WO2015026023A1 - Gasification reactor using biomass - Google Patents

Gasification reactor using biomass Download PDF

Info

Publication number
WO2015026023A1
WO2015026023A1 PCT/KR2014/001057 KR2014001057W WO2015026023A1 WO 2015026023 A1 WO2015026023 A1 WO 2015026023A1 KR 2014001057 W KR2014001057 W KR 2014001057W WO 2015026023 A1 WO2015026023 A1 WO 2015026023A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
biomass
air
air supply
zone
Prior art date
Application number
PCT/KR2014/001057
Other languages
French (fr)
Korean (ko)
Inventor
김종표
홍선일
손진국
이재구
홍성구
김명준
김의용
Original Assignee
삼양에코너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼양에코너지 주식회사 filed Critical 삼양에코너지 주식회사
Priority to CN201480000969.7A priority Critical patent/CN104640959B/en
Publication of WO2015026023A1 publication Critical patent/WO2015026023A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the present invention relates to a gasification reaction apparatus using biomass, and more particularly, to produce biomass in a solid state as a synthesis gas such as hydrogen, carbon monoxide, and methane in a gaseous state by thermal and chemical energy conversion.
  • the present invention relates to a gasification reaction apparatus using biomass to generate electric power by using a synthesis gas as a heat source of a boiler or a fuel of an internal combustion engine.
  • gasification is the production of solid materials in the form of syngas, which is a gaseous material by thermal and chemical energy conversion methods, and is mainly applied to coal, waste, woody biomass (rice husk, Corn stalks, sawdust, wood chips).
  • the gasification method is largely classified into a fixed bed method and a fluidized bed method, and the fixed bed method is subdivided into a bottom-up gasification method, a top-down gasification method, and a countercurrent gasification method, and the fluidized bed method is a circulating fluidized bed gasification method or a bubble bed fluidized bed gasification method. Can be divided.
  • the bottom-up gasification method is a method in which a solid raw material is input from the upper side and a gasification oxidant is supplied in a direction opposite to the solid raw material.
  • the solid material may be divided into a drying zone, a pyrolysis zone, a reduction zone, and an oxidation zone from a top side into which the solid raw material is introduced.
  • the air as an oxidant is mainly supplied from the lower side to the upper side into which the raw material is input, so that the heat transfer efficiency is good for the solid raw material to be introduced, and the outlet temperature is relatively low, such as 250 to 300 degrees Celsius. Due to its high tar content, it is mainly used as a heat source replacement technology for boilers.
  • the top-down gasification method is a system in which the input direction of the solid raw material and the input direction of air are parallel.
  • drying zone pyrolysis zone
  • pyrolysis zone pyrolysis zone
  • combustion zone reduction zone from the top of which solid raw material is input. It is the same direction as the input direction of the raw material.
  • the thermal efficiency is relatively low and only heat transfer by radiant heat results in the discharge of the synthesis gas.
  • the temperature is relatively high at 700 ⁇ 750 degrees Celsius.
  • the top-down gasification method has a relatively small amount of tar in the syngas (about 95 to 99% reduction in tar)
  • the syngas generated by the top-down gasification method can be directly injected into a generator of an internal combustion engine and used as fuel. It is enough, and it is a technology that allows cogeneration with heat and electricity.
  • the countercurrent gasification method can be said to be a mixture of a bottom-up gasification method and a top-down gasification method, and the oxidizing agent is introduced from the side, and the tar decomposition rate in the syngas is lowered, and a low-density solid such as chaff and sawdust is mainly used. It is suitable for gasifying raw materials.
  • the gasifier using the top-down gasification method has the same direction of injecting the solid raw material and the air as the oxidizing agent, and as a result, the heat transfer efficiency between the solid raw material and the air decreases, so that the sensible heat temperature of the syngas discharged is relatively high. Same as one.
  • the present invention has been invented to improve the above problems, and provides a gasification reaction apparatus using a biomass that can be selectively operated according to the nature and type of the biomass to be introduced and to increase the production of syngas. It is to.
  • the present invention is to provide a gasification reaction apparatus using a biomass to increase the energy efficiency by recovering the sensible heat of the syngas discharged to increase the temperature of the air supplied to the oxidant and put it back into the gasification process.
  • the present invention as a technical idea for solving the above object is to produce a synthesis gas (syngas) from the biomass by introducing a biomass (biomass) and air as an oxidant from the upper side, A reactor in which a drying zone, a pyrolysis zone, a combustion zone, and a reduction zone are sequentially formed from above; A plurality of first air supply assemblies disposed to be spaced apart along the outer surface of the reactor so as to penetrate downward from the upper side of the reactor and extend to the oxidation zone, and supply air for combustion of the biomass to the oxidation zone; Spaced apart along the outer surface of the reactor so as to penetrate downwardly from the top of the reactor to extend to the oxidation zone, and is disposed between the first air supply assembly and a neighboring first air supply assembly, and the combustion of the biomass A plurality of second air supply assemblies for supplying more air to the oxidation zone than the first air supply assembly, and a gas outlet formed at a lower side of the reactor, and the syngas discharged from the reduction zone;
  • the present invention has a first and second air supply assembly that can selectively adjust the air supply amount to the oxidation region according to the nature and type of the biomass to be injected, thereby applying a wide range of biomass of various types to high efficiency and high quality Syngas can be produced.
  • the present invention has a heat exchange unit that can reuse the high sensible heat of the syngas produced and discharged due to the structural characteristics of the top-down gasification method again to heat the air required for the gasification process, thereby minimizing unnecessary waste of energy and It is possible to improve the production efficiency.
  • FIG. 1 is a cross-sectional conceptual view showing the overall configuration of a gasification reaction apparatus using biomass according to an embodiment of the present invention.
  • Figure 2 is a plan view of the gasification reaction apparatus using a biomass according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional conceptual view showing the overall configuration of a second air supply assembly which is a main part of a gasification reaction apparatus using biomass according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional conceptual view showing the overall configuration of a gasification reaction apparatus using a biomass according to an embodiment of the present invention
  • Figure 2 is a plan view conceptual diagram of a gasification reaction apparatus using a biomass according to an embodiment of the present invention
  • 3 is a cross-sectional conceptual view showing the overall configuration of a second air supply assembly which is a main part of a gasification reaction apparatus using biomass according to an embodiment of the present invention.
  • a transparent arrow in FIG. 1 indicates a moving direction of the syngas 105 discharged from the reduction region 104
  • an arrow indicated by a dashed-dotted line indicates a direction in which ash of the biomass 108 is discharged.
  • Arrows indicated by the dashed-dotted line indicate the moving direction of the coolant flowing into and exiting the cooling jacket 680.
  • arrows indicated by solid lines in FIG. 3 indicate movement directions of air introduced by heat exchange from the heat exchange unit 400
  • arrows indicated by dashed lines indicate movement directions of air introduced from the outside without heat exchange.
  • reference numeral 107 denotes air introduced from the outside without heat exchange
  • reference numeral 700 denotes a support frame for supporting the reactor 100.
  • first and second air supply assemblies 200 and 300 and the heat exchange unit 400 are provided in the reactor 100.
  • the reactor 100 generates biogas 108 and syngas from biomass 108 by injecting biomass 108 and air as an oxidant from the upper side, and the upper side of the inner space in which the biomass 108 is filled.
  • the drying zone 101, the pyrolysis zone 102, the oxidation zone 103, the combustion zone, and the reduction zone 104 are sequentially formed.
  • the first air supply assembly 200 is spaced apart along the outer surface of the reactor 100 so as to penetrate downward from the upper side of the reactor 100 to extend to the oxidation region 103, and for combustion of the biomass 108.
  • a plurality of things supply air to the oxidation region 103.
  • the second air supply assembly 300 is disposed to be spaced apart along the outer surface of the reactor 100 so as to penetrate downward from the upper side of the reactor 100 to extend to the oxidation region 103, and the first air supply assembly 200 It is disposed between the adjacent first air supply assembly 200, the plurality of air supply for the combustion of the biomass 108 to the oxidation region 103 more than the first air supply assembly 200.
  • first and second air supply assemblies 200 and 300 can be clearly seen in FIG. 2.
  • first and second air supply assemblies 200 and 300 may be alternately arranged at equal intervals as shown, as well as various modifications and application designs such as asymmetrically disposed on one side.
  • modifications and application designs such as asymmetrically disposed on one side.
  • the heat exchange unit 400 is provided at the gas outlet 106 formed at the lower side of the reactor 100, and exchanges heat by synthesizing the syngas 105 discharged from the reduction zone 104 and air supplied from the outside. It is to let. Accordingly, the present invention can selectively adjust the air supply amount to the oxidation region 103 according to the nature and type of the biomass 108 introduced by the first and second air supply assemblies 200 and 300, It can be applied to a wide range of biomass.
  • the present invention reuses the high sensible heat of the syngas 105 produced and discharged due to the structural characteristics of the top-down gasification method to heat the air necessary for the gasification process by the heat exchange unit 400 again, thereby minimizing unnecessary waste of energy. It is possible to improve the production efficiency of the syngas 105.
  • the reactor 100 is for producing the syngas 105 from the biomass 108 introduced as described above, the reactor upper body 110 and the outer case 120 are largely interconnected, and the inner case 130 is It can be seen that the structure is built in the outer case 120.
  • a brief description will be given of the drying zone 101, the pyrolysis zone 102, the oxidation zone 103 and the reduction zone 104 which are sequentially formed from the upper side in the reactor 100. see.
  • the moisture content in the biomass 108 introduced into the reactor 100 is controlled by combustion heat transfer.
  • gaseous conversion materials such as char or tar are extracted from the inside of the biomass 108 introduced into the reactor 100 by combustion heat transfer.
  • partial combustion by an ignition burner connected to the reactor 100 occurs.
  • Air is introduced through the first and second air supply units 200 and 300, which will be described later, according to types or properties of the biomass 108 introduced to promote partial combustion of the oxidation region 103.
  • the reduction region 104 mainly composed of char (char), pyrolysis gas is converted into hydrogen and carbon monoxide while passing through this region.
  • the reactor upper body 110 is formed in a shape that gradually widens from the upper side, the drying region 101 and the pyrolysis region 102 is formed therein, forming a residence space 511 to temporarily receive the heat-exchanged air
  • the distribution unit 500 is formed in a band shape to surround the outside of the drying area 101 along the upper outer surface.
  • the outer case 120 is connected from the lower edge of the reactor upper body 110, the gas outlet 106 is formed on one side.
  • the inner case 130 is accommodated in the outer case 120, and communicates with the inside of the reactor upper body 110 to form the oxidation region 103 and the reducing region 104 therein.
  • the first air supply assembly 200 and the second air supply assembly 300 which will be described later, are inclined along the upper inner circumferential surface of the inner case 130, respectively.
  • the syngas 105 is discharged from the reduction zone 104 is raised to the gas outlet 106 Guided through, it is preferable that the discharge space 125 is discharged from the reduction zone 104 through the bottom of the inner case 130 is formed.
  • the discharge space 125 is also connected to the ash discharge unit 600 to be described later.
  • the reactor upper body 110, the outer case 120 and the inner case 130 is preferably made of a refractory material excellent in heat insulation.
  • the reactor upper body 110 in more detail it can be seen that the structure including the first fire-resistant wall layer 111 and the fire wall slope 112.
  • the first fireproof wall layer 111 is formed to have a constant thickness from the lower portion of the drying region 101 along the inner circumferential surface of the reactor upper body 110.
  • the fire wall slope 112 is formed to be inclined downward toward the inner case 130 side at the upper end portion of the first fire wall layer 111, and the fire wall slope 112 is introduced into the biomass 108 smoothly to the lower side. It is designed to descend.
  • the structure includes the shaft diameter portion 132 and the enlarged diameter portion 134.
  • the shaft diameter portion 132 includes a combustion slope 131 that is formed to be gradually narrowed from the upper side, and the enlarged diameter portion 134 extends from an edge of the lower end of the combustion slope 131 to be gradually widened.
  • the oxidation region 103 is formed above the shaft diameter portion 132 and the enlarged diameter portion 134, and the reduction region 104 is formed below the enlarged diameter portion 134.
  • Reference numeral w1 denotes the width or diameter of the lower edge of the fire wall slope 112 at the first width
  • reference numeral w2 denotes the width or diameter of the lower edge of the reactor upper body 110 at the second width.
  • Reference numeral w3 denotes the width or diameter of the lower edge of the combustion slope 131 at the third width
  • reference numeral w4 denotes the lower edge of the enlarged diameter portion 134 at the fourth width, that is, the lower edge of the reduction area 104. Represents the width or diameter to be made.
  • the second width (w2) is preferably formed larger than the first width (w1), which is a structure for the biomass 108 introduced from the reactor upper body 110 to be smoothly introduced without a bridge (bridge) phenomenon Because it is.
  • the fourth width w4 is preferably larger than the third width w3 because the ash of the biomass 108 is smoothly discharged from the reduction region 104.
  • the outer diameter of the shaft diameter portion 132 and the enlarged diameter portion 134 includes a second fireproof wall layer 133.
  • the reactor 100 is connected to the upper end of the reactor upper body 110 and at least one or more mounted to each of the hopper 140 and the upper end and the lower end of the hopper 140, which is injected into the biomass 108 is input while rotating Embodiments of the structure further including a torque sensor 150 for detecting a supply amount of the biomass 108 may be applied.
  • the torque sensor 150 When the torque sensor 150 detects the input of the biomass 108 through the hopper 140, the torque sensor 150 rotates to quantitatively control the input amount of the biomass 108 in real time.
  • the air is an oxidant introduced to promote partial combustion of the biomass 108 in the oxidation region 103 and through one or all of the first air supply assembly 200 and the second air supply assembly 300. It is injected into the oxidation region 103.
  • the injected biomass 108 is a wood-based material, such as rice hulls, corn stalks, sawdust, wood chips, etc.
  • about 20% to 35% of the air supply for the complete combustion of the biomass 108 (0.7) ⁇ 0.8 Nm 3 / kg) may be injected, so the first air supply assembly 200 to be described later may be used.
  • the injected biomass 108 when the injected biomass 108 is carbon intensive such as coal and waste and a high molecular material such as petroleum compound, it may be injected about 30 to 50% more than the air supply amount condition of the biomass 108 which is wood-based. 2 may be used as the air supply assembly 300.
  • first and second air supply assemblies 200 and 300 may be applied to various operating methods such as individually or fully operating in view of the above conditions.
  • the structure includes a first main pipe 210, the first valve 220 and the air supply pipe 230.
  • the first main pipe 210 is disposed on an upper outer surface of the reactor 100, ie, the upper part of the reactor 110, and divides the first main pipe 210 to form a retention space 511 in which air heat-exchanged from the heat exchange unit 400 is temporarily received. It is branched from the unit 500 toward the lower side of the reactor 100.
  • first valve 220 opens and closes the flow path in the first main pipe 210, and the air supply pipe 230 extends inclined with respect to the first main pipe 210 to be heat-exchanged in the oxidation region 103.
  • the flow path for injecting air is formed.
  • the second air supply assembly 300 may be understood to have a structure including a second main pipe 310, a second valve 320, and first and second cylinder parts 330 and 340.
  • the second main pipe 310 is disposed on the upper outer surface of the reactor 100, the reactor from the distribution unit 500 to form a residence space 511 to temporarily receive the air heat exchanged from the heat exchange unit 400 therein ( It is branched toward the lower side of 100).
  • the second valve 320 opens and closes the flow path in the second main pipe 310.
  • the first cylinder portion 330 communicates with the second main pipe 310 to form a communication space 335 through which the heat-exchanged air passes.
  • the second cylinder portion 340 is disposed through both ends of the first cylinder portion 330, and the external air supplied from one end portion joins the heat exchanged air passing through the communication space 335 to form a high speed from the other end portion. To be sprayed.
  • the first and second cylinders 330 and 340 naturally use the suction pressure formed in the reactor 100 in the gasification process of the biomass 108 to naturally introduce air introduced from the outside into the reactor 100.
  • a pressure difference is generated due to the wall adhesion phenomenon of the fluid, i.e., the flow of flow, and the main classification is attached to the lower pressure side. Air can be injected into the air.
  • the structure includes a first cylinder body 331 and the guide 332.
  • the first cylinder body 331 is a cylindrical member that accommodates one side of the second cylinder portion 340, the guide 332 extends from the end edge of the first cylinder body 331, the second cylinder portion 340. It wraps around the outer circumferential surface, and is a truncated cone-shaped member inclined at an angle with respect to the outer circumferential surface of the second cylinder portion 340.
  • the air heat-exchanged through the heat exchange unit 400 to be described later is guided along the inclined surface inside the guide 332 to the outside from the other end of the second cylinder portion 340 through the inner circumferential surface of the second cylinder portion 340. It is sprayed by joining air.
  • the structure includes a second cylinder body 342, a coanda orifice (343) and a venturi nozzle (344).
  • the second cylinder body 342 is accommodated in the first cylinder portion 330, one end is a cylindrical member exposed to the outside.
  • the coanda orifice 343 is inclined with respect to the inclined surface of the guide 332 having a truncated conical shape formed at the end edge of the first cylinder portion 330, a plurality of members penetrated along the outer peripheral surface of the other end of the second cylinder body 342 to be.
  • the venturi nozzle 344 extends gradually larger than the second cylinder body 342 so as to be exposed to the outside of the first cylinder part 330 from the other end of the second cylinder body 342.
  • the coanda orifice 343 is preferably disposed proximate to the end edge of the guide 332 to promote wall attachment of the fluid to enhance the coanda effect.
  • the heat exchange unit 400 as described above for the cross-flow flow of the syngas 105 and the air supplied from the outside to exchange heat, the gas conduit 410, the exchange jacket 420 and the air baffle (430, It can be seen that the structure including the air baffle).
  • the gas conduit 410 is connected to the gas outlet 106 and forms a flow path through which the syngas 105 is discharged.
  • the exchange jacket 420 is provided with an air inlet port 421 through which air is introduced from the outside at one side, and the heat exchange toward the residence space 511 of the distribution unit 500 disposed at the upper outer surface of the reactor 100 at the other side.
  • An air discharge port 422 is provided to supply the heat exchanged air from the unit 400, and surrounds the entire outer circumferential surface of the gas conduit 410 and forms an exchange space 415 therein.
  • the air baffle 430 is formed in a spiral shape along the formation direction of the exchange space 415 between the inner circumferential surface of the exchange jacket 420 and the outer circumferential surface of the gas conduit 410. Accordingly, the air introduced through the air inlet port 421 undergoes a sufficient heat exchange with the syngas 105 discharged at a high temperature while causing a retardation flow along the formation direction of the air baffle 430, and then the first air supply assembly ( 100) and the second air supply assembly 200 are supplied to the side.
  • the heat exchange unit 400 has a gas conduit 410 and the exchange jacket 420 has an exchange space 415 in the form of a double pipe to exchange heat with the synthesis gas 105 in which air introduced from the outside is discharged to a high temperature. It can be said that it is prepared in terms of the use of waste heat recovery through.
  • the present invention is disposed on the upper outer surface of the reactor 100, the first air supply assembly 200 and the second air supply assembly while using the air heat exchanged from the heat exchange unit 400 as a heat source of the drying area 101
  • Embodiments of a structure further including a distribution unit 500 for supplying to 300 may be applied.
  • the distribution unit 500 may reduce the combustion load of the biomass 108 in the oxidation region 103 by increasing the temperature of the drying region 101 and the pyrolysis region 102 in the reactor 100, and greatly. It can be seen that the structure includes a distribution jacket 510 and a connection pipe 520.
  • the distribution jacket 510 is formed in a band shape along the upper outer surface of the reactor 100 to form a residence space 511 for temporarily receiving heat-exchanged air.
  • connection pipe 520 communicates the air discharge port 422 and the retention space 511 of the heat exchange unit 400 with each other.
  • the first air supply assembly 200 and the second air supply assembly 300 communicate with the residence space 511 to supply the heat-exchanged air to the oxidation region 103, respectively.
  • the dispensing unit 500 Since the dispensing unit 500 has a direction in which the biomass 108 is injected and a direction in which air is used as an oxidant is the same direction, a structure for increasing the temperature of the drying region 101 and the pyrolysis region 102 is required.
  • the structure of the distribution unit 500 also serves to accelerate the drying of moisture in the biomass 108 and to mitigate the increase in thermal entropy of the (gasification) process of thermally decomposing the biomass 108.
  • the distribution unit 500 is oxidized when the air heat-exchanged and heated through the heat exchange unit 400 is injected into the oxidation region 103 through the first air supply assembly 200 or the second air supply assembly 300. Local combustion of the biomass 108 in the region 103 can be promoted, and productivity of the syngas 105 can be improved.
  • the distribution unit 500 is to play an important role in the gasification reaction apparatus to produce a synthesis gas 105 of 2 to 2.5 Nm 3 per kg of biomass 108 together with the heat exchange unit 400. .
  • the present invention is disposed on the lower side of the reactor 100, and further comprises a ash discharge unit 600 for discharging the remaining ash from the synthesis gas 105 from the reduction zone 104 to the outside of the reactor 100 It is preferable to include.
  • the re-discharge unit 600 includes a drive motor 610, a thrust bearing 621, a drive shaft 620, a grate assembly, a reclosing tank 640, a discharge screw 650, and a discharge motor ( It can be seen that the structure including a 660 and the discharge induction pipe 670.
  • the drive motor 610 is disposed on the bottom of the reactor 100 to transfer the driving force to the drive shaft 620 connected to the drive motor 610, the drive shaft 620 is rotatably supported by the thrust bearing 621, It receives the driving force from the drive motor 610 to rotate.
  • the great assembly 630 is connected to the upper end of the drive shaft 620, is embedded in the lower portion of the reduction zone 104 and rotated at a constant speed while burning the ash of the biomass 108 burned from the reduction zone 104 by a predetermined amount. It is a truncated cone-shaped member in which the disks which formed the some step
  • the great assembly 630 forms a structure in which ash of the biomass 108 may be discharged in a grill or mesh form on the bottom thereof, and interlocks with the drive shaft 620 that rotates intermittently very slowly. Periodically, the ash of the biomass 108 is discharged from the reduction zone 104 by a predetermined amount.
  • the reclosing tank 640 is provided at the bottom of the reactor 100 to form a space for temporarily receiving the ashes of the biomass 108 that has fallen.
  • Discharge screw 650 is formed in a spiral shape along the outer circumferential surface of the discharge shaft 651 is formed to be inclined upward from the bottom of the re-receiving tank 640 to rotate in one direction.
  • the discharge motor 660 is connected to the end of the discharge shaft 651 to transmit a driving force to the discharge shaft 651.
  • the discharge guide pipe 670 extends from the receptacle tank 640 and includes a discharge screw 650, and has a ash discharge port 671 on which ash is discharged.
  • the ashes of the biomass 108 dropped and accumulated in the reclosing tank 640 are conveyed in one direction by the discharging screw 650 as the discharging shaft 651 also rotates when the discharging motor 660 is operated. It is discharged to the outside through the port 671.
  • the outer side of the thrust bearing 621 and the drive shaft 620 is further provided with a cooling jacket 680 having a coolant inlet port 681 through which the coolant flows from the outside and a coolant discharge port 682 through which the coolant is discharged. Therefore, heat generation and overheating of the drive shaft 620 and the thrust bearing 621 may be reduced.
  • the present invention can selectively operate according to the nature and type of the biomass to be introduced and can increase the amount of syngas produced, as well as the temperature of the air supplied to the oxidant by recovering the sensible heat of the syngas discharged. It can be seen that the basic technical idea is to provide a gasification reaction apparatus using biomass that can increase energy efficiency by increasing the energy efficiency and increasing the energy efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a gasification reactor using biomass, capable of being selectively operated according to the characteristics and type of an injected biomass, increasing the synthetic gas production, and further improving the efficiency of the energy which can be applied to a gasification step again by collecting the sensible heat of the discharged synthetic gas and raising the temperature of the air supplied as an oxidizing agent.

Description

바이오매스를 이용한 가스화 반응장치Gasification Reactor Using Biomass
본 발명은 바이오매스를 이용한 가스화 반응장치에 관한 것으로, 더 욱 상세하게는 고체 상태인 바이오매스를 열, 화학적인 에너지 변환에 의하여 기체상태인 수소, 일산화탄소, 메탄 등의 합성가스로 생산하여, 이러한 합성가스를 보일러의 열원이나 내연기관의 연료로 활용하여 전력 생산이 가능하도록 하는 바이오매스를 이용한 가스화 반응장치에 관한 것이다.The present invention relates to a gasification reaction apparatus using biomass, and more particularly, to produce biomass in a solid state as a synthesis gas such as hydrogen, carbon monoxide, and methane in a gaseous state by thermal and chemical energy conversion. The present invention relates to a gasification reaction apparatus using biomass to generate electric power by using a synthesis gas as a heat source of a boiler or a fuel of an internal combustion engine.
일반적으로 가스화는 고체 상태의 물질을 열,화학적 에너지 전환방법에 의하여 기체 상태의 물질인 합성가스의 형태로 생산하는 것이며, 가스화 기술의 적용 대상으로는 주로 석탄, 폐기물, 목질계 바이오매스(왕겨, 옥수수대, 톱밥, 우드칩)등을 들 수 있다.In general, gasification is the production of solid materials in the form of syngas, which is a gaseous material by thermal and chemical energy conversion methods, and is mainly applied to coal, waste, woody biomass (rice husk, Corn stalks, sawdust, wood chips).
여기서, 가스화하는 방법은 크게 고정층 방식과 유동층 방식으로 구분되며, 고정층 방식은 상향식 가스화 방법, 하향식 가스화 방법, 향류식 가스화방법으로 세분화되고, 유동층 방식은 순환유동층 가스화 방법, 버블베드 유동층 가스화 방법 등으로 나뉠 수 있다.Here, the gasification method is largely classified into a fixed bed method and a fluidized bed method, and the fixed bed method is subdivided into a bottom-up gasification method, a top-down gasification method, and a countercurrent gasification method, and the fluidized bed method is a circulating fluidized bed gasification method or a bubble bed fluidized bed gasification method. Can be divided.
이중에서, 상향식 가스화 방법은 상측으로부터 고체 원료가 투입되고, 고체 원료와 대향되는 방향으로 가스화용 산화제가 공급되는 방식이다.Among them, the bottom-up gasification method is a method in which a solid raw material is input from the upper side and a gasification oxidant is supplied in a direction opposite to the solid raw material.
즉, 고체 원료가 투입되는 상측으로부터 건조영역(Drying zone), 열분해영역(Pyrolysis, Distillation zone), 환원영역(Reduction zone), 산화영역(Combustion zone) 으로 구획될 수 있다.That is, the solid material may be divided into a drying zone, a pyrolysis zone, a reduction zone, and an oxidation zone from a top side into which the solid raw material is introduced.
상향식 가스화 방법에서는 산화제인 공기는 주로 하부에서 원료가 투입되는 상측으로 공급되므로 투입되는 고체 원료에 대한 열전달 효율이 좋으며, 출구온도가 섭씨 250~300도 정도로 비교적 낮은 편이지만, 공정의 특성상 합성가스 내의 타르 함량이 높아 주로 보일러 등의 열원 대체 기술로 사용된다.In the bottom-up gasification method, the air as an oxidant is mainly supplied from the lower side to the upper side into which the raw material is input, so that the heat transfer efficiency is good for the solid raw material to be introduced, and the outlet temperature is relatively low, such as 250 to 300 degrees Celsius. Due to its high tar content, it is mainly used as a heat source replacement technology for boilers.
다음으로, 하향식 가스화 방법은 고체 원료의 투입 방향과 공기의 투입 방향이 평행을 이루는 방식이다.Next, the top-down gasification method is a system in which the input direction of the solid raw material and the input direction of air are parallel.
즉, 고체 원료가 투입되는 상측으로부터 건조영역(Drying zone), 열분해영역(Pyrolysis, Distillation zone), 산화영역(Combustion zone), 환원영역(Reduction zone)으로 구분되며, 산화제인 공기의 투입방향이 고체 원료의 투입방향과 같은 방향이다.That is, it is divided into drying zone, pyrolysis zone, pyrolysis zone, combustion zone and reduction zone from the top of which solid raw material is input. It is the same direction as the input direction of the raw material.
하향식 가스화 방법에서는 합성가스의 생성이 이루어지는 상부의 건조영역과 열분해영역을 거치는 과정 중 하부의 산화영역으로부터 고체 연료간 충분한 열전달이 이루어지지 않아 열효율이 비교적 낮고 오직 복사열에 의한 열전달이이루어져 합성가스의 배출온도가 섭씨 700~750도로 비교적 높은 편이다.In the top-down gasification method, due to insufficient heat transfer between solid fuels from the lower oxidation zone during the drying zone and pyrolysis zone where the synthesis gas is generated, the thermal efficiency is relatively low and only heat transfer by radiant heat results in the discharge of the synthesis gas. The temperature is relatively high at 700 ~ 750 degrees Celsius.
그러나, 하향식 가스화 방법은 합성가스 내에 포함된 타르의 함량이 비교적 적으므로(타르 저감도 95~99% 정도), 하향식 가스화 방법으로 생성된 합성가스는 내연기관의 발전기에 직접 투입하여 연료로 사용할 수 있을 정도이며, 이를 통한 열과 전기가 혼용된 열병합발전이 가능한 기술이다.However, since the top-down gasification method has a relatively small amount of tar in the syngas (about 95 to 99% reduction in tar), the syngas generated by the top-down gasification method can be directly injected into a generator of an internal combustion engine and used as fuel. It is enough, and it is a technology that allows cogeneration with heat and electricity.
한편, 향류식 가스화 방법은 상향식 가스화 방법과 하향식 가스화 방법의 혼용이라 할 수 있으며, 산화제의 투입이 측면에서 이루어져, 합성가스 내의 타르 분해율이 떨어지는 특성이 있으며, 주로 왕겨, 톱밥 등과 같이 밀도가 낮은 고체 원료를 가스화하는데 적합하다.On the other hand, the countercurrent gasification method can be said to be a mixture of a bottom-up gasification method and a top-down gasification method, and the oxidizing agent is introduced from the side, and the tar decomposition rate in the syngas is lowered, and a low-density solid such as chaff and sawdust is mainly used. It is suitable for gasifying raw materials.
따라서, 최근에는 타르의 함량이 비교적 적은 하향식 가스화 방법을 이용한 가스화 장치의 개발이 이루어지고 있다.Therefore, in recent years, the development of a gasifier using a top-down gasification method with a relatively small tar content has been made.
그러나, 이러한 하향식 가스화 방법을 이용한 가스화 장치는 고체원료와 산화제인 공기의 투입 방향이 같아서, 이로 인한 고체 원료와 공기 상호간의 열전달 효율이 저하되므로, 배출되는 합성가스의 현열 온도가 비교적 높다는 점은 전술한 바와 같다.However, the gasifier using the top-down gasification method has the same direction of injecting the solid raw material and the air as the oxidizing agent, and as a result, the heat transfer efficiency between the solid raw material and the air decreases, so that the sensible heat temperature of the syngas discharged is relatively high. Same as one.
따라서, 이러한 비교적 고온인 합성가스의 현열을 이용할 수 있음은 물론, 다양한 종류와 성상을 지닌 바이오매스 고체 원료들에 폭넓게 적용이 가능한 가스화 장치의 개발이 절실한 것이다.Therefore, the development of a gasifier that can be widely applied to biomass solid raw materials having various types and properties, as well as using the sensible heat of the relatively high temperature synthesis gas is urgently needed.
본 발명은 상기와 같은 문제점을 개선하기 위하여 발명된 것으로, 투입되는 바이오매스의 성상 및 종류에 따라 선택적인 운전이 가능하며 합성가스의 생산량을 증대시킬 수 있도록 하는 바이오매스를 이용한 가스화 반응장치를 제공하기 위한 것이다.The present invention has been invented to improve the above problems, and provides a gasification reaction apparatus using a biomass that can be selectively operated according to the nature and type of the biomass to be introduced and to increase the production of syngas. It is to.
그리고, 본 발명은 배출되는 합성가스의 현열을 회수하여 산화제로 공급되는 에어의 온도를 높여 다시 가스화 공정에 투입함으로써 에너지 효율을 높일 수 있도록 하는 바이오매스를 이용한 가스화 반응장치를 제공하기 위한 것이다.In addition, the present invention is to provide a gasification reaction apparatus using a biomass to increase the energy efficiency by recovering the sensible heat of the syngas discharged to increase the temperature of the air supplied to the oxidant and put it back into the gasification process.
상기의 목적을 해결하기 위한 기술적 사상으로서의 본 발명은, 상측으로부터 바이오매스(biomass) 및 산화제인 에어를 투입하여 상기 바이오매스로부터 합성가스(syngas)를 생산하는 것으로, 상기 바이오매스가 채워진 내부 공간의 상측으로부터 건조영역(drying zone), 열분해영역(pyrolysis zone), 산화영역(combustion zone), 환원영역(reduction zone)이 순차적으로 형성된 반응기; 상기 반응기의 상측으로부터 하향 경사지게 관통되어 상기 산화영역까지 연장되도록 상기 반응기의 외면을 따라 이격하여 배치되고, 상기 바이오매스의 연소를 위한 에어를 상기 산화영역에 공급하는 복수의 제1 에어공급 어셈블리; 상기 반응기의 상측으로부터 하향 경사지게 관통되어 상기 산화영역까지 연장되도록 상기 반응기의 외면을 따라 이격하여 배치되고, 상기 제1 에어공급 어셈블리와 이웃한 제1 에어공급 어셈블리 사이에 배치되며, 상기 바이오매스의 연소를 위한 에어를 상기 제1 에어공급 어셈블리보다 많이 상기 산화영역에 공급하는 복수의 제2 에어공급 어셈블리 및 상기 반응기의 하부측에 형성되는 가스 배출구에 구비되고, 상기 환원영역으로부터 배출되는 상기 합성가스와 외부로부터 공급되는 에어를 상호 교차 유동시켜 열교환시키는 열교환 유닛;을 포함하는 것을 특징으로 한다.The present invention as a technical idea for solving the above object is to produce a synthesis gas (syngas) from the biomass by introducing a biomass (biomass) and air as an oxidant from the upper side, A reactor in which a drying zone, a pyrolysis zone, a combustion zone, and a reduction zone are sequentially formed from above; A plurality of first air supply assemblies disposed to be spaced apart along the outer surface of the reactor so as to penetrate downward from the upper side of the reactor and extend to the oxidation zone, and supply air for combustion of the biomass to the oxidation zone; Spaced apart along the outer surface of the reactor so as to penetrate downwardly from the top of the reactor to extend to the oxidation zone, and is disposed between the first air supply assembly and a neighboring first air supply assembly, and the combustion of the biomass A plurality of second air supply assemblies for supplying more air to the oxidation zone than the first air supply assembly, and a gas outlet formed at a lower side of the reactor, and the syngas discharged from the reduction zone; And a heat exchange unit for exchanging heat by mutually flowing air supplied from the outside.
상기와 같은 구성의 본 발명에 따르면, 다음과 같은 효과를 도모할 수 있다.According to the present invention having the above configuration, the following effects can be achieved.
우선, 본 발명은 투입되는 바이오매스의 성상 및 종류에 따라 산화영역에 에어 공급량을 선택적으로 조절할 수 있는 제1, 2 에어공급 어셈블리를 구비함으로써, 다양한 종류의 바이오매스에 폭넓게 적용하여 고효율 및 고품질의 합성가스를 생산할 수 있게 된다.First, the present invention has a first and second air supply assembly that can selectively adjust the air supply amount to the oxidation region according to the nature and type of the biomass to be injected, thereby applying a wide range of biomass of various types to high efficiency and high quality Syngas can be produced.
그리고, 본 발명은 하향식 가스화 방법의 구조적 특성상 생산되어 배출되는 합성가스의 높은 현열을 다시 가스화 공정에 필요한 에어를 가열하는데 재사용할 수 있는 열교환 유닛을 구비함으로써, 불필요한 에너지의 낭비를 최소화하고 합성가스의 생산 효율을 향상시킬 수 있게 된다.In addition, the present invention has a heat exchange unit that can reuse the high sensible heat of the syngas produced and discharged due to the structural characteristics of the top-down gasification method again to heat the air required for the gasification process, thereby minimizing unnecessary waste of energy and It is possible to improve the production efficiency.
도 1은 본 발명의 일 실시예에 따른 바이오매스를 이용한 가스화 반응장치의 전체적인 구성을 나타낸 단면 개념도.1 is a cross-sectional conceptual view showing the overall configuration of a gasification reaction apparatus using biomass according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 바이오매스를 이용한 가스화 반응장치의 평면 개념도.Figure 2 is a plan view of the gasification reaction apparatus using a biomass according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 바이오매스를 이용한 가스화 반응장치의 주요부인 제2 에어공급 어셈블리의 전체적인 구성을 나타낸 단면 개념도.3 is a cross-sectional conceptual view showing the overall configuration of a second air supply assembly which is a main part of a gasification reaction apparatus using biomass according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 바이오매스를 이용한 가스화 반응장치의 전체적인 구성을 나타낸 단면 개념도이며, 도 2는 본 발명의 일 실시예에 따른 바이오매스를 이용한 가스화 반응장치의 평면 개념도이고, 도 3은 본 발명의 일 실시예에 따른 바이오매스를 이용한 가스화 반응장치의 주요부인 제2 에어공급어셈블리의 전체적인 구성을 나타낸 단면 개념도이다.1 is a cross-sectional conceptual view showing the overall configuration of a gasification reaction apparatus using a biomass according to an embodiment of the present invention, Figure 2 is a plan view conceptual diagram of a gasification reaction apparatus using a biomass according to an embodiment of the present invention, 3 is a cross-sectional conceptual view showing the overall configuration of a second air supply assembly which is a main part of a gasification reaction apparatus using biomass according to an embodiment of the present invention.
참고로, 도 1에서 투명한 화살표는 환원영역(104)으로부터 배출되는 합성가스(105)의 이동 방향을 나타내고, 일점 쇄선으로 표시된 화살표는 바이오매스(108)의 재[灰, ash]가 배출되는 방향을 나타내며, 이점 쇄선으로 표시된 화살표는 냉각 재킷(680)에 유입되고 배출되는 냉각수의 이동 방향을 나타낸다.For reference, a transparent arrow in FIG. 1 indicates a moving direction of the syngas 105 discharged from the reduction region 104, and an arrow indicated by a dashed-dotted line indicates a direction in which ash of the biomass 108 is discharged. Arrows indicated by the dashed-dotted line indicate the moving direction of the coolant flowing into and exiting the cooling jacket 680.
그리고, 도 3에서 실선으로 표시된 화살표는 열교환 유닛(400)으로부터 열교환되어 유입된 에어의 이동 방향을, 점선으로 표시된 화살표는 열교환되지 않고 외부로부터 유입되는 에어의 이동 방향을 각각 나타낸다.In addition, arrows indicated by solid lines in FIG. 3 indicate movement directions of air introduced by heat exchange from the heat exchange unit 400, and arrows indicated by dashed lines indicate movement directions of air introduced from the outside without heat exchange.
그리고, 미설명 부호로 도면 부호 107은 열교환되지 않고 외부로부터 유입되는 에어를 나타내며, 도면 부호 700은 반응기(100)를 받침 지지하는 지지프레임을 나타낸다.In addition, reference numeral 107 denotes air introduced from the outside without heat exchange, and reference numeral 700 denotes a support frame for supporting the reactor 100.
본 발명은 도시된 바와 같이 반응기(100)에 제1, 2 에어공급 어셈블리(200, 300)와 열교환 유닛(400)이 구비된 구조임을 파악할 수 있다.As shown in the present invention, it can be understood that the first and second air supply assemblies 200 and 300 and the heat exchange unit 400 are provided in the reactor 100.
반응기(100)는 상측으로부터 바이오매스(108, biomass) 및 산화제인 에어를 투입하여 바이오매스(108)로부터 합성가스(105, syngas)를 생산하는 것으로, 바이오매스(108)가 채워진 내부 공간의 상측으로부터 건조영역(101,drying zone), 열분해영역(102, pyrolysis zone), 산화영역(103, combustion zone), 환원영역(104, reduction zone)이 순차적으로 형성된 것이다.The reactor 100 generates biogas 108 and syngas from biomass 108 by injecting biomass 108 and air as an oxidant from the upper side, and the upper side of the inner space in which the biomass 108 is filled. The drying zone 101, the pyrolysis zone 102, the oxidation zone 103, the combustion zone, and the reduction zone 104 are sequentially formed.
제1 에어공급 어셈블리(200)는 반응기(100)의 상측으로부터 하향 경사지게 관통되어 산화영역(103)까지 연장되도록 반응기(100)의 외면을 따라 이격하여 배치되고, 바이오매스(108)의 연소를 위한 에어를 산화영역(103)에 공급하는 복수의 것이다.The first air supply assembly 200 is spaced apart along the outer surface of the reactor 100 so as to penetrate downward from the upper side of the reactor 100 to extend to the oxidation region 103, and for combustion of the biomass 108. A plurality of things supply air to the oxidation region 103.
제2 에어공급 어셈블리(300)는 반응기(100)의 상측으로부터 하향 경사지게 관통되어 산화영역(103)까지 연장되도록 반응기(100)의 외면을 따라 이격하여 배치되고, 제1 에어공급 어셈블리(200)와 이웃한 제1 에어공급 어셈블리(200)사이에 배치되며, 바이오매스(108)의 연소를 위한 에어를 제1 에어공급 어셈블리(200)보다 많이 산화영역(103)에 공급하는 복수의 것이다.The second air supply assembly 300 is disposed to be spaced apart along the outer surface of the reactor 100 so as to penetrate downward from the upper side of the reactor 100 to extend to the oxidation region 103, and the first air supply assembly 200 It is disposed between the adjacent first air supply assembly 200, the plurality of air supply for the combustion of the biomass 108 to the oxidation region 103 more than the first air supply assembly 200.
이러한 제1, 2 에어공급 어셈블리(200, 300)의 배치구조는 도 2에서 명확하게 파악할 수 있다. 물론, 제1, 2 에어공급 어셈블리(200, 300)는 도시된 바와 같이 각각 등간격으로 번갈아 배치되도록 할 수 있음은 물론, 비대칭적으로 일측에 치우치게 배치할 수도 있는 등 다양한 변형 및 응용 설계가 가능함은 물론이다.The arrangement of the first and second air supply assemblies 200 and 300 can be clearly seen in FIG. 2. Of course, the first and second air supply assemblies 200 and 300 may be alternately arranged at equal intervals as shown, as well as various modifications and application designs such as asymmetrically disposed on one side. Of course.
열교환 유닛(400)은 반응기(100)의 하부측에 형성되는 가스 배출구(106)에 구비되고, 환원영역(104)으로부터 배출되는 합성가스(105)와 외부로부터 공급되는 에어를 상호 교차 유동시켜 열교환시키는 것이다. 따라서, 본 발명은 제1, 2 에어공급 어셈블리(200, 300)에 의하여, 투입되는 바이오매스(108)의 성상 및 종류에 따라 산화 영역(103)에 에어 공급량을 선택적으로 조절할 수 있으므로, 다양한 종류의 바이오매스에 폭넓게 적용할 수 있게 된다.The heat exchange unit 400 is provided at the gas outlet 106 formed at the lower side of the reactor 100, and exchanges heat by synthesizing the syngas 105 discharged from the reduction zone 104 and air supplied from the outside. It is to let. Accordingly, the present invention can selectively adjust the air supply amount to the oxidation region 103 according to the nature and type of the biomass 108 introduced by the first and second air supply assemblies 200 and 300, It can be applied to a wide range of biomass.
그리고, 본 발명은 하향식 가스화 방법의 구조적 특성상 생산되어 배출되는 합성가스(105)의 높은 현열을 열교환 유닛(400)에 의하여 다시 가스화 공정에 필요한 에어를 가열하는데 재사용함으로써, 불필요한 에너지의 낭비를 최소화하고 합성가스(105)의 생산 효율을 향상시킬 수 있게 된다.In addition, the present invention reuses the high sensible heat of the syngas 105 produced and discharged due to the structural characteristics of the top-down gasification method to heat the air necessary for the gasification process by the heat exchange unit 400 again, thereby minimizing unnecessary waste of energy. It is possible to improve the production efficiency of the syngas 105.
본 발명은 상기와 같은 실시예의 적용이 가능하며 다음과 같은 다양한 실시예의 적용 또한 가능함은 물론이다.The present invention can be applied to the embodiments as described above, it is also possible to apply the various embodiments as follows.
반응기(100)는 전술한 바와 같이 투입된 바이오매스(108)로부터 합성가스(105)를 생산하기 위한 것으로, 크게 반응기 상체(110)와 외부 케이스(120)가 상호 연결되고, 내부 케이스(130)는 외부 케이스(120)에 내장되는 구조임을 파악할 수 있다. 반응기(100)의 각 구성부의 설명에 앞서 반응기(100) 내부에 상측으로부터 순차적으로 형성되는 건조영역(101)과 열분해영역(102)과 산화영역(103)과 환원영역(104)에 대하여 간략히 살펴본다.The reactor 100 is for producing the syngas 105 from the biomass 108 introduced as described above, the reactor upper body 110 and the outer case 120 are largely interconnected, and the inner case 130 is It can be seen that the structure is built in the outer case 120. Prior to the description of each component of the reactor 100, a brief description will be given of the drying zone 101, the pyrolysis zone 102, the oxidation zone 103 and the reduction zone 104 which are sequentially formed from the upper side in the reactor 100. see.
우선, 건조영역(101)에서는 연소 열전달에 의하여 반응기(100) 내부에 투입된 바이오매스(108) 내부의 함수율을 조절하게 된다. 그리고, 열분해영역(102)에서는 연소 열전달에 의하여 반응기(100)내부에 투입된 바이오매스(108) 내부로부터 예를 들면 촤(char)나 타르(tar)와 같은 가스상 전환물질을 추출하게 된다. 그리고, 산화영역(103)에서는 특별히 도시하지 않았으나, 반응기(100)와 연결된 점화버너에 의한 부분 연소가 일어나게 된다.First, in the drying region 101, the moisture content in the biomass 108 introduced into the reactor 100 is controlled by combustion heat transfer. In the pyrolysis zone 102, gaseous conversion materials such as char or tar are extracted from the inside of the biomass 108 introduced into the reactor 100 by combustion heat transfer. In addition, although not specifically illustrated in the oxidation region 103, partial combustion by an ignition burner connected to the reactor 100 occurs.
이러한 산화영역(103)의 부분 연소를 촉진하기 위하여 투입되는 바이오매스(108)들의 종류나 성상에 따라 후술할 제1, 2 에어공급 유닛(200, 300)을 통하여 에어가 투입되는 것이다. 또한, 환원영역(104)에서는 주로 촤(char, 숯)로 이루어진 영역으로, 열분해 가스가 이 영역을 통과하면서 수소와 일산화탄소로 전환되는 것이다.Air is introduced through the first and second air supply units 200 and 300, which will be described later, according to types or properties of the biomass 108 introduced to promote partial combustion of the oxidation region 103. In addition, in the reduction region 104, mainly composed of char (char), pyrolysis gas is converted into hydrogen and carbon monoxide while passing through this region.
한편, 반응기 상체(110)는 상측으로부터 점차 넓어지는 형상으로 형성되고, 건조영역(101)과 열분해영역(102)이 내부에 형성되며, 열교환된 에어가 일시 수용되는 체류 공간(511)을 형성하는 분배 유닛(500)이 상측 외면을 따라 건조영역(101)의 외부를 감싸도록 띠 형상으로 형성되는 것이다. 그리고, 외부 케이스(120)는 반응기 상체(110)의 하단부 가장자리로 부터 연결되고, 일측에 가스 배출구(106)가 형성되는 것이다. 또한, 내부 케이스(130)는 외부 케이스(120)에 수용되고, 반응기 상체(110)의 내부와 연통되어 산화영역(103)과 환원영역(104)이 내부에 형성되는 것이다. 여기서, 후술할 제1 에어공급 어셈블리(200)와 제2 에어공급 어셈블리(300)는 각각 내부 케이스(130)의 상측 내주면을 따라 경사지게 배치된다.On the other hand, the reactor upper body 110 is formed in a shape that gradually widens from the upper side, the drying region 101 and the pyrolysis region 102 is formed therein, forming a residence space 511 to temporarily receive the heat-exchanged air The distribution unit 500 is formed in a band shape to surround the outside of the drying area 101 along the upper outer surface. And, the outer case 120 is connected from the lower edge of the reactor upper body 110, the gas outlet 106 is formed on one side. In addition, the inner case 130 is accommodated in the outer case 120, and communicates with the inside of the reactor upper body 110 to form the oxidation region 103 and the reducing region 104 therein. Here, the first air supply assembly 200 and the second air supply assembly 300, which will be described later, are inclined along the upper inner circumferential surface of the inner case 130, respectively.
이때, 내부 케이스(130)의 외면과 외부 케이스(120)의 내면 사이에는 내부 케이스(130)의 저면을 통하여 환원영역(104)으로부터 합성가스(105)가 배출되고 상승하여 가스 배출구(106)를 통하여 유도되며, 내부 케이스(130)의 저면을 통하여 환원영역(104)으로부터 재가 배출되는 배출 공간(125)이 형성되는 것이 바람직하다. 그리고, 배출 공간(125)은 후술할 재 배출 유닛(600)과도 연결되는 것이다. 이때, 반응기 상체(110)와 외부 케이스(120)와 내부 케이스(130)는 단열성이 우수한 내화 물질로 이루어지는 것이 바람직하다.At this time, between the outer surface of the inner case 130 and the inner surface of the outer case 120 through the bottom surface of the inner case 130, the syngas 105 is discharged from the reduction zone 104 is raised to the gas outlet 106 Guided through, it is preferable that the discharge space 125 is discharged from the reduction zone 104 through the bottom of the inner case 130 is formed. In addition, the discharge space 125 is also connected to the ash discharge unit 600 to be described later. In this case, the reactor upper body 110, the outer case 120 and the inner case 130 is preferably made of a refractory material excellent in heat insulation.
반응기 상체(110)는 더욱 구체적으로 살펴보면 제1 내화벽층(111)과 내화벽 사면(112)을 포함하는 구조임을 알 수 있다.Looking at the reactor upper body 110 in more detail it can be seen that the structure including the first fire-resistant wall layer 111 and the fire wall slope 112.
제1 내화벽층(111)은건조영역(101)의 하부로부터 반응기 상체(110)의 내주면을 따라 일정한 두께로 형성된 것이다.The first fireproof wall layer 111 is formed to have a constant thickness from the lower portion of the drying region 101 along the inner circumferential surface of the reactor upper body 110.
내화벽 사면(112)은 제1 내화벽층(111)의 상단부에 내부 케이스(130)측을 향하여 하향 경사지게 형성된 것으로, 내화벽 사면(112)은 투입된 바이오매스(108)가 하부측으로 원활하게 안내되어 하강할 수 있도록 마련된 것이다.The fire wall slope 112 is formed to be inclined downward toward the inner case 130 side at the upper end portion of the first fire wall layer 111, and the fire wall slope 112 is introduced into the biomass 108 smoothly to the lower side. It is designed to descend.
그리고, 내부 케이스(130)는 더욱 구체적으로 살펴보면 축경부(132)와 확경부(134)를 포함하는 구조임을 알 수 있다.In addition, when the inner case 130 is looked at in more detail, it can be seen that the structure includes the shaft diameter portion 132 and the enlarged diameter portion 134.
축경부(132)는 상측으로부터 점차 좁아지게 형성되는 연소 사면(131)을 구비한 것이며, 확경부(134)는 연소 사면(131)의 하단부 가장자리로부터 연장되어 점차 넓어지게 형성되는 것이다. 여기서, 산화영역(103)은 축경부(132)와 확경부(134)의 상부에 형성되고, 환원영역(104)은 확경부(134)의 하부에 형성되는 것이다.The shaft diameter portion 132 includes a combustion slope 131 that is formed to be gradually narrowed from the upper side, and the enlarged diameter portion 134 extends from an edge of the lower end of the combustion slope 131 to be gradually widened. Here, the oxidation region 103 is formed above the shaft diameter portion 132 and the enlarged diameter portion 134, and the reduction region 104 is formed below the enlarged diameter portion 134.
반응기 상체(110)와 내부 케이스(130)의 구조에 대하여 더욱 상세하게 살펴보고자 한다.The structure of the reactor upper body 110 and the inner case 130 will be described in more detail.
우선, 도 1의 우측 하부에 도시된 도면 부호를 설명하면 다음과 같다.First, reference numerals shown in the lower right of FIG. 1 will be described.
도면부호 w1는 제1 폭으로 내화벽 사면(112)의 하단부 가장자리가 이루는 폭 또는 직경을 나타내며, 도면부호 w2는 제2 폭으로 반응기 상체(110)의 하단부 가장자리가 이루는 폭 또는 직경을 나타낸다.Reference numeral w1 denotes the width or diameter of the lower edge of the fire wall slope 112 at the first width, and reference numeral w2 denotes the width or diameter of the lower edge of the reactor upper body 110 at the second width.
도면부호 w3는 제3 폭으로 연소 사면(131)의 하단부 가장자리가 이루는 폭 또는 직경을 나타내며, 도면부호 w4는 제4 폭으로 확경부(134)의 하단부 가장자리, 즉 환원영역(104)의 하단부 가장자리가 이루는 폭 또는 직경을 나타낸다.Reference numeral w3 denotes the width or diameter of the lower edge of the combustion slope 131 at the third width, and reference numeral w4 denotes the lower edge of the enlarged diameter portion 134 at the fourth width, that is, the lower edge of the reduction area 104. Represents the width or diameter to be made.
여기서, 제2 폭(w2)은 제1 폭(w1)보다 크게 형성되는 것이 바람직하며, 이는 반응기 상체(110)로부터 투입되는 바이오매스(108)가 브릿지(bridge) 현상없이 원활하게 투입되기 위한 구조이기 때문이다.Here, the second width (w2) is preferably formed larger than the first width (w1), which is a structure for the biomass 108 introduced from the reactor upper body 110 to be smoothly introduced without a bridge (bridge) phenomenon Because it is.
이때, 제4 폭(w4)은 제3 폭(w3)보다 크게 형성되는 것이 바람직하며, 이는 환원영역(104)으로부터 바이오매스(108)의 재가 원활하게 배출되도록 하기 위한 구조이기 때문이다.In this case, the fourth width w4 is preferably larger than the third width w3 because the ash of the biomass 108 is smoothly discharged from the reduction region 104.
그리고, 축경부(132)와 확경부(134)의 외부는 제2 내화벽층(133)으로 이루어진다.The outer diameter of the shaft diameter portion 132 and the enlarged diameter portion 134 includes a second fireproof wall layer 133.
또한, 반응기(100)는 반응기 상체(110)의 상단부에 연결되고 바이오매스(108)가 투입되는 호퍼(140)와, 호퍼(140)의 상단부와 하단부에 각각 적어도 하나 이상 장착되어 회전하면서 투입되는 바이오매스(108)의 공급량을 감지하는 토크 센서(150)를 더 포함하는 구조의 실시예를 적용할 수 있다.In addition, the reactor 100 is connected to the upper end of the reactor upper body 110 and at least one or more mounted to each of the hopper 140 and the upper end and the lower end of the hopper 140, which is injected into the biomass 108 is input while rotating Embodiments of the structure further including a torque sensor 150 for detecting a supply amount of the biomass 108 may be applied.
토크 센서(150)는 호퍼(140)를 통하여 바이오매스(108)가 투입되는 것을 감지하면 회전하면서 바이오매스(108)의 투입량을 실시간으로 정량 제어하게 된다.When the torque sensor 150 detects the input of the biomass 108 through the hopper 140, the torque sensor 150 rotates to quantitatively control the input amount of the biomass 108 in real time.
한편, 에어는 산화영역(103)에서 바이오매스(108)의 부분 연소를 촉진하기 위하여 투입되는 산화제로, 제1 에어공급 어셈블리(200) 및 제2 에어공급어셈블리(300) 중 하나 또는 전부를 통해 산화영역(103)에 투입되는 것이다. 다시말해, 투입되는 바이오매스(108)가 목질계, 즉 왕겨, 옥수수대, 톱밥, 우드칩 등과 같은 물질일 때는 바이오매스(108)의 완전 연소를 위한 에어 공급량의 20% 내지 35% 정도(0.7 ~ 0.8 N㎥/kg) 정도 주입하면 되므로, 후술할 제1 에어공급 어셈블리(200)를 이용하면 될 것이다.On the other hand, the air is an oxidant introduced to promote partial combustion of the biomass 108 in the oxidation region 103 and through one or all of the first air supply assembly 200 and the second air supply assembly 300. It is injected into the oxidation region 103. In other words, when the injected biomass 108 is a wood-based material, such as rice hulls, corn stalks, sawdust, wood chips, etc., about 20% to 35% of the air supply for the complete combustion of the biomass 108 (0.7) ~ 0.8 Nm 3 / kg) may be injected, so the first air supply assembly 200 to be described later may be used.
또한, 투입되는 바이오매스(108)가 석탄 및 폐기물 등 탄소 집약적이고 석유 화합물 등과 같은 고분자 물질일 때는 목질계인 바이오매스(108)의 에어공급량 조건보다 30 내지 50% 정도 더 주입하면 되므로, 후술할 제2 에어공급 어셈블리(300)를 이용하면 될 것이다.In addition, when the injected biomass 108 is carbon intensive such as coal and waste and a high molecular material such as petroleum compound, it may be injected about 30 to 50% more than the air supply amount condition of the biomass 108 which is wood-based. 2 may be used as the air supply assembly 300.
따라서, 제1, 2 에어공급 어셈블리(200, 300)는 위와 같은 조건을 감안하여 개별적으로 또는 전부 가동시키는 등의 다양한 운용 방법을 적용할 수 있음은 물론이다.Therefore, the first and second air supply assemblies 200 and 300 may be applied to various operating methods such as individually or fully operating in view of the above conditions.
제1 에어공급 어셈블리(200)는 구체적으로 살펴보면, 제1 메인 배관(210)과 제1 밸브(220)와 에어공급 배관(230)을 포함하는 구조임을 알 수 있다.Looking at the first air supply assembly 200 in detail, it can be seen that the structure includes a first main pipe 210, the first valve 220 and the air supply pipe 230.
제1 메인 배관(210)은 반응기(100), 즉 반응기 상체(110)의 상측 외면에 배치되고, 내부에 열교환 유닛(400)으로부터 열교환된 에어가 일시 수용되는 체류 공간(511)을 형성하는 분배 유닛(500)으로부터 반응기(100)의 하부측을 향하여 분기된 것이다.The first main pipe 210 is disposed on an upper outer surface of the reactor 100, ie, the upper part of the reactor 110, and divides the first main pipe 210 to form a retention space 511 in which air heat-exchanged from the heat exchange unit 400 is temporarily received. It is branched from the unit 500 toward the lower side of the reactor 100.
그리고, 제1 밸브(220)는 제1 메인 배관(210) 내의 유로를 개폐하는 것이며, 에어공급 배관(230)은 제1 메인 배관(210)에 대하여 경사지게 연장되어 산화영역(103)에 열교환된 에어를 주입하는 유로가 형성된 것이다.In addition, the first valve 220 opens and closes the flow path in the first main pipe 210, and the air supply pipe 230 extends inclined with respect to the first main pipe 210 to be heat-exchanged in the oxidation region 103. The flow path for injecting air is formed.
제2 에어공급 어셈블리(300)는 구체적으로 살펴보면, 제2 메인 배관(310)과 제2 밸브(320)와 제1, 2 실린더부(330, 340)를 포함하는 구조임을 파악할 수 있다.In detail, the second air supply assembly 300 may be understood to have a structure including a second main pipe 310, a second valve 320, and first and second cylinder parts 330 and 340.
제2 메인 배관(310)은 반응기(100)의 상측 외면에 배치되고, 내부에 열교환 유닛(400)으로부터 열교환된 에어가 일시 수용되는 체류 공간(511)을 형성하는 분배 유닛(500)으로부터 반응기(100)의 하부측을 향하여 분기된 것이다. 제2 밸브(320)는 제2 메인 배관(310) 내의 유로를 개폐하는 것이다.The second main pipe 310 is disposed on the upper outer surface of the reactor 100, the reactor from the distribution unit 500 to form a residence space 511 to temporarily receive the air heat exchanged from the heat exchange unit 400 therein ( It is branched toward the lower side of 100). The second valve 320 opens and closes the flow path in the second main pipe 310.
제1 실린더부(330)는 제2 메인 배관(310)과 연통되어 열교환된 에어가 통과하는 연통 공간(335)을 형성하는 것이다.The first cylinder portion 330 communicates with the second main pipe 310 to form a communication space 335 through which the heat-exchanged air passes.
제2 실린더부(340)는 제1 실린더부(330)의 양단부를 관통하여 배치되고, 일단부로부터 공급되는 외부의 에어가 연통 공간(335)을 통과한 열교환된 에어와 합류하여 타단부로부터 고속으로 분사되는 것이다.The second cylinder portion 340 is disposed through both ends of the first cylinder portion 330, and the external air supplied from one end portion joins the heat exchanged air passing through the communication space 335 to form a high speed from the other end portion. To be sprayed.
즉, 제1, 2 실린더부(330, 340)는 바이오매스(108)의 가스화 공정에서 반응기(100) 내부에서 형성되는 흡입 압력을 이용하여 자연스레 외부로부터 유입된 에어가 반응기(100) 내부로 빨려들어가는 경우,유체의 벽 부착 현상, 즉 분류(噴流)의 흐름 등으로 말미암아 압력차를 발생시키고, 주(主)분류는 더욱 저압쪽으로 부착하여 흐르는 코안다 효과(coanda effect)에 의하여 고압, 고속으로 에어를 주입할 수 있게 한다.That is, the first and second cylinders 330 and 340 naturally use the suction pressure formed in the reactor 100 in the gasification process of the biomass 108 to naturally introduce air introduced from the outside into the reactor 100. When sucked in, a pressure difference is generated due to the wall adhesion phenomenon of the fluid, i.e., the flow of flow, and the main classification is attached to the lower pressure side. Air can be injected into the air.
제1 실린더부(330)는 더욱 상세하게 살펴보면 제1 실린더 본체(331)와 가이드(332)를 포함하는 구조임을 알 수 있다.Looking at the first cylinder portion 330 in more detail it can be seen that the structure includes a first cylinder body 331 and the guide 332.
제1 실린더 본체(331)는 제2 실린더부(340)의 일측을 수용하는 원기둥 형상의 부재이며, 가이드(332)는 제1 실린더 본체(331)의 단부 가장자리로부터 연장되어 제2 실린더부(340)의 외주면을 감싸며, 제2 실린더부(340)의 외주면에 대하여 일정 각도로 경사진 원뿔대 형상의 부재이다.The first cylinder body 331 is a cylindrical member that accommodates one side of the second cylinder portion 340, the guide 332 extends from the end edge of the first cylinder body 331, the second cylinder portion 340. It wraps around the outer circumferential surface, and is a truncated cone-shaped member inclined at an angle with respect to the outer circumferential surface of the second cylinder portion 340.
따라서, 후술할 열교환 유닛(400)을 거쳐 열교환된 에어는 가이드(332) 내측의 경사면을 따라 유도되어 제2 실린더부(340)의 내주면을 통해 제2 실린더부(340)의 타단부로부터 외부의 에어와 합류하여 분사되는 것이다.Therefore, the air heat-exchanged through the heat exchange unit 400 to be described later is guided along the inclined surface inside the guide 332 to the outside from the other end of the second cylinder portion 340 through the inner circumferential surface of the second cylinder portion 340. It is sprayed by joining air.
제2 실린더부(340)는 더욱 상세하게 살펴보면 제2 실린더 본체(342)와 코안다(coanda) 오리피스(343)와 벤투리(venturi) 노즐(344)을 포함하는 구조임을 파악할 수 있다.Looking at the second cylinder portion 340 in more detail it can be seen that the structure includes a second cylinder body 342, a coanda orifice (343) and a venturi nozzle (344).
제2 실린더 본체(342)는 제1 실린더부(330)에 수용되고, 일단부는 외부로 노출되는 원기둥 형상의 부재이다.The second cylinder body 342 is accommodated in the first cylinder portion 330, one end is a cylindrical member exposed to the outside.
코안다 오리피스(343)는 제1 실린더부(330)의 단부 가장자리에 형성된 원뿔대 형상인 가이드(332)의 경사면에 대하여 경사지게, 제2 실린더 본체(342)의 타단부 외주면을 따라 관통된 복수의 부재이다.The coanda orifice 343 is inclined with respect to the inclined surface of the guide 332 having a truncated conical shape formed at the end edge of the first cylinder portion 330, a plurality of members penetrated along the outer peripheral surface of the other end of the second cylinder body 342 to be.
벤투리 노즐(344)은 제2 실린더 본체(342)의 타단부로부터 제1 실린더부(330)의 외부로 노출되게 제2 실린더 본체(342)보다 점차 직경이 커지도록 연장되는 것이다.The venturi nozzle 344 extends gradually larger than the second cylinder body 342 so as to be exposed to the outside of the first cylinder part 330 from the other end of the second cylinder body 342.
코안다 오리피스(343)는 유체의 벽 부착 현상을 촉진하여 코안다 효과를 증대시킬 수 있도록 가이드(332)의 단부 가장자리와 근접하게 배치되는 것이 바람직하다.The coanda orifice 343 is preferably disposed proximate to the end edge of the guide 332 to promote wall attachment of the fluid to enhance the coanda effect.
한편, 열교환 유닛(400)은 전술한 바와 같이 합성가스(105)와 외부로부터 공급되는 에어를 상호 교차 유동시켜 열교환시키기 위한 것으로, 가스 도관(410)과 교환 재킷(420)과 에어 배플(430, air baffle)을 포함하는 구조임을 파악할 수 있다.On the other hand, the heat exchange unit 400 as described above for the cross-flow flow of the syngas 105 and the air supplied from the outside to exchange heat, the gas conduit 410, the exchange jacket 420 and the air baffle (430, It can be seen that the structure including the air baffle).
가스 도관(410)은 가스 배출구(106)와 연결되고 합성가스(105)가 배출되는 유로를 형성되는 것이다.The gas conduit 410 is connected to the gas outlet 106 and forms a flow path through which the syngas 105 is discharged.
교환 재킷(420)은 일측에는 외부로부터 에어가 유입되는 에어유입포트(421)가 구비되고, 타측에는 반응기(100)의 상측 외면에 배치되는 분배 유닛(500)의 체류 공간(511)을 향하여 열교환 유닛(400)으로부터 열교환된 에어를 공급하는 에어배출 포트(422)가 구비되며, 가스 도관(410)의 외주면 전체를 감싸고 내부에 교환 공간(415)을 형성하는 것이다.The exchange jacket 420 is provided with an air inlet port 421 through which air is introduced from the outside at one side, and the heat exchange toward the residence space 511 of the distribution unit 500 disposed at the upper outer surface of the reactor 100 at the other side. An air discharge port 422 is provided to supply the heat exchanged air from the unit 400, and surrounds the entire outer circumferential surface of the gas conduit 410 and forms an exchange space 415 therein.
에어 배플(430)은 교환 재킷(420)의 내주면과 가스 도관(410)의 외주면 사이에 교환 공간(415)의 형성 방향을 따라 나선 형상으로 형성되는 것이다. 따라서, 에어유입 포트(421)를 통하여 유입된 에어는 에어 배플(430)의 형성 방향을 따라 지체 유동을 하면서 고온으로 배출되는 합성가스(105)와 충분한 열교환을 한 뒤, 제1 에어공급 어셈블리(100) 및 제2 에어공급 어셈블리(200)측으로 공급되는 것이다.The air baffle 430 is formed in a spiral shape along the formation direction of the exchange space 415 between the inner circumferential surface of the exchange jacket 420 and the outer circumferential surface of the gas conduit 410. Accordingly, the air introduced through the air inlet port 421 undergoes a sufficient heat exchange with the syngas 105 discharged at a high temperature while causing a retardation flow along the formation direction of the air baffle 430, and then the first air supply assembly ( 100) and the second air supply assembly 200 are supplied to the side.
즉, 열교환 유닛(400)은 가스 도관(410)과 교환 재킷(420)이 교환공간(415)을 두고 이중관의 구조로 되어 외부로부터 유입된 에어가 고온으로 배출되는 합성가스(105)와의 열교환을 통한 일종의 폐열회수 이용의 측면에서 마련된 것이라 할 수 있다.That is, the heat exchange unit 400 has a gas conduit 410 and the exchange jacket 420 has an exchange space 415 in the form of a double pipe to exchange heat with the synthesis gas 105 in which air introduced from the outside is discharged to a high temperature. It can be said that it is prepared in terms of the use of waste heat recovery through.
경우에 따라 열교환 유닛(400)에 물 배관을 함께 배치하여 온수나 난방수로 공급되도록 하는 응용 및 변형 설계도 가능함은 물론이다.In some cases, it is also possible to arrange the application of the water pipe to the heat exchange unit 400 together with the water supply and the modified design to be supplied to the hot water or heating water.
한편, 본 발명은 반응기(100)의 상측 외면에 배치되고, 열교환 유닛(400)으로부터 열교환된 에어를 건조영역(101)의 열원으로 사용하면서 제1 에어공급 어셈블리(200) 및 제2 에어공급 어셈블리(300)로 공급하는 분배 유닛(500)을 더 포함하는 구조의 실시예를 적용할 수 있다.On the other hand, the present invention is disposed on the upper outer surface of the reactor 100, the first air supply assembly 200 and the second air supply assembly while using the air heat exchanged from the heat exchange unit 400 as a heat source of the drying area 101 Embodiments of a structure further including a distribution unit 500 for supplying to 300 may be applied.
분배 유닛(500)은 반응기(100) 내부의 건조영역(101)과 열분해영역(102)의 온도를 높여줌으로써 산화영역(103)에서 바이오매스(108)의 연소 부하를 경감시킬 수 있을 것이며, 크게 분배 재킷(510)과 연결 배관(520)을 포함하는 구조임을 알 수 있다.The distribution unit 500 may reduce the combustion load of the biomass 108 in the oxidation region 103 by increasing the temperature of the drying region 101 and the pyrolysis region 102 in the reactor 100, and greatly. It can be seen that the structure includes a distribution jacket 510 and a connection pipe 520.
분배 재킷(510)은 반응기(100)의 상측 외면을 따라 띠 형상으로 형성되어 열교환된 에어가 일시 수용되는 체류 공간(511)을 형성한 것이다.The distribution jacket 510 is formed in a band shape along the upper outer surface of the reactor 100 to form a residence space 511 for temporarily receiving heat-exchanged air.
연결 배관(520)은 열교환 유닛(400)의 에어배출 포트(422)와 체류공간(511)을 상호 연통시키는 것이다. The connection pipe 520 communicates the air discharge port 422 and the retention space 511 of the heat exchange unit 400 with each other.
따라서, 제1 에어공급 어셈블리(200) 및 제2 에어공급 어셈블리(300)는 각각 체류 공간(511)과 연통되어 열교환된 에어를 산화영역(103)에 공급하게 된다.Accordingly, the first air supply assembly 200 and the second air supply assembly 300 communicate with the residence space 511 to supply the heat-exchanged air to the oxidation region 103, respectively.
이러한 분배 유닛(500)은 바이오매스(108)가 투입되는 방향과 산화제인 에어의 투입 방향이 동일한 방향이므로, 건조영역(101)과 열분해영역(102)의 온도를 높여줄 구조가 필요한 것이다.Since the dispensing unit 500 has a direction in which the biomass 108 is injected and a direction in which air is used as an oxidant is the same direction, a structure for increasing the temperature of the drying region 101 and the pyrolysis region 102 is required.
이러한 분배 유닛(500)의 구조는 바이오매스(108) 내부의 수분 건조를 촉진시키고, 바이오매스(108)를 열화학적으로 분해하는 (가스화) 과정의 열 엔트로피 증가를 완화시켜주는 역할 또한 하게 된다.The structure of the distribution unit 500 also serves to accelerate the drying of moisture in the biomass 108 and to mitigate the increase in thermal entropy of the (gasification) process of thermally decomposing the biomass 108.
또한, 분배 유닛(500)은 열교환 유닛(400)을 통하여 열교환되고 가열된 에어를 제1 에어공급 어셈블리(200) 또는 제2 에어공급 어셈블리(300)를 통하여 산화영역(103)으로 주입하게 되면 산화영역(103)에서 바이오매스(108)의 국부적 연소를 촉진시킬 수 있으며, 합성가스(105)의 생산성 향상을 도모할 수 있게 되는 것이다.In addition, the distribution unit 500 is oxidized when the air heat-exchanged and heated through the heat exchange unit 400 is injected into the oxidation region 103 through the first air supply assembly 200 or the second air supply assembly 300. Local combustion of the biomass 108 in the region 103 can be promoted, and productivity of the syngas 105 can be improved.
따라서, 분배 유닛(500)은 열교환 유닛(400)과 함께 일반적으로 바이오매스(108) 1kg 당 2 내지 2.5 N㎥의 합성가스(105)를 생산하는 가스화 반응장치에 있어서 중요한 역할을 담당하게 되는 것이다.Therefore, the distribution unit 500 is to play an important role in the gasification reaction apparatus to produce a synthesis gas 105 of 2 to 2.5 Nm 3 per kg of biomass 108 together with the heat exchange unit 400. .
한편, 본 발명은 반응기(100)의 하부측에 배치되고, 환원영역(104)으로부터 합성가스(105)가 배출되고 남은 재를 반응기(100)의 외부로 배출시키는 재 배출 유닛(600)을 더 포함하는 것이 바람직하다. 재 배출 유닛(600)은 구동모터(610)와 스러스트 베어링(621)과 구동 샤프트(620)와 그레이트 어셈블리(630, grate assembly)와 재 수용 탱크(640)와 배출 스크류(650)와 배출 모터(660)와 배출 유도관(670)을 포함하는 구조임을 알 수 있다.On the other hand, the present invention is disposed on the lower side of the reactor 100, and further comprises a ash discharge unit 600 for discharging the remaining ash from the synthesis gas 105 from the reduction zone 104 to the outside of the reactor 100 It is preferable to include. The re-discharge unit 600 includes a drive motor 610, a thrust bearing 621, a drive shaft 620, a grate assembly, a reclosing tank 640, a discharge screw 650, and a discharge motor ( It can be seen that the structure including a 660 and the discharge induction pipe 670.
구동모터(610)는 반응기(100)의 저면에 배치되어 구동모터(610)와 연결된 구동 샤프트(620)에 구동력을 전달하고,, 구동 샤프트(620)는 스러스트 베어링(621)으로 회전 지지되고, 구동모터(610)로부터 구동력을 전달받아 회전하는 것이다.The drive motor 610 is disposed on the bottom of the reactor 100 to transfer the driving force to the drive shaft 620 connected to the drive motor 610, the drive shaft 620 is rotatably supported by the thrust bearing 621, It receives the driving force from the drive motor 610 to rotate.
그레이트 어셈블리(630)는 구동 샤프트(620)의 상단부에 연결되고, 환원영역(104)의 하부에 내장되어 일정 속도로 회전하면서 환원영역(104)으로부터 연소된 바이오매스(108)의 재를 일정량만큼 낙하시키는 복수의 단차(631)를 형성한 원판들이 겹쳐져 있는 원뿔대 형상의 부재이다. 그레이트 어셈블리(630)는 특별히 도시하지 않았으나, 저면에 그릴 또는 메쉬 형태로 바이오매스(108)의 재가 배출될 수 있도록 한 구조를 형성하여, 간헐적으로 매우 느리게 회전하는 구동 샤프트(620)에 연동 회전하면서 주기적으로 환원영역(104)으로부터 바이오매스(108)의 재를 일정량만큼 배출시킨다.The great assembly 630 is connected to the upper end of the drive shaft 620, is embedded in the lower portion of the reduction zone 104 and rotated at a constant speed while burning the ash of the biomass 108 burned from the reduction zone 104 by a predetermined amount. It is a truncated cone-shaped member in which the disks which formed the some step | paragraph 631 which fall are piled up. Although not particularly illustrated, the great assembly 630 forms a structure in which ash of the biomass 108 may be discharged in a grill or mesh form on the bottom thereof, and interlocks with the drive shaft 620 that rotates intermittently very slowly. Periodically, the ash of the biomass 108 is discharged from the reduction zone 104 by a predetermined amount.
재 수용 탱크(640)는 반응기(100)의 저면에 구비되어 낙하된 바이오매스(108)의 재를 일시 수용하는 공간을 형성한 것이다.The reclosing tank 640 is provided at the bottom of the reactor 100 to form a space for temporarily receiving the ashes of the biomass 108 that has fallen.
배출 스크류(650)는 재 수용 탱크(640)의 하부로부터 상향 경사지게 형성되어 일방향으로 회전하는 배출 샤프트(651)의 외주면을 따라 나선 형상으로 형성된 것이다. Discharge screw 650 is formed in a spiral shape along the outer circumferential surface of the discharge shaft 651 is formed to be inclined upward from the bottom of the re-receiving tank 640 to rotate in one direction.
배출 모터(660)는 배출 샤프트(651)의 단부에 연결되어 배출 샤프트(651)에 구동력을 전달하는 것이다.The discharge motor 660 is connected to the end of the discharge shaft 651 to transmit a driving force to the discharge shaft 651.
배출 유도관(670)은 재 수용 탱크(640)로부터 연장되고 배출 스크류(650)를 내장하고, 일측에 재가 배출되는 재 배출 포트(671)를 구비한 것이다.The discharge guide pipe 670 extends from the receptacle tank 640 and includes a discharge screw 650, and has a ash discharge port 671 on which ash is discharged.
따라서, 재 수용 탱크(640)에 낙하되어 쌓이는 바이오매스(108)의 재는 배출 모터(660)가 가동되면 배출 샤프트(651)도 함께 회전함에 따라 배출 스크류(650)에 의하여 일방향으로 이송되면서 재 배출 포트(671)를 통하여 외부로 배출된다.Therefore, the ashes of the biomass 108 dropped and accumulated in the reclosing tank 640 are conveyed in one direction by the discharging screw 650 as the discharging shaft 651 also rotates when the discharging motor 660 is operated. It is discharged to the outside through the port 671.
한편, 스러스트 베어링(621) 및 구동 샤프트(620)의 외측에는 외부로부터 냉각수가 유입되는 냉각수유입 포트(681)와 냉각수가 배출되는 냉각수배출포트(682)를 구비한 냉각 재킷(680)을 더 구비하여 구동 샤프트(620)와 스러스트베어링(621)의 발열 및 과열을 저감할 수도 있다.On the other hand, the outer side of the thrust bearing 621 and the drive shaft 620 is further provided with a cooling jacket 680 having a coolant inlet port 681 through which the coolant flows from the outside and a coolant discharge port 682 through which the coolant is discharged. Therefore, heat generation and overheating of the drive shaft 620 and the thrust bearing 621 may be reduced.
이상과 같이 본 발명은 투입되는 바이오매스의 성상 및 종류에 따라 선택적인 운전이 가능하며 합성가스의 생산량을 증대시킬 수 있음은 물론, 배출되는 합성가스의 현열을 회수하여 산화제로 공급되는 에어의 온도를 높여 다시 가스화 공정에 투입함으로써 에너지 효율을 높일 수 있도록 하는 바이오매스를 이용한 가스화 반응장치를 제공하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있다.As described above, the present invention can selectively operate according to the nature and type of the biomass to be introduced and can increase the amount of syngas produced, as well as the temperature of the air supplied to the oxidant by recovering the sensible heat of the syngas discharged. It can be seen that the basic technical idea is to provide a gasification reaction apparatus using biomass that can increase energy efficiency by increasing the energy efficiency and increasing the energy efficiency.
그리고, 본 발명의 기본적인 기술적 사상의 범주 내에서 당해 업계 통상의 지식을 가진 자에게 있어서는 산업, 생활 폐기물 또는 석탄 등 다른 물질의 가스화에도 적용할 수 있는 등 다른 많은 변형 및 응용 또한 가능함은 물론이다.In addition, within the scope of the basic technical idea of the present invention, a person having ordinary knowledge in the industry may also apply many other modifications and applications, such as being applicable to gasification of other materials such as industrial, household waste or coal.

Claims (16)

  1. 상측으로부터 바이오매스(biomass) 및 산화제인 에어를 투입하여 상기 바이The biomass (biomass) and oxidant air is introduced from the upper side
    오매스로부터 합성가스(syngas)를 생산하는 것으로, 상기 바이오매스가 채워진 내부 공간의 상측으로부터 건조영역(drying zone), 열분해영역(pyrolysis zone), 산화영역(combustion zone), 환원영역(reduction zone)이 순차적으로 형성된 반응기;Syngas is produced from odorous mass, and drying zone, pyrolysis zone, combustion zone and reduction zone are formed from the upper side of the internal space filled with the biomass. Two sequentially formed reactors;
    상기 반응기의 상측으로부터 하향 경사지게 관통되어 상기 산화영역까지 연Penetrates downwardly from the top of the reactor and leads to the oxidation zone;
    장되도록 상기 반응기의 외면을 따라 이격하여 배치되고, 상기 바이오매스의 연소를 위한 에어를 상기 산화영역에 공급하는 복수의 제1 에어공급 어셈블리;A plurality of first air supply assemblies disposed to be spaced apart along the outer surface of the reactor and supplying air for combustion of the biomass to the oxidation zone;
    상기 반응기의 상측으로부터 하향 경사지게 관통되어 상기 산화영역까지 연장되도록 상기 반응기의 외면을 따라 이격하여 배치되고, 상기 제1 에어공급 어셈블리와 이웃한 제1 에어공급 어셈블리 사이에 배치되며, 상기 바이오매스의 연소를 위한 에어를 상기 제1 에어공급 어셈블리보다 많이 상기 산화영역에 공급하는 복수의 제2 에어공급 어셈블리; 및Spaced apart along the outer surface of the reactor so as to penetrate downwardly from the top of the reactor to extend to the oxidation zone, and is disposed between the first air supply assembly and a neighboring first air supply assembly, and the combustion of the biomass A plurality of second air supply assemblies for supplying more air for the oxidizing region than the first air supply assembly; And
    상기 반응기의 하부측에 형성되는 가스 배출구에 구비되고, 상기 환원영역으로부터 배출되는 상기 합성가스와 외부로부터 공급되는 에어를 상호 교차 유동시켜 열교환시키는 열교환 유닛;을 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.A heat exchange unit provided at a gas discharge port formed at a lower side of the reactor, the heat exchange unit configured to cross-flow heat exchange with the syngas discharged from the reduction zone and air supplied from the outside; and using a biomass Gasification reactor.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 바이오매스를 이용한 가스화 반응장치는,Gasification reaction apparatus using the biomass,
    상기 반응기의 상측 외면에 배치되고, 상기 열교환 유닛으로부터 열교환된 에어를 상기 건조영역의 열원으로 사용하면서 상기 제1 에어공급 어셈블리 및 상기 제2 에어공급 어셈블리로 공급하는 분배 유닛을 더 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And a distribution unit disposed on an upper outer surface of the reactor and supplying the air heat-exchanged from the heat exchange unit to the first air supply assembly and the second air supply assembly while using the heat source of the drying zone. Gasification reaction apparatus using a biomass.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 에어는 상기 제1 에어공급 어셈블리 및 상기 제2 에어공급 어셈블리 중 하나 또는 전부를 통해 상기 산화영역에 투입되는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.Wherein the air is introduced into the oxidation zone through one or all of the first air supply assembly and the second air supply assembly.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 에어공급 어셈블리는,The first air supply assembly,
    상기 반응기의 상측 외면에 배치되고, 내부에 상기 열교환 유닛으로부터 열교환된 에어가 일시 수용되는 체류 공간을 형성하는 분배 유닛으로부터 상기 반응기의 하부측을 향하여 분기된 제1 메인 배관과,A first main pipe disposed on an upper outer surface of the reactor and branched from a distribution unit to a lower side of the reactor from a distribution unit forming a residence space therein to temporarily receive air exchanged from the heat exchange unit;
    상기 제1 메인 배관 내의 유로를 개폐하는 제1 밸브와,A first valve for opening and closing the flow path in the first main pipe;
    상기 제1 메인 배관에 대하여 경사지게 연장되어 상기 산화영역에 상기 열교환된 에어를 주입하는 유로가 형성된 에어공급 배관을 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And an air supply pipe extending inclined with respect to the first main pipe and having a flow path for injecting the heat-exchanged air into the oxidation region.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 에어공급 어셈블리는,The second air supply assembly,
    상기 반응기의 상측 외면에 배치되고, 내부에 상기 열교환 유닛으로부터 열교환된 에어가 일시 수용되는 체류 공간을 형성하는 분배 유닛으로부터 상기 반응기의 하부측을 향하여 분기된 제2 메인 배관과,A second main pipe disposed on an upper outer surface of the reactor and branched from a distribution unit to a lower side of the reactor from a distribution unit forming a residence space therein to temporarily receive air exchanged from the heat exchange unit;
    상기 제2 메인 배관 내의 유로를 개폐하는 제2 밸브와,A second valve for opening and closing the flow path in the second main pipe;
    상기 제2 메인 배관과 연통되어 상기 열교환된 에어가 통과하는 연통 공간을 형성하는 제1 실린더부와,A first cylinder portion communicating with the second main pipe to form a communication space through which the heat exchanged air passes;
    상기 제1 실린더부의 양단부를 관통하여 배치되고, 일단부로부터 공급되는 외부의 에어가 상기 연통 공간을 통과한 상기 열교환된 에어와 합류하여 타단부로부터 고속으로 분사되는 제2 실린더부를 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And a second cylinder part disposed through both ends of the first cylinder part, and external air supplied from one end part joins the heat exchanged air that has passed through the communication space and is injected at a high speed from the other end part. Gasification reaction apparatus using a biomass.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 열교환 유닛은,The heat exchange unit,
    상기 가스 배출구와 연결되고 상기 합성가스가 배출되는 유로를 형성되는 가스 도관과,A gas conduit connected to the gas outlet and forming a flow path through which the syngas is discharged;
    일측에는 외부로부터 에어가 유입되는 에어유입 포트가 구비되고, 타측에는 상기 반응기의 상측 외면에 배치되는 분배 유닛의 체류 공간을 향하여 상기 열교환유닛으로부터 열교환된 에어를 공급하는 에어배출 포트가 구비되며, 상기 가스 도관의 외주면 전체를 감싸고 내부에 교환 공간을 형성하는 교환 재킷과,One side is provided with an air inlet port through which air is introduced from the outside, and the other side is provided with an air discharge port for supplying air heat exchanged from the heat exchange unit toward the residence space of the distribution unit disposed on the upper outer surface of the reactor, An exchange jacket covering the entire outer circumferential surface of the gas conduit and forming an exchange space therein;
    상기 교환 재킷의 내주면과 상기 가스 도관의 외주면 사이에 상기 교환 공간의 형성 방향을 따라 나선 형상으로 형성되는 에어 배플(baffle)을 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And an air baffle formed in a spiral shape between the inner circumferential surface of the exchange jacket and the outer circumferential surface of the gas conduit in a spiraling direction of the exchange space.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 반응기는,The reactor,
    상측으로부터 점차 넓어지는 형상으로 형성되고, 상기 건조영역과 상기 열분해영역이 내부에 형성되며, 상기 열교환된 에어가 일시 수용되는 체류 공간을 형성하는 분배 유닛이 상측 외면을 따라 상기 건조영역의 외부를 감싸도록 띠 형상으로 형성되는 반응기 상체와,It is formed in a shape gradually widening from the upper side, the drying zone and the pyrolysis zone is formed therein, a distribution unit for forming a residence space for temporarily receiving the heat-exchanged air surrounds the outside of the drying zone along the upper outer surface A reactor upper body formed in a band shape,
    상기 반응기 상체의 하단부 가장자리로부터 연결되고, 일측에 상기 가스 배출구가 형성되는 외부 케이스와,An outer case connected to an edge of a lower end of the reactor upper body, wherein the gas outlet is formed at one side;
    상기 외부 케이스에 수용되고, 상기 반응기 상체의 내부와 연통되어 상기 산화영역과 상기 환원영역이 내부에 형성되는 내부 케이스를 포함하며,It is accommodated in the outer case, and in communication with the inside of the reactor upper body includes an inner case in which the oxidation zone and the reduction zone is formed therein,
    상기 제1 에어공급 어셈블리와 상기 제2 에어공급 어셈블리는 각각 상기 내부 케이스의 상측 내주면을 따라 경사지게 배치되는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And the first air supply assembly and the second air supply assembly are inclined along the upper inner circumferential surface of the inner case, respectively.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 바이오매스를 이용한 가스화 반응장치는,Gasification reaction apparatus using the biomass,
    상기 반응기의 하부측에 배치되고, 상기 환원영역으로부터 상기 합성가스가 배출되고 남은 재를 상기 반응기의 외부로 배출시키는 재 배출 유닛을 더 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And a ash discharging unit disposed on the lower side of the reactor and discharging the ash remaining after the synthesis gas is discharged from the reduction zone to the outside of the reactor.
  9. 청구항 3에 있어서,The method according to claim 3,
    상기 분배 유닛은,The distribution unit,
    상기 반응기의 상측 외면을 따라 띠 형상으로 형성되어 상기 열교환된 에어가 일시 수용되는 체류 공간을 형성하는 분배 재킷과,A distribution jacket formed in a band shape along the upper outer surface of the reactor to form a residence space in which the heat exchanged air is temporarily received;
    상기 열교환 유닛과 상기 체류 공간을 상호 연통시키는 연결 배관을 포함하며,It includes a connecting pipe for communicating the heat exchange unit and the residence space with each other,
    상기 제1 에어공급 어셈블리 및 상기 제2 에어공급 어셈블리는 각각 상기 체류 공간과 연통하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.And the first air supply assembly and the second air supply assembly communicate with the residence space, respectively.
  10. 청구항 5에 있어서,The method according to claim 5,
    상기 제1 실린더부는,The first cylinder portion,
    상기 제2 실린더부의 일측을 수용하는 원기둥 형상의 제1 실린더 본체와,A cylindrical first cylinder body accommodating one side of the second cylinder portion,
    상기 제1 실린더 본체의 단부 가장자리로부터 연장되어 상기 제2 실린더부의 외주면을 감싸며, 상기 제2 실린더부의 외주면에 대하여 일정 각도로 경사진 원뿔대 형상의 가이드를 포함하며,And a truncated conical guide extending from an end edge of the first cylinder body to surround the outer circumferential surface of the second cylinder portion and inclined at an angle with respect to the outer circumferential surface of the second cylinder portion.
    상기 열교환된 에어는 상기 가이드 내측의 경사면을 따라 유도되어 상기 제2 실린더부의 내주면을 통해 상기 제2 실린더부의 타단부로부터 상기 외부의 에어와 합류하여 분사되는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.The heat-exchanged air is guided along the inclined surface inside the guide to join the external air from the other end of the second cylinder portion through the inner circumferential surface of the second cylinder portion and inject the gas to the biomass. .
  11. 청구항 5에 있어서,The method according to claim 5,
    상기 제2 실린더부는,The second cylinder portion,
    제1 실린더부에 수용되고, 일단부는 외부로 노출되는 원기둥 형상의 제2 실린더 본체와,A cylinder-shaped second cylinder body accommodated in the first cylinder portion and one end portion exposed to the outside;
    상기 제1 실린더부의 단부 가장자리에 형성된 원뿔대 형상인 가이드의 경사면에 대하여 경사지게, 상기 제2 실린더 본체의 타단부 외주면을 따라 관통된 복수의 코안다(coanda) 오리피스와,A plurality of coanda orifices penetrating along the outer circumferential surface of the other end of the second cylinder body, inclined with respect to the inclined surface of the truncated guide formed on the end edge of the first cylinder portion,
    상기 제2 실린더 본체의 타단부로부터 상기 제1 실린더부의 외부로 노출되게 상기 제2 실린더 본체보다 점차 직경이 커지도록 연장되는 벤투리(venturi) 노즐을 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.Gasification reaction using a biomass, characterized in that it comprises a venturi (venturi) nozzle extending gradually larger than the second cylinder body to be exposed to the outside of the first cylinder portion from the other end of the second cylinder body Device.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 코안다 오리피스는 상기 가이드의 단부 가장자리와 근접하게 배치되는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.The coanda orifice is a gasification reaction device using a biomass, characterized in that disposed close to the end edge of the guide.
  13. 청구항 7에 있어서,The method according to claim 7,
    상기 반응기 상체는,The reactor upper body,
    상기 건조영역의 하부로부터 상기 반응기 상체의 내주면을 따라 일정한 두께로 형성된 제1 내화벽층과,A first fireproof wall layer formed at a constant thickness from the lower portion of the drying region along the inner circumferential surface of the reactor body;
    상기 제1 내화벽층의 상단부에 상기 내부 케이스측을 향하여 하향 경사지게 형성된 내화벽 사면을 더 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.Gasification reaction apparatus using a biomass further comprises a refractory wall slope formed inclined downward toward the inner case side in the upper end portion of the first fireproof wall layer.
  14. 청구항 7에 있어서,The method according to claim 7,
    상기 내부 케이스는,The inner case,
    상측으로부터 점차 좁아지게 형성되는 연소 사면을 구비한 축경부와,An axis diameter portion having a combustion slope formed gradually from the upper side,
    상기 연소 사면의 하단부 가장자리로부터 연장되어 점차 넓어지게 형성되는 확경부를 포함하며,It includes an enlarged diameter portion extending from the lower edge of the combustion slope gradually formed wider,
    상기 산화영역은 상기 축경부와 상기 확경부의 상부에 형성되고,The oxidation region is formed on the shaft diameter portion and the enlarged diameter portion,
    상기 환원영역은 상기 확경부의 하부에 형성되는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.The reduction zone is a gasification reactor using a biomass, characterized in that formed in the lower portion of the enlarged diameter.
  15. 청구항 7에 있어서,The method according to claim 7,
    상기 반응기는,The reactor,
    상기 반응기 상체의 상단부에 연결되고 상기 바이오매스가 투입되는 호퍼와,A hopper connected to an upper end of the reactor upper body and into which the biomass is injected;
    상기 호퍼의 상단부와 하단부에 각각 적어도 하나 이상 장착되어 회전하면서 투입되는 상기 바이오매스의 공급량을 감지하는 토크 센서를 더 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.Gasification reaction apparatus using a biomass further comprises a torque sensor for detecting the supply amount of the biomass that is inserted while rotating at least one mounted to the upper end and the lower end of the hopper, respectively.
  16. 청구항 8에 있어서,The method according to claim 8,
    상기 재 배출 유닛은,The ash discharging unit,
    상기 반응기의 저면에 배치되는 구동모터와,A drive motor disposed on the bottom of the reactor;
    스러스트 베어링으로 회전 지지되고, 상기 구동모터로부터 구동력을 전달받It is rotationally supported by a thrust bearing and receives a driving force from the drive motor.
    아 회전하는 구동 샤프트와,Oh with the driving shaft,
    상기 구동 샤프트의 상단부에 연결되고, 상기 환원영역의 하부에 내장되어 일정 속도로 회전하면서 상기 환원영역으로부터 연소된 상기 바이오매스의 재를 일정량만큼 낙하시키는 복수의 단차를 형성한 원뿔대 형상의 그레이트 어셈블리와,A great assembly having a truncated conical shape connected to an upper end of the drive shaft and formed in a lower portion of the reduction zone and rotating at a constant speed to form a plurality of steps for dropping the ash of the biomass combusted from the reduction zone by a predetermined amount; ,
    상기 반응기의 저면에 구비되어 낙하된 상기 바이오매스의 재를 일시 수용하는 공간을 형성한 재 수용 탱크와,A reclosing tank provided on a bottom surface of the reactor to form a space for temporarily receiving ashes of the biomass that have fallen;
    상기 재 수용 탱크의 하부로부터 상향 경사지게 형성되어 일방향으로 회전하는 배출 샤프트의 외주면을 따라 나선 형상으로 형성된 배출 스크류와,A discharge screw formed in a spiral shape along an outer circumferential surface of the discharge shaft which is formed to be inclined upwardly from a lower portion of the reclosing tank and rotates in one direction;
    상기 배출 샤프트의 단부에 연결되어 상기 배출 샤프트에 구동력을 전달하는 배출 모터와,A discharge motor connected to an end of the discharge shaft and transmitting a driving force to the discharge shaft;
    상기 재 수용 탱크로부터 연장되고 상기 배출 스크류를 내장하는 배출 유도관을 포함하는 것을 특징으로 하는 바이오매스를 이용한 가스화 반응장치.Gasification reaction apparatus using a biomass, characterized in that it comprises a discharge induction pipe extending from the re containing tank and containing the discharge screw.
PCT/KR2014/001057 2013-08-23 2014-02-07 Gasification reactor using biomass WO2015026023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480000969.7A CN104640959B (en) 2013-08-23 2014-02-07 Utilize the gasification reactor apparatus of biological energy source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130100364A KR101452327B1 (en) 2013-08-23 2013-08-23 Gasification reacting apparatus using biomass
KR10-2013-0100364 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015026023A1 true WO2015026023A1 (en) 2015-02-26

Family

ID=51998115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001057 WO2015026023A1 (en) 2013-08-23 2014-02-07 Gasification reactor using biomass

Country Status (3)

Country Link
KR (1) KR101452327B1 (en)
CN (1) CN104640959B (en)
WO (1) WO2015026023A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632146B1 (en) * 2015-03-31 2016-06-21 (주)정석이엔씨 Biomass gasifier
KR101632147B1 (en) * 2015-04-01 2016-06-22 (주)정석이엔씨 Power plant for generating electric power by biomass
KR101845858B1 (en) 2016-09-27 2018-05-18 청우에이스(주) System for gasification of biomass, gasification process using thereof and power system using thereof
WO2018117864A1 (en) * 2016-12-20 2018-06-28 Pfs Technology Limited A gasifier including a rotation apparatus and a grate
KR102006445B1 (en) 2018-04-12 2019-08-01 임승묵 Updraft gasifier using waste and carbon resources
KR102459294B1 (en) * 2020-12-15 2022-10-26 (주)리엔텍엔지니어링 Gasfication system for organic sludge
KR20230109513A (en) 2022-01-13 2023-07-20 임승묵 Continuous pyrolysis gasifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049177A (en) * 2001-08-06 2003-02-21 Nippon Koei Power Systems Co Ltd Method and apparatus for gasifying biomass
JP2009501807A (en) * 2005-06-28 2009-01-22 コミュニティ パワー コーポレイション Automatic modular biomass power generation method and apparatus
KR20110055823A (en) * 2009-11-20 2011-05-26 삼양에코너지 주식회사 Downdraft-type biomass gasifier
JP2012102180A (en) * 2010-11-08 2012-05-31 Yasuharu Matsushita Gasification furnace and gasification system
KR101218976B1 (en) * 2012-06-26 2013-01-09 한국에너지기술연구원 Gasification system for a combination of power generation and combustion boiler with variable gasifier and operation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182515A (en) * 1986-02-05 1987-08-10 Ishikawajima Harima Heavy Ind Co Ltd Stable burning method for fluidized bed furnace
JP2947629B2 (en) * 1991-03-15 1999-09-13 株式会社神戸製鋼所 Fluidized bed incinerator and its operation method
CA2324053A1 (en) * 2000-10-20 2002-04-20 Malahat Systems Corporation Gasifier
JP4071939B2 (en) 2001-01-19 2008-04-02 三菱重工業株式会社 Biomass gasifier
SE531101C2 (en) 2006-12-14 2008-12-16 Rolf Ljunggren Process and plant for producing synthesis gas from biomass
TWI461522B (en) * 2008-03-05 2014-11-21 Thyssenkrupp Uhde Gmbh Continuous fuel supply system for a coal gasification reactor
KR101069574B1 (en) 2009-03-31 2011-10-05 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
CN101812327B (en) * 2010-04-22 2012-11-21 哈尔滨工业大学 Down-draught type biomass gasifier for secondarily cracking tar
GB201015544D0 (en) * 2010-09-17 2010-10-27 O Gen Uk Ltd Biomass gasifier and gasification plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049177A (en) * 2001-08-06 2003-02-21 Nippon Koei Power Systems Co Ltd Method and apparatus for gasifying biomass
JP2009501807A (en) * 2005-06-28 2009-01-22 コミュニティ パワー コーポレイション Automatic modular biomass power generation method and apparatus
KR20110055823A (en) * 2009-11-20 2011-05-26 삼양에코너지 주식회사 Downdraft-type biomass gasifier
JP2012102180A (en) * 2010-11-08 2012-05-31 Yasuharu Matsushita Gasification furnace and gasification system
KR101218976B1 (en) * 2012-06-26 2013-01-09 한국에너지기술연구원 Gasification system for a combination of power generation and combustion boiler with variable gasifier and operation method thereof

Also Published As

Publication number Publication date
CN104640959A (en) 2015-05-20
CN104640959B (en) 2018-05-01
KR101452327B1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
WO2015026023A1 (en) Gasification reactor using biomass
US8936886B2 (en) Method for generating syngas from biomass including transfer of heat from thermal cracking to upstream syngas
CN102391893B (en) Biomass gasification-activation combination and preparation method of active porous carbon material
CN101280199A (en) High-temperature low-tar biomass gasifier
KR101632147B1 (en) Power plant for generating electric power by biomass
JP4746585B2 (en) Gasifier
CN105018148A (en) Sleeve type plasma gasification reacting furnace and process thereof
CN108949234B (en) A kind of inverting tar gasification furnace of three layers of gas supply heating
WO2015099250A1 (en) Dual fluidized bed indirect gasifier
WO2012148172A2 (en) System for producing syngas and reducing tar using air and steam on fluidized bed
US9879190B2 (en) Internal combustion heating device of coal pyrolyzing furnace
CN202164281U (en) Reverse-gasifying tar-free gas producer
WO2014104764A1 (en) Pneumatic conveying dryer for carbon fuel
CN113444544A (en) Solid fuel internal rotational flow water seal type heat energy generator
WO2013094864A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
WO2016036161A1 (en) Heat recovery apparatus using fixed-bed waste gasification melting furnace
CN103788978B (en) Internal combustion heating Spiralism type biomass pyrolysis liquefaction device
CN201245612Y (en) High-temperature low-tar biomass gasifier
CN214781677U (en) Garbage pyrolysis gasification furnace
CN206494912U (en) A kind of integrated high-temperature gasification device handled available for hazardous waste
WO2012169711A1 (en) Low-grade-coal coal gas production system
CN215250660U (en) Solid fuel internal rotational flow water seal type heat energy generator
CN103788972B (en) Internal-combustion heating rotary vane type biomass gasification furnace
CN113481029B (en) Biomass gasification system and method
CN113481030B (en) Biomass gasification method and device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: IDP00201405377

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837961

Country of ref document: EP

Kind code of ref document: A1