WO2015027941A1 - 复合发热材料及其制备方法和用途 - Google Patents

复合发热材料及其制备方法和用途 Download PDF

Info

Publication number
WO2015027941A1
WO2015027941A1 PCT/CN2014/085486 CN2014085486W WO2015027941A1 WO 2015027941 A1 WO2015027941 A1 WO 2015027941A1 CN 2014085486 W CN2014085486 W CN 2014085486W WO 2015027941 A1 WO2015027941 A1 WO 2015027941A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
carbon
minutes
temperature
generating material
Prior art date
Application number
PCT/CN2014/085486
Other languages
English (en)
French (fr)
Inventor
吴作泉
刘伟
吴作武
刘广宇
Original Assignee
贵州国智高新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州国智高新材料有限公司 filed Critical 贵州国智高新材料有限公司
Publication of WO2015027941A1 publication Critical patent/WO2015027941A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the invention belongs to the field of materials, and particularly relates to a composite heating material, a preparation method thereof and use thereof.
  • the existing heating methods mainly include: 1. Adopting traditional electric furnace heating, the method has the disadvantages of high energy consumption, large occupied space of electric furnace and uneven heating and cooling; second, heating by means of burning furnace, the method has low heat efficiency And polluting the environment; Third, the use of air conditioning heating, but the air conditioning price is higher and energy consumption is greater, in addition, the side effects of air conditioning are obvious, long-term use has certain damage to human health.
  • an object of the present invention is to provide a composite heat-generating material which is prepared by using silicon ore powder and carbon powder, and has the characteristics of high thermal efficiency, energy saving, environmental protection and safe use.
  • Another object of the present invention is to provide a method of preparing a composite heat-generating material.
  • the present invention provides a composite heat-generating material comprising a silica mineral powder and a carbonaceous powder, the silica mineral powder comprising 97% or more of silica, and the carbonaceous powder comprises 90% or more of carbon.
  • the carbonaceous powder comprises more than 95% carbon
  • the silicalite powder comprises 97-99% silica; the carbonaceous powder comprises 95-99% carbon;
  • the weight ratio of the silicalite powder to the carbonaceous powder is 4:6.
  • the carbonaceous powder is a carbon crystal powder
  • the carbon crystal powder is made of one or more of pulverized coal, straw carbon powder, graphite powder or charcoal powder;
  • the pulverized coal is pure coal powder.
  • silicalite powder and the carbonaceous powder have a particle diameter of 45 to 1000 mesh, preferably 100 to 1000 mesh.
  • the composite heating material operates at 12 to 110 V AC and DC voltage.
  • the composite heating material can be brought to a temperature of 35-50 ° C within 30 minutes after being energized at 12 to 110 V AC and DC voltage.
  • the invention further provides a preparation method of the above composite heat-generating material, the preparation method comprising the following steps:
  • Step a mixing the silicon ore powder and the carbon powder at 90 to 140 ° C to obtain a mixed powder
  • Step b The mixed powder obtained in the step a is mixed at 35 to 60 ° C to obtain a composite heating material.
  • preparation method comprises the following steps:
  • Step a stirring and mixing the silicon ore powder and the carbon powder in a high-temperature mixing pot at 90 to 140 ° C, stirring at a speed of 2800 to 3500 rpm, and stirring for 10 to 15 minutes to obtain a mixed powder.
  • the high temperature mixing temperature should be controlled at 90 to 140 ° C. If the temperature is too high, the material is likely to be carbonized, and if it is too low, the required resistance is not obtained;
  • Step b the mixed powder obtained in the step a is stirred and mixed in a low temperature mixing pot at 35 to 60 ° C, the stirring speed is 1200 to 1600 rpm, the stirring time is 8 to 15 minutes, and the composite heat is obtained after cooling.
  • the low temperature mixing should be controlled at 35 ⁇ 60 ° C, the temperature will increase the resistance value too high, the temperature will be too low will reduce the resistance value.
  • preparation method comprises the following steps:
  • Step a stirring and mixing the silicon ore powder and the carbon powder at 125 ° C, the stirring speed is 3000 rpm, and the stirring time is 15 minutes to obtain a mixed powder;
  • Step b The mixed powder obtained in the step a was stirred and mixed at 50 ° C, the stirring speed was 1400 rpm, and the stirring time was 12 minutes, and after cooling, a composite heat-generating material was obtained.
  • the invention further provides the use of the above composite heat-generating material in the preparation of a heat-generating product.
  • the composite heat-generating material of the present invention comprises silicon ore powder and carbonaceous powder, wherein silica in the silica mineral powder acts as a regulating resistance material to regulate electric resistance; and carbon in the carbon powder serves as a varistor material
  • the conductive material with effective heating function helps to enhance the electrical conductivity of the heating material.
  • the weight ratio of the silica powder to the carbon powder, the silica content in the silica powder and the carbon content in the carbon powder all have an influence on the electrical conductivity and the heat generation effect of the heating material.
  • the higher the content of carbonaceous powder in the composite heating material the better the conductivity of the material, and the faster the temperature rises, the higher the temperature reached; however, when the content of the carbon powder is too high, the electrical resistance of the material is too small.
  • the power consumption is high; in addition, when the purity of the carbon powder (carbon content) is low, the activity of the material is insufficient, so that the starting voltage is increased, and when the silica content in the silicon ore powder is too low, the heating material is easily caused. Increased power consumption.
  • the weight ratio of the silicon ore powder and the carbon powder in the heating material the silica content in the silicon ore powder, and the carbon content in the carbon powder, the use temperature, the heating time, and the heating rate required in practical applications can be obtained. And starting voltage.
  • the weight ratio of the silicon ore powder to the carbon powder is preferably 4:6, and the silica content in the silicon ore powder is 97% or more, and the carbon powder is included.
  • the carbon content is 90% (preferably 95%) or more, and at this time, the heat generating material can achieve an ideal energy saving and heat generating effect.
  • the composite heat-generating material of the invention is prepared by high-temperature mixing and low-temperature mixing method, wherein when the stirring speed of the high-temperature mixing exceeds 3500 rpm, the coke material is easily generated and the conductive property is lowered, and when the mixing speed of the high-temperature mixing is lower than 2800 rpm When the material molecules are not tightly bound, the heating effect is affected.
  • the stirring speed of the high-temperature mixing is preferably 2800-3500 rpm, more preferably 3000 rpm.
  • the stirring speed of the low temperature mixing in the present invention is preferably 1200 to 1600 rpm, more preferably 1400 rpm.
  • the composite heating material prepared by using the silicon ore powder and the carbon powder can be applied in various fields, including:
  • Building materials can be added to various building materials to make heating building materials, etc.;
  • Construction industry used for indoor and outdoor wall surface, floor and roof insulation and antifreeze
  • Biological and pharmaceutical insulation of biological agents research and manufacturing processes, product packaging, etc.;
  • Office life It can be used for indoor heating in winter, or it can be used to make various outdoor heating products.
  • the composite heat-generating material of the present invention may be added as a raw material or may be used together with other materials to form a heat-generating product, and the composite heat-generating material of the present invention may be separately produced into various forms of heat-generating products for use in the above-mentioned fields.
  • the produced heating products also have the characteristics of low voltage operation, high thermal efficiency, energy saving, stability and safety, and the heating temperature can reach up to 50 °C.
  • the composite heat-generating material of the present invention continuously emits non-visible infrared light having an effective temperature of 50 ° C or less in a space continuously driven by a low-voltage power source of 12 to 110 V, and the wavelength of light is ⁇ 0.83 ⁇ m as determined by light wave. It belongs to near-infrared heat radiation (light wavelength is 0.75-400 ⁇ m).
  • the light has strong permeability and can penetrate deep into the subcutaneous tissue by 10mm to warm human blood vessels and nerves, activate human tissue cells and promote blood circulation. Accelerate the supply of nutrients and enzymes, promote metabolism, and thus make people feel warm and comfortable.
  • the composite heating material of the invention can work under the low voltage power supply of 12-110V, can rapidly heat up within 30 minutes, the temperature can reach 50 ° C, the power per square meter is only 15 ⁇ 48W, and the prior art is 220V. Compared with heating materials operating at voltage and up to 165W per square meter, the energy consumption is lower, which is more conducive to energy saving and enhances the safety of use;
  • the composite heating material of the invention conducts energy and heat by means of infrared radiation, is more favorable for infiltration into the human body, promotes blood circulation and metabolism of the human body, thereby contributing to maintaining human health.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 97%) and 60 kg of carbon powder (100-1000 mesh, 95% carbon content, the carbon powder is coal powder) are transported to high speed In the mixer, set the temperature of the high-speed mixer 90 ° C, the speed of 3500 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 35 ° C, the rotation speed of 1600 rpm, mix for 8 minutes, and obtain the composite heating material 1 after cooling.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 97%) and 60 kg of carbon powder (100-1000 mesh carbon content of 97% carbon crystal powder, the carbon crystal powder made of straw carbon powder Transfer to the high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, mix for 12 minutes, and obtain the composite heating material 2 after cooling.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 97%) and 60 kg of carbon powder (100-1000 mesh carbon content of 99% carbon crystal powder, the carbon crystal powder is made of graphite powder Transfer to the high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, and mix for 12 minutes. After cooling, the composite heating material 3 is obtained.
  • Step 1 40kg silica mineral powder (100-1000 mesh, SiO 2 content 98%) and 60kg carbon powder (100-1000 mesh, 95% carbon content, containing 20kg straw carbon powder, 20kg graphite powder and 20kg charcoal) Powder) is transported into a high-speed mixer, set the temperature of the high-speed mixer 140 ° C, the speed of 2800 rev / min, the above materials are mixed for 10 minutes;
  • Step 2 Set the temperature of the low speed mixer to 60 ° C, the rotation speed of 1200 rpm, and mix for 12 minutes. After cooling, the composite heating material 4 is obtained.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 98%) and 60 kg of carbon powder (100-1000 mesh carbon content of 97% carbon crystal powder, the carbon crystal powder by weight ratio of 1 : 1 pulverized coal and straw carbon powder) delivered to a high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, mix for 12 minutes, and obtain a composite heating material 5 after cooling.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 98%) and 60 kg of carbon powder (100-1000 mesh carbon content of 99% carbon crystal powder, the carbon crystal powder by weight ratio of 1 : 2:1 straw carbon powder, graphite powder and charcoal powder) are transported to a high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed is 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, and mix for 12 minutes. After cooling, the composite heating material 6 is obtained.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 99%) and 60 kg of carbon powder (100-1000 mesh carbon content of 95% carbon crystal powder, the carbon crystal powder by weight ratio of 1 : 1 straw carbon powder and graphite powder) delivered to a high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, and mix for 12 minutes. After cooling, the composite heating material 7 is obtained.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 99%) and 60 kg of carbon powder (100-1000 mesh carbon content of 97% carbon crystal powder, the carbon crystal powder made of fine coal powder Transfer to the high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, and mix for 12 minutes. After cooling, the composite heating material 8 is obtained.
  • Step 1 40 kg of silica ore powder (100-1000 mesh, SiO 2 content of 99%) and 60 kg of carbon powder (100-1000 mesh carbon content of 99% carbon crystal powder, the carbon crystal powder is made of charcoal powder Transfer to the high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, mix for 12 minutes, and obtain a composite heating material 9 after cooling.
  • Step 1 40kg silica ore powder (100-1000 mesh, SiO 2 content is 97%) and 60kg carbon powder (100-1000 mesh, 90% carbon content, including 20kg pulverized coal, 20kg straw carbon powder, 10kg graphite) Powder and 10kg charcoal powder) are transported to the high-speed mixer, set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the rotation speed of 1400 rpm, and mix for 12 minutes. After cooling, the composite heating material 10 is obtained.
  • Step 1 Transfer 60kg silica mineral powder (SiO 2 content: 97%) and 40kg carbon powder (carbon content 82%, including 20kg fine coal powder, 10kg straw carbon powder and 10kg graphite powder) to the high-speed mixer , set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 12 minutes;
  • Step 2 Set the temperature of the low speed mixer to 45 ° C, the speed of 1400 rpm, mix for 15 minutes, and obtain the comparative material 1 after cooling.
  • Step 1 Transfer 50kg of silica ore powder (SiO 2 content of 97%) and 50kg of carbon powder (carbon content 82%, including 20kg of clean coal powder, 15kg of straw carbon powder and 15kg of graphite powder) to the high-speed mixer , set the temperature of the high-speed mixer 125 ° C, the speed of 3000 rev / min, the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the speed of 1400 rpm, mix for 12 minutes, and obtain the comparative material 2 after cooling.
  • Step 1 Transfer 40 kg of silica ore powder (SiO 2 content of 97%) and 60 kg of carbon powder (78% carbon content, including 30 kg of coal powder, 10 kg of straw carbon crystal powder, 10 kg of graphite powder and 10 kg of charcoal powder) to high speed
  • the temperature of the high-speed mixer is set to 125 ° C
  • the rotation speed is 3000 rev / min
  • the above materials are mixed for 12 minutes;
  • Step 2 Set the temperature of the low speed mixer to 45 ° C, the rotation speed of 1400 rpm, mix for 8 to 15 minutes, and obtain the comparative material 3 after cooling.
  • Step 1 Deliver 40kg of silica ore (SiO 2 content of 97%) and 60kg of carbon powder (carbon content 82%, including 20kg carbon crystal powder, 20kg charcoal powder, 10kg graphite powder and 10kg fine coal powder) to high speed
  • the temperature of the high-speed mixer is set to 125 ° C
  • the rotation speed is 3000 rpm
  • the above materials are mixed for 15 minutes;
  • Step 2 Set the temperature of the low speed mixer to 50 ° C, the speed of 1400 rpm, mix for 12 minutes, and obtain the comparative material 4 after cooling.
  • Step 1 Transfer 30kg of silica ore powder (95% SiO 2 content) and 70kg of carbon powder (containing 82% carbon, including 30kg of clean coal powder, 30kg of graphite powder and 10kg of charcoal powder) to the high-speed mixer. Set the temperature of the high-speed mixer to 125 ° C, the speed of 3000 rpm, and mix the above materials for 12 minutes;
  • Step 2 Set the temperature of the low speed mixer to 45 ° C, the speed of 1400 rpm, mix for 15 minutes, and obtain the comparative material 5 after cooling.
  • the heat-generating effect test the heat-generating materials prepared in the above Examples 1 to 10 and Comparative Examples 1 to 5 were tiled into a 3 mm-thick sheet, and the product specifications were as follows: thickness 3 mm ⁇ length 2400 mm ⁇ width 200 mm, at an initial room temperature of 0 to 5 ° C and Under a certain starting voltage, the temperature is raised for 30 minutes, and the average temperature of the surface of the heating material, the indoor temperature, and the resistance generated per square meter of the heating material are tested.
  • Table 1 The test results are shown in Table 1 below.
  • Composite heating material 2 40 ⁇ 48 12 ⁇ 110 30 ⁇ 45 19 Composite heating material 3 41 ⁇ 49 12 ⁇ 110 30 ⁇ 45 18 Composite heating material 4 40 ⁇ 48 12 ⁇ 110 30 ⁇ 45 18 Composite heating material 5 41 ⁇ 48 12 ⁇ 110 30 ⁇ 45 18 Composite heating material 6 42 ⁇ 49 12 ⁇ 110 30 ⁇ 45 17 Composite heating material 7 40 ⁇ 48 12 ⁇ 110 30 ⁇ 45 17 Composite heating material 8 41 ⁇ 50 12 ⁇ 110 30 ⁇ 45 16 Composite heating material 9 43 ⁇ 50 12 ⁇ 110 30 ⁇ 45 15 Composite heating material 10 35-37 12 ⁇ 110 45 ⁇ 55 48 Comparative material 1 ⁇ 27 24-190 840 Comparative material 2 ⁇ 30 24-110 450 Comparative material 3 ⁇ 31 24-110 25 Comparative material 4 ⁇ 33 24-110 50 Comparative material 5 ⁇ 35 24-110 twenty two 65
  • Comparative material 1 Connected to 24 ⁇ 110V DC power supply, at room temperature 1 ⁇ 5 ° C, the temperature is not obvious, the voltage is adjusted to 190V, the current is 0.12A, the temperature rises, after 60 minutes, the temperature rises to 27 °C or so can not rise After testing, the resistance is too large (the amount of toner is too small), 840 ⁇ per square meter, the heating effect is not up to the requirement.
  • Comparative material 2 Connected to 24-110V DC power supply, at room temperature 1 ⁇ 5 °C, voltage 90V, current 1.3A, after 60 minutes, the temperature does not rise after rising to 28 ⁇ 30 °C, the heating effect is not satisfactory The detected resistance is 450 ⁇ /m2, and the resistance is still too large (the amount of toner is still too small).
  • Comparative material 3 Under the AC and DC voltage below 110V, the power per square meter is 25W, but the conductivity of the material is not enough, and the temperature rises slowly. When the temperature is 5-10 °C, it takes 120 minutes to make the temperature of the heating material reach 27 ⁇ 31 °C. After testing and analysis, the reason is that the purity of the carbon powder (carbon content) is insufficient, resulting in insufficient material activity and affecting the conductivity.
  • Comparative material 4 Turn on the power supply below 110V, the temperature rises above 55V under the condition of room temperature 0 ⁇ 5°C, the temperature is 45 minutes, the temperature of the heating material can reach 30 ⁇ 33°C, the power per square meter is 50W, which is not ideal. Temperature and energy saving effect. After testing, the reason is that the toner purity is still low.
  • Comparative material 5 Connect 24 ⁇ 110V DC power supply, the voltage is adjusted to 90V at room temperature 1 ⁇ 5°C, the temperature rises, after 60 minutes, the temperature rises to 35°C and remains stable, reaching every square meter. 65W, energy saving effect is general, after testing, the resistance per square meter is 22 ⁇ , indicating that the proportion of carbon powder in the composite heating material is too high, so that the resistance is too small, resulting in high power consumption, while the purity of the carbon powder is low, resulting in insufficient material activity. , need a higher voltage to start.
  • the composite heating material of the present invention after the composite heating material of the present invention is heated at room temperature of 0 to 5 ° C and 12-110 V for 30 min, the average surface temperature of the heating material can reach 35-50 ° C, and the electric resistance per square meter is 30-55 ⁇ , power is 15-48W per square meter, and the currently available heating materials (such as carbon crystal heating film or carbon crystal floor) can drive up to 50°C in 15 to 30 minutes at 220V.
  • the power consumption per square meter is more than 165W, which is significantly higher than the power consumption of the composite heating material of the present application. It is shown that the composite heat-generating material of the invention has higher heat-generating efficiency under low-voltage driving conditions and lower energy consumption than the existing heat-generating materials, and achieves superior energy-saving effects.

Landscapes

  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Resistance Heating (AREA)

Abstract

一种复合发热材料及其制备方法和用途,该复合发热材料包含硅矿粉及含碳粉,所述硅矿粉包含97%以上的二氧化硅,所述含碳粉为碳晶粉,包含90%以上的碳。该复合发热材料可在12~110V低电压电源下工作,升温30分钟后,温度可达到50℃以内,每平方米功率为15-48W,具有节能环保、热效高且使用安全的特点。

Description

复合发热材料及其制备方法和用途 技术领域
本发明属于材料领域,具体涉及一种复合发热材料及其制备方法和用途。
背景技术
每到冬季,交通业、建筑业、畜牧业、国防、军事以及家庭、学校、商场和办公室等都离不开发热取暖设备。现有的取暖方法主要包括:一、采用传统的电炉供暖,该方法具有能耗高、电炉占用空间较大及冷热不均的缺点;二、采用烧火炉的方法供暖,该方法热效低,且污染环境;三、采用空调供暖,但空调价位较高且能耗较大,另外空调的副作用明显,长期使用对人体健康有一定损害。
现有的发热材料(例如碳晶发热膜或碳晶地板)通常在220V电压下工作,每平方米功率高达165W以上,能耗较大,不利于节能环保和使用的安全性。
因此,如何开发一种热效高、节能环保且使用安全的发热材料成为本领域亟待解决的课题。
发明内容
针对上述问题,本发明的一个目的在于提供一种复合发热材料,该复合发热材料采用硅矿粉及含碳粉制备,具有热效高、节能环保且使用安全的特点。
本发明的另一目的在于提供一种复合发热材料的制备方法。
本发明的又一目的在于提供一种复合发热材料在制备发热产品中的用途。
为达到上述目的,本发明提供一种复合发热材料,包含硅矿粉及含碳粉,所述硅矿粉包含97%以上的二氧化硅,所述含碳粉包含90%以上的碳。
进一步地,所述含碳粉包含95%以上的碳;
优选地,所述硅矿粉包含97-99%的二氧化硅;所述含碳粉包含95-99%的碳;
优选地,所述硅矿粉与含碳粉的重量比为4∶6。
进一步地,所述含碳粉为碳晶粉;
优选地,所述碳晶粉由煤粉、秸秆碳粉、石墨粉或木炭粉中的一种或多种制成;
优选地,所述煤粉为精煤粉。
进一步地,所述硅矿粉及含碳粉的粒径为45~1000目,优选为100~1000目。
进一步地,所述复合发热材料在12~110V交流、直流电压下工作。
进一步地,所述复合发热材料在12~110V交流、直流电压下,通电30分钟内,温度可达到35-50℃。
本发明进一步提供一种上述复合发热材料的制备方法,该制备方法包括以下步骤:
步骤a:将硅矿粉及含碳粉在90~140℃下进行混合,得到混合粉末;
步骤b:步骤a得到的混合粉末在35~60℃下混合,得到复合发热材料。
进一步地,所述制备方法包括以下步骤:
步骤a:将硅矿粉及含碳粉在高温混料锅内于90~140℃下进行搅拌、混合,搅拌速度为2800~3500转/分,搅拌时间为10~15分钟,得到混合粉末,在该步骤中,高温混合温度应控制在90~140℃,温度过高材料易产生碳化,过低则达不到要求的电阻;
步骤b:将步骤a得到的混合粉末在低温混料锅内于35~60℃下进行搅拌、混合,搅拌速度为1200~1600转/分,搅拌时间为8~15分钟,冷却后得到复合发热材料,在该步骤中,低温混合应控制在35~60℃,温度过高会增大电阻值,温度过低则会减小电阻值。
进一步地,所述制备方法包括以下步骤:
步骤a:将硅矿粉及含碳粉在125℃下进行搅拌、混合,搅拌速度为3000转/分,搅拌时间为15分钟,得到混合粉末;
步骤b:将步骤a得到的混合粉末在50℃下进行搅拌、混合,搅拌速度为1400转/分,搅拌时间为12分钟,冷却后得到复合发热材料。
本发明进一步提供上述复合发热材料在制备发热产品中的用途。
以下对本发明进行详细描述。
本发明的复合发热材料包含硅矿粉和含碳粉,其中硅矿粉中的二氧化硅作为调节电阻材料,起到调节电阻的作用;而含碳粉中的碳作为使可调电阻材料发挥有效制热功能的导电材料,有助于增强发热材料的导电性能。硅矿粉与含碳粉的重量比、硅矿粉中的二氧化硅含量及含碳粉中的碳含量都会对发热材料的导电性能及发热效果产生影响。通常情况下,复合发热材料中的含碳粉含量越高,材料的导电性越好,升温越快,达到的温度越高;但含碳粉的含量过高时,使材料的电阻过小,导致耗电量较高;另外,含碳粉纯度(碳含量)偏低时,易导致材料活性不够,从而使启动电压增大,而硅矿粉中二氧化硅含量过低时易导致发热材料耗电增多。因此可通过调整发热材料中硅矿粉和含碳粉的重量比、硅矿粉中的二氧化硅含量及含碳粉中的碳含量,获得实际应用中需要的使用温度、升温时间、升温速度及启动电压。
综合考虑上述因素对发热材料节能及发热效果的影响,本发明优选硅矿粉与含碳粉的重量比为4∶6,且硅矿粉中二氧化硅含量为97%以上,含碳粉中碳含量为90%(优选95%)以上,此时,发热材料能够达到理想的节能及发热效果。
本发明的复合发热材料采用高温混合及低温混合方法制备,其中高温混合的搅拌速度超过3500转/分时,易产生焦料,降低导电性能,而当高温混合的搅拌速度低于2800转/分时,则材料分子结合不够紧密,影响发热效果。本发明优选高温混合的搅拌速度为2800~3500转/分,更优选3000转/分;另外,低温混合过程中,搅拌速度过高时,易导致电阻增大影响发热,而搅拌速度过低,易导致冷却不均匀从而导致电阻不一致。本发明优选低温混合的搅拌速度为1200~1600转/分钟,更优选1400转/分钟。
本发明采用硅矿粉及含碳粉制备的复合发热材料可在多个领域应用,包括:
交通业:用于道路路面及桥梁冬季防冻、防结冰等;
建筑材料:可添加到各种建材中制成发热建筑材料等;
农业:用于温室栽培,温床育苗育种及养殖场冬季保温等;
建筑业:用于室内外墙面、地面及屋面保温防冻等;
军事:可用于野外作训保温及装备防冻等;
生物、制药:生物制剂研究与制造过程的保温,产品包装等;
办公生活:可用于冬季室内取暖,或以此材料制成各种室外取暖产品等。
另外,可将本发明的复合发热材料作为原料添加或与其它材料共同制成发热产品应用于上述领域,也可将本发明的复合发热材料单独制成各种形态的发热产品应用于上述领域,制成的发热产品同样具有低电压工作、热效高、节能、稳定、安全的特点,发热温度最高可达50℃。
使用时,本发明的复合发热材料在12~110V低压电源的驱动下,将源源不断地向空间持续散发出有效温度为50℃度以内的非可见红外线光线,经光波测定,光波长≥0.83μm,属于近红外热辐射(光波长为0.75~400μm),该光线具有强烈的渗透性,能深入皮下组织10mm,温暖人体血管和神经,起到活化人体组织细胞,促进血液循环的作用,并能加速供给养分和酵素,促进新陈代谢,因而使人感到温暖、舒适。
与现有的发热材料相比,本发明的复合发热材料至少具有以下优点:
1、本发明的复合发热材料可在12~110V低电压电源下工作,30分钟内即能迅速升温,温度可达到50℃以内,每平方米功率仅15~48W,与现有技术中在220V电压下工作、每平方米功率高达165W以上的发热材料相比,能耗较低,更有利于节能,同时增强了使用的安全性;
2、采用传统的火炉及空调供热取暖时,容易污染环境,且不利于人体健康,而采用本发明的发热材料供热取暖时,不产生任何对环境及人体有害的物质,无毒无味且稳定安全,大大提高了材料使用的安全性,更利于环保及人体健康;
3、本发明的复合发热材料以红外线辐射的方式传导能量发热,更有利于渗透入人体、促进人体血液循环及新陈代谢,从而有利于保持人体健康。
具体实施方式
以下参照具体的实施例来说明本发明。本领域技术人员能够理解,这些实施例仅用于说明本发明,其不以任何方式限制本发明的范围。
实施例1复合发热材料的制备
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为97%)和60kg含碳粉(100~1000目,含碳量95%,该含碳粉为煤粉。)输送至高速混料机内,设置高速混料机的温度90℃,转速3500转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为35℃,转速1600转/分,混合8分钟,冷却后得到复合发热材料1。
实施例2复合发热材料的制备
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为97%)和60kg含碳粉(100~1000目含碳量97%的碳晶粉,该碳晶粉由秸秆碳粉制成)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料2。
实施例3复合发热材料的制备
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为97%)和60kg含碳粉(100~1000目含碳量99%的碳晶粉,该碳晶粉由石墨粉制成)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料3。
实施例4复合发热材料的制备
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为98%)和60kg含碳粉(100~1000目,含碳量95%,包含20kg秸秆碳粉、20kg石墨粉和20kg木炭粉)输送至高速混料机内,设置高速混料机的温度140℃,转速2800转/分钟,将上述材料高混10分钟;
步骤2:设置低速混料机的温度为60℃,转速1200转/分,混合12分钟,冷却后得到复合发热材料4。
实施例5复合发热材料的制备
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为98%)和60kg含碳粉(100~1000目含碳量97%的碳晶粉,该碳晶粉由重量比为1∶1的煤粉和秸秆碳粉制成)输送至高速混料机内,设置高速混料机的温度125℃,转速3000 转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料5。
实施例6
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为98%)和60kg含碳粉(100~1000目含碳量99%的碳晶粉,该碳晶粉由重量比为1∶2∶1的秸秆碳粉、石墨粉及木炭粉制成)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料6。
实施例7
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为99%)和60kg含碳粉(100~1000目含碳量95%的碳晶粉,该碳晶粉由重量比为1∶1的秸秆碳粉和石墨粉制成)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料7。
实施例8
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为99%)和60kg含碳粉(100~1000目含碳量97%的碳晶粉,该碳晶粉由精煤粉制成)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料8。
实施例9
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为99%)和60kg含碳粉(100~1000目含碳量99%的碳晶粉,该碳晶粉由木炭粉制成)输送至高 速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料9。
实施例10
步骤1:将40kg硅矿粉(100~1000目,SiO2含量为97%)和60kg含碳粉(100~1000目,含碳量90%,包括20kg煤粉、20kg秸秆碳粉、10kg石墨粉及10kg木炭粉)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到复合发热材料10。
对比例1
步骤1:将60kg硅矿粉(SiO2含量为97%)和40kg含碳粉(含碳量82%,包括20kg精煤粉、10kg秸秆碳粉及10kg石墨粉)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混12分钟;
步骤2:设置低速混料机的温度为45℃,转速1400转/分,混合15分钟,冷却后得到对比材料1。
对比例2
步骤1:将50kg硅矿粉(SiO2含量为97%)和50kg含碳粉(含碳量82%,包括20kg精煤粉、15kg秸秆碳粉及15kg石墨粉)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到对比材料2。
对比例3
步骤1:将40kg硅矿粉(SiO2含量为97%)和60kg含碳粉(含碳量78%,包括30kg煤粉、10kg秸秆碳晶粉、10kg石墨粉及10kg木炭粉)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材 料高混12分钟;
步骤2:设置低速混料机的温度为45℃,转速1400转/分,混合8~15分钟,冷却后得到对比材料3。
对比例4
步骤1:将40kg硅矿粉(SiO2含量为97%)和60kg含碳粉(含碳量82%,包括20kg碳晶粉、20kg木炭粉、10kg石墨粉及10kg精煤粉)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混15分钟;
步骤2:设置低速混料机的温度为50℃,转速1400转/分,混合12分钟,冷却后得到对比材料4。
对比例5
步骤1:将30kg硅矿粉(SiO2含量为95%)和70kg含碳粉(含碳量82%,包括30kg精煤粉、30kg石墨粉及10kg木炭粉)输送至高速混料机内,设置高速混料机的温度125℃,转速3000转/分钟,将上述材料高混12分钟;
步骤2:设置低速混料机的温度为45℃,转速1400转/分,混合15分钟,冷却后得到对比材料5。
测试例发热效果测试
发热效果测试:将上述实施例1~10及对比例1~5制备的发热材料平铺压紧成3mm厚薄板,制品规格:厚3mm×长2400mm×宽200mm,在初始室温0~5℃及一定的启动电压下,升温30分钟,测试发热材料表面的平均温度、室内温度、发热材料每平方米产生的电阻。测试结果如下表1所示。
表1:室温0~5℃及12~110V电压下的发热效果测试
Figure PCTCN2014085486-appb-000001
复合发热材料2 40~48 12~110 30~45 19
复合发热材料3 41~49 12~110 30~45 18
复合发热材料4 40~48 12~110 30~45 18
复合发热材料5 41~48 12~110 30~45 18
复合发热材料6 42~49 12~110 30~45 17
复合发热材料7 40~48 12~110 30~45 17
复合发热材料8 41~50 12~110 30~45 16
复合发热材料9 43~50 12~110 30~45 15
复合发热材料10 35-37 12~110 45~55 48
对比材料1 <27 24-190 840  
对比材料2 <30 24-110 450  
对比材料3 <31 24-110   25
对比材料4 <33 24-110   50
对比材料5 <35 24-110 22 65
注:关于对比材料1~5更详细的测试结果如下:
对比材料1:接入24~110V直流电源,在室温1~5℃条件下,升温不明显,电压调至190V,电流0.12A,温度上升,经60分钟,温度升至27℃左右便无法上升,经检测为电阻过大(含碳粉量偏少),每平方米840Ω,发热效果达不到要求。
对比材料2:接入24~110V直流电源,在室温1~5℃条件下,电压90V,电流1.3A,经60分钟,温度升至28~30℃后不再上升,发热效果不尽如人意,经检测电阻为450Ω/平方米,电阻仍偏大(含碳粉量仍偏少)。
对比材料3:在110V以下交、直流电压下,每平方米功率25W,但材料导电性能不够,升温较慢,室温5~10℃时,需120分钟才能使发热材料温度达到27~31℃。经检测分析,原因在于含碳粉纯度(含碳量)不够,导致材料活性不足,影响导电性能。
对比材料4:接通110V以下电源,室温0~5℃条件下,电压在55V以上升温明显,通电45分钟时间,发热材料温度可达到30~33℃,每平方米功率50W,未达到理想的温度和节能效果。经检测,原因是碳粉纯度仍偏低。
对比材料5:接入24~110V直流电源,在室温1~5℃条件下,电压调至90V,温度上升,经60分钟,温度升至35℃左右保持稳定,每平方米达到 65W,节能效果一般,经检测,每平方米电阻22Ω,表明复合发热材料中含碳粉比例过高,使电阻过小,导致耗电量较高,同时含碳粉纯度偏低导致材料活性不够,需较高电压才能启动。
从表1看出,采用本发明的复合发热材料在室温0~5℃及12-110V电压下,升温30min后,发热材料的表面平均温度可达到35-50℃,每平方米产生的电阻为30-55Ω,每平方米功率为15-48W,而目前市售的发热材料(例如碳晶发热膜或碳晶地板)在220V电压驱动下,最快可在15至30分钟表面温度达到50℃,每平方米功耗达165W以上,显著高于本申请的复合发热材料的功耗。由此表明,与现有的发热材料相比,本发明的复合发热材料在低电压驱动条件下具有较高的发热效率,且能耗较低,达到了较优的节能效果。
以上对本发明具体实施方式的描述并不限制本发明,本领域技术人员可以根据本发明作出各种改变或变形,只要不脱离本发明的精神,均应属于本发明所附权利要求的范围。

Claims (10)

  1. 一种复合发热材料,包含硅矿粉及含碳粉,所述硅矿粉包含97%以上的二氧化硅,所述含碳粉包含90%以上的碳。
  2. 根据权利要求1所述的复合发热材料,其特征在于,所述含碳粉包含95%以上的碳;
    优选地,所述硅矿粉包含97-99%的二氧化硅;所述含碳粉包含95-99%的碳;
    优选地,所述硅矿粉与含碳粉的重量比为4∶6。
  3. 根据权利要求1或2所述的复合发热材料,其特征在于,所述含碳粉为碳晶粉;
    优选地,所述碳晶粉由煤粉、秸秆碳粉、石墨粉或木炭粉中的一种或多种制成;
    优选地,所述煤粉为精煤粉。
  4. 根据权利要求1至3中任一项所述的复合发热材料,其特征在于,所述硅矿粉及含碳粉的粒径为100~1000目。
  5. 根据权利要求1至4中任一项所述的复合发热材料,其特征在于,所述复合发热材料在12~110V交流、直流电压下工作。
  6. 根据权利要求5所述的复合发热材料,其特征在于,所述复合发热材料在12~110V交流、直流电压下,通电30分钟内,温度可达到35-50℃。
  7. 根据权利要求1至6中任一项所述的复合发热材料的制备方法,该制备方法包括以下步骤:
    步骤a:将硅矿粉及含碳粉在90~140℃下进行混合,得到混合粉末;
    步骤b:步骤a得到的混合粉末在35~60℃下混合,得到复合发热材料。
  8. 根据权利要求7所述的制备方法,其特征在于,所述制备方法包括以下步骤:
    步骤a:将硅矿粉及含碳粉在90~140℃下进行搅拌、混合,搅拌速度为 2800~3500转/分,搅拌时间为10~15分钟,得到混合粉末;
    步骤b:将步骤a得到的混合粉末在35~60℃下进行搅拌、混合,搅拌速度为1200~1600转/分,搅拌时间为8~15分钟,冷却后得到复合发热材料。
  9. 根据权利要求8所述的制备方法,其特征在于,所述制备方法包括以下步骤:
    步骤a:将硅矿粉及含碳粉在125℃下进行搅拌、混合,搅拌速度为3000转/分,搅拌时间为15分钟,得到混合粉末;
    步骤b:将步骤a得到的混合粉末在50℃下进行搅拌、混合,搅拌速度为1400转/分,搅拌时间为12分钟,冷却后得到复合发热材料。
  10. 根据权利要求1至6中任一项所述的复合发热材料在制备发热产品中的用途。
PCT/CN2014/085486 2013-08-30 2014-08-29 复合发热材料及其制备方法和用途 WO2015027941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310393414.0A CN104427665B (zh) 2013-08-30 2013-08-30 复合发热材料及其制备方法和用途
CN201310393414.0 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015027941A1 true WO2015027941A1 (zh) 2015-03-05

Family

ID=52585615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085486 WO2015027941A1 (zh) 2013-08-30 2014-08-29 复合发热材料及其制备方法和用途

Country Status (3)

Country Link
CN (1) CN104427665B (zh)
HK (1) HK1207933A1 (zh)
WO (1) WO2015027941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008695A1 (ja) * 2016-07-05 2018-01-11 国際環境開発株式会社 発熱装置及びその製造方法
CN112210214A (zh) * 2020-10-29 2021-01-12 河南飞孟金刚石工业有限公司 一种复合散热体及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945921A (zh) * 2015-05-19 2015-09-30 贵州国智高新材料有限公司 一种组合物、节能低电压复合发热板及其制备方法
CN105567078A (zh) * 2015-12-25 2016-05-11 浙江科元地暖科技有限公司 一种用于地暖板的碳晶粉导热涂料及使用方法
CN109168200B (zh) * 2018-11-02 2021-02-09 荆门它山之石电子科技有限公司 一种远红外辐射灯的制备方法
CN109874185B (zh) * 2019-02-25 2022-08-02 毕平均 一种发热装置及发热设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050639A (zh) * 1989-09-07 1991-04-10 阿克利莱特科技有限公司 自限温导电组合物
CN2434844Y (zh) * 2000-05-07 2001-06-13 陈诸琰 电加热器
CN101113303A (zh) * 2006-07-28 2008-01-30 中宏(天津)实业有限公司 合膜涂层结构发热导电体用涂料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969703B (zh) * 2010-10-28 2012-06-27 上海尚诺碳晶科技有限公司 中高温碳晶电热材料、中高温碳晶电热板以及相关制备方法
CN102740514B (zh) * 2011-04-02 2014-09-24 佛山市达利亚热能科技有限公司 云母板涂层电发热装置及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050639A (zh) * 1989-09-07 1991-04-10 阿克利莱特科技有限公司 自限温导电组合物
CN2434844Y (zh) * 2000-05-07 2001-06-13 陈诸琰 电加热器
CN101113303A (zh) * 2006-07-28 2008-01-30 中宏(天津)实业有限公司 合膜涂层结构发热导电体用涂料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008695A1 (ja) * 2016-07-05 2018-01-11 国際環境開発株式会社 発熱装置及びその製造方法
US11516887B2 (en) 2016-07-05 2022-11-29 International Engineered Environmental Solutions Inc. Heat-generated device and method for producing same
CN112210214A (zh) * 2020-10-29 2021-01-12 河南飞孟金刚石工业有限公司 一种复合散热体及其制备方法

Also Published As

Publication number Publication date
CN104427665A (zh) 2015-03-18
CN104427665B (zh) 2017-01-11
HK1207933A1 (zh) 2016-02-12

Similar Documents

Publication Publication Date Title
WO2015027941A1 (zh) 复合发热材料及其制备方法和用途
CN107493612A (zh) 柔性纳米碳复合材料高温电发热膜及其制备方法
CN103476160A (zh) 一种远红外电热膜
CN206522839U (zh) 一种太阳能远红外发热壁画
CN202109574U (zh) 碳纤维远红外地暖垫
CN202161018U (zh) 碳纤维远红外床垫
CN203362559U (zh) 一种新型的两用风扇
CN206852165U (zh) 一种石墨烯鞋垫
CN204806522U (zh) 节能环保电热取暖器
CN110144068A (zh) Cnt复合型材料发热体及其制造方法和应用
CN1520232A (zh) 纳米复合材料制成的非金属电热膜及其制作方法
CN203262831U (zh) 新式加热凉席
CN202660628U (zh) 新型碳晶电热装置
CN202334948U (zh) 一种碳纳米纤维电热网
CN206272870U (zh) 可控发热区域发热板
CN204717826U (zh) 一种远红外线电地膜
CN206226757U (zh) 一种具有智能化控制的ptc发热管
CN201131064Y (zh) 远红外碳晶体保健发热装置
CN205827263U (zh) 一种基于石墨烯的智能便携加热保温包系统
CN201248147Y (zh) 电热材料新结构
CN105605654B (zh) 一种速热型纳米地热地板
CN109811973A (zh) 一种石墨烯发热膜墙裙及其施工方法
CN204717832U (zh) 远红外热能保健地暖
CN204611919U (zh) 一种太阳能地暖装置
CN201422175Y (zh) 一种片状可挠、便携、多用途加热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840408

Country of ref document: EP

Kind code of ref document: A1