WO2015027965A1 - Electronic cooling water pump with floating impeller for motor vehicle - Google Patents

Electronic cooling water pump with floating impeller for motor vehicle Download PDF

Info

Publication number
WO2015027965A1
WO2015027965A1 PCT/CN2014/088462 CN2014088462W WO2015027965A1 WO 2015027965 A1 WO2015027965 A1 WO 2015027965A1 CN 2014088462 W CN2014088462 W CN 2014088462W WO 2015027965 A1 WO2015027965 A1 WO 2015027965A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection molding
impeller
water pump
rotor
motor vehicle
Prior art date
Application number
PCT/CN2014/088462
Other languages
French (fr)
Inventor
Hongming Dai
Jinshun ZHU
Feifei YE
Feng Chen
Original Assignee
Borgwarner Thermal Systems Of Michigan, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borgwarner Thermal Systems Of Michigan, Inc. filed Critical Borgwarner Thermal Systems Of Michigan, Inc.
Publication of WO2015027965A1 publication Critical patent/WO2015027965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber

Definitions

  • the present invention relates to a motor vehicle cooling system component, in particular to an electronic cooling water pump for a motor vehicle.
  • Abnormal noises in motor vehicles have now become a major factor affecting the comfort of travelers.
  • Abnormal noise from the motor vehicle cooling water pump accounts for a significant proportion of all abnormal noise from the motor vehicle, and is also the principal form of failure of the motor vehicle cooling water pump.
  • Abnormal noise produced by the bearing in the motor vehicle cooling water pump makes the most significant contribution to abnormal noise from the motor vehicle cooling water pump.
  • solving the problem of abnormal noise from the bearing of the motor vehicle cooling water pump is of vital importance to the improvement of comfort for motor vehicle occupants.
  • the motive power for all conventional mechanical cooling water pumps for motor vehicles comes from the main shaft of the engine.
  • the motive power provided by the main shaft is transmitted to the motor vehicle’s cooling water pump shaft via a belt or chain, enabling the motor vehicle’s cooling water pump impeller to do work on the coolant so that the latter circulates in the cooling system and thereby cools the relevant components of the motor vehicle.
  • the characteristics of transmission by belt or chain are such that the belt or chain must exert a significant radial force on the water pump shaft during transmission, and for this reason it is necessary to fit a bearing to a mechanical motor vehicle cooling water pump, to bear the radial force exerted on the water pump by the belt or chain. With a bearing, there will be friction, and with friction, there is the possibility of abnormal noise.
  • the technical problem to be solved by the present invention is to provide a cooling water pump with a floating impeller for a motor vehicle, to completely eliminate abnormal noise produced by a motor vehicle cooling water pump bearing.
  • a cooling water pump with a floating impeller for a motor vehicle comprising a support, on which are mounted a stator, a water pump cover, a socket injection molding, a controller and a rear cover.
  • a rotor impeller injection molding is mounted at the center of the rotor. It is characterized in that:
  • the rotor impeller injection molding is of a design integrating a water pump impeller with an electric machine rotor.
  • the electric machine rotor principally comprises 4 permanent magnets, 1 permanent magnet support and 1 permanent magnet protective cover.
  • the water pump impeller principally comprises blades, a front cover plate and a rear cover plate.
  • An injection molding process is used to form the water pump impeller and electric machine rotor as a single piece.
  • the injection molding process involves putting the electric machine rotor into an injection molding mold first as an insert, then injecting a plastic material into the mold, to form a component (the rotor impeller injection molding) in which the water pump impeller is integrated with the electric machine rotor.
  • a through-hole with precise dimensions is provided at the center of the rotor impeller injection molding, to fit an electric machine shaft.
  • the precise fit between the electric machine shaft and the rotor impeller injection molding ensures that the shaft core of the rotor impeller injection molding coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding is located at the center of the stator.
  • the magnetic effect of permanent magnets in the rotor impeller injection molding ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator. That is to say, at this time the longitudinal position of the rotor impeller injection molding is in a floating state.
  • the stator will generate a magnetic field.
  • the interaction between the magnetic field generated by the stator and the magnetic field generated by the permanent magnets in the rotor impeller injection molding can not only turn the rotor impeller injection molding at a certain rotation speed, so that the impeller does work on coolant, but also make the rotor impeller injection molding float automatically in the center of the stator. That is to say, as it rotates and does work, the impeller remains at all times in a magnetic floating state, and so will not experience friction with other components.
  • the cooling water pump with a floating impeller for a motor vehicle dispenses with a bearing, putting an end to friction between a rotating part and a fixed part.
  • the cooling water pump with a floating impeller for a motor vehicle dispenses with a bearing, putting an end to friction between a rotating part and a fixed part.
  • Fig. 1 is a sectional structural diagram of the present invention. It comprises components such as bolts 1, a water pump cover 2, a rotor impeller injection molding 3, an electric machine shaft 4, a stator 5, a support 6, a socket injection molding 7, a controller 8 and a rear cover 9.
  • Fig. 2 is an exploded structural diagram showing the components of the present invention.
  • Fig. 3 is a sectional structural diagram of the rotor impeller injection molding 3 of the present invention. It comprises components such as an impeller I, a permanent magnet support II, permanent magnets III (4 pieces) and a permanent magnet protective cover IV.
  • a cooling water pump with a floating impeller for a motor vehicle comprises a support 6, a stator 5 mounted on the support 6, a water pump cover 2, a socket injection molding 7, a controller 8 and a rear cover 9.
  • the stator 5, water pump cover 2, socket injection molding 7, controller 8 and rear cover 9 are all fixed to the support by bolts. Sealing rings for sealing are mounted between the stator 5 and water pump cover 2, between the stator 5 and support 6, between the socket injection molding 7 and support 6, and between the rear cover 9 and support 6, to prevent leakage. This ensures that coolant will not leak to the outside, and also that liquid and damp gases from the outside will not enter the interior of the motor vehicle’s electronic cooling water pump and thereby damage the components thereof.
  • a welding process is employed to ensure electric current and signal communication between the stator 5 and controller 8 and between the controller 8 and socket injection molding 7.
  • the plug-in injection molding 7 When the plug-in injection molding 7 is in communication with a power supply of the motor vehicle and a signal source, and has received a signal, the plug-in injection molding 7 will input the signal and a current to the controller 8.
  • the controller 8 After intelligent processing by the controller 8, the controller 8 will drive the rotor impeller injection molding 3 to rotate at a certain speed; as it rotates, the impeller part of the rotor impeller injection molding 3 does work on the coolant, so that the latter circulates in the cooling system circuit of the motor vehicle, thereby cooling the relevant components of the motor vehicle.
  • the rotor impeller injection molding 3 comprises an impeller I, a permanent magnet support II, permanent magnets III (4 pieces) and a permanent magnet protective cover IV.
  • the precise fit between the electric machine shaft 4 and the rotor impeller injection molding 3 ensures that the shaft core of the rotor impeller injection molding 3 coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding 3 is located at the center of the stator 5.
  • the magnetic effect of the permanent magnets III in the rotor impeller injection molding 3 ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator 5. That is to say, at this time the longitudinal position of the rotor impeller injection molding 3 is in a floating state.
  • the stator 5 will generate a magnetic field.
  • the interaction between the magnetic field generated by the stator 5 and the magnetic field generated by the permanent magnets III in the rotor impeller injection molding 3 can not only turn the rotor impeller injection molding 3 at a certain rotation speed, so that the impeller does work on the coolant, but also make the rotor impeller injection molding 3 float automatically in the center of the stator 5. That is to say, as it rotates and does work, the impeller part of the rotor impeller injection molding 3 remains at all times in a magnetic floating state, and so will not experience friction with other components.
  • the objective ultimately achieved by the present invention is to increase the overall efficiency of the motor vehicle cooling water pump while completely eliminating abnormal noise produced by a motor vehicle cooling water pump bearing.
  • the specific objective is elaborated from the following perspectives:
  • the present invention can completely eliminate abnormal noise produced by a bearing of an electronic cooling water pump for a motor vehicle, greatly reducing the probability of abnormal motor vehicle noise arising, and hence increasing customer satisfaction.
  • the present invention completely eliminate abnormal noise produced by a bearing of an electronic cooling water pump for a motor vehicle, but the failure rate after sale of the motor vehicle cooling water pump can be reduced by around 25%.
  • Bearing lifespan is one of the main factors limiting the overall lifespan of a motor vehicle cooling water pump. For this reason, a structural design with no bearing is employed in the present invention, which can increase lifespan by around 30%compared to product designs in the same class employing a bearing structure.
  • the precise fit between the electric machine shaft 4 and the rotor impeller injection molding 3 ensures that the shaft core of the rotor impeller injection molding 3 coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding 3 is located at the center of the stator 5.
  • the magnetic effect of the permanent magnets III in the rotor impeller injection molding 3 ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator 5. That is to say, at this time the longitudinal position of the rotor impeller injection molding 3 is in a floating state.
  • the stator 5 will generate a magnetic field.
  • the interaction between the magnetic field generated by the stator 5 and the magnetic field generated by the permanent magnets III in the rotor impeller injection molding 3 can not only turn the rotor impeller injection molding 3 at a certain rotation speed, so that the impeller does work on the coolant, but also make the rotor impeller injection molding 3 float automatically in the center of the stator 5. That is to say, as it rotates and does work, the impeller part of the rotor impeller injection molding 3 remains at all times in a magnetic floating state, and so will not experience friction with other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Disclosed is a cooling water pump with a floating impeller for a motor vehicle, comprising a support (6), wherein a stator (5), a water pump cover (2), a socket injection molding (2), a controller (8) and a rear cover (9) are mounted on the support separately by bolts. A rotor impeller injection molding (3) is mounted at the center of the stator (5). The rotor impeller injection molding (3) is of a design integrating a water pump impeller with an electric machine rotor. When the electronic cooling water pump is operating, the interaction between the magnetic field generated by the stator (5) and the magnetic field generated by the permanent magnets in the rotor impeller injection molding (3) can not only turn the rotor impeller injection molding (3) at a certain rotation speed, but also make the rotor impeller injection molding float automatically in the center of the stator. As it rotates, the impeller remains at all times in a magnetic floating state, so it will not experience friction with other components, and the mechanical loss in the motor vehicle cooling water pump is reduced and the efficiency of the motor vehicle cooling water pump is increased, thereby reducing the fuel consumption of the motor vehicle.

Description

无标题 DESCRIPTION
Electronic cooling water pump with floating impeller for motor vehicle
Technical field
The present invention relates to a motor vehicle cooling system component, in particular to an electronic cooling water pump for a motor vehicle.
Background art
As society has developed and technology has advanced, motor vehicles have gradually become part of innumerable households, and people are demanding greater comfort when traveling. Therefore, a leader in the field of motor vehicle cooling systems has a duty to make constant innovations in cooling system technology, to meet the ever-increasing demands of consumers.
Abnormal noises in motor vehicles have now become a major factor affecting the comfort of travelers. Abnormal noise from the motor vehicle cooling water pump accounts for a significant proportion of all abnormal noise from the motor vehicle, and is also the principal form of failure of the motor vehicle cooling water pump. Abnormal noise produced by the bearing in the motor vehicle cooling water pump makes the most significant contribution to abnormal noise from the motor vehicle cooling water pump. Thus, solving the problem of abnormal noise from the bearing of the motor vehicle cooling water pump is of vital importance to the improvement of comfort for motor vehicle occupants.
The motive power for all conventional mechanical cooling water pumps for motor vehicles comes from the main shaft of the engine. The motive power provided by the main shaft is transmitted to the motor vehicle’s cooling water pump shaft via a belt or chain, enabling the motor vehicle’s cooling water pump impeller to do work on the coolant so that the latter circulates in the cooling system and thereby cools the relevant components of the motor vehicle. The characteristics of transmission by belt or chain are such that the belt or chain must exert a significant radial force on the water pump shaft during transmission, and for this reason it is necessary to fit a bearing to a mechanical motor vehicle cooling water pump, to bear the radial force exerted on the water pump by the belt or chain. With a bearing, there will be friction, and with friction, there is the possibility of abnormal noise.
The development in recent years of electronic cooling water pumps for motor vehicles has provided a fine platform for solving the problem of abnormal noise from cooling water pump bearings in motor vehicles. The main difference between transmission mechanical cooling water pumps for motor vehicles and electronic cooling water pumps for motor vehicles is that their motive power comes from different sources. The motive power for mechanical cooling water pumps for motor vehicles comes from the main shaft of the engine, whereas the motive power for electronic cooling water pumps for motor vehicles comes from a generator or battery pack. Therefore electronic cooling water pumps for motor vehicles do not need a belt or chain for transmission of motive power. It is only necessary to connect the wiring port of the electronic cooling water pump of the motor vehicle to the wiring port of the motor vehicle’s power supply. Exploiting the characteristics of electronic water pumps, we have invented a cooling water pump with a floating impeller for a motor vehicle. This invention can completely eliminate abnormal motor vehicle noise produced by the bearing of a motor vehicle cooling water pump.
Content of the present invention
The technical problem to be solved by the present invention is to provide a cooling water pump with a floating impeller for a motor vehicle, to completely eliminate abnormal noise produced by a motor vehicle cooling water pump bearing.
The technical solution by which the present invention solves the above technical problem is: a cooling water pump with a floating impeller for a motor vehicle, comprising a support, on which are mounted a stator, a water pump cover, a socket injection molding, a controller and a rear cover. A rotor impeller injection molding is mounted at the center of the rotor. It is characterized in that:
The rotor impeller injection molding is of a design integrating a water pump impeller with an electric machine rotor. The electric machine rotor principally comprises 4 permanent magnets, 1 permanent magnet support and 1 permanent magnet protective cover. The water pump impeller principally comprises blades, a front cover plate and a rear cover plate. An injection molding process is used to form the water pump impeller and electric machine rotor as a single piece. The injection molding process involves putting the electric machine rotor into an injection molding mold first  as an insert, then injecting a plastic material into the mold, to form a component (the rotor impeller injection molding) in which the water pump impeller is integrated with the electric machine rotor. A through-hole with precise dimensions is provided at the center of the rotor impeller injection molding, to fit an electric machine shaft.
At the instant in time when the electronic cooling water pump for the motor vehicle is not energized and is just starting up, the precise fit between the electric machine shaft and the rotor impeller injection molding ensures that the shaft core of the rotor impeller injection molding coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding is located at the center of the stator. The magnetic effect of permanent magnets in the rotor impeller injection molding ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator. That is to say, at this time the longitudinal position of the rotor impeller injection molding is in a floating state.
Once the electronic cooling water pump for the motor vehicle has been energized, the stator will generate a magnetic field. The interaction between the magnetic field generated by the stator and the magnetic field generated by the permanent magnets in the rotor impeller injection molding can not only turn the rotor impeller injection molding at a certain rotation speed, so that the impeller does work on coolant, but also make the rotor impeller injection molding float automatically in the center of the stator. That is to say, as it rotates and does work, the impeller remains at all times in a magnetic floating state, and so will not experience friction with other components.
Compared with the prior art, the present invention has the following advantages: The cooling water pump with a floating impeller for a motor vehicle dispenses with a bearing, putting an end to friction between a rotating part and a fixed part. Thus, it not only resolves the fault of abnormal vehicle noise produced by bearing friction, but also eliminates consumption of mechanical energy by bearing friction, thereby reducing the fuel consumption of the motor vehicle.
Description of the accompanying drawings
Fig. 1 is a sectional structural diagram of the present invention. It comprises components such as bolts 1, a water pump cover 2, a rotor impeller injection  molding 3, an electric machine shaft 4, a stator 5, a support 6, a socket injection molding 7, a controller 8 and a rear cover 9.
Fig. 2 is an exploded structural diagram showing the components of the present invention.
Fig. 3 is a sectional structural diagram of the rotor impeller injection molding 3 of the present invention. It comprises components such as an impeller I, a permanent magnet support II, permanent magnets III (4 pieces) and a permanent magnet protective cover IV.
Particular embodiments
The present invention is described in further detail below with reference to the accompanying drawings.
As Fig. 1 shows: a cooling water pump with a floating impeller for a motor vehicle comprises a support 6, a stator 5 mounted on the support 6, a water pump cover 2, a socket injection molding 7, a controller 8 and a rear cover 9. The stator 5, water pump cover 2, socket injection molding 7, controller 8 and rear cover 9 are all fixed to the support by bolts. Sealing rings for sealing are mounted between the stator 5 and water pump cover 2, between the stator 5 and support 6, between the socket injection molding 7 and support 6, and between the rear cover 9 and support 6, to prevent leakage. This ensures that coolant will not leak to the outside, and also that liquid and damp gases from the outside will not enter the interior of the motor vehicle’s electronic cooling water pump and thereby damage the components thereof.
A welding process is employed to ensure electric current and signal communication between the stator 5 and controller 8 and between the controller 8 and socket injection molding 7. When the plug-in injection molding 7 is in communication with a power supply of the motor vehicle and a signal source, and has received a signal, the plug-in injection molding 7 will input the signal and a current to the controller 8. After intelligent processing by the controller 8, the controller 8 will drive the rotor impeller injection molding 3 to rotate at a certain speed; as it rotates, the impeller part of the rotor impeller injection molding 3 does work on the coolant, so that the latter circulates in the cooling system circuit of the motor vehicle, thereby cooling the relevant components of the motor vehicle.
The rotor impeller injection molding 3 comprises an impeller I, a permanent magnet support II, permanent magnets III (4 pieces) and a permanent magnet protective cover IV. At the instant in time when the electronic cooling water pump for the motor vehicle is not energized and is just starting up, the precise fit between the electric machine shaft 4 and the rotor impeller injection molding 3 ensures that the shaft core of the rotor impeller injection molding 3 coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding 3 is located at the center of the stator 5. The magnetic effect of the permanent magnets III in the rotor impeller injection molding 3 ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator 5. That is to say, at this time the longitudinal position of the rotor impeller injection molding 3 is in a floating state.
Once the electronic cooling water pump for the motor vehicle has been energized, the stator 5 will generate a magnetic field. The interaction between the magnetic field generated by the stator 5 and the magnetic field generated by the permanent magnets III in the rotor impeller injection molding 3 can not only turn the rotor impeller injection molding 3 at a certain rotation speed, so that the impeller does work on the coolant, but also make the rotor impeller injection molding 3 float automatically in the center of the stator 5. That is to say, as it rotates and does work, the impeller part of the rotor impeller injection molding 3 remains at all times in a magnetic floating state, and so will not experience friction with other components.
The objective ultimately achieved by the present invention is to increase the overall efficiency of the motor vehicle cooling water pump while completely eliminating abnormal noise produced by a motor vehicle cooling water pump bearing. The specific objective is elaborated from the following perspectives:
The present invention can completely eliminate abnormal noise produced by a bearing of an electronic cooling water pump for a motor vehicle, greatly reducing the probability of abnormal motor vehicle noise arising, and hence increasing customer satisfaction.
Not only can the present invention completely eliminate abnormal noise produced by a bearing of an electronic cooling water pump for a motor vehicle, but the failure rate after sale of the motor vehicle cooling water pump can be reduced by around 25%.
Bearing lifespan is one of the main factors limiting the overall lifespan of a motor vehicle cooling water pump. For this reason, a structural design with no bearing is employed in the present invention, which can increase lifespan by around 30%compared to product designs in the same class employing a bearing structure.
The use of a structural design with no bearing in the present invention eliminates mechanical loss arising from bearing friction. It can increase motor vehicle cooling water pump efficiency by 1%-2%, thereby reducing the fuel consumption of the motor vehicle.
The use of a structural design with no bearing in the present invention can reduce design costs by about 6%.
Description of specific operating principles:
At the instant in time when the electronic cooling water pump for the motor vehicle is not energized and is just starting up, the precise fit between the electric machine shaft 4 and the rotor impeller injection molding 3 ensures that the shaft core of the rotor impeller injection molding 3 coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding 3 is located at the center of the stator 5. The magnetic effect of the permanent magnets III in the rotor impeller injection molding 3 ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator 5. That is to say, at this time the longitudinal position of the rotor impeller injection molding 3 is in a floating state.
Once the electronic cooling water pump for the motor vehicle has been energized, the stator 5 will generate a magnetic field. The interaction between the magnetic field generated by the stator 5 and the magnetic field generated by the permanent magnets III in the rotor impeller injection molding 3 can not only turn the rotor impeller injection molding 3 at a certain rotation speed, so that the impeller does work on the coolant, but also make the rotor impeller injection molding 3 float automatically in the center of the stator 5. That is to say, as it rotates and does work, the impeller part of the rotor impeller injection molding 3 remains at all times in a magnetic floating state, and so will not experience friction with other components.

Claims (4)

  1. A floating impeller structure for a motor vehicle cooling water pump, comprising a stator, an electric machine shaft, and a rotor impeller injection molding, wherein:
    at the instant in time when the electronic cooling water pump for the motor vehicle is not energized and is just starting up, the precise fit between the electric machine shaft and the rotor impeller injection molding ensures that the shaft core of the rotor impeller injection molding coincides with the shaft core of the stator, i.e. at this time, in terms of radial position, the rotor impeller injection molding is located at the center of the stator; the magnetic effect of permanent magnets in the rotor impeller injection molding ensures that the permanent magnets are located in a central position in the longitudinal direction of the stator; that is to say, at this time the longitudinal position of the rotor impeller injection molding is in a floating state;
    once the electronic cooling water pump for the motor vehicle has been energized, the stator will generate a magnetic field; the interaction between the magnetic field generated by the stator and the magnetic field generated by the permanent magnets in the rotor impeller injection molding can not only turn the rotor impeller injection molding at a certain rotation speed, so that the impeller does work on coolant, but also make the rotor impeller injection molding float automatically in the center of the stator; that is to say, as it rotates and does work, the impeller remains at all times in a magnetic floating state, and so will not experience friction with other components.
  2. The floating impeller structure for a motor vehicle cooling water pump as claimed in claim 1, wherein: the rotor impeller injection molding is of a design integrating a water pump impeller with an electric machine rotor; the electric machine rotor principally comprises 4 permanent magnets, 1 permanent magnet support and 1permanent magnet protective cover; the water pump impeller principally comprises blades, a front cover plate and a rear cover plate; an injection molding process is used to form the water pump impeller and electric machine rotor as a single piece; the injection molding process involves putting the electric machine rotor into an injection molding mold first as an insert, then injecting a plastic material into the mold, to form  a component (the rotor impeller injection molding) in which the water pump impeller is integrated with the electric machine rotor.
  3. The floating impeller structure for a motor vehicle cooling water pump as claimed in claim 1, wherein: the electric machine shaft is fixed at the center of the stator, to ensure that the shaft core of the electric machine coincides with the shaft core of the electric machine.
  4. The rotor impeller injection molding structure as claimed in claim 2, wherein: an inner hole with precise dimensions is provided at the center of gravity of the rotor impeller injection molding and fits the outer circle of the electric machine shaft.
PCT/CN2014/088462 2013-08-27 2014-10-13 Electronic cooling water pump with floating impeller for motor vehicle WO2015027965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310379617.4 2013-08-27
CN201310379617.4A CN103452858B (en) 2013-08-27 2013-08-27 Automotive electronics cooling water pump

Publications (1)

Publication Number Publication Date
WO2015027965A1 true WO2015027965A1 (en) 2015-03-05

Family

ID=49735592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088462 WO2015027965A1 (en) 2013-08-27 2014-10-13 Electronic cooling water pump with floating impeller for motor vehicle

Country Status (2)

Country Link
CN (1) CN103452858B (en)
WO (1) WO2015027965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3115612A1 (en) * 2015-07-06 2017-01-11 Hangzhou Sanhua Research Institute Co., Ltd. Electrically driven pump and method for manufacturing the same
ITUB20156281A1 (en) * 2015-12-03 2017-06-03 Ind Saleri Italo Spa ROTOR UNIT OF A VEHICLE COOLING PUMP

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452858B (en) * 2013-08-27 2016-05-18 华纳圣龙(宁波)有限公司 Automotive electronics cooling water pump
CN106363413B (en) * 2015-07-24 2019-06-28 浙江三花汽车零部件有限公司 The manufacturing method of electronic pump
CN105443400B (en) * 2016-01-26 2018-02-16 河北深海电器有限公司 Electronic water pump
CN110159548B (en) * 2019-06-13 2024-02-20 广东骏驰科技股份有限公司 Electric centrifugal pump
CN111255700A (en) * 2020-03-18 2020-06-09 日益电机股份有限公司 Canned magnetic pump with rear cover shield for preventing leakage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2787882Y (en) * 2005-04-04 2006-06-14 邱洁华 DC magnetic driven water pump
JP2008008185A (en) * 2006-06-28 2008-01-17 Nidec Shibaura Corp Pump
KR101236884B1 (en) * 2011-01-21 2013-02-26 이원목 rising type underwater motor pump using a magnetic field
CN103452858A (en) * 2013-08-27 2013-12-18 华纳圣龙(宁波)有限公司 Electronic automobile cooling water pump
CN203476727U (en) * 2013-08-27 2014-03-12 华纳圣龙(宁波)有限公司 Automobile electronic cooling water pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29912577U1 (en) * 1999-07-20 2000-11-30 Speck Pumpenfabrik Walter Spec Containment pump
DE19956380C1 (en) * 1999-11-24 2001-01-04 Bosch Gmbh Robert Fluid pump for vehicle cooling and heating systems has plastics motor housing with claw plates of claw pole stator formed as integral components thereof
JP2008184901A (en) * 2007-01-26 2008-08-14 Mitsuba Corp Motor-driven pump
DE102007043600A1 (en) * 2007-09-13 2009-03-19 Robert Bosch Gmbh Pump rotor for a canned pump
CN201448251U (en) * 2009-07-07 2010-05-05 汪普军 Water pump
KR101072328B1 (en) * 2009-11-19 2011-10-11 현대자동차주식회사 Electric water pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2787882Y (en) * 2005-04-04 2006-06-14 邱洁华 DC magnetic driven water pump
JP2008008185A (en) * 2006-06-28 2008-01-17 Nidec Shibaura Corp Pump
KR101236884B1 (en) * 2011-01-21 2013-02-26 이원목 rising type underwater motor pump using a magnetic field
CN103452858A (en) * 2013-08-27 2013-12-18 华纳圣龙(宁波)有限公司 Electronic automobile cooling water pump
CN203476727U (en) * 2013-08-27 2014-03-12 华纳圣龙(宁波)有限公司 Automobile electronic cooling water pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3115612A1 (en) * 2015-07-06 2017-01-11 Hangzhou Sanhua Research Institute Co., Ltd. Electrically driven pump and method for manufacturing the same
JP2017025905A (en) * 2015-07-06 2017-02-02 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. Electric drive pump and manufacturing method thereof
KR101814923B1 (en) * 2015-07-06 2018-01-30 쯔지앙 산후아 오토모티브 컴포넌츠 컴퍼니 리미티드 Electrically driven pump and method for manufacturing the same
US10393121B2 (en) 2015-07-06 2019-08-27 Hangzhou Sanhua Research Institute Co., Ltd. Electrically driven pump and method for manufacturing the same
ITUB20156281A1 (en) * 2015-12-03 2017-06-03 Ind Saleri Italo Spa ROTOR UNIT OF A VEHICLE COOLING PUMP
WO2017093856A1 (en) * 2015-12-03 2017-06-08 Industrie Saleri Italo S.P.A. Rotor group of a cooling pump of a vehicle cooling circuit comprising a rotor body
WO2017093855A1 (en) * 2015-12-03 2017-06-08 Industrie Saleri Italo S.P.A. Rotor group of a cooling pump of a vehicle cooling circuit

Also Published As

Publication number Publication date
CN103452858A (en) 2013-12-18
CN103452858B (en) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2015027965A1 (en) Electronic cooling water pump with floating impeller for motor vehicle
CN104061169B (en) Vehicle electronic water pump and vane rotor assembly thereof
KR100969037B1 (en) Device and method for cooling motor of HEV
CN102684392A (en) Electric pump unit
JP2011106443A (en) Electric water pump
CN210327287U (en) Motor and vehicle
RU2012111266A (en) TURBINE INSTALLATION
CA2871364A1 (en) Versatile cooling housing for an electrical motor
KR20150051682A (en) Cooling structure of oil cooling motor
CN103236751A (en) Cooling structure of high-speed permanent-magnet synchronous motor
CN108266379A (en) The double-impeller pump of symmetrical impeller arrangement
JP2007205246A (en) Water pump and hybrid vehicle
CN203476727U (en) Automobile electronic cooling water pump
CN202417953U (en) Multistage shield pump for conveying easily vaporized media
US20160108919A1 (en) Electronic cooling water pump with floating impeller
JP2007228669A (en) Cooling device for electric motors
CN105827083A (en) Synchronous water-cooled electric spindle
CN113675980B (en) Electric automobile and driving motor and power assembly thereof
CN210290168U (en) Anti-jamming booster pump based on water temperature neutralization
US3007065A (en) Fluid cooled motor
TW201810873A (en) Low power consumption power generation device including an operating module, a first motor and a second motor
CN200946572Y (en) Electric locomotive transformer oil pump
CN205566052U (en) Synchronous water -cooling electricity main shaft
CN102808783A (en) Mechanical and electrical integrated photovoltaic direct-current high-power submersible pump
CN202370863U (en) Electric water pump for cooling automobile engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840246

Country of ref document: EP

Kind code of ref document: A1