WO2015025779A1 - Optical filter and device using optical filter - Google Patents

Optical filter and device using optical filter Download PDF

Info

Publication number
WO2015025779A1
WO2015025779A1 PCT/JP2014/071311 JP2014071311W WO2015025779A1 WO 2015025779 A1 WO2015025779 A1 WO 2015025779A1 JP 2014071311 W JP2014071311 W JP 2014071311W WO 2015025779 A1 WO2015025779 A1 WO 2015025779A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
carbon atoms
optical filter
hydrocarbon group
Prior art date
Application number
PCT/JP2014/071311
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 長屋
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020167004029A priority Critical patent/KR102205190B1/en
Priority to CN201480045553.7A priority patent/CN105531608B/en
Priority to JP2015532830A priority patent/JP6398980B2/en
Publication of WO2015025779A1 publication Critical patent/WO2015025779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter containing a specific solvent-soluble dye compound, and a solid-state imaging device and a camera module using the optical filter.
  • a solid-state image pickup device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state image pickup device for a color image.
  • Silicon photodiodes that are sensitive to near infrared rays that cannot be sensed by the eyes are used. These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye.
  • Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
  • a near-infrared cut filter those manufactured by various methods are conventionally used.
  • a near-infrared cut filter in which a transparent resin is used as a base material and a near-infrared absorbing dye is contained in the transparent resin is known (see, for example, Patent Document 1), and in particular, a phthalocyanine compound is used as a near-infrared absorbing dye.
  • the near-infrared cut filter used is widely known (see, for example, Patent Document 2).
  • ordinary phthalocyanine compounds often have an absorption maximum wavelength of less than 650 to 700 nm, and the absorption maximum wavelength can be shifted to a wavelength range (700 to 800 nm) that is particularly suitable for use as a solid-state imaging device.
  • a wavelength range 700 to 800 nm
  • the visible transmittance on the short wavelength side in the vicinity of 430 to 460 nm is remarkably lowered.
  • a general phthalocyanine compound is likely to be in an H association state in which rings are stacked in a resin or the like.
  • a broad waveform having a weak absorption intensity near the absorption maximum is obtained as in the spectrum described in Example 1 of JP2013-083915A (Patent Document 4).
  • Patent Document 4 the optical characteristics required for solid-state imaging device applications may not be achieved.
  • An object of the present invention is to improve the drawbacks of conventional optical filters such as near-infrared cut filters, and the near-infrared absorbing dye has sufficient absorption intensity in the wavelength region near 700 to 750 nm and is short.
  • An object of the present invention is to provide an optical filter having excellent transmittance in a visible wavelength region on the wavelength side, and an apparatus using the optical filter.
  • the present inventors have achieved a target absorption maximum wavelength and absorption strength in a resin by applying a phthalocyanine compound having a specific structure.
  • the inventors have found that an optical filter having excellent infrared absorption characteristics and visible transmittance can be obtained, and have completed the present invention. Examples of embodiments of the present invention are shown below.
  • An optical device comprising: a transparent resin substrate containing a compound (A) represented by the following formula (I); and a near-infrared reflective film formed on at least one surface of the substrate. filter.
  • M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom containing a trivalent or tetravalent metal atom
  • a plurality of R a independently represents L 1
  • a plurality of R b s independently represent a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2
  • L 1 is below L a
  • L 2 represents a following L a, L b, L c , L d or L e
  • Halogen-substituted alkyl group alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of
  • M is a divalent transition metal, a trivalent or tetravalent metal halide belonging to groups 4 to 12 and 4th to 5th of the periodic table, or 4 R a is independently an alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, or a cyclohexyl group, and R b is independently a hydrogen atom , A fluorine atom, an alkyl group having 1 to 10 carbon atoms, a cyclopentyl group, a cyclohexyl group, or —SO 2 —L 2 , and L 2 is an alkyl group having 1 to 6 carbon atoms and an aromatic carbon atom having 6 to 12 carbon atoms.
  • the transparent resin constituting the transparent resin substrate is a cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, poly Allylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin
  • a solid-state imaging device comprising the optical filter according to any one of items [1] to [5].
  • a camera module comprising the optical filter according to any one of items [1] to [5].
  • M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom containing a trivalent or tetravalent metal atom
  • a plurality of R a independently represents L 1
  • a plurality of R b s independently represent a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2
  • L 1 is below L a
  • L 2 represents a following L a, L b, L c , L d or L e
  • Halogen-substituted alkyl group alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of
  • an optical filter that is less dependent on the incident angle, has excellent light resistance, near-infrared absorption characteristics near 700 to 750 nm, and transmittance characteristics in the visible wavelength region.
  • FIG. 1A is a schematic diagram showing a method for measuring the transmittance when measured from the vertical direction of the optical filter.
  • FIG. 1B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
  • An optical filter according to the present invention includes a transparent resin substrate containing a phthalocyanine compound (compound (A)) represented by a specific structure, and a near-infrared reflective film formed on at least one surface of the substrate.
  • the transparent resin substrate constituting the optical filter of the present invention may be a single layer or a multilayer (in the case of a multilayer, for example, a cured resin on a base resin substrate).
  • the transmittance at the absorption maximum wavelength is preferably 10% or less, and more preferably 8% or less.
  • the substrate can selectively and efficiently cut near infrared rays, and a near infrared reflecting film on the surface of the transparent resin substrate.
  • the film is formed, it is possible to reduce the incident angle dependency of the optical characteristics in the visible wavelength to near infrared wavelength region.
  • the average transmittance of the substrate when the thickness of the resin substrate containing the compound (A) is 100 ⁇ m is preferably 50% or more, preferably It may be necessary to be 65% or more.
  • the thickness of the resin substrate can be appropriately selected according to the desired application, and is not particularly limited. However, it is preferable to adjust the substrate so that the incident angle dependency is improved as described above, and more preferably. Is 30 to 250 ⁇ m, more preferably 40 to 200 ⁇ m, particularly preferably 50 to 150 ⁇ m.
  • the optical filter using the substrate can be reduced in size and weight, and can be suitably used for various applications such as a solid-state imaging device.
  • the resinous substrate is used in a lens unit such as a camera module, it is preferable because a low-profile lens unit can be realized.
  • the resin substrate further comprises at least one near infrared absorbing dye (X) selected from the group consisting of a squarylium compound, a phthalocyanine compound other than the compound (A), and a cyanine compound.
  • X near infrared absorbing dye
  • the incident angle dependency in the visible wavelength region to the near infrared wavelength region can be further reduced, the absorption band waveform can be further sharpened, and a wide viewing angle can be obtained.
  • a filter can be obtained.
  • the compound (A) and the near-infrared absorbing dye (X) may be contained in the same layer or in different layers.
  • a form in which both the compound (A) and the near-infrared absorbing dye (X) are included in the base resin substrate can be mentioned, and when included in separate layers, for example, the form by which the layer containing the said near-infrared absorption pigment
  • the compound (A) and the near-infrared absorbing dye (X) are more preferably contained in the same layer.
  • the compound (A) and the near-infrared absorbing dye are contained in a case where they are contained in separate layers. It becomes easier to control the content ratio of (X).
  • the compound (A) is a phthalocyanine compound represented by the following formula (I).
  • M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom containing a trivalent or tetravalent metal atom
  • a plurality of R a independently represents L 1
  • a plurality of R b s independently represent a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2
  • L 1 is below L a
  • L 2 represents a following L a, L b, L c , L d or L e
  • Halogen-substituted alkyl group alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of
  • L a ⁇ L e is the total number of carbon atoms including the substituent is preferably respectively 50 or less, still more preferably a few 40 or less carbon atoms, and particularly preferably 30 or less carbon atoms.
  • the number of carbon atoms is larger than this range, it may be difficult to synthesize the dye, and the absorption intensity per unit weight tends to decrease.
  • the aliphatic hydrocarbon group L a and 1 to 12 carbon atoms in L such as a methyl group (Me), ethyl (Et), n-propyl group (n-Pr), isopropyl (i-Pr ), N-butyl group (n-Bu), sec-butyl group (s-Bu), tert-butyl group (t-Bu), pentyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, etc.
  • Me methyl group
  • Et ethyl
  • i-Pr isopropyl
  • n-Bu N-butyl group
  • s-Bu sec-butyl group
  • t-Bu tert-butyl group
  • pentyl group hexyl group
  • octyl group nonyl group
  • decyl group dodecyl
  • Alkyl groups such as vinyl group, 1-propenyl group, 2-propenyl group, butenyl group, 1,3-butadienyl group, 2-methyl-1-propenyl group, 2-pentenyl group, hexenyl group and octenyl group
  • alkynyl groups such as ethynyl group, propynyl group, butynyl group, 2-methyl-1-propynyl group, hexynyl group and octynyl group.
  • Examples of the halogen-substituted alkyl group having 1 to 12 carbon atoms in L b and L include, for example, a trichloromethyl group, a trifluoromethyl group, a 1,1-dichloroethyl group, a pentachloroethyl group, a pentafluoroethyl group, a heptachloro group. Mention may be made of propyl and heptafluoropropyl groups.
  • Examples of the alicyclic hydrocarbon group having 3 to 14 carbon atoms in L c and L include, for example, a cycloalkyl group such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group; a norbornane group and an adamantane group And polycyclic alicyclic groups such as
  • Examples of the aromatic hydrocarbon group having 6 to 14 carbon atoms in L d and L include, for example, phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 1-naphthyl group, 2-naphthyl group, anthracenyl group, Mention may be made of phenanthryl, acenaphthyl, phenalenyl, tetrahydronaphthyl, indanyl and biphenylyl groups.
  • heterocyclic group having 3 to 14 carbon atoms in Le and L examples include, for example, furan, thiophene, pyrrole, pyrazole, imidazole, triazole, oxazole, oxadiazole, thiazole, thiadiazole, indole, indoline, indolenine, and benzofuran.
  • L a preferably a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, sec- butyl group, tert- butyl group, a pentyl group, a hexyl group, an octyl group, 4-phenylbutyl 2-cyclohexylethyl, more preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl and hexyl.
  • L b is preferably a trichloromethyl group, a pentachloroethyl group, a trifluoromethyl group, a pentafluoroethyl group, or a 5-cyclohexyl-2,2,3,3-tetrafluoropentyl group, more preferably a trichloromethyl group.
  • L c is preferably a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-ethylcyclohexyl group, a cyclooctyl group, or a 4-phenylcycloheptyl group, and more preferably a cyclopentyl group, a cyclohexyl group, or a 4-ethylcyclohexyl group. It is.
  • the L d is preferably a phenyl group, 1-naphthyl group, 2-naphthyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 3,5-di-tert-butylphenyl group, 4-cyclopentylphenyl group. 2,3,6-triphenylphenyl group, 2,3,4,5,6-pentaphenylphenyl group, more preferably phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 2,3 , 4,5,6-pentaphenylphenyl group.
  • L e preferably furan, thiophene, pyrrole, indole, indoline, indolenine, benzofuran, benzothiophene, consisting morpholine group, more preferably furan, thiophene, pyrrole, consisting morpholine group.
  • L a ⁇ L e is further halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, have at least one atom or group selected from the group consisting of a phosphate group and an amino group May be.
  • Examples include 4-sulfobutyl, 4-cyanobutyl, 5-carboxypentyl, 5-aminopentyl, 3-hydroxypropyl, 2-phosphorylethyl, 6-amino-2,2-dichloro.
  • examples of the monovalent metal atom include Li, Na, K, Rb, and Cs.
  • the divalent metal atoms include Be, Mg, Ca, Ba, Ti, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Zn, Cd, Hg, Sn, Pb etc. are mentioned.
  • the substituted metal atom containing a trivalent metal atom includes Al—F, Al—Cl, Al—Br, Al—I, Ga—F, Ga—Cl, Ga—Br, Ga—I, In -F, In-Cl, In-Br, In-I, Tl-F, Tl-Cl, Tl-Br, Tl-I, Fe-Cl, Ru-Cl, Mn-OH and the like.
  • the substituted metal atom containing a tetravalent metal atom includes TiF 2 , TiCl 2 , TiBr 2 , TiI 2 , ZrCl 2 , HfCl 2 , CrCl 2 , SiF 2 , SiCl 2 , SiBr 2 , SiI 2 , GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , SnF 2 , SnCl 2 , SnBr 2 , SnI 2 , Zr (OH) 2 , Hf (OH) 2 , Mn (OH) 2 , Si (OH) 2 , Ge ( OH) 2 , Sn (OH) 2 , TiR 2 , CrR 2 , SiR 2 , GeR 2 , SnR 2 , Ti (OR) 2 , Cr (OR) 2 , Si (OR) 2 , Ge (OR) 2 , Sn (OR) 2 (R represents an aliphatic group or an aromatic group),
  • M examples include groups 4 to 12 in the periodic table, and 4th to 5th cycles. Belongs to divalent transition metals, trivalent or Is preferably a tetravalent metal halide or a tetravalent metal oxide. Among them, Cu, Ni, Co, Zn, TiO and VO are particularly preferable because they can achieve particularly high visible light transmittance and dye stability. More preferred are Cu and VO.
  • R a is independently an alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, or A cyclohexyl group is preferred, an alkyl group having 1 to 10 carbon atoms is more preferred, and an alkyl group having 3 to 8 carbon atoms is particularly preferred.
  • R b is independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 10 carbon atoms, a cyclopentyl group, a cyclohexyl group, or —SO 2 —L from the viewpoint of ease of synthesis and stability of the compound (A).
  • 2 is preferably an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or a heterocyclic ring having 3 to 6 carbon atoms), preferably a hydrogen atom or 1 to More preferred is an alkyl group of 6.
  • a method of synthesizing the compound (A) by a cyclization reaction of a phthalonitrile derivative represented by the following formula (II) is generally known.
  • the resulting phthalocyanine compound is represented by the following formula (II-1) This is a mixture of four isomers such as (II-4).
  • II-1 This is a mixture of four isomers such as (II-4).
  • II-4 isomers such as (II-4).
  • isomers can be separated and used as necessary, but in the present invention, the isomer mixture is collectively handled.
  • Specific examples of the compound (A) are not particularly limited as long as the conditions described in the above formula (I) are satisfied.
  • Table 1 which has a basic skeleton represented by the following formula (I-1) And the compounds (a-1) to (a-35) described.
  • the compound (A) may be synthesized by a generally known method.
  • Japanese Patent No. 4081149 “Phthalocyanine—Chemistry and Function” (IPC, 1997), Japanese Patent Laid-Open No. 2-138382. It can be synthesized with reference to the method described in the publication.
  • the content of the compound (A) in the resin layer is preferably from 0.01 to 5.0 parts by weight, more preferably from 0.1 to 5.0 parts by weight, based on 100 parts by weight of the transparent resin used when the resin substrate is manufactured. It is 02 to 3.5 parts by weight, particularly preferably 0.03 to 2.5 parts by weight.
  • the content of the compound (A) is within the above range, both good near infrared absorption characteristics and high visible light transmittance can be achieved.
  • the near-infrared absorbing dye (X) is at least one selected from the group consisting of a squarylium compound, a phthalocyanine compound, and a cyanine compound, and particularly preferably contains a squarylium compound.
  • the absorption maximum wavelength of the near-infrared absorbing dye (X) is preferably 620 nm or more, more preferably 650 nm or more, particularly preferably 670 nm or more, and preferably less than 800 nm, more preferably 750 nm or less, particularly preferably 730 nm or less.
  • the compound (A) contained at the same time has an absorption maximum on a shorter wavelength side than the absorption maximum wavelength.
  • the absorption maximum wavelength is in such a wavelength range, the waveform of the absorption band can be further sharpened, the absorption band due to the near-infrared absorbing dye can be sufficiently widened, and the incident angle dependent improvement performance and ghosting can be improved. A reduction effect can be achieved.
  • the content of the near-infrared absorbing dye (X) in the resin layer is preferably 0.01 to 5.0 parts by weight, more preferably 100 parts by weight of the transparent resin used when the resin substrate is manufactured. Is 0.02 to 3.5 parts by weight, particularly preferably 0.03 to 2.5 parts by weight. When the content of the near-infrared absorbing dye is within the above range, both good near-infrared absorption characteristics and high visible light transmittance can be achieved.
  • the squarylium-based compound preferably includes at least one selected from the group consisting of a squarylium-based compound represented by the formula (III-1) and a squarylium-based compound represented by the formula (III-2).
  • R m , R n and Y satisfy the following condition (i) or (ii).
  • Condition (i) A plurality of R m each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR e R f group.
  • R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
  • a plurality of R n each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR g R h group.
  • R g and R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , Represents -L b , -L c , -L d or -L e ).
  • a plurality of Y each independently represents a —NR j R k group.
  • R j and R k each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
  • L 1, L a, L b , L c, L d, L e is, L 1 defined in independent to the formula (I), L a, L b, L c, L d, and L e It is synonymous.
  • At least one of two R m on one benzene ring is bonded to Y on the same benzene ring to form a heterocycle having 5 or 6 member atoms containing at least one nitrogen atom; the heterocyclic ring may have a substituent, R m which is not involved in the formation of R n and the heterocyclic ring is the same meaning as R n and R m of the independently (i).
  • X is, -O -, - S -, - Se -, - N (R c) - or -C (R d R d) - a represents; plural R c is respectively Each independently represents a hydrogen atom, -L a , -L b , -L c , -L d or -L e ; a plurality of R d s independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, Represents a nitro group, a carboxy group, a phosphate group, —L 1 or —NR e R f group, and adjacent R d groups may be linked to form an optionally substituted ring; L a ⁇ L e, L 1 has the same meaning as L a ⁇ L e defined by formula (I), R e and R f have the same meanings as R
  • the left and right substituents bonded to the central four-membered ring of the squarylium-based compound may be the same or different, but it is preferable that they are the same because synthesis is easier.
  • the squarylium compound may be synthesized by a generally known method, for example, a method described in JP-A-1-228960, JP-A-2001-40234, JP-A-3196383, or the like. Etc. and can be synthesized.
  • phthalocyanine compound those having an arbitrary structure other than the compound (A) can be used.
  • Japanese Patent No. 4081149 and “phthalocyanine -chemistry and function” IPC, 1997). In the year).
  • cyanine compounds a compound having a generally known structure can be used, and for example, it can be synthesized by a method described in JP-A-2009-108267.
  • the resin substrate contains a transparent resin and the compound (A).
  • the transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher.
  • Tg glass transition temperature
  • the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
  • the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, Particularly preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000.
  • the average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
  • the transparent resin examples include cyclic olefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, polysulfones. Resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl Examples include ester resins and silsesquioxane resins.
  • the cyclic olefin-based resin is obtained from at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ).
  • a resin and a resin obtained by hydrogenating the resin are preferable.
  • R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
  • a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (v ′) a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) polar group (excluding (iv ′))
  • R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
  • Ix ′ A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
  • R y1 and R y2 each independently represents an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently 0 or a positive integer.
  • the aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
  • R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represent an integer of 0 to 4.
  • the aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
  • R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms
  • Z represents a single bond, —O—, —S—, —SO 2 —,> C ⁇ O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms
  • e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
  • R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in the formula (2), and R 5 , R 6 , Z, n, e and f are independently the same as R 5 , R 6 , Z, n, e and f in the formula (3).
  • the polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit.
  • the polyimide resin is synthesized by a method described in JP-A-2006-199945 and JP-A-2008-163107. can do.
  • the fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized by, for example, a method described in JP-A-2008-163194.
  • the fluorene polyester resin is not particularly limited and may be any polyester resin containing a fluorene moiety.
  • the fluorene polyester resin can be synthesized by a method described in JP 2010-285505 A or JP 2011-197450 A. it can.
  • the fluorinated aromatic polymer-based resin is not particularly limited, but at least one selected from the group consisting of an aromatic ring having at least one fluorine, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond. Any polymer containing a repeating unit containing one bond may be used, and for example, it can be synthesized by the method described in JP-A-2008-181121.
  • ⁇ Commercial product ⁇ The following commercial products etc. can be mentioned as a commercial item of transparent resin.
  • Examples of commercially available cyclic olefin-based resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation.
  • Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd.
  • Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited.
  • Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd.
  • acrylic resin there can be cited NIPPON CATALYST ACRYVIEWER Co., Ltd.
  • Examples of commercially available silsesquioxane resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
  • the resin substrate is a dye that absorbs near infrared rays other than the antioxidant, the near ultraviolet absorber, the compound (A) and the near infrared absorbing dye (X) (hereinafter “ It may also contain additives such as “other near-infrared absorbing dyes”), fluorescence quenchers, and metal complex compounds.
  • substrate can be made easy by adding a leveling agent and an antifoamer.
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and And tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane.
  • Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds.
  • Examples of the other near infrared absorbing dyes include dithiol dyes, diimonium dyes, porphyrin dyes, and croconium dyes. The structures of these dyes are not particularly limited, and generally known ones can be used as long as the effects of the present invention are not impaired.
  • additives may be mixed with a resin or the like when a resin substrate is manufactured, or may be added when a resin is manufactured.
  • the addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. Part.
  • the resin substrate can be formed by, for example, melt molding or cast molding, and if necessary, is manufactured by a method of coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent after molding. be able to.
  • a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent after molding.
  • the resin substrate is a method of melt-molding pellets obtained by melt-kneading a resin and a near-infrared absorbing dye; a method of melt-molding a resin composition containing a resin and a near-infrared absorbing dye; or It can be produced by a method of melt-molding pellets obtained by removing a solvent from a resin composition containing a near-infrared absorbing dye, a resin and a solvent.
  • the melt molding method include injection molding, melt extrusion molding, and blow molding.
  • the resin substrate is formed by casting a resin composition containing a near-infrared absorbing dye, a resin and a solvent on a suitable base material to remove the solvent; and a curable resin composition containing a near-infrared absorbing dye and a resin. It can also be produced by a method of applying on a suitable substrate, drying and curing, and the like.
  • the substrate examples include a glass plate, a steel belt, a steel drum, and a transparent resin (for example, a polyester film and a cyclic olefin resin film).
  • the resin substrate can be obtained by peeling from the base material, and unless the effect of the present invention is impaired, the laminate of the base material and the coating film is not peeled from the base material. It is good.
  • the optical component such as glass plate, quartz or transparent plastic is coated with the resin composition and the solvent is dried, or the curable composition is coated and cured and dried.
  • a resin substrate can also be formed directly on the component.
  • the amount of residual solvent in the resin substrate obtained by the above method should be as small as possible.
  • the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight or less with respect to the weight of the resin substrate.
  • the amount of residual solvent is in the above range, a resin substrate can be obtained in which the deformation and characteristics are hardly changed and a desired function can be easily exhibited.
  • the near-infrared reflective film constituting the optical filter of the present invention is a film having the ability to reflect near-infrared light.
  • the near-infrared reflective film may be provided on one side of the resin substrate or on both sides. When it is provided on one side, it is excellent in production cost and manufacturability, and when it is provided on both sides, an optical filter having high strength and less warpage can be obtained.
  • the optical filter is applied to a solid-state imaging device, it is preferable that the optical filter has a smaller warp. Therefore, it is preferable to provide a near-infrared reflective film on both surfaces of the resin substrate.
  • Examples of the near-infrared reflective film include an aluminum vapor-deposited film, a noble metal thin film, a resin film in which metal oxide fine particles mainly containing indium oxide and containing a small amount of tin oxide are dispersed, a high refractive index material layer, and a low refractive index material.
  • a dielectric multilayer film in which layers are alternately stacked can be mentioned.
  • a dielectric multilayer film in which high refractive index material layers and low refractive index material layers are alternately laminated is more preferable.
  • a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected.
  • examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide, and the like, and titanium oxide, tin oxide. And / or those containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component).
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected.
  • examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
  • the method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed.
  • a body multilayer film can be formed.
  • each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1 ⁇ to 0.5 ⁇ , where ⁇ (nm) is the near infrared wavelength to be blocked.
  • the value of ⁇ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm.
  • the optical film thickness, the high refractive index material layer, and the low refractive index, where the product (n ⁇ d) of the refractive index (n) and the film thickness (d) is calculated by ⁇ / 4.
  • the thickness of each layer of the material layer becomes almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
  • the total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 5 to 60 layers, and more preferably 10 to 50 layers as a whole.
  • the surface hardness of the resin substrate or near-infrared reflective film is between the resin substrate and the near-infrared reflective film such as a dielectric multilayer film within a range not impairing the effects of the present invention.
  • Functional films such as an antireflection film, a hard coat film, and an antistatic film can be provided as appropriate for the purpose of improvement, chemical resistance improvement, antistatic and scratch removal.
  • the surface of the resin substrate or functional film is subjected to corona treatment, plasma treatment, etc.
  • the surface treatment may be performed.
  • the optical filter of the present invention has the resin substrate. For this reason, the optical filter of the present invention has excellent transmittance characteristics and is not restricted when used.
  • the compound (A) contained in the resin substrate has an absorption maximum at a wavelength of 700 to 800 nm, it can efficiently absorb near-infrared light. When combined with the near-infrared reflective film, the incident angle is increased. An optical filter with less dependency can be obtained.
  • a wavelength value (Xa) at which the transmittance is 50% when measured from the vertical direction of the optical filter in the wavelength range of 560 to 800 nm By using the resin substrate for an optical filter such as a near-infrared cut filter, a wavelength value (Xa) at which the transmittance is 50% when measured from the vertical direction of the optical filter in the wavelength range of 560 to 800 nm.
  • the absolute value of the difference from the wavelength value (Xb) at which the transmittance is 50% when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, and the optical filter in the wavelength range of 560 to 800 nm The wavelength value (Za) at which the transmittance is 10% when measured from the vertical direction and the wavelength value at which the transmittance is 10% when measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
  • the absolute value of the difference from (Zb) becomes small, the incident angle dependence of the absorption wavelength is small, and an optical filter having a wide viewing angle can be obtained even near the bottom of the transmission wavelength region.
  • the absolute value of the difference between (Xa) and (Xb) is preferably less than 20 nm, more preferably less than 15 nm, particularly preferably less than 10 nm, and the difference between (Za) and (Zb) The absolute value is preferably 18 nm or less, particularly preferably 15 nm or less.
  • the visible light transmittance is higher.
  • the average transmittance at a wavelength of 430 to 460 nm is preferably 81% or more, more preferably 83% or more, and particularly preferably 85% or more.
  • the average transmittance at wavelengths of 461 to 580 nm is preferably higher, preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more.
  • the transmittance in the near infrared wavelength region is low.
  • the light receiving sensitivity of the solid-state imaging device is relatively high in the wavelength region of 800 to 1000 nm.
  • the average transmittance at a wavelength of 800 to 1000 nm is preferably 15% or less, more preferably 10% or less, and particularly preferably 5% or less.
  • the average transmittance at a wavelength of 800 to 1000 nm is in this range, it is preferable because near infrared rays can be sufficiently cut and excellent color reproducibility can be achieved.
  • the optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
  • a solid-state imaging device such as a CCD or CMOS image sensor of a camera module.
  • it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
  • the solid-state imaging device of the present invention includes the optical filter of the present invention.
  • the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor, and specifically includes a digital still camera, a mobile phone camera, a digital video camera, and the like.
  • the camera module of the present invention includes the optical filter of the present invention.
  • Parts means “parts by weight” unless otherwise specified.
  • the measurement method of each physical property value and the evaluation method of the physical property are as follows.
  • the molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
  • GPC gel permeation chromatography
  • Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgel ⁇ -M, developing solvent: THF) manufactured by Tosoh Corporation.
  • the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the said method.
  • (C) A part of the polyimide resin solution was added to anhydrous methanol to precipitate the polyimide resin, and filtered to separate from the unreacted monomer.
  • 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity ( ⁇ ) at 30 ° C. is obtained by the following formula using a Canon-Fenske viscometer. Asked.
  • ⁇ ln (t s / t 0) ⁇ / C t 0 : Flowing time of solvent t s : Flowing time of dilute polymer solution C: 0.5 g / dL ⁇ Glass transition temperature (Tg)> Using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc., the rate of temperature increase was measured at 20 ° C. per minute under a nitrogen stream.
  • the transmittance at the absorption maximum wavelength and the absorption maximum wavelength of the resin substrate, the transmittance at each wavelength region of the optical filter, (Xa), (Xb), (Za) and (Zb) are spectroscopic products manufactured by Hitachi High-Technologies Corporation. Measurement was performed using a photometer (U-4100).
  • permeability was measured using this spectrophotometer on the conditions that light injects perpendicularly with respect to a board
  • (Xb) or (Zb) it is measured using the spectrophotometer under the condition that light is incident at an angle of 30 ° with respect to the vertical direction of the filter.
  • the resin substrate was exposed to an indoor fluorescent lamp (illuminance of 1000 lux) for 500 hours, and the light resistance (environmental light resistance) of the near-infrared absorbing dye contained in the resin was evaluated.
  • the light resistance is fluorescence at a wavelength with the highest absorption intensity of the resin substrate (hereinafter referred to as “ ⁇ a”.
  • ⁇ a is a wavelength with the highest absorption intensity among them.
  • the pigment residual ratio (%) was calculated from the change in absorbance before and after exposure to the lamp and evaluated.
  • the dye residual ratio after exposure with a fluorescent lamp for 500 hours is preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • Dodec-3-ene hereinafter also referred to as “DNM”) 100 parts, 1-hexene (molecular weight regulator) 18 parts, and toluene (ring-opening polymerization solvent) 300 parts nitrogen-substituted reaction The vessel was charged and the solution was heated to 80 ° C.
  • the obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
  • the obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
  • resin C A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide.
  • the IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed.
  • Resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
  • the temperature was raised to 240 ° C. at a rate of 37.5 ° C./Hr, held at 240 ° C. and 150 Torr for 10 minutes, adjusted to 120 Torr over 10 minutes, held at 240 ° C. and 120 Torr for 70 minutes, Further, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes. Thereafter, the polymerization reaction was carried out by stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less at 40 ° C. over 1 Torr.
  • resin D polycarbonate resin
  • the precipitated reaction product was separated by filtration, washed with distilled water and methanol, and then dried under reduced pressure to obtain a fluorinated polyether ketone (hereinafter also referred to as “resin F”).
  • the obtained resin F had a number average molecular weight of 71,000 and a glass transition temperature (Tg) of 242 ° C.
  • Example 1 In a container, 100 parts by weight of the resin A obtained in Resin Synthesis Example 1, 0.06 parts by weight of the compound (a-12) described in Table 1 above as the compound (A) (absorption maximum wavelength 736 nm in dichloromethane), And methylene chloride was added to obtain a solution having a resin concentration of 20% by weight. Subsequently, the obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
  • the spectral transmittance of this substrate was measured, and the absorption maximum wavelength of the resin substrate, the transmittance at the absorption maximum wavelength, and the dye residual ratio after the light resistance test were determined to be 736 nm, 2%, and 100%, respectively. .
  • the results are shown in Table 2.
  • a multilayer deposited film reflecting a near infrared ray at a deposition temperature of 100 ° C. [silica (SiO 2 : film thickness 83 to 199 nm) layer and titanium oxide (TiO 2 : film thickness 101 to 125 nm)
  • a multilayer deposited film [silica (SiO 2 : film thickness 77) reflecting near infrared rays at a deposition temperature of 100 ° C. is formed on the other surface of the substrate.
  • the average transmittance at wavelengths 430 to 460 nm is 87%, the average transmittance at wavelengths 461 to 580 nm is 91%, the average transmittance at wavelengths 800 to 1000 nm is 1% or less, and the absolute value
  • Table 2 The results are shown in Table 2.
  • Example 2 an optical filter having a thickness of 0.105 mm was produced in the same manner as in Example 1 except that the transparent resin, near-infrared absorbing dye, solvent, and film drying conditions shown in Table 2 were employed.
  • the evaluation results are shown in Table 2.
  • Table 2 the number of added parts of the resin is 100 parts by weight, and the concentration of the resin solution is 20% by weight.
  • the various compounds used in the examples and comparative examples are as follows.
  • Resin A Cyclic olefin resin (resin synthesis example 1)
  • Resin B Aromatic polyether resin (resin synthesis example 2)
  • Resin C Polyimide resin (resin synthesis example 3)
  • Resin D Fluorene polycarbonate resin (resin synthesis example 4)
  • Resin E Fluorene polyester resin (resin synthesis example 5)
  • Resin F Fluorinated polyether ketone (resin synthesis example 6)
  • Resin G Cyclic olefin resin “Zeonor 1420R” (manufactured by Nippon Zeon Co., Ltd.)
  • Resin H Cyclic olefin resin “APEL # 6015” (manufactured by Mitsui Chemicals, Inc.)
  • Resin I Polycarbonate resin “Pure Ace” (manufactured by Teijin Limited)
  • Resin J Polyethersulfone resin “Sumilite FS-1300” (Sumitom
  • Compound (X-2) A squarylium compound represented by the following formula (X-2) (maximum absorption wavelength in dichloromethane: 698 nm)
  • Compound (X-3) a cyanine compound represented by the following formula (X-3) (absorption maximum wavelength in dichloromethane: 681 nm)
  • Compound (X-5) phthalocyanine compound represented by the following formula (X-5) (absorption maximum wavelength in dichloromethane: 733 nm)
  • Solvent (1) Methylene chloride
  • Solvent (2) N, N-dimethylacetamide
  • Solvent (3) Ethyl acetate / toluene (weight ratio: 5/5)
  • Solvent (4) cyclohexane / xylene (weight ratio: 7/3)
  • Solvent (5) cyclohexane / methylene chloride (weight ratio: 99/1)
  • Solvent (6) N-methyl-2-pyrrolidone
  • Table 2 the film drying conditions of Examples and Comparative Examples are as follows. In addition, the coating film was peeled from the glass plate before drying under reduced pressure.
  • the optical filter of the present invention is a digital still camera, a mobile phone camera, a digital video camera, a personal computer camera, a surveillance camera, an automobile camera, a television, an in-vehicle device for a car navigation system, a portable information terminal, a video game machine, a mobile phone. It can be suitably used for game machines, fingerprint authentication system devices, digital music players, and the like. Furthermore, it can be suitably used as a heat ray cut filter or the like attached to glass or the like of automobiles and buildings.
  • Optical filter 2 Spectrophotometer 3: Light

Abstract

The objective of the present invention is to provide: an optical filter which remedies the faults of conventional optical filters such as near-infrared blocking filters and contains a near-infrared absorbing dye that has a sufficient absorption intensity in a wavelength range near 700-750 nm, while having excellent transmittance even in a visible wavelength range on the short wavelength side; and a device which uses this optical filter. An optical filter according to the present invention is characterized by comprising: a transparent resin substrate that contains a compound (A) represented by formula (I); and a near-infrared light reflecting film that is formed on at least one surface of the substrate.

Description

光学フィルターおよび光学フィルターを用いた装置Optical filter and device using optical filter
 本発明は、光学フィルターおよび光学フィルターを用いた装置に関する。詳しくは、特定の溶剤可溶型の色素化合物を含む光学フィルター、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。 The present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter containing a specific solvent-soluble dye compound, and a solid-state imaging device and a camera module using the optical filter.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されているが、これら固体撮像素子は、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過もしくはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。 A solid-state image pickup device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state image pickup device for a color image. Silicon photodiodes that are sensitive to near infrared rays that cannot be sensed by the eyes are used. These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye. Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.
 このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、基材として透明樹脂を用い、透明樹脂中に近赤外線吸収色素を含有させた近赤外線カットフィルターが知られており(例えば特許文献1参照)、特に、近赤外線吸収色素としてフタロシアニン系化合物を用いた近赤外線カットフィルターが広く知られている(例えば特許文献2参照)。 As such a near-infrared cut filter, those manufactured by various methods are conventionally used. For example, a near-infrared cut filter in which a transparent resin is used as a base material and a near-infrared absorbing dye is contained in the transparent resin is known (see, for example, Patent Document 1), and in particular, a phthalocyanine compound is used as a near-infrared absorbing dye. The near-infrared cut filter used is widely known (see, for example, Patent Document 2).
 しかしながら、通常のフタロシアニン系化合物は吸収極大波長が650~700nm未満である場合が多く、吸収極大波長を固体撮像装置用途として特に好適に用いられる波長範囲(700~800nm)まで長波長シフトできるような構造とすると、430~460nm付近の短波長側可視透過率が顕著に低下してしまうという問題があった。 However, ordinary phthalocyanine compounds often have an absorption maximum wavelength of less than 650 to 700 nm, and the absorption maximum wavelength can be shifted to a wavelength range (700 to 800 nm) that is particularly suitable for use as a solid-state imaging device. With the structure, there is a problem that the visible transmittance on the short wavelength side in the vicinity of 430 to 460 nm is remarkably lowered.
 フタロシアニン系化合物の吸収極大を長波長シフトさせる手法としては、アルコキシ基やアルキル置換アミノ基、アルキルチオ基などの電子供与性基をフタロシアニン環に導入する手法が一般的に知られている(例えば特許文献3参照)。しかしながら、このような置換基がフタロシアニン環に結合していると、置換基上の非共有電子対からフタロシアニン環への電荷移動遷移が起こり、この遷移に由来する吸収が短波長側可視域に発生してしまうため、特に430~460nm付近の透過率が低下してしまう。 As a technique for shifting the absorption maximum of a phthalocyanine compound by a long wavelength, a technique in which an electron donating group such as an alkoxy group, an alkyl-substituted amino group, or an alkylthio group is introduced into a phthalocyanine ring is generally known (for example, Patent Documents). 3). However, when such a substituent is bonded to the phthalocyanine ring, a charge transfer transition from the unshared electron pair on the substituent to the phthalocyanine ring occurs, and absorption resulting from this transition occurs in the visible region on the short wavelength side. Therefore, the transmittance particularly in the vicinity of 430 to 460 nm is lowered.
 また、一般的なフタロシアニン系化合物は、樹脂中などにおいて環同士がスタッキングするH会合状態となりやすいことが知られている。フタロシアニン系化合物がH会合を起こすと、例えば、特開2013-083915号公報(特許文献4)の実施例1に記載されたスペクトルのように吸収極大付近の吸収強度が弱いブロードな波形となってしまい、固体撮像素子用途に求められる光学特性を達成できない場合があった。 Further, it is known that a general phthalocyanine compound is likely to be in an H association state in which rings are stacked in a resin or the like. When the phthalocyanine-based compound undergoes H association, for example, a broad waveform having a weak absorption intensity near the absorption maximum is obtained as in the spectrum described in Example 1 of JP2013-083915A (Patent Document 4). As a result, the optical characteristics required for solid-state imaging device applications may not be achieved.
特開平6-200113号公報Japanese Patent Laid-Open No. 6-200113 特開2013-064975号公報JP 2013-064975 A 特許第4278923号公報Japanese Patent No. 4278923 特開2013-083915号公報JP2013-083915A
 本発明の目的は、従来の近赤外線カットフィルター等の光学フィルターが有していた欠点を改良し、近赤外線吸収色素が700~750nm付近の波長域に十分な吸収強度を有し、かつ、短波長側の可視波長域においても透過率に優れる光学フィルターおよび該光学フィルターを用いた装置を提供することにある。 An object of the present invention is to improve the drawbacks of conventional optical filters such as near-infrared cut filters, and the near-infrared absorbing dye has sufficient absorption intensity in the wavelength region near 700 to 750 nm and is short. An object of the present invention is to provide an optical filter having excellent transmittance in a visible wavelength region on the wavelength side, and an apparatus using the optical filter.
 本発明者らは、前記課題を達成するために鋭意検討した結果、特定の構造を有するフタロシアニン系化合物を適用することにより、目的とする吸収極大波長、および樹脂中における吸収強度を達成し、近赤外線吸収特性および可視透過率に優れた光学フィルターが得られることを見出し、本発明を完成するに至った。本発明の態様の例を以下に示す。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have achieved a target absorption maximum wavelength and absorption strength in a resin by applying a phthalocyanine compound having a specific structure. The inventors have found that an optical filter having excellent infrared absorption characteristics and visible transmittance can be obtained, and have completed the present invention. Examples of embodiments of the present invention are shown below.
 [1] 下記式(I)で表される化合物(A)を含有する透明樹脂製基板と、前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有することを特徴とする光学フィルター。 [1] An optical device comprising: a transparent resin substrate containing a compound (A) represented by the following formula (I); and a near-infrared reflective film formed on at least one surface of the substrate. filter.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、または3価もしくは4価の金属原子を含む置換金属原子を表し、複数あるRaは独立にL1を表し、複数あるRbは独立に水素原子、ハロゲン原子、L1または-SO2-L2を表し、
 L1は下記La、LbまたはLcを表し、L2は下記La、Lb、Lc、LdまたはLeを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数3~14の複素環基
 前記La~Leは、さらに、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、および炭素数1~12のアルコキシ基からなる群より選ばれる少なくとも1種の置換基Lを有してもよい。
In the formula (I), M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom containing a trivalent or tetravalent metal atom, and a plurality of R a independently represents L 1, and a plurality of R b s independently represent a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2 ,
L 1 is below L a, represents L b or L c, L 2 represents a following L a, L b, L c , L d or L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon An aromatic hydrocarbon group having 6 to 14 carbon atoms (L e ), a heterocyclic group having 3 to 14 carbon atoms, and the L a to Le are further an aliphatic hydrocarbon group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms. Halogen-substituted alkyl group, alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of
 [2] 前記式(I)において、Mが、周期表4族~12族、且つ、第4周期~第5周期に属する、2価の遷移金属、3価もしくは4価の金属ハロゲン化物または4価の金属酸化物であり、Raが、独立に炭素数1~10のアルキル基、炭素数1~6のフッ素置換アルキル基、シクロペンチル基またはシクロヘキシル基であり、Rbが、独立に水素原子、フッ素原子、炭素数1~10のアルキル基、シクロペンチル基、シクロヘキシル基または-SO2-L2であり、L2が、炭素数1~6のアルキル基、炭素数6~12の芳香族炭化水素基または炭素数3~6の複素環基である項[1]に記載の光学フィルター。 [2] In the above formula (I), M is a divalent transition metal, a trivalent or tetravalent metal halide belonging to groups 4 to 12 and 4th to 5th of the periodic table, or 4 R a is independently an alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, or a cyclohexyl group, and R b is independently a hydrogen atom , A fluorine atom, an alkyl group having 1 to 10 carbon atoms, a cyclopentyl group, a cyclohexyl group, or —SO 2 —L 2 , and L 2 is an alkyl group having 1 to 6 carbon atoms and an aromatic carbon atom having 6 to 12 carbon atoms The optical filter according to Item [1], which is a hydrogen group or a heterocyclic group having 3 to 6 carbon atoms.
 [3] 前記透明樹脂製基板を構成する透明樹脂が、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂からなる群より選ばれる少なくとも1種の樹脂である項[1]または[2]に記載の光学フィルター。 [3] The transparent resin constituting the transparent resin substrate is a cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, poly Allylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin The optical filter according to Item [1] or [2], which is at least one resin selected from the group consisting of an allyl ester resin and a silsesquioxane resin.
 [4] 前記近赤外線反射膜が、前記基板の両面上に形成されている項[1]~[3]のいずれか1項に記載の光学フィルター。
 [5] 固体撮像装置用である項[1]~[4]のいずれか1項に記載の光学フィルター。
[4] The optical filter according to any one of items [1] to [3], wherein the near-infrared reflective film is formed on both surfaces of the substrate.
[5] The optical filter according to any one of items [1] to [4], which is for a solid-state imaging device.
 [6] 項[1]~[5]のいずれか1項に記載の光学フィルターを具備する固体撮像装置。
 [7] 項[1]~[5]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。
[6] A solid-state imaging device comprising the optical filter according to any one of items [1] to [5].
[7] A camera module comprising the optical filter according to any one of items [1] to [5].
 [8] 下記式(I)で表される化合物(A)と、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂からなる群より選ばれる少なくとも1種の樹脂とを含有する樹脂組成物。 [8] Compound (A) represented by the following formula (I), cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide system Resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, A resin composition containing at least one resin selected from the group consisting of epoxy resins, allyl ester resins, and silsesquioxane resins.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(I)中、Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、または3価もしくは4価の金属原子を含む置換金属原子を表し、複数あるRaは独立にL1を表し、複数あるRbは独立に水素原子、ハロゲン原子、L1または-SO2-L2を表し、
 L1は下記La、LbまたはLcを表し、L2は下記La、Lb、Lc、LdまたはLeを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数3~14の複素環基
 前記La~Leは、さらに、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、および炭素数1~12のアルコキシ基からなる群より選ばれる少なくとも1種の置換基Lを有してもよい。
In the formula (I), M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom containing a trivalent or tetravalent metal atom, and a plurality of R a independently represents L 1, and a plurality of R b s independently represent a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2 ,
L 1 is below L a, represents L b or L c, L 2 represents a following L a, L b, L c , L d or L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon An aromatic hydrocarbon group having 6 to 14 carbon atoms (L e ), a heterocyclic group having 3 to 14 carbon atoms, and the L a to Le are further an aliphatic hydrocarbon group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms. Halogen-substituted alkyl group, alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of
 本発明によれば、入射角依存性が少なく、耐光性や700~750nm付近の近赤外線吸収特性、および可視波長域での透過率特性に優れた光学フィルターを提供することができる。 According to the present invention, it is possible to provide an optical filter that is less dependent on the incident angle, has excellent light resistance, near-infrared absorption characteristics near 700 to 750 nm, and transmittance characteristics in the visible wavelength region.
図1(a)は、光学フィルターの垂直方向から測定した場合の透過率を測定する方法を示す概略図である。図1(b)は、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率を測定する方法を示す概略図である。FIG. 1A is a schematic diagram showing a method for measuring the transmittance when measured from the vertical direction of the optical filter. FIG. 1B is a schematic diagram illustrating a method of measuring the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter.
 以下、本発明について具体的に説明する。
 本発明に係る光学フィルターは、特定の構造で表されるフタロシアニン系化合物(化合物(A))を含有する透明樹脂製基板と、前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有する。
Hereinafter, the present invention will be specifically described.
An optical filter according to the present invention includes a transparent resin substrate containing a phthalocyanine compound (compound (A)) represented by a specific structure, and a near-infrared reflective film formed on at least one surface of the substrate. Have
 [透明樹脂製基板]
 本発明の光学フィルターを構成する透明樹脂製基板(以下「樹脂製基板」ともいう。)は、単層であっても多層(多層の場合、例えば、ベースとなる樹脂基板上に硬化樹脂からなるオーバーコート層などが積層された構成)であってもよく、近赤外線吸収色素として少なくとも化合物(A)を1種以上含有しており、吸収極大が波長700~800nm、より好ましくは705~750nmの範囲にあり、吸収極大波長における透過率が好ましくは10%以下、さらに好ましくは8%以下である。基板の吸収極大波長や吸収極大波長における透過率がこのような範囲にあれば、該基板は近赤外線を選択的に効率よくカットすることができるとともに、透明樹脂基板の面上に近赤外線反射膜を製膜した際、可視波長~近赤外波長域付近の光学特性の入射角依存性を低減することができる。
[Transparent resin substrate]
The transparent resin substrate (hereinafter also referred to as “resin substrate”) constituting the optical filter of the present invention may be a single layer or a multilayer (in the case of a multilayer, for example, a cured resin on a base resin substrate). A composition in which an overcoat layer or the like is laminated), and contains at least one compound (A) as a near-infrared absorbing dye, and has an absorption maximum of 700 to 800 nm, more preferably 705 to 750 nm. The transmittance at the absorption maximum wavelength is preferably 10% or less, and more preferably 8% or less. When the absorption maximum wavelength of the substrate and the transmittance at the absorption maximum wavelength are in such a range, the substrate can selectively and efficiently cut near infrared rays, and a near infrared reflecting film on the surface of the transparent resin substrate. When the film is formed, it is possible to reduce the incident angle dependency of the optical characteristics in the visible wavelength to near infrared wavelength region.
 カメラモジュールなどの用途によっては、波長400~700nmのいわゆる可視光領域において、化合物(A)を含有した樹脂製基板の厚みを100μmとした時の該基板の平均透過率が50%以上、好ましくは65%以上であることが必要な場合もある。 Depending on the application of the camera module or the like, in the so-called visible light region having a wavelength of 400 to 700 nm, the average transmittance of the substrate when the thickness of the resin substrate containing the compound (A) is 100 μm is preferably 50% or more, preferably It may be necessary to be 65% or more.
 前記樹脂製基板の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、該基板が前記のような入射角依存改良性を有するように調整することが好ましく、より好ましくは30~250μm、さらに好ましくは40~200μm、特に好ましくは50~150μmである。 The thickness of the resin substrate can be appropriately selected according to the desired application, and is not particularly limited. However, it is preferable to adjust the substrate so that the incident angle dependency is improved as described above, and more preferably. Is 30 to 250 μm, more preferably 40 to 200 μm, particularly preferably 50 to 150 μm.
 樹脂製基板の厚みが前記範囲にあると、該基板を用いた光学フィルターを小型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記樹脂性基板をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化を実現することができるため好ましい。 When the thickness of the resin substrate is in the above range, the optical filter using the substrate can be reduced in size and weight, and can be suitably used for various applications such as a solid-state imaging device. In particular, when the resinous substrate is used in a lens unit such as a camera module, it is preferable because a low-profile lens unit can be realized.
 前記樹脂製基板は、化合物(A)に加え、さらに、スクアリリウム系化合物、化合物(A)以外のフタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種の近赤外線吸収色素(X)を含有することができる。このような樹脂製基板を用いることにより、可視波長域~近赤外波長域での入射角依存性をさらに小さくすることができる上、吸収帯の波形をさらにシャープにでき、視野角が広い光学フィルターを得ることができる。 In addition to the compound (A), the resin substrate further comprises at least one near infrared absorbing dye (X) selected from the group consisting of a squarylium compound, a phthalocyanine compound other than the compound (A), and a cyanine compound. Can be contained. By using such a resin substrate, the incident angle dependency in the visible wavelength region to the near infrared wavelength region can be further reduced, the absorption band waveform can be further sharpened, and a wide viewing angle can be obtained. A filter can be obtained.
 前記化合物(A)と前記近赤外線吸収色素(X)は、同一の層に含まれていても別々の層に含まれていてもよい。同一の層に含まれる場合は、例えば、化合物(A)と近赤外線吸収色素(X)がともにベースとなる樹脂基板中に含まれる形態を挙げることができ、別々の層に含まれる場合は、例えば、化合物(A)が含まれる樹脂製基板上に前記近赤外線吸収色素(X)が含まれる層が積層されている形態を挙げることができる。 The compound (A) and the near-infrared absorbing dye (X) may be contained in the same layer or in different layers. When included in the same layer, for example, a form in which both the compound (A) and the near-infrared absorbing dye (X) are included in the base resin substrate can be mentioned, and when included in separate layers, For example, the form by which the layer containing the said near-infrared absorption pigment | dye (X) is laminated | stacked on the resin-made board | substrates containing a compound (A) can be mentioned.
 化合物(A)と近赤外線吸収色素(X)は、同一の層に含まれている方がより好ましく、このような場合、別々の層に含まれる場合よりも化合物(A)と近赤外線吸収色素(X)の含有量比率を制御することがより容易となる。 The compound (A) and the near-infrared absorbing dye (X) are more preferably contained in the same layer. In such a case, the compound (A) and the near-infrared absorbing dye are contained in a case where they are contained in separate layers. It becomes easier to control the content ratio of (X).
 <化合物(A)>
 化合物(A)は、下記式(I)で表されるフタロシアニン系化合物である。
<Compound (A)>
The compound (A) is a phthalocyanine compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(I)中、Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、または3価もしくは4価の金属原子を含む置換金属原子を表し、複数あるRaは独立にL1を表し、複数あるRbは独立に水素原子、ハロゲン原子、L1または-SO2-L2を表し、
 L1は下記La、LbまたはLcを表し、L2は下記La、Lb、Lc、LdまたはLeを表し、
(La)炭素数1~12の脂肪族炭化水素基
(Lb)炭素数1~12のハロゲン置換アルキル基
(Lc)炭素数3~14の脂環式炭化水素基
(Ld)炭素数6~14の芳香族炭化水素基
(Le)炭素数3~14の複素環基
 前記La~Leは、さらに、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、および炭素数1~12のアルコキシ基からなる群より選ばれる少なくとも1種の置換基Lを有してもよい。
In the formula (I), M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a substituted metal atom containing a trivalent or tetravalent metal atom, and a plurality of R a independently represents L 1, and a plurality of R b s independently represent a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2 ,
L 1 is below L a, represents L b or L c, L 2 represents a following L a, L b, L c , L d or L e,
(L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon An aromatic hydrocarbon group having 6 to 14 carbon atoms (L e ), a heterocyclic group having 3 to 14 carbon atoms, and the L a to Le are further an aliphatic hydrocarbon group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms. Halogen-substituted alkyl group, alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of
 前記La~Leは、置換基を含めた炭素数の合計が、それぞれ50以下であることが好ましく、炭素数40以下であることが更に好ましく、炭素数30以下であることが特に好ましい。炭素数がこの範囲よりも多いと、色素の合成が困難となる場合があるとともに、単位重量あたりの吸収強度が小さくなってしまう傾向がある。 Wherein L a ~ L e is the total number of carbon atoms including the substituent is preferably respectively 50 or less, still more preferably a few 40 or less carbon atoms, and particularly preferably 30 or less carbon atoms. When the number of carbon atoms is larger than this range, it may be difficult to synthesize the dye, and the absorption intensity per unit weight tends to decrease.
 前記LaおよびLにおける炭素数1~12の脂肪族炭化水素基としては、例えば、メチル基(Me)、エチル基(Et)、n-プロピル基(n-Pr)、イソプロピル基(i-Pr)、n-ブチル基(n-Bu)、sec-ブチル基(s-Bu)、tert-ブチル基(t-Bu)、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基およびドデシル基等のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、ブテニル基、1,3-ブタジエニル基、2-メチル-1-プロペニル基、2-ペンテニル基、ヘキセニル基およびオクテニル基等のアルケニル基;ならびに、エチニル基、プロピニル基、ブチニル基、2-メチル-1-プロピニル基、ヘキシニル基およびオクチニル基等のアルキニル基を挙げることができる。 The aliphatic hydrocarbon group L a and 1 to 12 carbon atoms in L, such as a methyl group (Me), ethyl (Et), n-propyl group (n-Pr), isopropyl (i-Pr ), N-butyl group (n-Bu), sec-butyl group (s-Bu), tert-butyl group (t-Bu), pentyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, etc. Alkyl groups such as vinyl group, 1-propenyl group, 2-propenyl group, butenyl group, 1,3-butadienyl group, 2-methyl-1-propenyl group, 2-pentenyl group, hexenyl group and octenyl group And alkynyl groups such as ethynyl group, propynyl group, butynyl group, 2-methyl-1-propynyl group, hexynyl group and octynyl group.
 前記LbおよびLにおける炭素数1~12のハロゲン置換アルキル基としては、例えば、トリクロロメチル基、トリフルオロメチル基、1,1-ジクロロエチル基、ペンタクロロエチル基、ペンタフルオロエチル基、ヘプタクロロプロピル基およびヘプタフルオロプロピル基を挙げることができる。 Examples of the halogen-substituted alkyl group having 1 to 12 carbon atoms in L b and L include, for example, a trichloromethyl group, a trifluoromethyl group, a 1,1-dichloroethyl group, a pentachloroethyl group, a pentafluoroethyl group, a heptachloro group. Mention may be made of propyl and heptafluoropropyl groups.
 前記LcおよびLにおける炭素数3~14の脂環式炭化水素基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基およびシクロオクチル基等のシクロアルキル基;ノルボルナン基およびアダマンタン基等の多環脂環式基を挙げることができる。 Examples of the alicyclic hydrocarbon group having 3 to 14 carbon atoms in L c and L include, for example, a cycloalkyl group such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group; a norbornane group and an adamantane group And polycyclic alicyclic groups such as
 前記LdおよびLにおける炭素数6~14の芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントリル基、アセナフチル基、フェナレニル基、テトラヒドロナフチル基、インダニル基およびビフェニリル基を挙げることができる。 Examples of the aromatic hydrocarbon group having 6 to 14 carbon atoms in L d and L include, for example, phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 1-naphthyl group, 2-naphthyl group, anthracenyl group, Mention may be made of phenanthryl, acenaphthyl, phenalenyl, tetrahydronaphthyl, indanyl and biphenylyl groups.
 前記LeおよびLにおける炭素数3~14の複素環基としては、例えば、フラン、チオフェン、ピロール、ピラゾール、イミダゾール、トリアゾール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、インドール、インドリン、インドレニン、ベンゾフラン、ベンゾチオフェン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ピリジン、ピリミジン、ピラジン、ピリダジン、キノリン、イソキノリン、アクリジン、モルホリンおよびフェナジン等の複素環からなる基を挙げることができる。 Examples of the heterocyclic group having 3 to 14 carbon atoms in Le and L include, for example, furan, thiophene, pyrrole, pyrazole, imidazole, triazole, oxazole, oxadiazole, thiazole, thiadiazole, indole, indoline, indolenine, and benzofuran. Benzothiophene, carbazole, dibenzofuran, dibenzothiophene, pyridine, pyrimidine, pyrazine, pyridazine, quinoline, isoquinoline, acridine, morpholine and phenazine.
 前記Laとしては、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、4-フェニルブチル基、2-シクロヘキシルエチルであり、より好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基である。 As the L a, preferably a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, sec- butyl group, tert- butyl group, a pentyl group, a hexyl group, an octyl group, 4-phenylbutyl 2-cyclohexylethyl, more preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl and hexyl.
 前記Lbとしては、好ましくはトリクロロメチル基、ペンタクロロエチル基、トリフルオロメチル基、ペンタフルオロエチル基、5-シクロヘキシル-2,2,3,3-テトラフルオロペンチル基であり、より好ましくはトリクロロメチル基、ペンタクロロエチル基、トリフルオロメチル基、ペンタフルオロエチル基である。 L b is preferably a trichloromethyl group, a pentachloroethyl group, a trifluoromethyl group, a pentafluoroethyl group, or a 5-cyclohexyl-2,2,3,3-tetrafluoropentyl group, more preferably a trichloromethyl group. A methyl group, a pentachloroethyl group, a trifluoromethyl group, and a pentafluoroethyl group;
 前記Lcとしては、好ましくはシクロブチル基、シクロペンチル基、シクロヘキシル基、4-エチルシクロヘキシル基、シクロオクチル基、4-フェニルシクロヘプチル基であり、より好ましくはシクロペンチル基、シクロヘキシル基、4-エチルシクロヘキシル基である。 L c is preferably a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-ethylcyclohexyl group, a cyclooctyl group, or a 4-phenylcycloheptyl group, and more preferably a cyclopentyl group, a cyclohexyl group, or a 4-ethylcyclohexyl group. It is.
 前記Ldとしては、好ましくはフェニル基、1-ナフチル基、2-ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、3,5-ジ-tert-ブチルフェニル基、4-シクロペンチルフェニル基、2,3,6-トリフェニルフェニル基、2,3,4,5,6-ペンタフェニルフェニル基であり、より好ましくはフェニル基、トリル基、キシリル基、メシチル基、クメニル基、2,3,4,5,6-ペンタフェニルフェニル基である。 The L d is preferably a phenyl group, 1-naphthyl group, 2-naphthyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 3,5-di-tert-butylphenyl group, 4-cyclopentylphenyl group. 2,3,6-triphenylphenyl group, 2,3,4,5,6-pentaphenylphenyl group, more preferably phenyl group, tolyl group, xylyl group, mesityl group, cumenyl group, 2,3 , 4,5,6-pentaphenylphenyl group.
 前記Leとしては、好ましくはフラン、チオフェン、ピロール、インドール、インドリン、インドレニン、ベンゾフラン、ベンゾチオフェン、モルホリンからなる基であり、より好ましくはフラン、チオフェン、ピロール、モルホリンからなる基である。 As the L e, preferably furan, thiophene, pyrrole, indole, indoline, indolenine, benzofuran, benzothiophene, consisting morpholine group, more preferably furan, thiophene, pyrrole, consisting morpholine group.
 前記La~Leは、さらに、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基およびアミノ基からなる群より選ばれる少なくとも1種の原子または基を有していてもよい。このような例としては、4-スルホブチル基、4-シアノブチル基、5-カルボキシペンチル基、5-アミノペンチル基、3-ヒドロキシプロピル基、2-ホスホリルエチル基、6-アミノ-2,2-ジクロロヘキシル基、2-クロロ-4-ヒドロキシブチル基、2-シアノシクロブチル基、3-ヒドロキシシクロペンチル基、3-カルボキシシクロペンチル基、4-アミノシクロヘキシル基、4-ヒドロキシシクロヘキシル基、4-ヒドロキシフェニル基、2-ヒドロキシナフチル基、4-アミノフェニル基、2,3,4,5,6-ペンタフルオロフェニル基、4-ニトロフェニル基、3-メチルピロールからなる基、2-ヒドロキシエトキシ基、3-シアノプロポキシ基、4-フルオロベンゾイル基、2-ヒドロキシエトキシカルボニル基、4-シアノブトキシカルボニル基を挙げることができる。 Wherein L a ~ L e is further halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, have at least one atom or group selected from the group consisting of a phosphate group and an amino group May be. Examples include 4-sulfobutyl, 4-cyanobutyl, 5-carboxypentyl, 5-aminopentyl, 3-hydroxypropyl, 2-phosphorylethyl, 6-amino-2,2-dichloro. Hexyl group, 2-chloro-4-hydroxybutyl group, 2-cyanocyclobutyl group, 3-hydroxycyclopentyl group, 3-carboxycyclopentyl group, 4-aminocyclohexyl group, 4-hydroxycyclohexyl group, 4-hydroxyphenyl group, 2-hydroxynaphthyl group, 4-aminophenyl group, 2,3,4,5,6-pentafluorophenyl group, 4-nitrophenyl group, group consisting of 3-methylpyrrole, 2-hydroxyethoxy group, 3-cyano Propoxy group, 4-fluorobenzoyl group, 2-hydroxyethoxycarbonyl , It may be mentioned 4-cyano-butoxycarbonyl group.
 前記Mにおいて、1価の金属原子としては、Li、Na、K、Rb、Csなどが挙げられる。
 前記Mにおいて、2価の金属原子としては、Be、Mg、Ca、Ba、Ti、Cr、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Zn、Cd、Hg、Sn、Pbなどが挙げられる。
In M, examples of the monovalent metal atom include Li, Na, K, Rb, and Cs.
In M, the divalent metal atoms include Be, Mg, Ca, Ba, Ti, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Cu, Zn, Cd, Hg, Sn, Pb etc. are mentioned.
 前記Mにおいて、3価の金属原子を含む置換金属原子としては、Al-F、Al-Cl、Al-Br、Al-I、Ga-F、Ga-Cl、Ga-Br、Ga-I、In-F、In-Cl、In-Br、In-I、Tl-F、Tl-Cl、Tl-Br、Tl-I、Fe-Cl、Ru-Cl、Mn-OHなどが挙げられる。 In M, the substituted metal atom containing a trivalent metal atom includes Al—F, Al—Cl, Al—Br, Al—I, Ga—F, Ga—Cl, Ga—Br, Ga—I, In -F, In-Cl, In-Br, In-I, Tl-F, Tl-Cl, Tl-Br, Tl-I, Fe-Cl, Ru-Cl, Mn-OH and the like.
 前記Mにおいて、4価の金属原子を含む置換金属原子としては、TiF2、TiCl2、TiBr2、TiI2、ZrCl2、HfCl2、CrCl2、SiF2、SiCl2、SiBr2、SiI2、GeF2、GeCl2、GeBr2、GeI2、SnF2、SnCl2、SnBr2、SnI2、Zr(OH)2、Hf(OH)2、Mn(OH)2、Si(OH)2、Ge(OH)2、Sn(OH)2、TiR2、CrR2、SiR2、GeR2、SnR2、Ti(OR)2、Cr(OR)2、Si(OR)2、Ge(OR)2、Sn(OR)2(Rは脂肪族基または芳香族基を表す。)、TiO、VO、MnOなどが挙げられる
 前記Mとしては、周期表4族~12族、且つ、第4周期~第5周期に属する、2価の遷移金属、3価もしくは4価の金属ハロゲン化物または4価の金属酸化物であることが好ましく、その中でも、特に高い可視光透過率と色素安定性を達成できることから、Cu,Ni,Co,Zn,TiOおよびVOがより好ましく、CuおよびVOが特に好ましい。
In M, the substituted metal atom containing a tetravalent metal atom includes TiF 2 , TiCl 2 , TiBr 2 , TiI 2 , ZrCl 2 , HfCl 2 , CrCl 2 , SiF 2 , SiCl 2 , SiBr 2 , SiI 2 , GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , SnF 2 , SnCl 2 , SnBr 2 , SnI 2 , Zr (OH) 2 , Hf (OH) 2 , Mn (OH) 2 , Si (OH) 2 , Ge ( OH) 2 , Sn (OH) 2 , TiR 2 , CrR 2 , SiR 2 , GeR 2 , SnR 2 , Ti (OR) 2 , Cr (OR) 2 , Si (OR) 2 , Ge (OR) 2 , Sn (OR) 2 (R represents an aliphatic group or an aromatic group), TiO, VO, MnO, and the like. Examples of M include groups 4 to 12 in the periodic table, and 4th to 5th cycles. Belongs to divalent transition metals, trivalent or Is preferably a tetravalent metal halide or a tetravalent metal oxide. Among them, Cu, Ni, Co, Zn, TiO and VO are particularly preferable because they can achieve particularly high visible light transmittance and dye stability. More preferred are Cu and VO.
 前記Raとしては、合成の容易性や化合物(A)の有機溶剤に対する溶解性の観点から、独立に炭素数1~10のアルキル基、炭素数1~6のフッ素置換アルキル基、シクロペンチル基またはシクロヘキシル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数3~8のアルキル基が特に好ましい。 From the viewpoint of ease of synthesis and solubility of the compound (A) in an organic solvent, R a is independently an alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, or A cyclohexyl group is preferred, an alkyl group having 1 to 10 carbon atoms is more preferred, and an alkyl group having 3 to 8 carbon atoms is particularly preferred.
 前記Rbとしては、合成の容易性や化合物(A)の安定性の観点から、独立に水素原子、フッ素原子、炭素数1~10のアルキル基、シクロペンチル基、シクロヘキシル基または-SO2-L2(L2としては、炭素数1~6のアルキル基、炭素数6~12の芳香族炭化水素基、炭素数3~6の複素環が好ましい。)が好ましく、水素原子または炭素数1~6のアルキル基がより好ましい。 R b is independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 10 carbon atoms, a cyclopentyl group, a cyclohexyl group, or —SO 2 —L from the viewpoint of ease of synthesis and stability of the compound (A). 2 (L 2 is preferably an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or a heterocyclic ring having 3 to 6 carbon atoms), preferably a hydrogen atom or 1 to More preferred is an alkyl group of 6.
 前記化合物(A)は、下記式(II)で表わされるフタロニトリル誘導体等の環化反応により合成する方法が一般的に知られているが、得られるフタロシアニン系化合物は下記式(II-1)~(II-4)のような4種の異性体の混合物となっている。本発明では、特に断りのない限り、1種のフタロシアニン系化合物につき1種の異性体のみを例示しているが、他の3種の異性体についても同様に用いることができる。なお、これらの異性体は必要に応じて分離して用いることも可能であるが、本発明では異性体混合物を一括して取り扱っている。 A method of synthesizing the compound (A) by a cyclization reaction of a phthalonitrile derivative represented by the following formula (II) is generally known. The resulting phthalocyanine compound is represented by the following formula (II-1) This is a mixture of four isomers such as (II-4). In the present invention, unless otherwise specified, only one isomer is illustrated for one phthalocyanine compound, but the other three isomers can be used similarly. These isomers can be separated and used as necessary, but in the present invention, the isomer mixture is collectively handled.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記化合物(A)の具体例としては、上記式(I)に記載の条件を満たせば特に限定されないが、例えば、下記式(I-1)で表される基本骨格を有する、下記表1に記載の化合物(a-1)~(a-35)などを挙げることができる。 Specific examples of the compound (A) are not particularly limited as long as the conditions described in the above formula (I) are satisfied. For example, in the following Table 1, which has a basic skeleton represented by the following formula (I-1) And the compounds (a-1) to (a-35) described.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 化合物(A)は、一般的に知られている方法で合成すればよく、例えば、特許第4081149号公報、「フタロシアニン -化学と機能―」(アイピーシー、1997年)、特開平2-138382号公報等に記載されている方法等を参照して合成することができる。 The compound (A) may be synthesized by a generally known method. For example, Japanese Patent No. 4081149, “Phthalocyanine—Chemistry and Function” (IPC, 1997), Japanese Patent Laid-Open No. 2-138382. It can be synthesized with reference to the method described in the publication.
 樹脂製基板において、樹脂層中の化合物(A)の含有量は、樹脂製基板製造時に用いる透明樹脂100重量部に対して、好ましくは0.01~5.0重量部、より好ましくは0.02~3.5重量部、特に好ましくは0.03~2.5重量部である。化合物(A)の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率を両立させることができる。 In the resin substrate, the content of the compound (A) in the resin layer is preferably from 0.01 to 5.0 parts by weight, more preferably from 0.1 to 5.0 parts by weight, based on 100 parts by weight of the transparent resin used when the resin substrate is manufactured. It is 02 to 3.5 parts by weight, particularly preferably 0.03 to 2.5 parts by weight. When the content of the compound (A) is within the above range, both good near infrared absorption characteristics and high visible light transmittance can be achieved.
 <近赤外線吸収色素(X)>
 前記近赤外線吸収色素(X)は、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種であり、スクアリリウム系化合物を含むことが特に好ましい。近赤外線吸収色素(X)の吸収極大波長は、好ましくは620nm以上、さらに好ましくは650nm以上、特に好ましくは670nm以上であり、かつ、好ましくは800nm未満、さらに好ましくは750nm以下、特に好ましくは730nm以下であり、且つ、同時に含まれる化合物(A)の吸収極大波長よりも短波長側に吸収極大を有することが望ましい。吸収極大波長がこのような波長範囲にあると、吸収帯の波形をさらにシャープにできる上、近赤外吸収色素による吸収帯を十分に広げることができ、さらに優れた入射角依存改良性能やゴースト低減効果を達成することができる。
<Near-infrared absorbing dye (X)>
The near-infrared absorbing dye (X) is at least one selected from the group consisting of a squarylium compound, a phthalocyanine compound, and a cyanine compound, and particularly preferably contains a squarylium compound. The absorption maximum wavelength of the near-infrared absorbing dye (X) is preferably 620 nm or more, more preferably 650 nm or more, particularly preferably 670 nm or more, and preferably less than 800 nm, more preferably 750 nm or less, particularly preferably 730 nm or less. In addition, it is desirable that the compound (A) contained at the same time has an absorption maximum on a shorter wavelength side than the absorption maximum wavelength. When the absorption maximum wavelength is in such a wavelength range, the waveform of the absorption band can be further sharpened, the absorption band due to the near-infrared absorbing dye can be sufficiently widened, and the incident angle dependent improvement performance and ghosting can be improved. A reduction effect can be achieved.
 樹脂製基板において、樹脂層中の近赤外線吸収色素(X)の含有量は、樹脂製基板製造時に用いる透明樹脂100重量部に対して、好ましくは0.01~5.0重量部、より好ましくは0.02~3.5重量部、特に好ましくは0.03~2.5重量部である。近赤外線吸収色素の含有量が前記範囲内にあると、良好な近赤外線吸収特性と高い可視光透過率とを両立させることができる。 In the resin substrate, the content of the near-infrared absorbing dye (X) in the resin layer is preferably 0.01 to 5.0 parts by weight, more preferably 100 parts by weight of the transparent resin used when the resin substrate is manufactured. Is 0.02 to 3.5 parts by weight, particularly preferably 0.03 to 2.5 parts by weight. When the content of the near-infrared absorbing dye is within the above range, both good near-infrared absorption characteristics and high visible light transmittance can be achieved.
 《スクアリリウム系化合物》
 スクアリリウム系化合物としては、式(III-1)で表されるスクアリリウム系化合物および式(III-2)で表されるスクアリリウム系化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。
《Squaryllium compound》
The squarylium-based compound preferably includes at least one selected from the group consisting of a squarylium-based compound represented by the formula (III-1) and a squarylium-based compound represented by the formula (III-2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(III-1)中、Rm、RnおよびYは、下記(i)または(ii)の条件を満たす。
 条件(i)
 複数あるRmは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表す。ReおよびRfは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。
In the formula (III-1), R m , R n and Y satisfy the following condition (i) or (ii).
Condition (i)
A plurality of R m each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR e R f group. R e and R f each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
 複数あるRnは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRgh基を表す。RgおよびRhは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ld、-Leまたは-C(O)Ri基(Riは、-La、-Lb、-Lc、-Ldまたは-Leを表す。)を表す。 A plurality of R n each independently represents a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, a phosphoric acid group, —L 1 or —NR g R h group. R g and R h are each independently a hydrogen atom, -L a , -L b , -L c , -L d , -L e or -C (O) R i group (R i is -L a , Represents -L b , -L c , -L d or -L e ).
 複数あるYは、それぞれ独立に-NRjk基を表す。RjおよびRkは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表す。
 前記L1、La、Lb、Lc、Ld、Leは、それぞれ独立に前記式(I)にて定義したL1、La、Lb、Lc、Ld、Leと同義である。
A plurality of Y each independently represents a —NR j R k group. R j and R k each independently represents a hydrogen atom, -L a , -L b , -L c , -L d, or -L e .
Wherein L 1, L a, L b , L c, L d, L e is, L 1 defined in independent to the formula (I), L a, L b, L c, L d, and L e It is synonymous.
 条件(ii)
 1つのベンゼン環上の2つのRmのうちの少なくとも1つが、同じベンゼン環上のYと相互に結合して、窒素原子を少なくとも1つ含む構成原子数5または6の複素環を形成し、前記複素環は置換基を有していてもよく、Rnおよび前記複素環の形成に関与しないRmは、それぞれ独立に前記(i)のRnおよびRmと同義である。
Condition (ii)
At least one of two R m on one benzene ring is bonded to Y on the same benzene ring to form a heterocycle having 5 or 6 member atoms containing at least one nitrogen atom; the heterocyclic ring may have a substituent, R m which is not involved in the formation of R n and the heterocyclic ring is the same meaning as R n and R m of the independently (i).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(III-2)中、Xは、-O-、-S-、-Se-、-N(Rc)-または-C(Rdd)-を表し;複数あるRcは、それぞれ独立に水素原子、-La、-Lb、-Lc、-Ldまたは-Leを表し;複数あるRdは、それぞれ独立に水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-L1または-NRef基を表し、隣り合うRd同士は連結して置換基を有していてもよい環を形成してもよく;La~Le、L1は前記式(I)にて定義したLa~Leと同義であり、ReおよびRfは、前記(i)のReおよびRfと同義である。 Wherein (III-2), X is, -O -, - S -, - Se -, - N (R c) - or -C (R d R d) - a represents; plural R c is respectively Each independently represents a hydrogen atom, -L a , -L b , -L c , -L d or -L e ; a plurality of R d s independently represent a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, Represents a nitro group, a carboxy group, a phosphate group, —L 1 or —NR e R f group, and adjacent R d groups may be linked to form an optionally substituted ring; L a ~ L e, L 1 has the same meaning as L a ~ L e defined by formula (I), R e and R f have the same meanings as R e and R f of the (i).
 前記スクアリリウム系化合物の中央の四員環に結合している左右の置換基は同一であっても異なっていてもよいが、同一であった方が合成上容易であるため好ましい。
 前記スクアリリウム系化合物は、一般的に知られている方法で合成すればよく、例えば、特開平1-228960号公報、特開2001-40234号公報、特許第3196383号公報等に記載されている方法等を参照して合成することができる。
The left and right substituents bonded to the central four-membered ring of the squarylium-based compound may be the same or different, but it is preferable that they are the same because synthesis is easier.
The squarylium compound may be synthesized by a generally known method, for example, a method described in JP-A-1-228960, JP-A-2001-40234, JP-A-3196383, or the like. Etc. and can be synthesized.
 《フタロシアニン系化合物》
 フタロシアニン系化合物としては、化合物(A)以外で一般的に知られている任意の構造のものを用いることができ、たとえば特許第4081149号公報や「フタロシアニン -化学と機能―」(アイピーシー、1997年)に記載されている方法で合成することができる。
《Phthalocyanine compound》
As the phthalocyanine compound, those having an arbitrary structure other than the compound (A) can be used. For example, Japanese Patent No. 4081149 and “phthalocyanine -chemistry and function” (IPC, 1997). In the year).
 《シアニン系化合物》
 シアニン系化合物としては、一般的に知られている任意の構造のものを用いることができ、たとえば特開2009-108267号公報に記載されている方法で合成することができる。
<Cyanine compounds>
As the cyanine compound, a compound having a generally known structure can be used, and for example, it can be synthesized by a method described in JP-A-2009-108267.
 <透明樹脂>
 樹脂製基板は、透明樹脂および化合物(A)を含有してなるものである。
 透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性およびフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうるフィルムとするため、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、さらに好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成しえるフィルムが得られるため、特に好ましい。
<Transparent resin>
The resin substrate contains a transparent resin and the compound (A).
The transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher. For example, a resin having a glass transition temperature (Tg) of preferably 110 to 380.degree. C., more preferably 110 to 370.degree. C., and still more preferably 120 to 360.degree. Further, it is particularly preferable that the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.
 透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂板を形成した場合に、この樹脂板の全光線透過率(JIS K7105)が、好ましくは75~95%、さらに好ましくは78~95%、特に好ましくは80~95%となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基板は光学フィルムとして良好な透明性を示す。 As the transparent resin, when a resin plate made of the resin having a thickness of 0.1 mm is formed, the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, Particularly preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.
 透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000~350,000、好ましくは30,000~250,000であり、数平均分子量(Mn)は、通常10,000~150,000、好ましくは20,000~100,000である。 The weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000. The average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
 透明樹脂としては、例えば、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂を挙げることができる。 Examples of the transparent resin include cyclic olefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, polyarylate resins, polysulfones. Resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate (PEN) resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl Examples include ester resins and silsesquioxane resins.
 ≪環状オレフィン系樹脂≫
 環状オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。
≪Cyclic olefin resin≫
The cyclic olefin-based resin is obtained from at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ). A resin and a resin obtained by hydrogenating the resin are preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(X0)中、Rx1~Rx4は、それぞれ独立に下記(i’)~(ix’)より選ばれる原子または基を表し、kx、mxおよびpxは、それぞれ独立に0または正の整数を表す。
(i’)水素原子
(ii’)ハロゲン原子
(iii’)トリアルキルシリル基
(iv’)酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、
    置換または非置換の炭素数1~30の炭化水素基
(v’)置換または非置換の炭素数1~30の炭化水素基
(vi’)極性基(但し、(iv’)を除く。)
(vii’)Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i’)~(vi’)より選ばれる原子または基を表す。)
(viii’)Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i’)~(vi’)より選ばれる原子または基を表す。)
(ix’)Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i’)~(vi’)より選ばれる原子または基を表す。)
In the formula (X 0 ), R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
(I ′) a hydrogen atom (ii ′) a halogen atom (iii ′) a trialkylsilyl group (iv ′) having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom,
A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (v ′) a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) polar group (excluding (iv ′))
(Vii ′) an alkylidene group formed by bonding R x1 and R x2 or R x3 and R x4 to each other (provided that R x1 to R x4 not involved in the bonding are independently the above (i ′ )-(Vi ′) represents an atom or group selected from.
(Viii ′) R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R which are not involved in the bond) x4 each independently represents an atom or group selected from (i ′) to (vi ′).
(Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(Y0)中、Ry1およびRy2は、それぞれ独立に前記(i’)~(vi’)より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyは、それぞれ独立に0または正の整数を表す。 In the formula (Y 0 ), R y1 and R y2 each independently represents an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently 0 or a positive integer.
 ≪芳香族ポリエーテル系樹脂≫
 芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
≪Aromatic polyether resin≫
The aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(1)中、R1~R4は、それぞれ独立に炭素数1~12の1価の有機基を示し、a~dは、それぞれ独立に0~4の整数を示す。 In formula (1), R 1 to R 4 each independently represents a monovalent organic group having 1 to 12 carbon atoms, and a to d each independently represent an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(2)中、R1~R4およびa~dは、それぞれ独立に前記式(1)中のR1~R4およびa~dと同義であり、Yは、単結合、-SO2-または>C=Oを示し、R7およびR8は、それぞれ独立にハロゲン原子、炭素数1~12の1価の有機基またはニトロ基を示し、gおよびhは、それぞれ独立に0~4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。 Wherein (2), R 1 ~ R 4 and a ~ d are the same as R 1 ~ R 4 and a ~ d of each in independently on the formula (1), Y a single bond, -SO 2 -Or> C = O, R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group, and g and h each independently represent 0 to 4 And m represents 0 or 1. However, when m is 0, R 7 is not a cyano group.
 また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 The aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(3)中、R5およびR6は、それぞれ独立に炭素数1~12の1価の有機基を示し、Zは、単結合、-O-、-S-、-SO2-、>C=O、-CONH-、-COO-または炭素数1~12の2価の有機基を示し、eおよびfは、それぞれ独立に0~4の整数を示し、nは0または1を示す。 In the formula (3), R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms, Z represents a single bond, —O—, —S—, —SO 2 —,> C═O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms, e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(4)中、R7、R8、Y、m、gおよびhは、それぞれ独立に前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfは、それぞれ独立に前記式(3)中のR5、R6、Z、n、eおよびfと同義である。 In the formula (4), R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in the formula (2), and R 5 , R 6 , Z, n, e and f are independently the same as R 5 , R 6 , Z, n, e and f in the formula (3).
 ≪ポリイミド系樹脂≫
 ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。
≪Polyimide resin≫
The polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in a repeating unit. For example, the polyimide resin is synthesized by a method described in JP-A-2006-199945 and JP-A-2008-163107. can do.
 ≪フルオレンポリカーボネート系樹脂≫
 フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば特開2008-163194号公報に記載されている方法で合成することができる。
≪Fluorene polycarbonate resin≫
The fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety, and can be synthesized by, for example, a method described in JP-A-2008-163194.
 ≪フルオレンポリエステル系樹脂≫
 フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。
≪Fluorene polyester resin≫
The fluorene polyester resin is not particularly limited and may be any polyester resin containing a fluorene moiety. For example, the fluorene polyester resin can be synthesized by a method described in JP 2010-285505 A or JP 2011-197450 A. it can.
 ≪フッ素化芳香族ポリマー系樹脂≫
 フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、少なくとも1つのフッ素を有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであればよく、例えば特開2008-181121号公報に記載されている方法で合成することができる。
≪Fluorinated aromatic polymer resin≫
The fluorinated aromatic polymer-based resin is not particularly limited, but at least one selected from the group consisting of an aromatic ring having at least one fluorine, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond. Any polymer containing a repeating unit containing one bond may be used, and for example, it can be synthesized by the method described in JP-A-2008-181121.
 ≪市販品≫
 透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状オレフィン系樹脂の市販品としては、JSR株式会社製アートン、日本ゼオン株式会社製ゼオノア、三井化学株式会社製APEL、ポリプラスチックス株式会社製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学株式会社製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学株式会社製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人株式会社製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学株式会社製ユピゼータEP-5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル株式会社製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、株式会社日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系樹脂の市販品としては、新日鐵化学株式会社製シルプラスなどを挙げることができる。
≪Commercial product≫
The following commercial products etc. can be mentioned as a commercial item of transparent resin. Examples of commercially available cyclic olefin-based resins include Arton manufactured by JSR Corporation, ZEONOR manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. As a commercial item of acrylic resin, there can be cited NIPPON CATALYST ACRYVIEWER Co., Ltd. Examples of commercially available silsesquioxane resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.
 <その他成分>
 前記樹脂製基板は、本発明の効果を損なわない範囲において、さらに、酸化防止剤、近紫外線吸収剤、化合物(A)および近赤外線吸収色素(X)以外の近赤外線を吸収する色素(以下「その他の近赤外線吸収色素」という。)、蛍光消光剤、および金属錯体系化合物等の添加剤を含有してもよい。また、後述するキャスト成形により樹脂製基板を製造する場合には、レベリング剤や消泡剤を添加することで樹脂製基板の製造を容易にすることができる。これらその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
<Other ingredients>
The resin substrate is a dye that absorbs near infrared rays other than the antioxidant, the near ultraviolet absorber, the compound (A) and the near infrared absorbing dye (X) (hereinafter “ It may also contain additives such as “other near-infrared absorbing dyes”), fluorescence quenchers, and metal complex compounds. Moreover, when manufacturing a resin-made board | substrate by cast shaping | molding mentioned later, manufacture of a resin-made board | substrate can be made easy by adding a leveling agent and an antifoamer. These other components may be used alone or in combination of two or more.
 前記酸化防止剤としては、例えば2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、およびテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが挙げられる。 Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and And tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane.
 前記近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物などが挙げられる。
 前記その他の近赤外線吸収色素としては、例えばジチオール系色素 、ジイモニウム系色素、ポルフィリン系色素、クロコニウム系色素などが挙げられる。これら色素の構造は特に限定されるものではなく、本発明の効果を損なわないものであれば一般的に知られているものを使用することができる。
Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds.
Examples of the other near infrared absorbing dyes include dithiol dyes, diimonium dyes, porphyrin dyes, and croconium dyes. The structures of these dyes are not particularly limited, and generally known ones can be used as long as the effects of the present invention are not impaired.
 なお、これら添加剤は、樹脂製基板を製造する際に、樹脂などとともに混合してもよいし、樹脂を製造する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるものであるが、樹脂100重量部に対して、通常0.01~5.0重量部、好ましくは0.05~2.0重量部である。 Note that these additives may be mixed with a resin or the like when a resin substrate is manufactured, or may be added when a resin is manufactured. The addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. Part.
 <樹脂製基板の製造方法>
 前記樹脂製基板は、例えば、溶融成形またはキャスト成形により形成することができ、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングする方法により製造することができる。
<Manufacturing method of resin substrate>
The resin substrate can be formed by, for example, melt molding or cast molding, and if necessary, is manufactured by a method of coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent after molding. be able to.
 ≪溶融成形≫
 前記樹脂製基板は、樹脂と近赤外線吸収色素とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と近赤外線吸収色素とを含有する樹脂組成物を溶融成形する方法;または、近赤外線吸収色素、樹脂および溶剤を含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などにより製造することができる。溶融成形方法としては、例えば、射出成形、溶融押出成形またはブロー成形などを挙げることができる。
≪Melt molding≫
The resin substrate is a method of melt-molding pellets obtained by melt-kneading a resin and a near-infrared absorbing dye; a method of melt-molding a resin composition containing a resin and a near-infrared absorbing dye; or It can be produced by a method of melt-molding pellets obtained by removing a solvent from a resin composition containing a near-infrared absorbing dye, a resin and a solvent. Examples of the melt molding method include injection molding, melt extrusion molding, and blow molding.
 ≪キャスト成形≫
 前記樹脂製基板は、近赤外線吸収色素、樹脂および溶剤を含む樹脂組成物を適当な基材の上にキャスティングして溶剤を除去する方法;近赤外線吸収色素および樹脂を含む硬化性樹脂組成物を適当な基材の上に塗布して乾燥および硬化させる方法などにより製造することもできる。
≪Cast molding≫
The resin substrate is formed by casting a resin composition containing a near-infrared absorbing dye, a resin and a solvent on a suitable base material to remove the solvent; and a curable resin composition containing a near-infrared absorbing dye and a resin. It can also be produced by a method of applying on a suitable substrate, drying and curing, and the like.
 前記基材としては、例えば、ガラス板、スチールベルト、スチールドラムおよび透明樹脂(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)が挙げられる。
 前記樹脂製基板は、基材から剥離することにより得ることができ、また、本発明の効果を損なわない限り、基材から剥離せずに基材と塗膜との積層体を前記樹脂製基板としてもよい。
Examples of the substrate include a glass plate, a steel belt, a steel drum, and a transparent resin (for example, a polyester film and a cyclic olefin resin film).
The resin substrate can be obtained by peeling from the base material, and unless the effect of the present invention is impaired, the laminate of the base material and the coating film is not peeled from the base material. It is good.
 さらに、ガラス板、石英または透明プラスチック製等の光学部品に、前記樹脂組成物をコーティングして溶剤を乾燥させる方法、または、前記硬化性組成物をコーティングして硬化および乾燥させる方法などにより、光学部品上に直接樹脂製基板を形成することもできる。 Further, the optical component such as glass plate, quartz or transparent plastic is coated with the resin composition and the solvent is dried, or the curable composition is coated and cured and dried. A resin substrate can also be formed directly on the component.
 前記方法で得られた樹脂製基板中の残留溶剤量は可能な限り少ない方がよい。具体的には、前記残留溶剤量は、樹脂基板の重さに対して、好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる樹脂製基板が得られる。 The amount of residual solvent in the resin substrate obtained by the above method should be as small as possible. Specifically, the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight or less with respect to the weight of the resin substrate. When the amount of residual solvent is in the above range, a resin substrate can be obtained in which the deformation and characteristics are hardly changed and a desired function can be easily exhibited.
 [近赤外線反射膜]
 本発明の光学フィルターを構成する近赤外線反射膜は、近赤外線を反射する能力を有する膜である。本発明では、近赤外線反射膜は樹脂製基板の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りの生じにくい光学フィルターを得ることができる。光学フィルターを固体撮像素子用途に適用する場合、光学フィルターの反りが小さい方が好ましいことから、近赤外線反射膜を樹脂製基板の両面に設けることが好ましい。
[Near-infrared reflective film]
The near-infrared reflective film constituting the optical filter of the present invention is a film having the ability to reflect near-infrared light. In the present invention, the near-infrared reflective film may be provided on one side of the resin substrate or on both sides. When it is provided on one side, it is excellent in production cost and manufacturability, and when it is provided on both sides, an optical filter having high strength and less warpage can be obtained. When the optical filter is applied to a solid-state imaging device, it is preferable that the optical filter has a smaller warp. Therefore, it is preferable to provide a near-infrared reflective film on both surfaces of the resin substrate.
 近赤外線反射膜としては、例えば、アルミ蒸着膜、貴金属薄膜、酸化インジウムを主成分とし酸化錫を少量含有させた金属酸化物微粒子を分散させた樹脂膜、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜が挙げられる。近赤外線反射膜の中では、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜がより好ましい。 Examples of the near-infrared reflective film include an aluminum vapor-deposited film, a noble metal thin film, a resin film in which metal oxide fine particles mainly containing indium oxide and containing a small amount of tin oxide are dispersed, a high refractive index material layer, and a low refractive index material. A dielectric multilayer film in which layers are alternately stacked can be mentioned. Among the near-infrared reflective films, a dielectric multilayer film in which high refractive index material layers and low refractive index material layers are alternately laminated is more preferable.
 高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7~2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛、または、酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0~10重量%)含有させたものが挙げられる。 As the material constituting the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected. Examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide, and the like, and titanium oxide, tin oxide. And / or those containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component).
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2~1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。 As the material constituting the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected. Examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.
 高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、樹脂製基板上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。 The method for laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a dielectric in which high-refractive index material layers and low-refractive index material layers are alternately laminated directly on a resin substrate by CVD, sputtering, vacuum deposition, ion-assisted deposition, or ion plating. A body multilayer film can be formed.
 高屈折率材料層および低屈折率材料層の各層の厚さは、通常、遮断しようとする近赤外線波長をλ(nm)とすると、0.1λ~0.5λの厚さが好ましい。λ(nm)の値としては、例えば700~1400nm、好ましくは750~1300nmである。厚さがこの範囲であると、屈折率(n)と膜厚(d)との積(n×d)がλ/4で算出される光学的膜厚と高屈折率材料層および低屈折率材料層の各層の厚さとがほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮断・透過を容易にコントロールできる傾向にある。 The thickness of each of the high refractive index material layer and the low refractive index material layer is usually preferably from 0.1λ to 0.5λ, where λ (nm) is the near infrared wavelength to be blocked. The value of λ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm. When the thickness is within this range, the optical film thickness, the high refractive index material layer, and the low refractive index, where the product (n × d) of the refractive index (n) and the film thickness (d) is calculated by λ / 4. The thickness of each layer of the material layer becomes almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.
 誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として5~60層であることが好ましく、10~50層であることがより好ましい。 The total number of high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 5 to 60 layers, and more preferably 10 to 50 layers as a whole.
 [その他の機能膜]
 本発明の光学フィルターには、本発明の効果を損なわない範囲において、樹脂製基板と誘電体多層膜等の近赤外線反射膜との間などに、樹脂製基板や近赤外線反射膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消し等の目的で、反射防止膜、ハードコート膜および帯電防止膜等の機能膜を適宜設けることができる。
[Other functional membranes]
In the optical filter of the present invention, the surface hardness of the resin substrate or near-infrared reflective film is between the resin substrate and the near-infrared reflective film such as a dielectric multilayer film within a range not impairing the effects of the present invention. Functional films such as an antireflection film, a hard coat film, and an antistatic film can be provided as appropriate for the purpose of improvement, chemical resistance improvement, antistatic and scratch removal.
 樹脂製基板と機能膜および/または近赤外線反射膜との密着性や、機能膜と近赤外線反射膜との密着性を上げる目的で、樹脂製基板や機能膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。 For the purpose of improving the adhesion between the resin substrate and the functional film and / or near-infrared reflective film, and the adhesion between the functional film and the near-infrared reflective film, the surface of the resin substrate or functional film is subjected to corona treatment, plasma treatment, etc. The surface treatment may be performed.
 [光学フィルターの特性等]
 本発明の光学フィルターは、前記樹脂製基板を有する。このため、本発明の光学フィルターは、透過率特性に優れ、使用する際に制約を受けない。また、樹脂製基板に含まれる化合物(A)は、波長700~800nmに吸収極大を有するため近赤外光を効率的に吸収することができ、上記近赤外線反射膜と組み合わせることにより、入射角依存性の少ない光学フィルターを得ることができる。
[Characteristics etc. of optical filter]
The optical filter of the present invention has the resin substrate. For this reason, the optical filter of the present invention has excellent transmittance characteristics and is not restricted when used. In addition, since the compound (A) contained in the resin substrate has an absorption maximum at a wavelength of 700 to 800 nm, it can efficiently absorb near-infrared light. When combined with the near-infrared reflective film, the incident angle is increased. An optical filter with less dependency can be obtained.
 前記樹脂製基板を近赤外線カットフィルター等の光学フィルターに用いることにより、波長560~800nmの範囲において、光学フィルターの垂直方向から測定した時の透過率が50%となる波長の値(Xa)と、光学フィルターの垂直方向に対して30°の角度から測定した時の透過率が50%となる波長の値(Xb)との差の絶対値、及び、波長560~800nmの領域において、光学フィルターの垂直方向から測定した時の透過率が10%となる波長の値(Za)と、光学フィルターの垂直方向に対して30°の角度から測定した時の透過率が10%となる波長の値(Zb)との差の絶対値が小さくなり、吸収波長の入射角依存性が小さく、透過波長域の裾付近においても視野角の広い光学フィルターを得ることができる。本発明の光学フィルターにおいて、(Xa)と(Xb)の差の絶対値は、好ましくは20nm未満、より好ましくは15nm未満、特に好ましくは10nm未満であり、(Za)と(Zb)の差の絶対値は、好ましくは18nm以下、特に好ましくは15nm以下である。 By using the resin substrate for an optical filter such as a near-infrared cut filter, a wavelength value (Xa) at which the transmittance is 50% when measured from the vertical direction of the optical filter in the wavelength range of 560 to 800 nm. The absolute value of the difference from the wavelength value (Xb) at which the transmittance is 50% when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, and the optical filter in the wavelength range of 560 to 800 nm The wavelength value (Za) at which the transmittance is 10% when measured from the vertical direction and the wavelength value at which the transmittance is 10% when measured from an angle of 30 ° with respect to the vertical direction of the optical filter. The absolute value of the difference from (Zb) becomes small, the incident angle dependence of the absorption wavelength is small, and an optical filter having a wide viewing angle can be obtained even near the bottom of the transmission wavelength region. In the optical filter of the present invention, the absolute value of the difference between (Xa) and (Xb) is preferably less than 20 nm, more preferably less than 15 nm, particularly preferably less than 10 nm, and the difference between (Za) and (Zb) The absolute value is preferably 18 nm or less, particularly preferably 15 nm or less.
 前記光学フィルターを固体撮像素子用に使用する場合、可視光透過率が高い方が好ましい。特に近年、カメラモジュールにおいても高画質化の要求が強くなっており、撮像感度や色再現性を向上させるために、波長430~460nmの短波長側の透過率を高くする必要が有る。具体的には、波長430~460nmの平均透過率は、好ましくは81%以上、より好ましくは83%以上、特に好ましくは85%以上である。また、波長461~580nmの平均透過率も同様に高い方が好ましく、好ましくは85%以上、より好ましくは88%以上、特に好ましくは90%以上である。それぞれの波長域において平均透過率がこの範囲にあると、固体撮像素子用途として使用した場合、優れた撮像感度と色再現性を達成することができる。 When the optical filter is used for a solid-state image sensor, it is preferable that the visible light transmittance is higher. Particularly in recent years, there has been a strong demand for higher image quality in camera modules, and in order to improve imaging sensitivity and color reproducibility, it is necessary to increase the transmittance on the short wavelength side of wavelengths 430 to 460 nm. Specifically, the average transmittance at a wavelength of 430 to 460 nm is preferably 81% or more, more preferably 83% or more, and particularly preferably 85% or more. Similarly, the average transmittance at wavelengths of 461 to 580 nm is preferably higher, preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more. When the average transmittance is within this range in each wavelength region, excellent imaging sensitivity and color reproducibility can be achieved when used as a solid-state imaging device.
 前記光学フィルターを固体撮像素子用に使用する場合、近赤外波長域の透過率が低い方が好ましい。特に、波長800~1000nmの領域は固体撮像素子の受光感度が比較的高いことが知られており、この波長域の透過率を低減させることにより、カメラ画像と人間の目の視感度補正を効果的に行うことができ、優れた色再現性を達成することができる。波長800~1000nmの平均透過率は、好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは5%以下である。波長800~1000nmの平均透過率がこの範囲にあると、近赤外線を十分にカットすることができ、優れた色再現性を達成できるため好ましい。 When the optical filter is used for a solid-state imaging device, it is preferable that the transmittance in the near infrared wavelength region is low. In particular, it is known that the light receiving sensitivity of the solid-state imaging device is relatively high in the wavelength region of 800 to 1000 nm. By reducing the transmittance in this wavelength region, it is effective to correct the visibility of the camera image and the human eye. And excellent color reproducibility can be achieved. The average transmittance at a wavelength of 800 to 1000 nm is preferably 15% or less, more preferably 10% or less, and particularly preferably 5% or less. When the average transmittance at a wavelength of 800 to 1000 nm is in this range, it is preferable because near infrared rays can be sufficiently cut and excellent color reproducibility can be achieved.
 [光学フィルターの用途]
 本発明の光学フィルターは、視野角が広く、優れた近赤外線カット能等を有する。したがって、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、パーソナルコンピューター用カメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーションシステム用車載装置、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム用装置、デジタルミュージックプレーヤー等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。
[Application of optical filter]
The optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, mobile phone cameras, digital video cameras, personal computer cameras, surveillance cameras, automotive cameras, TVs, in-vehicle devices for car navigation systems, personal digital assistants, video game machines, portable game machines, fingerprint authentication Useful for system devices, digital music players, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.
 [固体撮像装置]
 本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ等である。例えば、本発明のカメラモジュールは、本発明の光学フィルターを具備する。
[Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor, and specifically includes a digital still camera, a mobile phone camera, a digital video camera, and the like. For example, the camera module of the present invention includes the optical filter of the present invention.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「重量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. “Parts” means “parts by weight” unless otherwise specified. Moreover, the measurement method of each physical property value and the evaluation method of the physical property are as follows.
 <分子量>
 樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
(a)ウオターズ(WATERS)社製のゲルパーミエ-ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー社製Hタイプカラム、展開溶剤:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(b)東ソー社製GPC装置(HLC-8220型、カラム:TSKgelα‐M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
<Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.
(A) Weight average molecular weight in terms of standard polystyrene using a gel permeation chromatography (GPC) apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by WATERS (Mw) and number average molecular weight (Mn) were measured.
(B) Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgelα-M, developing solvent: THF) manufactured by Tosoh Corporation.
 なお、後述する樹脂合成例3で合成した樹脂については、上記方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。
(c)ポリイミド樹脂溶液の一部を無水メタノールに投入してポリイミド樹脂を析出させ、ろ過して未反応単量体から分離した。80℃で12時間真空乾燥して得られたポリイミド0.1gをN-メチル-2-ピロリドン20mLに溶解し、キャノン-フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
In addition, about the resin synthesize | combined in the resin synthesis example 3 mentioned later, the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the said method.
(C) A part of the polyimide resin solution was added to anhydrous methanol to precipitate the polyimide resin, and filtered to separate from the unreacted monomer. 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity (μ) at 30 ° C. is obtained by the following formula using a Canon-Fenske viscometer. Asked.
 μ={ln(ts/t0)}/C
 t0:溶媒の流下時間
 ts:希薄高分子溶液の流下時間
 C:0.5g/dL
 <ガラス転移温度(Tg)>
 エスアイアイ・ナノテクノロジーズ株式会社製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
μ = {ln (t s / t 0)} / C
t 0 : Flowing time of solvent t s : Flowing time of dilute polymer solution C: 0.5 g / dL
<Glass transition temperature (Tg)>
Using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc., the rate of temperature increase was measured at 20 ° C. per minute under a nitrogen stream.
 <分光透過率>
 樹脂製基板の吸収極大波長および吸収極大波長における透過率、光学フィルターの各波長域における透過率、(Xa),(Xb)、(Za)および(Zb)は、株式会社日立ハイテクノロジーズ製の分光光度計(U-4100)を用いて測定した。
<Spectral transmittance>
The transmittance at the absorption maximum wavelength and the absorption maximum wavelength of the resin substrate, the transmittance at each wavelength region of the optical filter, (Xa), (Xb), (Za) and (Zb) are spectroscopic products manufactured by Hitachi High-Technologies Corporation. Measurement was performed using a photometer (U-4100).
 ここで、光学フィルターの垂直方向から測定した場合の透過率では、図1(a)のようにフィルターに対して垂直に透過した光を測定した。また、光学フィルターの垂直方向に対して30°の角度から測定した場合の透過率では、図1(b)のようにフィルターの垂直方向に対して30°の角度で透過した光を測定した。 Here, with respect to the transmittance when measured from the vertical direction of the optical filter, the light transmitted perpendicular to the filter was measured as shown in FIG. Further, with respect to the transmittance when measured from an angle of 30 ° with respect to the vertical direction of the optical filter, light transmitted at an angle of 30 ° with respect to the vertical direction of the filter was measured as shown in FIG.
 なお、この透過率は、(Xb)や(Zb)を測定する場合を除き、光が基板およびフィルターに対して垂直に入射する条件で、該分光光度計を使用して測定したものである。(Xb)や(Zb)を測定する場合には、光がフィルターの垂直方向に対して30°の角度で入射する条件で該分光光度計を使用して測定したものである。 In addition, this transmittance | permeability was measured using this spectrophotometer on the conditions that light injects perpendicularly with respect to a board | substrate and a filter except the case where (Xb) and (Zb) are measured. When measuring (Xb) or (Zb), it is measured using the spectrophotometer under the condition that light is incident at an angle of 30 ° with respect to the vertical direction of the filter.
 <近赤外吸収色素の耐光性評価>
 樹脂製基板を室内蛍光灯(照度1000ルクス)に500時間曝露させ、樹脂中に含まれる近赤外線吸収色素の耐光性(環境光耐性)を評価した。耐光性は、樹脂製基板の最も吸収強度が高い波長(以下「λa」と称する。樹脂製基板が複数の吸収極大を有する場合、λaはこのうち最も吸収強度が高い波長である。)における蛍光灯曝露前後の吸光度変化から色素残存率(%)を算出して評価した。蛍光灯で500時間曝露後の色素残存率は、好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
<Light resistance evaluation of near-infrared absorbing dye>
The resin substrate was exposed to an indoor fluorescent lamp (illuminance of 1000 lux) for 500 hours, and the light resistance (environmental light resistance) of the near-infrared absorbing dye contained in the resin was evaluated. The light resistance is fluorescence at a wavelength with the highest absorption intensity of the resin substrate (hereinafter referred to as “λa”. When the resin substrate has a plurality of absorption maxima, λa is a wavelength with the highest absorption intensity among them). The pigment residual ratio (%) was calculated from the change in absorbance before and after exposure to the lamp and evaluated. The dye residual ratio after exposure with a fluorescent lamp for 500 hours is preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more.
 [合成例]
 下記実施例で用いた化合物(A)、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物は、一般的に知られている方法で合成した。一般的合成方法としては、例えば、特許第3366697号公報、特許第2846091号公報、特許第2864475号公報、特許第3703869号公報、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号公報、特開昭63-124054号公報、「フタロシアニン -化学と機能―」(アイピーシー、1997年)、特開2007-169315号公報、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号公報、特許第4740631号公報などに記載されている方法を挙げることができる。
[Synthesis example]
The compound (A), squarylium compound, phthalocyanine compound and cyanine compound used in the following examples were synthesized by a generally known method. Examples of the general synthesis method include, for example, Japanese Patent No. 336697, Japanese Patent No. 2846091, Japanese Patent No. 2864475, Japanese Patent No. 3703869, Japanese Patent Laid-Open No. 60-228448, Japanese Patent Laid-Open No. 1-146846, JP-A-1-228960, JP-A-4081149, JP-A-63-124054, “Phthalocyanine—Chemistry and Function” (IPC, 1997), JP-A-2007-169315, JP2009. -108267, JP2010-241873, JP3699464, JP4740631, and the like.
 <樹脂合成例1>
 下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100部、1-ヘキセン(分子量調節剤)18部およびトルエン(開環重合反応用溶媒)300部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(0.6mol/リットル)0.2部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9部とを添加し、この溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。
<Resin synthesis example 1>
8-methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] Dodec-3-ene (hereinafter also referred to as “DNM”) 100 parts, 1-hexene (molecular weight regulator) 18 parts, and toluene (ring-opening polymerization solvent) 300 parts nitrogen-substituted reaction The vessel was charged and the solution was heated to 80 ° C. Next, 0.2 parts of a toluene solution of triethylaluminum (0.6 mol / liter) as a polymerization catalyst and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) were added to the solution in the reaction vessel. 9 parts was added and this solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 このようにして得られた開環重合体溶液1,000部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。 1,000 parts of the ring-opening polymer solution thus obtained was charged into an autoclave, and 0.12 part of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Then, the hydrogenation reaction was performed by heating and stirring for 3 hours under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C. After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, and dried to obtain a hydrogenated polymer (hereinafter also referred to as “resin A”). The obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
 <樹脂合成例2>
 3Lの4つ口フラスコに2,6-ジフルオロベンゾニトリル35.12g(0.253mol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。室温(25℃)まで冷却後、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥し、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。
<Resin synthesis example 2>
In a 3 L four-necked flask, 35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate ( 0.300 mol), 443 g of N, N-dimethylacetamide (hereinafter also referred to as “DMAc”) and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask. Next, after the atmosphere in the flask was replaced with nitrogen, the resulting solution was reacted at 140 ° C. for 3 hours, and water produced was removed from the Dean-Stark tube as needed. When no more water was observed, the temperature was gradually raised to 160 ° C. and reacted at that temperature for 6 hours. After cooling to room temperature (25 ° C.), the produced salt was removed with a filter paper, the filtrate was poured into methanol for reprecipitation, and the filtrate (residue) was isolated by filtration. The obtained filtrate was vacuum-dried overnight at 60 ° C. to obtain a white powder (hereinafter also referred to as “resin B”) (yield 95%). The obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
 <樹脂合成例3>
 温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4’-ビス(4-アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れて、γ―ブチロラクトン68.65g及びN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷した後、N,N-ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却し、固形分濃度20重量%のポリイミド樹脂溶液264.16gを得た。このポリイミド樹脂溶液の一部を1Lのメタノール中に注ぎいれてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥させて白色粉末(以下「樹脂C」ともいう。)を得た。得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。樹脂Cはガラス転移温度(Tg)が310℃であり、対数粘度を測定したところ、0.87であった。
<Resin synthesis example 3>
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, dropping funnel with side tube, Dean-Stark tube and condenser tube, 1,4-bis (4-amino-α, α -Dimethylbenzyl) benzene (27.66 g, 0.08 mol) and 4,4′-bis (4-aminophenoxy) biphenyl (7.38 g, 0.02 mol) were added, and γ-butyrolactone (68.65 g) and N, It was dissolved in 17.16 g of N-dimethylacetamide. The obtained solution was cooled to 5 ° C. using an ice-water bath, and while maintaining the same temperature, 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an imidization catalyst As a result, 0.50 g (0.005 mol) of triethylamine was added all at once. After completion of the addition, the temperature was raised to 180 ° C. and refluxed for 6 hours while distilling off the distillate as needed. After completion of the reaction, the reaction solution was air-cooled until the internal temperature reached 100 ° C., diluted by adding 143.6 g of N, N-dimethylacetamide, cooled with stirring, and 264.16 g of a polyimide resin solution having a solid content concentration of 20% by weight. Got. A part of this polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol and dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter also referred to as “resin C”). The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. Resin C had a glass transition temperature (Tg) of 310 ° C. and a logarithmic viscosity of 0.87.
 <樹脂合成例4>
 9,9-ビス{4-(2-ヒドロキシエトキシ)フェニル}フルオレン9.167kg(20.90モル)、ビスフェノールA 4.585kg(20.084モル)、ジフェニルカーボネート9.000kg(42.01モル)、および炭酸水素ナトリウム0.02066kg(2.459×10-4モル)を、攪拌機および留出装置を備えた50L反応器に入れ、窒素雰囲気で760Torrの下、1時間かけて215℃に加熱・攪拌した。その後、15分かけて減圧度を150Torrに調整し、215℃、150Torrの条件下で20分間保持し、エステル交換反応を行った。次に、37.5℃/Hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した後、10分かけて120Torrに調整し、240℃、120Torrで70分間保持した後、さらに、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。その後、40分かけて1Torr以下とし、240℃、1Torr以下の条件下で10分間攪拌して重合反応を行った。反応終了後、反応器内に窒素を導入して加圧状態にし、生成したポリカーボネート樹脂(以下「樹脂D」ともいう。)をペレット化しながら抜き出した。得られた樹脂Dは、重量平均分子量が41,000であり、ガラス転移温度(Tg)が152℃であった。
<Resin synthesis example 4>
9.167 kg (20.90 mol) of 9,9-bis {4- (2-hydroxyethoxy) phenyl} fluorene, 4.585 kg (20.08 mol) of bisphenol A, 9.000 kg (42.01 mol) of diphenyl carbonate , And 0.02066 kg (2.459 × 10 −4 mol) of sodium bicarbonate were placed in a 50 L reactor equipped with a stirrer and a distillation apparatus, and heated to 215 ° C. over 1 hour under a nitrogen atmosphere under 760 Torr. Stir. Thereafter, the degree of vacuum was adjusted to 150 Torr over 15 minutes, and the mixture was held at 215 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction. Next, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./Hr, held at 240 ° C. and 150 Torr for 10 minutes, adjusted to 120 Torr over 10 minutes, held at 240 ° C. and 120 Torr for 70 minutes, Further, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes. Thereafter, the polymerization reaction was carried out by stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less at 40 ° C. over 1 Torr. After completion of the reaction, nitrogen was introduced into the reactor to be in a pressurized state, and the produced polycarbonate resin (hereinafter also referred to as “resin D”) was extracted while being pelletized. The obtained resin D had a weight average molecular weight of 41,000 and a glass transition temperature (Tg) of 152 ° C.
 <樹脂合成例5>
 反応器に、9,9-ビス{4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル}フルオレン0.8モル、エチレングリコール2.2モルおよびイソフタル酸ジメチル1.0モルを加え、攪拌しながら徐々に加熱溶融してエステル交換反応を行った。次いで、酸化ゲルマニウム20×10-4モルを加え、290℃、1Torr以下に到達するまで徐々に昇温および減圧を行いながらエチレングリコールを除去した。この後、内容物を反応器から取り出し、ポリエステル樹脂(以下「樹脂E」ともいう。)のペレットを得た。得られた樹脂Eは、数平均分子量が40,000であり、ガラス転移温度が145℃であった。
<Resin synthesis example 5>
To the reactor, 0.8 mol of 9,9-bis {4- (2-hydroxyethoxy) -3,5-dimethylphenyl} fluorene, 2.2 mol of ethylene glycol and 1.0 mol of dimethyl isophthalate were added and stirred. The mixture was gradually heated and melted to conduct a transesterification reaction. Next, 20 × 10 −4 mol of germanium oxide was added, and ethylene glycol was removed while gradually increasing the temperature and reducing the pressure until reaching 290 ° C. and 1 Torr or less. Thereafter, the contents were taken out of the reactor to obtain pellets of polyester resin (hereinafter also referred to as “resin E”). The obtained resin E had a number average molecular weight of 40,000 and a glass transition temperature of 145 ° C.
 <樹脂合成例6>
 温度計、冷却管、ガス導入管及び攪拌機を備えた反応器に、4,4'-ビス(2,3,4,5,6-ペンタフルオロベンゾイル)ジフェニルエーテル(BPDE)16.74部、9,9-ビス(4-ヒドロキシフェニル)フルオレン(HF)10.5部、炭酸カリウム4.34部およびDMAc90部を仕込んだ。この混合物を80℃に加温し、8時間反応させた。反応終了後、反応溶液をブレンダーで激しく攪拌しながら、1%酢酸水溶液中に添加した。析出した反応物を濾別し、蒸留水及びメタノールで洗浄した後、減圧乾燥して、フッ素化ポリエーテルケトン(以下「樹脂F」ともいう。)を得た。得られた樹脂Fは、数平均分子量が71000であり、ガラス転移温度(Tg)が242℃であった。
<Resin synthesis example 6>
A reactor equipped with a thermometer, a cooling pipe, a gas introduction pipe and a stirrer was charged with 16.74 parts of 4,4′-bis (2,3,4,5,6-pentafluorobenzoyl) diphenyl ether (BPDE), 9, 10.5 parts of 9-bis (4-hydroxyphenyl) fluorene (HF), 4.34 parts of potassium carbonate and 90 parts of DMAc were charged. The mixture was warmed to 80 ° C. and reacted for 8 hours. After completion of the reaction, the reaction solution was added into a 1% aqueous acetic acid solution with vigorous stirring with a blender. The precipitated reaction product was separated by filtration, washed with distilled water and methanol, and then dried under reduced pressure to obtain a fluorinated polyether ketone (hereinafter also referred to as “resin F”). The obtained resin F had a number average molecular weight of 71,000 and a glass transition temperature (Tg) of 242 ° C.
 [実施例1]
 容器に、樹脂合成例1で得られた樹脂A 100重量部、化合物(A)として上記表1に記載の化合物(a-12)(ジクロロメタン中での吸収極大波長736nm)0.06重量部、および塩化メチレンを加えて樹脂濃度が20重量%の溶液を得た。次いで、得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜をさらに減圧下100℃で8時間乾燥して、厚さ0.1mm、縦60mm、横60mmの基板を得た。
[Example 1]
In a container, 100 parts by weight of the resin A obtained in Resin Synthesis Example 1, 0.06 parts by weight of the compound (a-12) described in Table 1 above as the compound (A) (absorption maximum wavelength 736 nm in dichloromethane), And methylene chloride was added to obtain a solution having a resin concentration of 20% by weight. Subsequently, the obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried at 100 ° C. under reduced pressure for 8 hours to obtain a substrate having a thickness of 0.1 mm, a length of 60 mm, and a width of 60 mm.
 この基板の分光透過率を測定し、樹脂製基板の吸収極大波長、吸収極大波長での透過率および耐光性試験後の色素残存率を求めたところ、それぞれ736nm、2%および100%であった。結果を表2に示す。 The spectral transmittance of this substrate was measured, and the absorption maximum wavelength of the resin substrate, the transmittance at the absorption maximum wavelength, and the dye residual ratio after the light resistance test were determined to be 736 nm, 2%, and 100%, respectively. . The results are shown in Table 2.
 続いて、得られた基板の片面に、蒸着温度100℃で近赤外線を反射する多層蒸着膜〔シリカ(SiO2:膜厚83~199nm)層と酸化チタン(TiO2:膜厚101~125nm)層とが交互に積層されてなるもの,積層数20〕を形成し、さらに基板のもう一方の面に、蒸着温度100℃で近赤外線を反射する多層蒸着膜〔シリカ(SiO2:膜厚77~189nm)層とチタニア(TiO2:膜厚84~118nm)層とが交互に積層されてなるもの,積層数26〕を形成し、厚さ0.105mmの光学フィルターを得た。この光学フィルターの分光透過率を測定し、各波長領域における光学特性を評価した。 Subsequently, on one side of the obtained substrate, a multilayer deposited film reflecting a near infrared ray at a deposition temperature of 100 ° C. [silica (SiO 2 : film thickness 83 to 199 nm) layer and titanium oxide (TiO 2 : film thickness 101 to 125 nm) A multilayer deposited film [silica (SiO 2 : film thickness 77) reflecting near infrared rays at a deposition temperature of 100 ° C. is formed on the other surface of the substrate. To 189 nm) layers and titania (TiO 2 : film thickness 84 to 118 nm) layers are alternately laminated, and the number of laminations is 26] to obtain an optical filter having a thickness of 0.105 mm. The spectral transmittance of this optical filter was measured, and the optical characteristics in each wavelength region were evaluated.
 波長430~460nmにおける透過率の平均値は87%、波長461~580nmにおける透過率の平均値は91%、波長800~1000nmにおける透過率の平均値は1%以下、絶対値|Xa-Xb|は5nm、|Za-Zb|は12nmであった。結果を表2に示す。 The average transmittance at wavelengths 430 to 460 nm is 87%, the average transmittance at wavelengths 461 to 580 nm is 91%, the average transmittance at wavelengths 800 to 1000 nm is 1% or less, and the absolute value | Xa−Xb | Was 5 nm and | Za-Zb | was 12 nm. The results are shown in Table 2.
 [実施例2]~[実施例17]および[比較例1]~[比較例5]
 実施例1において、表2に示す透明樹脂、近赤外線吸収色素、溶媒、およびフィルム乾燥条件を採用したこと以外は、実施例1と同様にして、厚さ0.105mmの光学フィルターを製造した。評価結果を表2に示す。なお、表2において、樹脂の添加部数はいずれも100重量部であり、樹脂溶液の濃度はいずれも20重量%である。また、実施例および比較例で使用した各種化合物は下記の通りである。
[Example 2] to [Example 17] and [Comparative Example 1] to [Comparative Example 5]
In Example 1, an optical filter having a thickness of 0.105 mm was produced in the same manner as in Example 1 except that the transparent resin, near-infrared absorbing dye, solvent, and film drying conditions shown in Table 2 were employed. The evaluation results are shown in Table 2. In Table 2, the number of added parts of the resin is 100 parts by weight, and the concentration of the resin solution is 20% by weight. The various compounds used in the examples and comparative examples are as follows.
 <透明樹脂>
 樹脂A:環状オレフィン系樹脂(樹脂合成例1)
 樹脂B:芳香族ポリエーテル系樹脂(樹脂合成例2)
 樹脂C:ポリイミド系樹脂(樹脂合成例3)
 樹脂D:フルオレンポリカーボネート系樹脂(樹脂合成例4)
 樹脂E:フルオレンポリエステル系樹脂(樹脂合成例5)
 樹脂F:フッ素化ポリエーテルケトン(樹脂合成例6)
 樹脂G:環状オレフィン系樹脂「ゼオノア 1420R」(日本ゼオン(株)製)
 樹脂H:環状オレフィン系樹脂「APEL #6015」(三井化学(株)製)
 樹脂I:ポリカーボネート系樹脂「ピュアエース」(帝人(株)製)
 樹脂J:ポリエーテルサルホン系樹脂「スミライト FS-1300」
     (住友ベークライト(株)製)
 樹脂K:耐熱アクリル系樹脂「アクリビュア」((株)日本触媒製)
 <近赤外線吸収色素>
 ≪化合物(A)≫
 化合物(a-8):上記表1に記載の化合物(a-8)(ジクロロメタン中での吸収極大波長735nm)
 化合物(a-11):上記表1に記載の化合物(a-11)(ジクロロメタン中での吸収極大波長707nm)
 化合物(a-12):上記表1に記載の化合物(a-12)(ジクロロメタン中での吸収極大波長736nm)
 ≪近赤外線吸収色素(X)≫
 化合物(X-1):下記式(X-1)で表されるスクアリリウム系化合物(ジクロロメタン中での吸収極大波長670nm)
<Transparent resin>
Resin A: Cyclic olefin resin (resin synthesis example 1)
Resin B: Aromatic polyether resin (resin synthesis example 2)
Resin C: Polyimide resin (resin synthesis example 3)
Resin D: Fluorene polycarbonate resin (resin synthesis example 4)
Resin E: Fluorene polyester resin (resin synthesis example 5)
Resin F: Fluorinated polyether ketone (resin synthesis example 6)
Resin G: Cyclic olefin resin “Zeonor 1420R” (manufactured by Nippon Zeon Co., Ltd.)
Resin H: Cyclic olefin resin “APEL # 6015” (manufactured by Mitsui Chemicals, Inc.)
Resin I: Polycarbonate resin “Pure Ace” (manufactured by Teijin Limited)
Resin J: Polyethersulfone resin “Sumilite FS-1300”
(Sumitomo Bakelite Co., Ltd.)
Resin K: Heat-resistant acrylic resin "Acryviewer" (manufactured by Nippon Shokubai Co., Ltd.)
<Near-infrared absorbing dye>
<< Compound (A) >>
Compound (a-8): Compound (a-8) described in Table 1 above (absorption maximum wavelength in dichloromethane of 735 nm)
Compound (a-11): Compound (a-11) described in Table 1 above (absorption maximum wavelength in dichloromethane: 707 nm)
Compound (a-12): Compound (a-12) described in Table 1 above (maximum absorption wavelength 736 nm in dichloromethane)
≪Near-infrared absorbing dye (X) ≫
Compound (X-1): A squarylium compound represented by the following formula (X-1) (absorption maximum wavelength in dichloromethane: 670 nm)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物(X-2):下記式(X-2)で表されるスクアリリウム系化合物(ジクロロメタン中での吸収極大波長698nm) Compound (X-2): A squarylium compound represented by the following formula (X-2) (maximum absorption wavelength in dichloromethane: 698 nm)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物(X-3):下記式(X-3)で表されるシアニン系化合物(ジクロロメタン中での吸収極大波長681nm) Compound (X-3): a cyanine compound represented by the following formula (X-3) (absorption maximum wavelength in dichloromethane: 681 nm)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物(X-4):下記式(X-4)で表されるフタロシアニン系化合物(ジクロロメタン中での吸収極大波長698nm) Compound (X-4): Phthalocyanine compound represented by the following formula (X-4) (maximum absorption wavelength in dichloromethane: 698 nm)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物(X-5):下記式(X-5)で表されるフタロシアニン系化合物(ジクロロメタン中での吸収極大波長733nm) Compound (X-5): phthalocyanine compound represented by the following formula (X-5) (absorption maximum wavelength in dichloromethane: 733 nm)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物(X-6):下記式(X-6)で表されるシアニン系化合物(ジクロロメタン中での吸収極大波長760nm) Compound (X-6): Cyanine compound represented by the following formula (X-6) (absorption maximum wavelength in dichloromethane: 760 nm)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物(X-7):下記式(X-7)で表されるフタロシアニン系化合物(ジクロロメタン中での吸収極大波長681nm) Compound (X-7): Phthalocyanine compound represented by the following formula (X-7) (maximum absorption wavelength of 681 nm in dichloromethane)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 <溶媒>
 溶媒(1):塩化メチレン
 溶媒(2):N,N-ジメチルアセトアミド
 溶媒(3):酢酸エチル/トルエン(重量比:5/5)
 溶媒(4):シクロヘキサン/キシレン(重量比:7/3)
 溶媒(5):シクロヘキサン/塩化メチレン(重量比:99/1)
 溶媒(6):N-メチル-2-ピロリドン
 表2における、実施例および比較例のフィルム乾燥条件は以下の通りである。なお、減圧乾燥前に、塗膜をガラス板から剥離した。
<Solvent>
Solvent (1): Methylene chloride Solvent (2): N, N-dimethylacetamide Solvent (3): Ethyl acetate / toluene (weight ratio: 5/5)
Solvent (4): cyclohexane / xylene (weight ratio: 7/3)
Solvent (5): cyclohexane / methylene chloride (weight ratio: 99/1)
Solvent (6): N-methyl-2-pyrrolidone In Table 2, the film drying conditions of Examples and Comparative Examples are as follows. In addition, the coating film was peeled from the glass plate before drying under reduced pressure.
 <フィルム乾燥条件>
 条件(1):20℃/8hr→減圧下 100℃/8hr
 条件(2):60℃/8hr→80℃/8hr→減圧下 140℃/8hr
 条件(3):60℃/8hr→80℃/8hr→減圧下 100℃/24hr
 条件(4):40℃/4hr→60℃/4hr→減圧下 100℃/8hr
<Film drying conditions>
Condition (1): 20 ° C./8 hr → under reduced pressure 100 ° C./8 hr
Condition (2): 60 ° C./8 hr → 80 ° C./8 hr → under reduced pressure 140 ° C./8 hr
Condition (3): 60 ° C./8 hr → 80 ° C./8 hr → under reduced pressure 100 ° C./24 hr
Condition (4): 40 ° C./4 hr → 60 ° C./4 hr → under reduced pressure 100 ° C./8 hr
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 本発明の光学フィルターは、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、パーソナルコンピューター用カメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーションシステム用車載装置、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム用装置、デジタルミュージックプレーヤー等に好適に用いることができる。さらに、自動車や建物などのガラス等に装着される熱線カットフィルターなどとしても好適に用いることができる。 The optical filter of the present invention is a digital still camera, a mobile phone camera, a digital video camera, a personal computer camera, a surveillance camera, an automobile camera, a television, an in-vehicle device for a car navigation system, a portable information terminal, a video game machine, a mobile phone. It can be suitably used for game machines, fingerprint authentication system devices, digital music players, and the like. Furthermore, it can be suitably used as a heat ray cut filter or the like attached to glass or the like of automobiles and buildings.
1:光学フィルター
2:分光光度計
3:光
1: Optical filter 2: Spectrophotometer 3: Light

Claims (8)

  1.  下記式(I)で表される化合物(A)を含有する透明樹脂製基板と、前記基板の少なくとも一方の面上に形成された近赤外線反射膜とを有することを特徴とする光学フィルター。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、または3価もしくは4価の金属原子を含む置換金属原子を表し、複数あるRaは独立にL1を表し、複数あるRbは独立に水素原子、ハロゲン原子、L1または-SO2-L2を表し、
     L1は下記La、LbまたはLcを表し、L2は下記La、Lb、Lc、LdまたはLeを表し、
    (La)炭素数1~12の脂肪族炭化水素基
    (Lb)炭素数1~12のハロゲン置換アルキル基
    (Lc)炭素数3~14の脂環式炭化水素基
    (Ld)炭素数6~14の芳香族炭化水素基
    (Le)炭素数3~14の複素環基
     前記La~Leは、さらに、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、および炭素数1~12のアルコキシ基からなる群より選ばれる少なくとも1種の置換基Lを有していてもよい。]
    An optical filter comprising: a transparent resin substrate containing a compound (A) represented by the following formula (I); and a near-infrared reflective film formed on at least one surface of the substrate.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), M represents a substituted metal atom including two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a trivalent or tetravalent metal atom, and there are a plurality of them. R a independently represents L 1, and a plurality of R b independently represents a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2 ,
    L 1 is below L a, represents L b or L c, L 2 represents a following L a, L b, L c , L d or L e,
    (L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon An aromatic hydrocarbon group having 6 to 14 carbon atoms (L e ), a heterocyclic group having 3 to 14 carbon atoms, and the L a to Le are further an aliphatic hydrocarbon group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms. Halogen-substituted alkyl group, alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of ]
  2.  前記式(I)において、Mが、周期表4族~12族、且つ、第4周期~第5周期に属する、2価の遷移金属、3価もしくは4価の金属ハロゲン化物または4価の金属酸化物であり、
     Raが、独立に炭素数1~10のアルキル基、炭素数1~6のフッ素置換アルキル基、シクロペンチル基またはシクロヘキシル基であり、
     Rbが、独立に水素原子、フッ素原子、炭素数1~10のアルキル基、シクロペンチル基、シクロヘキシル基または-SO2-L2であり、
     L2が、炭素数1~6のアルキル基、炭素数6~12の芳香族炭化水素基または炭素数3~6の複素環基である請求項1に記載の光学フィルター。
    In the above formula (I), M is a divalent transition metal, trivalent or tetravalent metal halide, or tetravalent metal belonging to Groups 4 to 12 of the periodic table and belonging to Periods 4 to 5 Oxide,
    R a is independently an alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, a cyclopentyl group or a cyclohexyl group,
    R b is independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 10 carbon atoms, a cyclopentyl group, a cyclohexyl group or —SO 2 —L 2 ;
    2. The optical filter according to claim 1, wherein L 2 is an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or a heterocyclic group having 3 to 6 carbon atoms.
  3.  前記透明樹脂製基板を構成する透明樹脂が、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂からなる群より選ばれる少なくとも1種の樹脂である請求項1または2に記載の光学フィルター。 The transparent resin constituting the transparent resin substrate is a cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin , Polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester 3. The optical filter according to claim 1, wherein the optical filter is at least one resin selected from the group consisting of a series resin and a silsesquioxane resin.
  4.  前記近赤外線反射膜が、前記基板の両面上に形成されている請求項1~3のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 3, wherein the near-infrared reflective film is formed on both surfaces of the substrate.
  5.  固体撮像装置用である請求項1~4のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 1 to 4, which is used for a solid-state imaging device.
  6.  請求項1~5のいずれか1項に記載の光学フィルターを具備する固体撮像装置。 A solid-state imaging device comprising the optical filter according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項に記載の光学フィルターを具備するカメラモジュール。 A camera module comprising the optical filter according to any one of claims 1 to 5.
  8.  下記式(I)で表される化合物(A)と、環状オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系樹脂およびシルセスキオキサン系樹脂からなる群より選ばれる少なくとも1種の樹脂とを含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(I)中、Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、または3価もしくは4価の金属原子を含む置換金属原子を表し、複数あるRaは独立にL1を表し、複数あるRbは独立に水素原子、ハロゲン原子、L1または-SO2-L2を表し、
     L1は下記La、LbまたはLcを表し、L2は下記La、Lb、Lc、LdまたはLeを表し、
    (La)炭素数1~12の脂肪族炭化水素基
    (Lb)炭素数1~12のハロゲン置換アルキル基
    (Lc)炭素数3~14の脂環式炭化水素基
    (Ld)炭素数6~14の芳香族炭化水素基
    (Le)炭素数3~14の複素環基
     前記La~Leは、さらに、炭素数1~12の脂肪族炭化水素基、炭素数1~12のハロゲン置換アルキル基、炭素数3~14の脂環式炭化水素基、炭素数6~14の芳香族炭化水素基、炭素数3~14の複素環基、および炭素数1~12のアルコキシ基からなる群より選ばれる少なくとも1種の置換基Lを有していてもよい。]
    Compound (A) represented by the following formula (I), cyclic olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, poly Allylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin And a resin composition containing at least one resin selected from the group consisting of allyl ester resins and silsesquioxane resins.
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (I), M represents a substituted metal atom including two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, or a trivalent or tetravalent metal atom, and there are a plurality of them. R a independently represents L 1, and a plurality of R b independently represents a hydrogen atom, a halogen atom, L 1 or —SO 2 —L 2 ,
    L 1 is below L a, represents L b or L c, L 2 represents a following L a, L b, L c , L d or L e,
    (L a ) an aliphatic hydrocarbon group having 1 to 12 carbon atoms (L b ) a halogen-substituted alkyl group having 1 to 12 carbon atoms (L c ) an alicyclic hydrocarbon group having 3 to 14 carbon atoms (L d ) carbon An aromatic hydrocarbon group having 6 to 14 carbon atoms (L e ), a heterocyclic group having 3 to 14 carbon atoms, and the L a to Le are further an aliphatic hydrocarbon group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms. Halogen-substituted alkyl group, alicyclic hydrocarbon group having 3 to 14 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, heterocyclic group having 3 to 14 carbon atoms, and alkoxy group having 1 to 12 carbon atoms It may have at least one substituent L selected from the group consisting of ]
PCT/JP2014/071311 2013-08-20 2014-08-12 Optical filter and device using optical filter WO2015025779A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167004029A KR102205190B1 (en) 2013-08-20 2014-08-12 Optical filter and device using optical filter
CN201480045553.7A CN105531608B (en) 2013-08-20 2014-08-12 Optical filter, solid-state imaging device, and camera module
JP2015532830A JP6398980B2 (en) 2013-08-20 2014-08-12 Optical filter and device using optical filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013170420 2013-08-20
JP2013-170420 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015025779A1 true WO2015025779A1 (en) 2015-02-26

Family

ID=52483555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071311 WO2015025779A1 (en) 2013-08-20 2014-08-12 Optical filter and device using optical filter

Country Status (5)

Country Link
JP (1) JP6398980B2 (en)
KR (1) KR102205190B1 (en)
CN (2) CN105531608B (en)
TW (1) TWI582173B (en)
WO (1) WO2015025779A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142799A1 (en) * 2017-02-01 2018-08-09 富士フイルム株式会社 Curable composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2018225837A1 (en) * 2017-06-08 2018-12-13 富士フイルム株式会社 Resin composition, resin molded body and method for producing resin molded body
KR20200128009A (en) 2018-03-02 2020-11-11 제이에스알 가부시끼가이샤 Optical filters, camera modules and electronic devices
CN112255720A (en) * 2016-03-22 2021-01-22 Jsr株式会社 Optical filter, solid-state imaging device, and camera module
JP2021143232A (en) * 2020-03-10 2021-09-24 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
CN114616291A (en) * 2019-11-01 2022-06-10 Jsr株式会社 Resin composition, compound (Z), optical filter, and use of optical filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777146B2 (en) * 2016-06-08 2020-10-28 Jsr株式会社 Optical filter and optical sensor device
JP7123149B2 (en) * 2018-09-05 2022-08-22 富士フイルム株式会社 spectacle lenses and spectacles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138382A (en) * 1988-04-01 1990-05-28 Mitsui Toatsu Chem Inc Alkylphthalocyanine near-infrared absorber, and display and recording material containing same
JP2005338395A (en) * 2004-05-26 2005-12-08 Jsr Corp Near ir ray cut-off filter and its manufacturing method
WO2013054864A1 (en) * 2011-10-14 2013-04-18 Jsr株式会社 Optical filter, solid state image-capturing device using same, and camera module using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163813B2 (en) 1992-12-28 2001-05-08 日本ゼオン株式会社 Near-infrared absorbing resin composition and molded article
US6969764B2 (en) * 1999-12-28 2005-11-29 Mitsui Chemicals, Inc. Optical recording medium and novel azaporphyrin compounds
JP4278923B2 (en) 2002-06-12 2009-06-17 株式会社日本触媒 Phthalocyanine compound and production method and use thereof
EP1907498A1 (en) 2005-05-10 2008-04-09 Nippon Shokubai Co.,Ltd. Pressure-sensitive adhesive composition comprising near infrared ray absorption agent
JP5449659B2 (en) 2007-09-04 2014-03-19 株式会社ブリヂストン Near-infrared shield, laminate using the same, optical filter for display, and display
JP5823119B2 (en) 2010-12-27 2015-11-25 キヤノン電子株式会社 Optical filter for UV-IR cut
JP5996901B2 (en) 2011-09-02 2016-09-21 株式会社日本触媒 Light selective transmission filter, resin sheet, and solid-state image sensor
JP5741347B2 (en) 2011-09-21 2015-07-01 旭硝子株式会社 Optical filter and imaging apparatus using the same
JP5848654B2 (en) 2011-09-28 2016-01-27 株式会社日本触媒 Light selective transmission filter, resin sheet, and solid-state image sensor
JP7030300B2 (en) * 2016-09-30 2022-03-07 国立研究開発法人産業技術総合研究所 Activated sludge containing 1,4-dioxane-degrading bacteria, wastewater treatment method using it, and method for identifying 1,4-dioxane-degrading bacteria.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138382A (en) * 1988-04-01 1990-05-28 Mitsui Toatsu Chem Inc Alkylphthalocyanine near-infrared absorber, and display and recording material containing same
JP2005338395A (en) * 2004-05-26 2005-12-08 Jsr Corp Near ir ray cut-off filter and its manufacturing method
WO2013054864A1 (en) * 2011-10-14 2013-04-18 Jsr株式会社 Optical filter, solid state image-capturing device using same, and camera module using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255720A (en) * 2016-03-22 2021-01-22 Jsr株式会社 Optical filter, solid-state imaging device, and camera module
US11117986B2 (en) 2017-02-01 2021-09-14 Fujifilm Corporation Curable composition, film, optical filter, solid image pickup element, image display device, and infrared sensor
JPWO2018142799A1 (en) * 2017-02-01 2019-11-07 富士フイルム株式会社 Curable composition, film, optical filter, solid-state imaging device, image display device, and infrared sensor
WO2018142799A1 (en) * 2017-02-01 2018-08-09 富士フイルム株式会社 Curable composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
JPWO2018225837A1 (en) * 2017-06-08 2020-01-23 富士フイルム株式会社 Resin composition, resin molded article and method for producing resin molded article
CN110741049A (en) * 2017-06-08 2020-01-31 富士胶片株式会社 Resin composition, resin molded article, and method for producing resin molded article
WO2018225837A1 (en) * 2017-06-08 2018-12-13 富士フイルム株式会社 Resin composition, resin molded body and method for producing resin molded body
US11905390B2 (en) 2017-06-08 2024-02-20 Fujifilm Corporation Resin composition, resin molded article, and method of producing resin molded article
KR20200128009A (en) 2018-03-02 2020-11-11 제이에스알 가부시끼가이샤 Optical filters, camera modules and electronic devices
CN114616291A (en) * 2019-11-01 2022-06-10 Jsr株式会社 Resin composition, compound (Z), optical filter, and use of optical filter
CN114616291B (en) * 2019-11-01 2023-07-04 Jsr株式会社 Resin composition, compound, optical filter, and optical sensor
JP2021143232A (en) * 2020-03-10 2021-09-24 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP7441686B2 (en) 2020-03-10 2024-03-01 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition

Also Published As

Publication number Publication date
KR20160045690A (en) 2016-04-27
CN105531608A (en) 2016-04-27
TW201518421A (en) 2015-05-16
JP6398980B2 (en) 2018-10-03
CN110669318A (en) 2020-01-10
TWI582173B (en) 2017-05-11
JPWO2015025779A1 (en) 2017-03-02
KR102205190B1 (en) 2021-01-20
CN105531608B (en) 2020-03-06

Similar Documents

Publication Publication Date Title
JP6508247B2 (en) Optical filter and solid-state imaging device and camera module using the optical filter
JP5884953B2 (en) Optical filter, solid-state imaging device, and camera module
JP6398980B2 (en) Optical filter and device using optical filter
JP7405228B2 (en) Resin compositions for optical filters, optical filters, camera modules and electronic devices
WO2017164024A1 (en) Optical filter and apparatus using optical filter
JP6358114B2 (en) Optical filter and device using optical filter
JP6578718B2 (en) Optical filter and device using optical filter
JP2015040895A (en) Optical filter, and apparatus using optical filter
JPWO2016158461A1 (en) Optical filter and device using optical filter
WO2014192714A1 (en) Optical filter, and device using said filter
WO2015022892A1 (en) Optical filter and device using optical filter
WO2014192715A1 (en) Optical filter, and device using said filter
KR102601436B1 (en) New cyanine compound, optical filter and apparatus using optical filter
JP2015172004A (en) Novel cyanine compound, optical filter and device using optical filter
JP2015172102A (en) Novel cyanine compound, optical filter and device using optical filter
JP6693585B2 (en) Optical filter and device using optical filter
JP2015004838A (en) Near-infrared ray cut filter for solid imaging device, and solid imaging device and camera module using the filter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045553.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532830

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004029

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837534

Country of ref document: EP

Kind code of ref document: A1