WO2015027937A1 - Transducteur de force et procédé de mesure de charge importante susceptible de réaliser un étalonnage à plusieurs angles pour un avion - Google Patents

Transducteur de force et procédé de mesure de charge importante susceptible de réaliser un étalonnage à plusieurs angles pour un avion Download PDF

Info

Publication number
WO2015027937A1
WO2015027937A1 PCT/CN2014/085394 CN2014085394W WO2015027937A1 WO 2015027937 A1 WO2015027937 A1 WO 2015027937A1 CN 2014085394 W CN2014085394 W CN 2014085394W WO 2015027937 A1 WO2015027937 A1 WO 2015027937A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain gauge
groove
load
strain
pin
Prior art date
Application number
PCT/CN2014/085394
Other languages
English (en)
Chinese (zh)
Inventor
周良道
李凯
李强
章仕彪
张鹏飞
徐春雨
冒颖
李卫平
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2015027937A1 publication Critical patent/WO2015027937A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges

Definitions

  • Load cell and aircraft with large load can be calibrated multi-angle force measurement method
  • the invention relates to the field of load cells, and more particularly to a large-load calibratable multi-angle load cell for aircraft and a multi-angle force measurement method for large loads of aircraft. Background technique
  • the present invention provides a novel load cell for the above-mentioned deficiencies of the prior art, by which the data sensed by the load cell can determine the magnitude and direction of the load on the aircraft structure, and can be used to sense large loads.
  • a load cell is provided, wherein the load cell is adapted to be mounted as a connecting pin on a connection joint of an aircraft structure, and the load cell sensor comprises:
  • a cylindrical pin body having a first groove extending in the axial direction and a second groove extending in the circumferential direction;
  • a pin holder which is located at one end of the pin body, the pin holder is provided with a lead hole, and the lead hole is in communication with the first groove;
  • a first strain gauge attached to the intersection of the first groove and the second groove;
  • a second strain gauge is attached to the second recess and is formed 90 with the first strain gauge.
  • a first strain gauge connection line disposed in the first THJ slot, one end connected to the first strain gauge (3) and the other end electrically connected to the external sensing signal collector through the lead hole;
  • a second strain gauge connection line disposed in the second recess, one end electrically connected to the second strain gauge and the other end electrically connected to the sensing signal collector through the first recess and the lead hole;
  • the longitudinal direction of the first strain gauge and the second strain gauge coincide with the axial direction of the pin body.
  • the second recess is located on the largest bearing surface of the pin body to reduce measurement errors.
  • the depths of the first groove and the second groove are respectively larger than the diameters of the first gauge connection line and the second gauge connection line, thereby preventing the connection line from being damaged by friction.
  • both sides of the first groove and the second groove are chamfered to reduce the influence of the local stress concentration corresponding to the variable gauge and reduce the amount of deformation caused by the structural compression.
  • a large load calibratable multi-angle force measuring method for an aircraft which uses the above-described load cell, wherein the method comprises the following steps:
  • Equation 1 Calculate the magnitude of the load F received by the load cell using Equation 1 below: nER where R is the gauge cross-section radius; E is the sensor elastic modulus; L is between the strain gauge sticking section and the load acting section the distance.
  • the method further comprises the step of determining the direction of the load, the step comprising: a) determining the quadrant to which the load F acts based on the magnitude of the strain values £ ', £ 2;
  • step b) Determine the direction of the load F based on the relationship between the strain value and the absolute value of ⁇ .
  • step b) determines the direction of the load F using Equation 2 below:
  • is the load F and the position of the second strain gauge 4 and the strain gauge The angle between the lines BO of the center O of the face C.
  • the load cell provided by the invention is arranged with two strain gauges with a central angle of 90°, so it is not limited by the matching relationship between the hole and the pin, that is, the load of the joint can be measured regardless of the clearance fit or the interference fit. Direction; and the load cell does not need to consider the installation angle of the sensor when it is installed; in addition, since the strain gauge of the present invention is located in the groove on the body wall of the sensor, instead of arranging the strain gauge inside the sensor like an existing sensor, The sensor pin body is obviously reduced in material for accommodating the strain gauge, and the sensor placed inside the pin body is obviously enhanced in structural strength and the bearing capacity is also greatly improved, so the present invention is suitable for large loads or not. Determine the joint load measurement for the load size.
  • FIG. 1 is a schematic structural view of a load cell according to a preferred embodiment of the present invention
  • FIG. 2 is a view schematically showing a load applied by the load cell of FIG. 1, a strain gauge attachment cross section, and a load acting cross section and related dimensions;
  • Fig. 3 is a view schematically showing the load distribution on the sticking section of the strain gauge of Fig. 2.
  • FIGS. 1 through 3 A load cell of a preferred embodiment of the present invention will now be described with reference to FIGS. 1 through 3.
  • a load cell 100 in accordance with a preferred embodiment of the present invention is adapted to be mounted as a connecting pin to a joint of an aircraft structure.
  • the load cell 100 includes a cylindrical pin body 1, a pin holder 2, a first strain gauge 3, a second strain gauge 4, a first strain gauge connection line 31, and a second strain gauge connection line 41.
  • the body wall 10 of the pin body 1 is provided with a first groove 1 1 (ie, a straight groove) extending in the axial direction, that is, a longitudinal direction of the pin body, and a second groove 13 extending in the circumferential direction (ie, the annular groove)
  • first groove 11 is arranged perpendicular to the second groove 13 on the body wall of the pin body 4.
  • the pin holder 2 is located at one end of the pin body 1.
  • the first strain gauge 3 is attached, for example, by adhesion to the intersection of the first groove 11 and the annular second groove 13.
  • the second strain gauge 4 is adhered to the second groove 13 by, for example, a bonding and forms a central angle of 90 with the first strain gauge 3.
  • the angle ZAOB is 90°, as shown in Figures 2 and 3.
  • the first strain gauge connection line 31 is disposed in the first recess 1 1 , and one end is electrically connected to the first strain gauge 3 and the other end is electrically connected to the external sensing signal collector (not shown) through the pin holder 2 .
  • the second strain gauge connecting wire 41 is disposed in the second groove 13, and one end is electrically connected to the second strain gauge 4 and the other end is electrically connected to the sensing signal collector through the first groove 11 and the pin holder 2.
  • the first strain gauge 3 and the second strain gauge 4 are affixed in the respective grooves, that is, their respective longitudinal directions are preferably coincident with the main bearing direction of the pin body 1, that is, the axial direction of the pin body.
  • a lead hole 21 is provided on the pin holder 2, and the first groove 1 1
  • the first strain gauge connection line 31 and the second strain gauge connection line 41 are connected from the lead hole 21 along the first groove 11.
  • the second groove 13 is disposed on the largest bearing surface of the pin body 1, thereby reducing measurement errors.
  • the so-called maximum bearing surface for example, may be the abutting surface of the two plates at the engine-wing connection.
  • the depths of the first groove 1 1 and the second groove 13 are respectively larger than the diameters of the first gauge link 31 and the second gauge connection 41. It should be understood that these grooves do not have to be set too deep, preferably slightly larger than the diameter of the connecting wires arranged, so as to accommodate two strain gauges and their connecting lines, so that two strain gauges can be made When the connecting wires are placed in the grooves, they do not protrude beyond the body wall 10 of the pin body 1, thereby preventing damage due to friction, and the pin body 1 does not have to remove too much material, ensuring the entire body.
  • the width of the second groove 13 is preferably to facilitate the sticking of the strain gauge.
  • the width of the base of the strain gauge can be 1.5 times; the width of the first groove 11 is preferably arranged to facilitate the arrangement of the first strain gauge wire 31.
  • both sides of the first groove 1 1 and the second groove 13 have chamfers to reduce the influence of local stress concentration on the variable and reduce the amount of deformation caused by the structure being pressed.
  • the second groove 13 to which the second strain gauge 4 is attached has a diameter of 2R, where R is the radius of the strain gauge pasting section C, and L is between the strain gauge pasting section C and the load acting section D. distance.
  • R is the radius of the strain gauge pasting section C
  • L is between the strain gauge pasting section C and the load acting section D. distance.
  • F1 is the first component of the load F. That is, the force received by the first strain gauge 3
  • F2 is the second component of the load F, that is, the force received by the second strain gauge 4.
  • is the angle between the load F and the position B of the second strain gauge 4 and the line BO of the center 0 of the strain gauge sticking section C.
  • the third groove may be formed in the pin body 1.
  • a third strain gauge, a fourth strain gauge, a third strain gauge connection line, and a fourth strain gauge connection line can be provided on the load cell 100.
  • the third strain gauge For example, by sticking to the intersection of the first groove 11 and the third groove; the fourth strain gauge is attached to the third groove by, for example, pasting and is formed 90 with the third strain gauge.
  • the third strain gauge connection line is disposed in the first recess U, and one end is electrically connected to the third strain gauge and the other end is electrically connected to the external sensing signal collector through the pin holder 2;
  • the connecting line is disposed in the third groove, and one end is electrically connected to the fourth strain gauge and the other end is electrically connected to the sensing signal collector through the first groove 11 and the pin holder 2; wherein the third strain gauge
  • the longitudinal direction of the fourth strain gauge coincides with the main bearing direction of the pin body 1, that is, the axial direction.
  • a large load calibratable multi-angle force measuring method for an aircraft which uses the above-described load cell 100, wherein the method comprises the following steps:
  • R is the strain gauge C section radius
  • E is the sensor elastic modulus
  • L is the distance between the strain gauge stick section C and the load acting section D.
  • the method further comprises the step of determining the direction of the load, the step of determining the load comprising: a) determining the quadrant of the load F by determining the magnitude of the root strain value, ⁇ , -;
  • step b) Determine the direction of the load F based on the strain value and the absolute value ratio relationship of ⁇ - .
  • the quadrant of the load F in step a) can be determined as follows: when > 0 and ⁇ 2 > 0
  • the load acts within the first quadrant; £
  • the third quadrant and the fourth quadrant can be determined.
  • step b) determines the direction of the load F using Equation 2 below:
  • arctan (formula 2) In the formula, ⁇ is the angle between the load F and the line B where the second strain gauge 4 is located and the line BO of the strain gauge pasting section C.

Abstract

La présente invention concerne un transducteur de force (100) et un procédé de mesure de charge importante susceptible de réaliser un étalonnage à plusieurs angles pour un avion ; le transducteur de force (100) est conçu pour être installé sur un raccord d'une structure d'avion et comprend : une broche cylindrique (1) possédant une rainure rectiligne axiale (11) et une rainure annulaire (13) perpendiculaire à la rainure rectiligne sur la paroi de la broche ; une base (2) de broche dotée d'un avant-trou (21) communiquant avec la rainure rectiligne (11) ; une première jauge extensométrique (3) située à l'intersection de la rainure rectiligne (11) et de la rainure annulaire (13) ; une seconde jauge extensométrique (4) située dans la rainure annulaire (13) et formant un angle central de 90° avec la première jauge extensométrique (3) ; et une première ligne de connexion (31) de jauge extensométrique et une seconde ligne de connexion (41) de jauge extensométrique connectées électriquement à un instrument d'acquisition de signaux de détection externe ; et les directions des longueurs de la première jauge extensométrique (3) et de la seconde jauge extensométrique (4) sont cohérentes avec la direction axiale de la broche (1). Les données détectées par le transducteur de force (100) peuvent être utilisées pour déterminer l'ampleur et la direction d'une charge portée par une structure d'avion et peuvent être utilisées pour détecter une charge importante.
PCT/CN2014/085394 2013-08-28 2014-08-28 Transducteur de force et procédé de mesure de charge importante susceptible de réaliser un étalonnage à plusieurs angles pour un avion WO2015027937A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013103801721A CN103454025A (zh) 2013-08-28 2013-08-28 测力传感器及飞机用大载荷可标定多角度测力方法
CN201310380172.1 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015027937A1 true WO2015027937A1 (fr) 2015-03-05

Family

ID=49736643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085394 WO2015027937A1 (fr) 2013-08-28 2014-08-28 Transducteur de force et procédé de mesure de charge importante susceptible de réaliser un étalonnage à plusieurs angles pour un avion

Country Status (2)

Country Link
CN (1) CN103454025A (fr)
WO (1) WO2015027937A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454025A (zh) * 2013-08-28 2013-12-18 中国商用飞机有限责任公司 测力传感器及飞机用大载荷可标定多角度测力方法
CN103761899B (zh) * 2013-12-31 2017-01-11 中国人民解放军空军航空大学军事仿真技术研究所 飞行模拟器可逆式操纵负荷系统力感仿真方法
CN105403335B (zh) * 2014-09-03 2018-05-18 北京强度环境研究所 一种测试火箭连杆装置载荷变化的力传感器
CN104486139B (zh) * 2014-11-26 2019-02-12 中国建设银行股份有限公司 一种系统通信检测方法及装置
CN106802205B (zh) * 2015-11-26 2019-08-02 中国飞行试验研究院 一种消除剖面内载荷影响的飞行载荷测量方法
CN108151928A (zh) * 2017-12-22 2018-06-12 中航电测仪器股份有限公司 一种飞机用驾驶杆力传感器
CN111091310B (zh) * 2020-01-17 2020-12-08 中联重科股份有限公司 挖掘设备健康监测系统及方法
CN114720036B (zh) * 2022-03-11 2023-08-18 中国航发沈阳发动机研究所 一种航空发动机冗余型安装梁结构载荷标定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221254A (ja) * 2004-02-03 2005-08-18 Juki Corp 軸力測定器具、軸力測定装置及び軸力測定方法
DE102007034160A1 (de) * 2007-07-21 2009-01-22 Robert Bosch Gmbh Kraftmessbolzen
CN102778310A (zh) * 2012-07-12 2012-11-14 南京航空航天大学 一种可标定多角度测力传感器
CN103454025A (zh) * 2013-08-28 2013-12-18 中国商用飞机有限责任公司 测力传感器及飞机用大载荷可标定多角度测力方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0428378D0 (en) * 2004-12-24 2005-02-02 Airbus Uk Ltd Apparatus and method for measuring loads sustained by a bearing pin
CN102435373A (zh) * 2010-09-29 2012-05-02 刘虎 拉力自动测量销

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221254A (ja) * 2004-02-03 2005-08-18 Juki Corp 軸力測定器具、軸力測定装置及び軸力測定方法
DE102007034160A1 (de) * 2007-07-21 2009-01-22 Robert Bosch Gmbh Kraftmessbolzen
CN102778310A (zh) * 2012-07-12 2012-11-14 南京航空航天大学 一种可标定多角度测力传感器
CN103454025A (zh) * 2013-08-28 2013-12-18 中国商用飞机有限责任公司 测力传感器及飞机用大载荷可标定多角度测力方法

Also Published As

Publication number Publication date
CN103454025A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2015027937A1 (fr) Transducteur de force et procédé de mesure de charge importante susceptible de réaliser un étalonnage à plusieurs angles pour un avion
US10996121B2 (en) Axial force pressure transducer
JP6498306B2 (ja) 回転可能に支持されたシャフトのトルクを間接的に検出するセンサ装置
CA2434489A1 (fr) Capteur dynamometrique pour detecter les deformations des elements mecaniques d'un appareil de forage
US8933713B2 (en) Capacitive sensors for monitoring loads
US20090183561A1 (en) Load pin brake cell apparatus
CN102519648A (zh) 单剪连接结构钉载矢量测量方法和测量仪
JP2013516611A (ja) 構成部品内の歪みの測定装置
US20160033344A1 (en) Structural shear load sensing pin
KR101179169B1 (ko) 변형률계를 구비한 온도 보상 로드 셀
US8474326B2 (en) Load pin with increased performance
CN102445289B (zh) 扭力传感器
CN205384108U (zh) 测量轴向拉力的电阻应变式拉力传感器
EP2441671A2 (fr) Capteurs capacitifs pour surveiller des charges sur le train d'atterrissage d'un aéronef
US9562802B2 (en) Flex circuit interface for strain gauges
CN202083500U (zh) 一种电阻式双法兰扭矩传感器
CN106404262A (zh) 一种可测受力角度的动辊张力传感器及测量方法
CN105091729B (zh) 一种采用因瓦钢引伸杆的应变式引伸计
CN203534742U (zh) 一体化抽油机井光杆轴向力及扭矩传感器
CN102778310A (zh) 一种可标定多角度测力传感器
CN103353365A (zh) 一种点接触柱销式测力传感器
CN103528724A (zh) 一体化抽油机井光杆轴向力及扭矩传感器
CN207231609U (zh) 电阻应变式车辆称重传感器
CN201983755U (zh) 用于应变倍增器的标定方法的试件
CN217980611U (zh) 一种测力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840669

Country of ref document: EP

Kind code of ref document: A1