WO2015029272A1 - Sintered body and amorphous film - Google Patents

Sintered body and amorphous film Download PDF

Info

Publication number
WO2015029272A1
WO2015029272A1 PCT/JP2013/084402 JP2013084402W WO2015029272A1 WO 2015029272 A1 WO2015029272 A1 WO 2015029272A1 JP 2013084402 W JP2013084402 W JP 2013084402W WO 2015029272 A1 WO2015029272 A1 WO 2015029272A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal element
sintered body
oxide
film
terms
Prior art date
Application number
PCT/JP2013/084402
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 奈良
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014553367A priority Critical patent/JP5690982B1/en
Priority to CN201380041450.9A priority patent/CN104583152A/en
Priority to KR1020157007104A priority patent/KR101702791B1/en
Publication of WO2015029272A1 publication Critical patent/WO2015029272A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a sintered body capable of obtaining a transparent conductive film having good visible light transmittance and conductivity, and an amorphous film having a low refractive index and produced using the sintered body.
  • a transparent conductive film a film in which tin is added to indium oxide, that is, an ITO (Indium-Tin-oxide) film is transparent and excellent in electrical conductivity, and is used in a wide range of applications such as various displays.
  • ITO Indium-Tin-oxide
  • this ITO has a problem that the manufacturing cost is inferior because indium which is a main component is expensive.
  • the material when using visible light in a display or the like, the material needs to be transparent, and it is particularly preferable that the material has a high transmittance in the entire visible light region.
  • the refractive index is high, the optical loss increases and the viewing angle dependency of the display deteriorates. Therefore, the refractive index is low, and the film is an amorphous film to improve the film cracking and etching performance. It is also desirable.
  • the amorphous film Since the amorphous film has low stress, cracks are unlikely to occur compared to the crystalline film, and it is considered that the amorphous film will be required for display applications toward flexible use.
  • the above ITO needs to be crystallized in order to improve the resistance value and transmittance, and if it is amorphous, it absorbs in the short wavelength region and does not become a transparent film. Not suitable for.
  • IZO indium oxide-zinc oxide
  • GZO gallium oxide-zinc oxide
  • AZO aluminum oxide-zinc oxide
  • IZO can be a low-resistance amorphous film, it has a problem that it has absorption in a short wavelength region and has a high refractive index.
  • GZO and AZO are likely to become crystallized films due to the ease of ZnO c-axis orientation, and such crystallized films have problems such as film peeling and film cracking because stress increases.
  • Patent Document 4 discloses a light-transmitting conductive material that realizes a wide range of refractive index, mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained.
  • Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
  • An object of the present invention is to provide a transparent conductive film capable of maintaining good visible light transmittance and conductivity, in particular, a sintered body capable of obtaining an amorphous film having a low refractive index. Since this thin film has high transmittance and excellent mechanical properties, it is useful as a transparent conductive film for displays and a protective film for optical disks. Accordingly, it is an object to improve the characteristics of the optical device, reduce the equipment cost, and greatly improve the film forming characteristics.
  • the present inventors have conducted intensive research. As a result, by replacing the conventional transparent conductive film such as ITO with the material system shown below, the resistivity and the refractive index can be arbitrarily set. It is possible to adjust to the above, ensuring optical characteristics equal to or higher than those of conventional ones, enabling stable film formation by sputtering or ion plating, and providing the thin film by forming an amorphous film. We obtained knowledge that the characteristics and productivity of optical devices can be improved.
  • M1 is one or more elements selected from the group consisting of aluminum (Al), gallium (Ga), boron (B), yttrium (Y) and indium (In) (provided that the second metal When the element is yttrium, yttrium is removed from the first metal element group, and when the second metal element is indium, indium is removed from the first metal element group.), M2 is yttrium ( Y), indium (In), manganese (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), One or more elements selected from the group consisting of rubium (Tb), dysprosium (Dy),
  • the total content of the first metal element (M1) and the second metal element (M2) is 10 at% or more in terms of the atomic number ratio of (M1 + M2) / (Zn + M1 + M2) Sintered body.
  • the above item 2 wherein the total content of the first metal element (M1) and the second metal element (M2) is 15 at% or more in terms of the atomic ratio of (M1 + M2) / (Zn + M1 + M2).
  • Sintered body 4) The sintered body according to 1 above, wherein the total content of Ge and / or Si is 5 ⁇ C ⁇ 30.
  • An oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3.
  • M1 is one or more elements selected from the group consisting of aluminum (Al), gallium (Ga), boron (B), yttrium (Y) and indium (In) (provided that the second metal When the element is yttrium, yttrium is removed from the first metal element group, and when the second metal element is indium, indium is removed from the first metal element group.
  • M2 is yttrium ( Y), indium (In), manganese (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd)
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • An oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3. 16.
  • the present invention relates to an oxide comprising zinc (Zn), a first metal element (M1), a second metal element (M2), germanium (Ge) and / or silicon (Si), and oxygen (O) as constituent elements.
  • a sintered body, Amol%, Bmol%, Ge and / or the total content of Si is GeO 2 and / or SiO 2 are in terms of oxide total content of M2 in the total content of oxides in terms of M1
  • the condition of 15 ⁇ A + B + C ⁇ 55 is satisfied.
  • Said 1st metal element (M1) is a trivalent metal element, Comprising: From the group which consists of aluminum (Al), gallium (Ga), boron (B), yttrium (Y), and indium (In). One or more elements selected. However, when the second metal element described later is yttrium, yttrium is excluded from the group of the first metal elements, and when the second metal element is indium, the first metal element Indium is removed from the group.
  • the second metal element (M2) is a rare earth metal element that forms a Bigsbite structure (rare earth oxide C type) when formed into an oxide, and includes yttrium (Y), indium (In), and manganese.
  • Mn lanthanum
  • Sc scandium
  • Sc neodymium
  • Nd samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • erbium It is one or more elements selected from the group consisting of (Er), ytterbium (Yb), lutetium (Lu), and promethium (Pm).
  • the balance when adjusting the raw materials, the balance is adjusted so that the balance of each oxide is 100 mol% with the balance being ZnO, and therefore the Zn content is obtained from the ZnO conversion of such balance. be able to.
  • the amorphous film of a low refractive index can be formed and the said effect of this invention is acquired.
  • the content of each metal in the sintered body is specified in terms of oxides. This is because some or all of the metals in the sintered body exist as complex oxides.
  • each content is measured not as an oxide but as a metal.
  • Germanium oxide (GeO 2 ) and silicon dioxide (SiO 2 ) contained in the sintered body of the present invention are vitrification components (glass-forming oxides), and are effective components for amorphizing (vitrifying) the film. It is.
  • this vitrification component reacts with zinc oxide (ZnO) to form a substance such as ZnGe 2 O 4 , which may become a partially crystalline film.
  • the film has a large film stress and may cause film peeling or film cracking.
  • the applicant of the present invention has previously proposed a trivalent metal element (first metal as referred to in the present invention) in Japanese Patent Application No. 2013-119611 (filing date: June 6, 2013).
  • the addition of such a trivalent metal element was effective in inhibiting the formation of a substance that causes crystallization, but it is sufficient that crystallization occurs at a place unrelated to the formation of such a substance. In some cases, it could not be suppressed. For this reason, as a result of further intensive studies, the inventors of the present application have conducted research on the second metal element (which forms a Big Sbite structure (rare earth oxide C type) together with the first metal element when formed into an oxide). It has been found that the addition of a rare earth metal element can promote the amorphization. This is because, by adding an oxide having a rare earth oxide C type to a material system mainly composed of ZnO having a hexagonal wurtzite type crystal structure, the crystal structure is distorted and inhibits crystallization. This is probably due to this.
  • the oxides of the first metal element, the oxide of the second metal element, and the glass-forming oxides such as germanium oxide and silicon dioxide described above are lower refractive materials than zinc oxide (ZnO). By adding this oxide, the refractive index of the film can be lowered. On the other hand, when the composition is adjusted so as to lower the refractive index (when ZnO is reduced), the resistance value tends to increase. Therefore, the total addition amount of the oxide of the first metal element is Amol%, the total addition amount of the oxide of the second metal element is Bmol%, and the total addition amount of germanium oxide and / or silicon dioxide is Cmol%. In this case, 15 ⁇ A + B + C ⁇ 55.
  • a + B + C is less than 15 mol%, the above-described crystallization suppression effect cannot be obtained, and the film is difficult to become amorphous.
  • a + B + C exceeds 70 mol%, the content of ZnO decreases. Since it becomes an insulating film, it is not preferable.
  • the first metal element and the second metal element contribute to conductivity as a dopant for zinc oxide (ZnO). Since Al, Ga, B, Y, and In which are the first metal elements have a low refractive index, adjustment of the refractive index and the resistance value can be facilitated by a combination with the glass-forming oxide. Oxides composed of these metal elements can be added individually and in combination, respectively, and the object of the present invention can be achieved.
  • the second metal elements effective for amorphization In and Y are preferable because they have a small increase in resistance value, and In is particularly preferable because Y has a smaller increase in resistance value than Y.
  • the present invention is characterized in that both the first metal element and the second metal element are added, when In is selected as the second metal element, from the group of the first metal elements It should be understood that when In is removed and Y is selected as the second metal element, Y is removed from the group of first metal elements.
  • the contents of the first metal element and the second metal element are defined in terms of oxides, but the oxide here is M when the metal element is M, It means an oxide composed of M 2 O 3 .
  • the first metal element is aluminum (Al)
  • it means an oxide made of Al 2 O 3
  • Y yttrium
  • the total content of the first metal element (M1) and the second metal element (M2) is preferably 10 at% or more in terms of the atomic number ratio of (M1 + M2) / (Zn + M1 + M2). Is at least 15 at%. In this case, it is effective for lowering the refractive index and making it amorphous. In order to exert this effect, the atomic ratio is 10 at% or more, more preferably 15 at% or more.
  • the total content of Ge and / or Si constituting the glass-forming oxide is preferably 5 mol% or more and 30 mol% or less in terms of GeO 2 and / or SiO 2 .
  • the amount is less than 5 mol%, the effect of lowering the refractive index becomes small and the effect of sufficient amorphization cannot be obtained. If it exceeds 30 mol%, the bulk resistance value of the sintered body tends to increase, and stable DC sputtering can be achieved. Because it becomes difficult.
  • the sintered body of the present invention comprises a metal that forms an oxide (low melting point oxide) having a melting point of 1000 ° C. or lower as a basic material (zinc oxide, oxide of the first metal element, oxidation of the second metal element).
  • Product, glass-forming oxide in an amount of 0.1 to 5 wt% in terms of oxide weight.
  • zinc oxide (ZnO) is easy to reduce and evaporate, the sintering temperature cannot be increased so much, and it may be difficult to improve the density of the sintered body.
  • the addition of such a low-melting point oxide has an effect that a high density can be achieved without increasing the sintering temperature so much. If it is less than 0.1 wt%, the effect cannot be exhibited, and if it exceeds 5 wt%, the characteristics may be changed.
  • the low melting point oxide examples include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO. 3 can be mentioned. These oxides can be added individually and in combination, respectively, and the object of the present invention can be achieved. Note that the low-melting-point oxide becomes a liquid phase at the time of sintering and acts as a sintering aid, so that the sintering temperature can be lowered. The above-mentioned effect is difficult to obtain because the melting point is increased by becoming a product or by dissolving in a solid solution. Therefore, it is preferable not to synthesize after adding the low melting point oxide.
  • the sintered body of the present invention can be used as a sputtering target.
  • the relative density is preferably 90% or more.
  • the improvement in density has the effect of increasing the uniformity of the sputtered film and suppressing the generation of particles during sputtering.
  • the sintered body of the present invention can achieve a relative density of 90% or more and a bulk resistance of 10 ⁇ ⁇ cm or less.
  • a relative density of 90% or more and a bulk resistance of 10 ⁇ ⁇ cm or less By increasing the density of the sintered body, it is possible to provide a sputtering target with less generation of particles. Further, by reducing the bulk resistance value, high-speed film formation by direct current (DC) sputtering becomes possible.
  • DC direct current
  • RF radio frequency
  • magnetron sputtering magnetron sputtering is required, but even in that case, the deposition rate is improved. By improving the deposition rate, production throughput can be improved, which can greatly contribute to cost reduction.
  • the sintered body of the present invention can also be used as an ion plating material. This is because by appropriately selecting the constituent elements and the composition ratio, the vapor pressure or the like is lowered, and ion plating becomes possible.
  • the ion plating method is a technique in which a metal is evaporated in a vacuum with an electron beam, ionized by high-frequency plasma, etc. (cations), and a negative potential is applied to the substrate to accelerate and attach the cations to form a film. It is. Ion plating has the advantages of higher material use efficiency and higher productivity than sputtering.
  • a plate-like product obtained by finishing the sintered body can be used, or a powder or granular material obtained by further pulverizing the sintered body can be used.
  • a powder or granulated product is more preferable from the viewpoint of production efficiency because it is more easily evaporated than a plate-like product.
  • a thin film containing ZnO as a main component has a large film stress. Therefore, if it is a crystallized film, cracks and cracks occur, and further problems such as film peeling occurred. However, this thin film should be an amorphous film. Therefore, it is possible to avoid problems such as cracks and cracks due to film stress.
  • a film formed by sputtering a target obtained by machining the sintered body of the present invention or a film formed by the above ion plating can achieve an extinction coefficient of 0.01 or less at a wavelength of 450 nm. it can.
  • a thin film for display needs to be transparent in the entire visible light range, but an oxide-based film such as an IZO film generally has absorption in a short wavelength region, so that it is difficult to develop a clear blue color. It was.
  • the extinction coefficient at a wavelength of 450 nm is 0.01 or less and there is almost no absorption in a short wavelength region, it can be said that the material is extremely suitable as a transparent material.
  • the film formed by sputtering the target obtained by machining the sintered body of the present invention or the film formed by the ion plating has a refractive index at a wavelength of 550 nm of 2.00 or less (preferably, 1.90 or less) can be achieved.
  • the volume resistivity of the film can be 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 9 ⁇ ⁇ cm.
  • the oxide composed of the first metal element, the second metal element, germanium oxide (GeO 2 ), and silicon dioxide (SiO 2 ) is a material having a lower refractive index than zinc oxide (ZnO). Therefore, a film having a refractive index lower than that of the conventional film can be obtained by adding these oxides.
  • a film formed by sputtering a target obtained by machining the sintered body of the present invention, or a film formed by the above ion plating is an optical adjustment film or a transparent conductive film in various displays, Moreover, it can use for the optical thin film which forms the protective layer of an optical information recording medium.
  • the protective layer of the optical information recording medium since ZnS is not used, there is a remarkable effect that there is no contamination due to S and no deterioration of the recording layer due to this.
  • Measurement methods, measurement conditions, and the like in Examples and Comparative Examples are as follows.
  • (About relative density) The density of the sintered body was calculated from the weight measurement by determining the volume of the sintered body by length measurement. The theoretical density was obtained by multiplying each single element density of the raw material oxide by the mixing mass ratio and totaling the obtained values. The relative density was obtained by dividing the density of the oxide sintered body by the theoretical density and multiplying by 100.
  • Theoretical density ⁇ (oxide density ⁇ mixing mass ratio)
  • Relative density ⁇ (density of sintered body) / (theoretical density) ⁇ ⁇ 100 (Bulk resistance, specific resistance, sheet resistance)
  • Deposition system ANELVA SPL-500
  • Substrate ⁇ 4inch
  • Substrate temperature Room temperature (about crystallization evaluation)
  • Example 1 After mixing and synthesizing a basic material (base material) composed of ZnO powder, Ga 2 O 3 powder, In 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 99.9% and the bulk resistance was 1.4 m ⁇ ⁇ cm.
  • base material composed of ZnO powder, Ga 2 O 3 powder, In 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1
  • low melting point oxide B 2 O 3 powder was added at
  • sputtering was performed using the finished target.
  • the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample were measured. As shown in FIG. 1, the thin film formed by sputtering is an amorphous film.
  • the refractive index is 1.87 (wavelength 550 nm) and the extinction coefficient is less than 0.01 (wavelength 450 nm).
  • An amorphous film having a low refractive index was obtained.
  • the volume resistivity changed depending on the amount of oxygen in the sputtering atmosphere, and exceeded 5 ⁇ 10 0 ⁇ ⁇ cm.
  • the amorphous film was evaluated when the peak attributed to the ZnO (002) plane was not clearly recognized by the X-ray diffraction method.
  • the peak intensity I 1 attributed to the ZnO (002) plane is I 1 / I 0 ⁇ 5. 2 with respect to the intensity I 0 (background) in the 2 ⁇ range where no peak attributed to the constituent composition exists.
  • I 0 background
  • I 1 / I 0 > 5.0 was satisfied, it was evaluated as a crystallized film (corresponding to x in Table 1).
  • I 1 is the ZnO (002) peak intensity I 1 , while no peaks attributed to constituent components are observed on both sides of the ZnO peak.
  • I 1 / I 0 1.6 in Example 1
  • I 1 / I 0 37.3 in Comparative Example 1 described later, which were evaluated as an amorphous film and a crystallized film, respectively.
  • Example 2 After mixing and synthesizing a basic material (base material) composed of ZnO powder, Al 2 O 3 powder, In 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 100.4%, and the bulk resistance was 3.0 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient (wavelength 450 nm) was measured.
  • stable DC sputtering was possible.
  • the thin film formed by sputtering is an amorphous film, the refractive index is 1.85 (wavelength 550 nm), the volume resistivity is more than 6 ⁇ 10 6 ⁇ ⁇ cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
  • Example 3 After mixing and synthesizing a basic material (base material) composed of ZnO powder, Ga 2 O 3 powder, Y 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 100.6% and the bulk resistance was 1.2 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient (wavelength 450 nm) was measured.
  • stable DC sputtering was possible.
  • the thin film formed by sputtering is an amorphous film, the refractive index is 1.87 (wavelength 550 nm), the volume resistivity is more than 1 ⁇ 10 8 ⁇ ⁇ cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
  • Example 4 ZnO powder, Ga 2 O 3 powder, an In 2 O 3 powder, was blended with the base material of SiO 2 powder blending ratio of (matrix) are described in Table 1 (mol%), B as a low-melting-point oxide 2 O 3 powder was added to the base material at a blending ratio (wt%) described in Table 1 and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 99.9% and the bulk resistance was 1.4 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient (wavelength 450 nm) was measured.
  • stable DC sputtering was possible.
  • the thin film formed by sputtering is an amorphous film, the refractive index is 1.89 (wavelength 550 nm), the volume resistivity is more than 5 ⁇ 10 0 ⁇ ⁇ cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
  • Example 5 After mixing and synthesizing a basic material (base material) composed of ZnO powder, B 2 O 3 powder, In 2 O 3 powder, and GeO 2 powder at a mixing ratio (mol%) shown in Table 1, low melting point oxide Bi 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was press-molded at a pressure of 500 kgf / cm 2 , and the compact was sintered under normal pressure at a temperature of 1200 ° C. in a vacuum. Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 97.6%, and the bulk resistance became 1.7 ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient (wavelength 450 nm) was measured.
  • stable DC sputtering was possible.
  • the thin film formed by sputtering is an amorphous film, the refractive index is 1.89 (wavelength 550 nm), the volume resistivity is more than 3 ⁇ 10 6 ⁇ ⁇ cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
  • Example 6 After mixing and synthesizing a basic material (base material) composed of ZnO powder, Ga 2 O 3 powder, In 2 O 3 powder, GeO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 99.7% and the bulk resistance was 1.3 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient (wavelength 450 nm) was measured.
  • stable DC sputtering was possible.
  • the thin film formed by sputtering is an amorphous film
  • the refractive index is 1.82 (wavelength 550 nm)
  • the volume resistivity is more than 3 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • the extinction coefficient is 0.
  • An amorphous film having a low refractive index of less than 01 (wavelength 450 nm) was obtained.
  • Example 7 ZnO powder, Ga 2 O 3 powder, an In 2 O 3 powder, was blended base material made of SiO 2 powder (the base material) in the compounding ratio described in Table 1 (mol%), it was mixed thereto. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 . No low melting point oxide was added. Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 98.2%, and the bulk resistance became 1.1 m ⁇ ⁇ cm.
  • Example 2 sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.88 (wavelength 550 nm), the volume resistivity is more than 3 ⁇ ⁇ cm, and the extinction coefficient is less than 0.01 (wavelength 450 nm). ) And a low refractive index amorphous film was obtained.
  • Table 1 the thin film formed by sputtering is an amorphous film, the refractive index is 1.88 (wavelength 550 nm), the volume resistivity is more than 3 ⁇ ⁇ cm, and the extinction coefficient is less than 0.01 (wavelength 450 nm).
  • the relative density was 96.2% and the bulk resistance was 1.2 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient as shown in FIG. 1, the thin film formed by sputtering was not an amorphous film.
  • the refractive index was 1.95 (wavelength 550 nm)
  • the volume resistivity was more than 4 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • the extinction coefficient was less than 0.01 (wavelength 450 nm).
  • a basic material (base material) composed of ZnO powder, Al 2 O 3 powder, Y 2 O 3 powder, and SiO 2 powder was mixed and synthesized at a blending ratio (mol%) of A + B + C> 55 as shown in Table 1.
  • B 2 O 3 powder as a low melting point oxide was added to the base material at a blending ratio (wt%) described in Table 1 and mixed.
  • this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining.
  • the relative density was 97.4%
  • the bulk resistance was 36 k ⁇ ⁇ cm
  • the resistance value was remarkably increased.
  • Sputtering was performed using the above-finished target under the same conditions as in Example 1.
  • a film was formed by RF sputtering.
  • the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample as shown in Table 1, the volume resistance of the thin film formed by sputtering is shown. The rate was over 1 ⁇ 10 9 ⁇ ⁇ cm, indicating insulation.
  • the amorphous film had a refractive index of 1.88 (wavelength 550 nm) and an extinction coefficient of less than 0.01 (wavelength 450 nm).
  • a basic material (base material) composed of ZnO powder, Al 2 O 3 powder, Y 2 O 3 powder, and SiO 2 powder was mixed and synthesized at a blending ratio (mol%) of A + B + C ⁇ 15 as shown in Table 1.
  • B 2 O 3 powder as a low melting point oxide was added to the base material at a blending ratio (wt%) described in Table 1 and mixed.
  • this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining.
  • the relative density was 99.6% and the bulk resistance was 3.2 m ⁇ ⁇ cm.
  • sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction.
  • the coefficient as shown in FIG. 1, the thin film formed by sputtering was not an amorphous film.
  • the refractive index was 1.95 (wavelength 550 nm)
  • the volume resistivity was more than 4 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • the extinction coefficient was less than 0.01 (wavelength 450 nm).
  • the sintered body of the present invention can be used as a sputtering target or an ion plating material, and a thin film formed using these sputtering target or ion plating material can protect a transparent conductive film and an optical disk in various displays.
  • Forming a film has an effect of having extremely excellent characteristics in terms of transmittance, refractive index, and conductivity.
  • the main feature of the present invention is that it is an amorphous film, and therefore has an excellent effect that the cracking and etching performance of the film can be remarkably improved.
  • the sputtering target using the sintered body of the present invention has a low bulk resistance value and a relative density of 90% or higher, stable DC sputtering is possible. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved.
  • RF sputtering is performed as necessary, but even in this case, the film formation rate is improved.
  • particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
  • the ion plating material using the sintered body of the present invention can form an amorphous film having a low refractive index, it is possible to suppress the occurrence of cracks and cracks due to film stress, and film peeling. It has the effect.
  • Such an amorphous film is particularly useful as an optical thin film for forming a protective layer of an optical information recording medium, an optical adjustment film in various displays, or a transparent electrode thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention addresses the problem of providing a sintered body that makes it possible to obtain a transparent conductive film that is capable of maintaining suitable transmittance of visible light and conductivity, particularly an amorphous film having a low refractive index. This thin film has high transmittance and excellent mechanical properties, and is therefore useful for transparent conductive films for displays and protective films for optical devices. The purpose of the present invention is to use the thin film to improve the properties of optical devices, reduce equipment costs, and greatly improve film formation properties.

Description

焼結体及びアモルファス膜Sintered body and amorphous film
 本発明は良好な可視光の透過率と導電性を備えた透明導電膜を得ることが可能な焼結体及び該焼結体を用いて作製した低屈折率を有するアモルファス膜に関する。 The present invention relates to a sintered body capable of obtaining a transparent conductive film having good visible light transmittance and conductivity, and an amorphous film having a low refractive index and produced using the sintered body.
 従来、透明導電膜として、酸化インジウムにスズを添加した膜、すなわち、ITO(Indium-Tin-oxide)膜が透明かつ導電性に優れており、各種ディスプレイ等広範囲な用途に使用されている。しかし、このITOは主成分であるインジウムが高価であるために、製造コストの面で劣るという問題がある。 Conventionally, as a transparent conductive film, a film in which tin is added to indium oxide, that is, an ITO (Indium-Tin-oxide) film is transparent and excellent in electrical conductivity, and is used in a wide range of applications such as various displays. However, this ITO has a problem that the manufacturing cost is inferior because indium which is a main component is expensive.
 このようなことから、ITOの代替品として、例えば、酸化亜鉛(ZnO)を用いた膜を用いる提案がなされている。酸化亜鉛を主成分とする膜であるため、価格が安いという利点がある。このような膜は、主成分であるZnOの酸素欠損により導電性が増す現象が知られており、導電性と光透過性という膜特性がITOに近似すれば、このような材料の利用が増大する可能性がある。 For this reason, for example, a proposal using a film using zinc oxide (ZnO) as an alternative to ITO has been made. Since the film is mainly composed of zinc oxide, there is an advantage that the price is low. Such a film is known to increase in conductivity due to oxygen vacancies in ZnO, which is the main component, and if the film properties of conductivity and light transmission are similar to those of ITO, the use of such materials will increase. there's a possibility that.
 ところで、ディスプレイ等において可視光を利用する場合、その材料が透明である必要があり、特に、可視光領域の全域において高透過率であることが好ましい。また、屈折率が高いと光損失が大きくなったり、ディスプレイの視野角依存性を悪化したりすることから低屈折率であることや、膜のクラックやエッチング性能を向上させるためにアモルファス膜であることも望まれる。 By the way, when using visible light in a display or the like, the material needs to be transparent, and it is particularly preferable that the material has a high transmittance in the entire visible light region. In addition, if the refractive index is high, the optical loss increases and the viewing angle dependency of the display deteriorates. Therefore, the refractive index is low, and the film is an amorphous film to improve the film cracking and etching performance. It is also desirable.
 アモルファス膜は応力が小さいため、結晶膜に比べてクラックが起こりにくく、今後、フレキシブル化に向かうディスプレイ用途ではアモルファス膜であることが求められると考えられる。なお、先のITOでは、抵抗値や透過率を向上するために、結晶化する必要があり、また、アモルファスとすると、短波長域に吸収を持ち、透明膜にはならないため、このような用途には適していない。 Since the amorphous film has low stress, cracks are unlikely to occur compared to the crystalline film, and it is considered that the amorphous film will be required for display applications toward flexible use. The above ITO needs to be crystallized in order to improve the resistance value and transmittance, and if it is amorphous, it absorbs in the short wavelength region and does not become a transparent film. Not suitable for.
 酸化亜鉛を用いた材料として、IZO(酸化インジウム-酸化亜鉛)、GZO(酸化ガリウム-酸化亜鉛)、AZO(酸化アルミニウム-酸化亜鉛)などが知られている(特許文献1~3)。しかし、IZOは低抵抗のアモルファス膜とすることができるが、短波長域に吸収を持ち、屈折率が高いという問題がある。また、GZO、AZOは、ZnOのc軸配向のし易さにより、結晶化膜になりやすく、このような結晶化膜は応力が大きくなるため、膜剥がれや膜割れ等の問題がある。 As materials using zinc oxide, IZO (indium oxide-zinc oxide), GZO (gallium oxide-zinc oxide), AZO (aluminum oxide-zinc oxide) and the like are known (Patent Documents 1 to 3). However, although IZO can be a low-resistance amorphous film, it has a problem that it has absorption in a short wavelength region and has a high refractive index. Further, GZO and AZO are likely to become crystallized films due to the ease of ZnO c-axis orientation, and such crystallized films have problems such as film peeling and film cracking because stress increases.
 また、特許文献4には、ZnOとフッ化アルカリ土類金属化合物を主成分とする幅広い屈折率を実現した透光性導電性材料が開示されている。しかし、これは結晶化膜であって、後述する本発明のようなアモルファス膜の効果は得られない。また、特許文献5には、屈折率が小さく、かつ、比抵抗が小さく、さらには非晶質の透明導電膜が開示されているが、本発明とは組成系が異なり、屈折率と抵抗値とを共に調整できないという問題がある。 In addition, Patent Document 4 discloses a light-transmitting conductive material that realizes a wide range of refractive index, mainly composed of ZnO and an alkaline earth metal fluoride compound. However, this is a crystallized film, and the effect of the amorphous film as in the present invention described later cannot be obtained. Patent Document 5 discloses a transparent conductive film that has a low refractive index and a low specific resistance and is amorphous. However, the composition system differs from the present invention, and the refractive index and the resistance value are disclosed. Cannot be adjusted together.
特開2007-008780号公報JP 2007-008780 A 特開2009-184876号公報JP 2009-184876 A 特開2007-238375号公報JP 2007-238375 A 特開2005-219982号公報Japanese Patent Laid-Open No. 2005-219982 特開2007-035342号公報JP 2007-035342 A
 本発明は、良好な可視光の透過率と導電性を維持できる透明導電膜、特には、低屈折率のアモルファス膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は、透過率が高く、且つ、機械特性に優れているため、ディスプレイの透明導電膜や光ディスクの保護膜に有用である。これによって、光デバイスの特性の向上、設備コストの低減化、成膜の特性を大幅に改善することを目的とする。 An object of the present invention is to provide a transparent conductive film capable of maintaining good visible light transmittance and conductivity, in particular, a sintered body capable of obtaining an amorphous film having a low refractive index. Since this thin film has high transmittance and excellent mechanical properties, it is useful as a transparent conductive film for displays and a protective film for optical disks. Accordingly, it is an object to improve the characteristics of the optical device, reduce the equipment cost, and greatly improve the film forming characteristics.
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、従来のITOなどの透明導電膜を下記に提示する材料系へと置き換えることで、抵抗率と屈折率とを任意に調整することが可能となり、従来と同等又はそれ以上の光学特性を確保すると共に、スパッタリング又はイオンプレーティングによる安定的な成膜が可能であり、さらにアモルファス膜とすることで、該薄膜を備える光デバイスの特性改善、生産性向上が可能であるとの知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, by replacing the conventional transparent conductive film such as ITO with the material system shown below, the resistivity and the refractive index can be arbitrarily set. It is possible to adjust to the above, ensuring optical characteristics equal to or higher than those of conventional ones, enabling stable film formation by sputtering or ion plating, and providing the thin film by forming an amorphous film. We obtained knowledge that the characteristics and productivity of optical devices can be improved.
 本発明はこの知見に基づき、下記の発明を提供する。
 1)亜鉛(Zn)、第一の金属元素(M1)、第二の金属元素(M2)、ゲルマニウム(Ge)及び/又はシリコン(Si)、酸素(O)からなる酸化物焼結体であって、前記M1が、アルミニウム(Al)、ガリウム(Ga)、ボロン(B)、イットリウム(Y)及びインジウム(In)からなる群から選択される一種以上の元素であり(但し、第二の金属元素がイットリウムの場合、第一の金属元素の群からイットリウムを除く。また、第二の金属元素がインジウムの場合、第一の金属元素の群からインジウムを除く。)、前記M2が、イットリウム(Y)、インジウム(In)、マンガン(Mn)、ランタン(La)、スカンジウム(Sc)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)、ルテチウム(Lu)、プロメチウム(Pm)からなる群から選択される一種以上の元素であって、M1の総含有量が酸化物換算でAmol%、M2の総含有量が酸化物換算でBmol%、Ge及び/又はSiの総含有量がGeO及び/又はSiO換算でCmol%としたとき、15≦A+B+C≦55の条件を満たすことを特徴とする焼結体。
 2)第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比で10at%以上であることを特徴とする上記1記載の焼結体。    
 3)第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比で15at%以上であることを特徴とする上記2記載の焼結体。
 4)Ge及び/又はSiの総含有量が、5≦C≦30であることを特徴とする上記1記載の焼結体。
 5)さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする上記1~4のいずれか一に記載の焼結体。
 6)融点が1000℃以下の酸化物が、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOからなる群から選択される一種以上の酸化物であることを特徴とする上記5記載の焼結体。
 7)相対密度が90%以上であることを特徴とする上記1~6のいずれか一に記載の焼結体。
 8)バルク抵抗値が10Ω・cm以下であることを特徴とする上記1~7のいずれか一に記載の焼結体。
Based on this finding, the present invention provides the following inventions.
1) An oxide sintered body composed of zinc (Zn), first metal element (M1), second metal element (M2), germanium (Ge) and / or silicon (Si), and oxygen (O). M1 is one or more elements selected from the group consisting of aluminum (Al), gallium (Ga), boron (B), yttrium (Y) and indium (In) (provided that the second metal When the element is yttrium, yttrium is removed from the first metal element group, and when the second metal element is indium, indium is removed from the first metal element group.), M2 is yttrium ( Y), indium (In), manganese (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), One or more elements selected from the group consisting of rubium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), ytterbium (Yb), lutetium (Lu), promethium (Pm), and M1 Amol% total content in terms of oxide of, Bmol% in total content of oxides in terms of M2, when the total content of Ge and / or Si is that the C mol% with GeO 2 and / or SiO 2 in terms of, A sintered body characterized by satisfying the condition of 15 ≦ A + B + C ≦ 55.
2) The total content of the first metal element (M1) and the second metal element (M2) is 10 at% or more in terms of the atomic number ratio of (M1 + M2) / (Zn + M1 + M2) Sintered body.
3) The above item 2, wherein the total content of the first metal element (M1) and the second metal element (M2) is 15 at% or more in terms of the atomic ratio of (M1 + M2) / (Zn + M1 + M2). Sintered body.
4) The sintered body according to 1 above, wherein the total content of Ge and / or Si is 5 ≦ C ≦ 30.
5) The sintered body according to any one of 1 to 4 above, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight.
6) An oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3. 6. The sintered body according to 5 above, which is one or more oxides selected from the group consisting of MoO 3 .
7) The sintered body according to any one of 1 to 6 above, wherein the relative density is 90% or more.
8) The sintered body according to any one of 1 to 7 above, wherein the bulk resistance value is 10 Ω · cm or less.
 9)上記1~8のいずれか一に記載される焼結体を用いることを特徴とするスパッタリングターゲット。
 10)上記1~8のいずれか一に記載される焼結体を用いることを特徴とするイオンプレーティング材。
9) A sputtering target using the sintered body described in any one of 1 to 8 above.
10) An ion plating material using the sintered body described in any one of 1 to 8 above.
 11)亜鉛(Zn)、第一の金属元素(M1)、第二の金属元素(M2)、ゲルマニウム(Ge)及び/又はシリコン(Si)、酸素(O)からなる酸化物焼結体であって、前記M1が、アルミニウム(Al)、ガリウム(Ga)、ボロン(B)、イットリウム(Y)及びインジウム(In)からなる群から選択される一種以上の元素であり(但し、第二の金属元素がイットリウムの場合、第一の金属元素の群からイットリウムを除く。また、第二の金属元素がインジウムの場合、第一の金属元素の群からインジウムを除く。)、前記M2が、イットリウム(Y)、インジウム(In)、マンガン(Mn)、ランタン(La)、スカンジウム(Sc)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)、ルテチウム(Lu)、プロメチウム(Pm)からなる群から選択される一種以上の元素であって、M1の総含有量が酸化物換算でAmol%、M2の総含有量が酸化物換算でBmol%、Ge及び/又はSiの総含有量がGeO及び/又はSiO換算でCmol%としたとき、15≦A+B+C≦55の条件を満たし、アモルファスであることを特徴とする薄膜。
 12)第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比が10at%以上であることを特徴とする上記11記載の薄膜。
 13)第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比が15at%以上であることを特徴とする上記12記載の薄膜。
 14)Ge及び/又はSiの総含有量が、5≦C≦30であることを特徴とする上記11~13のいずれか一に記載の薄膜。
 15)さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする上記11~14のいずれか一に記載の薄膜。
 16)融点が1000℃以下の酸化物が、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOからなる群から選択される一種以上の酸化物であることを特徴とする上記15記載の薄膜。
 17)波長450nmにおける消衰係数が0.01以下であることを特徴とする上記11~16のいずれか一に記載の薄膜。
 18)波長550nmにおける屈折率が2.00以下であることを特徴とする上記11~16のいずれか一に記載の薄膜。
 19)体積抵抗率が1×10-3~1×10Ω・cmであることを特徴とする上記11~16のいずれか一に記載の薄膜。
11) An oxide sintered body composed of zinc (Zn), first metal element (M1), second metal element (M2), germanium (Ge) and / or silicon (Si), and oxygen (O). M1 is one or more elements selected from the group consisting of aluminum (Al), gallium (Ga), boron (B), yttrium (Y) and indium (In) (provided that the second metal When the element is yttrium, yttrium is removed from the first metal element group, and when the second metal element is indium, indium is removed from the first metal element group.), M2 is yttrium ( Y), indium (In), manganese (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) One or more elements selected from the group consisting of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), ytterbium (Yb), lutetium (Lu), promethium (Pm), and M1 Amol% total content in terms of oxide of, Bmol% in total content of oxides in terms of M2, when the total content of Ge and / or Si is that the C mol% with GeO 2 and / or SiO 2 in terms of, A thin film that satisfies the condition of 15 ≦ A + B + C ≦ 55 and is amorphous.
12) The above-mentioned item 11, wherein the total content of the first metal element (M1) and the second metal element (M2) is such that the atomic number ratio of (M1 + M2) / (Zn + M1 + M2) is 10 at% or more. Thin film.
13) The total content of the first metal element (M1) and the second metal element (M2) is such that the atomic ratio of (M1 + M2) / (Zn + M1 + M2) is 15 at% or more. Thin film.
14) The thin film as described in any one of 11 to 13 above, wherein the total content of Ge and / or Si is 5 ≦ C ≦ 30.
15) The thin film as described in any one of 11 to 14 above, further comprising 0.1 to 5 wt% of a metal forming an oxide having a melting point of 1000 ° C. or less in terms of oxide weight.
16) An oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3. 16. The thin film as described in 15 above, which is one or more oxides selected from the group consisting of MoO 3 .
17) The thin film as described in any one of 11 to 16 above, which has an extinction coefficient of 0.01 or less at a wavelength of 450 nm.
18) The thin film as described in any one of 11 to 16 above, which has a refractive index of 2.00 or less at a wavelength of 550 nm.
19) The thin film as described in any one of 11 to 16 above, which has a volume resistivity of 1 × 10 −3 to 1 × 10 9 Ω · cm.
 20)上記1~8のいずれか一に記載される焼結体の製造方法であって、原料粉を混合し、得られた混合粉を不活性ガス又は真空雰囲気の下、900℃~1500℃で加圧焼結するか、又は得られた混合粉をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、900℃~1500℃で常圧焼結することを特徴とする焼結体の製造方法。 20) The method for producing a sintered body according to any one of 1 to 8 above, wherein the raw material powder is mixed, and the obtained mixed powder is 900 ° C to 1500 ° C under an inert gas or vacuum atmosphere. The sintered product is characterized in that it is pressure-sintered by pressurization or press-molding the obtained mixed powder, and then the compact is sintered at 900 ° C. to 1500 ° C. under an inert gas or vacuum atmosphere. A method for producing a knot.
 従来のITOなどの透明導電膜を、上記に示す材料へと置き換えることにより抵抗率と屈折率とを任意に調整することが可能となり、従来と同等又はそれ以上の光学特性を確保すると共に、スパッタリング又はイオンプレーティングによるによる安定的な成膜が可能であり、さらにアモルファス膜とすることで該膜を備えた光デバイスの特性改善、生産性を向上することが可能となるという優れた効果を有する。 Replacing a conventional transparent conductive film such as ITO with the materials shown above, it becomes possible to arbitrarily adjust the resistivity and refractive index, ensuring optical characteristics equal to or higher than those of the conventional, and sputtering. Alternatively, stable film formation by ion plating is possible, and further, by using an amorphous film, there is an excellent effect that it becomes possible to improve the characteristics and productivity of an optical device including the film. .
本発明の実施例1及び比較例1のX線回折スペクトルを示す図である。It is a figure which shows the X-ray-diffraction spectrum of Example 1 and Comparative Example 1 of this invention.
 本発明は、亜鉛(Zn)、第一の金属元素(M1)、第二の金属元素(M2)、ゲルマニウム(Ge)及び/又はシリコン(Si)、酸素(O)を構成元素とする酸化物焼結体であって、M1の総含有量が酸化物換算でAmol%、M2の総含有量が酸化物換算でBmol%、Ge及び/又はSiの総含有量がGeO及び/又はSiO換算でCmol%としたとき、15≦A+B+C≦55の条件を満たすことを特徴とする。 The present invention relates to an oxide comprising zinc (Zn), a first metal element (M1), a second metal element (M2), germanium (Ge) and / or silicon (Si), and oxygen (O) as constituent elements. a sintered body, Amol%, Bmol%, Ge and / or the total content of Si is GeO 2 and / or SiO 2 are in terms of oxide total content of M2 in the total content of oxides in terms of M1 When converted to Cmol%, the condition of 15 ≦ A + B + C ≦ 55 is satisfied.
 前記の第一の金属元素(M1)とは、3価の金属元素であって、アルミニウム(Al)、ガリウム(Ga)、ボロン(B)、イットリウム(Y)及びインジウム(In)からなる群から選択される一種以上の元素である。但し、後述する第二の金属元素がイットリウムの場合には、前記の第一の金属元素の群からイットリウムを除き、また、第二の金属元素がインジウムの場合には、第一の金属元素の群からインジウムを除かれる。 Said 1st metal element (M1) is a trivalent metal element, Comprising: From the group which consists of aluminum (Al), gallium (Ga), boron (B), yttrium (Y), and indium (In). One or more elements selected. However, when the second metal element described later is yttrium, yttrium is excluded from the group of the first metal elements, and when the second metal element is indium, the first metal element Indium is removed from the group.
 前記の第二の金属元素(M2)とは、酸化物としたときにビッグスバイト構造(希土類酸化物C型)を形成する希土類金属元素であって、イットリウム(Y)、インジウム(In)、マンガン(Mn)、ランタン(La)、スカンジウム(Sc)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)、ルテチウム(Lu)、プロメチウム(Pm)からなる群から選択される一種以上の元素である。 The second metal element (M2) is a rare earth metal element that forms a Bigsbite structure (rare earth oxide C type) when formed into an oxide, and includes yttrium (Y), indium (In), and manganese. (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium It is one or more elements selected from the group consisting of (Er), ytterbium (Yb), lutetium (Lu), and promethium (Pm).
 本発明は、原料の調整の際に、残部をZnOとして各酸化物の比率をその合計が100mol%の組成となるように調整するため、Znの含有量はこのような残部のZnO換算から求めることができる。このような組成とすることで、低屈折率のアモルファス膜を形成することができ、本発明の上記効果が得られる。
 なお、本発明では、焼結体中の各金属の含有量を酸化物換算で規定しているが、これは焼結体中の各金属はその一部又は全てが複合酸化物として存在しており、また、通常用いられる焼結体の成分分析では、酸化物ではなく、金属として、それぞれの含有量が測定されるからである。
In the present invention, when adjusting the raw materials, the balance is adjusted so that the balance of each oxide is 100 mol% with the balance being ZnO, and therefore the Zn content is obtained from the ZnO conversion of such balance. be able to. By setting it as such a composition, the amorphous film of a low refractive index can be formed and the said effect of this invention is acquired.
In the present invention, the content of each metal in the sintered body is specified in terms of oxides. This is because some or all of the metals in the sintered body exist as complex oxides. In addition, in the component analysis of a sintered body that is usually used, each content is measured not as an oxide but as a metal.
 本発明の焼結体に含有する酸化ゲルマニウム(GeO)及び二酸化珪素(SiO)はガラス化成分(ガラス形成酸化物)であって、膜をアモルファス化(ガラス化)させるのに有効な成分である。一方で、このガラス化成分は、酸化亜鉛(ZnO)と反応して、ZnGeのような物質を形成し、部分的に結晶質の膜となることがあり、このような結晶質の膜は膜応力が大きくなって、膜剥がれや膜割れを引き起こすことがある。
 このような膜の結晶質化に対して、以前本出願人は、特願2013-119611(出願日:2013年6月6日)において、3価の金属元素(本発明でいう第一の金属元素)を添加することで、ムライト組成(3M-2GeO、3M-2SiO:Mは3価の金属元素)を形成させ、このような結晶化を引き起こす物質の生成を阻害する手段を提案した。
Germanium oxide (GeO 2 ) and silicon dioxide (SiO 2 ) contained in the sintered body of the present invention are vitrification components (glass-forming oxides), and are effective components for amorphizing (vitrifying) the film. It is. On the other hand, this vitrification component reacts with zinc oxide (ZnO) to form a substance such as ZnGe 2 O 4 , which may become a partially crystalline film. The film has a large film stress and may cause film peeling or film cracking.
In order to crystallize such a film, the applicant of the present invention has previously proposed a trivalent metal element (first metal as referred to in the present invention) in Japanese Patent Application No. 2013-119611 (filing date: June 6, 2013). Element) to form a mullite composition (3M 2 O 3 -2GeO 2 , 3M 2 O 3 -2SiO 2 : M is a trivalent metal element), and the generation of a substance that causes such crystallization. Proposed means to inhibit.
 しかしながら、このような3価の金属元素の添加は、結晶化を引き起こす物質の生成を阻害するのに有効であったが、このような物質の生成とは無関係なところで結晶化が生じるのを十分に抑制できない場合があった。このようなことから、本願発明者はさらに鋭意研究を行った結果、第一の金属元素とともに、酸化物としたときにビッグスバイト構造(希土類酸化物C型)を形成する第二の金属元素(希土類金属元素)を添加することで、アモルファス化をより促進できることを見出した。これは、六方ウルツ鉱型の結晶構造をもつZnOを主成分とする材料系に、希土類酸化物C型をもつ酸化物を添加することで、その結晶構造に歪みが入り、結晶化を阻害することによるものと考えられる。 However, the addition of such a trivalent metal element was effective in inhibiting the formation of a substance that causes crystallization, but it is sufficient that crystallization occurs at a place unrelated to the formation of such a substance. In some cases, it could not be suppressed. For this reason, as a result of further intensive studies, the inventors of the present application have conducted research on the second metal element (which forms a Big Sbite structure (rare earth oxide C type) together with the first metal element when formed into an oxide). It has been found that the addition of a rare earth metal element can promote the amorphization. This is because, by adding an oxide having a rare earth oxide C type to a material system mainly composed of ZnO having a hexagonal wurtzite type crystal structure, the crystal structure is distorted and inhibits crystallization. This is probably due to this.
 上述する、第一の金属元素の酸化物、第二の金属元素の酸化物、酸化ゲルマニウムや二酸化珪素のようなガラス形成酸化物は、酸化亜鉛(ZnO)よりも低屈折材料であるため、これらの酸化物の添加により、膜の屈折率を下げることができる。一方、屈折率を下げるように組成を調整していくと(ZnOを減らしていくと)、抵抗値が高くなる傾向にある。したがって、第一の金属元素の酸化物の総添加量をAmol%、第二の金属元素の酸化物の総添加量をBmol%、酸化ゲルマニウム及び/又は二酸化珪素の総添加量をCmol%としたとき、15≦A+B+C≦55とする。
 A+B+Cが15mol%未満の場合には、上述した結晶化抑制効果が得られず、膜がアモルファスになり難いため好ましくなく、一方、A+B+Cが70mol%超であると、ZnOの含有量が少なくなり、絶縁性の膜となるため、好ましくない。
The oxides of the first metal element, the oxide of the second metal element, and the glass-forming oxides such as germanium oxide and silicon dioxide described above are lower refractive materials than zinc oxide (ZnO). By adding this oxide, the refractive index of the film can be lowered. On the other hand, when the composition is adjusted so as to lower the refractive index (when ZnO is reduced), the resistance value tends to increase. Therefore, the total addition amount of the oxide of the first metal element is Amol%, the total addition amount of the oxide of the second metal element is Bmol%, and the total addition amount of germanium oxide and / or silicon dioxide is Cmol%. In this case, 15 ≦ A + B + C ≦ 55.
When A + B + C is less than 15 mol%, the above-described crystallization suppression effect cannot be obtained, and the film is difficult to become amorphous. On the other hand, when A + B + C exceeds 70 mol%, the content of ZnO decreases. Since it becomes an insulating film, it is not preferable.
 第一の金属元素及び第二の金属元素は、酸化亜鉛(ZnO)のドーパントとして導電性に寄与する。第一の金属元素であるAl、Ga、B、Y、Inは屈折率が低いため、前記ガラス形成酸化物との組み合わせによって、屈折率と抵抗値との調整を容易にすることができる。これらの金属元素からなる酸化物は、それぞれ単独添加及び複合添加が可能であり、本願発明の目的を達成することができる。また、アモルファス化に有効な第二の金属元素の中でも、In、Yが抵抗値の上昇が少ないため好ましく、特に、InはYに比べてさらに抵抗値の上昇が少ないため望ましい。
 また、本発明は第一の金属元素と第二の金属元素を共に添加することが特徴であることから、第二の金属元素としてInを選択した場合には、第一の金属元素の群からInが除かれ、また、第二の金属元素としてYを選択した場合には、第一の金属元素の群からYが除かれることは、当然理解されるべきである。
The first metal element and the second metal element contribute to conductivity as a dopant for zinc oxide (ZnO). Since Al, Ga, B, Y, and In which are the first metal elements have a low refractive index, adjustment of the refractive index and the resistance value can be facilitated by a combination with the glass-forming oxide. Oxides composed of these metal elements can be added individually and in combination, respectively, and the object of the present invention can be achieved. Of the second metal elements effective for amorphization, In and Y are preferable because they have a small increase in resistance value, and In is particularly preferable because Y has a smaller increase in resistance value than Y.
In addition, since the present invention is characterized in that both the first metal element and the second metal element are added, when In is selected as the second metal element, from the group of the first metal elements It should be understood that when In is removed and Y is selected as the second metal element, Y is removed from the group of first metal elements.
 なお、本発明では、上記のとおり第一の金属元素及び第二の金属元素の含有量を酸化物換算で規定しているが、ここでの酸化物は、金属元素をMとしたときに、Mから構成される酸化物を意味する。例えば、第一の金属元素がアルミニウム(Al)の場合、Alからなる酸化物を意味し、第二の金属元素がイットリウム(Y)の場合、Yからなる酸化物を意味する。 In the present invention, as described above, the contents of the first metal element and the second metal element are defined in terms of oxides, but the oxide here is M when the metal element is M, It means an oxide composed of M 2 O 3 . For example, when the first metal element is aluminum (Al), it means an oxide made of Al 2 O 3, and when the second metal element is yttrium (Y), it means an oxide made of Y 2 O 3. To do.
 本発明において、第一の金属元素(M1)及び第二の金属元素(M2)の総含有量は、(M1+M2)/(Zn+M1+M2)の原子数比で10at%以上とするのが好ましく、より好ましくは15at%以上とする。この場合、低屈折率化とアモルファス化に有効である。この効果を発揮させるために、原子数比で10at%以上、より好ましくは15at%以上とする。
 また、本発明において、ガラス形成酸化物を構成するGe及び/又はSiの総含有量はGeO及び/又はSiO換算で5mol%以上30mol%以下とするのが好ましい。5mol%未満であると、屈折率低下の効果が小さくなるとともに十分なアモルファス化の効果が得られず、30mol%超であると、焼結体のバルク抵抗値が上がりやすく、安定したDCスパッタがし難くなるからである。
In the present invention, the total content of the first metal element (M1) and the second metal element (M2) is preferably 10 at% or more in terms of the atomic number ratio of (M1 + M2) / (Zn + M1 + M2). Is at least 15 at%. In this case, it is effective for lowering the refractive index and making it amorphous. In order to exert this effect, the atomic ratio is 10 at% or more, more preferably 15 at% or more.
In the present invention, the total content of Ge and / or Si constituting the glass-forming oxide is preferably 5 mol% or more and 30 mol% or less in terms of GeO 2 and / or SiO 2 . If the amount is less than 5 mol%, the effect of lowering the refractive index becomes small and the effect of sufficient amorphization cannot be obtained. If it exceeds 30 mol%, the bulk resistance value of the sintered body tends to increase, and stable DC sputtering can be achieved. Because it becomes difficult.
 さらに本発明の焼結体は、融点が1000℃以下の酸化物(低融点酸化物)を形成する金属を基本材料(酸化亜鉛、第一の金属元素の酸化物、第二の金属元素の酸化物、ガラス形成酸化物)に対して、酸化物重量換算で0.1~5wt%含有させることができる。
 酸化亜鉛(ZnO)は還元・蒸発し易いため、焼結温度をそれほど上げることができず、焼結体の密度を向上させることが困難ということがある。しかし、このような低融点酸化物を添加することで、焼結温度をそれほど上げることなく、高密度化が達成できるという効果を有する。0.1wt%未満では、その効果が発揮できず、また5wt%を超えると、特性に変動が生じるおそれがあるため、好ましくないので、上記の数値範囲とする。
Furthermore, the sintered body of the present invention comprises a metal that forms an oxide (low melting point oxide) having a melting point of 1000 ° C. or lower as a basic material (zinc oxide, oxide of the first metal element, oxidation of the second metal element). Product, glass-forming oxide) in an amount of 0.1 to 5 wt% in terms of oxide weight.
Since zinc oxide (ZnO) is easy to reduce and evaporate, the sintering temperature cannot be increased so much, and it may be difficult to improve the density of the sintered body. However, the addition of such a low-melting point oxide has an effect that a high density can be achieved without increasing the sintering temperature so much. If it is less than 0.1 wt%, the effect cannot be exhibited, and if it exceeds 5 wt%, the characteristics may be changed.
 前記低融点酸化物としては、例えば、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOを挙げることができる。これらの酸化物は、それぞれ単独添加及び複合添加が可能であり、本願発明の目的を達成することができる。なお、低融点酸化物は焼結時に液相化して焼結助剤として働くため、焼結温度を低下できるという効果があるが、焼結前に合成を行うと、低融点酸化物は複合酸化物になるか又は固溶して、融点が上がってしまうため、上記効果が得られにくい。そのため、低融点酸化物を添加した後は合成を行わない方が好ましい。
 本発明の焼結体は、スパッタリングターゲットとして使用することができ、その場合、相対密度が90%以上とすることが好ましい。密度の向上はスパッタ膜の均一性を高め、また、スパッタリング時のパーティクルの発生を抑制できる効果を有する。
Examples of the low melting point oxide include B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , MoO. 3 can be mentioned. These oxides can be added individually and in combination, respectively, and the object of the present invention can be achieved. Note that the low-melting-point oxide becomes a liquid phase at the time of sintering and acts as a sintering aid, so that the sintering temperature can be lowered. The above-mentioned effect is difficult to obtain because the melting point is increased by becoming a product or by dissolving in a solid solution. Therefore, it is preferable not to synthesize after adding the low melting point oxide.
The sintered body of the present invention can be used as a sputtering target. In that case, the relative density is preferably 90% or more. The improvement in density has the effect of increasing the uniformity of the sputtered film and suppressing the generation of particles during sputtering.
 本発明の焼結体は、相対密度が90%以上、また、バルク抵抗が10Ω・cm以下を達成できる。焼結体の高密度化により、パーティクルの発生の少ないスパッタリングターゲットの提供が可能となる。また、バルク抵抗値の低減化により、直流(DC)スパッタリングによる高速成膜が可能となる。材料の選択によっては高周波(RF)スパッタリング又はマグネトロンスパッタリングを必要とするが、その場合でも成膜速度の向上がある。成膜速度の向上により、生産のスループットを改善することができ、コスト削減に大きく寄与することができる。 焼 結 The sintered body of the present invention can achieve a relative density of 90% or more and a bulk resistance of 10 Ω · cm or less. By increasing the density of the sintered body, it is possible to provide a sputtering target with less generation of particles. Further, by reducing the bulk resistance value, high-speed film formation by direct current (DC) sputtering becomes possible. Depending on the selection of the material, radio frequency (RF) sputtering or magnetron sputtering is required, but even in that case, the deposition rate is improved. By improving the deposition rate, production throughput can be improved, which can greatly contribute to cost reduction.
 本発明の焼結体は、イオンプレーティング材としても利用可能である。これは構成元素と組成比を適宜選択することにより、蒸気圧等が低下して、イオンプレーティングが可能になるからである。
 イオンプレーティング法は、真空中で金属を電子線などで蒸発させ、高周波プラズマ等によりイオン化し(カチオン)、基板に負電位を与えることにより、そのカチオンを加速して付着させ膜を形成する技術である。イオンプレーティングは、スパッタリングに比べ材料の使用効率が高く、生産性の向上が見込まれるといったメリットがある。
 イオンプレーティング材として使用する場合は、焼結体を仕上げ加工した板状のものを使用できるほか、この焼結体をさらに粉砕して粉末又は粒状としたものを使用することもできる。粉砕して粉末又は粒状にしたものは、板状のものに比べて、蒸発しやすいので、生産効率の観点から、より好ましい。
The sintered body of the present invention can also be used as an ion plating material. This is because by appropriately selecting the constituent elements and the composition ratio, the vapor pressure or the like is lowered, and ion plating becomes possible.
The ion plating method is a technique in which a metal is evaporated in a vacuum with an electron beam, ionized by high-frequency plasma, etc. (cations), and a negative potential is applied to the substrate to accelerate and attach the cations to form a film. It is. Ion plating has the advantages of higher material use efficiency and higher productivity than sputtering.
When used as an ion plating material, a plate-like product obtained by finishing the sintered body can be used, or a powder or granular material obtained by further pulverizing the sintered body can be used. A powder or granulated product is more preferable from the viewpoint of production efficiency because it is more easily evaporated than a plate-like product.
 本発明において、焼結体を加工して得られるターゲットをスパッタ成膜して得られる膜、又は上記イオンプレーティングにより形成られた膜は、アモルファス(非晶質膜)であることが重要である。得られた膜がアモルファス膜であるかは、例えばX線回折法を用いてZnOの(002)面のピークが現れる2θ=34.4°付近の回折強度を観察することにより判断することができる。ZnOを主成分とする薄膜は膜応力が大きいため、結晶化膜であるとクラックや割れが発生し、さらには、膜の剥離等の問題が生じていたが、この薄膜をアモルファス膜とすることによって、膜応力による割れやクラック等の問題を回避することができるという優れた効果を有する。 In the present invention, it is important that the film obtained by sputtering the target obtained by processing the sintered body or the film formed by the ion plating is amorphous (amorphous film). . Whether or not the obtained film is an amorphous film can be determined by observing the diffraction intensity around 2θ = 34.4 ° where the peak of the (002) plane of ZnO appears using, for example, an X-ray diffraction method. . A thin film containing ZnO as a main component has a large film stress. Therefore, if it is a crystallized film, cracks and cracks occur, and further problems such as film peeling occurred. However, this thin film should be an amorphous film. Therefore, it is possible to avoid problems such as cracks and cracks due to film stress.
 本発明の焼結体を機械加工して得られるターゲットをスパッタして形成した膜、又は上記イオンプレーティングにより形成られた膜は、波長450nmにおける消衰係数が0.01以下を達成することができる。ディスプレイ用の薄膜は可視光の全域において透明であることが必要であるが、IZO膜等の酸化物系膜は一般に短波長域に吸収を持つため、鮮明な青色を発色させることが困難であった。本発明によれば、波長450nmにおける消衰係数が0.01以下と、短波長域において吸収がほとんどないため、透明材料として極めて適した材料といえる。 A film formed by sputtering a target obtained by machining the sintered body of the present invention or a film formed by the above ion plating can achieve an extinction coefficient of 0.01 or less at a wavelength of 450 nm. it can. A thin film for display needs to be transparent in the entire visible light range, but an oxide-based film such as an IZO film generally has absorption in a short wavelength region, so that it is difficult to develop a clear blue color. It was. According to the present invention, since the extinction coefficient at a wavelength of 450 nm is 0.01 or less and there is almost no absorption in a short wavelength region, it can be said that the material is extremely suitable as a transparent material.
 また、本発明の焼結体を機械加工して得られるターゲットをスパッタして形成した膜、又は上記イオンプレーティングにより形成された膜は、波長550nmにおける屈折率が2.00以下(好ましくは、1.90以下)を達成することができる。さらに、前記膜の体積抵抗率を1×10-3~1×10Ω・cmを実現することができる。
 上述した通り、第一の金属元素、第二の金属元素、酸化ゲルマニウム(GeO)や二酸化珪素(SiO)、からなる酸化物は、酸化亜鉛(ZnO)よりも低屈折率の材料であるため、これらの酸化物の添加により、従来よりも低屈折率の膜を得ることができる。
Further, the film formed by sputtering the target obtained by machining the sintered body of the present invention or the film formed by the ion plating has a refractive index at a wavelength of 550 nm of 2.00 or less (preferably, 1.90 or less) can be achieved. Furthermore, the volume resistivity of the film can be 1 × 10 −3 to 1 × 10 9 Ω · cm.
As described above, the oxide composed of the first metal element, the second metal element, germanium oxide (GeO 2 ), and silicon dioxide (SiO 2 ) is a material having a lower refractive index than zinc oxide (ZnO). Therefore, a film having a refractive index lower than that of the conventional film can be obtained by adding these oxides.
 また、本発明の焼結体を機械加工して得られるターゲットをスパッタして形成される膜は、又は上記イオンプレーティングにより形成られた膜は、各種ディスプレイにおける光学調整用膜や透明導電膜、また、光情報記録媒体の保護層を形成する光学薄膜に用いることができる。光情報記録媒体の保護層の場合には、特にZnSを使用していないので、Sによる汚染がなく、これによる記録層の劣化がなくなるという著しい効果がある。 Further, a film formed by sputtering a target obtained by machining the sintered body of the present invention, or a film formed by the above ion plating is an optical adjustment film or a transparent conductive film in various displays, Moreover, it can use for the optical thin film which forms the protective layer of an optical information recording medium. In the case of the protective layer of the optical information recording medium, since ZnS is not used, there is a remarkable effect that there is no contamination due to S and no deterioration of the recording layer due to this.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
 実施例および比較例における測定方法、測定条件等は、以下の通りである。
(成分組成について)
 測定装置:SII社製 SPS3500DD
 測定方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
(相対密度について)
 焼結体の密度は、焼結体の体積を測長により求め、重量測定から計算した。
 理論密度は、原料の酸化物の単体密度それぞれに混合質量比を掛け、得られた値を合計して求めた。相対密度は、酸化物焼結体の密度を理論密度で除し、100を掛けて求めた。
  理論密度=Σ(酸化物の単体密度×混合質量比)
  相対密度={(焼結体の密度)/(理論密度)}×100
(バルク抵抗、比抵抗、シート抵抗について)
 測定装置:NPS社製 抵抗率測定器 Σ-5+
 測定方法:直流四探針法
(屈折率、消衰係数について)
 測定装置:SHIMADZU社製 分光光度計 UV-2450
 測定方法:透過率、表裏面反射率から算出
(成膜方法、成膜条件について)
 成膜装置:ANELVA SPL-500
   基板:φ4inch
 基板温度:室温
(結晶化評価について)
 測定装置:リガク社製 X線回折装置 Ultima IV
   管球:Cu
  管電圧:40kV
  管電流:30kV
Measurement methods, measurement conditions, and the like in Examples and Comparative Examples are as follows.
(About component composition)
Measuring apparatus: SPS3500DD manufactured by SII
Measuring method: ICP-OES (High Frequency Inductively Coupled Plasma Atomic Emission Analysis)
(About relative density)
The density of the sintered body was calculated from the weight measurement by determining the volume of the sintered body by length measurement.
The theoretical density was obtained by multiplying each single element density of the raw material oxide by the mixing mass ratio and totaling the obtained values. The relative density was obtained by dividing the density of the oxide sintered body by the theoretical density and multiplying by 100.
Theoretical density = Σ (oxide density × mixing mass ratio)
Relative density = {(density of sintered body) / (theoretical density)} × 100
(Bulk resistance, specific resistance, sheet resistance)
Measuring device: NPS resistivity meter Σ-5 +
Measurement method: DC four-point probe method (refractive index, extinction coefficient)
Measuring device: Spectrophotometer UV-2450 manufactured by SHIMADZU
Measurement method: Calculated from transmittance and front / back surface reflectance (deposition method and conditions)
Deposition system: ANELVA SPL-500
Substrate: φ4inch
Substrate temperature: Room temperature (about crystallization evaluation)
Measuring device: Rigaku X-ray diffraction device Ultimate IV
Tube: Cu
Tube voltage: 40 kV
Tube current: 30 kV
(実施例1)
 ZnO粉、Ga粉、In粉、SiO粉からなる基本材料(母材)を表1に記載される配合比(mol%)で混合、合成した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は99.9%に達し、バルク抵抗は1.4mΩ・cmとなった。
Example 1
After mixing and synthesizing a basic material (base material) composed of ZnO powder, Ga 2 O 3 powder, In 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 99.9% and the bulk resistance was 1.4 mΩ · cm.
 また、上記仕上げ加工したターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、O2(酸素)を0~2vol%含有するArガス圧0.5Paとし、膜厚1500~7000Åに成膜した。このとき安定したスパッタが可能であった。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。図1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、また表1に示す通り、その屈折率は1.87(波長550nm)、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。体積抵抗率は、スパッタ雰囲気中の酸素量により変化し、5×10Ω・cm超となった。 Further, sputtering was performed using the finished target. The sputtering conditions, DC sputtering, sputtering power of 500 W, O 2 (oxygen) and Ar gas pressure 0.5Pa containing 0 ~ 2 vol%, was formed to a thickness of 1500 ~ 7000 Å. At this time, stable sputtering was possible. The amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample were measured. As shown in FIG. 1, the thin film formed by sputtering is an amorphous film. As shown in Table 1, the refractive index is 1.87 (wavelength 550 nm) and the extinction coefficient is less than 0.01 (wavelength 450 nm). An amorphous film having a low refractive index was obtained. The volume resistivity changed depending on the amount of oxygen in the sputtering atmosphere, and exceeded 5 × 10 0 Ω · cm.
 なお、アモルファス(非晶質)膜の評価は、上述の通り、X線回折法により、ZnO(002)面に帰属するピークが明瞭に認められない場合に、アモルファス膜とした。具体的には、構成組成に帰属するピークが存在しない2θ範囲の強度I(バックグランド)に対して、ZnO(002)面に帰属するピーク強度Iが、I/I≦5.0を満たす場合、アモルファス膜と評価し(表1の○に相当)、I/I>5.0を満たす場合、結晶化膜と評価した(表1の×に相当)。例えば、実施例1において、図1中の30°<2θ<35°における最大ピーク値をZnO(002)ピーク強度Iとし、一方、ZnOピークの両側において構成成分に帰属するピークが認められない27°<2θ<30°および40°<2θ<43°におけるピーク強度の平均値をIとし、I/Iを算出した。その結果、実施例1では、I/I=1.6となり、後述の比較例1では、I/I=37.3となり、それぞれアモルファス膜、結晶化膜と評価した。 As described above, the amorphous film was evaluated when the peak attributed to the ZnO (002) plane was not clearly recognized by the X-ray diffraction method. Specifically, the peak intensity I 1 attributed to the ZnO (002) plane is I 1 / I 0 ≦ 5. 2 with respect to the intensity I 0 (background) in the 2θ range where no peak attributed to the constituent composition exists. When 0 was satisfied, it was evaluated as an amorphous film (corresponding to ○ in Table 1), and when I 1 / I 0 > 5.0 was satisfied, it was evaluated as a crystallized film (corresponding to x in Table 1). For example, in Example 1, the maximum peak value at 30 ° <2θ <35 ° in FIG. 1 is the ZnO (002) peak intensity I 1 , while no peaks attributed to constituent components are observed on both sides of the ZnO peak. The average value of peak intensities at 27 ° <2θ <30 ° and 40 ° <2θ <43 ° was I 0, and I 1 / I 0 was calculated. As a result, I 1 / I 0 = 1.6 in Example 1, and I 1 / I 0 = 37.3 in Comparative Example 1 described later, which were evaluated as an amorphous film and a crystallized film, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 ZnO粉、Al粉、In粉、SiO粉からなる基本材料(母材)を表1に記載される配合比(mol%)で混合、合成した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は100.4%に達し、バルク抵抗は3.0mΩ・cmとなった。
(Example 2)
After mixing and synthesizing a basic material (base material) composed of ZnO powder, Al 2 O 3 powder, In 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 100.4%, and the bulk resistance was 3.0 mΩ · cm.
 また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。このとき安定したDCスパッタが可能であった。表1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.85(波長550nm)、体積抵抗率は6×10Ω・cm超、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。 Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.85 (wavelength 550 nm), the volume resistivity is more than 6 × 10 6 Ω · cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
(実施例3)
 ZnO粉、Ga粉、Y粉、SiO粉からなる基本材料(母材)を表1に記載される配合比(mol%)で混合、合成した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は100.6%に達し、バルク抵抗は1.2mΩ・cmとなった。
Example 3
After mixing and synthesizing a basic material (base material) composed of ZnO powder, Ga 2 O 3 powder, Y 2 O 3 powder, and SiO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 100.6% and the bulk resistance was 1.2 mΩ · cm.
 また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。このとき安定したDCスパッタが可能であった。表1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.87(波長550nm)、体積抵抗率は1×10Ω・cm超、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。 Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.87 (wavelength 550 nm), the volume resistivity is more than 1 × 10 8 Ω · cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
(実施例4)
 ZnO粉、Ga粉、In粉、SiO粉からなる基本材料(母材)を表1に記載される配合比(mol%)で調合した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は99.9%に達し、バルク抵抗は1.4mΩ・cmとなった。
Example 4
ZnO powder, Ga 2 O 3 powder, an In 2 O 3 powder, was blended with the base material of SiO 2 powder blending ratio of (matrix) are described in Table 1 (mol%), B as a low-melting-point oxide 2 O 3 powder was added to the base material at a blending ratio (wt%) described in Table 1 and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 99.9% and the bulk resistance was 1.4 mΩ · cm.
 また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。このとき安定したDCスパッタが可能であった。表1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.89(波長550nm)、体積抵抗率は5×10Ω・cm超、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。 Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.89 (wavelength 550 nm), the volume resistivity is more than 5 × 10 0 Ω · cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
(実施例5)
 ZnO粉、B粉、In粉、GeO粉からなる基本材料(母材)を表1に記載される配合比(mol%)で混合、合成した後、低融点酸化物としてBi粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末を圧力500kgf/cmでプレス成形し、この成形体を真空中、温度1200℃で常圧焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は97.6%に達し、バルク抵抗は1.7Ω・cmとなった。
(Example 5)
After mixing and synthesizing a basic material (base material) composed of ZnO powder, B 2 O 3 powder, In 2 O 3 powder, and GeO 2 powder at a mixing ratio (mol%) shown in Table 1, low melting point oxide Bi 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was press-molded at a pressure of 500 kgf / cm 2 , and the compact was sintered under normal pressure at a temperature of 1200 ° C. in a vacuum. Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 97.6%, and the bulk resistance became 1.7 Ω · cm.
 また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。このとき安定したDCスパッタが可能であった。表1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.89(波長550nm)、体積抵抗率は3×10Ω・cm超、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。 Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.89 (wavelength 550 nm), the volume resistivity is more than 3 × 10 6 Ω · cm, and the extinction coefficient is 0.01. And an amorphous film having a low refractive index (wavelength 450 nm).
(実施例6)
 ZnO粉、Ga粉、In粉、GeO粉からなる基本材料(母材)を表1に記載される配合比(mol%)で混合、合成した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は99.7%に達し、バルク抵抗は1.3mΩ・cmとなった。
(Example 6)
After mixing and synthesizing a basic material (base material) composed of ZnO powder, Ga 2 O 3 powder, In 2 O 3 powder, GeO 2 powder at a blending ratio (mol%) shown in Table 1, low melting point oxide B 2 O 3 powder was added at a blending ratio (wt%) described in Table 1 with respect to the base material and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 99.7% and the bulk resistance was 1.3 mΩ · cm.
 また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。このとき安定したDCスパッタが可能であった。表1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.82(波長550nm)、体積抵抗率は3×10-3Ω・cm超、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。 Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.82 (wavelength 550 nm), the volume resistivity is more than 3 × 10 −3 Ω · cm, and the extinction coefficient is 0. An amorphous film having a low refractive index of less than 01 (wavelength 450 nm) was obtained.
(実施例7)
 ZnO粉、Ga粉、In粉、SiO粉からなる基本材料(母材)を表1に記載される配合比(mol%)に調合した後、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。なお、低融点酸化物は添加しなかった。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は98.2%に達し、バルク抵抗は1.1mΩ・cmとなった。
(Example 7)
ZnO powder, Ga 2 O 3 powder, an In 2 O 3 powder, was blended base material made of SiO 2 powder (the base material) in the compounding ratio described in Table 1 (mol%), it was mixed thereto. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 . No low melting point oxide was added. Thereafter, this sintered body was finished into a sputtering target shape by machining. As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density reached 98.2%, and the bulk resistance became 1.1 mΩ · cm.
 また、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した。このとき安定したDCスパッタが可能であった。表1に示す通り、スパッタにより形成した薄膜はアモルファス膜であって、その屈折率は1.88(波長550nm)、体積抵抗率は3Ω・cm超、消衰係数は0.01未満(波長450nm)と、低屈折率のアモルファス膜が得られた。 Further, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. The coefficient (wavelength 450 nm) was measured. At this time, stable DC sputtering was possible. As shown in Table 1, the thin film formed by sputtering is an amorphous film, the refractive index is 1.88 (wavelength 550 nm), the volume resistivity is more than 3 Ω · cm, and the extinction coefficient is less than 0.01 (wavelength 450 nm). ) And a low refractive index amorphous film was obtained.
(比較例1)
 ZnO粉、Ga粉、GeO粉からなる基本材料(母材)を表1に記載される配合比(mol%)に調合した後、これを混合した。なお、第二の金属元素は添加しなかった。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。
(Comparative Example 1)
ZnO powder, after compounding Ga 2 O 3 powder, basic material consisting of GeO 2 powder (the base material) in the compounding ratio described in Table 1 (mol%), were mixed thereto. The second metal element was not added. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining.
 得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は96.2%、バルク抵抗は1.2mΩ・cmとなった。 しかし、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、図1に示す通り、スパッタにより形成した薄膜はアモルファス膜とはならかった。なお、屈折率は1.95(波長550nm)、体積抵抗率は4×10-3Ω・cm超、消衰係数は0.01未満(波長450nm)であった。 As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density was 96.2% and the bulk resistance was 1.2 mΩ · cm. However, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. As a result of measuring the coefficient (wavelength 450 nm), as shown in FIG. 1, the thin film formed by sputtering was not an amorphous film. The refractive index was 1.95 (wavelength 550 nm), the volume resistivity was more than 4 × 10 −3 Ω · cm, and the extinction coefficient was less than 0.01 (wavelength 450 nm).
(比較例2)
 ZnO粉、Al粉、Y粉、SiO粉からなる基本材料(母材)を表1に記載されるようにA+B+C>55の配合比(mol%)で混合、合成した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1100℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。
(Comparative Example 2)
A basic material (base material) composed of ZnO powder, Al 2 O 3 powder, Y 2 O 3 powder, and SiO 2 powder was mixed and synthesized at a blending ratio (mol%) of A + B + C> 55 as shown in Table 1. Thereafter, B 2 O 3 powder as a low melting point oxide was added to the base material at a blending ratio (wt%) described in Table 1 and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining.
 得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は97.4%、バルク抵抗は36kΩ・cmと、抵抗値が著しく増加した。上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行ったが、DCスパッタリングはできなかったため、RFスパッタリングによって成膜した。成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、表1に示す通り、スパッタにより形成した薄膜の体積抵抗率は1×10Ω・cm超、絶縁性を示した。なお、屈折率は1.88(波長550nm)、消衰係数は0.01未満(波長450nm)のアモルファス膜であった。 As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density was 97.4%, the bulk resistance was 36 kΩ · cm, and the resistance value was remarkably increased. Sputtering was performed using the above-finished target under the same conditions as in Example 1. However, since DC sputtering could not be performed, a film was formed by RF sputtering. As a result of measuring the amorphousness (amorphous), refractive index (wavelength 550 nm), volume resistivity, and extinction coefficient (wavelength 450 nm) of the film formation sample, as shown in Table 1, the volume resistance of the thin film formed by sputtering is shown. The rate was over 1 × 10 9 Ω · cm, indicating insulation. The amorphous film had a refractive index of 1.88 (wavelength 550 nm) and an extinction coefficient of less than 0.01 (wavelength 450 nm).
(比較例3)
 ZnO粉、Al粉、Y粉、SiO粉からなる基本材料(母材)を表1に記載されるようにA+B+C<15の配合比(mol%)で混合、合成した後、低融点酸化物としてB粉を母材に対して表1に記載される配合比(wt%)で添加し、これを混合した。次に、この混合粉末をアルゴン雰囲気中、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工でスパッタリングターゲット形状に仕上げた。
(Comparative Example 3)
A basic material (base material) composed of ZnO powder, Al 2 O 3 powder, Y 2 O 3 powder, and SiO 2 powder was mixed and synthesized at a blending ratio (mol%) of A + B + C <15 as shown in Table 1. Thereafter, B 2 O 3 powder as a low melting point oxide was added to the base material at a blending ratio (wt%) described in Table 1 and mixed. Next, this mixed powder was hot press sintered in an argon atmosphere under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 . Thereafter, this sintered body was finished into a sputtering target shape by machining.
 得られたターゲットのバルク抵抗と相対密度を測定した結果、表1に示す通り、相対密度は99.6%、バルク抵抗は3.2mΩ・cmとなった。しかし、上記仕上げ加工したターゲットを使用して、実施例1と同様の条件でスパッタリングを行い、成膜サンプルの非晶質性(アモルファス性)、屈折率(波長550nm)、体積抵抗率、消衰係数(波長450nm)を測定した結果、図1に示す通り、スパッタにより形成した薄膜はアモルファス膜とはならかった。なお、屈折率は1.95(波長550nm)、体積抵抗率は4×10-3Ω・cm超、消衰係数は0.01未満(波長450nm)であった。 As a result of measuring the bulk resistance and relative density of the obtained target, as shown in Table 1, the relative density was 99.6% and the bulk resistance was 3.2 mΩ · cm. However, sputtering was performed under the same conditions as in Example 1 using the finished target, and the film formation sample was amorphous (amorphous), refractive index (wavelength 550 nm), volume resistivity, extinction. As a result of measuring the coefficient (wavelength 450 nm), as shown in FIG. 1, the thin film formed by sputtering was not an amorphous film. The refractive index was 1.95 (wavelength 550 nm), the volume resistivity was more than 4 × 10 −3 Ω · cm, and the extinction coefficient was less than 0.01 (wavelength 450 nm).
 本発明の焼結体は、スパッタリングターゲット又はイオンプレーティング材とすることができ、これらのスパッタリングターゲット又はイオンプレーティング材を使用して形成された薄膜は、各種ディスプレイにおける透明導電膜や光ディスクの保護膜を形成して、透過率、屈折率、導電性において、極めて優れた特性を有するという効果がある。また本発明の大きな特徴は、アモルファス膜であることにより、膜のクラックやエッチング性能を格段に向上させることができるという優れた効果を有する。 The sintered body of the present invention can be used as a sputtering target or an ion plating material, and a thin film formed using these sputtering target or ion plating material can protect a transparent conductive film and an optical disk in various displays. Forming a film has an effect of having extremely excellent characteristics in terms of transmittance, refractive index, and conductivity. In addition, the main feature of the present invention is that it is an amorphous film, and therefore has an excellent effect that the cracking and etching performance of the film can be remarkably improved.
 また、本発明の焼結体を用いたスパッタリングターゲットは、バルク抵抗値が低く、相対密度が90%以上と高密度であることから、安定したDCスパッタを可能とする。そして、このDCスパッタリングの特徴であるスパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。必要に応じてRFスパッタを実施するが、その場合でも成膜速度の向上が見られる。また、成膜の際にスパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができる。 In addition, since the sputtering target using the sintered body of the present invention has a low bulk resistance value and a relative density of 90% or higher, stable DC sputtering is possible. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. RF sputtering is performed as necessary, but even in this case, the film formation rate is improved. In addition, particles (dust generation) and nodules generated during sputtering during film formation can be reduced, and quality variation can be reduced and mass productivity can be improved.
 さらに、本発明の焼結体を用いたイオンプレーティング材は、低屈折率のアモルファス膜を成膜することができるので、膜応力によるクラックや割れ、膜の剥離の発生を抑制することができるという効果を有する。このようなアモルファス膜は、特に光情報記録媒体の保護層を形成する光学薄膜、各種ディスプレイにおける光学調整用膜又は透明電極用薄膜に有用である。 Furthermore, since the ion plating material using the sintered body of the present invention can form an amorphous film having a low refractive index, it is possible to suppress the occurrence of cracks and cracks due to film stress, and film peeling. It has the effect. Such an amorphous film is particularly useful as an optical thin film for forming a protective layer of an optical information recording medium, an optical adjustment film in various displays, or a transparent electrode thin film.

Claims (20)

  1.  亜鉛(Zn)、第一の金属元素(M1)、第二の金属元素(M2)、ゲルマニウム(Ge)及び/又はシリコン(Si)、酸素(O)からなる酸化物焼結体であって、M1が、アルミニウム(Al)、ガリウム(Ga)、ボロン(B)、イットリウム(Y)及びインジウム(In)からなる群から選択される一種以上の元素であり(但し、第二の金属元素がイットリウムの場合、第一の金属元素の群からイットリウムを除く。また、第二の金属元素がインジウムの場合、第一の金属元素の群からインジウムを除く。)、M2が、イットリウム(Y)、インジウム(In)、マンガン(Mn)、ランタン(La)、スカンジウム(Sc)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)、ルテチウム(Lu)、プロメチウム(Pm)からなる群から選択される一種以上の元素であって、M1の総含有量が酸化物換算でAmol%、M2の総含有量が酸化物換算でBmol%、Ge及び/又はSiの総含有量がGeO及び/又はSiO換算でCmol%としたとき、15≦A+B+C≦55の条件を満たすことを特徴とする焼結体。 An oxide sintered body composed of zinc (Zn), first metal element (M1), second metal element (M2), germanium (Ge) and / or silicon (Si), oxygen (O), M1 is one or more elements selected from the group consisting of aluminum (Al), gallium (Ga), boron (B), yttrium (Y), and indium (In) (provided that the second metal element is yttrium) In this case, yttrium is excluded from the first metal element group, and indium is excluded from the first metal element group when the second metal element is indium.), M2 is yttrium (Y), indium (In), manganese (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium ( b) one or more elements selected from the group consisting of dysprosium (Dy), holmium (Ho), erbium (Er), ytterbium (Yb), lutetium (Lu), and promethium (Pm), When the content is Amol% in terms of oxide, the total content of M2 is Bmol% in terms of oxide, and the total content of Ge and / or Si is Cmol% in terms of GeO 2 and / or SiO 2 , 15 ≦ A sintered body characterized by satisfying the condition of A + B + C ≦ 55.
  2.  第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比で10at%以上であることを特徴とする請求項1記載の焼結体。 The total content of the first metal element (M1) and the second metal element (M2) is 10 at% or more in terms of the atomic ratio of (M1 + M2) / (Zn + M1 + M2). Sintered body.
  3.  第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比で15at%以上であることを特徴とする請求項2記載の焼結体。 The total content of the first metal element (M1) and the second metal element (M2) is 15 at% or more in terms of the atomic ratio of (M1 + M2) / (Zn + M1 + M2). Sintered body.
  4.  Ge及び/又はSiの総含有量が、5≦C≦30であることを特徴とする請求項1記載の焼結体。 2. The sintered body according to claim 1, wherein the total content of Ge and / or Si is 5 ≦ C ≦ 30.
  5.  さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする請求項1~4のいずれか一項に記載の焼結体。 5. The sintered body according to claim 1, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight.
  6.  前記融点が1000℃以下の酸化物が、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOからなる群から選択される一種以上の酸化物であることを特徴とする請求項5記載の焼結体。 The oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , The sintered body according to claim 5, wherein the sintered body is one or more oxides selected from the group consisting of MoO 3 .
  7.  相対密度が90%以上であることを特徴とする請求項1~6のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 6, wherein the relative density is 90% or more.
  8.  バルク抵抗値が10Ω・cm以下であることを特徴とする請求項1~7のいずれか一項に記載の焼結体。 The sintered body according to any one of claims 1 to 7, wherein a bulk resistance value is 10 Ω · cm or less.
  9.  請求項1~8のいずれか一項に記載される焼結体を用いることを特徴とするスパッタリングターゲット。 A sputtering target comprising the sintered body according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載される焼結体を用いることを特徴とするイオンプレーティング材。 An ion plating material using the sintered body according to any one of claims 1 to 8.
  11.  亜鉛(Zn)、第一の金属元素(M1)、第二の金属元素(M2)、ゲルマニウム(Ge)及び/又はシリコン(Si)、酸素(O)からなる酸化物焼結体であって、M1が、アルミニウム(Al)、ガリウム(Ga)、ボロン(B)、イットリウム(Y)及びインジウム(In)からなる群から選択される一種以上の元素であり(但し、第二の金属元素がイットリウムの場合、第一の金属元素の群からイットリウムを除く。また、第二の金属元素がインジウムの場合、第一の金属元素の群からインジウムを除く。)、M2が、イットリウム(Y)、インジウム(In)、マンガン(Mn)、ランタン(La)、スカンジウム(Sc)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、イッテルビウム(Yb)、ルテチウム(Lu)、プロメチウム(Pm)からなる群から選択される一種以上の元素であって、M1の総含有量が酸化物換算でAmol%、M2の総含有量が酸化物換算でBmol%、Ge及び/又はSiの総含有量がGeO及び/又はSiO換算でCmol%としたとき、15≦A+B+C≦55の条件を満たし、アモルファスであることを特徴とする薄膜。 An oxide sintered body composed of zinc (Zn), first metal element (M1), second metal element (M2), germanium (Ge) and / or silicon (Si), oxygen (O), M1 is one or more elements selected from the group consisting of aluminum (Al), gallium (Ga), boron (B), yttrium (Y), and indium (In) (provided that the second metal element is yttrium) In this case, yttrium is excluded from the first metal element group, and indium is excluded from the first metal element group when the second metal element is indium.), M2 is yttrium (Y), indium (In), manganese (Mn), lanthanum (La), scandium (Sc), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (T b), one or more elements selected from the group consisting of dysprosium (Dy), holmium (Ho), erbium (Er), ytterbium (Yb), lutetium (Lu), and promethium (Pm), When the content is Amol% in terms of oxide, the total content of M2 is Bmol% in terms of oxide, and the total content of Ge and / or Si is Cmol% in terms of GeO 2 and / or SiO 2 , 15 ≦ A thin film that satisfies the condition of A + B + C ≦ 55 and is amorphous.
  12.  第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比で10at%以上であることを特徴とする請求項11記載の薄膜。 The total content of the first metal element (M1) and the second metal element (M2) is 10 at% or more in terms of the atomic ratio of (M1 + M2) / (Zn + M1 + M2). Thin film.
  13.  第1の金属元素(M1)及び第二の金属元素(M2)の総含有量が、(M1+M2)/(Zn+M1+M2)の原子数比で15at%以上であることを特徴とする請求項12記載の薄膜。 The total content of the first metal element (M1) and the second metal element (M2) is 15 at% or more in terms of the atomic ratio of (M1 + M2) / (Zn + M1 + M2). Thin film.
  14.  Ge及び/又はSiの総含有量が、5≦C≦30であることを特徴とする請求項11~13のいずれか一項に記載の薄膜。 14. The thin film according to claim 11, wherein the total content of Ge and / or Si is 5 ≦ C ≦ 30.
  15.  さらに、融点が1000℃以下の酸化物を形成する金属を酸化物重量換算で0.1~5wt%含有することを特徴とする請求項11~14のいずれか一項に記載の薄膜。 15. The thin film according to claim 11, further comprising 0.1 to 5 wt% of a metal that forms an oxide having a melting point of 1000 ° C. or less in terms of oxide weight.
  16.  前記融点が1000℃以下の酸化物が、B、P、KO、V、Sb、TeO、Ti、PbO、Bi、MoOからなる群から選択される一種以上の酸化物であることを特徴とする請求項15記載の薄膜。 The oxide having a melting point of 1000 ° C. or lower is B 2 O 3 , P 2 O 5 , K 2 O, V 2 O 5 , Sb 2 O 3 , TeO 2 , Ti 2 O 3 , PbO, Bi 2 O 3 , The thin film according to claim 15, wherein the thin film is one or more oxides selected from the group consisting of MoO 3 .
  17.  波長450nmにおける消衰係数が0.01以下であることを特徴とする請求項11~16のいずれか一項に記載の薄膜。 The thin film according to any one of claims 11 to 16, wherein an extinction coefficient at a long wavelength of 450 nm is 0.01 or less.
  18.  波長550nmにおける屈折率が2.00以下であることを特徴とする請求項11~16のいずれか一項に記載の薄膜。 The thin film according to any one of claims 11 to 16, wherein the refractive index at a long wavelength of 550 nm is 2.00 or less.
  19.  体積抵抗率が1×10-3~1×10Ω・cmであることを特徴とする請求項11~16記載のいずれか一項に記載の薄膜。 Thin film according to any one of claims 11 to 16, wherein the volume resistivity is 1 × 10 -3 ~ 1 × 10 9 Ω · cm.
  20.   請求項1~8のいずれか一項に記載される焼結体の製造方法であって、原料粉を混合し、得られた混合粉を不活性ガス又は真空雰囲気の下、900℃~1500℃で加圧焼結するか、又は得られた混合粉をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、900℃~1500℃で常圧焼結することを特徴とする焼結体の製造方法。 The method for producing a sintered body according to any one of claims 1 to 8, wherein raw material powder is mixed, and the obtained mixed powder is 900 ° C to 1500 ° C under an inert gas or vacuum atmosphere. The sintered product is characterized in that it is pressure-sintered by pressurization or press-molding the obtained mixed powder, and then the compact is sintered at 900 ° C. to 1500 ° C. under an inert gas or vacuum atmosphere. A method for producing a knot
PCT/JP2013/084402 2013-08-26 2013-12-24 Sintered body and amorphous film WO2015029272A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014553367A JP5690982B1 (en) 2013-08-26 2013-12-24 Sintered body and amorphous film
CN201380041450.9A CN104583152A (en) 2013-08-26 2013-12-24 Sintered body and amorphous film
KR1020157007104A KR101702791B1 (en) 2013-08-26 2013-12-24 Sintered compact and amorphous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174689 2013-08-26
JP2013174689 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029272A1 true WO2015029272A1 (en) 2015-03-05

Family

ID=52585874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084402 WO2015029272A1 (en) 2013-08-26 2013-12-24 Sintered body and amorphous film

Country Status (5)

Country Link
JP (1) JP5690982B1 (en)
KR (1) KR101702791B1 (en)
CN (2) CN104583152A (en)
TW (1) TWI579254B (en)
WO (1) WO2015029272A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042520B1 (en) * 2015-11-05 2016-12-14 デクセリアルズ株式会社 Mn—Zn—O-based sputtering target and method for producing the same
TWI839845B (en) * 2021-10-06 2024-04-21 南韓商Lt金屬股份有限公司 Molybdenum oxide based sintered body, sputtering target, oxide thin film using the sintered body, and thin film transistors and display devices including the thin films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541900A (en) * 1977-06-07 1979-01-09 Murata Manufacturing Co Zinc oxide base ceramic for high frequecy sputtering
JPH08295514A (en) * 1995-04-25 1996-11-12 Hoya Corp Electrically conductive oxide and electrode using the same
WO2012096267A1 (en) * 2011-01-14 2012-07-19 株式会社コベルコ科研 Oxide sintered compact and sputtering target
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68910621T2 (en) * 1988-08-10 1994-05-19 Ngk Insulators Ltd Nonlinear voltage dependent resistors.
JP2005219982A (en) 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Translucent conductive material
CN100471820C (en) * 2005-04-11 2009-03-25 日本特殊陶业株式会社 Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermistor element
JP4758697B2 (en) 2005-07-01 2011-08-31 出光興産株式会社 Manufacturing method of IZO sputtering target
JP4770310B2 (en) 2005-07-25 2011-09-14 住友金属鉱山株式会社 Transparent conductive film, transparent conductive substrate and oxide sintered body
JP4797712B2 (en) 2006-03-08 2011-10-19 東ソー株式会社 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
JP5369444B2 (en) 2008-02-06 2013-12-18 住友金属鉱山株式会社 GZO sintered body manufacturing method
WO2010070832A1 (en) * 2008-12-15 2010-06-24 出光興産株式会社 Sintered complex oxide and sputtering target comprising same
KR101412319B1 (en) * 2009-07-21 2014-06-26 히타치 긴조쿠 가부시키가이샤 TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME
TW201119971A (en) * 2009-09-30 2011-06-16 Idemitsu Kosan Co Sintered in-ga-zn-o-type oxide
JP2012124446A (en) * 2010-04-07 2012-06-28 Kobe Steel Ltd Oxide for semiconductor layer of thin film transistor and sputtering target, and thin film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541900A (en) * 1977-06-07 1979-01-09 Murata Manufacturing Co Zinc oxide base ceramic for high frequecy sputtering
JPH08295514A (en) * 1995-04-25 1996-11-12 Hoya Corp Electrically conductive oxide and electrode using the same
WO2012096267A1 (en) * 2011-01-14 2012-07-19 株式会社コベルコ科研 Oxide sintered compact and sputtering target
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium

Also Published As

Publication number Publication date
CN104583152A (en) 2015-04-29
KR101702791B1 (en) 2017-02-06
TWI579254B (en) 2017-04-21
KR20150045496A (en) 2015-04-28
TW201507992A (en) 2015-03-01
JP5690982B1 (en) 2015-03-25
JPWO2015029272A1 (en) 2017-03-02
CN107254669A (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP5770323B2 (en) Sintered body and amorphous film
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP3906766B2 (en) Oxide sintered body
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
WO2011115177A1 (en) Transparent conductive films
JP6278229B2 (en) Sputtering target for forming transparent oxide film and method for producing the same
KR101841791B1 (en) Sintered compact and amorphous film
EP3210952B1 (en) Oxide sintered compact, oxide sputtering target, and oxide thin film
JP5690982B1 (en) Sintered body and amorphous film
JP2004123479A (en) Oxide sintered compact and sputtering target
US20110163277A1 (en) Oxide sintered compact for preparing transparent conductive film
KR101485305B1 (en) Sintered body and amorphous film
WO2014010259A1 (en) Conductive oxide sintered body and method for producing same
JP5837183B2 (en) Sintered body for forming low refractive index film and method for producing the same
KR101748017B1 (en) Oxide sintered compact, oxide sputtering target, conductive oxide thin film having high refractive index, and method for producing the oxide sintered compact
WO2015052927A1 (en) Sputtering target and method for producing same
JP5866024B2 (en) Sintered body for producing low refractive index amorphous transparent conductive film and low refractive index amorphous transparent conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014553367

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157007104

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892243

Country of ref document: EP

Kind code of ref document: A1