WO2015025592A1 - Method for producing resin molded article - Google Patents

Method for producing resin molded article Download PDF

Info

Publication number
WO2015025592A1
WO2015025592A1 PCT/JP2014/065443 JP2014065443W WO2015025592A1 WO 2015025592 A1 WO2015025592 A1 WO 2015025592A1 JP 2014065443 W JP2014065443 W JP 2014065443W WO 2015025592 A1 WO2015025592 A1 WO 2015025592A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
molded product
resin composition
resin molded
Prior art date
Application number
PCT/JP2014/065443
Other languages
French (fr)
Japanese (ja)
Inventor
大谷 和男
三浦 賢治
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015532744A priority Critical patent/JP6312334B2/en
Publication of WO2015025592A1 publication Critical patent/WO2015025592A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • B29C33/64Silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material

Definitions

  • the present invention relates to a method for producing a resin molded product. Specifically, the present invention relates to a pipe used in hot springs, geothermal power generation, and the like, and a method for producing a resin molded product used as a watering member such as a bathtub, bath unit, and washstand.
  • Pipes used in hot springs and geothermal power generation have scales (for example, calcium scale and silica scale) attached to the inside as time passes.
  • the scale attached to the pipe can be removed by washing with a strong acid or strong alkali.
  • metal pipes may have problems such as opening holes when washed with strong acid or the like. Therefore, when washing with a strong acid or the like, it is necessary to use a resin pipe (for example, an FRP pipe or the like) that prevents the retention of the strong acid or the like and has excellent chemical resistance.
  • resin pipes are said to be less likely to have scales attached than metal pipes, but scales cannot be prevented sufficiently.
  • Patent Document 3 a method of forming an uneven portion on the surface of a molded product using a wet honing process or a mold having uneven portions has been proposed (see, for example, Patent Document 3). According to this method, it is possible to easily remove the dirt attached to the surface of the molded product. However, this method is not necessarily effective for attaching the scale, and there is a problem that the manufacturing cost increases because it is necessary to use a special mold or the like.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for producing a resin molded product which has an excellent effect of preventing adhesion of scale and removing effect of scale over a long period of time.
  • the present inventors have surface-treated a mold with a baking mold release agent containing silicone, and an organosilicon compound having an affinity for the baking mold release material Can be formed into a curable resin composition and molded and cured to localize the organosilicon compound on the surface of the resin molded product and form a surface on which the scale is difficult to adhere and the scale can be easily removed.
  • the headline, the present invention has been reached.
  • the present invention includes the following [1] to [7].
  • [1] A method for producing a resin molded product, comprising molding and curing a curable resin composition containing an organosilicon compound using a molding die surface-treated with a baking mold release agent containing silicone.
  • the organosilicon compound is at least one selected from the group consisting of an organosilane compound, an organo-modified siloxane compound, and a silicon-modified acrylic compound.
  • the content of the organosilicon compound in the curable resin composition is 0.1 to 10 parts by mass with respect to 100 parts by mass of the curable resin.
  • the manufacturing method of the resin molding of description The manufacturing method of the resin molding of description.
  • the curable resin composition includes at least one curable resin selected from the group consisting of a radical polymerizable resin, an epoxy resin, and a phenol resin.
  • [5] The method for producing a resin molded product according to [4], wherein the radical polymerizable resin is a vinyl ester resin.
  • [6] The method for producing a resin molded product according to any one of [1] to [5], wherein the curable resin composition further includes a fiber reinforcing material.
  • the method for producing a resin molded product of the present invention is characterized in that a curable resin composition containing an organosilicon compound is molded and cured using a molding die surface-treated with a baking mold release agent containing silicone. .
  • the organic silicon compound added to the curable resin composition is not particularly limited, and those known in the art such as an organic silane compound, an organic modified siloxane compound, and a silicon modified acrylic compound can be used.
  • organosilane compounds include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxy Examples include silane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane
  • organically modified siloxane compounds include polyether modified polydimethylsiloxane, polyester modified polydimethylsiloxane, polyester modified polymethylalkylsiloxane, aralkyl modified polymethylalkylsiloxane, polyether modified siloxane, polyester modified hydroxyl group-containing polydimethylsiloxane, and the like.
  • Examples of the silicon-modified acrylic compound include silicon-modified acryl and hydroxyl group-containing silicon-modified acryl.
  • an organic silicon compound having a hydroxyl group is particularly preferable because it has a high affinity with a baking mold release agent containing silicone and is excellent in the effect of localizing the organic silicon compound on the surface of the resin molded product.
  • these compounds can be used individually or in combination of 2 or more types.
  • organosilicon compounds exemplified above are commercially available, for example, KBM-1003, KBE-1003, KBM-303, KBM-403, KBM-1403, KBM-503, KBM manufactured by Shin-Etsu Chemical Co., Ltd.
  • the content of the silicon compound in the curable resin composition is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, most preferably 100 parts by mass of the curable resin.
  • the amount is preferably 1 to 5 parts by mass.
  • the content of the silicon compound is less than 0.1 parts by mass, the effect of preventing adhesion of the scale of the resin molded product and the effect of removing the scale may not be sufficiently obtained.
  • the content of the silicon compound exceeds 10 parts by mass, the ratio of the resin component decreases, and a resin molded product having desired characteristics may not be obtained.
  • curable resin composition containing an organosilicon compound What is necessary is just to select an appropriate thing according to the use of the resin molding formed from a curable resin composition. It does not specifically limit as curable resin used for curable resin composition, A well-known thing can be used in the said technical fields, such as a radically polymerizable resin, an epoxy resin, and a phenol resin.
  • the radical polymerizable resin is not particularly limited, and examples thereof include unsaturated polyester resins, vinyl ester resins, polyester (meth) acrylate resins, urethane (meth) acrylate resins, and the like. These resins can be used alone or in combination of two or more.
  • Unsaturated polyester resin dissolves condensation product (unsaturated polyester) by esterification reaction of polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid if necessary) in polymerizable monomer such as styrene. It is a thing.
  • the unsaturated polyester resin is not particularly limited, and is described in “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) or “Paint Glossary of Terms” (edited by Color Material Association, published in 1993). Can be used.
  • unsaturated polyester resin is marketed, for example, "Rigo rack (trademark)” series etc. by Showa Denko KK can be used.
  • Vinyl ester resin (also referred to as “epoxy acrylate resin”) is produced by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid.
  • the compound having a polymerizable unsaturated bond (vinyl ester) is dissolved in a polymerizable monomer such as styrene.
  • the vinyl ester resin is not particularly limited, and those described in “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) or “painting glossary” (edited by Color Material Association, published in 1993), etc. Can be used.
  • Vinyl ester resins are commercially available, and for example, “Lipoxy (registered trademark)” series manufactured by Showa Denko KK can be used.
  • the polyester (meth) acrylate resin is obtained by dissolving polyester (meth) acrylate in a polymerizable monomer such as styrene.
  • the polyester (meth) acrylate is not particularly limited, but (1) ⁇ , ⁇ - is added to the terminal carboxyl group of the polyester obtained by the esterification reaction of a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol.
  • Polyester (meth) acrylate obtained by reacting an epoxy compound containing an unsaturated carboxylic acid ester group, (2) Saturated polybasic acid and / or obtained by esterification reaction of unsaturated polybasic acid and polyhydric alcohol Polyester (meth) acrylate obtained by reacting a terminal carboxyl group of polyester with a hydroxyl group-containing acrylate, or (3) Polyester obtained by esterification reaction of saturated polybasic acid and / or unsaturated polybasic acid and polyhydric alcohol Obtained by reacting (meth) acrylic acid with the terminal hydroxyl group of Ter (meth) acrylate can be used.
  • Urethane (meth) acrylate resin is obtained by dissolving urethane (meth) acrylate in a polymerizable monomer such as styrene.
  • the urethane (meth) acrylate is not particularly limited, but an isocyanate compound having two or more isocyanate groups in one molecule, a (meth) acrylic compound having one or more hydroxyl groups in one molecule, polyethylene glycol, A urethane (meth) acrylate obtained by reacting a polyol selected from polyether polyol and adipate-based polyester polyol can be used.
  • the polymerizable monomer used in the radical polymerizable resin is not particularly limited, and those known in the technical field can be used.
  • examples of polymerizable monomers include styrene; styrene monomers such as vinyltoluene and divinylbenzene; methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate And (meth) acrylic acid esters such as phenoxyethyl (meth) acrylate.
  • ethylene glycol di (meth) acrylate diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate and 1,6-hexanediol di (meth) acrylate
  • a (meth) acrylic acid ester compound having two or more (meth) acryloyl groups.
  • styrene is preferable from the viewpoints of workability, cost, and curability.
  • these polymerizable monomers can be used individually or in combination of 2 or more types.
  • the content of the polymerizable monomer in the radical polymerizable resin is not particularly limited, but is preferably 20% by mass to 80% by mass, more preferably 25% by mass to 70% by mass, and most preferably 30% by mass to 60% by mass. is there.
  • the compounding amount of the polymerizable monomer is less than 20% by mass, workability may decrease due to an increase in the viscosity of the radical polymerizable resin composition.
  • the compounding quantity of a polymerizable monomer exceeds 80 mass%, the resin molding which has a desired characteristic may not be obtained.
  • a curable resin composition containing a radical polymerizable resin (hereinafter referred to as “radical polymerizable resin composition”) generally contains a curing agent in addition to the radical polymerizable resin. It does not specifically limit as a hardening
  • curing agent What is necessary is just to select suitably according to various hardening methods, such as normal temperature hardening, heat hardening, and photocuring.
  • the curing agent used for normal temperature curing is not particularly limited, and those known in the technical field can be used.
  • the curing agent used for room temperature curing include a combination of ketone peroxide, hydroperoxide or diacyl peroxide and a reducing agent.
  • the reducing agent include cobalt salts such as cobalt naphthenate and cobalt octylate, vanadium compounds such as vanadium pentoxide, and amines such as dimethylaniline.
  • cobalt salts such as cobalt naphthenate and cobalt octylate
  • vanadium compounds such as vanadium pentoxide
  • amines such as dimethylaniline.
  • a combination of a peroxyester and a cobalt salt is particularly effective from the viewpoint of pot life and the like.
  • radical polymerization initiators such as ketone peroxide, peroxyketal, hydroperoxide, diallyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound may be used. These can be used alone or in combination of two or more.
  • the amount of the reducing agent used is not particularly limited, but is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the curing agent.
  • the curing agent used for heat curing is not particularly limited, and those known in the technical field can be used.
  • Examples of curing agents used for heat curing include benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, 1,1-bis (t-butyl Peroxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, 3-isopropyl hydroperoxide, t-butyl hydroperoxide, dic Milperoxide, dicumyl hydroperoxide, acetyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, Lauryl par Ki
  • curing agent used for photocuring A well-known thing can be used in the said technical field.
  • a photopolymerization initiator having photosensitivity in an arbitrary region within the range from the ultraviolet light region to the visible light region is effective, and a known ultraviolet polymerization initiator or visible light is effective. It is preferable to use a polymerization initiator.
  • the ultraviolet polymerization initiator include acetophenone-based, benzyl ketal-based, and (bis) acylphosphine oxide-based ultraviolet polymerization initiators. These ultraviolet polymerization initiators can be used alone or in combination of two or more.
  • short wavelength ultraviolet rays have low light transmittance with respect to a radically polymerizable resin composition (FRP) containing a fiber reinforcing material, so that they have photosensitivity to a relatively long wavelength, preferably to a visible light region of 380 nm or more.
  • FRP radically polymerizable resin composition
  • an ultraviolet polymerization initiator such as (bis) acylphosphine oxide.
  • visible light polymerization initiators include Yamaoka et al., “Surface”, 27 (7), 548 (1989), Sato et al., “Summary of the 3rd Polymer Material Forum”, 1BP18 (1994).
  • Single initiator systems such as quinone, benzyl, trimethylbenzoyldiphenylphosphine oxide, methylthioxanthone, biscyclopentadienyltitanium-di (pentafluorophenyl); organic peroxide catalyst / dye system, diphenyliodonium salt / dye, biphenyl Imidazole / keto compound, hexaarylbiimidazole compound / hydrogen donating compound, mercaptobenzothiazole / thiopyrylium salt, metal arene / cyanine dye, hexaarylbiimidazole / radical generator described in JP-B-45-37777, etc. Initiator system etc. It
  • the blending amount of the curing agent in the radical polymerizable resin composition is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass with respect to 100 parts by mass of the radical polymerizable resin. Most preferably, it is 0.5 to 4 parts by mass.
  • the blending amount of the curing agent is less than 0.1 parts by mass, the curing reaction may not proceed sufficiently.
  • curing agent exceeds 10 mass parts, the resin molding which has a desired characteristic may not be obtained.
  • the epoxy resin is not particularly limited, and those known in the technical field can be used.
  • examples of epoxy resins include bisphenol A type diglycidyl ether and its high molecular weight homologue, novolac type polyglycidyl ether and its high molecular weight homologue, aliphatic glycidyl ether such as 1,6 hexanediol diglycidyl ether, alicyclic ring Formula epoxy compounds can be used.
  • epoxy resin composition generally contains a curing agent in addition to the epoxy resin. It does not specifically limit as a hardening
  • curing agent of an epoxy resin A well-known thing can be used in the said technical field.
  • epoxy resin curing agents include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like. More specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, and imidazole.
  • amide compounds include polyamide resins synthesized from dicyandiamide, a dimer of linolenic acid, and ethylenediamine.
  • acid anhydride compounds phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
  • phenol novolak resins cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins, resorcinol novolac resins and polyvalent hydroxy compounds and formaldehyde
  • Polyphenols such as biphenyl-modified naphthol resin, aminotriazine-modified phenol resin and alkoxy group-containing aromatic ring-modified novolak resin. Lumpur compounds. These hardening
  • curing agents can be used individually or in combination of 2 or more types.
  • the amount of the epoxy resin and the curing agent to be used in the epoxy resin composition is not particularly limited as long as the amount corresponding to the kind thereof is used, but generally, it reacts with the epoxy group with respect to 1 equivalent of epoxy group in the epoxy resin.
  • the equivalent of functional groups in the curing agent to be used is preferably 0.3 to 2.0 equivalents, more preferably 0.4 to 1.5 equivalents, and most preferably 0.5 to 1.2 equivalents. That's fine. If the equivalent of the functional group in the curing agent that reacts with the epoxy group is less than 0.3 equivalent or exceeds 2.0 equivalent, the curing becomes incomplete and a resin molded product having desired characteristics cannot be obtained.
  • phenol resin A well-known thing can be used in the said technical field.
  • the phenol resin include a resol type phenol resin and a novolac type phenol resin. Among them, it is preferable to use a resol type phenolic resin that can be cured by adding heat and acid. It does not specifically limit as a resole type phenol resin, A well-known thing can be used in the said technical field.
  • the resol type phenol resin can be generally produced using a phenol compound such as phenol, bisphenol, cresol, PTBP, resorcin, naphthol, dihydroxynaphthalene as a raw material.
  • the phenol resin is generally used in a form diluted with a solvent such as water.
  • the content of the solvent in the diluted phenol resin is not particularly limited, but is preferably 10 to 50% by mass, more preferably 20 to 40% by mass.
  • the preferred resol-type phenol resin dilution has a viscosity of 500 to 8000 mPa ⁇ s (25 ° C.), a specific gravity of 1.15 to 1.30, a pH of 6.6 to 7.2, and a non-volatile content of 68 to 80%.
  • It is an adjusted liquid resol type phenol resin.
  • Such a liquid resol type phenol resin is commercially available, and for example, Shonor (registered trademark) BRL-240, BRL-1017 manufactured by Showa Denko KK and the like can be used.
  • a curable resin composition containing a phenolic resin generally contains an acidic curing agent in addition to the phenolic resin when curing with an acid. It does not specifically limit as an acidic hardening
  • acidic curing agents include organic acids or inorganic acids such as benzene sulfonic acid, paratoluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid, sulfuric acid and phosphoric acid. These can be used alone or in combination of two or more. Such acidic curing agents are generally commercially available, and for example, FRH-50 manufactured by Showa Denko KK can be used.
  • the amount of the phenolic resin and the acidic curing agent used in the phenolic resin composition is not particularly limited as long as the amount corresponding to the type thereof is used.
  • the amount of the acidic curing agent used is preferably 1 to 20 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the phenol resin dilution.
  • the amount may be 3 to 15 parts by mass, most preferably 5 to 12 parts by mass.
  • the amount of the acidic curing agent used is less than 1 part by mass, it may take a long time to cure and may not be practical.
  • curing agent exceeds 20 mass parts, it is easy to gelatinize in a short time and sufficient pot life may not be obtained.
  • the curable resin composition such as the radical polymerizable resin composition, the epoxy resin composition, and the phenol resin composition as described above includes a fiber reinforcing material from the viewpoint of improving the strength and impact resistance of the resin molded product. Can do. It does not specifically limit as a fiber reinforcement, A well-known thing can be used in the said technical field. Examples of the fiber reinforcement include inorganic fibers and organic fibers. More specifically, glass fiber, carbon fiber, aramid fiber, polyethylene terephthalate fiber, high density polyethylene fiber, nylon fiber, vinylon fiber and the like can be mentioned. These can be used alone or in combination of two or more. Further, the shape of the fiber material is not particularly limited, and a material such as roving, tape, or mat can be used.
  • the amount of the fiber reinforcement used is not particularly limited, but is preferably 5 to 400 parts by weight, more preferably 50 to 350 parts by weight, and most preferably 50 to 300 parts by weight with respect to 100 parts by weight of the curable resin composition. It is. When the amount of the fiber reinforcing material used is less than 5 parts by mass, desired strength may not be obtained. On the other hand, if the amount of the fiber reinforcement used exceeds 400 parts by mass, the impact resistance may be lowered.
  • additives known in the technical field may be blended within a range that does not impair the properties of the resin molded product.
  • known additives include UV absorbers, antioxidants, dyes, pigments, thixotropic agents, flame retardants, low shrinkage agents, inorganic and organic fillers, diluent solvents, surface treatment agents, wetting agents, and curing accelerators. Agents, release agents and the like.
  • the blending ratio of these additives is not particularly limited as long as it does not impair the effects of the present invention.
  • the curable resin composition containing the above components can be produced by kneading the above components using a method usually performed in the art, for example, a kneader. Moreover, when using a fiber reinforcing material, after preparing components by kneading components other than the fiber reinforcing material, the curable resin composition may be produced by impregnating the fiber reinforcing material with the compound.
  • the type of mold for molding and curing the curable resin composition is not particularly limited, and may be appropriately selected according to the molding method of the curable resin composition.
  • types of molds that can be used include mandrels, injection molds, blow molds, compression molds, vacuum molds, and extrusion molds.
  • the material of the mold is not particularly limited as long as it can be surface-treated with a baking mold release agent containing silicone, and materials known in the technical field can be used. Examples of the material of the mold include metal, glass, FRP and the like.
  • a metal mandrel or the like when manufacturing a resin molded product for a pipe, a metal mandrel or the like is used, and when manufacturing a resin molded product for a watering member such as a bathtub, a bath unit, and a wash basin, An FRP compression mold or the like is used.
  • the surface of the mold for molding and curing the curable resin composition is treated with a baking mold release agent containing silicone. Since the mold is surface-treated with a baking mold release agent containing silicone, the organosilicon compound contained in the curable resin composition is compatible with the baking mold release agent on the mold surface. During the molding and curing, the organosilicon compound can be localized on the surface of the resin molding. If the baking mold release agent does not contain silicone, the organosilicon compound cannot be localized on the surface of the resin molding. In addition, when the mold release agent is not a baked mold, the mold release agent is absorbed by the curable resin composition when the curable resin composition is applied to the mold, and the organosilicon compound is sufficiently absorbed on the surface of the resin molded product. Cannot be localized. Therefore, it is difficult to form a surface on which the scale is difficult to adhere and the scale can be easily removed.
  • silicone used for the baking mold release agent is not particularly limited, and those known in the technical field can be used, but oily ones are preferable from the viewpoint of applicability by brush or spray.
  • silicone is obtained by hydrolyzing and polymerizing an organosilicon compound, and is a compound in which an organic group is bonded to the main skeleton of a siloxane chain (Si—O—Si) in which silicon and oxygen are bonded alternately.
  • the content of silicone in the baking mold release agent is not particularly limited, but is generally 3 to 20% by mass.
  • the baking mold release agent contains a solvent such as toluene and xylene in addition to silicone.
  • Baking mold release agents containing silicone as described above are commercially available, for example, KS-702, KS-726, KS-707, KS-700, KS-7201, KS- manufactured by Shin-Etsu Chemical Co., Ltd. 7200, SEPA-COAT, KF-96SP, KF-965SP, KF-412SP, RELEASE, SEPA-COAT SP, and the like can be used.
  • the method of treating the surface of the mold with the baking mold release agent is not particularly limited, but after the baking mold release agent is uniformly applied to the surface of the molding mold, the solvent is volatilized by heating at room temperature or low temperature.
  • the baking process may be performed.
  • the baking temperature is not particularly limited, but is generally 50 to 200 ° C.
  • the baking mold release agent cannot be uniformly applied to the surface of the mold, so it is preferable to wash the surface of the mold in advance.
  • the method for molding and curing the curable resin composition using the molding die is not particularly limited, and may be appropriately selected according to the type of the curable resin composition to be used and the molding method.
  • Example 1 A baking mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a 3 mm thick glass plate from which oils and fats had been removed by washing with acetone, and dried at room temperature (25 ° C.). Then, the glass plate was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
  • sicone SEPA-COAT registered trademark
  • a mold having a thickness of 3 mm was prepared using two glass plates surface-treated with a baking mold release agent and a silicon rubber spacer having a height of 3 mm, and then the above vinyl ester was added to the mold.
  • the resin composition was injected and allowed to stand at room temperature, it gelled and cured in 30 minutes. After leaving this to stand for 24 hours, after-curing was performed at 120 ° C. for 2 hours, and the mold was returned to room temperature and removed to obtain a resin molded product.
  • Vinyl ester resin (Lipoxy (registered trademark) R-806 (Styrene content 45% by mass) manufactured by Showa Denko KK), 100 parts by mass of naphthenic acid Co, Parmec (registered trademark) N (Nippon Yushi Co., Ltd.) (Methyl ethyl ketone peroxide) 1.5 parts by mass was added and mixed to prepare a room temperature curable vinyl ester resin composition.
  • a mold having a thickness of 3 mm was prepared using two glass plates with a PET film and a silicon rubber spacer having a height of 3 mm, and then the above vinyl ester resin composition was applied to the mold.
  • Example 2 A glass release plate (Daikin Kogyo Co., Ltd., Daifree (registered trademark) GF500) is spray-coated on a 3 mm thick glass plate from which oils and fats have been removed by washing with acetone, and dried at room temperature (25 ° C.). The plate was surface treated with a fluorinated mold release agent.
  • the fluorine-based mold release agent is a mold release agent that does not contain silicone and is not a baking type.
  • a mold having a thickness of 3 mm was prepared using two glass plates surface-treated with a fluorine-based mold release agent and a spacer having a height of 3 mm, and then the vinyl prepared in Example 1 was applied to this mold.
  • ester resin composition When the ester resin composition was injected and allowed to stand at room temperature, it gelled and cured in 30 minutes. After leaving this to stand for 24 hours, after-curing was performed at 120 ° C. for 2 hours, and the mold was returned to room temperature and removed to obtain a resin molded product.
  • the water repellent angle was measured by dropping 2 ⁇ L of water onto the surface of the resin molding and measuring the contact angle of water with a contact angle meter (contact angle meter CA-DT type manufactured by Kyowa Interface Science).
  • the oil repellency angle was measured by dropping 2 ⁇ L of oleic acid onto the surface of the resin molding and measuring the oil contact angle with a contact angle meter (contact angle meter CA-DT type manufactured by Kyowa Interface Science).
  • the resin molded product of Example 1 had both a high water repellency angle and an oil repellency angle, was difficult to adhere to water and oil, and had high scale removability.
  • the resin moldings of Comparative Examples 1 and 2 had both low water repellency angles and oil repellency angles, were easily attached to water and oil, and had low scale removability.
  • Example 2 A baking mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a 3 mm thick glass plate from which oils and fats had been removed by washing with acetone, and dried at room temperature (25 ° C.). Then, the glass plate was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
  • sicone SEPA-COAT registered trademark
  • a phenol resin dilution (Shonol (registered trademark) BRL-240 (water content: 30% by mass) manufactured by Showa Denko KK) was added to a curing agent (FRH-50 manufactured by Showa Denko KK) 10 3 parts by mass and 3 parts by mass of a hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700, manufactured by BYK Japan) and polyester-modified polydimethylsiloxane (BYK (registered trademark) -310, manufactured by BYK Japan) After adding 0.2 parts by mass and mixing, a glass cloth (# 200) was impregnated to prepare a phenol resin composition. Here, content of the glass cloth in a phenol resin composition was 70 mass%.
  • the above phenol resin composition (10 ply) is placed on a glass plate surface-treated with a baking mold release agent, heated at 60 ° C. for 2 hours, and then heated at 80 ° C. for 3 hours to be cured.
  • the resin molded product was obtained by returning to room temperature and removing the mold.
  • Comparative Example 3 As a comparative product of Example 2, the same procedure as in Example 2 was used except that a carbon steel plate and a stainless steel plate from which surface oils and fats were removed by washing with acetone were used instead of the glass plate surface-treated with a baking mold release agent. Thus, a resin composition was obtained.
  • Example 2 As shown in Table 2, the resin molded product of Example 2 had high scale removability, whereas the carbon steel plate and stainless steel plate of Comparative Example 3 had low scale removability.
  • Example 3 A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
  • sicone SEPA-COAT registered trademark
  • a phenol resin dilution (Shonol (registered trademark) BRL-240 (water content: 30% by mass) manufactured by Showa Denko KK) was added to a curing agent (FRH-50 manufactured by Showa Denko KK) 10 3 parts by mass and 3 parts by mass of a hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700, manufactured by BYK Japan) and polyester-modified polydimethylsiloxane (BYK (registered trademark) -310, manufactured by BYK Japan) After adding 0.2 parts by mass and mixing, a glass cloth (# 200) was impregnated to prepare a phenol resin composition. Here, content of the glass cloth in a phenol resin composition was 70 mass%.
  • the above-mentioned phenol resin composition (10 ply) is wrapped around a mandrel surface-treated with a baking mold release agent, heated at 60 ° C. for 2 hours, then cured by heating at 80 ° C. for 3 hours, and brought to room temperature. By returning and demolding, a pipe-shaped resin molded product was obtained.
  • Example 4 A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
  • sicone SEPA-COAT registered trademark
  • the above-mentioned vinyl ester resin composition (10 ply) was wound around a mandrel surface-treated with a baking mold release agent, cured while rotating at room temperature for 30 minutes, and allowed to stand for 24 hours. Next, this was demolded and after-curing at 120 ° C. for 2 hours to obtain a pipe-shaped resin molded product.
  • Example 5 A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
  • sicone SEPA-COAT registered trademark
  • a phenol resin dilution (Shonol (registered trademark) BRL-240 (water content: 30% by mass) manufactured by Showa Denko KK) was added to a curing agent (FRH-50 manufactured by Showa Denko KK) 10 3 parts by mass and 3 parts by mass of a hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700, manufactured by BYK Japan) and polyester-modified polydimethylsiloxane (BYK (registered trademark) -310, manufactured by BYK Japan) After adding 0.2 parts by mass and mixing, a glass cloth (# 200) was impregnated to prepare a phenol resin composition. Here, content of the glass cloth in a phenol resin composition was 70 mass%.
  • the above-mentioned phenol resin composition (10 ply) is wrapped around a mandrel surface-treated with a baking mold release agent, heated at 60 ° C. for 2 hours, then cured by heating at 80 ° C. for 3 hours, and brought to room temperature. Returned.
  • a visible light curable vinyl ester resin Lipoxy (registered trademark) LC-760 manufactured by Showa Denko KK was impregnated into a T glass roving (RST-220PA manufactured by Nittobo Co., Ltd.), which was subjected to a filament winding method.
  • the helical winding was wound to a layer thickness of 0.98 mm, and then the hoop winding was wound to a thickness of 0.6 mm (fiber content: 50% by volume).
  • three 600W metal halide lamps which are visible light sources including ultraviolet rays, are arranged, and light is irradiated while rotating the compact so that the light intensity of 380 to 450 nm on the irradiated surface is 20 mW / cm 2.
  • the mold was removed to obtain a pipe-shaped resin molded product.
  • Comparative Example 4 As a comparative product of Example 5, a baking mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-applied to a filament winding molding mandrel from which fats and oils were removed by acetone washing, and room temperature ( A pipe-shaped resin composition was obtained in the same manner as in Example 5 except that a mandrel that had been subjected to a surface treatment that was only dried at 25 ° C. and not subjected to a baking treatment was used.
  • a baking mold release agent silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.
  • Comparative Example 5 As a comparative product of Example 5, a pipe-shaped resin was used in the same manner as in Example 5 except that an untreated mandrel coated with a polyethylene terephthalate film was used instead of a mandrel surface-treated with a baking mold release agent. A composition was obtained.
  • a spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
  • the vinyl ester resin composition (10 ply) was wound around a mandrel surface-treated with a baking mold release agent, cured while rotating at room temperature for 30 minutes, and allowed to stand for 24 hours. Next, this was demolded and after-curing at 120 ° C. for 2 hours to obtain a pipe-shaped resin molded product.
  • the content of the glass cloth in the vinyl ester resin composition was 75% by mass.
  • FRP release agent BONLYSE registered trademark
  • H manufactured by Keiyo Kasei Co., Ltd.
  • the above vinyl ester resin composition (10 ply) is wound and rotated at room temperature for 30 minutes. The mixture was cured while being left for another 24 hours.
  • the FRP mold release agent Bon Lease (H) is a wax-type mold release agent that does not contain silicone and is not baked. Next, this was demolded and after-curing at 120 ° C. for 2 hours to obtain a pipe-shaped resin molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

This method for producing a resin molded article is characterized in that a curable resin composition containing an organosilicon compound is molded and cured with use of a molding die that is surface-treated with a baking-type mold release agent containing a silicone. The organosilicon compound used for a resin molded article according to the present invention can be at least one compound that is selected from the group consisting of organic silane compounds, organo-modified siloxane compounds and silicon-modified acrylic compounds. The present invention is able to provide a method for producing a resin molded article, which exhibits excellent scale adhesion prevention effect and scale removal effect for a long period of time.

Description

樹脂成形物の製造方法Manufacturing method of resin molding
 本発明は、樹脂成形物の製造方法に関する。詳細には、本発明は、温泉及び地熱発電等で使用されるパイプ、並びにバスタブ、バスユニット及び洗面台等の水回り部材として使用される樹脂成形物の製造方法に関する。 The present invention relates to a method for producing a resin molded product. Specifically, the present invention relates to a pipe used in hot springs, geothermal power generation, and the like, and a method for producing a resin molded product used as a watering member such as a bathtub, bath unit, and washstand.
 温泉及び地熱発電(例えば、バイナリー発電)等で使用されるパイプは、時間の経過に伴い、その内部にスケール(例えば、カルシウムスケール、シリカスケール)が付着する。パイプ内に付着したスケールは、強酸又は強アルカリを用いた洗浄を行うことで除去することができる。しかしながら、金属製のパイプは、強酸等を用いた洗浄によって穴が開く等の問題が生じることがある。そのため、強酸等による洗浄を行う場合、強酸等の滞留を防止したり、耐薬品性に優れた樹脂製のパイプ(例えば、FRPパイプ等)を用いなければならない。また、樹脂製のパイプは、金属製のパイプと比べてスケールが付着し難いと言われているものの、スケールの付着を十分に防止できるわけではない。 Pipes used in hot springs and geothermal power generation (for example, binary power generation) have scales (for example, calcium scale and silica scale) attached to the inside as time passes. The scale attached to the pipe can be removed by washing with a strong acid or strong alkali. However, metal pipes may have problems such as opening holes when washed with strong acid or the like. Therefore, when washing with a strong acid or the like, it is necessary to use a resin pipe (for example, an FRP pipe or the like) that prevents the retention of the strong acid or the like and has excellent chemical resistance. In addition, resin pipes are said to be less likely to have scales attached than metal pipes, but scales cannot be prevented sufficiently.
 バスタブ、バスユニット及び洗面台等の水回り部材においても、表面上に水が溜まって蒸発するとスケール(「水アカ」とも呼ばれる)が形成される。このスケールは、一旦付着すると容易に除去することができず、各種洗剤を用いてタワシやブラシ等により擦り落とす必要がある。 Also in water-related members such as bathtubs, bath units, and washstands, when water accumulates on the surface and evaporates, a scale (also called “water red”) is formed. This scale cannot be easily removed once it has adhered, and must be scraped off with a scrubber or brush using various detergents.
 スケールの付着を防止する方法及びスケールを除去し易くする方法として、様々な方法が提案されている。
 例えば、フッ素系樹脂やケイ素系樹脂等の材料を、スケールが付着する基材にコーティングする方法が知られている。この方法によると、基材の表面自由エネルギーが低くなるため、スケールの付着を防止することができる。しかしながら、この方法は、コーティング処理後の初期のスケール付着防止効果は良好であるものの、基材とコーティング膜との間の密着性が低いため、使用時又は製造時等にコーティング膜が剥がれてしまうことがある。その結果、長期的なスケール付着防止効果が十分に得られないという問題があった。
Various methods have been proposed as a method for preventing adhesion of scale and a method for facilitating removal of scale.
For example, a method is known in which a base material to which a scale adheres is coated with a material such as a fluorine resin or a silicon resin. According to this method, since the surface free energy of the base material is lowered, the adhesion of the scale can be prevented. However, although this method has a good initial scale prevention effect after coating treatment, the adhesion between the substrate and the coating film is low, so the coating film is peeled off during use or production. Sometimes. As a result, there has been a problem that a long-term scale adhesion preventing effect cannot be obtained sufficiently.
 また、シリコーン樹脂を表面に塗布した成形型内に基材樹脂を入れて硬化させることにより、基材樹脂の表面にシリコーン樹脂を転写させる方法が提案されている(例えば、特許文献1及び2参照)。この方法によると、基材樹脂の表面に転写されたシリコーン樹脂により、スケールの付着を防止することができる。しかしながら、この方法もまた、基材樹脂とシリコーン樹脂との間の密着性が低いため、長期的なスケール付着防止効果が十分に得られないという問題があった。 In addition, a method has been proposed in which a silicone resin is transferred onto the surface of a base resin by placing the base resin in a molding die coated with a silicone resin and curing the base resin (see, for example, Patent Documents 1 and 2). ). According to this method, scale adhesion can be prevented by the silicone resin transferred to the surface of the base resin. However, this method also has a problem that a long-term scale adhesion preventing effect cannot be sufficiently obtained because of low adhesion between the base resin and the silicone resin.
 さらに、湿式ホーニング加工又は凹凸を有する成形型を用いて成形物の表面に凹凸部を形成する方法が提案されている(例えば、特許文献3参照)。この方法によれば、成形物の表面に付着した汚れの除去を容易にすることができる。しかしながら、この方法は、スケールの付着に必ずしも有効ではない上、特殊な成形型等を用いる必要があるため製造コストが上昇するという問題がある。 Furthermore, a method of forming an uneven portion on the surface of a molded product using a wet honing process or a mold having uneven portions has been proposed (see, for example, Patent Document 3). According to this method, it is possible to easily remove the dirt attached to the surface of the molded product. However, this method is not necessarily effective for attaching the scale, and there is a problem that the manufacturing cost increases because it is necessary to use a special mold or the like.
特開2001-323088号公報JP 2001-323088 A 特開2006-305367号公報JP 2006-305367 A 特開2003-213897号公報Japanese Patent Laid-Open No. 2003-213897
 本発明は、上記のような状況に鑑みてなされたものであり、スケールの付着防止効果及びスケールの除去効果が長期間にわたって優れる樹脂成形物の製造方法を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for producing a resin molded product which has an excellent effect of preventing adhesion of scale and removing effect of scale over a long period of time.
 本発明者らは、上記のような問題を解決すべく鋭意研究した結果、シリコーンを含む焼き付け型離型剤で成形型を表面処理すると共に、該焼き付け型離型材と親和性のある有機ケイ素化合物を硬化性樹脂組成物に含有させて成形及び硬化することにより、樹脂成形物の表面に有機ケイ素化合物を局在化させ、スケールが付着し難く且つスケールを除去し易い表面を形成し得ることを見出し、本発明に至った。 As a result of diligent research to solve the above problems, the present inventors have surface-treated a mold with a baking mold release agent containing silicone, and an organosilicon compound having an affinity for the baking mold release material Can be formed into a curable resin composition and molded and cured to localize the organosilicon compound on the surface of the resin molded product and form a surface on which the scale is difficult to adhere and the scale can be easily removed. The headline, the present invention has been reached.
 すなわち、本発明は、以下の[1]~[7]である。
 [1]シリコーンを含む焼き付け型離型剤で表面処理した成形型を用いて、有機ケイ素化合物を含有する硬化性樹脂組成物を成形及び硬化することを特徴とする樹脂成形物の製造方法。
 [2]前記有機ケイ素化合物は、有機シラン化合物、有機変性シロキサン化合物及びケイ素変性アクリル化合物からなる群から選択される少なくとも1種であることを特徴とする[1]に記載の樹脂成形物の製造方法。
 [3]前記硬化性樹脂組成物における前記有機ケイ素化合物の含有量は、硬化性樹脂100質量部に対して0.1~10質量部であることを特徴とする[1]又は[2]に記載の樹脂成形物の製造方法。
That is, the present invention includes the following [1] to [7].
[1] A method for producing a resin molded product, comprising molding and curing a curable resin composition containing an organosilicon compound using a molding die surface-treated with a baking mold release agent containing silicone.
[2] The resin-molded product according to [1], wherein the organosilicon compound is at least one selected from the group consisting of an organosilane compound, an organo-modified siloxane compound, and a silicon-modified acrylic compound. Method.
[3] In [1] or [2], the content of the organosilicon compound in the curable resin composition is 0.1 to 10 parts by mass with respect to 100 parts by mass of the curable resin. The manufacturing method of the resin molding of description.
 [4]前記硬化性樹脂組成物は、ラジカル重合性樹脂、エポキシ樹脂及びフェノール樹脂からなる群から選択される少なくとも1種の硬化性樹脂を含むことを特徴とする[1]~[3]のいずれか1つに記載の樹脂成形物の製造方法。
 [5]前記ラジカル重合性樹脂は、ビニルエステル樹脂であることを特徴とする[4]に記載の樹脂成形物の製造方法。
 [6]前記硬化性樹脂組成物は、繊維強化材をさらに含むことを特徴とする[1]~[5]のいずれか1つに記載の樹脂成形物の製造方法。
 [7][1]~[6]のいずれか1つに記載の樹脂成形物の製造方法によって得られることを特徴とする樹脂成形物。
[4] The curable resin composition includes at least one curable resin selected from the group consisting of a radical polymerizable resin, an epoxy resin, and a phenol resin. The manufacturing method of the resin molding as described in any one.
[5] The method for producing a resin molded product according to [4], wherein the radical polymerizable resin is a vinyl ester resin.
[6] The method for producing a resin molded product according to any one of [1] to [5], wherein the curable resin composition further includes a fiber reinforcing material.
[7] A resin molded product obtained by the method for producing a resin molded product according to any one of [1] to [6].
 本発明によれば、スケールの付着防止効果及びスケールの除去効果が長期間にわたって優れる樹脂成形物の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a resin molded product that is excellent in scale adhesion prevention effect and scale removal effect over a long period of time.
 本発明の樹脂成形物の製造方法は、シリコーンを含む焼き付け型離型剤で表面処理した成形型を用いて、有機ケイ素化合物を含有する硬化性樹脂組成物を成形及び硬化することを特徴とする。 The method for producing a resin molded product of the present invention is characterized in that a curable resin composition containing an organosilicon compound is molded and cured using a molding die surface-treated with a baking mold release agent containing silicone. .
 硬化性樹脂組成物に添加される有機ケイ素化合物としては、特に限定されず、有機シラン化合物、有機変性シロキサン化合物及びケイ素変性アクリル化合物等の当該技術分野において公知のものを用いることができる。有機シラン化合物の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。有機変性シロキサン化合物の例としては、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエステル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリジメチルシロキサン等が挙げられる。ケイ素変性アクリル化合物としては、ケイ素変性アクリル、水酸基含有ケイ素変性アクリル等が挙げられる。これらの中でも、水酸基を有する有機ケイ素化合物は、シリコーンを含む焼き付け型離型剤との親和性が高く、樹脂成形物の表面に有機ケイ素化合物を局在化させる効果に優れているため特に好ましい。また、これらの化合物は、単独又は2種以上を組み合わせて用いることができる。 The organic silicon compound added to the curable resin composition is not particularly limited, and those known in the art such as an organic silane compound, an organic modified siloxane compound, and a silicon modified acrylic compound can be used. Examples of organosilane compounds include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxy Examples include silane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and the like. Examples of organically modified siloxane compounds include polyether modified polydimethylsiloxane, polyester modified polydimethylsiloxane, polyester modified polymethylalkylsiloxane, aralkyl modified polymethylalkylsiloxane, polyether modified siloxane, polyester modified hydroxyl group-containing polydimethylsiloxane, and the like. Can be mentioned. Examples of the silicon-modified acrylic compound include silicon-modified acryl and hydroxyl group-containing silicon-modified acryl. Among these, an organic silicon compound having a hydroxyl group is particularly preferable because it has a high affinity with a baking mold release agent containing silicone and is excellent in the effect of localizing the organic silicon compound on the surface of the resin molded product. Moreover, these compounds can be used individually or in combination of 2 or more types.
 また、上記で例示した有機ケイ素化合物は、市販されており、例えば、信越化学工業株式会社製のKBM-1003、KBE-1003、KBM-303、KBM-403、KBM-1403、KBM-503、KBM-5103、KBM-602、KBM-603、KBE-603、KBM-573;ビッグケミー・ジャパン株式会社製のBYK(登録商標)-300、BYK(登録商標)-302、BYK(登録商標)-306、BYK(登録商標)-307、BYK(登録商標)-310、BYK(登録商標)-313、BYK(登録商標)-315、BYK(登録商標)-320、BYK(登録商標)-322、BYK(登録商標)-323、BYK(登録商標)-330、BYK(登録商標)-331、BYK(登録商標)-333、BYK(登録商標)-342、BYK(登録商標)-345、BYK(登録商標)-346、BYK(登録商標)-347、BYK(登録商標)-348、BYK(登録商標)-349、BYK(登録商標)-370、BYK(登録商標)-3550、BYK(登録商標)-SILCLEAN 3700、BYK(登録商標)-SILCLEAN 3720等を用いることができる。 The organosilicon compounds exemplified above are commercially available, for example, KBM-1003, KBE-1003, KBM-303, KBM-403, KBM-1403, KBM-503, KBM manufactured by Shin-Etsu Chemical Co., Ltd. -5103, KBM-602, KBM-603, KBE-603, KBM-573; BYK (registered trademark) -300, BYK (registered trademark) -302, BYK (registered trademark) -306 manufactured by Big Chemie Japan KK BYK (R) -307, BYK (R) -310, BYK (R) -313, BYK (R) -315, BYK (R) -320, BYK (R) -322, BYK ( Registered trademark) -323, BYK (registered trademark) -330, BYK (registered trademark) -331, BYK (registered trademark) -3. 3, BYK (registered trademark) -342, BYK (registered trademark) -345, BYK (registered trademark) -346, BYK (registered trademark) -347, BYK (registered trademark) -348, BYK (registered trademark) -349, BYK (registered trademark) -370, BYK (registered trademark) -3550, BYK (registered trademark) -SILCLEAN 3700, BYK (registered trademark) -SILCLEAN 3720, and the like can be used.
 硬化性樹脂組成物におけるケイ素化合物の含有量は、特に限定されないが、硬化性樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~8質量部、最も好ましくは1~5質量部である。ケイ素化合物の含有量が0.1質量部未満であると、樹脂成形物のスケールの付着防止効果及びスケールの除去効果が十分に得られないことがある。一方、ケイ素化合物の含有量が10質量部を超えると、樹脂成分の割合が少なくなり、所望の特性を有する樹脂成形物が得られないことがある。 The content of the silicon compound in the curable resin composition is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, most preferably 100 parts by mass of the curable resin. The amount is preferably 1 to 5 parts by mass. When the content of the silicon compound is less than 0.1 parts by mass, the effect of preventing adhesion of the scale of the resin molded product and the effect of removing the scale may not be sufficiently obtained. On the other hand, when the content of the silicon compound exceeds 10 parts by mass, the ratio of the resin component decreases, and a resin molded product having desired characteristics may not be obtained.
 有機ケイ素化合物を含有する硬化性樹脂組成物としては、特に限定されず、硬化性樹脂組成物から形成される樹脂成形物の用途に応じて適切なものを選択すればよい。
 硬化性樹脂組成物に用いられる硬化性樹脂としては、特に限定されず、ラジカル重合性樹脂、エポキシ樹脂及びフェノール樹脂等の当該技術分野において公知のものを用いることができる。
It does not specifically limit as a curable resin composition containing an organosilicon compound, What is necessary is just to select an appropriate thing according to the use of the resin molding formed from a curable resin composition.
It does not specifically limit as curable resin used for curable resin composition, A well-known thing can be used in the said technical fields, such as a radically polymerizable resin, an epoxy resin, and a phenol resin.
 ラジカル重合性樹脂としては、特に限定されないが、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂等が挙げられる。これらの樹脂は、単独又は2種以上を組み合わせて用いることができる。 The radical polymerizable resin is not particularly limited, and examples thereof include unsaturated polyester resins, vinyl ester resins, polyester (meth) acrylate resins, urethane (meth) acrylate resins, and the like. These resins can be used alone or in combination of two or more.
 不飽和ポリエステル樹脂は、多価アルコールと不飽和多塩基酸(及び必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を、スチレン等の重合性モノマーに溶解したものである。不飽和ポリエステル樹脂としては、特に限定されず、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)又は「塗料用語辞典」(色材協会編、1993年発行)に記載されているもの等を用いることができる。また、不飽和ポリエステル樹脂は、市販されており、例えば、昭和電工株式会社製の「リゴラック(登録商標)」シリーズ等を用いることができる。 Unsaturated polyester resin dissolves condensation product (unsaturated polyester) by esterification reaction of polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid if necessary) in polymerizable monomer such as styrene. It is a thing. The unsaturated polyester resin is not particularly limited, and is described in “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) or “Paint Glossary of Terms” (edited by Color Material Association, published in 1993). Can be used. Moreover, unsaturated polyester resin is marketed, for example, "Rigo rack (trademark)" series etc. by Showa Denko KK can be used.
 ビニルエステル樹脂(「エポキシアクリレート樹脂」とも称される)は、グリシジル基(エポキシ基)を有する化合物と、アクリル酸等の重合性不飽和結合を有するカルボキシル化合物のカルボキシル基との開環反応により生成する重合性不飽和結合を持つ化合物(ビニルエステル)を、スチレン等の重合性モノマーに溶解したものである。ビニルエステル樹脂としては、特に限定されず、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)又は「塗料用語辞典」(色材協会編、1993年発行)に記載されているもの等を用いることができる。また、ビニルエステル樹脂は、市販されており、例えば、昭和電工株式会社製の「リポキシ(登録商標)」シリーズを用いることができる。 Vinyl ester resin (also referred to as “epoxy acrylate resin”) is produced by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. The compound having a polymerizable unsaturated bond (vinyl ester) is dissolved in a polymerizable monomer such as styrene. The vinyl ester resin is not particularly limited, and those described in “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) or “painting glossary” (edited by Color Material Association, published in 1993), etc. Can be used. Vinyl ester resins are commercially available, and for example, “Lipoxy (registered trademark)” series manufactured by Showa Denko KK can be used.
 ポリエステル(メタ)アクリレート樹脂は、ポリエステル(メタ)アクリレートをスチレン等の重合性モノマーに溶解したものである。ポリエステル(メタ)アクリレートとしては、特に限定されないが、(1)飽和多塩基酸及び/又は不飽和多塩基酸と多価アルコールとのエステル化反応によって得られるポリエステルの末端カルボキシル基にα,β-不飽和カルボン酸エステル基を含有するエポキシ化合物を反応して得られるポリエステル(メタ)アクリレート、(2)飽和多塩基酸及び/又は不飽和多塩基酸と多価アルコールとのエステル化反応によって得られるポリエステルの末端カルボキシル基に水酸基含有アクリレートを反応させて得られるポリエステル(メタ)アクリレート、或いは(3)飽和多塩基酸及び/又は不飽和多塩基酸と多価アルコールとのエステル化反応によって得られるポリエステルの末端水酸基に(メタ)アクリル酸を反応して得られるポリエステル(メタ)アクリレートを用いることができる。 The polyester (meth) acrylate resin is obtained by dissolving polyester (meth) acrylate in a polymerizable monomer such as styrene. The polyester (meth) acrylate is not particularly limited, but (1) α, β- is added to the terminal carboxyl group of the polyester obtained by the esterification reaction of a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol. Polyester (meth) acrylate obtained by reacting an epoxy compound containing an unsaturated carboxylic acid ester group, (2) Saturated polybasic acid and / or obtained by esterification reaction of unsaturated polybasic acid and polyhydric alcohol Polyester (meth) acrylate obtained by reacting a terminal carboxyl group of polyester with a hydroxyl group-containing acrylate, or (3) Polyester obtained by esterification reaction of saturated polybasic acid and / or unsaturated polybasic acid and polyhydric alcohol Obtained by reacting (meth) acrylic acid with the terminal hydroxyl group of Ter (meth) acrylate can be used.
 ウレタン(メタ)アクリレート樹脂は、ウレタン(メタ)アクリレートをスチレン等の重合性モノマーに溶解したものである。ウレタン(メタ)アクリレートとしては、特に限定されないが、1分子中に2つ以上のイソシアネート基を有するイソシアネート化合物と、1分子中に1つ以上の水酸基を有する(メタ)アクリル化合物と、ポリエチレングリコール、ポリエーテルポリオール及びアジペート系ポリエステルポリオールから選ばれるポリオールとを反応させることにより得られるウレタン(メタ)アクリレートを用いることができる。 Urethane (meth) acrylate resin is obtained by dissolving urethane (meth) acrylate in a polymerizable monomer such as styrene. The urethane (meth) acrylate is not particularly limited, but an isocyanate compound having two or more isocyanate groups in one molecule, a (meth) acrylic compound having one or more hydroxyl groups in one molecule, polyethylene glycol, A urethane (meth) acrylate obtained by reacting a polyol selected from polyether polyol and adipate-based polyester polyol can be used.
 ラジカル重合性樹脂に用いられる重合性モノマーとしては、特に限定されず、当該技術分野において公知のものを用いることができる。重合性モノマーの例としては、スチレン;ビニルトルエン、ジビニルベンゼン等のスチレン系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、フェノキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル類等が挙げられる。また、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート及び1,6-ヘキサンジオールジ(メタ)アクリレート等の、分子中に(メタ)アクリロイル基を2個以上有する(メタ)アクリル酸エステル化合物も使用することも可能である。これらの中でも、作業性、コスト及び硬化性の観点から、スチレンが好ましい。また、これらの重合性モノマーは、単独又は2種以上を組み合わせて使用することができる。 The polymerizable monomer used in the radical polymerizable resin is not particularly limited, and those known in the technical field can be used. Examples of polymerizable monomers include styrene; styrene monomers such as vinyltoluene and divinylbenzene; methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate And (meth) acrylic acid esters such as phenoxyethyl (meth) acrylate. In addition, in the molecule such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate and 1,6-hexanediol di (meth) acrylate It is also possible to use a (meth) acrylic acid ester compound having two or more (meth) acryloyl groups. Among these, styrene is preferable from the viewpoints of workability, cost, and curability. Moreover, these polymerizable monomers can be used individually or in combination of 2 or more types.
 ラジカル重合性樹脂における重合性モノマーの含有量は、特に限定されないが、好ましくは20質量%~80質量%、より好ましくは25質量%~70質量%、最も好ましくは30質量%~60質量%である。重合性モノマーの配合量が20質量%未満であると、ラジカル重合性樹脂組成物の粘度上昇によって作業性が低下してしまうことがある。一方、重合性モノマーの配合量が80質量%を超えると、所望の特性を有する樹脂成形物が得られないことがある。 The content of the polymerizable monomer in the radical polymerizable resin is not particularly limited, but is preferably 20% by mass to 80% by mass, more preferably 25% by mass to 70% by mass, and most preferably 30% by mass to 60% by mass. is there. When the compounding amount of the polymerizable monomer is less than 20% by mass, workability may decrease due to an increase in the viscosity of the radical polymerizable resin composition. On the other hand, when the compounding quantity of a polymerizable monomer exceeds 80 mass%, the resin molding which has a desired characteristic may not be obtained.
 ラジカル重合性樹脂を含む硬化性樹脂組成物(以下、「ラジカル重合性樹脂組成物」という。)は、上記のラジカル重合性樹脂に加えて硬化剤等を一般に含む。
 硬化剤としては、特に限定されず、常温硬化、加熱硬化、光硬化等の各種硬化方法に応じて適宜選択して用いればよい。
A curable resin composition containing a radical polymerizable resin (hereinafter referred to as “radical polymerizable resin composition”) generally contains a curing agent in addition to the radical polymerizable resin.
It does not specifically limit as a hardening | curing agent, What is necessary is just to select suitably according to various hardening methods, such as normal temperature hardening, heat hardening, and photocuring.
 常温硬化に使用される硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。常温硬化に使用される硬化剤の例としては、ケトンパーオキサイド、ハイドロパーオキサイド又はジアシルパーオキサイドと還元剤との組み合わせ等が挙げられる。還元剤の例としては、ナフテン酸コバルト、オクチル酸コバルト等のコバルト塩、五酸化バナジウム等のバナジウム化合物、ジメチルアニリン等のアミン類等が挙げられる。これらの中でも、ポットライフ等の観点から、パーオキシエステルとコバルト塩との組み合わせが特に有効である。或いは、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート、アゾ化合物等の公知のラジカル重合開始剤を用いてもよい。これらは、単独又は2種以上を組み合わせて用いることができる。還元剤の使用量は、特に限定されないが、硬化剤100質量部に対して、好ましくは5~200質量部、より好ましくは10~100質量部である。 The curing agent used for normal temperature curing is not particularly limited, and those known in the technical field can be used. Examples of the curing agent used for room temperature curing include a combination of ketone peroxide, hydroperoxide or diacyl peroxide and a reducing agent. Examples of the reducing agent include cobalt salts such as cobalt naphthenate and cobalt octylate, vanadium compounds such as vanadium pentoxide, and amines such as dimethylaniline. Among these, a combination of a peroxyester and a cobalt salt is particularly effective from the viewpoint of pot life and the like. Alternatively, known radical polymerization initiators such as ketone peroxide, peroxyketal, hydroperoxide, diallyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound may be used. These can be used alone or in combination of two or more. The amount of the reducing agent used is not particularly limited, but is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the curing agent.
 加熱硬化に使用される硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。加熱硬化に使用される硬化剤の例としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、アゾビスイソブチロニトリル、アゾビスカルボンアミド等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。また、これらの硬化剤に上述の還元剤を組み合わせて、50~80℃の中温硬化を行ってもよい。使用する還元剤の種類や量は上記と同様である。 The curing agent used for heat curing is not particularly limited, and those known in the technical field can be used. Examples of curing agents used for heat curing include benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, 1,1-bis (t-butyl Peroxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, 3-isopropyl hydroperoxide, t-butyl hydroperoxide, dic Milperoxide, dicumyl hydroperoxide, acetyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, Lauryl par Kisaido, azobisisobutyronitrile, and azobis carboxamido like. These can be used alone or in combination of two or more. Further, these curing agents may be combined with the above-described reducing agent to perform intermediate temperature curing at 50 to 80 ° C. The kind and amount of the reducing agent used are the same as described above.
 光硬化に使用される硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。その中でも、光硬化に使用される硬化剤は、紫外光領域から可視光領域の範囲内の任意の領域に感光性を有する光重合開始剤が有効であり、公知の紫外線重合開始剤や可視光線重合開始剤を使用することが好ましい。
 紫外線重合開始剤の例としては、アセトフェノン系、ベンジルケタール系、(ビス)アシルホスフィンオキサイド系等の紫外線重合開始剤が挙げられる。これらの紫外線重合開始剤は、単独又は2種以上を組み合わせて用いることができる。また、短波長の紫外線は、繊維強化材を含むラジカル重合性樹脂組成物(FRP)に対する光透過性が低いことから、比較的長波長、好ましくは380nm以上の可視光領域にまで感光性を有する(ビス)アシルホスフィンオキサイド系等の紫外線重合開始剤を使用することが好ましい。
It does not specifically limit as a hardening | curing agent used for photocuring, A well-known thing can be used in the said technical field. Among them, as the curing agent used for photocuring, a photopolymerization initiator having photosensitivity in an arbitrary region within the range from the ultraviolet light region to the visible light region is effective, and a known ultraviolet polymerization initiator or visible light is effective. It is preferable to use a polymerization initiator.
Examples of the ultraviolet polymerization initiator include acetophenone-based, benzyl ketal-based, and (bis) acylphosphine oxide-based ultraviolet polymerization initiators. These ultraviolet polymerization initiators can be used alone or in combination of two or more. In addition, short wavelength ultraviolet rays have low light transmittance with respect to a radically polymerizable resin composition (FRP) containing a fiber reinforcing material, so that they have photosensitivity to a relatively long wavelength, preferably to a visible light region of 380 nm or more. It is preferable to use an ultraviolet polymerization initiator such as (bis) acylphosphine oxide.
 可視光線重合開始剤の例としては、山岡等、「表面」,27(7),548(1989)や、佐藤等、「第3回ポリマー材料フォーラム要旨集」、1BP18(1994)に記載のカンファーキノン、ベンジル、トリメチルベンゾイルジフェニルフォスフィンオキサイド、メチルチオキサントン、ビスシクロペンタジエニルチタニウム-ジ(ペンタフルオロフェニル)等の単独開始剤系;有機過酸化物触媒/色素系、ジフェニルヨードニウム塩/色素、ビイミダゾール/ケト化合物、ヘキサアリールビイミダゾール化合物/水素供与性化合物、メルカプトベンゾチアゾール/チオピリリウム塩、金属アレーン/シアニン色素、特公昭45-37377号公報に記載のヘキサアリールビイミダゾール/ラジカル発生剤等の複合開始剤系等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。 Examples of visible light polymerization initiators include Yamaoka et al., “Surface”, 27 (7), 548 (1989), Sato et al., “Summary of the 3rd Polymer Material Forum”, 1BP18 (1994). Single initiator systems such as quinone, benzyl, trimethylbenzoyldiphenylphosphine oxide, methylthioxanthone, biscyclopentadienyltitanium-di (pentafluorophenyl); organic peroxide catalyst / dye system, diphenyliodonium salt / dye, biphenyl Imidazole / keto compound, hexaarylbiimidazole compound / hydrogen donating compound, mercaptobenzothiazole / thiopyrylium salt, metal arene / cyanine dye, hexaarylbiimidazole / radical generator described in JP-B-45-37777, etc. Initiator system etc. It is. These can be used alone or in combination of two or more.
 ラジカル重合性樹脂組成物における硬化剤の配合量は、特に限定されないが、ラジカル重合性樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~7質量部、最も好ましくは0.5~4質量部である。硬化剤の配合量が0.1質量部未満であると、硬化反応が十分に進行しないことがある。一方、硬化剤の配合量が10質量部を超えると、所望の特性を有する樹脂成形物が得られないことがある。 The blending amount of the curing agent in the radical polymerizable resin composition is not particularly limited, but is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass with respect to 100 parts by mass of the radical polymerizable resin. Most preferably, it is 0.5 to 4 parts by mass. When the blending amount of the curing agent is less than 0.1 parts by mass, the curing reaction may not proceed sufficiently. On the other hand, when the compounding quantity of a hardening | curing agent exceeds 10 mass parts, the resin molding which has a desired characteristic may not be obtained.
 エポキシ樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。エポキシ樹脂の例としては、ビスフェノールA型ジグリシジルエーテル及びその高分子量同族体、ノボラック型ポリグリシジルエーテル及びその高分子量同族体、1,6ヘキサンジオールジグリシジルエーテル等の脂肪族系グリシジルエーテル、脂環式エポキシ化合物を用いることができる。なお、脂肪族系グリシジルエーテル等や脂環式エポキシ化合物は、希釈剤として使用してもよい。 The epoxy resin is not particularly limited, and those known in the technical field can be used. Examples of epoxy resins include bisphenol A type diglycidyl ether and its high molecular weight homologue, novolac type polyglycidyl ether and its high molecular weight homologue, aliphatic glycidyl ether such as 1,6 hexanediol diglycidyl ether, alicyclic ring Formula epoxy compounds can be used. In addition, you may use an aliphatic glycidyl ether etc. and an alicyclic epoxy compound as a diluent.
 エポキシ樹脂を含む硬化性樹脂組成物(以下、「エポキシ樹脂組成物」という。)は、エポキシ樹脂に加えて、硬化剤を一般に含む。
 エポキシ樹脂の硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。エポキシ樹脂の硬化剤の例としては、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物等が挙げられる。より具体的には、アミン系化合物として、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル等が挙げられる。また、アミド系化合物として、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとから合成されるポリアミド樹脂等が挙げられる。また、酸無水物系化合物として、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。また、フェノール系化合物として、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドとから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂やアルコキシ基含有芳香環変性ノボラック樹脂等の多価フェノール化合物が挙げられる。これらの硬化剤は、単独又は2種以上を組み合わせて用いることができる。
The curable resin composition containing an epoxy resin (hereinafter referred to as “epoxy resin composition”) generally contains a curing agent in addition to the epoxy resin.
It does not specifically limit as a hardening | curing agent of an epoxy resin, A well-known thing can be used in the said technical field. Examples of epoxy resin curing agents include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like. More specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, and imidazole. Examples of amide compounds include polyamide resins synthesized from dicyandiamide, a dimer of linolenic acid, and ethylenediamine. In addition, as acid anhydride compounds, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride. In addition, as phenolic compounds, phenol novolak resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol aralkyl resins, resorcinol novolac resins and polyvalent hydroxy compounds and formaldehyde Polyphenol novolak resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin Polyphenols such as biphenyl-modified naphthol resin, aminotriazine-modified phenol resin and alkoxy group-containing aromatic ring-modified novolak resin. Lumpur compounds. These hardening | curing agents can be used individually or in combination of 2 or more types.
 エポキシ樹脂組成物におけるエポキシ樹脂及び硬化剤の使用量は、それらの種類に応じた量を使用すればよく特に限定されないが、一般に、エポキシ樹脂中のエポキシ基1当量に対して、エポキシ基と反応する硬化剤中の官能基の当量が、好ましくは0.3~2.0当量、より好ましくは0.4~1.5当量、最も好ましくは0.5~1.2当量となるようにすればよい。エポキシ基と反応する硬化剤中の官能基の当量が0.3当量未満又は2.0当量を超えると、硬化が不完全になり、所望の特性を有する樹脂成形物が得られない。 The amount of the epoxy resin and the curing agent to be used in the epoxy resin composition is not particularly limited as long as the amount corresponding to the kind thereof is used, but generally, it reacts with the epoxy group with respect to 1 equivalent of epoxy group in the epoxy resin. The equivalent of functional groups in the curing agent to be used is preferably 0.3 to 2.0 equivalents, more preferably 0.4 to 1.5 equivalents, and most preferably 0.5 to 1.2 equivalents. That's fine. If the equivalent of the functional group in the curing agent that reacts with the epoxy group is less than 0.3 equivalent or exceeds 2.0 equivalent, the curing becomes incomplete and a resin molded product having desired characteristics cannot be obtained.
 フェノール樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。フェノール樹脂の例としては、レゾール型フェノール樹脂及びノボラック型フェノール樹脂等が挙げられる。その中でも熱及び酸を加えることで硬化させることができるレゾール型フェノール樹脂を使用することが好ましい。
 レゾール型フェノール樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。レゾール型フェノール樹脂は、一般に、フェノール、ビスフェノール、クレゾール、PTBP、レゾルシン、ナフトール、ジヒドロキシナフタレン等のフェノール化合物を原料として用いて製造することができる。
 また、フェノール樹脂は、一般に、水等の溶剤に希釈した形態で用いられる。フェノール樹脂の希釈物における溶剤の含有量は、特に限定されないが、好ましくは10~50質量%、より好ましくは20~40質量%である。好ましいレゾール型フェノール樹脂の希釈物は、粘度が500~8000mPa・s(25℃)、比重が1.15~1.30、pHが6.6~7.2、不揮発分が68~80%に調整された液状のレゾール型フェノール樹脂である。このような液状のレゾール型フェノール樹脂は、市販されており、例えば、昭和電工株式会社製のショウノール(登録商標)BRL-240、BRL-1017等を用いることができる。
It does not specifically limit as a phenol resin, A well-known thing can be used in the said technical field. Examples of the phenol resin include a resol type phenol resin and a novolac type phenol resin. Among them, it is preferable to use a resol type phenolic resin that can be cured by adding heat and acid.
It does not specifically limit as a resole type phenol resin, A well-known thing can be used in the said technical field. The resol type phenol resin can be generally produced using a phenol compound such as phenol, bisphenol, cresol, PTBP, resorcin, naphthol, dihydroxynaphthalene as a raw material.
The phenol resin is generally used in a form diluted with a solvent such as water. The content of the solvent in the diluted phenol resin is not particularly limited, but is preferably 10 to 50% by mass, more preferably 20 to 40% by mass. The preferred resol-type phenol resin dilution has a viscosity of 500 to 8000 mPa · s (25 ° C.), a specific gravity of 1.15 to 1.30, a pH of 6.6 to 7.2, and a non-volatile content of 68 to 80%. It is an adjusted liquid resol type phenol resin. Such a liquid resol type phenol resin is commercially available, and for example, Shonor (registered trademark) BRL-240, BRL-1017 manufactured by Showa Denko KK and the like can be used.
 フェノール樹脂を含む硬化性樹脂組成物(以下、「フェノール樹脂組成物」という。)は、酸による硬化を行う場合、フェノール樹脂に加えて、酸性硬化剤を一般に含む。
 フェノール樹脂の酸性硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。酸性硬化剤としては、当該技術分野において公知のものを用いることができる。酸性硬化剤の例としては、ベンゼンスルホン酸、パラトルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、硫酸、リン酸等の有機酸又は無機酸が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。このような酸性硬化剤は、一般に市販されており、例えば、昭和電工株式会社製のFRH-50等を用いることができる。
A curable resin composition containing a phenolic resin (hereinafter referred to as “phenolic resin composition”) generally contains an acidic curing agent in addition to the phenolic resin when curing with an acid.
It does not specifically limit as an acidic hardening | curing agent of a phenol resin, A well-known thing can be used in the said technical field. As an acidic hardening | curing agent, a well-known thing can be used in the said technical field. Examples of acidic curing agents include organic acids or inorganic acids such as benzene sulfonic acid, paratoluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid, sulfuric acid and phosphoric acid. These can be used alone or in combination of two or more. Such acidic curing agents are generally commercially available, and for example, FRH-50 manufactured by Showa Denko KK can be used.
 フェノール樹脂組成物におけるフェノール樹脂及び酸性硬化剤の使用量は、それらの種類に応じた量を使用すればよく特に限定されない。一般に、フェノール樹脂組成物の硬化性と安定性との両立の観点から、酸性硬化剤の使用量が、フェノール樹脂の希釈物100質量部に対して、好ましくは1~20質量部、より好ましくは3~15質量部、最も好ましくは5~12質量部となるようにすればよい。酸性硬化剤の使用量が1質量部未満であると、硬化に時間がかかりすぎて実用的ではないことがある。一方、酸性硬化剤の使用量が20質量部を超えると、短時間でゲル化し易く、十分な可使時間が得られないことがある。 The amount of the phenolic resin and the acidic curing agent used in the phenolic resin composition is not particularly limited as long as the amount corresponding to the type thereof is used. Generally, from the viewpoint of achieving both curability and stability of the phenol resin composition, the amount of the acidic curing agent used is preferably 1 to 20 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the phenol resin dilution. The amount may be 3 to 15 parts by mass, most preferably 5 to 12 parts by mass. When the amount of the acidic curing agent used is less than 1 part by mass, it may take a long time to cure and may not be practical. On the other hand, when the usage-amount of an acidic hardening | curing agent exceeds 20 mass parts, it is easy to gelatinize in a short time and sufficient pot life may not be obtained.
 上記したようなラジカル重合性樹脂組成物、エポキシ樹脂組成物、フェノール樹脂組成物等の硬化性樹脂組成物は、樹脂成形物の強度及び耐衝撃性を向上させる観点から、繊維強化材を含むことができる。
 繊維強化材としては、特に限定されず、当該技術分野において公知のものを用いることができる。繊維強化材の例としては、無機繊維及び有機繊維等が挙げられる。より具体的には、ガラス繊維、炭素繊維、アラミド繊維、ポリエチレンテレフタレート繊維、高密度ポリエチレン繊維、ナイロン繊維、ビニロン繊維等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。また、繊維材料の形状も特に限定されず、ロービング、テープ状、マット状等のものを用いることができる。
The curable resin composition such as the radical polymerizable resin composition, the epoxy resin composition, and the phenol resin composition as described above includes a fiber reinforcing material from the viewpoint of improving the strength and impact resistance of the resin molded product. Can do.
It does not specifically limit as a fiber reinforcement, A well-known thing can be used in the said technical field. Examples of the fiber reinforcement include inorganic fibers and organic fibers. More specifically, glass fiber, carbon fiber, aramid fiber, polyethylene terephthalate fiber, high density polyethylene fiber, nylon fiber, vinylon fiber and the like can be mentioned. These can be used alone or in combination of two or more. Further, the shape of the fiber material is not particularly limited, and a material such as roving, tape, or mat can be used.
 繊維強化材の使用量は、特に限定されないが、硬化性樹脂組成物100質量部に対して、好ましくは5~400質量部、より好ましくは50~350質量部、最も好ましくは50~300質量部である。繊維強化材の使用量が5質量部未満であると、所望の強度が得られないことがある。一方、繊維強化材の使用量が400質量部を超えると、耐衝撃性が低下してしまうことがある。 The amount of the fiber reinforcement used is not particularly limited, but is preferably 5 to 400 parts by weight, more preferably 50 to 350 parts by weight, and most preferably 50 to 300 parts by weight with respect to 100 parts by weight of the curable resin composition. It is. When the amount of the fiber reinforcing material used is less than 5 parts by mass, desired strength may not be obtained. On the other hand, if the amount of the fiber reinforcement used exceeds 400 parts by mass, the impact resistance may be lowered.
 硬化性樹脂組成物には、樹脂成形物の特性を損なわない範囲内において、当該技術分野において公知の添加剤を配合してもよい。公知の添加剤の例としては、紫外線吸収剤、酸化防止剤、染料、顔料、揺変剤、難燃剤、低収縮剤、無機・有機充填剤、希釈溶剤、表面処理剤、湿潤剤、硬化促進剤、離型剤等を挙げることができる。これらの添加剤の配合割合は、本発明の効果を損なわない範囲であればよく、特に限定されない。 In the curable resin composition, additives known in the technical field may be blended within a range that does not impair the properties of the resin molded product. Examples of known additives include UV absorbers, antioxidants, dyes, pigments, thixotropic agents, flame retardants, low shrinkage agents, inorganic and organic fillers, diluent solvents, surface treatment agents, wetting agents, and curing accelerators. Agents, release agents and the like. The blending ratio of these additives is not particularly limited as long as it does not impair the effects of the present invention.
 以上のような成分を含む硬化性樹脂組成物は、当該技術分野において通常行われる方法、例えば、ニーダー等を用いて上記の成分を混練することによって製造することができる。また、繊維強化材を用いる場合、繊維強化材以外の成分を混練してコンパウンドを作製した後、このコンパウンドを繊維強化材に含浸させることによって硬化性樹脂組成物を製造してもよい。 The curable resin composition containing the above components can be produced by kneading the above components using a method usually performed in the art, for example, a kneader. Moreover, when using a fiber reinforcing material, after preparing components by kneading components other than the fiber reinforcing material, the curable resin composition may be produced by impregnating the fiber reinforcing material with the compound.
 上記の硬化性樹脂組成物を成形及び硬化する成形型の種類としては、特に限定されず、硬化性樹脂組成物の成形方法に応じて適宜選択すればよい。成形型の種類の例としては、マンドレル、射出成形型、ブロー成形型、圧縮成形型、真空成形型、押出成形型等を用いることができる。
 また、成形型の材質としては、シリコーンを含む焼き付け離型剤で表面処理することが可能なものであれば特に限定されず、当該技術分野において公知のものを用いることができる。成形型の材質の例としては、金属、ガラス、FRP等が挙げられる。
The type of mold for molding and curing the curable resin composition is not particularly limited, and may be appropriately selected according to the molding method of the curable resin composition. Examples of types of molds that can be used include mandrels, injection molds, blow molds, compression molds, vacuum molds, and extrusion molds.
The material of the mold is not particularly limited as long as it can be surface-treated with a baking mold release agent containing silicone, and materials known in the technical field can be used. Examples of the material of the mold include metal, glass, FRP and the like.
 具体的には、パイプ用の樹脂成形物を製造する場合、金属製のマンドレル等が用いられ、バスタブ、バスユニット及び洗面台等の水回り部材用の樹脂成形物を製造する場合、金属製やFRP製の圧縮成形型等が用いられる。 Specifically, when manufacturing a resin molded product for a pipe, a metal mandrel or the like is used, and when manufacturing a resin molded product for a watering member such as a bathtub, a bath unit, and a wash basin, An FRP compression mold or the like is used.
 上記の硬化性樹脂組成物を成形及び硬化する成形型の表面は、シリコーンを含む焼き付け型離型剤を用いて処理される。シリコーンを含む焼き付け型離型剤で成形型を表面処理しておくことで、硬化性樹脂組成物に含有される有機ケイ素化合物が、成形型の表面の焼き付け型離型剤と親和性があるため、成形及び硬化の際に、樹脂成形物の表面に有機ケイ素化合物を局在化させることができる。焼き付け型離型剤がシリコーンを含まないと、樹脂成形物の表面に有機ケイ素化合物を局在化させることができない。また、離型剤が焼き付け型でない場合、硬化性樹脂組成物を成形型に適用した際に硬化性樹脂組成物に離型剤が吸収されてしまい、樹脂成形物の表面に有機ケイ素化合物を十分に局在化させることができない。そのため、スケールが付着し難く且つスケールを除去し易い表面を形成することができない。 The surface of the mold for molding and curing the curable resin composition is treated with a baking mold release agent containing silicone. Since the mold is surface-treated with a baking mold release agent containing silicone, the organosilicon compound contained in the curable resin composition is compatible with the baking mold release agent on the mold surface. During the molding and curing, the organosilicon compound can be localized on the surface of the resin molding. If the baking mold release agent does not contain silicone, the organosilicon compound cannot be localized on the surface of the resin molding. In addition, when the mold release agent is not a baked mold, the mold release agent is absorbed by the curable resin composition when the curable resin composition is applied to the mold, and the organosilicon compound is sufficiently absorbed on the surface of the resin molded product. Cannot be localized. Therefore, it is difficult to form a surface on which the scale is difficult to adhere and the scale can be easily removed.
 焼き付け型離型剤に用いられるシリコーンとしては、特に限定されず、当該技術分野において公知のものを用いることができるが、刷毛やスプレーによる塗布性の観点から、オイル状のものが好ましい。一般に、シリコーンは、有機ケイ素化合物を加水分解して重合させたものであり、ケイ素と酸素が交互に結合したシロキサン鎖(Si-O-Si)の主骨格に有機基が結合した化合物である。 The silicone used for the baking mold release agent is not particularly limited, and those known in the technical field can be used, but oily ones are preferable from the viewpoint of applicability by brush or spray. In general, silicone is obtained by hydrolyzing and polymerizing an organosilicon compound, and is a compound in which an organic group is bonded to the main skeleton of a siloxane chain (Si—O—Si) in which silicon and oxygen are bonded alternately.
 焼き付け型離型剤におけるシリコーンの含有量は、特に限定されないが、一般に3~20質量%である。また、焼き付け型離型剤は、シリコーンに加えて、トルエン、キシレン等の溶剤を含む。 The content of silicone in the baking mold release agent is not particularly limited, but is generally 3 to 20% by mass. The baking mold release agent contains a solvent such as toluene and xylene in addition to silicone.
 上記のようなシリコーンを含む焼き付け型離型剤は、市販されており、例えば、信越化学工業株式会社製のKS-702、KS-726、KS-707、KS-700、KS-7201、KS-7200、SEPA-COAT、KF-96SP、KF-965SP、KF-412SP、RELEASE、SEPA-COAT SP等を用いることができる。 Baking mold release agents containing silicone as described above are commercially available, for example, KS-702, KS-726, KS-707, KS-700, KS-7201, KS- manufactured by Shin-Etsu Chemical Co., Ltd. 7200, SEPA-COAT, KF-96SP, KF-965SP, KF-412SP, RELEASE, SEPA-COAT SP, and the like can be used.
 焼き付け型離型剤で成形型の表面を処理する方法としては、特に限定されないが、成形型の表面に焼き付け型離型剤を均一に塗布した後、常温又は低温加熱で溶剤を揮発させ、次に焼き付け処理を行えばよい。焼き付け温度としては、特に限定されないが、一般に50~200℃である。
 また、成形型が油脂、ごみ等で汚れている場合、焼き付け型離型剤を成形型の表面に均一に塗布することができないため、成形型の表面を予め洗浄することが好ましい。
The method of treating the surface of the mold with the baking mold release agent is not particularly limited, but after the baking mold release agent is uniformly applied to the surface of the molding mold, the solvent is volatilized by heating at room temperature or low temperature. The baking process may be performed. The baking temperature is not particularly limited, but is generally 50 to 200 ° C.
In addition, when the mold is soiled with oils and fats, dust, etc., the baking mold release agent cannot be uniformly applied to the surface of the mold, so it is preferable to wash the surface of the mold in advance.
 成形型を用いて硬化性樹脂組成物を成形及び硬化する方法としては、特に限定されず、使用する硬化性樹脂組成物及び成形方法の種類に応じて適宜選択すればよい。 The method for molding and curing the curable resin composition using the molding die is not particularly limited, and may be appropriately selected according to the type of the curable resin composition to be used and the molding method.
 以下、実施例及び比較例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
 (実施例1)
 アセトン洗浄によって油脂を除去した3mm厚のガラス板に焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させた後、乾燥機中で150℃にて30分間加熱することにより、ガラス板を焼き付け型離型剤で表面処理した。
 次に、ビニルエステル樹脂(昭和電工株式会社製リポキシ(登録商標)R-806(スチレン含有量45質量%))100質量部に、水酸基含有ケイ素変性アクリル(ビックケミー・ジャパン株式会社製BYK(登録商標)-SILCLEAN 3700)3質量部、及びポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン株式会社製BYK(登録商標)-310)0.2質量部を添加して混合した後、ナフテン酸Co0.3質量部、パーメック(登録商標)N(日本油脂株式会社製メチルエチルケトンパーオキサイド)1.5質量部をさらに添加して混合することにより、常温硬化型のビニルエステル樹脂組成物を作製した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by these.
Example 1
A baking mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a 3 mm thick glass plate from which oils and fats had been removed by washing with acetone, and dried at room temperature (25 ° C.). Then, the glass plate was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
Next, 100 parts by mass of vinyl ester resin (Lipoxy (registered trademark) R-806 (Styrene content: 45% by mass) manufactured by Showa Denko KK) was added to hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) manufactured by Big Chemie Japan Co., Ltd.). ) -SILCLEAN 3700) 3 parts by weight and 0.2 parts by weight of polyester-modified polydimethylsiloxane (BYK (registered trademark) -310 manufactured by Big Chemie Japan Co., Ltd.) were added and mixed, and then 0.3 parts by weight of naphthenic acid Co Further, 1.5 parts by mass of Permec (registered trademark) N (Nippon Yushi Co., Ltd. methyl ethyl ketone peroxide) was further added and mixed to prepare a room temperature curable vinyl ester resin composition.
 次に、焼き付け型離型剤で表面処理したガラス板2枚と高さ3mmのシリコンゴム製スペーサを用いて、厚さが3mmとなる成形型を作製した後、この成形型に上記のビニルエステル樹脂組成物を注入して室温で放置したところ、30分でゲル化して硬化した。これを24時間放置した後、120℃で2時間アフターキュアを行い、室温に戻して脱型することによって樹脂成形物を得た。 Next, a mold having a thickness of 3 mm was prepared using two glass plates surface-treated with a baking mold release agent and a silicon rubber spacer having a height of 3 mm, and then the above vinyl ester was added to the mold. When the resin composition was injected and allowed to stand at room temperature, it gelled and cured in 30 minutes. After leaving this to stand for 24 hours, after-curing was performed at 120 ° C. for 2 hours, and the mold was returned to room temperature and removed to obtain a resin molded product.
 (比較例1)
 ビニルエステル樹脂(昭和電工株式会社製リポキシ(登録商標)R-806(スチレン含有量45質量%))100質量部に、ナフテン酸Co0.3質量部、パーメック(登録商標)N(日本油脂株式会社製メチルエチルケトンパーオキサイド)1.5質量部を添加して混合することにより、常温硬化型のビニルエステル樹脂組成物を作製した。
 次に、PETフィルムを貼り付けたガラス板2枚と高さ3mmのシリコンゴム製スペーサを用いて、厚さが3mmとなる成形型を作製した後、この成形型に上記のビニルエステル樹脂組成物を注入して室温で放置したところ、30分でゲル化して硬化した。これを24時間放置した後、120℃で2時間アフターキュアを行い、室温に戻して脱型することによって樹脂成形物を得た。
(Comparative Example 1)
Vinyl ester resin (Lipoxy (registered trademark) R-806 (Styrene content 45% by mass) manufactured by Showa Denko KK), 100 parts by mass of naphthenic acid Co, Parmec (registered trademark) N (Nippon Yushi Co., Ltd.) (Methyl ethyl ketone peroxide) 1.5 parts by mass was added and mixed to prepare a room temperature curable vinyl ester resin composition.
Next, a mold having a thickness of 3 mm was prepared using two glass plates with a PET film and a silicon rubber spacer having a height of 3 mm, and then the above vinyl ester resin composition was applied to the mold. Was allowed to stand at room temperature and gelled and cured in 30 minutes. After leaving this to stand for 24 hours, after-curing was performed at 120 ° C. for 2 hours, and the mold was returned to room temperature and removed to obtain a resin molded product.
 (比較例2)
 アセトン洗浄によって油脂を除去した3mm厚のガラス板にフッ素系離型剤(ダイキン工業株式会社製ダイフリー(登録商標)GF500)をスプレー塗布し、室温(25℃)にて乾燥させることにより、ガラス板をフッ素系離型剤で表面処理した。ここで、フッ素系離型剤は、シリコーンを含まず且つ焼き付け型でもない離型剤である。
 次に、フッ素系離型剤で表面処理したガラス板2枚と高さ3mmのスペーサを用いて、厚さが3mmとなる成形型を作製した後、この成形型に実施例1で調製したビニルエステル樹脂組成物を注入して室温で放置したところ、30分でゲル化して硬化した。これを24時間放置した後、120℃で2時間アフターキュアを行い、室温に戻して脱型することによって樹脂成形物を得た。
(Comparative Example 2)
A glass release plate (Daikin Kogyo Co., Ltd., Daifree (registered trademark) GF500) is spray-coated on a 3 mm thick glass plate from which oils and fats have been removed by washing with acetone, and dried at room temperature (25 ° C.). The plate was surface treated with a fluorinated mold release agent. Here, the fluorine-based mold release agent is a mold release agent that does not contain silicone and is not a baking type.
Next, a mold having a thickness of 3 mm was prepared using two glass plates surface-treated with a fluorine-based mold release agent and a spacer having a height of 3 mm, and then the vinyl prepared in Example 1 was applied to this mold. When the ester resin composition was injected and allowed to stand at room temperature, it gelled and cured in 30 minutes. After leaving this to stand for 24 hours, after-curing was performed at 120 ° C. for 2 hours, and the mold was returned to room temperature and removed to obtain a resin molded product.
 上記の実施例及び比較例で得られた樹脂成形物について、下記の評価を行った。
 (撥水角・撥油角の評価)
 撥水角は、樹脂成形物の表面に水2μLを滴下し、水の接触角を接触角計(協和界面科学製接触角計CA-DT型)によって測定した。
 撥油角は、樹脂成形物の表面にオレイン酸2μLを滴下し、油の接触角を接触角計(協和界面科学製接触角計CA-DT型)によって測定した。
The following evaluation was performed about the resin molding obtained by said Example and comparative example.
(Evaluation of water and oil repellency angles)
The water repellent angle was measured by dropping 2 μL of water onto the surface of the resin molding and measuring the contact angle of water with a contact angle meter (contact angle meter CA-DT type manufactured by Kyowa Interface Science).
The oil repellency angle was measured by dropping 2 μL of oleic acid onto the surface of the resin molding and measuring the oil contact angle with a contact angle meter (contact angle meter CA-DT type manufactured by Kyowa Interface Science).
 (スケール除去性の評価)
 樹脂成形物の表面に、酸性の草津温泉水(PH:1.95、群馬県草津町)、アルカリ性の小野上温泉水(PH:8.9、群馬県渋川市)、水道水(群馬県伊勢崎市)を0.4mL滴下し、23℃・湿度50%の環境下で24時間放置して乾燥させた。この操作を同一箇所で7回繰り返して行い、樹脂成形物の表面にスケールを形成させた。
 次に、水を含んだスポンジに30g/cm2の荷重を負荷してスケールの拭き取り操作を行い、拭き取りによってスケールが完全に除去される回数を測定した。
 上記の評価結果を表1に示す。
(Evaluation of scale removal)
Acidic Kusatsu hot spring water (PH: 1.95, Kusatsu Town, Gunma Prefecture), alkaline Onogami hot spring water (PH: 8.9, Shibukawa City, Gunma Prefecture), tap water (Isezaki City, Gunma Prefecture) 0.4 mL) was dropped and allowed to dry for 24 hours in an environment of 23 ° C. and 50% humidity. This operation was repeated seven times at the same location to form a scale on the surface of the resin molded product.
Next, the scale was wiped off by applying a load of 30 g / cm 2 to the sponge containing water, and the number of times the scale was completely removed by wiping was measured.
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されているように、実施例1の樹脂成形物は、撥水角及び撥油角がいずれも高く、水及び油が付着し難いと共に、スケール除去性も高かった。これに対して比較例1及び2の樹脂成形物は、撥水角及び撥油角がいずれも低く、水及び油が付着し易い上、スケール除去性も低かった。 As shown in Table 1, the resin molded product of Example 1 had both a high water repellency angle and an oil repellency angle, was difficult to adhere to water and oil, and had high scale removability. On the other hand, the resin moldings of Comparative Examples 1 and 2 had both low water repellency angles and oil repellency angles, were easily attached to water and oil, and had low scale removability.
 (実施例2)
 アセトン洗浄によって油脂を除去した3mm厚のガラス板に焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させた後、乾燥機中で150℃にて30分間加熱することにより、ガラス板を焼き付け型離型剤で表面処理した。
 次に、フェノール樹脂の希釈物(昭和電工株式会社製ショウノール(登録商標)BRL-240(水含有量30質量%))100質量部に、硬化剤(昭和電工株式会社製FRH-50)10質量部、及び水酸基含有ケイ素変性アクリル(ビックケミー・ジャパン株式会社製BYK(登録商標)-SILCLEAN 3700)3質量部、及びポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン株式会社製BYK(登録商標)-310)0.2質量部を添加して混合した後、これをガラスクロス(#200)に含浸させることにより、フェノール樹脂組成物を作製した。ここで、フェノール樹脂組成物におけるガラスクロスの含有量は70質量%とした。
(Example 2)
A baking mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a 3 mm thick glass plate from which oils and fats had been removed by washing with acetone, and dried at room temperature (25 ° C.). Then, the glass plate was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
Next, 100 parts by mass of a phenol resin dilution (Shonol (registered trademark) BRL-240 (water content: 30% by mass) manufactured by Showa Denko KK) was added to a curing agent (FRH-50 manufactured by Showa Denko KK) 10 3 parts by mass and 3 parts by mass of a hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700, manufactured by BYK Japan) and polyester-modified polydimethylsiloxane (BYK (registered trademark) -310, manufactured by BYK Japan) After adding 0.2 parts by mass and mixing, a glass cloth (# 200) was impregnated to prepare a phenol resin composition. Here, content of the glass cloth in a phenol resin composition was 70 mass%.
 次に、焼き付け型離型剤で表面処理したガラス板上に、上記のフェノール樹脂組成物(10プライ)を配置し、60℃で2時間加熱した後、80℃で3時間加熱して硬化させ、室温に戻して脱型することによって樹脂成形物を得た。 Next, the above phenol resin composition (10 ply) is placed on a glass plate surface-treated with a baking mold release agent, heated at 60 ° C. for 2 hours, and then heated at 80 ° C. for 3 hours to be cured. The resin molded product was obtained by returning to room temperature and removing the mold.
 (比較例3)
 実施例2の比較品として、焼き付け型離型剤で表面処理したガラス板の代わりに、アセトン洗浄によって表面の油脂を除去した炭素鋼板及びステンレス板を用いたこと以外は、実施例2と同様にして樹脂組成物を得た。
(Comparative Example 3)
As a comparative product of Example 2, the same procedure as in Example 2 was used except that a carbon steel plate and a stainless steel plate from which surface oils and fats were removed by washing with acetone were used instead of the glass plate surface-treated with a baking mold release agent. Thus, a resin composition was obtained.
 上記の実施例及び比較例で得られた樹脂成形物について、実施例1と同様にしてスケール除去性の評価を行った。その結果を表2に示す。 For the resin moldings obtained in the above examples and comparative examples, the scale removability was evaluated in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されているように、実施例2の樹脂成形物は、スケール除去性が高かったのに対し、比較例3の炭素鋼板及びステンレス板は、スケール除去性が低かった。 As shown in Table 2, the resin molded product of Example 2 had high scale removability, whereas the carbon steel plate and stainless steel plate of Comparative Example 3 had low scale removability.
 (実施例3)
 アセトン洗浄によって油脂を除去したフィラメントワィンディング成形用マンドレルに焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させた後、乾燥機中で150℃にて30分間加熱することにより、該マンドレルを焼き付け型離型剤で表面処理した。
 次に、フェノール樹脂の希釈物(昭和電工株式会社製ショウノール(登録商標)BRL-240(水含有量30質量%))100質量部に、硬化剤(昭和電工株式会社製FRH-50)10質量部、及び水酸基含有ケイ素変性アクリル(ビックケミー・ジャパン株式会社製BYK(登録商標)-SILCLEAN 3700)3質量部、及びポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン株式会社製BYK(登録商標)-310)0.2質量部を添加して混合した後、これをガラスクロス(#200)に含浸させることにより、フェノール樹脂組成物を作製した。ここで、フェノール樹脂組成物におけるガラスクロスの含有量は70質量%とした。
Example 3
A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
Next, 100 parts by mass of a phenol resin dilution (Shonol (registered trademark) BRL-240 (water content: 30% by mass) manufactured by Showa Denko KK) was added to a curing agent (FRH-50 manufactured by Showa Denko KK) 10 3 parts by mass and 3 parts by mass of a hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700, manufactured by BYK Japan) and polyester-modified polydimethylsiloxane (BYK (registered trademark) -310, manufactured by BYK Japan) After adding 0.2 parts by mass and mixing, a glass cloth (# 200) was impregnated to prepare a phenol resin composition. Here, content of the glass cloth in a phenol resin composition was 70 mass%.
 次に、焼き付け型離型剤で表面処理したマンドレルに、上記のフェノール樹脂組成物(10プライ)を巻き付け、60℃で2時間加熱した後、80℃で3時間加熱して硬化させ、室温に戻して脱型することによって、パイプ状の樹脂成形物を得た。 Next, the above-mentioned phenol resin composition (10 ply) is wrapped around a mandrel surface-treated with a baking mold release agent, heated at 60 ° C. for 2 hours, then cured by heating at 80 ° C. for 3 hours, and brought to room temperature. By returning and demolding, a pipe-shaped resin molded product was obtained.
 (実施例4)
 アセトン洗浄によって油脂を除去したフィラメントワィンディング成形用マンドレルに焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させた後、乾燥機中で150℃にて30分間加熱することにより、該マンドレルを焼き付け型離型剤で表面処理した。
 次に、ビニルエステル樹脂(昭和電工株式会社製リポキシR-806(スチレン含有量45質量%))100質量部に、水酸基含有ケイ素変性アクリル(ビックケミー・ジャパン株式会社製BYK(登録商標)-SILCLEAN 3700)3質量部、及びポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン株式会社製BYK(登録商標)-310)0.2質量部を添加して混合した後、ナフテン酸Co0.3質量部、パーメック(登録商標)N(日本油脂株式会社製メチルエチルケトンパーオキサイド)1.5質量部をさらに添加して混合し、これをガラスクロス(#200)に含浸させることにより、ビニルエステル樹脂組成物を作製した。ここで、ビニルエステル樹脂組成物におけるガラスクロスの含有量は75質量%とした。
Example 4
A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
Next, 100 parts by mass of vinyl ester resin (Lipoxy R-806 (Showa Denko Co., Ltd.) (styrene content: 45 mass%)) and hydroxyl-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700 manufactured by Big Chemie Japan Co., Ltd.) ) 3 parts by mass and 0.2 parts by mass of polyester-modified polydimethylsiloxane (BYK (registered trademark) -310 manufactured by Big Chemie Japan Co., Ltd.) were added and mixed, and then 0.3 parts by mass of Naphthenic acid Co and Parmec (registered) A vinyl ester resin composition was prepared by further adding 1.5 parts by mass of N) (Methyl Ethyl Ketone Peroxide manufactured by NOF Corporation) and impregnating the mixture with glass cloth (# 200). Here, the content of the glass cloth in the vinyl ester resin composition was 75% by mass.
 次に、焼き付け型離型剤で表面処理したマンドレルに、上記のビニルエステル樹脂組成物(10プライ)を巻き付け、常温で30分間回転させながら硬化させ、さらに24時間放置した。次に、これを脱型し、120℃で2時間アフターキュアすることによって、パイプ状の樹脂成形物を得た。 Next, the above-mentioned vinyl ester resin composition (10 ply) was wound around a mandrel surface-treated with a baking mold release agent, cured while rotating at room temperature for 30 minutes, and allowed to stand for 24 hours. Next, this was demolded and after-curing at 120 ° C. for 2 hours to obtain a pipe-shaped resin molded product.
 (実施例5)
 アセトン洗浄によって油脂を除去したフィラメントワィンディング成形用マンドレルに焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させた後、乾燥機中で150℃にて30分間加熱することにより、該マンドレルを焼き付け型離型剤で表面処理した。
 次に、フェノール樹脂の希釈物(昭和電工株式会社製ショウノール(登録商標)BRL-240(水含有量30質量%))100質量部に、硬化剤(昭和電工株式会社製FRH-50)10質量部、及び水酸基含有ケイ素変性アクリル(ビックケミー・ジャパン株式会社製BYK(登録商標)-SILCLEAN 3700)3質量部、及びポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン株式会社製BYK(登録商標)-310)0.2質量部を添加して混合した後、これをガラスクロス(#200)に含浸させることにより、フェノール樹脂組成物を作製した。ここで、フェノール樹脂組成物におけるガラスクロスの含有量は70質量%とした。
(Example 5)
A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
Next, 100 parts by mass of a phenol resin dilution (Shonol (registered trademark) BRL-240 (water content: 30% by mass) manufactured by Showa Denko KK) was added to a curing agent (FRH-50 manufactured by Showa Denko KK) 10 3 parts by mass and 3 parts by mass of a hydroxyl group-containing silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700, manufactured by BYK Japan) and polyester-modified polydimethylsiloxane (BYK (registered trademark) -310, manufactured by BYK Japan) After adding 0.2 parts by mass and mixing, a glass cloth (# 200) was impregnated to prepare a phenol resin composition. Here, content of the glass cloth in a phenol resin composition was 70 mass%.
 次に、焼き付け型離型剤で表面処理したマンドレルに、上記のフェノール樹脂組成物(10プライ)を巻き付け、60℃で2時間加熱した後、80℃で3時間加熱して硬化させ、室温に戻した。次に、可視光硬化性ビニルエステル樹脂リポキシ(登録商標)LC-760(昭和電工株式会社製)をTガラスロービング(日東紡株式会社製RST-220PA)に含浸させ、これをフィラメントワインディング法で、最初にヘリカル巻きを層厚で0.98mm、次いでフープ巻きを膜厚0.6mm(繊維含有率:50体積%)となるようにワインディングした。ワインディング終了後、紫外線を含む可視光線の光源である600Wメタルハライドランプ3個を配置して、照射面の380~450nmの光強度が20mW/cmになるように成形体を回転させながら光を照射することによって硬化した後、脱型することによって、パイプ状の樹脂成形物を得た。 Next, the above-mentioned phenol resin composition (10 ply) is wrapped around a mandrel surface-treated with a baking mold release agent, heated at 60 ° C. for 2 hours, then cured by heating at 80 ° C. for 3 hours, and brought to room temperature. Returned. Next, a visible light curable vinyl ester resin Lipoxy (registered trademark) LC-760 (manufactured by Showa Denko KK) was impregnated into a T glass roving (RST-220PA manufactured by Nittobo Co., Ltd.), which was subjected to a filament winding method. First, the helical winding was wound to a layer thickness of 0.98 mm, and then the hoop winding was wound to a thickness of 0.6 mm (fiber content: 50% by volume). After the winding, three 600W metal halide lamps, which are visible light sources including ultraviolet rays, are arranged, and light is irradiated while rotating the compact so that the light intensity of 380 to 450 nm on the irradiated surface is 20 mW / cm 2. After being cured, the mold was removed to obtain a pipe-shaped resin molded product.
 (比較例4)
 実施例5の比較品として、アセトン洗浄によって油脂を除去したフィラメントワィンディング成形用マンドレルに焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させたのみで焼き付け処理を行わない表面処理を行ったマンドレルを用いたこと以外は、実施例5と同様にしてパイプ状の樹脂組成物を得た。
(Comparative Example 4)
As a comparative product of Example 5, a baking mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-applied to a filament winding molding mandrel from which fats and oils were removed by acetone washing, and room temperature ( A pipe-shaped resin composition was obtained in the same manner as in Example 5 except that a mandrel that had been subjected to a surface treatment that was only dried at 25 ° C. and not subjected to a baking treatment was used.
 (比較例5)
 実施例5の比較品として、焼き付け型離型剤で表面処理したマンドレルの代わりに、ポリエチレンテレフタレートフィルムを被覆した未処理のマンドレルを用いたこと以外は、実施例5と同様にしてパイプ状の樹脂組成物を得た。
(Comparative Example 5)
As a comparative product of Example 5, a pipe-shaped resin was used in the same manner as in Example 5 except that an untreated mandrel coated with a polyethylene terephthalate film was used instead of a mandrel surface-treated with a baking mold release agent. A composition was obtained.
 (比較例6)
 アセトン洗浄によって油脂を除去したフィラメントワィンディング成形用マンドレルに焼き付け型離型剤(信越化学工業株式会社製シリコーンSEPA-COAT(登録商標)SP)をスプレー塗布し、室温(25℃)にて乾燥させた後、乾燥機中で150℃にて30分間加熱することにより、該マンドレルを焼き付け型離型剤で表面処理した。
 次に、ビニルエステル樹脂(昭和電工株式会社製リポキシ(登録商標)R-806(スチレン含有量45質量%))100質量部に、ナフテン酸Co0.3質量部、パーメック(登録商標)N(日本油脂株式会社製メチルエチルケトンパーオキサイド)1.5質量部を添加して混合し、これをガラスクロス(#200)に含浸させることにより、ビニルエステル樹脂組成物を作製した。ここで、ビニルエステル樹脂組成物におけるガラスクロスの含有量は75質量%とした。
 次に、焼き付け型離型剤で表面処理したマンドレルに、上記のビニルエステル樹脂組成物(10プライ)を巻き付け、常温で30分間回転させながら硬化させ、さらに24時間放置した。次に、これを脱型し、120℃で2時間アフターキュアすることによって、パイプ状の樹脂成形物を得た。
(Comparative Example 6)
A spray-type mold release agent (silicone SEPA-COAT (registered trademark) SP manufactured by Shin-Etsu Chemical Co., Ltd.) was spray-coated on a filament winding molding mandrel from which oils and fats were removed by acetone washing, and dried at room temperature (25 ° C.). Then, the mandrel was surface-treated with a baking mold release agent by heating at 150 ° C. for 30 minutes in a dryer.
Next, 100 parts by mass of vinyl ester resin (Lipoxy (registered trademark) R-806 (Styrene content: 45% by mass) manufactured by Showa Denko KK), 0.3 parts by mass of naphthenic acid Co, Parmeck (registered trademark) N (Japan) 1.5 parts by mass of Methyl Ethyl Ketone Peroxide manufactured by Yushi Co., Ltd. was added and mixed, and this was impregnated into glass cloth (# 200) to prepare a vinyl ester resin composition. Here, the content of the glass cloth in the vinyl ester resin composition was 75% by mass.
Next, the vinyl ester resin composition (10 ply) was wound around a mandrel surface-treated with a baking mold release agent, cured while rotating at room temperature for 30 minutes, and allowed to stand for 24 hours. Next, this was demolded and after-curing at 120 ° C. for 2 hours to obtain a pipe-shaped resin molded product.
 (比較例7)
 ビニルエステル樹脂(昭和電工株式会社製リポキシ(登録商標)R-806(スチレン含有量45質量%))100質量部に、ケイ素変性アクリル(ビックケミー・ジャパン株式会社製BYK(登録商標)-SILCLEAN 3700)3質量部、及びポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン株式会社製BYK(登録商標)-310)0.2質量部を添加して混合した後、ナフテン酸Co0.3質量部、パーメック(登録商標)N(日本油脂株式会社製メチルエチルケトンパーオキサイド)1.5質量部を添加して混合し、これをガラスクロス(#200)に含浸させることにより、ビニルエステル樹脂組成物を作製した。ここで、ビニルエステル樹脂組成物におけるガラスクロスの含有量は75質量%とした。
 次に、FRP用離型剤ボンリース(登録商標)(H)(京葉化成株式会社製)をマンドレルに塗布した後、上記のビニルエステル樹脂組成物(10プライ)を巻き付け、常温で30分間回転させながら硬化させ、さらに24時間放置した。ここで、FRP用離型剤ボンリース(H)は、シリコーンを含まず且つ焼き付け型でないワックスタイプの離型剤である。次に、これを脱型し、120℃で2時間アフターキュアすることによって、パイプ状の樹脂成形物を得た。
(Comparative Example 7)
100 mass parts of vinyl ester resin (Lipoxy (registered trademark) R-806 (Styrene content 45 mass%) manufactured by Showa Denko KK) and silicon-modified acrylic (BYK (registered trademark) -SILCLEAN 3700 manufactured by Big Chemie Japan Co., Ltd.) 3 parts by mass and 0.2 parts by mass of polyester-modified polydimethylsiloxane (BYK (registered trademark) -310 manufactured by Big Chemie Japan Co., Ltd.) were added and mixed, and then 0.3 parts by mass of Naphthenic acid Co and Parmec (registered trademark) ) 1.5 parts by mass of N (Methyl ethyl ketone peroxide manufactured by NOF Corporation) was added and mixed, and a glass cloth (# 200) was impregnated to prepare a vinyl ester resin composition. Here, the content of the glass cloth in the vinyl ester resin composition was 75% by mass.
Next, after applying FRP release agent BONLYSE (registered trademark) (H) (manufactured by Keiyo Kasei Co., Ltd.) to the mandrel, the above vinyl ester resin composition (10 ply) is wound and rotated at room temperature for 30 minutes. The mixture was cured while being left for another 24 hours. Here, the FRP mold release agent Bon Lease (H) is a wax-type mold release agent that does not contain silicone and is not baked. Next, this was demolded and after-curing at 120 ° C. for 2 hours to obtain a pipe-shaped resin molded product.
 上記の実施例及び比較例で得られたパイプ状の樹脂成形物を、昭和電工株式会社伊勢崎事業所内の井戸水のラインに設置し、内面のスケール付着状況を1ヶ月後、3ヶ月後及び6ヶ月後に観察した。その結果を表3に示す。 The pipe-shaped resin moldings obtained in the above examples and comparative examples are installed in the well water line in Showa Denko Co., Ltd. Isesaki Office, and the scale adhesion on the inner surface is 1 month later, 3 months later and 6 months later Observed later. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されているように、実施例3~5のパイプ状の樹脂成形物では、6ヶ月経過後においてもスケールの付着は確認されなかったのに対し、比較例5のパイプ状の樹脂成形物では3ヶ月経過後、比較例4、6及び7のパイプ状の樹脂成形物では1ヶ月経過後にスケールの付着が確認された。 As shown in Table 3, in the pipe-shaped resin molded products of Examples 3 to 5, no scale adhesion was confirmed even after 6 months, whereas the pipe-shaped resin of Comparative Example 5 was confirmed. Scale adhesion was confirmed after 3 months for the molded product and after 1 month for the pipe-shaped resin molded products of Comparative Examples 4, 6, and 7.
 以上の結果からわかるように、本発明によれば、スケールの付着防止効果及びスケールの除去効果が長期間にわたって優れる樹脂成形物の製造方法を提供することができる。 As can be seen from the above results, according to the present invention, it is possible to provide a method for producing a resin molded product that is excellent in scale adhesion prevention effect and scale removal effect over a long period of time.
 なお、本国際出願は、2013年8月22日に出願した日本国特許出願第2013-172512号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2013-172512 filed on August 22, 2013, and the entire contents of this Japanese patent application are incorporated herein by reference. To do.

Claims (7)

  1.  シリコーンを含む焼き付け型離型剤で表面処理した成形型を用いて、有機ケイ素化合物を含有する硬化性樹脂組成物を成形及び硬化することを特徴とする樹脂成形物の製造方法。 A method for producing a resin molded product, comprising molding and curing a curable resin composition containing an organosilicon compound using a molding die surface-treated with a baking mold release agent containing silicone.
  2.  前記有機ケイ素化合物は、有機シラン化合物、有機変性シロキサン化合物及びケイ素変性アクリル化合物からなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の樹脂成形物の製造方法。 The method for producing a resin molded product according to claim 1, wherein the organosilicon compound is at least one selected from the group consisting of an organosilane compound, an organomodified siloxane compound, and a silicon modified acrylic compound.
  3.  前記硬化性樹脂組成物における前記有機ケイ素化合物の含有量は、硬化性樹脂100質量部に対して0.1~10質量部であることを特徴とする請求項1又は2に記載の樹脂成形物の製造方法。 3. The resin molded product according to claim 1, wherein the content of the organosilicon compound in the curable resin composition is 0.1 to 10 parts by mass with respect to 100 parts by mass of the curable resin. Manufacturing method.
  4.  前記硬化性樹脂組成物は、ラジカル重合性樹脂、エポキシ樹脂及びフェノール樹脂からなる群から選択される少なくとも1種の硬化性樹脂を含むことを特徴とする請求項1~3のいずれか一項に記載の樹脂成形物の製造方法。 The curable resin composition includes at least one curable resin selected from the group consisting of a radical polymerizable resin, an epoxy resin, and a phenol resin. The manufacturing method of the resin molding of description.
  5.  前記ラジカル重合性樹脂は、ビニルエステル樹脂であることを特徴とする請求項4に記載の樹脂成形物の製造方法。 The method for producing a resin molded product according to claim 4, wherein the radical polymerizable resin is a vinyl ester resin.
  6.  前記硬化性樹脂組成物は、繊維強化材をさらに含むことを特徴とする請求項1~5のいずれか一項に記載の樹脂成形物の製造方法。 The method for producing a resin molded product according to any one of claims 1 to 5, wherein the curable resin composition further contains a fiber reinforcing material.
  7.  請求項1~6のいずれか一項に記載の樹脂成形物の製造方法によって得られることを特徴とする樹脂成形物。 A resin molded product obtained by the method for producing a resin molded product according to any one of claims 1 to 6.
PCT/JP2014/065443 2013-08-22 2014-06-11 Method for producing resin molded article WO2015025592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532744A JP6312334B2 (en) 2013-08-22 2014-06-11 Manufacturing method of resin molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-172512 2013-08-22
JP2013172512 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025592A1 true WO2015025592A1 (en) 2015-02-26

Family

ID=52483377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065443 WO2015025592A1 (en) 2013-08-22 2014-06-11 Method for producing resin molded article

Country Status (2)

Country Link
JP (1) JP6312334B2 (en)
WO (1) WO2015025592A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137202A (en) * 1974-04-22 1975-10-31
JPS62174117A (en) * 1986-01-29 1987-07-30 Sumitomo Bakelite Co Ltd Manufacture of optical disc board
JP2003510201A (en) * 1999-09-30 2003-03-18 アーベーベー・リサーチ・リミテッド Release agent for thermosetting moldings
JP2007072197A (en) * 2005-09-07 2007-03-22 Gunze Ltd Endless tubular belt and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327103A (en) * 2005-05-27 2006-12-07 Mitsubishi Rayon Co Ltd Method of manufacturing molded article of fiber-reinforced resin composite material
JP2011021058A (en) * 2009-07-13 2011-02-03 Dh Material Kk Method for producing molded product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137202A (en) * 1974-04-22 1975-10-31
JPS62174117A (en) * 1986-01-29 1987-07-30 Sumitomo Bakelite Co Ltd Manufacture of optical disc board
JP2003510201A (en) * 1999-09-30 2003-03-18 アーベーベー・リサーチ・リミテッド Release agent for thermosetting moldings
JP2007072197A (en) * 2005-09-07 2007-03-22 Gunze Ltd Endless tubular belt and method for producing the same

Also Published As

Publication number Publication date
JPWO2015025592A1 (en) 2017-03-02
JP6312334B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
CN1152921C (en) Curable resin composition, preparation thereof, and articles derived therefrom
AU2013229383B2 (en) Acetoacetyl thermosetting resin for zero VOC gel coat
TWI593729B (en) Radical polymerizable aqueous resin composition, hardening method, and method for producing a radical polymerizable aqueous resin composition
JP6994508B2 (en) How to treat the surface of aluminum articles
KR20120131188A (en) Coating agent composition
TWI417191B (en) Functional panel
KR101141967B1 (en) A high-strength quick-curing sheet composition and a photocurable sheet material
JP6988979B2 (en) Thermosetting resin composition and its resin molded product
KR20200037131A (en) Adhesive composition and method of coating objects
EP3655488A1 (en) Composition including liquid polyester resin and method of using the same
JP6741007B2 (en) Lining composition
JP6312334B2 (en) Manufacturing method of resin molding
JP5657420B2 (en) Coating film peeling method and coating film masking material
WO2018012205A1 (en) Radically curable resin composition and cured product of same
JP6238461B2 (en) Curable material for repairing inner surface of tubular molded body and repair method
JP2013159680A (en) Artificial marble, bathtub and method of manufacturing artificial marble
JP6450319B2 (en) Scale-resistant member and manufacturing method thereof
JP4592610B2 (en) Molding material
JP2020097642A (en) Curable resin composition and molded product
CN112752775A (en) Radical polymerizable resin composition and structural repair material
JP7181074B2 (en) Curable resin composition, three-component curable resin composition, cured product thereof, and method for producing corrosion-resistant floor
JP2004010832A (en) Resin composition
JP7437896B2 (en) Thermosetting resin compositions, molding materials, molded products, resin materials for plumbing, molding materials for plumbing, and products for plumbing
TW201134893A (en) Photo-polymerizing composition and functional panel using the same
CN1737057A (en) Unsatured polyester resin composition and its coating method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838353

Country of ref document: EP

Kind code of ref document: A1