WO2015029872A1 - ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 - Google Patents
ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 Download PDFInfo
- Publication number
- WO2015029872A1 WO2015029872A1 PCT/JP2014/071892 JP2014071892W WO2015029872A1 WO 2015029872 A1 WO2015029872 A1 WO 2015029872A1 JP 2014071892 W JP2014071892 W JP 2014071892W WO 2015029872 A1 WO2015029872 A1 WO 2015029872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nematode
- cellular slime
- slime mold
- cellular
- repellent
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/30—Microbial fungi; Substances produced thereby or obtained therefrom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N65/00—Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
Definitions
- the present invention relates to a substance for repelling nematode nematodes parasitic on the roots of crops, a method for producing the same, and a repellent method using the repellent.
- Nematode is a general term for animals belonging to the linear phylum, and there are many species. Most of these nematodes are harmless to humans, but nematodes that parasitize and harm plants are known. Examples include Nekob nematodes, cyst nematodes, and negusale nematodes. Among them, the nematode nematodes, represented by the nematode nematode and the sweet potato nematode, parasitize the roots of crops such as potatoes, carrots, strawberries, etc. Contributes to the occurrence of soil diseases such as blight. About 5% of the pest damage to agricultural products worldwide is said to be caused by Kitanekobu nematodes. In order to deal with the damage caused by such nematode nematodes, highly toxic pesticides mainly composed of smoke agents (methyl bromide) and organophosphorus compounds, which are prohibited in Japan and Europe, are used. Yes.
- Patent Document 1 discloses that alkylbenzene having a specific substituent is used to control nematodes such as cat nematodes.
- Patent Document 2 discloses a nematode nematode control agent using an active ingredient of a raw coffee bean extract.
- an active ingredient of the raw coffee bean extract for example, a phenolic compound such as chlorogenic acid is included, and since such an active ingredient is effective for controlling Negusale nematodes, on the other hand, it is a naturally derived ingredient. It has been shown to be highly safe for the human body and crops.
- Patent Document 3 discloses a nematode nematode control agent comprising an extract of a specific Asteraceae plant as an active ingredient.
- cellular slime molds are eukaryotic microorganisms that are universally inhabited in soil, and usually grow in a single cell state by using bacteria as food.
- Caenorhabditis elegans a non-parasitic nematode with the same habitat as cellular slime molds, has a relationship between cellular slime molds and prey-predators, while the nematode larvae are It is known that when co-cultured with a kind of Dictyostelium ⁇ purpureum in the same container, it exhibits behavior that avoids cellular slime molds (Non-patent Document 1). However, the specific communication between the cellular slime mold and the plant nematode Nekob nematode has not been known so far.
- An object of the present invention is to provide a repellent for repelling cat nematodes without adversely affecting crops and workers and a method using the same.
- a repellent for repelling a nematode nematode comprising a substance secreted from a cellular slime mold belonging to the genus Dictyostelium as an active ingredient Is provided.
- the substance secreted from the cellular slime mold may be a substance secreted from the multicellular stage cellular slime mold, particularly the fruiting body of the cellular slime mold.
- the cellular slime mold may be a kind selected from the group consisting of D. discoideum, D. purpureum, D. mucoroides, D. fasciculatum, D. monochasioides, D. lacteum, and D. giganteum.
- the substance secreted from the cellular slime mold may be obtained by culturing the cellular slime mold in a medium, removing the cultured cellular slime mold from the medium, and then extracting from the medium. Good.
- the extraction from the culture medium may be extraction with an organic solvent or adsorption with an adsorbent.
- the repellent of the present invention may further contain the cellular slime mold.
- a method for repelling a nematode nematode by applying the repellent according to the first aspect of the present invention to an area where the nematode nematode is present is provided.
- a method for producing a repellent for repelling a nematode nematode which is obtained by culturing a cellular slime mold belonging to the genus Dictyostelium and changing it to a multicellular cell slime mold.
- a method for producing the repellent which comprises extracting the secretory substance of the multicellular cell slime mold from the multicellular cell slime mold using an organic solvent.
- the organic solvent may be methanol or ethanol.
- FIG. 1 (a) is a photomicrograph showing the behavior of a foxtail nematode in the absence of cellular slime molds (Control), and FIGS. 1 (b) to 1 (d) show D and D as cellular slime molds, respectively. It is a microscope composite photograph which shows the behavior of the Kitanekobu nematode when .discoideum, D.purpureum and D.mucoroides are present on the left side of the Kitaneko nematode.
- Negusare nematodes As plant parasitic nematodes that parasitize the roots of crops, mainly Negusare nematodes, cyst nematodes, and nematode nematodes are known. Insect reeds such as insects (Meloidynehapla), sweet potato nematode nematodes (Meloidyneincognita), Javakonebu nematodes (Meloidynejavanica), arena nematode nematodes (Meloidynearenaria) are repellent. These nematode nematodes parasitize crops such as tomatoes, potatoes, sweet potatoes, melons, watermelons, pumpkins, cucumbers, spinach, carrots, etc. Harm while releasing.
- Cellular slime molds are mainly classified into three genera, Dictyostelium genus, Polysphondylium genus, and Acytostelium genus.
- Cellular slime molds used in the present invention are genus Dictyostelium (hereinafter abbreviated as D. or D genus as appropriate). And include D. discoideum, D. purpureum, D. mucoroides, D. fasciculatum, D. monochasioides, D. lacteum, and D. giganteum.
- D. discoideum, D. fasciculatum, D. lacteum, D. giganteum are preferable in that they are easy to culture and can easily form fruiting bodies even at high density. giganteum is preferred.
- D.giganteum is called the Japanese name Seita Katacho Mokobi and is known to produce large fruiting bodies.
- the genus Dictyostelium is not morphologically branched, has a solid cellular pattern, and can support a spore mass with a single pattern.
- the genus Ploysphondylium (hereinafter sometimes abbreviated as P. or P genus as appropriate) has a branched structure called Whorl (rotate branch) in the lateral direction, has a thin handle, and a genus Acytostelium (hereinafter, As appropriate, it may be abbreviated as A. or A genus) and has a tubular handle of cellulose without a cellular handle.
- the spores are inactive because they are dormant, but the stalk cells are genetically dead but physiologically alive and synthesize and secrete compounds.
- the present inventor presumes that the repellent activity of the nematode nematode is due to a substance secreted from the stalk cell, and the genus Dictyostelium has the firmest stalk cell among the above three genera. For this reason, it is considered that a large amount of a substance exhibiting repellent activity against the nematode nematode is secreted.
- Cellular slime molds can also be divided into groups I to IV by genetic classification method (classification based on DNA base sequence) (P. Schaap et al. Science, 27 OCTOBER 2006, Vol. 314 no. 5799 pp. 661-663).
- D. discoideum, D. purpureum, D. mucoroides, D. giganteum belong to group IV
- D. lacteum belongs to group III
- A. subglobosum belonging to the genus Acytostelium and P. pallidum belonging to the genus Polysphondylium are group II.
- These cellular slime molds can be obtained, for example, from the National BioResource Project (NBRP) in the form of spores and cultured. Or what was extract
- NBRP National BioResource Project
- the present inventor suggested that the substance that repels Nekob nematodes (the active ingredient of the repellent) is not a cellular slime mold itself, but a substance secreted from cellular slime molds (cellular slime). It was found that the bacterial secretions are repellent to nematodes. Cellular slime molds, when obtained in the spore state, germinate and become unicellular, then become multicellular in the starved state, and fruit bodies are formed. According to the present inventors, it has been found that the cellular slime mold secretion that repels the nematode nematode can be obtained in large quantities from the fruiting body of the cellular slime mold.
- the cellular slime mold secretion is considered to be a metabolite by the cellular slime mold, its compound (or biological material, microorganism) and the like have not been identified at this stage.
- repellents substances capable of repelling nematode nematodes from cellular slime molds
- hydrophobic substances for example, extracted from organic solvents
- the cellular slime mold secretion which repels the nematode nematode can be obtained, for example, by the following method.
- Cellular slime molds are usually available in powder (spore) form. Such powdery cellular slime molds are cultured with E. coli in agar. Cellular slime mold spores germinate in the agar medium to form amoeba (single cell). Amoeba grows using E. coli as food, but when the food runs out, it becomes starved and gathers to become multicellular and then becomes fruiting. The obtained fruit body is collected, added to an organic solvent such as methanol or ethanol, and allowed to stand.
- an organic solvent such as methanol or ethanol
- the fruiting body is precipitated in an organic solution, and a hydrophobic substance among the substances secreted from the fruiting body is dissolved or dispersed in the upper layer (supernatant) of ethanol.
- the supernatant is separated from the fruit body by filtration or the like and removed to obtain a cellular slime mold secretion solution. As needed, it can also be taken out as solid content by drying a cellular slime mold secretion solution.
- Cellular slime molds do not necessarily have to be cultured until the morphological changes to fruiting bodies (multicellular stage). However, substances secreted from single-cell-stage cellular slime molds have lower repellent activity than substances secreted from the multicellular stage.
- cellular slime molds (or their fruit bodies) are cultured on a filter such as filter paper on a buffer containing an adsorbent such as an ion exchange resin (for example, Amberlite XAD-2 used for adsorption of E. coli).
- an adsorbent such as an ion exchange resin (for example, Amberlite XAD-2 used for adsorption of E. coli).
- the substance secreted from the cellular slime mold is separated from the cellular slime mold by passing through the filter and adsorbed on the adsorbent.
- the adsorbent desirably adsorbs a hydrophobic substance.
- a cellular slime mold secretion solution can be obtained by adding an adsorbent to an organic solvent such as ethanol and performing solvent extraction.
- the cellular slime mold secretion solution can be further dried to obtain a solid content.
- the obtained cellular slime mold secretion It is desirable to concentrate the product or its solution or dispersion or extract it in a concentrated form.
- Necrotic nematodes can be repelled by applying the cellular slime mold secretion obtained as described above or a solution thereof to soil or plants such as farmland.
- Agricultural land includes sweet potatoes, potatoes, peppers, eggplant, radish, Chinese cabbage, taro, soybeans, strawberries, tomatoes, watermelons, melons, onions, peanuts, carrots, burdock, potatoes, corn, asparagus, grapes, etc.
- the present invention is not limited thereto, and may be any area where a cat nematode is or will be present.
- a solution or dispersion of cellular slime mold secretions may be sprayed or sprayed as a powder, and can be sprayed in any form.
- Arbitrary methods and apparatuses can be used for spraying and spraying.
- the cellular slime mold secretion When the cellular slime mold secretion is sprayed as a powder, the cellular slime mold secretion may be supported on a carrier.
- a carrier may be filter paper or beads used to separate cellular slime molds from their secretions, or may be supported on a soil modifier such as zeolite from the viewpoint of application to agricultural land. Good. Alternatively, it may be mixed with agricultural chemicals and fertilizers and sprayed on farmland.
- the amount of the cellular slime mold secretion or solution thereof is not particularly limited as long as it is sufficient to repel the root-knot nematode inhabiting the soil.
- the secretion of cellular slime mold per liter of soil. 100-500 mg of product can be used.
- the cellular slime mold secretion or the solution thereof may be directly applied to the plant by immersing the root of the plant in a solution of the cellular slime mold secretion or spraying the solution on the root. Since the cellular slime mold secretion is a substance obtained by separating and extracting substances existing in nature, the nematode nematode can be effectively repelled without causing the crops to wither or killing the organisms.
- the cellular slime mold secretion obtained as described above can be used as an active ingredient of a repellent of Nekobu nematode.
- the repellent may be a cellular slime mold secretion alone or other components may be added. Examples of other components include fertilizers, agricultural chemicals, soil modifiers, carriers that carry cellular slime mold secretions, and the like.
- the repellent may contain cellular slime molds from the viewpoint of ease of production and repellent effect.
- Example 1 Repelling experiment of Nekobu nematode by cellular slime mold> The following experiment was conducted to investigate the repellent behaviors of the nematode nematode against four types of cellular slime molds (D. discoideum, D. purpureum, D. mucoroides, P. violaceum) shown in Table 1.
- Four types of cellular slime molds were obtained from NBRP, etc., and the Kitanekobu nematode used was cultured in the Derek Goto laboratory of Hokkaido University, where Derek Goto, one of the present inventors, belongs.
- Cellular slime molds are grown on an agar medium using E. coli or Klebsiella as food, recovered with a drug sag in the logarithmic growth phase, suspended in phosphate buffer, washed and removed by centrifugation, then starved. Went. Cellular slime molds thus pretreated were generated on the left side of the petri dish to which phytagel was added so as to be 1.0 ⁇ 10 8 cells / cm 2 . After 1.5 hours (single cell stage), as shown in FIG. 2 (a), 10 Kitanekobu nematodes were seeded at the center of the petri dish. The behavior of the nematode nematode was observed using a microscope (Nikon AZ100 Multizoom microscope).
- FIG. 1 (a) shows the case where no cellular slime molds are present (Control)
- Fig. 1 (b) shows the case where D. discoideum is present in the multicellular stage
- Fig. 1 (c) shows the case of multi-cells.
- FIG. 1 (d) is a photomicrograph showing the behavior of the nematode nematode when D. mucoroides is present. The photograph shows the entire petri dish by taking an image using a digital camera (Nikon DS-2MBWC camera head) and then performing image processing to connect the images. As shown in FIG.
- the cell slime molds at the single cell stage are not as much as the cell slime molds at the multi-cell stage, but D. discoideum, D. purpureum, D. mucoroides It was confirmed to take a slight avoidance of genus slime molds.
- ⁇ Experimental example 2 Quantitative analysis of repellent behavior of Kitanekobu nematode>
- the behavior of Kita Nebu Nematode repelling cellular slime molds was visually followed by micrograph image processing.
- the behavior of Kita Nebu Nematode was quantitatively analyzed as follows. did.
- D. discoideum was generated as a cellular slime mold at a density of 1.0 ⁇ 10 8 cells / cm 2 on the left side of the petri dish to which phytagel was added.
- 5 Kitanekobu nematodes were sown at a point 19 mm on the right side from the end of the cellular slime mold (see FIG. 2 (a)).
- the behavior of the nematode nematode was analyzed as follows. As shown in FIG. 2 (b), regions 1 and 2 were set on both sides of the kitten nematode, and a region 3 was set on the side of the region 2 away from the kitten nematode. The size of each region was 0.75 ⁇ 1.78 cm, and the distance between region 1 and region 2 was 0.56 cm. Images were taken for 24 hours using a digital camera for microscope (Nikon DS-2MBWC camera head) for each region. Using the image analysis software ImageJ, the captured images were digitized by counting the number of dots and how much traces of the Kita-kobe nematode moved in each area.
- FIG. 3 The results obtained by image analysis are shown in FIG. In FIG. 3, the left side is the result of the control, and the right is the result of the sample in which the cellular slime mold is present.
- Control there was no significant difference in regions 1 to 3, but in samples with cellular slime molds, the value of region 1 was clearly lower than in regions 2 and 3, and the nematode nematode repelled D. discoideum. This can be confirmed quantitatively.
- the relative amount of the vertical axis in the figure is expressed by the area ratio of each region with respect to the total of all regions for the movement locus (track) in which the nematode has moved.
- Example 3 Confirmation of repellent behavior of Kita Nebu nematode by cellular slime mold secretions>
- a filter paper having a diameter of 2 cm is placed on the end of the phytagel medium in the petri dish, and D. discoideum as a single cell cellular slime mold pretreated in the same manner as in Experimental Example 1 is placed on the filter paper. It was generated at 1.0 ⁇ 10 8 cells. 48 hours later, the filter paper was removed from the petri dish together with the fruit slime cell slime molds, and the cellular slime molds were removed from the phytagel medium.
- FIG. 4 (a) a filter paper having a diameter of 2 cm is placed on the end of the phytagel medium in the petri dish, and D. discoideum as a single cell cellular slime mold pretreated in the same manner as in Experimental Example 1 is placed on the filter paper. It was generated at 1.0 ⁇ 10 8 cells. 48 hours later, the filter paper was removed from the petri dish together with the fruit slime
- Results of quantitative analysis performed in the same manner as in Experimental Example 2 are shown in FIG. In FIG. 5, the left side is the result of the control, and the right side is the result of the sample from which the cellular slime mold is removed together with the filter paper.
- the behavior of Kitanekobu nematode was confirmed to be almost the same in all regions, but in the sample from which cellular slime molds were removed together with the filter paper, the value of Region 1 was clearly lower than that of Region 2, and Kitanekobu nematode was the sample. It was possible to quantitatively confirm that they had evaded any substances present in them.
- the cellular slime molds are multicellular bodies, and the substance that repels the nematode nematode is a child. It is considered as a substance secreted from the entity.
- Example 4 Concentration dependence on repellent properties of cellular slime mold secretions> From the results of Experimental Example 3, it was clarified that it was a substance secreted or released from cellular slime molds that repels the Kita Nebu nematode, and the concentration of the cellular slime mold secretions in its repellent characteristics In this experimental example, it was investigated whether there was dependency.
- FIG. 6C shows the observation results when 100 ⁇ l of a sample having a concentration of 4.0 mg / ml (corresponding to 0.4 mg of sample) is immersed in the filter paper. From FIG. 6 (c), it can be seen that the Kitaneko nematode hardly penetrates the region 1.
- the graphs of FIGS. 7A to 7C show the results of quantitative analysis of the behavior of the nematode nematode in the region 1 and the region 2 with respect to the samples having three kinds of concentrations. In the sample 3 shown in FIG.
- Example 5 Infection test of Kitaneko nematode on plants in the presence of cellular slime mold secretions>
- Miyakogusa belonging to the leguminous family prepared as follows was used as a plant. The hulls of the seeds that had been previously water-retained and sterilized were removed, and the seeds were arranged on a medium prepared from Ca, P, iron citrate, and KNO 3 with an interval of 5 mm or more, and stored at 22 ° C. Two days later, the germinated Miyakogusa was transferred onto a new medium. As shown in FIG. 8, three Miyakogusa (sample Nos. 1 to 3) were juxtaposed on one plate at an interval of 35 mm to form an infection experiment plate.
- the slime mold extract having a concentration of 4.0 mg / ml obtained in Experimental Example 4 was immersed in 100 ⁇ l of a piece of filter paper obtained by cutting a filter paper having a radius of 1 cm in half and air-dried in a clean bench for 1 hour. As shown in FIG. 8, the filter paper was placed at a point 2 mm from the root of the left-winged oyster (sample No. 1) among the oysters on the infection experiment plate. About 50 nematodes were sown at a point 10 mm away from the tip of the root of each nymph, and cultured at 23 ° C. for 48 hours. Lotus root was lightly washed with water and soaked in 25% antiformin for 3 minutes.
- FIG. 10 is an enlarged photograph showing the infection state by the Kitanekobu nematode in the roots of three Lotus japonicus.
- a plurality of slender line-shaped ones are Kitanekobu nematodes, and black ellipses and circular ones are bubbles.
- Specimen No. The number of infections by the nematode nematode in 1-3 roots of the Lotus japonicus is shown in the graph of FIG. In Control, no slime mold extract exists, but sample No. The number 2 is significantly higher. This is sample no. Since sample 2 is located in the middle, sample no. It is considered that 2 is easier to access than the samples 1 and 3, which are easier to access to the nematode nematodes other than the nematode nematode present immediately below the sample. On the other hand, when slime mold extract is present, sample no. The number of nematode nematodes in 1 is significantly reduced.
- Kita Nebu nematode repelled the invasion of the roots of Lotus japonicus close to the slime mold extract.
- the cellular slime mold secretion or the liquid containing the same is sprayed on the soil or the like, thereby repelling the kitten nematode existing or trying to enter.
- the infection test of the mosquito nematode to Miyakogusa was conducted in the same manner as in Experimental Example 5. That is, the hulls of precious water retentive and sterilized Miyakogusa seeds were removed, and the seeds were arranged at intervals of 5 mm or more on a medium prepared from Ca, P, iron citrate and KNO 3 and stored at 22 ° C. Two days later, the germinated Miyakogusa was transferred onto a new medium. As shown in FIG. 8, three Miyakogusa (test Nos. 1 to 3) were juxtaposed on one plate at an interval of 35 mm to form an infection experiment plate.
- the slime mold extract having a concentration of 80 mg / ml obtained in this experimental example was immersed in 100 ⁇ l of a filter paper piece obtained by cutting a filter paper having a radius of 1 cm in half and air-dried in a clean bench for 1 hour.
- the filter paper was placed at a point 2 mm to the left of the root of the Lotus japonicus (sample No. 1) growing on the left side among the Lotus fly on the infection experiment plate.
- About 50 nematodes were sown at a point 10 mm below the tip of the root of each nymph, and cultured at 23 ° C. for 48 hours.
- the roots of Lotus japonicus were lightly washed with water and soaked in 25% antiformin for 3 minutes.
- the roots were thoroughly washed with water, put into the wells of a 6-well plate to which acidic fuchsin stock was added, and then heated in a thermostat at 100 ° C. for 5 minutes. Thereafter, heat was radiated for 10 minutes at room temperature, immersed in a petri dish with acid-added glycerin spread over one side, and heated at 95 ° C. for 20 minutes. Stained Kitanekobu Nematode was sample No. The roots 1 to 3 were crushed with a cover glass, and the number of nematodes was counted visually.
- Specimen No. The number of infections by the nematode nematode in 1-3 roots of the Lotus japonicus is shown in the graph of FIG. In Control, no slime mold extract exists, but sample No. The number 2 is significantly higher. This is sample no. Since sample 2 is located in the middle, sample no. It is considered that 2 is easier to access than the samples 1 and 3, which are easier to access to the nematode nematodes other than the nematode nematode present immediately below the sample. On the other hand, when slime mold extract is present, sample no. The number of Kitanekobu nematodes in 1 is extremely small.
- Kita Nebu nematode was repelled from invading the roots of Lotus japonicus close to the slime mold extract. Further, it should be noted that sample No. The number of Kitanekobu nematode of 3 is sample No. It is more than the number of 2 Kitanekobu nematodes. Compared with the result of Experimental Example 5 shown in FIG. 9 (the number of Kitanekobu nematodes of sample No. 3 is smaller than that of sample No. 2), the slime mold extract prepared in this experimental example It can be seen that the use of can further repel the nematode nematode from Miyakogusa.
- Experimental Example 5 substances generated from the fruit bodies of cellular slime molds were collected with beads through a filter paper.
- substances generated from the fruit bodies of cellular slime molds were directly extracted into methanol. Are collected.
- the repellent substance of the nematode nematode is contained in the stem or spore portion more than the basal disc portion of the cellular slime mold. Based on this, it is possible to recover the repellent substance in a higher yield than by collecting the repellent substance directly from the handle or spore by dipping the fruit body in methanol and collecting it through the filter paper. Conceivable.
- the present inventor speculates that the base of the fruiting body contains a growth inhibitory substance (not identified at this time) that inhibits the growth of roots of Lotus japonicus. It is believed that the growth inhibitory substance was able to pass through the filter paper at a relatively high rate because it was attached to the filter paper.
- both the growth inhibitory substance and the repellent substance of the nematode nematode are extracted directly with methanol, of which the extraction ratio of the repellent substance to the growth inhibitory substance is higher than in the case of Experimental Example 5. It seems that it is getting higher.
- the movement trajectory of many Kita Nebu nematodes is seen in a region away from the cellular slime molds (the right side of the drawing), which indicates that the Kita Nebu nematodes have repelled those D-type cell slime molds.
- FIGS. 12 (a) and 12 (b) among P.pallidum and P.violaceum belonging to the genus P, the kitten nematode showed repellent behavior against P.pallidum. .violaceum showed no repellent behavior as in Experimental Example 1. Further, as shown in FIG. 13, for the A. subglobosum belonging to the genus A, the kitten Nematode showed no repellent behavior as in the case of Control shown in FIG. 14.
- the cellular slime molds belonging to the genus D among the cellular slime molds are effective in repelling the Kita Nebu nematode.
- the cellular slime mold secretion of the present invention is isolated and extracted from the cellular slime mold originally present in nature, it effectively repels the nematode nematode without damaging crops and organisms. Can do. Since the present invention can increase the productivity in the agricultural field of the whole world while maintaining the safety of crops and workers, a remarkable international contribution in the agricultural field is expected.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Dentistry (AREA)
- Biotechnology (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Mycology (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Virology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Catching Or Destruction (AREA)
Abstract
Description
農作物の根に寄生する植物寄生性線虫として、主に、ネグサレ線虫、シスト線虫、ネコブ線虫が知られているが、本発明では、ネコブ線虫を忌避対象とし、特に、キタネコブ線虫(Meloidogynehapla)、サツマイモネコブ線虫(Meloidogyneincognita)、ジャワネコブ線虫(Meloidogynejavanica)、アレナリアネコブ線虫(Meloidogynearenaria)のようなネコブ線虫を忌避対象とする。これらのネコブ線虫は、トマト、じゃがいも、さつまいも、メロン、すいか、かぼちゃ、きゅうり、ほうれんそう、にんじん等の農作物に寄生するが、根の中に定着して増やした次世代の線虫を土中に放出しながら加害する。
細胞性粘菌は、主に、Dictyostelium属、Polysphondylium属、及びAcytostelium属の三つの属に分類され、本発明で用いる細胞性粘菌は、Dictyostelium属(以下、適宜、D.またはD属と略することがある)に属する細胞性粘菌であり、例えば、D.discoideum、D.purpureum、D.mucoroides、D.fasciculatum、D.monochasioides、D.lacteum、D.giganteumが挙げられる。これらのうち、D.discoideum、D.fasciculatum、D.lacteum、D.giganteumが、培養がしやすく、高密度でも子実体を作り易い点で好ましく、同様の観点で特に、D.discoideumまたはD.giganteumが好ましい。D.giganteumは和名セイタカタマホコリカビと呼ばれ、大きな子実体を作ることが知られている。
本発明者は、後述する実施例の結果より、ネコブ線虫を忌避させる物質(忌避剤の有効成分)は、細胞性粘菌そのものではなく、細胞性粘菌から分泌される物質(細胞性粘菌分泌物)が線虫に対して忌避性を示すことを見出した。細胞性粘菌は、胞子の状態で入手した場合、発芽して、単細胞化し、次いで、飢餓状態において多細胞化し、さらに、子実体が形成される。本発明者によれば、ネコブ線虫を忌避させる細胞性粘菌分泌物は、特に、細胞性粘菌の子実体から多量に得ることができることを見出した。細胞性粘菌分泌物は、細胞性粘菌による代謝産物であると考えられるが、その化合物(または生体物質、微生物)などの特定は現段階ではできていない。しかしながら、細胞性粘菌からネコブ線虫を忌避させる物質(忌避剤)を生成することができることは後述する実施例で実証されており、有機溶媒で抽出されることからすれば疎水性物質(例えば有機化合物)と考えられる。
ネコブ線虫を忌避させる細胞性粘菌分泌物は、例えば、以下のような方法で得ることができる。細胞性粘菌は、通常、粉末(胞子)状で入手することができる。このような粉末状の細胞性粘菌を、寒天内に大腸菌と共に培養する。寒天培地内で細胞性粘菌の胞子が発芽してアメーバ(単細胞)となる。アメーバは大腸菌を餌として増殖するが、餌が尽きると飢餓状態となり集合して多細胞化し、その後、子実体となる。得られた子実体を回収し、メタノールやエタノール等の有機溶媒中に加えて静置する。子実体は有機溶液中で沈殿し、エタノールの上層(上澄液)には子実体から分泌された物質のうち、疎水性物質が溶解または分散している。この上澄液を子実体からろ過等により分離して取り出すことで細胞性粘菌分泌物溶液が得られる。必要に応じて細胞性粘菌分泌物溶液を乾燥することで固形分として取り出すこともできる。なお、細胞性粘菌は必ずしも子実体(多細胞期)に形態変化するまで培養しなくともよい。但し、単細胞期の細胞性粘菌から分泌された物質は、多細胞期から分泌された物質よりも忌避活性が低い。
上記のようにして得られた細胞性粘菌分泌物またはその溶液を、農地など土壌や植物に適用することでネコブ線虫を忌避させることができる。農地は、サツマイモ、ジャガイモ、ピーマン、ナス、ダイコン、ハクサイ、サトイモ、ダイズ、イチゴ、トマト、スイカ、メロン、タマネギ、落花生、ニンジン、ゴボウ、ナガイモ、トウモロコシ、アスパラガス、ブドウなどを栽培する農地が挙げられるが、これらに限定されず、ネコブ線虫が存在するまたは存在するであろういかなるエリアでもよい。
表1に示す4種類の細胞性粘菌(D.discoideum,D.purpureum,D.mucoroides,P.violaceum)に対するキタネコブ線虫の忌避行動を調査するために以下のような実験を行った。4種類の細胞性粘菌はNBRPなどから入手し、キタネコブ線虫は本発明者の一人であるDerek Gotoが所属する北海道大学農学部Derek Goto研究室で培養したものを用いた。
こうして前処理した細胞性粘菌を1.0×108 cells/cm2となるよう、フィタゲル(phytagel)を加えたシャーレ左側に発生させた。1.5時間後に(単細胞期)、図2(a)に示すように、シャーレ中央地点にキタネコブ線虫10匹を播種した。顕微鏡(Nikon AZ100 Multizoom microscope)を用いてキタネコブ線虫の行動を観察した。
実験例1では、キタネコブ線虫が細胞性粘菌を忌避する行動を顕微鏡写真の画像処理により視覚的に追跡したが、この実験例ではキタネコブ線虫の行動を以下のようにして定量的に解析した。実験例1と同様にしてフィタゲルを加えたシャーレの左側に細胞性粘菌としてD. discoideumを1.0×108 cells/cm2の密度で発生させた。次いで、細胞性粘菌の端から右側19mmの地点にキタネコブ線虫を5匹播種した(図2(a)参照)。播種から24時間経過後にキタネコブ線虫の行動を次のようにして解析した。図2(b)に示すように、キタネコブ線虫の両側に領域1及び2を設定し、さらに領域2のキタネコブ線虫から離れる側に領域3を設定した。各領域のサイズは0.75×1.78cmであり、領域1と領域2の間隔は0.56cmであった。各領域について顕微鏡用デジタルカメラ(Nikon DS-2MBWC camera head)を用いて24時間に渡って画像を撮影した。撮影した画像を画像解析ソフトImageJを用い、各領域でどの程度、キタネコブ線虫が移動した跡があるかをドット数をカウントして数値化した。
この例では、キタネコブ線虫の忌避行動を引き起こす原因について調査した。図4(a)に示すように、シャーレ内のフィタゲル培地の端に直径2cmのろ紙を置き、ろ紙上に実験例1と同様にして前処理した単細胞の細胞性粘菌としてのD. discoideum を1.0×108 cellsで発生させた。48時間後に、ろ紙を子実体の細胞性粘菌ごとシャーレから取り出して、細胞性粘菌をフィタゲル培地から除去した。次いで、図4(b)に示すようにろ紙跡の右端から右側12mmの地点にキタネコブ線虫5匹を播種し、24時間経過後に顕微鏡(Nikon AZ100 Multizoom microscope)を用いてキタネコブ線虫の行動を観察した。この観察では、実験例2と同様にしてキタネコブ線虫を播種したフィタゲル培地の両側に領域1及び領域2を設定し、それらの領域におけるキタネコブ線虫の行動を定量的に解析した。図4(c)に示すように、領域1及び領域2におけるキタネコブ線虫の移動軌跡が観察され、キタネコブ線虫の領域1よりも領域2における軌跡が多いことから、ろ紙跡に存在する物質がキタネコブ線虫を忌避させたと考えられる。
実験例3の結果より、キタネコブ線虫を忌避させているのは細胞性粘菌から分泌または放出された物質であることが明らかとなったので、その忌避特性に細胞性粘菌分泌物の濃度依存性があるかどうかについてこの実験例で調査した。
この実験例では、実際の植物が線虫に感染される際に、細胞性粘菌分泌物がどのように作用するかを試験した。植物として、以下のようにして用意したマメ科に属するミヤコグサを用いた。予め保水及び滅菌を行ったミヤコグサ種子の外皮を取り除き、Ca、P、クエン酸鉄、KNO3から調製した培地上に5mm以上の間隔をあけて種子を並べ、22℃で保存した。2日後に、発芽したミヤコグサを新たな培地上に移し代えた。3本のミヤコグサ(試料No.1~3)を図8に示すように1つのプレート上に35mmの間隔を隔てて並列して感染実験用プレートとした。
25cm×25cmのシャーレ30枚に、実験例1と同様にして細胞性粘菌を載置し、1週間経過させて完全に子実体に変化させた。子実体を回収し、100%エタノール10mlを入れた容器に加え、4℃で10日保管した。この後、この容器に、総量が200mlになるようにエタノールを加え、ろ紙で子実体を分離してロータリエバポレータで乾固した。乾固した子実体を40%メタノール50mlに加えて懸濁させた後、再びろ紙で濾過し、ロータリエバポレータで乾固した。次いで、乾固した抽出物を、最終濃度80mg/mlになるように40%メタノールに溶解した。こうして黄色みを帯びた透明な液体(粘菌抽出液)を得た。
<実験例7:他の細胞性粘菌の忌避特性の有無の観察>
上記実験例で使用した細胞性粘菌以外の細胞性粘菌として、D属に属する D.fasciculatum、D.monochasioides、D.lacteum、D.giganteumについてキタネコブ線虫の忌避特性について観察した。また、P属に属するP.pallidum及びP.violaceum(実験例1で用いたもの)、A属に属するA.subglobosumについてもキタネコブ線虫の忌避特性について観察した。
Claims (11)
- ネコブ線虫を忌避させるための忌避剤であって、Dictyostelium属に属する細胞性粘菌から分泌された物質を有効成分とすることを特徴とする忌避剤。
- 前記細胞性粘菌から分泌された物質が、多細胞期の前記細胞性粘菌から分泌された物質であることを特徴とする請求項1に記載の忌避剤。
- 前記多細胞期の細胞性粘菌が、細胞性粘菌の子実体であることを特徴とする請求項2に記載の忌避剤。
- 前記細胞性粘菌が、D.discoideum、 D.purpureum、D.mucoroides、D.fasciculatum、D.monochasioides、D.lacteum及びD.giganteumからなる群から選ばれる一種であることを特徴とする請求項1~3のいずれか一項に記載の忌避剤。
- 前記細胞性粘菌から分泌された物質は、細胞性粘菌を培地で培養させ、培養した細胞性粘菌を培地から除去した後に、培地から抽出して得られることを特徴とする請求項1~4のいずれか一項に記載の忌避剤。
- 前記培地からの抽出が、有機溶媒による抽出であることを特徴とする請求項5に記載の忌避剤。
- 前記培地からの抽出が、吸着剤による吸着であることを特徴とする請求項5に記載の忌避剤。
- さらに、前記細胞性粘菌を含むことを特徴とする請求項1~4のいずれか一項に記載の忌避剤。
- 請求項1~8のいずれか一項に記載の忌避剤を、ネコブ線虫が存在するエリアに適用することでネコブ線虫を忌避させる方法。
- ネコブ線虫を忌避させるための忌避剤の製造方法であって、
Dictyostelium属に属する細胞性粘菌を培養して多細胞期の細胞性粘菌に変化させ、
前記多細胞期の細胞性粘菌から有機溶媒によって前記多細胞期の細胞性粘菌の分泌物質を抽出することを含む前記忌避剤の製造方法。 - 前記有機溶媒がメタノールまたはエタノールである請求項10に記載の忌避剤の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14840772.9A EP3056085B1 (en) | 2013-08-26 | 2014-08-21 | Repellant for repelling root-knot nematodes, method for manufacturing same and repelling method using repellant |
JP2015534169A JP6172545B2 (ja) | 2013-08-26 | 2014-08-21 | ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013174827 | 2013-08-26 | ||
JP2013-174827 | 2013-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029872A1 true WO2015029872A1 (ja) | 2015-03-05 |
Family
ID=52586432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071892 WO2015029872A1 (ja) | 2013-08-26 | 2014-08-21 | ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3056085B1 (ja) |
JP (1) | JP6172545B2 (ja) |
WO (1) | WO2015029872A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017150569A1 (ja) * | 2016-02-29 | 2017-09-08 | 株式会社日立製作所 | がん解析システム及びがん解析方法 |
WO2018047959A1 (ja) * | 2016-09-12 | 2018-03-15 | 株式会社Hirotsuバイオサイエンス | 線虫の嗅覚に基づく匂い物質に対する走性行動の評価方法、並びに該評価方法に用いるシャーレおよび行動評価系 |
WO2018168581A1 (ja) * | 2017-03-14 | 2018-09-20 | イビデン株式会社 | 害虫忌避剤および害虫忌避剤の製造方法 |
JP2020176080A (ja) * | 2019-04-17 | 2020-10-29 | 学校法人上智学院 | ネグサレ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 |
US20210330715A1 (en) * | 2020-04-23 | 2021-10-28 | Amebagone, Llc | Anti-biofilm agents and uses thereof |
CN113984763A (zh) * | 2021-10-28 | 2022-01-28 | 内蒙古大学 | 一种基于视觉识别的驱虫剂药效实验装置及方法 |
JP7517645B2 (ja) | 2019-05-09 | 2024-07-17 | 学校法人上智学院 | 細胞性粘菌を使った線虫忌避剤の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52128394A (en) * | 1976-04-19 | 1977-10-27 | Mitsubishi Rayon Co Ltd | Novel adenine derivatives and plant jormone containing the same |
JPH03152299A (ja) * | 1989-11-09 | 1991-06-28 | Sumitomo Ringyo Kk | 植物病原菌又は植物寄生性線虫防除用水溶紙、及びその製造法 |
JP2010241738A (ja) * | 2009-04-07 | 2010-10-28 | Tomohiro Shirakawa | 害虫誘引剤及びこれを有する害虫捕獲具 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5394872B2 (ja) * | 2009-09-28 | 2014-01-22 | パネフリ工業株式会社 | ネグサレセンチュウ又はシストセンチュウの防除剤 |
-
2014
- 2014-08-21 JP JP2015534169A patent/JP6172545B2/ja active Active
- 2014-08-21 EP EP14840772.9A patent/EP3056085B1/en active Active
- 2014-08-21 WO PCT/JP2014/071892 patent/WO2015029872A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52128394A (en) * | 1976-04-19 | 1977-10-27 | Mitsubishi Rayon Co Ltd | Novel adenine derivatives and plant jormone containing the same |
JPH03152299A (ja) * | 1989-11-09 | 1991-06-28 | Sumitomo Ringyo Kk | 植物病原菌又は植物寄生性線虫防除用水溶紙、及びその製造法 |
JP2010241738A (ja) * | 2009-04-07 | 2010-10-28 | Tomohiro Shirakawa | 害虫誘引剤及びこれを有する害虫捕獲具 |
Non-Patent Citations (1)
Title |
---|
KESSIN.R.H.: "HOW CELLULAR SLIME MOLDS EVADE NEMATODES", vol. 93, no. 10, 1996, pages 4857 - 4861, XP055329169 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017150569A1 (ja) * | 2016-02-29 | 2017-09-08 | 株式会社日立製作所 | がん解析システム及びがん解析方法 |
WO2017149626A1 (ja) * | 2016-02-29 | 2017-09-08 | 株式会社日立製作所 | がん解析システム及びがん解析方法 |
WO2018047959A1 (ja) * | 2016-09-12 | 2018-03-15 | 株式会社Hirotsuバイオサイエンス | 線虫の嗅覚に基づく匂い物質に対する走性行動の評価方法、並びに該評価方法に用いるシャーレおよび行動評価系 |
JPWO2018047959A1 (ja) * | 2016-09-12 | 2019-06-24 | 株式会社Hirotsuバイオサイエンス | 線虫の嗅覚に基づく匂い物質に対する走性行動の評価方法、並びに該評価方法に用いるシャーレおよび行動評価系 |
US11150234B2 (en) | 2016-09-12 | 2021-10-19 | Hirotsu Bio Science Inc. | Method for evaluating taxic behavior in response to odor substance based on olfactory sense in nematodes, and dish and behavior evaluation system used in evaluation method |
WO2018168581A1 (ja) * | 2017-03-14 | 2018-09-20 | イビデン株式会社 | 害虫忌避剤および害虫忌避剤の製造方法 |
JPWO2018168581A1 (ja) * | 2017-03-14 | 2020-05-14 | イビデン株式会社 | 害虫忌避剤および害虫忌避剤の製造方法 |
JP2020176080A (ja) * | 2019-04-17 | 2020-10-29 | 学校法人上智学院 | ネグサレ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 |
JP7517645B2 (ja) | 2019-05-09 | 2024-07-17 | 学校法人上智学院 | 細胞性粘菌を使った線虫忌避剤の製造方法 |
US20210330715A1 (en) * | 2020-04-23 | 2021-10-28 | Amebagone, Llc | Anti-biofilm agents and uses thereof |
CN113984763A (zh) * | 2021-10-28 | 2022-01-28 | 内蒙古大学 | 一种基于视觉识别的驱虫剂药效实验装置及方法 |
CN113984763B (zh) * | 2021-10-28 | 2024-03-26 | 内蒙古大学 | 一种基于视觉识别的驱虫剂药效实验装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3056085A4 (en) | 2017-04-26 |
JP6172545B2 (ja) | 2017-08-02 |
EP3056085B1 (en) | 2018-10-31 |
JPWO2015029872A1 (ja) | 2017-03-02 |
EP3056085A1 (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6172545B2 (ja) | ネコブ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 | |
Wu et al. | Interactions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis | |
Wondimeneh Taye et al. | Root-knot nematode (Meloidogyne incognita) management using botanicals in tomato (Lycopersicon esculentum). | |
CN115572688A (zh) | 一种对植物寄生线虫高毒杀活性的蜡状芽胞杆菌及其应用 | |
Han et al. | A new feature of the laboratory model plant Nicotiana benthamiana: Dead‐end trap for sustainable field pest control | |
Mauchline et al. | Process of infection of armored scale insects (Diaspididae) by an entomopathogenic Cosmospora sp. | |
Wirth et al. | Comparison of phoretic mites associated with bark beetles Ips typographus and Ips cembrae from central Croatia | |
KR101799420B1 (ko) | 머귀나무 추출물을 포함하는 진딧물 방제용 조성물 | |
KR20110044861A (ko) | 레카니실륨 머스카륨 v-5 균주, 상기 균주를 이용한 해충의 방제 방법 및 상기 균주를 함유하는 미생물 농약 | |
Sultana et al. | Suppression of root rotting fungi and root knot nematode of chili by seaweed and Pseudomonas aeruginosa | |
Rao et al. | Bio-intensive management of root-knot nematodes on bell pepper using Pochonia chlamydosporia and Pseudomonas fluorescens | |
KR100421779B1 (ko) | 한국산 곤충병원성 선충 및 그에 의한 방제법 | |
JP2020176080A (ja) | ネグサレ線虫を忌避させるための忌避剤及びその製造方法並びにその忌避剤を用いた忌避方法 | |
Baig | Chemical ecology of Carpophilus beetles and their yeast symbionts | |
KR101089318B1 (ko) | 식물기생선충 방제용 제제 및 그 제조방법 | |
RU2821581C1 (ru) | Комплексное средство для биологической защиты сельскохозяйственных растений | |
KR20190051613A (ko) | 파밤나방 기피용 미생물제제 | |
Shawky et al. | Nonchemical control of root-knot nematode, meloidogyne javanica on peanut in Egypt | |
Clifton | Impacts of conventional and organic agriculture on soil-borne entomopathogenic fungi | |
Dhawan et al. | Biological control activity of Arthrobotrys oligospora against Meloidogyne incognita infesting okra | |
Ali et al. | Performance of Some Soil Minerals and Potassium Silicate on Peach Fruit Fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae) under Laboratory Conditions | |
Lyle | Pesticide Evaluation and Development of a Molecular Detection Tool for Cyclamen Mite (Phytonemus pallidus) in Strawberry | |
JP2020186233A (ja) | 細胞性粘菌を使った線虫忌避剤の製造方法 | |
CN115843797A (zh) | 2-甲氨基乙醇的新用途、用于根结线虫防治的药物、及防治方法 | |
Brilli et al. | Making use of biogenic volatile organic compounds in sustainable agriculture and from aquatic ecosystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14840772 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015534169 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014840772 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014840772 Country of ref document: EP |