞子塊を支えることができる。これに対して、Ploysphondylium属(以下、適宜、P.またはP属と略することがある)は、横方向にWhorl(輪生枝)と呼ばれる枝分かれ構造を持ち、柄が細く、Acytostelium属(以下、適宜、A.またはA属と略することがある)は細胞性の柄を持たずセルロースのチューブ状の柄を持つ。胞子は休眠状態でいるため活動を停止しているが、柄細胞は遺伝的には死んでいても生理学的には生きており、化合物を合成・分泌している。本発明者は、ネコブ線虫の忌避活性は、柄細胞から分泌されている物質によるものと推定しており、上記の3つの属の中で最もしっかりした柄細胞を持つものはDictyostelium属であるため、ネコブ線虫の忌避活性を示す物質を多く分泌すると考えられる。
 なお、細胞性粘菌は遺伝子的な分類方法(DNAの塩基配列よる分類)ではグループIからIVに分けることもできる(P.Schaap et al. Science, 27 OCTOBER 2006, Vol. 314 no. 5799 pp. 661-663)。例えば、D.discoideum, D.purpureum, D.mucoroides, D.giganteumはグループIVに属し、D.lacteumはグループIIIに属し、Acytostelium属に属するA.subglobosumやPolysphondylium属に属するP.pallidumはグループIIに属し、D.fasciculatumはグループIに属する。これらの細胞性粘菌は、例えば、ナショナルバイオリソースプロジェクト(NBRP)から胞子の状態で入手し、培養することができる。あるいは、土壌から採取したものを分離して用いることができる。
<細胞性粘菌分泌物>
 本発明者は、後述する実施例の結果より、ネコブ線虫を忌避させる物質(忌避剤の有効成分)は、細胞性粘菌そのものではなく、細胞性粘菌から分泌される物質(細胞性粘菌分泌物)が線虫に対して忌避性を示すことを見出した。細胞性粘菌は、胞子の状態で入手した場合、発芽して、単細胞化し、次いで、飢餓状態において多細胞化し、さらに、子実体が形成される。本発明者によれば、ネコブ線虫を忌避させる細胞性粘菌分泌物は、特に、細胞性粘菌の子実体から多量に得ることができることを見出した。細胞性粘菌分泌物は、細胞性粘菌による代謝産物であると考えられるが、その化合物(または生体物質、微生物)などの特定は現段階ではできていない。しかしながら、細胞性粘菌からネコブ線虫を忌避させる物質(忌避剤)を生成することができることは後述する実施例で実証されており、有機溶媒で抽出されることからすれば疎水性物質(例えば有機化合物)と考えられる。
<細胞性粘菌分泌物の抽出方法(製造方法)>
 ネコブ線虫を忌避させる細胞性粘菌分泌物は、例えば、以下のような方法で得ることができる。細胞性粘菌は、通常、粉末(胞子)状で入手することができる。このような粉末状の細胞性粘菌を、寒天内に大腸菌と共に培養する。寒天培地内で細胞性粘菌の胞子が発芽してアメーバ(単細胞)となる。アメーバは大腸菌を餌として増殖するが、餌が尽きると飢餓状態となり集合して多細胞化し、その後、子実体となる。得られた子実体を回収し、メタノールやエタノール等の有機溶媒中に加えて静置する。子実体は有機溶液中で沈殿し、エタノールの上層(上澄液)には子実体から分泌された物質のうち、疎水性物質が溶解または分散している。この上澄液を子実体からろ過等により分離して取り出すことで細胞性粘菌分泌物溶液が得られる。必要に応じて細胞性粘菌分泌物溶液を乾燥することで固形分として取り出すこともできる。なお、細胞性粘菌は必ずしも子実体(多細胞期)に形態変化するまで培養しなくともよい。但し、単細胞期の細胞性粘菌から分泌された物質は、多細胞期から分泌された物質よりも忌避活性が低い。
 あるいは、細胞性粘菌分泌物を分離・抽出するために、吸着剤により吸着させることもできる。例えば、細胞性粘菌(またはその子実体)をイオン交換樹脂などの吸着剤(例えば、大腸菌の吸着に使用されるアンバーライトXAD-2)を含む緩衝液上にろ紙などのフィルター上で培養する。細胞性粘菌から分泌された物質はフィルターを通過することで細胞性粘菌から分離されて吸着剤に吸着する。吸着剤は疎水性物質を吸着するものが望ましい。吸着剤をエタノールなどの有機溶媒に加えて、溶媒抽出することで細胞性粘菌分泌物溶液が得られる。細胞性粘菌分泌物溶液を、さらに乾燥することで固形分として得ることもできる。なお、後述する実施例より、ネコブ線虫の細胞性粘菌分泌物に対する忌避性は細胞性粘菌分泌物の濃度依存性を示すことが判明しているので、得られた細胞性粘菌分泌物又はその溶液又は分散液を濃縮するか、濃縮した形で抽出することが望ましい。
<ネコブ線虫を忌避させる方法>
 上記のようにして得られた細胞性粘菌分泌物またはその溶液を、農地など土壌や植物に適用することでネコブ線虫を忌避させることができる。農地は、サツマイモ、ジャガイモ、ピーマン、ナス、ダイコン、ハクサイ、サトイモ、ダイズ、イチゴ、トマト、スイカ、メロン、タマネギ、落花生、ニンジン、ゴボウ、ナガイモ、トウモロコシ、アスパラガス、ブドウなどを栽培する農地が挙げられるが、これらに限定されず、ネコブ線虫が存在するまたは存在するであろういかなるエリアでもよい。
 農地などの土壌に適用するには、細胞性粘菌分泌物の溶液や分散液を噴霧したり、粉体として散布してもよく、任意の形態で散布することができる。噴霧や散布方法は任意の方法及び装置を用い得る。細胞性粘菌分泌物を粉体として散布する際、細胞性粘菌分泌物を担体に担持させてもよい。そのような担体は、細胞性粘菌をその分泌物から分離させるときに使用したろ紙やビーズであってもよく、あるいは農地などに散布する観点からゼオライトなどの土壌改質剤に担持させてもよい。或いは農薬や肥料に混合して農地などに散布してもよい。細胞性粘菌分泌物またはその溶液の使用量は、土壌中に生息するネコブ線虫を十分に忌避させる量であればよく、特に限定されず、例えば、土壌1リットル当たり、細胞性粘菌分泌物を100~500mg使用することができる。あるいは、細胞性粘菌分泌物の溶液に植物の根を浸漬したり、根に溶液を散布することで直接、細胞性粘菌分泌物またはその溶液を植物に適用してもよい。細胞性粘菌分泌物は、自然界に存在している物質を分離抽出したものであるために、農作物を枯れさせたり生物を殺すことなく、ネコブ線虫を有効に忌避させることができる。
 上記のようにして得られる細胞性粘菌分泌物をネコブ線虫の忌避剤の有効成分として用いることができる。忌避剤は細胞性粘菌分泌物単独でもよく、他の成分が添加されていてもよい。他の成分として、例えば、肥料、農薬、土壌改質剤、細胞性粘菌分泌物を担持する担体などが挙げられる。また、忌避剤には、製造の容易性や忌避効果という観点からすれば、細胞性粘菌自体が含まれていてもよい。但し、前述のようにネコブ線虫を忌避する有効成分を濃縮して使用する場合には、細胞性粘菌や脂質などが除去された細胞性粘菌分泌物だけを使用するのが望ましい。
 以下、本発明の忌避剤の実施例を、以下の実験例1~5を通じて具体的に説明するが、本発明はそれらに限定されるものではない。
<実験例1:細胞性粘菌によるネコブ線虫の忌避実験>
 表1に示す4種類の細胞性粘菌(D.discoideum,D.purpureum,D.mucoroides,P.violaceum)に対するキタネコブ線虫の忌避行動を調査するために以下のような実験を行った。4種類の細胞性粘菌はNBRPなどから入手し、キタネコブ線虫は本発明者の一人であるDerek Gotoが所属する北海道大学農学部Derek Goto研究室で培養したものを用いた。
 細胞性粘菌は、大腸菌やクレブシエラを餌として寒天培地で増殖させ、対数増殖期に薬サジで回収して、リン酸バッファに懸濁させた後、餌を遠心処理によって洗浄・取り除いて飢餓処理を行った。
こうして前処理した細胞性粘菌を1.0×10 cells/cmとなるよう、フィタゲル(phytagel)を加えたシャーレ左側に発生させた。1.5時間後に(単細胞期)、図2(a)に示すように、シャーレ中央地点にキタネコブ線虫10匹を播種した。顕微鏡(Nikon AZ100 Multizoom microscope)を用いてキタネコブ線虫の行動を観察した。
 同様の実験を、細胞性粘菌をシャーレ左側に発生させた後、24時間経過させて細胞性粘菌が子実体に形態変化したことを確認してから、シャーレ中央にキタネコブ線虫10匹を播種して行った。
 Controlとして、細胞性粘菌を含まないリン酸緩衝液を用いた。図1(a)は、細胞性粘菌が存在していない場合(Control)を、図1(b)は多細胞期のD. discoideumが存在している場合、図1(c)は多細胞期のD. purpureum が存在している場合、図1(d)は多細胞期のD. mucoroides が存在している場合のキタネコブ線虫の挙動を示す顕微鏡写真である。なお、写真は、デジタルカメラ(Nikon DS-2MBWC camera head)を用いて画像を撮影した後、それらの画像を繋ぎ合せる画像処理を行ってシャーレ全域を表してある。図1(a)に示すようにControlではキタネコブ線虫の移動した跡がシャーレ全面、特にシャーレ中央から右側にも左側にも及んでいる。それゆえ、キタネコブ線虫は、通常、ランダムな行動を示すことが分かる。一方、図1(b)に示すように、全てのキタネコブ線虫が、シャーレの左側のD. discoideumを避けるような忌避行動が観察された。また、図1(c)に示すように、1または2匹のキタネコブ線虫だけがシャーレの左側のD. purpureumに向かうような行動が確認された。図1(d)でも図1(c)と同様の挙動が確認された。一方、細胞性粘菌として、P. violaceumを用いた場合には、図1(a)~(c)に示したような挙動は確認されず、Controlと同様の結果であった。表1に結果を示す。なお、表1中、キタネコブ線虫が細胞性粘菌を避けた度合いを以下の基準で表した。+++:10匹のいずれのキタネコブ線虫も細胞性粘菌の方に向わなかった。++:1~2匹のキタネコブ線虫だけが細胞性粘菌の方に向かった。+:3~4匹のキタネコブ線虫が細胞性粘菌の方に向かった。-:キタネコブ線虫はランダムに動いた(シャーレ中央から左側にも右側にも同じ割合で動いた)。
Figure JPOXMLDOC01-appb-T000001
 
 なお、単細胞期の細胞性粘菌については、表1に示す通り、多細胞期の細胞性粘菌ほどではないが、D.discoideum,D.purpureum,D.mucoroidesについてキタネコブ線虫がそれらの細胞性粘菌をわずかながら避ける行動をとることが確認された。
<実験例2:キタネコブ線虫の忌避行動の定量的解析>
 実験例1では、キタネコブ線虫が細胞性粘菌を忌避する行動を顕微鏡写真の画像処理により視覚的に追跡したが、この実験例ではキタネコブ線虫の行動を以下のようにして定量的に解析した。実験例1と同様にしてフィタゲルを加えたシャーレの左側に細胞性粘菌としてD. discoideumを1.0×10 cells/cmの密度で発生させた。次いで、細胞性粘菌の端から右側19mmの地点にキタネコブ線虫を5匹播種した(図2(a)参照)。播種から24時間経過後にキタネコブ線虫の行動を次のようにして解析した。図2(b)に示すように、キタネコブ線虫の両側に領域1及び2を設定し、さらに領域2のキタネコブ線虫から離れる側に領域3を設定した。各領域のサイズは0.75×1.78cmであり、領域1と領域2の間隔は0.56cmであった。各領域について顕微鏡用デジタルカメラ(Nikon DS-2MBWC camera head)を用いて24時間に渡って画像を撮影した。撮影した画像を画像解析ソフトImageJを用い、各領域でどの程度、キタネコブ線虫が移動した跡があるかをドット数をカウントして数値化した。
 画像解析により得られた結果を、図3に示す。図3中、左側はControl、右は細胞性粘菌の存在する試料の結果である。Controlでは領域1~3で有意の差は見られなかったが、細胞性粘菌が存在する試料では、領域1の値が明らかに領域2及び3より低く、キタネコブ線虫がD. discoideumを忌避したことが定量的に確認することができる。なお、図の縦軸の相対量は、線虫が移動した移動軌跡(トラック)について、全ての領域の合計に対するそれぞれの領域の面積比で表したものである。
<実験例3:細胞性粘菌分泌物によるキタネコブ線虫の忌避行動の確認>
 この例では、キタネコブ線虫の忌避行動を引き起こす原因について調査した。図4(a)に示すように、シャーレ内のフィタゲル培地の端に直径2cmのろ紙を置き、ろ紙上に実験例1と同様にして前処理した単細胞の細胞性粘菌としてのD. discoideum を1.0×10 cellsで発生させた。48時間後に、ろ紙を子実体の細胞性粘菌ごとシャーレから取り出して、細胞性粘菌をフィタゲル培地から除去した。次いで、図4(b)に示すようにろ紙跡の右端から右側12mmの地点にキタネコブ線虫5匹を播種し、24時間経過後に顕微鏡(Nikon AZ100 Multizoom microscope)を用いてキタネコブ線虫の行動を観察した。この観察では、実験例2と同様にしてキタネコブ線虫を播種したフィタゲル培地の両側に領域1及び領域2を設定し、それらの領域におけるキタネコブ線虫の行動を定量的に解析した。図4(c)に示すように、領域1及び領域2におけるキタネコブ線虫の移動軌跡が観察され、キタネコブ線虫の領域1よりも領域2における軌跡が多いことから、ろ紙跡に存在する物質がキタネコブ線虫を忌避させたと考えられる。
 実験例2と同様にして行った定量的解析の結果を、図5に示す。図5中、左側はControl、右は細胞性粘菌をろ紙ごと除去した試料の結果である。Controlではいずれの領域もほぼ同程度にキタネコブ線虫の行動が確認されたが、細胞性粘菌をろ紙ごと除去した試料では、領域1の数値が明らかに領域2より低く、キタネコブ線虫が試料中に存在するなんらかの物質を忌避したことを定量的に確認することができた。この実験結果より、キタネコブ線虫を忌避させているのは細胞性粘菌そのものや二酸化炭素などの物理的要因ではないことが分かる。また、細胞性粘菌は飢餓処理がされて48時間経過しているので、キタネコブ線虫を忌避させているのは細胞性粘菌の餌であったバクテリアでもないことが分かる。それゆえ、キタネコブ線虫を忌避させているのは、細胞性粘菌から分泌(または放出)されている何らかの物質のうち、ろ紙を通過した物質であると考えられる。特に、細胞性粘菌を発生させて48時間が経過していることからすれば、細胞性粘菌は多細胞体である子実体となっており、キタネコブ線虫を忌避させている物質は子実体から分泌された物質と考えられる。
<実験例4:細胞性粘菌分泌物の忌避特性に対する濃度依存性>
 実験例3の結果より、キタネコブ線虫を忌避させているのは細胞性粘菌から分泌または放出された物質であることが明らかとなったので、その忌避特性に細胞性粘菌分泌物の濃度依存性があるかどうかについてこの実験例で調査した。
 水洗したイオン交換樹脂ビーズ(Amberlite XAS-2)1.5gを金属製のトレイに入れ、リン酸緩衝液を注いだ後、ろ紙を載置した金網をリン酸緩衝液の液面上方に配置した(図6(a))。ろ紙上に飢餓処理をした細胞性粘菌としてのD. discoideumを2.0×10cells/cmを超えない密度で発生させ、22℃で、ロータリシェーカー(ROTARY SHAKER NR-2(TAITEC JAPAN))で40rpmで72時間撹拌して培養した。ロータリシェーカーの撹拌により、リン酸緩衝液の液面が定期的に金網のろ紙に接触するようにした。この72時間の間に細胞性粘菌は子実体に変化したことを目視で確認した。その後、トレイからビーズを回収し、水洗及び水切りした後、ビーズを99.5%エタノール10mlに浸して、4℃にて2週間保存した。次いで、ビーズを浸したエタノールにさらに99.5%エタノールを10ml加え撹拌し、ビーズに付着した物質(疎水性物質)をエタノールで抽出した。その後、50%エタノールを用いて遠心分離して上澄みを回収する作業を、50%エタノールが透明になるまで繰り返した。回収した抽出液をナス型フラスコに移し、ロータリエバポレータで水を除去し、得られた固形物を40%メタノールに溶解し、やや黄色みを帯びた透明な液体を粘菌抽出液とした。
 この粘菌抽出液について、固形物を溶解した濃度が4.0mg/ml(試料1)、2.0mg/ml(試料2)及び0.4mg/ml(試料3)となるように3種類の溶液を用意した。これらの溶液をそれぞれろ紙に100μl浸みこませ、クリーンベンチ内で1時間風乾させた。次に、図6(b)に示すように、ろ紙をシャーレ内のフィタゲルに置き、ろ紙右端から右側12mmの地点にキタネコブ線虫を5匹播種した。24時間後に、実験例2と同様にして顕微鏡を用いてキタネコブ線虫の行動を定量的に解析した。
 実験例3と同様に、キタネコブ線虫の両側に領域1及び2を設定し、それらの領域におけるキタネコブ線虫の行動を顕微鏡で観察した。濃度が4.0mg/mlの試料100μl(試料0.4mg相当)をろ紙に浸みこませた場合の観察結果を図6(c)に示す。図6(c)より、キタネコブ線虫が領域1には殆ど侵入していないことが分かる。また、三種類の濃度の試料について領域1と領域2におけるキタネコブ線虫の行動を定量的に解析した結果を、図7(a)~(c)のグラフに示す。図7(c)に示した試料3では、粘菌抽出液の濃度が低いために、領域1と領域2との間で明確な数値差は見られないが、図7(b)では、領域2の方が領域1より明らかに高い数値を示しており、さらに図7(a)では、領域2の方が領域1より2倍以上高い数値を示している。よって、粘菌抽出液の濃度が高いほど、キタネコブキタネコブ線虫の忌避効果が顕著に表れることが分かった。
<実験例5:細胞性粘菌分泌物の存在下における植物へのキタネコブ線虫の感染試験>
 この実験例では、実際の植物が線虫に感染される際に、細胞性粘菌分泌物がどのように作用するかを試験した。植物として、以下のようにして用意したマメ科に属するミヤコグサを用いた。予め保水及び滅菌を行ったミヤコグサ種子の外皮を取り除き、Ca、P、クエン酸鉄、KNOから調製した培地上に5mm以上の間隔をあけて種子を並べ、22℃で保存した。2日後に、発芽したミヤコグサを新たな培地上に移し代えた。3本のミヤコグサ(試料No.1~3)を図8に示すように1つのプレート上に35mmの間隔を隔てて並列して感染実験用プレートとした。
 実験例4で得られた濃度4.0mg/mlの粘菌抽出液を、半径1cmのろ紙を半分に切ったろ紙片に100μl浸みこませ、クリーンベンチ内で1時間風乾させた。ろ紙を図8に示すように、感染実験用プレート上のミヤコグサのうち、最も左側に生育しているミヤコグサ(試料No.1)の根から2mmの地点に置いた。それぞれのミヤコグサの根の先端から10mm離れた地点に、線虫を約50匹播種し、48時間23℃で培養した。ミヤコグサの根を水で軽く洗浄し、25%アンチホルミンに3分間浸した。根を水でよく洗浄し、酸性フクシンストックを加えた6 wellプレートのwellに入れた後、100℃の恒温槽で5分間加熱を行った。その後、室温で10分間放熱し、酸添加グリセリンを一面に広げたシャーレの中に浸し、95℃で30分間加熱した。染色したキタネコブ線虫を試料No.1~3の根ごとカバーガラスで押しつぶし、目視によって感染線虫数を数えた。図10に3本のミヤコグサの根中のキタネコブ線虫による感染状態を拡大写真で示す。図10の試料No.1~3において、複数の細長線状のものがキタネコブ線虫であり、黒い楕円及び円状のものは気泡である。
 また、試料No.1~3のミヤコグサ根中のキタネコブ線虫による感染数を図9のグラフに示す。Controlでは、粘菌抽出液が存在していないが、試料No.2の数値が有意に高くなっている。これは、3本のミヤコグサのうち試料No.2が中間に位置するために試料No.2には試料1及び3に比べて試料直下に存在するキタネコブ線虫以外のキタネコブ線虫がアクセスし易くなるからであると考えられる。一方、粘菌抽出液が存在している場合には、試料No.1中のキタネコブ線虫の数が著しく低下している。このことからキタネコブ線虫が粘菌抽出液に近いミヤコグサの根に侵入することを忌避したことが分かる。この実験例の結果からすれば、細胞性粘菌分泌物又はそれを含む液体を土壌などに散布することで、そこに存在するまたは侵入しようとするキタネコブ線虫を忌避させることができる。
<実験例6:別の抽出方法で抽出した細胞性粘菌分泌物の忌避特性>
 25cm×25cmのシャーレ30枚に、実験例1と同様にして細胞性粘菌を載置し、1週間経過させて完全に子実体に変化させた。子実体を回収し、100%エタノール10mlを入れた容器に加え、4℃で10日保管した。この後、この容器に、総量が200mlになるようにエタノールを加え、ろ紙で子実体を分離してロータリエバポレータで乾固した。乾固した子実体を40%メタノール50mlに加えて懸濁させた後、再びろ紙で濾過し、ロータリエバポレータで乾固した。次いで、乾固した抽出物を、最終濃度80mg/mlになるように40%メタノールに溶解した。こうして黄色みを帯びた透明な液体(粘菌抽出液)を得た。
 得られた粘菌抽出液を用いて、実験例5と同様にして、ミヤコグサへのキタネコブ線虫の感染試験を行った。すなわち、予め保水および滅菌したミヤコグサ種子の外皮を取り除き、Ca、P、クエン酸鉄、KNOから調製した培地上に5mm以上の間隔を隔てて種子を並べ、22℃で保存した。2日後に、発芽したミヤコグサを新たな培地上に移し代えた。3本のミヤコグサ(試験No.1~3)を図8に示すように1つのプレート上に35mmの間隔を隔てて並列して感染実験用プレートとした。
 この実験例で得られた濃度80mg/mlの粘菌抽出液を、半径1cmのろ紙を半分に切ったろ紙片に100μl浸みこませ、クリーンベンチ内で1時間風乾させた。ろ紙を図8に示すように、感染実験用プレート上のミヤコグサのうち、左側に生育しているミヤコグサ(試料No.1)の根から2mm左側に離れた地点に置いた。それぞれのミヤコグサの根の先端から10mm下方に離れた地点に、線虫を約50匹播種し、48時間23℃で培養した。次いで、ミヤコグサの根を水で軽く洗浄し、25%アンチホルミンに3分間浸した。根を水でよく洗浄し、酸性フクシンストックを加えた6 wellプレートのwellに入れた後、100℃の恒温槽で5分間加熱を行った。その後、室温で10分間放熱し、酸添加グリセリンを一面に広げたシャーレの中に浸し、95℃で20分間加熱した。染色したキタネコブ線虫を試料No.1~3の根ごとカバーガラスで押しつぶし、目視によって線虫数を数えた。
 試料No.1~3のミヤコグサ根中のキタネコブ線虫による感染数を図15のグラフに示す。Controlでは、粘菌抽出液が存在していないが、試料No.2の数値が有意に高くなっている。これは、3本のミヤコグサのうち試料No.2が中間に位置するために試料No.2には試料1及び3に比べて試料直下に存在するキタネコブ線虫以外のキタネコブ線虫がアクセスし易くなるからであると考えられる。一方、粘菌抽出液が存在している場合には、試料No.1中のキタネコブ線虫の数が著しく少ない。このことからキタネコブ線虫が粘菌抽出液に近いミヤコグサの根に侵入することを忌避したことが分かる。さらに、注目すべきは、試料No.3のキタネコブ線虫の数が試料No.2のキタネコブ線虫の数よりも多くなっていることである。図9に示した実験例5の結果(試料No.3のキタネコブ線虫の数が試料No.2のキタネコブ線虫の数よりも少ない)と比べると、本実験例で調製した粘菌抽出液を使用すると、キタネコブ線虫をより一層ミヤコグサから忌避させることができることが分かる。
 本発明者は、この粘菌抽出液によるキタネコブ線虫の著しい忌避効果について以下のように考えている。実験例5では、細胞性粘菌の子実体から発生した物質をろ紙を通過させてビーズで回収したが、この実験例では細胞性粘菌の子実体から発生した物質をメタノール中に直接抽出して回収している。特に、キタネコブ線虫の忌避物質は、細胞性粘菌の子実体の基盤(basal disc)の部分よりも柄または胞子の部分に多く含まれていると考えられる。このようなことからすれば、子実体をメタノールに浸漬してその柄や胞子などから忌避物質を直接回収した方が、ろ紙を通して回収するよりも高い収率で忌避物質を回収することができると考えられる。さらに、本発明者は子実体の基盤にはミヤコグサの根の成長を阻害する成長阻害物質(現時点では同定していない)が含まれていると推測しており、実験例5では子実体の基盤がろ紙に付着していたために、成長阻害物質が比較的高い割合でろ紙を通過することができたと考えている。これに対して、この実験例では成長阻害物質もキタネコブ線虫の忌避物質のいずれもがメタノールで直接抽出されており、そのうち、忌避物質の成長阻害物質に対する抽出割合が実験例5の場合よりも高くなっていると考えられる。
 以上のことより、キタネコブ線虫の忌避物質を細胞性粘菌から製造するには、メタノールのような有機溶媒中に細胞性粘菌の子実体を直接浸漬させて抽出・精製するのが有効であることが分かる。なお、この実験例で有機溶媒としてメタノールを用いたが、エタノール、イソプロパノール、クロロホルム、酢酸エチルなどの他の有機溶媒でも構わない。
[規則91に基づく訂正 14.01.2015] 
<実験例7:他の細胞性粘菌の忌避特性の有無の観察>
 上記実験例で使用した細胞性粘菌以外の細胞性粘菌として、D属に属する D.fasciculatum、D.monochasioides、D.lacteum、D.giganteumについてキタネコブ線虫の忌避特性について観察した。また、P属に属するP.pallidum及びP.violaceum(実験例1で用いたもの)、A属に属するA.subglobosumについてもキタネコブ線虫の忌避特性について観察した。
 それらの7種類の細胞性粘菌について、実験例1と同様にして、それぞれ、シャーレ左側に発生させた後、24時間経過させて細胞性粘菌が子実体に形態変化したことを確認してから、シャーレ中央にキタネコブ線虫10匹を播種し、キタネコブ線虫の軌跡を観察した。観察結果は実験例2と同様にして顕微鏡用デジタルカメラを用いて24時間に渡って画像を撮影した。なお、Controlとして、細胞性粘菌を含まないリン酸緩衝液を用いた。D属のD.fasciculatum、D.monochasioides、D.lacteum及びD.giganteumについて撮影した画像を図11(a)~(d)にそれぞれ示す。いずれも、細胞性粘菌から離れた領域(図面右側)により多くのキタネコブ線虫の移動軌跡が見られることから、キタネコブ線虫はそれらのD属の細胞性粘菌を忌避したことが分かる。
 一方、図12(a)及び(b)に示すように、P属に属するP.pallidum及びP.violaceumのうち、P.pallidumに対してはキタネコブ線虫は忌避行動を示していたが、P.violaceumに対しては実験例1と同様に忌避行動を示さなかった。また、図13に示すように、A属に属するA.subglobosumに対してはキタネコブ線虫は、図14に示すControlと同様に忌避行動を示さなかった。
 以上の結果からすれば、細胞性粘菌のうち特にD属に属する細胞性粘菌は、キタネコブ線虫を忌避させるのに有効であることが分かる。
 以上、本発明を実施例により具体的に説明してきたが、本発明はそれらに限定されず、特許請求の範囲に記載の技術的思想の範囲内で種々の改変・改良・代替され得るもの及び方法も包含する。上記実施例の実験例2~6では、細胞性粘菌としてD.discoideumの子実体を用いたが、実験例1及び7の結果からすればD.discoideum以外のD属に属する細胞性粘菌分泌物についても、ネコブ線虫の忌避剤の有効成分となることが分かろう。
 本発明の細胞性粘菌分泌物は、自然界にもともと存在している細胞性粘菌から分離抽出したものであるために、農作物や生物に被害を与えることなくネコブ線虫を有効に忌避させることができる。本発明は、農作物や作業者の安全性を維持しつつ、全世界の農業分野における生産性を高めることができるため、農業分野における著しい国際貢献が期待される。

Claims (11)

  1.  ネコブ線虫を忌避させるための忌避剤であって、Dictyostelium属に属する細胞性粘菌から分泌された物質を有効成分とすることを特徴とする忌避剤。
  2.  前記細胞性粘菌から分泌された物質が、多細胞期の前記細胞性粘菌から分泌された物質であることを特徴とする請求項1に記載の忌避剤。
  3.  前記多細胞期の細胞性粘菌が、細胞性粘菌の子実体であることを特徴とする請求項2に記載の忌避剤。
  4.  前記細胞性粘菌が、D.discoideum、 D.purpureum、D.mucoroides、D.fasciculatum、D.monochasioides、D.lacteum及びD.giganteumからなる群から選ばれる一種であることを特徴とする請求項1~3のいずれか一項に記載の忌避剤。
  5.  前記細胞性粘菌から分泌された物質は、細胞性粘菌を培地で培養させ、培養した細胞性粘菌を培地から除去した後に、培地から抽出して得られることを特徴とする請求項1~4のいずれか一項に記載の忌避剤。
  6.  前記培地からの抽出が、有機溶媒による抽出であることを特徴とする請求項5に記載の忌避剤。
  7.  前記培地からの抽出が、吸着剤による吸着であることを特徴とする請求項5に記載の忌避剤。
  8.  さらに、前記細胞性粘菌を含むことを特徴とする請求項1~4のいずれか一項に記載の忌避剤。
  9.  請求項1~8のいずれか一項に記載の忌避剤を、ネコブ線虫が存在するエリアに適用することでネコブ線虫を忌避させる方法。
  10.  ネコブ線虫を忌避させるための忌避剤の製造方法であって、
     Dictyostelium属に属する細胞性粘菌を培養して多細胞期の細胞性粘菌に変化させ、
     前記多細胞期の細胞性粘菌から有機溶媒によって前記多細胞期の細胞性粘菌の分泌物質を抽出することを含む前記忌避剤の製造方法。
  11.  前記有機溶媒がメタノールまたはエタノールである請求項10に記載の忌避剤の製造方法。
PCT/JP2014/071892 2013-08-26 2014-08-21 ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 WO2015029872A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14840772.9A EP3056085B1 (en) 2013-08-26 2014-08-21 Repellant for repelling root-knot nematodes, method for manufacturing same and repelling method using repellant
JP2015534169A JP6172545B2 (ja) 2013-08-26 2014-08-21 ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013174827 2013-08-26
JP2013-174827 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029872A1 true WO2015029872A1 (ja) 2015-03-05

Family

ID=52586432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071892 WO2015029872A1 (ja) 2013-08-26 2014-08-21 ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法

Country Status (3)

Country Link
EP (1) EP3056085B1 (ja)
JP (1) JP6172545B2 (ja)
WO (1) WO2015029872A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150569A1 (ja) * 2016-02-29 2017-09-08 株式会社日立製作所 がん解析システム及びがん解析方法
WO2018047959A1 (ja) * 2016-09-12 2018-03-15 株式会社Hirotsuバイオサイエンス 線虫の嗅覚に基づく匂い物質に対する走性行動の評価方法、並びに該評価方法に用いるシャーレおよび行動評価系
WO2018168581A1 (ja) * 2017-03-14 2018-09-20 イビデン株式会社 害虫忌避剤および害虫忌避剤の製造方法
JP2020176080A (ja) * 2019-04-17 2020-10-29 学校法人上智学院 ネグサレ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法
US20210330715A1 (en) * 2020-04-23 2021-10-28 Amebagone, Llc Anti-biofilm agents and uses thereof
CN113984763A (zh) * 2021-10-28 2022-01-28 内蒙古大学 一种基于视觉识别的驱虫剂药效实验装置及方法
JP7517645B2 (ja) 2019-05-09 2024-07-17 学校法人上智学院 細胞性粘菌を使った線虫忌避剤の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128394A (en) * 1976-04-19 1977-10-27 Mitsubishi Rayon Co Ltd Novel adenine derivatives and plant jormone containing the same
JPH03152299A (ja) * 1989-11-09 1991-06-28 Sumitomo Ringyo Kk 植物病原菌又は植物寄生性線虫防除用水溶紙、及びその製造法
JP2010241738A (ja) * 2009-04-07 2010-10-28 Tomohiro Shirakawa 害虫誘引剤及びこれを有する害虫捕獲具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394872B2 (ja) * 2009-09-28 2014-01-22 パネフリ工業株式会社 ネグサレセンチュウ又はシストセンチュウの防除剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128394A (en) * 1976-04-19 1977-10-27 Mitsubishi Rayon Co Ltd Novel adenine derivatives and plant jormone containing the same
JPH03152299A (ja) * 1989-11-09 1991-06-28 Sumitomo Ringyo Kk 植物病原菌又は植物寄生性線虫防除用水溶紙、及びその製造法
JP2010241738A (ja) * 2009-04-07 2010-10-28 Tomohiro Shirakawa 害虫誘引剤及びこれを有する害虫捕獲具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KESSIN.R.H.: "HOW CELLULAR SLIME MOLDS EVADE NEMATODES", vol. 93, no. 10, 1996, pages 4857 - 4861, XP055329169 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150569A1 (ja) * 2016-02-29 2017-09-08 株式会社日立製作所 がん解析システム及びがん解析方法
WO2017149626A1 (ja) * 2016-02-29 2017-09-08 株式会社日立製作所 がん解析システム及びがん解析方法
WO2018047959A1 (ja) * 2016-09-12 2018-03-15 株式会社Hirotsuバイオサイエンス 線虫の嗅覚に基づく匂い物質に対する走性行動の評価方法、並びに該評価方法に用いるシャーレおよび行動評価系
JPWO2018047959A1 (ja) * 2016-09-12 2019-06-24 株式会社Hirotsuバイオサイエンス 線虫の嗅覚に基づく匂い物質に対する走性行動の評価方法、並びに該評価方法に用いるシャーレおよび行動評価系
US11150234B2 (en) 2016-09-12 2021-10-19 Hirotsu Bio Science Inc. Method for evaluating taxic behavior in response to odor substance based on olfactory sense in nematodes, and dish and behavior evaluation system used in evaluation method
WO2018168581A1 (ja) * 2017-03-14 2018-09-20 イビデン株式会社 害虫忌避剤および害虫忌避剤の製造方法
JPWO2018168581A1 (ja) * 2017-03-14 2020-05-14 イビデン株式会社 害虫忌避剤および害虫忌避剤の製造方法
JP2020176080A (ja) * 2019-04-17 2020-10-29 学校法人上智学院 ネグサレ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法
JP7517645B2 (ja) 2019-05-09 2024-07-17 学校法人上智学院 細胞性粘菌を使った線虫忌避剤の製造方法
US20210330715A1 (en) * 2020-04-23 2021-10-28 Amebagone, Llc Anti-biofilm agents and uses thereof
CN113984763A (zh) * 2021-10-28 2022-01-28 内蒙古大学 一种基于视觉识别的驱虫剂药效实验装置及方法
CN113984763B (zh) * 2021-10-28 2024-03-26 内蒙古大学 一种基于视觉识别的驱虫剂药效实验装置及方法

Also Published As

Publication number Publication date
EP3056085A4 (en) 2017-04-26
JP6172545B2 (ja) 2017-08-02
EP3056085B1 (en) 2018-10-31
JPWO2015029872A1 (ja) 2017-03-02
EP3056085A1 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6172545B2 (ja) ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法
Wu et al. Interactions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis
Wondimeneh Taye et al. Root-knot nematode (Meloidogyne incognita) management using botanicals in tomato (Lycopersicon esculentum).
CN115572688A (zh) 一种对植物寄生线虫高毒杀活性的蜡状芽胞杆菌及其应用
Han et al. A new feature of the laboratory model plant Nicotiana benthamiana: Dead‐end trap for sustainable field pest control
Mauchline et al. Process of infection of armored scale insects (Diaspididae) by an entomopathogenic Cosmospora sp.
Wirth et al. Comparison of phoretic mites associated with bark beetles Ips typographus and Ips cembrae from central Croatia
KR101799420B1 (ko) 머귀나무 추출물을 포함하는 진딧물 방제용 조성물
KR20110044861A (ko) 레카니실륨 머스카륨 v-5 균주, 상기 균주를 이용한 해충의 방제 방법 및 상기 균주를 함유하는 미생물 농약
Sultana et al. Suppression of root rotting fungi and root knot nematode of chili by seaweed and Pseudomonas aeruginosa
Rao et al. Bio-intensive management of root-knot nematodes on bell pepper using Pochonia chlamydosporia and Pseudomonas fluorescens
KR100421779B1 (ko) 한국산 곤충병원성 선충 및 그에 의한 방제법
JP2020176080A (ja) ネグサレ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法
Baig Chemical ecology of Carpophilus beetles and their yeast symbionts
KR101089318B1 (ko) 식물기생선충 방제용 제제 및 그 제조방법
RU2821581C1 (ru) Комплексное средство для биологической защиты сельскохозяйственных растений
KR20190051613A (ko) 파밤나방 기피용 미생물제제
Shawky et al. Nonchemical control of root-knot nematode, meloidogyne javanica on peanut in Egypt
Clifton Impacts of conventional and organic agriculture on soil-borne entomopathogenic fungi
Dhawan et al. Biological control activity of Arthrobotrys oligospora against Meloidogyne incognita infesting okra
Ali et al. Performance of Some Soil Minerals and Potassium Silicate on Peach Fruit Fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae) under Laboratory Conditions
Lyle Pesticide Evaluation and Development of a Molecular Detection Tool for Cyclamen Mite (Phytonemus pallidus) in Strawberry
JP2020186233A (ja) 細胞性粘菌を使った線虫忌避剤の製造方法
CN115843797A (zh) 2-甲氨基乙醇的新用途、用于根结线虫防治的药物、及防治方法
Brilli et al. Making use of biogenic volatile organic compounds in sustainable agriculture and from aquatic ecosystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014840772

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014840772

Country of ref document: EP