WO2015025934A1 - マイクロ波組織凝固器具 - Google Patents

マイクロ波組織凝固器具 Download PDF

Info

Publication number
WO2015025934A1
WO2015025934A1 PCT/JP2014/071938 JP2014071938W WO2015025934A1 WO 2015025934 A1 WO2015025934 A1 WO 2015025934A1 JP 2014071938 W JP2014071938 W JP 2014071938W WO 2015025934 A1 WO2015025934 A1 WO 2015025934A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
shield wire
microwave
tissue coagulation
coagulation instrument
Prior art date
Application number
PCT/JP2014/071938
Other languages
English (en)
French (fr)
Inventor
一幸 齊藤
伊藤 公一
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Publication of WO2015025934A1 publication Critical patent/WO2015025934A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1846Helical antennas

Definitions

  • the present invention relates to a microwave tissue coagulation instrument used for, for example, hemostasis in living tissue.
  • tissue coagulation instrument an electric scalpel using electromagnetic waves of a relatively low frequency body from the MF band to the HF band and an ultrasonic dissection device using ultrasonic waves are known.
  • Electric scalpel cauterizes living tissue with a large current, so smoke may be emitted during heating. Moreover, in an ultrasonic incision apparatus, when there is much water
  • Non-Patent Document 1 proposes a coagulation hemostasis method using microwaves. In hemostasis by tissue coagulation using microwaves, problems such as smoke and splashing do not occur.
  • the heating site is determined by the shape of the antenna that irradiates the microwaves.
  • the shape of the antenna is important. There is a demand for an instrument that is easy to operate by an operator and can coagulate living tissue by effectively heating a target site.
  • the present invention includes a shield wire in which an outer conductor is disposed around the inner conductor in the axial direction via a dielectric layer, and a spiral antenna connected to the inner conductor of the shield wire, the spiral antenna comprising: A front-end antenna that irradiates microwaves ahead of the shield wire in front of the front end of the shield wire, and connected to the front-end antenna, wound around the shield wire, extends to the base side, and is microscopic to the side of the shield wire. Including a base-side antenna that irradiates a wave, power is supplied to the spiral antenna via a shield wire, and the surrounding tissue is heated and coagulated by the microwave irradiated from the spiral antenna.
  • the tip antenna includes a coil having a connection part extending radially from a center and a circular turning part, and the turning part includes at least 0.5 turns.
  • the turning unit includes at least one turn.
  • the swivel unit includes at least 0.5 turns in one plane perpendicular to the shield line.
  • axial direction the axial direction
  • FIG. 1 is a diagram viewed from the front in the axial direction, and in order to make the diagram easier to see, the members are hatched.
  • FIG. 2 is a side view. Both figures are schematic diagrams, and the scale is different from the actual instrument.
  • the shield wire 10 has a dielectric layer 14 disposed so as to surround the periphery of the inner conductor 12 in the axial direction and an outer conductor 16 disposed on the outer periphery thereof, and has a round bar shape extending in one direction.
  • the shield wire 10 a commercially available coaxial cable or the like can be used.
  • the inner conductor 12 is a copper wire having a diameter of about 0.5 mm
  • the dielectric layer 14 is a cylindrical shape having an outer diameter of about 2.2 mm.
  • the fluororesin and the outer conductor 16 are made of a copper tube having an outer diameter of about 3.2 mm.
  • the shield wire 10 is a relatively hard wire having a predetermined rigidity and maintains its shape in a gravitational field.
  • shield wires of various sizes according to the application.
  • the inner conductor 12 and the outer conductor 16 are arranged concentrically, and heated PVDF (polyvinylidene fluoride) or the like is injected into the gap between the two. Then, the dielectric layer 14 may be formed, and the shield wire 10 may be manufactured.
  • the shield wire 10 is preferably connected to the microwave oscillator via a flexible shield wire that can be easily deformed.
  • a fluororesin tube 18 is disposed so as to cover at least a portion around which the spiral antenna 20 on the front end side of the outer conductor 16 is wound.
  • the tube 18 may cover the entire outer conductor 16.
  • the tip portion of the inner conductor 12 extends from the tip of the shield wire 10 so as to protrude in the axial direction as it is, and the tip portion of the inner conductor 12 is coiled from the front (tip side) to the rear (base side) of the shield wire 10.
  • a spiral antenna 20 extending in the direction is connected.
  • a portion of the spiral antenna 20 positioned in front of the tip of the shield wire 10 is referred to as a tip side antenna 24, and a coil portion wound around the shield wire 10 is referred to as a base side antenna 26.
  • the spiral antenna 20 may be formed entirely by the inner conductor 12, or the spiral antenna 20 may be composed of a plurality of members and connected by soldering or the like.
  • the front end side antenna 24 is connected to the connecting portion 22 extending in the radial direction (radiating direction) of the shield wire 10 and the outer end of the connecting portion 22, turns in a circular shape, and extends backward. It consists of a coil part.
  • the tip side antenna 24 irradiates microwaves forward in the axial direction by the flow of current.
  • the base side antenna 26 connected to the rear side of the distal end side antenna 24 is wound around the outer periphery of the tube 18 of the shield wire 10, turns spirally and extends rearward, and is located on the base side outside the shield wire 10. Terminates in place.
  • the spiral antenna 20 preferably forms a spiral at a constant pitch.
  • the gap between conductors forming the spiral antenna 20 is set to 2 mm.
  • the number of turns of the spiral antenna 20 is set to 7 turns, what is actually manufactured is about 10 turns.
  • the total length of the spiral antenna 20 (the length in the case of a straight line) was 120 mm, and the axial length of the spiral antenna 20 in a spiral state was 25 mm.
  • the turning radius of the spiral antenna 20 is a constant value according to the outer diameter of the shield wire 10.
  • the helical antenna 20 in order to prevent direct contact between the helical antenna 20 and the living tissue, it is preferable to cover the outside of the helical antenna 20 with a fluororesin tape 28. Since the fluororesin has a property that the heated living tissue is difficult to adhere, it is preferable that the outer side of the spiral antenna 20 is covered with the fluororesin as described above. It is also preferable to cover with a tube-shaped fluororesin or coat the surface of the conductor forming the spiral antenna 20 with a fluororesin.
  • the impedance matching with the adjacent living tissue in the distal antenna 24 and the base antenna 26 is substantially satisfied. Therefore, microwaves can be effectively irradiated forward and laterally in the axial direction from the distal-side antenna 24 and the base-side antenna 26, and the microwaves are absorbed by the adjacent living tissue and the energy becomes heat. Thus, it is possible to coagulate and stop hemostasis of living tissue.
  • a cylindrical apelooka type balun filter having an opening on the front side to attenuate the leakage current to the outer conductor 16 on the base side of the spiral antenna 20 of the shielded wire 10. is there.
  • the front end of the shield wire 10, that is, the region where the outer conductor 16 does not exist inside has the connection portion 22 and the coil connected thereto as the front end side antenna 24.
  • the tip side antenna 24 functions as an antenna that irradiates microwaves forward in the axial direction.
  • the number of turns of the tip antenna 24 is preferably 1 turn or more, but it can function even with 0.5 turns or more.
  • the front end side antenna 24 exists in the same plane by 0.5 turns or more. With such a configuration, it is possible to effectively irradiate the microwaves forward.
  • the front end side antenna 24 needs to be disposed in a space where the outer conductor 16 does not exist inside, and a current flows through the coil in this space, thereby effectively irradiating microwaves forward. can do.
  • the function as an antenna for irradiating microwaves forward is improved.
  • the spiral antenna 20 has a base side antenna 26 in a portion where the outer conductor 16 of the shield wire 10 exists. From the base side antenna 26, microwaves are irradiated in the radial direction (radiation direction) of the shield wire 10. In particular, since the outer conductor 16 is positioned inside the coil of the base side antenna 26, microwave irradiation is effectively performed toward the side in the axial direction.
  • the shield wire 10 of the microwave tissue coagulation instrument is connected to a microwave oscillator via a flexible shield wire, and the microwave band current generated by the microwave oscillator is fed to the spiral antenna 20 via the shield wire 10.
  • a microwave is irradiated toward the living tissue from the spiral antenna 20, and the living tissue is heated.
  • irradiating microwaves for several seconds to 100 seconds (10 seconds in an example) with an irradiation power of several tens to 100 W (63 W in an example) it is possible to heat a living tissue to coagulate and stop hemostasis It is.
  • the frequency of the microwave used in this embodiment it is preferable to use 2.45 GHz permitted for medical use in Japan. In foreign countries, frequencies such as 0.915 GHz and 0.433 GHz may be permitted, and it is possible to use microwaves of these frequencies. Furthermore, if a microwave with another frequency can be used, a microwave with that frequency may be used.
  • the tip side antenna 24 functions as an antenna that irradiates microwaves forward in the axial direction. For this reason, it is possible to heat the biological tissue which adjoins the front-end
  • the spiral antenna 20 irradiates the microwave from the base side antenna 26 in the radial direction (radiation direction) of the shield wire 10. That is, the microwave does not reach the inside of the outer conductor 16 but is irradiated outward in the radial direction. Therefore, by irradiating the microwave while pressing or bringing the side part where the base side antenna 26 of the microwave tissue coagulation instrument is present on or close to the biological tissue, the biological tissue on the side in the axial direction of the microwave tissue coagulation instrument is heated. Coagulation and hemostasis can be achieved.
  • the microwave tissue coagulation instrument according to the present embodiment can coagulate by heating the tissues in the front and side (periphery), there is almost no restriction on the direction in use, and it should be used in various situations. Is possible. For example, during the operation, other organs, bones, other surgical instruments, and the like interfere with the direction in which blood vessels can be held. According to the microwave tissue coagulation instrument according to the present embodiment, since the tip part and the side part can be used, it is easy to use even in a situation where the direction is limited.
  • the hemostatic target is a fine part, it can be heated and coagulated by stopping at a small tip part, and if the target is wide, it can be heated and coagulated and stopped using the side part, There is no need to use a plurality of devices, and a single device can be used.
  • the microwave tissue coagulation instrument it is possible to heat and coagulate and stop blood by bleeding or bleeding sites in blood vessels or tissues. Furthermore, blood vessels and tissues to be cut can be coagulated in advance. This makes it possible to make an incision without bleeding even an organ that is likely to bleed. In addition, if the blood vessel to be cut is heated and coagulated before being cut, there is an advantage that it is not necessary to perform ligation (hemostasis with a thread).
  • the tip side antenna 24 connected to the connecting portion 22 extending in the radial direction is arranged in a plane perpendicular to the axial direction of the shielded wire 10 for a half circumference (0 to 180 degrees).
  • the tip-side antenna 24 is formed into an antenna shape that irradiates microwaves in the axial direction, whereby the living tissue existing in the axial direction is suitably heated.
  • a dielectric such as plastic may be disposed at this portion.
  • the dielectric layer 14 may be protruded from the tip of the shield wire 10, and a tape of fluororesin may be wound around to match the diameter, and a coil may be wound thereon. Thereby, the strength of the front end side antenna 24 can be maintained at a sufficient level.
  • the tip side antenna 24 may have a different diameter from the base side antenna 26 and the turning coil, and the tip side antenna 24 may be configured by winding a conductor directly around the outer periphery of the dielectric layer 14.
  • the tip side antenna 24 can be formed into a conical shape whose diameter gradually increases toward the tip side of the shielded wire 10.
  • the front end antenna 24 irradiates microwaves forward in the axial direction, and can take various shapes.
  • a disk-shaped antenna can be used in place of the tip side antenna 24. In this case, it is important to match the impedance between the disk-shaped antenna and the base-side antenna 26.
  • both the front end side antenna 24 and the base side antenna 26 with a conducting wire having the same diameter as the inner conductor 12, impedance mismatching at the connection point between the two can be reliably prevented.
  • the base-side antenna 26 wound around the shielded wire 10 does not necessarily have the same diameter of the coil to be swung, and has a conical shape in which the diameter gradually increases, or a spindle shape in which the diameter gradually decreases after the diameter increases. Also good.
  • the cross-sectional shape of the shield wire 10 on the tip side is not a circle but a polygon or a semicircle. Accordingly, by heating which part of the base side antenna 26 is pressed against or brought close to the heating target of the ecological tissue, appropriate heating according to each part can be performed.
  • the base side antenna 26 can obtain strength by being wound around the shield wire 10 via an insulating material. However, when the base side antenna 26 is different from the outer peripheral shape of the shield wire 10, for the antenna 24, it is preferable to form a support material that matches the coil shape with a dielectric such as plastic, and to wind a conductor around the support material.
  • the spiral antenna 20 may be molded as a whole with plastic or the like to maintain the shape. Since the characteristics of the spiral antenna 20 change when its shape changes, it is preferable to fix the spiral antenna 20 so that the shape can be maintained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

内導体12の周囲に誘電体層14を介し外導体16が配置されるシールド線10と、このシールド線10の内導体12に接続される螺旋アンテナ20と、を含む。前記螺旋アンテナ20は、シールド線10の先端より前方にてマイクロ波を前方に放射する先端側アンテナ24と、この先端側アンテナ24に接続されシールド線10に巻回されてシールド線10の基部側に伸び、シールド線10の側方にマイクロ波を放射する基部側アンテナ26と、を含み、シールド線10を介して螺旋アンテナ20に給電し、この螺旋アンテナ20から照射されるマイクロ波により、周辺の組織を加熱凝固する。

Description

マイクロ波組織凝固器具
 本発明は、例えば、生体組織における止血を行うために用いられるマイクロ波組織凝固器具に関する。
 近年の各種手術において、広く用いられている止血方法の一つに、組織凝固器具を用いた手法がある。このような組織凝固器具として、MF帯からHF帯の比較的低い周波数体の電磁波を用いる電気メスと、超音波を用いた超音波切開装置が知られている。
 電気メスでは、大電流により生体組織を焼灼するため、加熱時に煙が出る場合がある。また、超音波切開装置では、加熱部分に水分が多いときに水しぶきが上がったりする。このような煙や水しぶきは、手術時において、手術視野の妨げになる。
 一方、非特許文献1には、マイクロ波を用いた凝固止血法について提案されている。このマイクロ波を用いた組織凝固による止血では、煙が出たり、水しぶきが上がるなどの問題は生じない。
特開2001-95815号公報 特開2011-177503号公報
田伏克惇他、「内視鏡的マイクロ波凝固止血法」FGES,vol.24,no.10,1526-1533,1982
 ここで、マイクロ波を用いた組織凝固においては、そのマイクロ波を照射するアンテナの形状により、加熱部位が決定される。
 このため、アンテナの形状が重要となる。術者による操作性がよく、目的とする部位を効果的に加熱して生体組織の凝固が行える器具が望まれている。
 本発明は、内導体の軸方向の周囲に誘電体層を介して外導体が配置されるシールド線と、このシールド線の内導体に接続される螺旋アンテナと、を含み、前記螺旋アンテナは、このシールド線の先端より前方にてマイクロ波をシールド線の前方に照射する先端側アンテナと、この先端側アンテナに接続されシールド線に巻回されて基部側に伸び、シールド線の側方にマイクロ波を照射する基部側アンテナと、を含み、シールド線を介して螺旋アンテナに給電し、この螺旋アンテナから照射されるマイクロ波により、周辺の組織を加熱凝固する。
 また、一実施形態では、前記先端側アンテナは、中心から放射状に伸びる接続部と、円状の旋回部を有するコイルを含み、前記旋回部は、少なくとも0.5ターンを含む。
 また、他の実施形態では、前記旋回部は、少なくとも1ターンを含む。
 さらに、他の実施形態では、前記旋回部は、シールド線に対し垂直な1つの面内において、少なくとも0.5ターンを含む。
 本発明によれば、シールド線の軸方向(以下、「軸方向」という)の前方および側方に向けてマイクロ波を照射することができ、所望の部位の組織を効果的に加熱凝固することができる。
実施形態に係るマイクロ波組織凝固器具の軸方向前方から見た図である。 実施形態に係るマイクロ波組織凝固器具の側方から見た図である。 基部側アンテナ26が巻回されるシールド線絶縁材の断面形状の例を示した図である。
 以下、本発明の実施形態について、図面に基づいて説明する。なお、本発明は、ここに記載される実施形態に限定されるものではない。
「構成」
 図1および図2には、一実施形態に係るマイクロ波組織凝固器具の構成が示されている。図1は軸方向前方から見た図であり、図を見やすくするために、部材にハッチングを付している。図2は側方から見た図である。両図とも、模式図であって、スケールは実際の器具とは異なっている。
 シールド線10は、内導体12の軸方向の周囲を取り囲むように配置された誘電体層14と、その外周に配置された外導体16を有し、一方向に伸びる丸棒状の形状を有する。シールド線10としては、市販されている同軸ケーブルなどを利用することができ、例えば、内導体12は直径0.5mm程度の銅線、誘電体層14は外径2.2mm程度の円筒状のフッ素樹脂、外導体16は外径3.2mm程度の銅管で構成される。このシールド線10は、所定の剛性を有する比較的硬いもので、重力場においてその形状を維持する。また、用途に応じてさまざまなサイズのシールド線を利用することが好適であり、内導体12と外導体16を同心円状に配置し、両者の間隙に加熱したPVDF(ポリフッ化ビニリデン)などを注入して誘電体層14を形成し、シールド線10を製作することもよい。なお、シールド線10は、容易に変形可能な柔軟なシールド線を介してマイクロ波発振器に接続するとよい。
 また、外導体16の先端側の螺旋アンテナ20が巻回される部分を少なくとも覆って、フッ素樹脂製のチューブ18が配置されている。なお、このチューブ18は、外導体16の全体を覆うようなものでもよい。
 内導体12の先端部位は、シールド線10の先端から軸方向にそのまま突出するように伸びており、その先端部位にシールド線10の前方(先端側)から後方(基部側)に向けてコイル状に伸びる螺旋アンテナ20が接続されている。
 ここで、螺旋アンテナ20のシールド線10の先端より前方に位置する部分を先端側アンテナ24、シールド線10に巻回されているコイル部分を基部側アンテナ26とする。なお、螺旋アンテナ20をすべて内導体12によって形成してよいし、螺旋アンテナ20を複数の部材から構成し、これらを半田付けなどで接続してもよい。
 螺旋アンテナ20において、先端側アンテナ24は、シールド線10の径方向(放射方向)に伸びる接続部22と、この接続部22の外側端に接続され、円状に旋回するとともに後方に向けて伸びるコイル部分からなっている。この先端側アンテナ24は、電流の流れによりマイクロ波を軸方向の前方に向けて照射する。
 先端側アンテナ24の後方に接続される基部側アンテナ26は、シールド線10のチューブ18の外周に巻回され、螺旋状に旋回して後方に向けて伸び、シールド線10の外側の基部側の所定位置で終端している。
 螺旋アンテナ20は、一定のピッチで螺旋を形成することが好ましく、この例では螺旋アンテナ20を形成する導体間の間隙を2mmとした。また、図2においては、螺旋アンテナ20のターン数を7ターンとしたが、実際に製作したものは、10ターン程度である。螺旋アンテナ20の全長(直線とした場合の長さ)を120mmとして、螺旋を形成した状態の螺旋アンテナ20の軸方向の長さを25mmとした。なお、本実施形態では、螺旋アンテナ20の旋回半径はシールド線10の外径に合わせて一定値になっている。
 さらに、螺旋アンテナ20と生体組織との直接の接触を防止するために、螺旋アンテナ20の外側をフッ素樹脂のテープ28でカバーすることが好ましい。フッ素樹脂は、加熱された生体組織が付着しにくい性質を有するため、このように螺旋アンテナ20の外側をフッ素樹脂で覆うものとして好ましい。なお、チューブ状のフッ素樹脂でカバーしたり、螺旋アンテナ20を形成する導体の表面にフッ素樹脂コーティングすることも好適である。
 このような構成により、螺旋アンテナ20において、先端側アンテナ24および基部側アンテナ26における、近接する生体組織とのインピーダンス整合がほぼ満足される。そのため、先端側アンテナ24および基部側アンテナ26からマイクロ波を軸方向の前方および側方に向けて効果的に照射することができ、マイクロ波が近接する生体組織に吸収されてエネルギーが熱になることより、生体組織の凝固や止血を行うことが可能である。
 さらに、図示は省略したが、シールド線10の螺旋アンテナ20の基部側に、外導体16への漏洩電流を減衰させるために、前方側が開口した筒状のバズーカ型バランフィルタを取り付けることが好適である。
 ここで、本実施形態では、シールド線10の先端、すなわち、内側に外導体16が存在しない領域に、先端側アンテナ24として接続部22とこれに接続されたコイルを有する。この構成により、先端側アンテナ24は軸方向の前方に向けてマイクロ波を照射するアンテナとして機能する。先端側アンテナ24のターン数は、1ターン以上が好ましいが、0.5ターン以上でも機能する。また、先端側アンテナ24は、同一平面内に0.5ターン以上存在することが好適である。このような構成によって、マイクロ波を効果的に前方に向けて照射することができる。すなわち、先端側アンテナ24は、内側に外導体16が存在しない空間に配置されることが必要であり、この空間内においてコイルに電流が流れることで、マイクロ波を効果的に前方に向けて照射することができる。特に、同一面内において、0.5ターン以上あることで、前方に向けてマイクロ波を照射するアンテナとしての機能が向上する。
 さらに、螺旋アンテナ20は、シールド線10の外導体16が存在する部分に基部側アンテナ26を有する。この基部側アンテナ26からは、シールド線10の半径方向(放射方向)にマイクロ波が照射される。特に、基部側アンテナ26はそのコイルの内側に外導体16が位置するため、これによって軸方向の側方に向けてマイクロ波の照射が効果的に行われる。
「動作」
 マイクロ波組織凝固器具のシールド線10を、柔軟なシールド線を介してマイクロ波発振器に接続し、マイクロ波発振器で発生したマイクロ波帯電流を、シールド線10を介して螺旋アンテナ20に給電する。これにより、螺旋アンテナ20からマイクロ波が生体組織に向けて照射され、生体組織が加熱される。例えば、照射電力を数10W~100W程度(一例では63W)で、数秒~100秒(一例では10秒)程度、マイクロ波を照射することで、生体組織を加熱して凝固、止血することが可能である。
 なお、本実施形態において使用するマイクロ波の周波数については、日本において医療用として許可されている、2.45GHzを使用することが好ましい。外国においては、0.915GHzや0.433GHzなどの周波数も許可されている場合があり、これら周波数のマイクロ波を利用することも可能である。さらに、他の周波数のマイクロ波が使用可能であれば、その周波数のマイクロ波を利用してもよい。
 例えば、食肉に対し、上述した構成のマイクロ波組織凝固器具を用いて、63W、10秒間マイクロ波の照射を行ったところ、アンテナの形状に応じた組織の加熱凝固が観察された。また、この際に煙などは発生しなかった。したがって、視野を維持しながら組織の止血を行えることが確認できた。また、水中においても水しぶきを上げることなく、近接する周辺組織を加熱して凝固させることができる。
 ここで、上述のように、先端側アンテナ24は、軸方向の前方にマイクロ波を照射するアンテナとして機能する。このため、本実施形態のマイクロ波組織凝固器具を用いて、その先端前方に近接する生体組織を加熱することが可能である。したがって、止血対象の生体組織に、マイクロ波組織凝固器具の先端部位を押しつけたり近接させながらマイクロ波を照射することにより、その部分の生体組織を加熱して凝固、止血することができる。
 さらに、螺旋アンテナ20は、基部側アンテナ26からシールド線10の半径方向(放射方向)にマイクロ波を照射する。すなわち、マイクロ波は外導体16の内部に至ることはなく、放射方向外側に照射される。したがって、マイクロ波組織凝固器具の基部側アンテナ26が存在する側面部位を生体組織に押しつけたり近接させながらマイクロ波を照射させることにより、マイクロ波組織凝固器具の軸方向の側方の生体組織を加熱して凝固、止血することができる。
 そして、本実施形態に係るマイクロ波組織凝固器具は、前方および側方(周辺)の組織を加熱して凝固させることができるため、使用において方向の制限がほとんどなく、種々の状況において利用することが可能である。例えば、術中は、他の臓器や骨、他の手術器具などが邪魔して、血管をおさえる方向が限られている。本実施形態に係るマイクロ波組織凝固器具によれば、先端部位および側面部位を使用することができるため、方向が限定された状況においても利用しやすい。また、止血対象が細かい部分であれば、細径の先端部位で加熱して凝固、止血を行い、対象が広範囲であれば、側面部位を使って加熱して凝固、止血することができるため、複数のデバイスを使う必要がなく、1つのデバイスで対応が可能である。
 このように、本実施形態に係るマイクロ波組織凝固器具によれば、血管や組織の漏血・出血部位を加熱して凝固、止血することが可能である。さらに、切断する対象となる血管や組織をあらかじめ凝固させることもできる。これによって、出血しやすい臓器でも出血させることなく切開することが可能となる。また、切断しなければならない血管を加熱して凝固させてから切断すれば、結紮 (糸での止血)を行う必要がなくなるというメリットもある。
「その他」
 また、上述の実施形態においては、半径方向に伸びる接続部22に接続される先端側アンテナ24を、半周(0-180度)はシールド線10の軸方向に対し垂直な平面内に配置した。このように、先端側アンテナ24について、軸方向にマイクロ波を照射するアンテナ形状とすることで、軸方向に存在する生体組織の加熱が好適に行われる。しかし、このような平面内に位置する部分を設けず、最初(0度)から螺旋としてもよいし、コイルがぶつからないようにして、270度付近から螺旋としてもよい。
 先端側アンテナ24の内側には何も存在しない構成としたが、この部位にプラスチックなどの誘電体を配置してもよい。例えば、誘電体層14をシールド線10の先端から突出させておき、さらにフッ素樹脂のテープを巻き付けて、直径を合わせ、この上にコイルを巻回してもよい。これによって、先端側アンテナ24の強度を十分なものに維持することができる。
 また、先端側アンテナ24は、基部側アンテナ26と旋回するコイルの径が異なっていてもよく、誘電体層14の外周に直接導体を巻き付けて先端側アンテナ24を構成してもよい。
 さらに、先端側アンテナ24を、シールド線10の先端側に向けて徐々に径が大きくなる円錐形状とすることもできる。
 先端側アンテナ24は、軸方向の前方に向けてマイクロ波を照射するものであり、各種形状をとることが可能である。例えば、先端側アンテナ24に代えて、円板状アンテナとすることも可能である。この場合は、円板状アンテナと基部側アンテナ26とのインピーダンス整合をとることが重要である。なお、内導体12と同じ径の導線で、先端側アンテナ24および基部側アンテナ26の両方を形成することで、両者の接続点でのインピーダンス不整合を確実に防止することができる。
 シールド線10に巻回する基部側アンテナ26についても、必ずしも旋回するコイルの径が同一である必要はなく、徐々に径が大きくなる円錐状や、径が一端大きくなった後に小さくなる紡錘状としてもよい。
 さらに、図3に示すように、シールド線10の先端側の断面形状を円形ではなく、多角形や半円形とすることも好適である。これによって、基部側アンテナ26のどの部位を生態組織の加熱対象に押しつけるかまたは近接させるかすることにより、それぞれの部位に応じた適切な加熱を行うことができる。
 基部側アンテナ26は、シールド線10の周辺に絶縁材を介して巻回することで、強度が得られるが、基部側アンテナ26をシールド線10の外周形状と異なるものとした場合や、先端側アンテナ24については、プラスチックなどの誘電体によって、コイル形状に合わせた支持材を形成しておき、この支持材に導体を巻回することが好適である。
 なお、螺旋アンテナ20を全体としてプラスチックなどで成形して、形状を維持するようにしてもよい。螺旋アンテナ20は、その形状が変化すると、特性が変化してしまうので、形状を維持できるように、固定することが好適である。
 10 シールド線、12 内導体、14 誘電体層、16 外導体、18 チューブ、20 螺旋アンテナ、22 接続部、24 先端側アンテナ、26 基部側アンテナ、28 テープ。
 

Claims (4)

  1.  内導体の軸方向の周囲に誘電体層を介して外導体が配置されるシールド線と、
     このシールド線の内導体に接続される螺旋アンテナと、
     を含み、
     前記螺旋アンテナは、
     このシールド線の先端より前方にてマイクロ波をシールド線の前方に照射する先端側アンテナと、
     この先端側アンテナに接続されシールド線に巻回されて基部側に伸び、シールド線の側方にマイクロ波を照射する基部側アンテナと、
     を含み、
     シールド線を介して螺旋アンテナに給電し、この螺旋アンテナから照射されるマイクロ波により、周辺の組織を加熱凝固するマイクロ波組織凝固器具。
  2.  請求項1に記載のマイクロ波組織凝固器具において、
     前記先端側アンテナは、中心から放射状に伸びる接続部と、円状の旋回部を有するコイルを含み、
     前記旋回部は、少なくとも0.5ターンを含むマイクロ波組織凝固器具。
  3.  請求項2に記載のマイクロ波組織凝固器具において、
     前記旋回部は、少なくとも1ターンを含むマイクロ波組織凝固器具。
  4.  請求項2または3に記載のマイクロ波組織凝固器具において、
     前記旋回部は、シールド線に対し垂直な1つの面内において、少なくとも0.5ターンを含む、マイクロ波組織凝固器具。
     
PCT/JP2014/071938 2013-08-21 2014-08-21 マイクロ波組織凝固器具 WO2015025934A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013171565A JP6177049B2 (ja) 2013-08-21 2013-08-21 マイクロ波組織凝固器具
JP2013-171565 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015025934A1 true WO2015025934A1 (ja) 2015-02-26

Family

ID=52483705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071938 WO2015025934A1 (ja) 2013-08-21 2014-08-21 マイクロ波組織凝固器具

Country Status (2)

Country Link
JP (1) JP6177049B2 (ja)
WO (1) WO2015025934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013239A1 (ja) * 2021-08-04 2023-02-09 日機装株式会社 マイクロ波デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854853U (ja) * 1981-10-08 1983-04-14 アロカ株式会社 体腔内挿入型加温治療用マイクロ波放射器
JPS59135070A (ja) * 1982-12-13 1984-08-03 エム/エイ−コム・インコ−ポレ−テッド マイクロ波アプリケ−タ/レシ−バ装置
JP2008272472A (ja) * 2007-04-25 2008-11-13 Covidien Ag マイクロ波切除のために冷却されるらせん状アンテナ
JP2010088899A (ja) * 2008-10-13 2010-04-22 Vivant Medical Inc 医療用途用アンテナアセンブリ
JP2011177503A (ja) * 2010-02-26 2011-09-15 Vivant Medical Inc 自己チューニングするマイクロ波熱灼プローブ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364392A (en) * 1993-05-14 1994-11-15 Fidus Medical Technology Corporation Microwave ablation catheter system with impedance matching tuner and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854853U (ja) * 1981-10-08 1983-04-14 アロカ株式会社 体腔内挿入型加温治療用マイクロ波放射器
JPS59135070A (ja) * 1982-12-13 1984-08-03 エム/エイ−コム・インコ−ポレ−テッド マイクロ波アプリケ−タ/レシ−バ装置
JP2008272472A (ja) * 2007-04-25 2008-11-13 Covidien Ag マイクロ波切除のために冷却されるらせん状アンテナ
JP2010088899A (ja) * 2008-10-13 2010-04-22 Vivant Medical Inc 医療用途用アンテナアセンブリ
JP2011177503A (ja) * 2010-02-26 2011-09-15 Vivant Medical Inc 自己チューニングするマイクロ波熱灼プローブ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013239A1 (ja) * 2021-08-04 2023-02-09 日機装株式会社 マイクロ波デバイス

Also Published As

Publication number Publication date
JP6177049B2 (ja) 2017-08-09
JP2015039499A (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
JP6541838B2 (ja) ゲージが細く、高強度のチョークでかつ湿式先端のマイクロ波焼灼アンテナ
JP5984334B2 (ja) 一体化された撮像装置を有する焼灼装置を用いる電気手術処置を実施するためのシステムおよび方法
JP6093807B2 (ja) アンテナ放射部分の大気曝露のためのバラン構造を有する電気外科手術装置およびそれを用いてエネルギーを組織に導く方法
JP6383833B2 (ja) マイクロ波場検出ニードルアセンブリ、その製造方法、それを用いた組織内照射焼灼領域の調節方法およびそれを含むシステム
JP6236430B2 (ja) マイクロ波グランドプレーンアンテナプローブ
JP5894840B2 (ja) 互換可能なアンテナ探針を有するマイクロ波焼灼器具
JP6583744B2 (ja) マイクロ波手術器具
JP5511265B2 (ja) 誘電材料の放射状の区画を備えた誘電本体部分を有するマイクロ波アンテナアセンブリ
JP5972012B2 (ja) マイクロ波組織解剖および凝固
JP2004267644A (ja) 生体組織処理用電極棒
JP2011200649A (ja) 格納式ブレードを有するマイクロ波表面凝固装置
JP7394482B2 (ja) 焼灼及び切除のための手術器具
JP2019000649A (ja) マイクロ波及び高周波エネルギーを伝送する組織切除システム
KR20210031851A (ko) 전기 외과 기구
JP2018530360A (ja) 電気外科用スネア
JPH08187297A (ja) マイクロ波治療装置
JP6177049B2 (ja) マイクロ波組織凝固器具
JP6314200B2 (ja) マイクロ波場検出ニードルアセンブリ、その製造方法、それを用いた組織内照射焼灼領域の調節方法およびそれを含むシステム
JP7492771B2 (ja) 電気手術器具
WO2023013239A1 (ja) マイクロ波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837295

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837295

Country of ref document: EP

Kind code of ref document: A1