WO2015025580A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2015025580A1
WO2015025580A1 PCT/JP2014/064050 JP2014064050W WO2015025580A1 WO 2015025580 A1 WO2015025580 A1 WO 2015025580A1 JP 2014064050 W JP2014064050 W JP 2014064050W WO 2015025580 A1 WO2015025580 A1 WO 2015025580A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
conductor plate
negative electrode
branch
capacitor
Prior art date
Application number
PCT/JP2014/064050
Other languages
French (fr)
Japanese (ja)
Inventor
彬 三間
健 徳山
佐藤 俊也
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015025580A1 publication Critical patent/WO2015025580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the present invention relates to a power converter equipped with a power semiconductor module.
  • the lengths of the two terminals described above are different, and the parasitic resistance values of the terminals may be different. If the parasitic resistance values are different, an imbalance of the current flowing through each terminal occurs. When current imbalance occurs, the heat generation of each terminal is unbalanced and the temperature tends to increase, which may reduce the current capacity of the entire power module.
  • a power conversion device includes a power semiconductor module on which a power semiconductor element is mounted and having a DC positive electrode terminal and a DC negative electrode terminal, a capacitor that smoothes DC power and has capacitor terminals on the negative electrode side and the positive electrode side, The negative electrode side conductor plate to which the negative electrode side capacitor terminal and the DC negative electrode terminal of the power semiconductor module are connected, and the positive electrode side conductor plate to which the positive electrode terminal of the capacitor and the DC positive electrode terminal of the power semiconductor module are connected And at least one of the DC negative terminal or the DC positive terminal is composed of a plurality of branch terminals having different parasitic resistances, and the plurality of branch terminals are connected to each other. In the conductor plate, heat is generated at multiple branch terminals on the current path between the branch terminal and the capacitor terminal. Path resistance increasing unit for equalization between the branch terminals are formed, characterized in that.
  • the heat generation at the branch terminals can be equalized between the branch terminals.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the inverter system 60.
  • FIG. 2 is a diagram illustrating the structure inside the module case 53.
  • FIG. 3 is a circuit diagram of the connection conductor plate layer 9, the power semiconductor module 1, and the capacitor element 2.
  • FIG. 4 is a diagram for explaining the loss in the negative electrode connection terminals 10a and 10b.
  • FIG. 5 is a diagram showing the power semiconductor module 1 and the capacitor element 2 connected by the connection conductor plate layer 9.
  • FIG. 6 is a diagram illustrating the relationship between the negative connection conductor plate 91 and the positive connection conductor plate 92 and each connection terminal.
  • FIG. 7 is a view showing an AA cross section of FIG.
  • FIG. 8 is a diagram for explaining the second embodiment.
  • FIG. 9 is a diagram for explaining the third embodiment.
  • FIG. 10 is a diagram for explaining the fourth embodiment.
  • FIG. 11 is a diagram illustrating the negative electrode connection conductor plate 91 when there are three branch terminals.
  • FIG. 1 is a diagram showing an embodiment of a power conversion device according to the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the inverter system 60.
  • the inverter system 60 includes a power semiconductor module 1, a capacitor element 2, a control board 41, a connection conductor plate layer 9, and the like, and an inverter housing 50 that houses them.
  • the inverter system 60 of the present embodiment is a three-phase inverter system and includes a total of three power semiconductor modules 1.
  • the capacitor element 2 is connected to each power semiconductor module 1 via a connection conductor plate layer 9 composed of a negative electrode connection conductor plate 91 and a positive electrode connection conductor plate 92.
  • the power semiconductor module 1 is a so-called 2-in-1 power semiconductor module in which two power semiconductor elements (not shown) are housed in a module case 53, respectively. From the module case 53, a plurality of terminals, that is, a first negative electrode connection terminal 10a, a second negative electrode connection terminal 10b, a first positive electrode connection terminal 11a, a second positive electrode connection terminal 11b, a power output terminal 12, and a control signal terminal are shown in the upper part of the figure. 40 is distracted.
  • the first negative electrode connection terminal 10 a and the second negative electrode connection terminal 10 b are connected to the negative electrode connection conductor plate 91 of the connection conductor plate layer 9.
  • a capacitor negative electrode terminal 13 of the capacitor element 2 is connected to the negative electrode connection conductor plate 91.
  • the first positive electrode connection terminal 11 a and the second positive electrode connection terminal 11 b are connected to the positive electrode connection conductor plate 92 of the connection conductor plate layer 9.
  • the positive electrode connection conductor plate 92 is connected to the capacitor positive electrode terminal 14 of the capacitor element 2.
  • the plurality of control signal terminals 40 are connected to a control board 41 disposed above the connection conductor plate layer 9.
  • a water channel 52 through which cooling water flows is formed in the inverter housing 50.
  • the power semiconductor module 1 described above is disposed in the water channel 52 and is cooled by the cooling water flowing in the water channel 52.
  • Radiation fins 53a are formed on the outer surface of the module case 53 in order to improve the cooling performance.
  • the water channel 52 flows along the outer surface of the capacitor storage portion 51 in which the capacitor element 2 is stored, and is discharged from the inverter housing 50.
  • the gap between the capacitor element 2 and the capacitor housing 51 is filled with a resin material.
  • the power semiconductor module 1 is controlled by the control board 41, current flows from the capacitor element 2 through the connection conductor plate layer 9 to the power semiconductor module 1, and current flows to the power output terminal 12. Is output. At that time, heat is generated in the capacitor element 2, the connection conductor plate layer 9, the power semiconductor module 1, and the connection terminals 10a, 10b, 11a, and 11b of the power semiconductor module in the current flow path.
  • the capacitor element 2 Since the capacitor element 2 is in thermal contact with the inverter housing 50 via the resin material, and the connecting conductor plate layer 9 is also in thermal contact with the inverter housing 50 via the insulating layer, the capacitor element 2 and the connection conductor plate layer 9 are radiated to the cooling water in the water channel 52 through the inverter housing 50. Further, heat generated in the power semiconductor module 1 is also radiated to the cooling water through the module case 53 in which the radiation fins 53a are formed. However, since the connection terminals 10a, 10b, 11a, and 11b of the power semiconductor module 1 are not directly cooled, it is important to suppress the heat generation of the connection terminals 10a, 10b, 11a, and 11b.
  • FIG. 2 is a diagram for explaining the structure inside the module case 53.
  • the power semiconductor module 1 has a 2-in-1 structure, and the two power semiconductor elements 30 a and 30 b are accommodated in the module case 53.
  • the power semiconductor element 30a is sandwiched between the conductor plates 31a and 31b, and the power semiconductor element 30b is sandwiched between the conductor plates 32a and 32b.
  • the conductor plate 32b is electrically connected to the conductor plate 31a.
  • the conductor plate 32a is formed with two branched terminals, that is, a first negative electrode connection terminal 10a and a second negative electrode connection terminal 10b.
  • a first positive electrode connection terminal 11a and a second positive electrode connection terminal 11b branched into two are formed on the conductor plate 31b.
  • an arrow 21 indicated by a solid line indicates a path of current flowing through the first negative electrode connection terminal 10a
  • an arrow 20 indicated by a broken line indicates a path of current flowing through the second negative electrode connection terminal 10b.
  • FIG. 3 shows a circuit diagram of the connecting conductor plate layer 9 and the power semiconductor module 1 and the capacitor element 2 connected thereto.
  • the power semiconductor elements 30a and 30b (see FIG. 2) provided in the power semiconductor module 1 constitute a half bridge circuit as shown in FIG.
  • the power semiconductor elements 30 a and 30 b are connected in series (totem pole connection) between the positive electrode connection conductor plate 92 and the negative electrode connection conductor plate 91.
  • an IGBT or the like is used for the power semiconductor elements 30a and 30b.
  • the collector electrode of the power semiconductor element 30a in the upper arm is connected to the positive connection conductor plate 92, and the emitter electrode is connected to the collector electrode of the power semiconductor element 30b in the lower arm.
  • the emitter electrode of the lower arm power semiconductor element 30 b is connected to the negative electrode connecting conductor plate 91.
  • the power output terminal 12 is disposed at an intermediate connection portion (the conductor plate 32b in FIG. 2) between the two power semiconductor elements 30a and 30b. By connecting in this way, an upper and lower arm series circuit is formed.
  • the resistance values from the power semiconductor element 30a to the first positive electrode connection terminal 11a and the second positive electrode connection terminal 11b are Rp1 and Rp2, and similarly, from the power semiconductor element 30b to the first negative electrode connection terminal 10a and the first negative electrode connection terminal 10a.
  • the resistance values up to the two negative electrode connection terminals 10b are Rn1 and Rn2, respectively.
  • resistance values (resistance in the negative electrode connecting conductor plate 91) between the negative electrode connecting terminals 10a and 10b and the capacitor negative electrode terminal 13 are Rpbn1 and Rpbn2, respectively, and the positive electrode connecting terminals 11a and 11b and the capacitor positive electrode terminal 14 are connected.
  • the resistance values (resistance in the positive electrode connecting conductor plate 92) are Rpbp1 and Rpbp2, respectively.
  • the resistance values of the terminals of the power semiconductor elements 30a and 30b are such that Rn1> Rn2 and Rp1> Rp2.
  • the negative electrode connection conductor plate 91 and the positive electrode connection conductor plate 92 are made of a wide range of conductors, Rpbn1 ⁇ Rpbn2 and Rpbp1 ⁇ Rpbp2 are satisfied before the present invention is applied.
  • the shape of the connecting conductor plate layer 9 is devised to adjust the resistance values Rpbn1 and Rpbn2 and the resistance values Rpbp1 and Rpbp2 to equalize the heat generation at the terminals of the power semiconductor elements 30a and 30b. I tried to do it.
  • the positive electrode connection conductor plate 92 can also be adjusted by the same method.
  • loss generated at the first negative electrode connection terminal 10a of the power semiconductor element 30b is Pn1
  • loss generated at the second negative electrode connection terminal 10b is Pn2.
  • Pn1 ⁇ Pn2 In order to equalize the heat generation of the negative electrode connection terminals 10a and 10b, it is necessary to satisfy Pn1 ⁇ Pn2.
  • the resistance value of the negative electrode connection conductor plate 91 to which the second negative electrode connection terminal 10b is connected since the resistance value Rn2 of the second negative electrode connection terminal 10b is smaller than the resistance value Rn1 of the first negative electrode connection terminal 10a, the resistance value of the negative electrode connection conductor plate 91 to which the second negative electrode connection terminal 10b is connected. It is necessary to increase Rpbn2.
  • Rpbn2 ⁇ Rpbn1
  • Rpbn2 is set to Rpbn2 + ⁇ Rpbn2.
  • the current In1 flowing through the first negative electrode connection terminal 10a can be expressed by the following equation (1).
  • the current In2 flowing through the second negative electrode connection terminal 10b is expressed by the following equation (2).
  • Equation (6) is obtained when the resistances Rn1 and Rn2 of the first and second negative electrode connection terminals 10a and 10b of the power semiconductor module 1 and the resistance Rpbn1 between the first negative electrode connection terminal 10a and the capacitor negative electrode terminal 13 are given. Is an equation for giving an increase ⁇ Rpbn2 of the resistance Rpbn2 necessary for equalizing the heat generation between the terminals 10a and 10b. Therefore, by adjusting the resistance value between the power semiconductor module 1 and the capacitor element 2 shown in FIG. 3 according to this relationship, the loss of each terminal in the power semiconductor module 1 is equalized as shown in FIG.
  • FIG. 4A shows the power consumption at the terminals 10a and 10b before equalization. In FIG. 4B, these lines are indicated by broken lines.
  • the first terminal corresponds to the first negative electrode connection terminal 10a
  • the second terminal corresponds to the second negative electrode connection terminal 10b.
  • Rn1, Rn2, Rpbn1, and ⁇ Rpbn2 may be replaced with parameters Rp1, Rp2, Rpbp1, and ⁇ Rpbp2 related to the positive electrode.
  • ⁇ Rpbn2 and ⁇ Rpbp2 are given by devising the shape of the connecting conductor plate layer 9.
  • the specific shape of the connection conductor board layer 9 which gives (DELTA) Rpbn2 and (DELTA) Rpbp2 is demonstrated.
  • FIGS. 5 to 7 are views showing a first embodiment of the shape of the connection conductor plate layer 9.
  • FIG. 5 is a diagram showing the power semiconductor module 1 and the capacitor element 2 connected by the connection conductor plate layer 9.
  • illustration of the module case 53 was abbreviate
  • the first and second negative electrode connection terminals 10a and 10b are connected to the negative electrode connection conductor plate 91 of the connection conductor plate layer 9, and the first and second positive electrode connection terminals 11a and 11b are connected to the connection conductor plate layer 9. Connected to the positive connection conductor plate 92.
  • connection conductor plate layer 9 is formed by laminating and integrating a negative electrode connection conductor plate 91 and a positive electrode connection conductor plate 92, and an insulating layer is provided between the negative electrode connection conductor plate 91 and the positive electrode connection conductor plate 92. Are formed and are electrically insulated from each other.
  • the present invention is not limited to the laminated negative electrode connecting conductor plate 91 and positive electrode connecting conductor plate 92 but can be applied.
  • FIG. 6 is a diagram for explaining the relationship between the negative connection conductor plate 91 and the positive connection conductor plate 92 and each connection terminal.
  • FIG. 6A shows a plan view of the negative electrode connection conductor plate 91
  • FIG. 6B shows a plan view of the positive electrode connection conductor plate 92.
  • FIG. 7 is a view showing the AA cross section of FIG. As shown in FIGS. 5 and 7, the negative connection conductor plate 91 is laminated on the upper surface side of the positive connection conductor plate 92.
  • the negative connection conductor plate 91 has a through hole 910 through which the terminals 10 a, 10 b, 11 a, and 11 b of the power semiconductor module 1 pass, a through hole 912 through which the capacitor negative terminal 13 passes, and a capacitor positive electrode A through hole 913 for passing the terminal 14 is formed.
  • a through hole 920 for passing the terminals 10a, 10b, 11a, 11b of the power semiconductor module 1 a through hole 923 for passing the capacitor negative terminal 13, and the capacitor positive terminal 14 are passed.
  • a through-hole 924 for each is formed.
  • the through hole 910 and the through hole 920, the through hole 912 and the through hole 923, and the through hole 913 and the through hole 924 are formed so as to overlap each other.
  • the through holes 910, 920, 912, 913, 923, and 924 are used, but a slit cut from the edge of the connection conductor plate layer 9 may be used.
  • a terminal portion 91a to which the first negative electrode connecting terminal 10a is connected and a terminal portion 91b to which the second negative electrode connecting terminal 10b is connected are formed in the through hole 910 portion of the negative electrode connecting conductor plate 91. Further, a terminal portion 91 d to which the capacitor negative electrode terminal 13 is connected is formed in the through hole 912 portion of the negative electrode connecting conductor plate 91.
  • the resistance value Rn1 of the first negative electrode connection terminal 10a is larger than the resistance value Rn2 of the second negative electrode connection terminal 10b. Therefore, in the present embodiment, as described above, the resistance value Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 is increased by ⁇ Rpbn2, thereby generating heat in the first negative electrode connection terminal 10a and the second negative electrode connection terminal 10b. To equalize the heat generation.
  • the first negative electrode connecting terminal 10a having a larger resistance value is arranged closer to the capacitor negative electrode terminal 13, and the slit 911 is connected to the negative electrode.
  • the conductor plate 91 was formed.
  • a solid line L1 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13
  • a solid line L2 indicates a current path from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13.
  • a broken line L10 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 when the slit 911 is not provided. Note that the current paths L1, L2, and L10 indicate regions having a high current density with lines.
  • the slit 911 communicates with the through hole 910 and extends from the through hole 910 in a direction orthogonal to the arrangement direction of the negative electrode connection terminals 10a and 10b. Therefore, the current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 is a path that bypasses the slit 911 as indicated by the solid line L1, and is a path that is longer than the current path L10 when the slit 911 is not provided. Become. That is, the path indicated by reference sign S1 functions as a path resistance increasing portion in the current path L1. As a result, the above-described resistance increase ⁇ Rpbn2 can be set for the current path L1.
  • the negative electrode connection conductor plate 91 is configured as shown in FIG. Heat generation can be equalized. That is, in the present embodiment, the two negative electrode connection terminals 10a and 10b are provided to reduce the inductance by paralleling the current paths, and also to equalize the heat generation between the terminals.
  • the broken line L10 of Fig.6 (a) has shown the electric current path
  • the current path L10 is longer than the current path L2 by the distance between the terminals. Therefore, although the heat generation unbalance between the terminals can be slightly reduced, the length of the current path cannot be arbitrarily changed as in the case where the slit 911 is formed. Is difficult.
  • the positive electrode connecting conductor plate 92 As shown in FIG. 6B, in the portion of the through hole 920 of the positive electrode connecting conductor plate 92, a terminal portion 92a connected to the first positive electrode connecting terminal 11a and a terminal connected to the second positive electrode connecting terminal 11b. A portion 92b is formed. A terminal portion 92 d connected to the capacitor positive electrode terminal 14 is formed in the through hole 924 portion of the positive electrode connecting conductor plate 92.
  • the resistance value Rp1 of the first positive electrode connection terminal 11a is larger than the resistance value Rp2 of the second positive electrode connection terminal 11b. Therefore, it is necessary to make the resistance value Rpbp2 from the second positive electrode connection terminal 11b to the capacitor positive electrode terminal 14 larger than the resistance value Rpbp1 from the first positive electrode connection terminal 11a to the capacitor positive electrode terminal 14. That is, the resistance value Rpbp2 is increased as Rpbp2 ⁇ Rpbp2 + ⁇ Rpbp2.
  • the arrangement of the negative electrode connection terminals 10a and 10b with respect to the capacitor negative electrode terminal 13 is set as described above, the arrangement of the positive electrode connection terminals 11a and 11b with respect to the capacitor positive electrode connection terminal 41 is automatically determined. That is, the second positive electrode connection terminal 11 b having a smaller resistance value is closer to the capacitor positive electrode connection terminal 41. Therefore, in the case of the positive electrode connecting conductor plate 92, slits 921 and 922 communicating with the through hole 920 are formed as shown in FIG.
  • a broken line L3 indicates a current path from the first positive electrode connection terminal 11a to the capacitor positive terminal 14, and a solid line L4 indicates a current path from the second positive electrode connection terminal 11b to the capacitor positive terminal 14.
  • the resistance value Rp2 of the positive second connection terminal 11b is smaller than the resistance value Rp1 of the positive first connection terminal 11a. Therefore, slits 921 and 922 are formed in the positive connection conductor plate 92 to form a detour path (path resistance increasing portion S2) that moves away from the capacitor positive terminal 14 toward the terminal 11a, and the resistance value in the current path L4 is the current. It was made larger than the resistance value in the path L3. As a result, the heat generation between the terminals 11a and 11b can be equalized.
  • FIG. 8 is a diagram for explaining the second embodiment.
  • the capacitor element 2 and the capacitor element 2 are arranged so that the arrangement direction of the capacitor negative terminal 13 and the capacitor positive terminal 14 and the arrangement direction of the terminals 10a, 10b, 11a, 11b of the power semiconductor module 1 are orthogonal to each other.
  • the power semiconductor module 1 was connected to the connection conductor plate layer 9.
  • the arrangement direction of the capacitor negative terminal 13 and the capacitor positive terminal 14 and the arrangement direction of the terminals 10a, 10b, 11a, 11b of the power semiconductor module 1 are parallel.
  • the capacitor element 2 and the power semiconductor module 1 are connected to the connection conductor plate layer 9.
  • the negative electrode connection conductor plate 91 will be described, but the same applies to the positive electrode connection conductor plate 92.
  • the negative electrode connecting conductor plate 91 has through holes 912, 913, and 914 formed therein.
  • a terminal portion 91d is formed as in the case shown in FIG.
  • the through hole 914 has an elongated shape in the arrangement direction of the terminals 13 and 14, and the terminals 10a, 10b, 11a, and 11b are arranged in the vertical direction in the figure.
  • a terminal portion 91a connected to the first negative electrode connection terminal 10a and a terminal portion 91b connected to the second negative electrode connection terminal 10b are formed in the through hole 914 portion.
  • a slit 915 is formed so as to communicate with the through hole 914.
  • the through hole 914 is formed in the negative electrode connecting conductor plate 91, and the terminal portions 91a and 91b are formed at the edge of the through hole (that is, the edge of the negative electrode connecting conductor plate 91).
  • terminal portions 91a and 91b may be formed on the right edge of the negative electrode connecting conductor plate 91 in the drawing.
  • a solid line L5 indicates a current path from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13
  • a solid line L6 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13.
  • a broken line L60 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 when the slit 915 is not formed.
  • the resistance value Rn1 of the first negative electrode connection terminal 10a is larger than the resistance value Rn2 of the second negative electrode connection terminal 10b. Therefore, in order to equalize the heat generation of the connection terminals 10a and 10b, the resistance value Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 is changed to the resistance value Rpb1 from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13. Need to be bigger than. Specifically, the resistance value is increased by ⁇ Rpbn2 given by the above-described equation (6).
  • the slit 915 is formed so that the current path L6 is longer than the current path R5.
  • the slit 915 extends in the terminal 13 direction (left direction in the figure) at the boundary between the second negative electrode connection terminal 10b and the first positive electrode connection terminal 11a, and the lower direction in the figure in which the first negative electrode connection terminal 10a is arranged from the middle. And is extended to the vicinity of the boundary between the second positive electrode connection terminal 11b and the first negative electrode connection terminal 10a.
  • the current path L6 detours to the region of the current path L5 and then moves toward the capacitor negative electrode terminal 13. Therefore, the current path L6 is longer than the current path L5 by this detour amount. That is, the portion indicated by reference numeral S3 functions as a path resistance increasing portion in the current path L6. As a result, the resistance value Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 increases as the path becomes longer. Then, by adjusting the increase amount to ⁇ Rpbn2 calculated from Expression (6), the heat generation of the first negative electrode connection terminal 10a and the heat generation of the second negative electrode connection terminal 10b can be equalized.
  • FIG. 9 is a diagram for explaining the third embodiment.
  • through-holes 910, 912, and 913 are formed in the negative electrode connecting conductor plate 91, and the through-holes are also formed.
  • a slit 911 communicating with 910 is formed.
  • a terminal portion 91d to which the capacitor negative electrode terminal 13 is connected is formed in the through hole 912 portion.
  • a terminal portion 91a connected to the first negative electrode connection terminal 10a and a terminal portion 91b connected to the second negative electrode connection terminal 10b are formed in the through hole 910.
  • the thickness of the negative electrode connecting conductor plate 91 is uniform, but in the third embodiment, the thickness of the region C is made thinner than the other regions. That is, t2 ⁇ t1 is set.
  • the terminals 10a, 10b, 11a, and 11b are arranged in the horizontal direction in the figure, but the region C is set to a portion on the right side of the first negative electrode connection terminal 10a.
  • the resistance value increment ⁇ Rpbn2 is set to the same level as in the first embodiment. Can do. That is, the depth of cut of the slit 911 (the vertical dimension in the figure) can be made smaller than in the first embodiment. Furthermore, the resistance value increment ⁇ Rpbn2 can be set without forming the slit 911.
  • FIG. 10 is a diagram for explaining the fourth embodiment.
  • the resistance value Rpbp2 in the current path L8 is increased by thinning the region C of the negative electrode connecting conductor plate 91.
  • the thickness of the negative electrode connecting conductor plate 91 is made uniform, and the notch 916 is formed in the region C, so that the width of the current path L8 in the region C is reduced. did.
  • the resistance indicated by reference numeral S4 in this region C increases, and this portion functions as a path resistance increasing portion in the current path L8. That is, by providing the path resistance increasing portion S4, it is possible to set the resistance increment ⁇ Rpbn2 for eliminating the heat generation imbalance in the connection terminals 10a and 10b.
  • the rectangular negative electrode connecting conductor plate 91 as shown in FIG. 6A is referred to as the notch 916, but here, the notch is not important, and the terminal portion 91b in the region C is not formed. It is important that the conductor plate width D1 of the formed portion is set smaller than the width D2 of the same region C in the negative electrode connection conductor plate 91 shown in FIG. As a result, the resistance value Rpbn2 in the current path L8 can be increased as in the case where the slit 911 having a large cut depth is formed in FIG.
  • the width D1 of the negative electrode connecting conductor plate 91 between the terminal 10a and the terminal 10b is a dimension that can obtain the necessary resistance increment ⁇ Rpbn2.
  • the slit 911 may not be formed.
  • D2 corresponds to the width dimension between the terminal portion 91a and the edge of the conductor plate.
  • the DC connection terminal has three branch terminals (first negative connection terminal 10a (resistance value Rn1), second negative connection terminal 10b (resistance value Rn2), and third negative connection terminal 10c (resistance The case of branching to the value Rn3)) will be described.
  • first negative connection terminal 10a resistance value Rn1
  • second negative connection terminal 10b resistance value Rn2
  • third negative connection terminal 10c resistance The case of branching to the value Rn3
  • a deeper slit 911b is formed between the terminal portions 91b and 91c.
  • three branch terminals 11a, 11b, and 11c are also formed on the positive electrode connection terminal side, and terminal portions 92a, 92b, and 92c to which they are connected are formed on the positive electrode connection conductor plate 92.
  • each of the current paths between the other terminals 10b and 10c except the terminal 10a having the largest resistance value among the plurality of terminals and the capacitor negative terminal 13 is provided in the negative electrode connecting conductor plate 91.
  • Path resistance increasing portions S5 and S6 for equalizing heat generation can be formed on L1b and L1c.
  • the heat generation can be equalized between the terminals 10a, 10b, and 10c, and the reliability can be improved by suppressing the temperature rise, and the current capacity can be improved by suppressing the temperature rise.
  • at least one of the DC terminals (the DC terminal on the negative side in FIG. 6) is connected to the first DC connection terminal 10a and the second DC connection terminal 10b having a smaller resistance value than the first DC connection terminal 10a. If it is branched, the configuration is as follows.
  • the negative electrode connection conductor plate 91 to which the first and second DC connection terminals 10a and 10b are connected has the capacitor negative electrode terminal 13 and the resistance value between the capacitor negative electrode terminal 13 and the first DC connection terminal 10a.
  • a path resistance increasing portion S1 set based on the resistance value of the first DC connection terminal 10a and the resistance value of the second DC connection terminal 10b is set so that the resistance value between the second DC connection terminal 10b and the second DC connection terminal 10b increases. And formed on the current path L1 between the capacitor negative electrode terminal 13 and the second DC connection terminal 10b.
  • the above-described formula (6) The resistance of the current path L1 can be increased by the resistance increase ⁇ Rpbn2 calculated in (1).
  • the heat generation of the terminals 10a and 10b can be equalized, and the reliability can be improved by suppressing the temperature rise, and the current capacity can be improved by suppressing the temperature rise.
  • a terminal portion 91b to which the first negative electrode connecting terminal 10a is connected and a terminal portion 91b to which the second negative electrode connecting terminal 10b is connected are provided.
  • a slit 911 that cuts from the edge of the conductor plate is formed between the two, and a current path L1 that wraps around the slit 911 is formed by blocking the current flow as indicated by the line L10 by the slit 911.
  • the second positive electrode connection terminal 11b having a small resistance value is formed near the capacitor positive electrode terminal 14 as shown in FIG. 6B, in addition to the slit 921, the second positive electrode is connected.
  • a slit cut into the conductor plate side deeper than the slit 921 from the edge, and the terminal portion 92a from the slit There is a method of forming a slit 922 having a slit extending to bend to the side.
  • the conductor plate region sandwiched between the slit 921 and the slit 922 constitutes the path resistance increasing portion S2.
  • the terminal portion 91 b is formed from the capacitor negative electrode terminal 13 among the terminal portions 91 a and 91 b formed at the edge of the negative electrode connecting conductor plate 91.
  • a slit formed on the edge of the conductor plate located on the opposite side of the terminal portion 91a with the terminal portion 91b interposed therebetween, and formed so as to cut from the edge to the conductor plate side, and the terminal portion 91a from the slit.
  • a slit 915 having a slit extending to be bent to the side is provided.
  • the conductor plate region surrounded by the slit 915 constitutes the path resistance increasing portion S3.
  • the conductor plate thickness t2 of the conductor plate region on the terminal portion 91b side relative to the terminal portion 91a is set to be the conductor plate thickness t1 of the conductor plate region on the capacitor negative electrode terminal 13 side including the terminal portion 91a.
  • the conductor plate width dimension D1 in the direction substantially orthogonal to the current path L8 in the conductor plate region closer to the terminal portion 91b than the terminal portion 91a is set to the capacitor negative electrode terminal 13 including the terminal portion 91a. You may make it set smaller than the conductor board width dimension of the direction substantially orthogonal to an electric current path
  • the power converter according to the present invention includes an inverter system used in HEV (hybrid vehicle), EV (electric vehicle) and the like as shown in FIG. 1 and a motor-driven power converter used in general work machines. It can also be applied to.
  • 1 power semiconductor module
  • 2 capacitor
  • 9 connection conductor plate layer
  • 10a, 10b, 10c negative connection terminal
  • 13 negative connection terminal
  • 11a first positive connection terminal
  • 11b second positive connection terminal
  • 13 Capacitor negative terminal
  • 14 Capacitor positive terminal
  • 30a, 30b Power semiconductor element
  • 60 Inverter system
  • 91 Negative electrode connecting conductor plate
  • 91a, 91b, 91c, 91d, 92a, 92b, 92c, 92d Terminal part
  • 92 Positive connection conductor plate
  • 910, 912, 913, 920, 923, 924 Through hole
  • 911, 915, 921, 922 Slit
  • L1 to L8, L1a to L1c, L10, L60 Current path
  • S1 to S6 Path resistance increasing part

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power conversion device in which the heat generated at branch terminals of a power semiconductor module can be uniformed between the branch terminals. The power conversion device comprises a capacitor element (2), a power semiconductor module (1) mounted with a power semiconductor element (30), a negative electrode connecting conductive plate (91), and a positive electrode connecting conductive plate (92). At least one of DC terminals is branched into a plurality of branch terminals (10a to 10c) having different resistance values and connected to the negative electrode connecting conductive plate (91). The negative electrode connecting conductive plate (91) has path resistance increasing portions (S5, S6) formed on the respective current paths (L1b, L1c) between a capacitor negative electrode terminal (13) and the other branch terminals (10b, 10c) excluding the branch terminal (10a) which has the largest resistance value among the branch terminals (10a to 10c), said path resistance increasing portions (S5, S6) being used for allowing the heat generated at the branch terminals (10a to 10c) to be uniformed between the branch terminals.

Description

電力変換装置Power converter
 本発明は、パワー半導体モジュールを搭載した電力変換装置に関する。 The present invention relates to a power converter equipped with a power semiconductor module.
 近年、電力変換装置としてのインバータ装置の高出力・高密度化が求められ、パワー半導体モジュールの小型化が注目されている。パワー半導体モジュールには、一般的に電力スイッチング用素子としてIGBT(Insulated Gate Bipolar Transistor)や電流還流用のダイオードが実装されているが、パワー半導体モジュールの高電流密度化に伴い、高速スイッチングによるスイッチング損失の低減が必須とされている。 In recent years, high output and high density of an inverter device as a power conversion device are demanded, and downsizing of a power semiconductor module has attracted attention. In general, power semiconductor modules are equipped with IGBTs (Insulated Gate Bipolar Transistors) and current return diodes as power switching elements. However, switching power loss due to high-speed switching is increasing as power semiconductor modules increase in current density. Reduction is essential.
 従来、高速スイッチングによって発生する電圧の跳ね上りを抑えるために、平滑化コンデンサとパワー半導体モジュールとを接続する配線の寄生インダクタンスを小さくする構成が提案されている(例えば、特許文献1参照)。 Conventionally, a configuration has been proposed in which a parasitic inductance of a wiring connecting a smoothing capacitor and a power semiconductor module is reduced in order to suppress a voltage jump generated by high-speed switching (see, for example, Patent Document 1).
 特許文献1に記載の技術では、負極側板状導体および正極側板状導体のそれぞれに2つの端子を設けて電流経路の並列化をすると共に、負極側板状導体と正極側板状導体とを絶縁体を介して積層することで、コンデンサとパワー半導体モジュールを接続する配線の低インダクタンス化を図っている。 In the technique described in Patent Document 1, two terminals are provided on each of the negative electrode side plate-like conductor and the positive electrode side plate-like conductor to parallelize the current paths, and the negative electrode side plate-like conductor and the positive electrode side plate-like conductor are connected with an insulator. Thus, the wiring connecting the capacitor and the power semiconductor module is reduced in inductance.
特開2001-286158号公報JP 2001-286158 A
 しかしながら、特許文献1に記載されている装置では、上述した2つの端子の長さが異なっており、それぞれの端子の寄生抵抗値が異なることが考えられる。寄生抵抗値が異なると、各端子に流れる電流のアンバランスが発生する。電流アンバランスが生じると、各端子の発熱のアンバランスが生じて高温になり易く、パワーモジュール全体の電流容量を低下させてしまうおそれがある。 However, in the device described in Patent Document 1, the lengths of the two terminals described above are different, and the parasitic resistance values of the terminals may be different. If the parasitic resistance values are different, an imbalance of the current flowing through each terminal occurs. When current imbalance occurs, the heat generation of each terminal is unbalanced and the temperature tends to increase, which may reduce the current capacity of the entire power module.
 請求項1の発明に係る電力変換装置は、パワー半導体素子が搭載され直流正極端子と直流負極端子を有するパワー半導体モジュールと、直流電力を平滑化し負極側および正極側のコンデンサ端子を有するコンデンサと、コンデンサの負極側のコンデンサ端子およびパワー半導体モジュールの直流負極端子が接続される負極側の導体板と、コンデンサの正極側のコンデンサ端子およびパワー半導体モジュールの直流正極端子が接続される正極側の導体板と、を備え、直流電力を交流電力に変換する電力変換装置であって、直流負極端子又は直流正極端子の少なくとも一方は、寄生抵抗の異なる複数の分岐端子から成り、複数の分岐端子が接続される導体板には、分岐端子とコンデンサ端子との間の電流経路上に、複数の分岐端子における発熱を分岐端子間で均等化するための経路抵抗増大部が形成されている、ことを特徴とする。 A power conversion device according to the invention of claim 1 includes a power semiconductor module on which a power semiconductor element is mounted and having a DC positive electrode terminal and a DC negative electrode terminal, a capacitor that smoothes DC power and has capacitor terminals on the negative electrode side and the positive electrode side, The negative electrode side conductor plate to which the negative electrode side capacitor terminal and the DC negative electrode terminal of the power semiconductor module are connected, and the positive electrode side conductor plate to which the positive electrode terminal of the capacitor and the DC positive electrode terminal of the power semiconductor module are connected And at least one of the DC negative terminal or the DC positive terminal is composed of a plurality of branch terminals having different parasitic resistances, and the plurality of branch terminals are connected to each other. In the conductor plate, heat is generated at multiple branch terminals on the current path between the branch terminal and the capacitor terminal. Path resistance increasing unit for equalization between the branch terminals are formed, characterized in that.
 本発明によれば、分岐端子の発熱を、分岐端子間で均等化することができる。 According to the present invention, the heat generation at the branch terminals can be equalized between the branch terminals.
図1は、インバータシステム60の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of the inverter system 60. 図2は、モジュールケース53内の構造を説明する図である。FIG. 2 is a diagram illustrating the structure inside the module case 53. 図3は、接続導体板層9、パワー半導体モジュール1およびコンデンサ素子2の回路図である。FIG. 3 is a circuit diagram of the connection conductor plate layer 9, the power semiconductor module 1, and the capacitor element 2. 図4は、負極接続端子10a,10bにおける損失を説明する図である。FIG. 4 is a diagram for explaining the loss in the negative electrode connection terminals 10a and 10b. 図5は、接続導体板層9によって接続されたパワー半導体モジュール1およびコンデンサ素子2を示す図である。FIG. 5 is a diagram showing the power semiconductor module 1 and the capacitor element 2 connected by the connection conductor plate layer 9. 図6は、負極接続導体板91および正極接続導体板92と各接続端子との関係を説明する図である。FIG. 6 is a diagram illustrating the relationship between the negative connection conductor plate 91 and the positive connection conductor plate 92 and each connection terminal. 図7は、図6(a)のA-A断面を示す図である。FIG. 7 is a view showing an AA cross section of FIG. 図8は、第2の実施例を説明する図である。FIG. 8 is a diagram for explaining the second embodiment. 図9は、第3の実施例を説明する図である。FIG. 9 is a diagram for explaining the third embodiment. 図10は、第4の実施例を説明する図である。FIG. 10 is a diagram for explaining the fourth embodiment. 図11は、分岐端子が3つの場合の負極接続導体板91を示す図である。FIG. 11 is a diagram illustrating the negative electrode connection conductor plate 91 when there are three branch terminals.
 以下、図を参照して本発明を実施するための形態について説明する。図1は、本発明に係る電力変換装置の一実施の形態を示す図である。図1は、インバータシステム60の概略構成を示す断面図である。インバータシステム60は、パワー半導体モジュール1、コンデンサ素子2、制御基板41および接続導体板層9等と、それらを収納するインバータ筐体50とを備えている。なお、図1ではパワー半導体モジュール1を一つしか図示していないが、本実施の形態のインバータシステム60は3相のインバータシステムであって、合計3つのパワー半導体モジュール1を備えている。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a power conversion device according to the present invention. FIG. 1 is a cross-sectional view showing a schematic configuration of the inverter system 60. The inverter system 60 includes a power semiconductor module 1, a capacitor element 2, a control board 41, a connection conductor plate layer 9, and the like, and an inverter housing 50 that houses them. Although only one power semiconductor module 1 is illustrated in FIG. 1, the inverter system 60 of the present embodiment is a three-phase inverter system and includes a total of three power semiconductor modules 1.
 コンデンサ素子2は、負極接続導体板91および正極接続導体板92で構成された接続導体板層9を介して、各パワー半導体モジュール1に接続される。本実施の形態のパワー半導体モジュール1は、それぞれ2つのパワー半導体素子(不図示)をモジュールケース53内に収納した、いわゆる2in1構造のパワー半導体モジュールである。モジュールケース53からは、図示上方に複数の端子、すなわち第1負極接続端子10a、第2負極接続端子10b、第1正極接続端子11a、第2正極接続端子11b、電力出力端子12および制御信号端子40が伸延している。 The capacitor element 2 is connected to each power semiconductor module 1 via a connection conductor plate layer 9 composed of a negative electrode connection conductor plate 91 and a positive electrode connection conductor plate 92. The power semiconductor module 1 according to the present embodiment is a so-called 2-in-1 power semiconductor module in which two power semiconductor elements (not shown) are housed in a module case 53, respectively. From the module case 53, a plurality of terminals, that is, a first negative electrode connection terminal 10a, a second negative electrode connection terminal 10b, a first positive electrode connection terminal 11a, a second positive electrode connection terminal 11b, a power output terminal 12, and a control signal terminal are shown in the upper part of the figure. 40 is distracted.
 第1負極接続端子10aおよび第2負極接続端子10bは、接続導体板層9の負極接続導体板91に接続されている。負極接続導体板91には、コンデンサ素子2のコンデンサ負極端子13が接続されている。一方、第1正極接続端子11aおよび第2正極接続端子11bは、接続導体板層9の正極接続導体板92に接続されている。正極接続導体板92には、コンデンサ素子2のコンデンサ正極端子14が接続されている。複数の制御信号端子40は、接続導体板層9の上方に配置された制御基板41に接続されている。 The first negative electrode connection terminal 10 a and the second negative electrode connection terminal 10 b are connected to the negative electrode connection conductor plate 91 of the connection conductor plate layer 9. A capacitor negative electrode terminal 13 of the capacitor element 2 is connected to the negative electrode connection conductor plate 91. On the other hand, the first positive electrode connection terminal 11 a and the second positive electrode connection terminal 11 b are connected to the positive electrode connection conductor plate 92 of the connection conductor plate layer 9. The positive electrode connection conductor plate 92 is connected to the capacitor positive electrode terminal 14 of the capacitor element 2. The plurality of control signal terminals 40 are connected to a control board 41 disposed above the connection conductor plate layer 9.
 インバータ筐体50には、冷却水が流れる水路52が形成されている。上述したパワー半導体モジュール1は水路52内に配置され、水路52内を流れる冷却水によって冷却される。モジュールケース53の外表面には冷却性能向上を図るために、放熱フィン53aが形成されている。水路52は、コンデンサ素子2が収納されているコンデンサ収納部51の外表面に沿って流れ、インバータ筐体50から排出される。コンデンサ素子2とコンデンサ収納部51との隙間は樹脂材が充填されている。 A water channel 52 through which cooling water flows is formed in the inverter housing 50. The power semiconductor module 1 described above is disposed in the water channel 52 and is cooled by the cooling water flowing in the water channel 52. Radiation fins 53a are formed on the outer surface of the module case 53 in order to improve the cooling performance. The water channel 52 flows along the outer surface of the capacitor storage portion 51 in which the capacitor element 2 is stored, and is discharged from the inverter housing 50. The gap between the capacitor element 2 and the capacitor housing 51 is filled with a resin material.
 インバータシステム60の動作時においては、制御基板41でパワー半導体モジュール1を制御し、コンデンサ素子2から接続導体板層9を介して、パワー半導体モジュール1に電流が流れ、電力出力端子12へ電流が出力される。その際、電流の流れる経路にあるコンデンサ素子2、接続導体板層9、パワー半導体モジュール1およびパワー半導体モジュールの接続端子10a、10b、11a、11bにおいて熱が発生する。 During the operation of the inverter system 60, the power semiconductor module 1 is controlled by the control board 41, current flows from the capacitor element 2 through the connection conductor plate layer 9 to the power semiconductor module 1, and current flows to the power output terminal 12. Is output. At that time, heat is generated in the capacitor element 2, the connection conductor plate layer 9, the power semiconductor module 1, and the connection terminals 10a, 10b, 11a, and 11b of the power semiconductor module in the current flow path.
 コンデンサ素子2は前記樹脂材を介してインバータ筺体50に熱的に接触しており、また、接続導体板層9も絶縁層を介してインバータ筺体50に熱的に接触しているので、コンデンサ素子2および接続導体板層9で発生した熱は、インバータ筐体50を介して水路52内の冷却水へ放熱される。また、パワー半導体モジュール1で発生した熱も、放熱フィン53aが形成されたモジュールケース53を介して冷却水に放熱される。しかしながら、パワー半導体モジュール1の各接続端子10a、10b、11a、11bについては、直接冷却する構造となっていないため、各接続端子10a、10b、11a、11bの発熱を抑えることが重要である。 Since the capacitor element 2 is in thermal contact with the inverter housing 50 via the resin material, and the connecting conductor plate layer 9 is also in thermal contact with the inverter housing 50 via the insulating layer, the capacitor element 2 and the connection conductor plate layer 9 are radiated to the cooling water in the water channel 52 through the inverter housing 50. Further, heat generated in the power semiconductor module 1 is also radiated to the cooling water through the module case 53 in which the radiation fins 53a are formed. However, since the connection terminals 10a, 10b, 11a, and 11b of the power semiconductor module 1 are not directly cooled, it is important to suppress the heat generation of the connection terminals 10a, 10b, 11a, and 11b.
 図2は、モジュールケース53内の構造を説明する図である。上述したようにパワー半導体モジュール1は2in1構造であって、2つのパワー半導体素子30a,30bがモジュールケース53内に収納されている。パワー半導体素子30aは導体板31a,31bにより挟持され、パワー半導体素子30bは導体板32a,32bにより挟持されている。導体板32bは、導体板31aと電気的に接続される。導体板32aには2つに分岐した端子、すなわち第1負極接続端子10aおよび第2負極接続端子10bが形成されている。同様に、導体板31bには、2つに分岐した第1正極接続端子11aおよび第2正極接続端子11bが形成されている。 FIG. 2 is a diagram for explaining the structure inside the module case 53. As described above, the power semiconductor module 1 has a 2-in-1 structure, and the two power semiconductor elements 30 a and 30 b are accommodated in the module case 53. The power semiconductor element 30a is sandwiched between the conductor plates 31a and 31b, and the power semiconductor element 30b is sandwiched between the conductor plates 32a and 32b. The conductor plate 32b is electrically connected to the conductor plate 31a. The conductor plate 32a is formed with two branched terminals, that is, a first negative electrode connection terminal 10a and a second negative electrode connection terminal 10b. Similarly, a first positive electrode connection terminal 11a and a second positive electrode connection terminal 11b branched into two are formed on the conductor plate 31b.
 図2において、実線で示す矢印21は第1負極接続端子10aを流れる電流の経路を示しており、破線で示す矢印20は第2負極接続端子10bを流れる電流の経路を示している。このように、負極接続端子が2つに分岐している構成の場合、導体板32aからより遠くに配置された第1負極接続端子10aの方が電流経路の長さが長くなる。その結果、パワー半導体素子30bから第1負極接続端子10aまでの抵抗(寄生抵抗)をRn1、パワー半導体素子30bから第2負極接続端子10bまでの抵抗(寄生抵抗)をRn2としたとき、Rn1>Rn2となっている。同様に、パワー半導体素子30aから第1正極接続端子11aまでの抵抗(寄生抵抗)をRp1、パワー半導体素子30aから第2正極接続端子11bまでの抵抗(寄生抵抗)をRp2としたとき、Rp1>Rp2となっている。 In FIG. 2, an arrow 21 indicated by a solid line indicates a path of current flowing through the first negative electrode connection terminal 10a, and an arrow 20 indicated by a broken line indicates a path of current flowing through the second negative electrode connection terminal 10b. Thus, when the negative electrode connection terminal is branched into two, the first negative electrode connection terminal 10a arranged farther from the conductor plate 32a has a longer current path. As a result, when the resistance (parasitic resistance) from the power semiconductor element 30b to the first negative electrode connection terminal 10a is Rn1, and the resistance (parasitic resistance) from the power semiconductor element 30b to the second negative electrode connection terminal 10b is Rn2, Rn1> Rn2. Similarly, when the resistance (parasitic resistance) from the power semiconductor element 30a to the first positive electrode connection terminal 11a is Rp1, and the resistance (parasitic resistance) from the power semiconductor element 30a to the second positive electrode connection terminal 11b is Rp2, Rp1> Rp2.
 図3は、接続導体板層9と、それに接続されたパワー半導体モジュール1およびコンデンサ素子2の回路図を示したものである。パワー半導体モジュール1に設けられたパワー半導体素子30a,30b(図2参照)は、図3に示すようにハーフブリッジ回路を構成している。パワー半導体素子30a,30bは、正極接続導体板92と負極接続導体板91との間に直列接続(トーテムポール接続)されている。パワー半導体素子30a,30bには例えばIGBT等が用いられる。 FIG. 3 shows a circuit diagram of the connecting conductor plate layer 9 and the power semiconductor module 1 and the capacitor element 2 connected thereto. The power semiconductor elements 30a and 30b (see FIG. 2) provided in the power semiconductor module 1 constitute a half bridge circuit as shown in FIG. The power semiconductor elements 30 a and 30 b are connected in series (totem pole connection) between the positive electrode connection conductor plate 92 and the negative electrode connection conductor plate 91. For example, an IGBT or the like is used for the power semiconductor elements 30a and 30b.
 上アームのパワー半導体素子30aのコレクタ電極は正極接続導体板92に接続され、エミッタ電極は下アームのパワー半導体素子30bのコレクタ電極に接続される。下アームのパワー半導体素子30bのエミッタ電極は、負極接続導体板91に接続される。また、2つのパワー半導体素子30a,30bの中間接続部(図2の導体板32b)には、電力出力端子12が配置されている。このように接続されることにより、上下アーム直列回路が形成される。 The collector electrode of the power semiconductor element 30a in the upper arm is connected to the positive connection conductor plate 92, and the emitter electrode is connected to the collector electrode of the power semiconductor element 30b in the lower arm. The emitter electrode of the lower arm power semiconductor element 30 b is connected to the negative electrode connecting conductor plate 91. Further, the power output terminal 12 is disposed at an intermediate connection portion (the conductor plate 32b in FIG. 2) between the two power semiconductor elements 30a and 30b. By connecting in this way, an upper and lower arm series circuit is formed.
 上述したように、パワー半導体素子30aから第1正極接続端子11aおよび第2正極接続端子11bまでの抵抗値はRp1、Rp2とされ、同様に、パワー半導体素子30bから第1負極接続端子10aおよび第2負極接続端子10bまでの抵抗値はそれぞれRn1、Rn2とされる。さらに、負極接続端子10a,10bとコンデンサ負極端子13との間の抵抗値(負極接続導体板91における抵抗)をそれぞれRpbn1,Rpbn2とし、正極接続端子11a,11bとコンデンサ正極端子14との間の抵抗値(正極接続導体板92における抵抗)をそれぞれRpbp1およびRpbp2とする。 As described above, the resistance values from the power semiconductor element 30a to the first positive electrode connection terminal 11a and the second positive electrode connection terminal 11b are Rp1 and Rp2, and similarly, from the power semiconductor element 30b to the first negative electrode connection terminal 10a and the first negative electrode connection terminal 10a. The resistance values up to the two negative electrode connection terminals 10b are Rn1 and Rn2, respectively. Furthermore, resistance values (resistance in the negative electrode connecting conductor plate 91) between the negative electrode connecting terminals 10a and 10b and the capacitor negative electrode terminal 13 are Rpbn1 and Rpbn2, respectively, and the positive electrode connecting terminals 11a and 11b and the capacitor positive electrode terminal 14 are connected. The resistance values (resistance in the positive electrode connecting conductor plate 92) are Rpbp1 and Rpbp2, respectively.
 上述したように、パワー半導体素子30a,30bの各端子の抵抗値はRn1>Rn2、およびRp1>Rp2のようになっている。一方、負極接続導体板91および正極接続導体板92は幅広い導体で構成されているので、本発明を適用する前の状態ではRpbn1≒Rpbn2、Rpbp1≒Rpbp2となっている。本実施の形態では、接続導体板層9の形状を工夫して上述した抵抗値Rpbn1,Rpbn2および抵抗値Rpbp1,Rpbp2を調整することにより、パワー半導体素子30a,30bの各端子の発熱を均等化するようにした。 As described above, the resistance values of the terminals of the power semiconductor elements 30a and 30b are such that Rn1> Rn2 and Rp1> Rp2. On the other hand, since the negative electrode connection conductor plate 91 and the positive electrode connection conductor plate 92 are made of a wide range of conductors, Rpbn1≈Rpbn2 and Rpbp1≈Rpbp2 are satisfied before the present invention is applied. In the present embodiment, the shape of the connecting conductor plate layer 9 is devised to adjust the resistance values Rpbn1 and Rpbn2 and the resistance values Rpbp1 and Rpbp2 to equalize the heat generation at the terminals of the power semiconductor elements 30a and 30b. I tried to do it.
 ここでは、負極接続導体板91の抵抗値に関する調整方法について説明するが、正極接続導体板92に関しても同様な方法で調整することができる。ここで、パワー半導体素子30bの第1負極接続端子10aで発生する損失をPn1、第2負極接続端子10bで発生する損失をPn2とする。各負極接続端子10a,10bの発熱を均等化するためには、Pn1≒Pn2とする必要がある。 Here, although the adjustment method regarding the resistance value of the negative electrode connection conductor plate 91 is demonstrated, the positive electrode connection conductor plate 92 can also be adjusted by the same method. Here, loss generated at the first negative electrode connection terminal 10a of the power semiconductor element 30b is Pn1, and loss generated at the second negative electrode connection terminal 10b is Pn2. In order to equalize the heat generation of the negative electrode connection terminals 10a and 10b, it is necessary to satisfy Pn1≈Pn2.
 抵抗値Rn1の第1負極接続端子10aに流れる電流をIn1、抵抗値Rn2の第2負極接続端子10bに流れる電流をIn2とすると、損失Pn1,Pn2はそれぞれPn1=Rn1×In12、Pn2=Rn2×In22となる。よって、Pn1≒Pn2を仮定した場合、電流In1,In2には、Rn1×In12≒Rn2×In22の関係が成り立っている。また、負極側に流れるトータルの電流Inは、In=In1+In2となる。 If the current flowing through the first negative electrode connection terminal 10a having the resistance value Rn1 is In1, and the current flowing through the second negative electrode connection terminal 10b having the resistance value Rn2 is In2, the losses Pn1 and Pn2 are Pn1 = Rn1 × In1 2 and Pn2 = Rn2, respectively. XIn2 2 Therefore, assuming that Pn1≈Pn2, the relationship of Rn1 × In1 2 ≈Rn2 × In2 2 is established between the currents In1 and In2. Further, the total current In flowing on the negative electrode side is In = In1 + In2.
 上述したように、第1負極接続端子10aの抵抗値Rn1に比べて第2負極接続端子10bの抵抗値Rn2は小さいので、第2負極接続端子10bが接続される負極接続導体板91の抵抗値Rpbn2を大きくする必要がある。例えば、負極接続導体板91の抵抗値Rpbn2(≒Rpbn1)をΔRpbn2だけ大きくした場合、すなわち、Rpbn2をRpbn2+ΔRpbn2とした場合を考える。その場合、キルヒホッフの電流則により、第1負極接続端子10aに流れる電流In1は次式(1)で表すことができる。また、第2負極接続端子10bに流れる電流In2は次式(2)のようになる。
Figure JPOXMLDOC01-appb-M000001
As described above, since the resistance value Rn2 of the second negative electrode connection terminal 10b is smaller than the resistance value Rn1 of the first negative electrode connection terminal 10a, the resistance value of the negative electrode connection conductor plate 91 to which the second negative electrode connection terminal 10b is connected. It is necessary to increase Rpbn2. For example, consider a case where the resistance value Rpbn2 (≈Rpbn1) of the negative electrode connecting conductor plate 91 is increased by ΔRpbn2, that is, Rpbn2 is set to Rpbn2 + ΔRpbn2. In that case, according to Kirchhoff's current law, the current In1 flowing through the first negative electrode connection terminal 10a can be expressed by the following equation (1). Further, the current In2 flowing through the second negative electrode connection terminal 10b is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000001
 上述したように、第1負極接続端子10aの発熱と第2負極接続端子10bの発熱とを均等化するためには、Rn1×In12≒Rn2×In22の関係が成り立つ必要があるので、次式(3)を満足する必要がある。式(3)が成立するとき、式(4),(5)が成り立つ。
Figure JPOXMLDOC01-appb-M000002
As described above, in order to equalize the heat generation of the first negative electrode connection terminal 10a and the heat generation of the second negative electrode connection terminal 10b, the relationship of Rn1 × In1 2 ≈Rn2 × In2 2 needs to be established. It is necessary to satisfy Expression (3). When Expression (3) is established, Expressions (4) and (5) are established.
Figure JPOXMLDOC01-appb-M000002
 ここで、Rpbn1≒Rpbn2、ΔRn=Rn1-Rn2とすると、式(6)の関係が求まる。式(6)は、パワー半導体モジュール1の第1及び第2負極接続端子10a,10bの抵抗Rn1及びRn2と、第1負極接続端子10aとコンデンサ負極端子13との間の抵抗Rpbn1を与えたときに、端子10a,10b間の発熱を均等化するために必要な抵抗Rpbn2の増加量ΔRpbn2を与える式である。よって、この関係に従って図3に示すパワー半導体モジュール1とコンデンサ素子2との間の抵抗値を調整することで、図4(b)に示すように、パワー半導体モジュール1における各端子の損失が均等化される。図4(a)は、均等化を図る前の各端子10a,10bにおける消費電力を示したものである。図4(b)では、これらのラインを破線で示した。なお、図4において、第1端子は第1負極接続端子10aが対応し、第2端子は第2負極接続端子10bが対応する。
Figure JPOXMLDOC01-appb-M000003
Here, assuming that Rpbn1≈Rpbn2 and ΔRn = Rn1-Rn2, the relationship of equation (6) is obtained. Formula (6) is obtained when the resistances Rn1 and Rn2 of the first and second negative electrode connection terminals 10a and 10b of the power semiconductor module 1 and the resistance Rpbn1 between the first negative electrode connection terminal 10a and the capacitor negative electrode terminal 13 are given. Is an equation for giving an increase ΔRpbn2 of the resistance Rpbn2 necessary for equalizing the heat generation between the terminals 10a and 10b. Therefore, by adjusting the resistance value between the power semiconductor module 1 and the capacitor element 2 shown in FIG. 3 according to this relationship, the loss of each terminal in the power semiconductor module 1 is equalized as shown in FIG. 4B. It becomes. FIG. 4A shows the power consumption at the terminals 10a and 10b before equalization. In FIG. 4B, these lines are indicated by broken lines. In FIG. 4, the first terminal corresponds to the first negative electrode connection terminal 10a, and the second terminal corresponds to the second negative electrode connection terminal 10b.
Figure JPOXMLDOC01-appb-M000003
 上述したように、本実施の形態では、第1負極接続端子10aの発熱と第2負極接続端子10bの発熱との差を解消するために、式(6)に示したように、それらの抵抗Rn1、Rn2および差ΔRnに基づいて、第2負極接続端子10bからコンデンサ負極端子13までの抵抗Rpbn2の大きさをΔRpbn2だけ大きくなるように設定した。 As described above, in this embodiment, in order to eliminate the difference between the heat generation of the first negative electrode connection terminal 10a and the heat generation of the second negative electrode connection terminal 10b, as shown in the equation (6), their resistance Based on Rn1, Rn2 and the difference ΔRn, the magnitude of the resistor Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 was set to be increased by ΔRpbn2.
 また、パワー半導体モジュール1の第1および第2正極接続端子11a,11b間における発熱の均等化についても同様であって、抵抗Rpbp2の大きさをΔRpbp2だけ増加させる場合には、式(6)のRn1、Rn2、Rpbn1、ΔRpbn2を、正極に関するパラメータRp1、Rp2、Rpbp1、ΔRpbp2に置き換えれば良い。 The same applies to the equalization of heat generation between the first and second positive electrode connection terminals 11a and 11b of the power semiconductor module 1. When the magnitude of the resistor Rpbp2 is increased by ΔRpbp2, the equation (6) is used. Rn1, Rn2, Rpbn1, and ΔRpbn2 may be replaced with parameters Rp1, Rp2, Rpbp1, and ΔRpbp2 related to the positive electrode.
 本実施の形態では、接続導体板層9の形状を工夫することにより、ΔRpbn2およびΔRpbp2を与えるようにしている。以下では、ΔRpbn2およびΔRpbp2を与える接続導体板層9の具体的な形状について説明する。 In the present embodiment, ΔRpbn2 and ΔRpbp2 are given by devising the shape of the connecting conductor plate layer 9. Below, the specific shape of the connection conductor board layer 9 which gives (DELTA) Rpbn2 and (DELTA) Rpbp2 is demonstrated.
(第1の実施例)
 図5~7は、接続導体板層9の形状の第1の実施例を示す図である。図5は、接続導体板層9によって接続されたパワー半導体モジュール1およびコンデンサ素子2を示す図である。なお、パワー半導体モジュール1については、その内部構造が分かりやすいように、モジュールケース53の図示は省略した。上述したように、第1および第2負極接続端子10a,10bは接続導体板層9の負極接続導体板91に接続され、第1および第2正極接続端子11a,11bは接続導体板層9の正極接続導体板92に接続される。なお、接続導体板層9は、負極接続導体板91と正極接続導体板92とを積層して一体化したものであり、負極接続導体板91と正極接続導体板92との間には絶縁層が形成され、電気的に互いに絶縁されている。ただし、本発明は、積層された負極接続導体板91、正極接続導体板92に限らず適用することができる。
(First embodiment)
FIGS. 5 to 7 are views showing a first embodiment of the shape of the connection conductor plate layer 9. FIG. 5 is a diagram showing the power semiconductor module 1 and the capacitor element 2 connected by the connection conductor plate layer 9. In addition, about the power semiconductor module 1, illustration of the module case 53 was abbreviate | omitted so that the internal structure could be understood easily. As described above, the first and second negative electrode connection terminals 10a and 10b are connected to the negative electrode connection conductor plate 91 of the connection conductor plate layer 9, and the first and second positive electrode connection terminals 11a and 11b are connected to the connection conductor plate layer 9. Connected to the positive connection conductor plate 92. The connection conductor plate layer 9 is formed by laminating and integrating a negative electrode connection conductor plate 91 and a positive electrode connection conductor plate 92, and an insulating layer is provided between the negative electrode connection conductor plate 91 and the positive electrode connection conductor plate 92. Are formed and are electrically insulated from each other. However, the present invention is not limited to the laminated negative electrode connecting conductor plate 91 and positive electrode connecting conductor plate 92 but can be applied.
 図6は、負極接続導体板91および正極接続導体板92と各接続端子との関係を説明する図である。図6(a)は負極接続導体板91の平面図を示し、図6(b)は正極接続導体板92の平面図を示す。また、図7は、図6(a)のA-A断面を示す図である。図5,7に示すように、負極接続導体板91は正極接続導体板92の上面側に積層されている。 FIG. 6 is a diagram for explaining the relationship between the negative connection conductor plate 91 and the positive connection conductor plate 92 and each connection terminal. FIG. 6A shows a plan view of the negative electrode connection conductor plate 91, and FIG. 6B shows a plan view of the positive electrode connection conductor plate 92. FIG. 7 is a view showing the AA cross section of FIG. As shown in FIGS. 5 and 7, the negative connection conductor plate 91 is laminated on the upper surface side of the positive connection conductor plate 92.
 図6に示すように、負極接続導体板91には、パワー半導体モジュール1の端子10a,10b,11a,11bを通すための貫通孔910、コンデンサ負極端子13を通すための貫通孔912、コンデンサ正極端子14を通すための貫通孔913がそれぞれ形成されている。同様に、正極接続導体板92には、パワー半導体モジュール1の端子10a,10b,11a,11bを通すための貫通孔920、コンデンサ負極端子13を通すための貫通孔923、コンデンサ正極端子14を通すための貫通孔924がそれぞれ形成されている。貫通孔910と貫通孔920、貫通孔912と貫通孔923、貫通孔913と貫通孔924とは、それぞれ上下に重なるような配置で形成されている。なお、本実施の形態では、貫通孔910,920,912,913,923,924としたが、接続導体板層9の縁から切れ込んだスリットとしても良い。 As shown in FIG. 6, the negative connection conductor plate 91 has a through hole 910 through which the terminals 10 a, 10 b, 11 a, and 11 b of the power semiconductor module 1 pass, a through hole 912 through which the capacitor negative terminal 13 passes, and a capacitor positive electrode A through hole 913 for passing the terminal 14 is formed. Similarly, through the positive connection conductor plate 92, a through hole 920 for passing the terminals 10a, 10b, 11a, 11b of the power semiconductor module 1, a through hole 923 for passing the capacitor negative terminal 13, and the capacitor positive terminal 14 are passed. A through-hole 924 for each is formed. The through hole 910 and the through hole 920, the through hole 912 and the through hole 923, and the through hole 913 and the through hole 924 are formed so as to overlap each other. In the present embodiment, the through holes 910, 920, 912, 913, 923, and 924 are used, but a slit cut from the edge of the connection conductor plate layer 9 may be used.
 先ず、負極接続導体板91について説明する。負極接続導体板91の貫通孔910の部分には、第1負極接続端子10aが接続される端子部91aと、第2負極接続端子10bが接続される端子部91bとが形成されている。また、負極接続導体板91の貫通孔912の部分には、コンデンサ負極端子13が接続される端子部91dが形成されている。 First, the negative electrode connection conductor plate 91 will be described. A terminal portion 91a to which the first negative electrode connecting terminal 10a is connected and a terminal portion 91b to which the second negative electrode connecting terminal 10b is connected are formed in the through hole 910 portion of the negative electrode connecting conductor plate 91. Further, a terminal portion 91 d to which the capacitor negative electrode terminal 13 is connected is formed in the through hole 912 portion of the negative electrode connecting conductor plate 91.
 上述したように、第1負極接続端子10aの抵抗値Rn1は、第2負極接続端子10bの抵抗値Rn2よりも大きい。そこで、本実施の形態では、上述したように第2負極接続端子10bからコンデンサ負極端子13までの抵抗値Rpbn2をΔRpbn2だけ増加させて、第1負極接続端子10aの発熱と第2負極接続端子10bの発熱との均等化を図るようにしている。 As described above, the resistance value Rn1 of the first negative electrode connection terminal 10a is larger than the resistance value Rn2 of the second negative electrode connection terminal 10b. Therefore, in the present embodiment, as described above, the resistance value Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 is increased by ΔRpbn2, thereby generating heat in the first negative electrode connection terminal 10a and the second negative electrode connection terminal 10b. To equalize the heat generation.
 そのために、図6(a)に示す負極接続導体板91においては、抵抗値の大きな第1負極接続端子10aの方がコンデンサ負極端子13により近くなるように配置し、さらに、スリット911を負極接続導体板91に形成した。 Therefore, in the negative electrode connecting conductor plate 91 shown in FIG. 6A, the first negative electrode connecting terminal 10a having a larger resistance value is arranged closer to the capacitor negative electrode terminal 13, and the slit 911 is connected to the negative electrode. The conductor plate 91 was formed.
 図6(a)において、実線L1は第2負極接続端子10bからコンデンサ負極端子13までの電流経路を示し、実線L2は第1負極接続端子10aからコンデンサ負極端子13までの電流経路を示す。また、破線L10は、スリット911を設けない場合の、第2負極接続端子10bからコンデンサ負極端子13までの電流経路を示している。なお、電流経路L1,L2,L10は、電流密度の高い領域をラインで示したものである。 6A, a solid line L1 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13, and a solid line L2 indicates a current path from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13. A broken line L10 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 when the slit 911 is not provided. Note that the current paths L1, L2, and L10 indicate regions having a high current density with lines.
 スリット911は貫通孔910と連通しており、貫通孔910から負極接続端子10a,10bの配列方向と直交する方向に延びている。そのため、第2負極接続端子10bからコンデンサ負極端子13までの電流経路は、実線L1で示すようにスリット911を迂回するような経路となり、スリット911を設けない場合の電流経路L10よりも長い経路となる。すなわち、符号S1で示す経路が、電流経路L1において経路抵抗増大部として機能している。その結果、電流経路L1に対して上述した抵抗増加ΔRpbn2を設定することが可能となる。 The slit 911 communicates with the through hole 910 and extends from the through hole 910 in a direction orthogonal to the arrangement direction of the negative electrode connection terminals 10a and 10b. Therefore, the current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 is a path that bypasses the slit 911 as indicated by the solid line L1, and is a path that is longer than the current path L10 when the slit 911 is not provided. Become. That is, the path indicated by reference sign S1 functions as a path resistance increasing portion in the current path L1. As a result, the above-described resistance increase ΔRpbn2 can be set for the current path L1.
 このように、2つの負極接続端子10a,10bの抵抗が異なる場合であっても、負極接続導体板91を図6(a)に示すような構成とすることにより、負極接続端子10a,10bの発熱均等化を図ることができる。すなわち、本実施の形態においては、2つの負極接続端子10a,10bを設けて電流経路の並列化による低インダクタンス化を図るとともに、端子間の発熱均等化も図ることができる。 Thus, even when the resistances of the two negative electrode connection terminals 10a and 10b are different, the negative electrode connection conductor plate 91 is configured as shown in FIG. Heat generation can be equalized. That is, in the present embodiment, the two negative electrode connection terminals 10a and 10b are provided to reduce the inductance by paralleling the current paths, and also to equalize the heat generation between the terminals.
 なお、図6(a)の破線L10は、上述したようにスリット911を形成しない場合の電流経路を示している。この場合は、第1負極接続端子10aをコンデンサ負極端子13により近くなるように配置したことで、電流経路L10は電流経路L2に対して端子間距離分だけ長くなっている。そのため、端子間の発熱アンバランスを若干小さくすることはできるが、スリット911を形成する場合のように電流経路の長さを任意に変更することはできないので、この構成だけでは発熱アンバランスの解消は難しい。 In addition, the broken line L10 of Fig.6 (a) has shown the electric current path | route when not forming the slit 911 as mentioned above. In this case, by arranging the first negative electrode connection terminal 10a closer to the capacitor negative electrode terminal 13, the current path L10 is longer than the current path L2 by the distance between the terminals. Therefore, although the heat generation unbalance between the terminals can be slightly reduced, the length of the current path cannot be arbitrarily changed as in the case where the slit 911 is formed. Is difficult.
 次に、正極接続導体板92について説明する。図6(b)に示すように、正極接続導体板92の貫通孔920の部分には、第1正極接続端子11aと接続される端子部92aと、第2正極接続端子11bと接続される端子部92bとが形成されている。また、正極接続導体板92の貫通孔924の部分には、コンデンサ正極端子14と接続される端子部92dが形成されている。 Next, the positive electrode connecting conductor plate 92 will be described. As shown in FIG. 6B, in the portion of the through hole 920 of the positive electrode connecting conductor plate 92, a terminal portion 92a connected to the first positive electrode connecting terminal 11a and a terminal connected to the second positive electrode connecting terminal 11b. A portion 92b is formed. A terminal portion 92 d connected to the capacitor positive electrode terminal 14 is formed in the through hole 924 portion of the positive electrode connecting conductor plate 92.
 上述のように、第1正極接続端子11aの抵抗値Rp1は、第2正極接続端子11bの抵抗値Rp2よりも大きい。そのため、第2正極接続端子11bからコンデンサ正極端子14までの抵抗値Rpbp2を、第1正極接続端子11aからコンデンサ正極端子14までの抵抗値Rpbp1よりも大きくする必要がある。すなわち、Rpbp2→Rpbp2+ΔRpbp2のように抵抗値Rpbp2を増加させる。 As described above, the resistance value Rp1 of the first positive electrode connection terminal 11a is larger than the resistance value Rp2 of the second positive electrode connection terminal 11b. Therefore, it is necessary to make the resistance value Rpbp2 from the second positive electrode connection terminal 11b to the capacitor positive electrode terminal 14 larger than the resistance value Rpbp1 from the first positive electrode connection terminal 11a to the capacitor positive electrode terminal 14. That is, the resistance value Rpbp2 is increased as Rpbp2 → Rpbp2 + ΔRpbp2.
 ところで、上述したようにコンデンサ負極端子13に対する負極接続端子10a,10bの配置を設定しているので、コンデンサ正極接続端子41に対する正極接続端子11a,11bの配置は自動的に決まってしまう。すなわち、抵抗値の小さな第2正極接続端子11bの方が、コンデンサ正極接続端子41により近くなっている。そのため、正極接続導体板92の場合には、図6(b)に示すように、貫通孔920に連通するスリット921,922を形成するようにした。 Incidentally, since the arrangement of the negative electrode connection terminals 10a and 10b with respect to the capacitor negative electrode terminal 13 is set as described above, the arrangement of the positive electrode connection terminals 11a and 11b with respect to the capacitor positive electrode connection terminal 41 is automatically determined. That is, the second positive electrode connection terminal 11 b having a smaller resistance value is closer to the capacitor positive electrode connection terminal 41. Therefore, in the case of the positive electrode connecting conductor plate 92, slits 921 and 922 communicating with the through hole 920 are formed as shown in FIG.
 図6(b)において、破線L3は第1正極接続端子11aからコンデンサ正極端子14までの電流経路を示し、実線L4は第2正極接続端子11bからコンデンサ正極端子14までの電流経路を示している。上述したように、正極側第2接続端子11bの抵抗値Rp2は、正極側第1接続端子11aの抵抗値Rp1よりも小さい。そのため、正極接続導体板92にスリット921,922を形成して、コンデンサ正極端子14から端子11a側へ遠ざかるような迂回経路(経路抵抗増大部S2)を形成し、電流経路L4における抵抗値が電流経路L3における抵抗値よりも大きくなるようにした。その結果、端子11a,11b間の発熱均等化を図ることができる。 In FIG. 6B, a broken line L3 indicates a current path from the first positive electrode connection terminal 11a to the capacitor positive terminal 14, and a solid line L4 indicates a current path from the second positive electrode connection terminal 11b to the capacitor positive terminal 14. . As described above, the resistance value Rp2 of the positive second connection terminal 11b is smaller than the resistance value Rp1 of the positive first connection terminal 11a. Therefore, slits 921 and 922 are formed in the positive connection conductor plate 92 to form a detour path (path resistance increasing portion S2) that moves away from the capacitor positive terminal 14 toward the terminal 11a, and the resistance value in the current path L4 is the current. It was made larger than the resistance value in the path L3. As a result, the heat generation between the terminals 11a and 11b can be equalized.
(第2の実施例)
 図8は、第2の実施例を説明する図である。上述した第1の実施例では、コンデンサ負極端子13およびコンデンサ正極端子14の配列方向と、パワー半導体モジュール1の端子10a,10b,11a,11bの配列方向とが直交するように、コンデンサ素子2およびパワー半導体モジュール1が接続導体板層9に接続されていた。一方、第2の実施例では、図8に示すように、コンデンサ負極端子13およびコンデンサ正極端子14の配列方向と、パワー半導体モジュール1の端子10a,10b,11a,11bの配列方向とが平行となるように、コンデンサ素子2およびパワー半導体モジュール1が接続導体板層9に接続されている。なお、以下では、負極接続導体板91について説明するが、正極接続導体板92についても同様に適用することができる。
(Second embodiment)
FIG. 8 is a diagram for explaining the second embodiment. In the first embodiment described above, the capacitor element 2 and the capacitor element 2 are arranged so that the arrangement direction of the capacitor negative terminal 13 and the capacitor positive terminal 14 and the arrangement direction of the terminals 10a, 10b, 11a, 11b of the power semiconductor module 1 are orthogonal to each other. The power semiconductor module 1 was connected to the connection conductor plate layer 9. On the other hand, in the second embodiment, as shown in FIG. 8, the arrangement direction of the capacitor negative terminal 13 and the capacitor positive terminal 14 and the arrangement direction of the terminals 10a, 10b, 11a, 11b of the power semiconductor module 1 are parallel. Thus, the capacitor element 2 and the power semiconductor module 1 are connected to the connection conductor plate layer 9. In the following description, the negative electrode connection conductor plate 91 will be described, but the same applies to the positive electrode connection conductor plate 92.
 図8(a)に示すように、負極接続導体板91には貫通孔912,913,914が形成されている。貫通孔912の部分には、図6(a)に示した場合と同様に、端子部91dが形成されている。貫通孔914は、端子13,14の配列方向に細長い形状をしており、図示上下方向に端子10a,10b,11a,11bが配置されている。貫通孔914の部分には、第1負極接続端子10aと接続される端子部91aおよび第2負極接続端子10bと接続される端子部91bが形成されている。さらに、貫通孔914に連通するようにスリット915が形成されている。 As shown in FIG. 8A, the negative electrode connecting conductor plate 91 has through holes 912, 913, and 914 formed therein. In the portion of the through hole 912, a terminal portion 91d is formed as in the case shown in FIG. The through hole 914 has an elongated shape in the arrangement direction of the terminals 13 and 14, and the terminals 10a, 10b, 11a, and 11b are arranged in the vertical direction in the figure. A terminal portion 91a connected to the first negative electrode connection terminal 10a and a terminal portion 91b connected to the second negative electrode connection terminal 10b are formed in the through hole 914 portion. Further, a slit 915 is formed so as to communicate with the through hole 914.
 なお、図8(a)に示す例では、負極接続導体板91に貫通孔914を形成して、貫通孔の縁(すなわち、負極接続導体板91の縁)に端子部91aおよび91bを形成したが、図8(b)に示すように、負極接続導体板91の図示右側の縁に端子部91aおよび91bを形成するようにしても良い。 In the example shown in FIG. 8A, the through hole 914 is formed in the negative electrode connecting conductor plate 91, and the terminal portions 91a and 91b are formed at the edge of the through hole (that is, the edge of the negative electrode connecting conductor plate 91). However, as shown in FIG. 8B, terminal portions 91a and 91b may be formed on the right edge of the negative electrode connecting conductor plate 91 in the drawing.
 実線L5は第1負極接続端子10aからコンデンサ負極端子13までの電流経路を示しており、実線L6は第2負極接続端子10bからコンデンサ負極端子13までの電流経路を示している。また、破線L60は、スリット915を形成しなかった場合の、第2負極接続端子10bからコンデンサ負極端子13までの電流経路を示している。 A solid line L5 indicates a current path from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13, and a solid line L6 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13. A broken line L60 indicates a current path from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 when the slit 915 is not formed.
 上述したように、第1負極接続端子10aの抵抗値Rn1は、第2負極接続端子10bの抵抗値Rn2よりも大きい。そのため、接続端子10a,10bの発熱均等化を図るためには、第2負極接続端子10bからコンデンサ負極端子13までの抵抗値Rpbn2を第1負極接続端子10aからコンデンサ負極端子13までの抵抗値Rpb1よりも大きくする必要がある。具体的には、上述した式(6)で与えられるΔRpbn2だけ抵抗値を増加させる。 As described above, the resistance value Rn1 of the first negative electrode connection terminal 10a is larger than the resistance value Rn2 of the second negative electrode connection terminal 10b. Therefore, in order to equalize the heat generation of the connection terminals 10a and 10b, the resistance value Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 is changed to the resistance value Rpb1 from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13. Need to be bigger than. Specifically, the resistance value is increased by ΔRpbn2 given by the above-described equation (6).
 そのため、電流経路L6の方が電流経路R5よりも長くなるように、スリット915を形成した。スリット915は、第2負極接続端子10bと第1正極接続端子11aとの境界部分を端子13方向(図示左方向)に伸延し、途中から第1負極接続端子10aが配置されている図示下方向に折れ曲がり、第2正極接続端子11bと第1負極接続端子10aとの境界付近まで伸延している。 Therefore, the slit 915 is formed so that the current path L6 is longer than the current path R5. The slit 915 extends in the terminal 13 direction (left direction in the figure) at the boundary between the second negative electrode connection terminal 10b and the first positive electrode connection terminal 11a, and the lower direction in the figure in which the first negative electrode connection terminal 10a is arranged from the middle. And is extended to the vicinity of the boundary between the second positive electrode connection terminal 11b and the first negative electrode connection terminal 10a.
 このような形状のスリット915を形成することで、電流経路L6は電流経路L5の領域まで迂回した後に、コンデンサ負極端子13へと向かう。そのため、電流経路L6は、この迂回する分だけ電流経路L5よりも長くなっている。すなわち、符号S3で示す部分が、電流経路L6における経路抵抗増大部として機能する。その結果、第2負極接続端子10bからコンデンサ負極端子13までの抵抗値Rpbn2は、経路が長くなった分だけ抵抗が増加する。そして、その増加量を式(6)から算出されるΔRpbn2に調整することで、第1負極接続端子10aの発熱と第2負極接続端子10bの発熱とを均等化することができる。 By forming the slit 915 having such a shape, the current path L6 detours to the region of the current path L5 and then moves toward the capacitor negative electrode terminal 13. Therefore, the current path L6 is longer than the current path L5 by this detour amount. That is, the portion indicated by reference numeral S3 functions as a path resistance increasing portion in the current path L6. As a result, the resistance value Rpbn2 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13 increases as the path becomes longer. Then, by adjusting the increase amount to ΔRpbn2 calculated from Expression (6), the heat generation of the first negative electrode connection terminal 10a and the heat generation of the second negative electrode connection terminal 10b can be equalized.
(第3の実施例)
 図9は、第3の実施例を説明する図である。第3の実施例においても、上述した第1の実施例の場合(図6(a)参照)と同様に、負極接続導体板91に、貫通孔910,912,913を形成すると共に、貫通孔910に連通するスリット911を形成する。貫通孔912の部分には、コンデンサ負極端子13が接続される端子部91dが形成されている。貫通孔910の部分には、第1負極接続端子10aと接続される端子部91aおよび第2負極接続端子10bと接続される端子部91bが形成されている。
(Third embodiment)
FIG. 9 is a diagram for explaining the third embodiment. In the third embodiment, as in the case of the first embodiment described above (see FIG. 6A), through- holes 910, 912, and 913 are formed in the negative electrode connecting conductor plate 91, and the through-holes are also formed. A slit 911 communicating with 910 is formed. A terminal portion 91d to which the capacitor negative electrode terminal 13 is connected is formed in the through hole 912 portion. A terminal portion 91a connected to the first negative electrode connection terminal 10a and a terminal portion 91b connected to the second negative electrode connection terminal 10b are formed in the through hole 910.
 上述した第1の実施例では、負極接続導体板91の厚さは均一であったが、第3の実施例では、領域Cの部分の厚さを他の領域よりも薄くしている。すなわち、t2<t1のように設定している。端子10a,10b,11a,11bは図示左右方向に配列されているが、領域Cは第1負極接続端子10aよりも右側の部分に設定される。 In the first embodiment described above, the thickness of the negative electrode connecting conductor plate 91 is uniform, but in the third embodiment, the thickness of the region C is made thinner than the other regions. That is, t2 <t1 is set. The terminals 10a, 10b, 11a, and 11b are arranged in the horizontal direction in the figure, but the region C is set to a portion on the right side of the first negative electrode connection terminal 10a.
 負極接続導体板91の厚さをこのように構成すると、第1負極接続端子10aからコンデンサ負極端子13までの電流経路L7は、その全体が厚さがt1の部分を通る。一方、第2負極接続端子10bからコンデンサ負極端子13までの電流経路L8の場合は、一部が厚さt2の領域Cを通っている。領域Cの厚さt2はt2<t1であるため、厚さt1の場合と比べて抵抗が大きくなる。そのため、本実施例では、電流経路L8の長さが第1の実施例に示した電流経路L1よりも小さくても、抵抗値の増分ΔRpbn2を第1の実施例の場合と同程度とすることができる。すなわち、スリット911の切れ込み深さ(図示上下方向の寸法)を、第1の実施例の場合よりも小さくすることができる。さらには、スリット911を形成しなくても、抵抗値の増分ΔRpbn2を設定することが可能である。 When the thickness of the negative electrode connection conductor plate 91 is configured in this way, the entire current path L7 from the first negative electrode connection terminal 10a to the capacitor negative electrode terminal 13 passes through the portion having a thickness t1. On the other hand, in the case of the current path L8 from the second negative electrode connection terminal 10b to the capacitor negative electrode terminal 13, a part passes through the region C having the thickness t2. Since the thickness t2 of the region C is t2 <t1, the resistance is larger than that in the case of the thickness t1. For this reason, in this embodiment, even if the length of the current path L8 is smaller than the current path L1 shown in the first embodiment, the resistance value increment ΔRpbn2 is set to the same level as in the first embodiment. Can do. That is, the depth of cut of the slit 911 (the vertical dimension in the figure) can be made smaller than in the first embodiment. Furthermore, the resistance value increment ΔRpbn2 can be set without forming the slit 911.
(第4の実施例)
 図10は、第4の実施例を説明する図である。上述した第3の実施の形態では、負極接続導体板91の領域Cの部分を薄くすることで、電流経路L8における抵抗値Rpbp2を増加させた。一方、第4の実施例では、負極接続導体板91の厚さは均一とし、領域Cの部分に切り欠き916を形成することで、領域Cの部分における電流経路L8の幅を小さくするようにした。その結果、この領域Cの符号S4の抵抗が大きくなり、この部分が電流経路L8において経路抵抗増大部として機能する。すなわち、経路抵抗増大部S4を設けることで、接続端子10a,10bにおける発熱アンバランスを解消するための抵抗増分ΔRpbn2を設定することが可能となる。
(Fourth embodiment)
FIG. 10 is a diagram for explaining the fourth embodiment. In the third embodiment described above, the resistance value Rpbp2 in the current path L8 is increased by thinning the region C of the negative electrode connecting conductor plate 91. On the other hand, in the fourth embodiment, the thickness of the negative electrode connecting conductor plate 91 is made uniform, and the notch 916 is formed in the region C, so that the width of the current path L8 in the region C is reduced. did. As a result, the resistance indicated by reference numeral S4 in this region C increases, and this portion functions as a path resistance increasing portion in the current path L8. That is, by providing the path resistance increasing portion S4, it is possible to set the resistance increment ΔRpbn2 for eliminating the heat generation imbalance in the connection terminals 10a and 10b.
 ここでは、図6(a)に示したような矩形の負極接続導体板91を前提として切り欠き916と称したが、ここでは、切り欠くことが重要なのではなく、領域Cの端子部91bが形成されている部分の導体板幅D1が、図6(a)に示す負極接続導体板91における同一領域Cの幅D2よりも小さく設定されていることが重要である。その結果、図6(a)において切り込み深さの大きなスリット911を形成した場合と同様に、電流経路L8における抵抗値Rpbn2を増加させることができる。なお、本実施例の場合、スリット911を形成することは必須ではなく、端子10aと端子10bとの間の負極接続導体板91の幅D1が、必要な抵抗増分ΔRpbn2を得られる寸法であれば、スリット911を形成しなくても構わない。スリット911を形成しない場合には、上記D2は端子部91aと導体板の縁との間の幅寸法に相当する。 Here, the rectangular negative electrode connecting conductor plate 91 as shown in FIG. 6A is referred to as the notch 916, but here, the notch is not important, and the terminal portion 91b in the region C is not formed. It is important that the conductor plate width D1 of the formed portion is set smaller than the width D2 of the same region C in the negative electrode connection conductor plate 91 shown in FIG. As a result, the resistance value Rpbn2 in the current path L8 can be increased as in the case where the slit 911 having a large cut depth is formed in FIG. In the case of the present embodiment, it is not essential to form the slit 911, and the width D1 of the negative electrode connecting conductor plate 91 between the terminal 10a and the terminal 10b is a dimension that can obtain the necessary resistance increment ΔRpbn2. The slit 911 may not be formed. When the slit 911 is not formed, D2 corresponds to the width dimension between the terminal portion 91a and the edge of the conductor plate.
 上述した実施の形態では、直流接続端子が2つに分岐されている場合を例に説明したが、3つ以上に分岐されている場合にも同様に適用することができる。例えば、図11に示すように、直流接続端子が3つの分岐端子(第1負極接続端子10a(抵抗値Rn1),第2負極接続端子10b(抵抗値Rn2),第3負極接続端子10c(抵抗値Rn3))に分岐されている場合について説明する。ここで、Rn1>Rn2>Rn3とする。この場合、図11のように端子部91a,91b間にスリット911aを形成し、端子部91b,91c間に、より切り込みの深いスリット911bを形成する。なお、正極接続端子側も、3つの分岐端子11a,11b,11cが形成されており、正極接続導体板92にはそれらが接続される端子部92a,92b,92cが形成されている。 In the above-described embodiment, the case where the DC connection terminal is branched into two has been described as an example, but the present invention can be similarly applied to the case where the DC connection terminal is branched into three or more. For example, as shown in FIG. 11, the DC connection terminal has three branch terminals (first negative connection terminal 10a (resistance value Rn1), second negative connection terminal 10b (resistance value Rn2), and third negative connection terminal 10c (resistance The case of branching to the value Rn3)) will be described. Here, Rn1> Rn2> Rn3. In this case, a slit 911a is formed between the terminal portions 91a and 91b as shown in FIG. 11, and a deeper slit 911b is formed between the terminal portions 91b and 91c. Note that three branch terminals 11a, 11b, and 11c are also formed on the positive electrode connection terminal side, and terminal portions 92a, 92b, and 92c to which they are connected are formed on the positive electrode connection conductor plate 92.
 このような構成とすることで、負極接続導体板91には、複数の端子の内で最も抵抗値の大きな端子10aを除く他の端子10b,10cとコンデンサ負極端子13との間の各電流経路L1b,L1c上に、発熱を均等化するための経路抵抗増大部S5,S6を形成することができる。その結果、端子10a,10b,10c間で発熱を均等化することができ、温度上昇の抑制による信頼性の向上や、温度上昇が抑制できることによる電流容量の向上、を図ることができる。 With such a configuration, each of the current paths between the other terminals 10b and 10c except the terminal 10a having the largest resistance value among the plurality of terminals and the capacitor negative terminal 13 is provided in the negative electrode connecting conductor plate 91. Path resistance increasing portions S5 and S6 for equalizing heat generation can be formed on L1b and L1c. As a result, the heat generation can be equalized between the terminals 10a, 10b, and 10c, and the reliability can be improved by suppressing the temperature rise, and the current capacity can be improved by suppressing the temperature rise.
 また、図6に示す電力変換装置のように、コンデンサ素子2と、パワー半導体素子30が搭載されたパワー半導体モジュール1と、コンデンサ素子2のコンデンサ負極端子13およびパワー半導体モジュール1の負極側の直流端子(10a,10b)が接続される負極接続導体板91と、コンデンサ素子2のコンデンサ正極端子14およびパワー半導体モジュール1の正極側の直流端子(11a,11b)が接続される正極接続導体板92と、を備え、直流端子の少なくとも一方(図6では負極側の直流端子)は、第1直流接続端子10aと該第1直流接続端子10aよりも抵抗値の小さな第2直流接続端子10bとに分岐されている場合には、以下のような構成とする。 6, the power semiconductor module 1 on which the capacitor element 2 and the power semiconductor element 30 are mounted, the capacitor negative terminal 13 of the capacitor element 2 and the direct current on the negative side of the power semiconductor module 1. A negative connection conductor plate 91 to which the terminals (10a, 10b) are connected, a positive electrode connection conductor plate 92 to which the capacitor positive terminal 14 of the capacitor element 2 and the DC terminal (11a, 11b) on the positive side of the power semiconductor module 1 are connected. And at least one of the DC terminals (the DC terminal on the negative side in FIG. 6) is connected to the first DC connection terminal 10a and the second DC connection terminal 10b having a smaller resistance value than the first DC connection terminal 10a. If it is branched, the configuration is as follows.
 すなわち、第1及び第2直流接続端子10a,10bが接続される負極接続導体板91には、コンデンサ負極端子13と第1直流接続端子10aとの間の抵抗値よりも、コンデンサ負極端子13と第2直流接続端子10bとの間の抵抗値が大きくなるように、第1直流接続端子10aの抵抗値と第2直流接続端子10bの抵抗値とに基づいて設定された経路抵抗増大部S1が、コンデンサ負極端子13と第2直流接続端子10bとの電流経路L1上に形成されている。 That is, the negative electrode connection conductor plate 91 to which the first and second DC connection terminals 10a and 10b are connected has the capacitor negative electrode terminal 13 and the resistance value between the capacitor negative electrode terminal 13 and the first DC connection terminal 10a. A path resistance increasing portion S1 set based on the resistance value of the first DC connection terminal 10a and the resistance value of the second DC connection terminal 10b is set so that the resistance value between the second DC connection terminal 10b and the second DC connection terminal 10b increases. And formed on the current path L1 between the capacitor negative electrode terminal 13 and the second DC connection terminal 10b.
 このように、寄生抵抗が小さな第2直流接続端子10bに対して、その端子10bからコンデンサ負極端子13間での電流経路L1上に経路抵抗増大部S1を設けることで、上述した式(6)で算出される抵抗増大分ΔRpbn2だけ電流経路L1の抵抗を増加させることができる。その結果、端子10aと端子10bの発熱を均等化することができ、温度上昇の抑制による信頼性の向上や、温度上昇が抑制できることによる電流容量の向上、を図ることができる。 Thus, by providing the path resistance increasing portion S1 on the current path L1 between the terminal 10b and the capacitor negative terminal 13 for the second DC connection terminal 10b having a small parasitic resistance, the above-described formula (6) The resistance of the current path L1 can be increased by the resistance increase ΔRpbn2 calculated in (1). As a result, the heat generation of the terminals 10a and 10b can be equalized, and the reliability can be improved by suppressing the temperature rise, and the current capacity can be improved by suppressing the temperature rise.
 経路抵抗増大部の形成方法の一つとしては、図6(a)に示すように、第1負極接続端子10aが接続される端子部91aと第2負極接続端子10bが接続される端子部91bとの間において導体板の縁から切れ込むようなスリット911を形成し、スリット911によりラインL10で示すような電流の流れを阻止し、スリット911を回り込むような電流経路L1を形成する。 As one method for forming the path resistance increasing portion, as shown in FIG. 6A, a terminal portion 91b to which the first negative electrode connecting terminal 10a is connected and a terminal portion 91b to which the second negative electrode connecting terminal 10b is connected are provided. A slit 911 that cuts from the edge of the conductor plate is formed between the two, and a current path L1 that wraps around the slit 911 is formed by blocking the current flow as indicated by the line L10 by the slit 911.
 他の形成方法としては、図6(b)のように、抵抗値の小さな第2正極接続端子11bがコンデンサ正極端子14寄りに形成されている場合には、スリット921に加えて、第2正極接続端子11bが接続される端子部92bを挟んでスリット921と反対側に位置する導体板の縁に、該縁からスリット921よりも深く導体板側に切れ込んだスリットと、そのスリットから端子部92a側に折れ曲がるように延びるスリットとを有するスリット922、を形成する方法がある。この場合、スリット921とスリット922により挟まれた導体板領域が経路抵抗増大部S2を構成する。 As another forming method, when the second positive electrode connection terminal 11b having a small resistance value is formed near the capacitor positive electrode terminal 14 as shown in FIG. 6B, in addition to the slit 921, the second positive electrode is connected. At the edge of the conductor plate located on the opposite side of the slit 921 across the terminal portion 92b to which the connection terminal 11b is connected, a slit cut into the conductor plate side deeper than the slit 921 from the edge, and the terminal portion 92a from the slit There is a method of forming a slit 922 having a slit extending to bend to the side. In this case, the conductor plate region sandwiched between the slit 921 and the slit 922 constitutes the path resistance increasing portion S2.
 また、三番目の形成方法としては、図8に示すように、負極接続導体板91の縁に形成された端子部91a,91bの内、端子部91bがコンデンサ負極端子13よりに形成されている場合である。この場合には、端子部91bを挟んで端子部91aと反対側に位置する導体板の縁に設けられ、該縁から導体板側に切れ込むように形成されたスリットと、そのスリットから端子部91a側に折れ曲がるように延びるスリットとを有するスリット915を設ける。このスリット915により囲まれた導体板領域が経路抵抗増大部S3を構成する。 As a third forming method, as shown in FIG. 8, the terminal portion 91 b is formed from the capacitor negative electrode terminal 13 among the terminal portions 91 a and 91 b formed at the edge of the negative electrode connecting conductor plate 91. Is the case. In this case, a slit formed on the edge of the conductor plate located on the opposite side of the terminal portion 91a with the terminal portion 91b interposed therebetween, and formed so as to cut from the edge to the conductor plate side, and the terminal portion 91a from the slit. A slit 915 having a slit extending to be bent to the side is provided. The conductor plate region surrounded by the slit 915 constitutes the path resistance increasing portion S3.
 また、図9に示すように、端子部91aよりも端子部91b側における導体板領域の導体板厚さt2を、端子部91aを含むコンデンサ負極端子13側における導体板領域の導体板厚さt1よりも薄く構成する。このような構成とすることで、電流経路L8において領域Cに含まれる導体板領域が経路抵抗増大部として機能することになる。 Further, as shown in FIG. 9, the conductor plate thickness t2 of the conductor plate region on the terminal portion 91b side relative to the terminal portion 91a is set to be the conductor plate thickness t1 of the conductor plate region on the capacitor negative electrode terminal 13 side including the terminal portion 91a. Configure thinner. With such a configuration, the conductor plate region included in the region C in the current path L8 functions as a path resistance increasing portion.
 さらにまた、図10に示すように、端子部91aよりも端子部91b側の導体板領域における、電流経路L8にほぼ直交する方向の導体板幅寸法D1を、端子部91aを含むコンデンサ負極端子13側の導体板領域における、電流経路にほぼ直交する方向の導体板幅寸法よりも小さく設定するようにしても良い。その結果、幅の狭くなった領域S4が経路抵抗増大部として機能する。 Furthermore, as shown in FIG. 10, the conductor plate width dimension D1 in the direction substantially orthogonal to the current path L8 in the conductor plate region closer to the terminal portion 91b than the terminal portion 91a is set to the capacitor negative electrode terminal 13 including the terminal portion 91a. You may make it set smaller than the conductor board width dimension of the direction substantially orthogonal to an electric current path | route in the side conductor board area | region. As a result, the narrowed region S4 functions as a path resistance increasing portion.
 なお、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。さらに、上述した実施例を組み合わせて用いても良い。また、本発明に係る電力変換装置は、図1に示したようなHEV(ハイブリッド自動車),EV(電気自動車)等に用いるインバータシステムや、一般作業機械に使用されるモータ駆動用の電力変換装置にも適用できる。 Note that the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired. Further, the above-described embodiments may be used in combination. The power converter according to the present invention includes an inverter system used in HEV (hybrid vehicle), EV (electric vehicle) and the like as shown in FIG. 1 and a motor-driven power converter used in general work machines. It can also be applied to.
 1:パワー半導体モジュール、2:コンデンサ、9:接続導体板層、10a,10b,10c:負極接続端子、13:負極接続端子、11a:第1正極接続端子、11b:第2正極接続端子、13:コンデンサ負極端子、14:コンデンサ正極端子、30a,30b:パワー半導体素子、60:インバータシステム、91:負極接続導体板、91a,91b,91c,91d,92a,92b,92c,92d:端子部、92:正極接続導体板、910、912,913,920,923,924:貫通孔、911,915,921,922:スリット、L1~L8,L1a~L1c,L10,L60:電流経路、S1~S6:経路抵抗増大部 1: power semiconductor module, 2: capacitor, 9: connection conductor plate layer, 10a, 10b, 10c: negative connection terminal, 13: negative connection terminal, 11a: first positive connection terminal, 11b: second positive connection terminal, 13 : Capacitor negative terminal, 14: Capacitor positive terminal, 30a, 30b: Power semiconductor element, 60: Inverter system, 91: Negative electrode connecting conductor plate, 91a, 91b, 91c, 91d, 92a, 92b, 92c, 92d: Terminal part, 92: Positive connection conductor plate, 910, 912, 913, 920, 923, 924: Through hole, 911, 915, 921, 922: Slit, L1 to L8, L1a to L1c, L10, L60: Current path, S1 to S6 : Path resistance increasing part

Claims (7)

  1.  パワー半導体素子が搭載され直流正極端子と直流負極端子を有するパワー半導体モジュールと、
     直流電力を平滑化し負極側および正極側のコンデンサ端子を有するコンデンサと、
     前記コンデンサの負極側のコンデンサ端子および前記パワー半導体モジュールの直流負極端子が接続される負極側の導体板と、
     前記コンデンサの正極側のコンデンサ端子および前記パワー半導体モジュールの直流正極端子が接続される正極側の導体板と、を備え、直流電力を交流電力に変換する電力変換装置であって、
     前記直流負極端子又は前記直流正極端子の少なくとも一方は、寄生抵抗の異なる複数の分岐端子から成り、
     前記複数の分岐端子が接続される導体板には、前記分岐端子と前記コンデンサ端子との間の電流経路上に、前記複数の分岐端子における発熱を分岐端子間で均等化するための経路抵抗増大部が形成されている、ことを特徴とする電力変換装置。
    A power semiconductor module equipped with a power semiconductor element and having a DC positive terminal and a DC negative terminal;
    A capacitor that smoothes DC power and has capacitor terminals on the negative electrode side and the positive electrode side;
    A conductor plate on the negative electrode side to which a capacitor terminal on the negative electrode side of the capacitor and a DC negative electrode terminal of the power semiconductor module are connected;
    A positive electrode side conductor plate to which a positive electrode terminal of the capacitor and a DC positive electrode terminal of the power semiconductor module are connected, and a power converter that converts DC power into AC power,
    At least one of the DC negative terminal or the DC positive terminal is composed of a plurality of branch terminals having different parasitic resistances,
    On the conductor plate to which the plurality of branch terminals are connected, on the current path between the branch terminal and the capacitor terminal, the path resistance is increased to equalize the heat generated in the plurality of branch terminals between the branch terminals. The power converter device characterized by the above-mentioned.
  2.  請求項1に記載の電力変換装置において、
     前記直流負極端子又は前記直流正極端子の少なくとも一方は、第1分岐端子と該第1分岐端子よりも抵抗値の小さな第2分岐端子とから成り、
     前記第1および第2分岐端子が接続される導体板には、前記第1および第2分岐端子の寄生抵抗に基づいて、前記コンデンサ端子と前記第1分岐端子との間の抵抗値よりも前記コンデンサ端子と前記第2分岐端子との間の抵抗値の方が大きくなるように設定された経路抵抗増大部が、前記コンデンサ端子と前記第2分岐端子との電流経路上に形成されている、ことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    At least one of the DC negative terminal or the DC positive terminal is composed of a first branch terminal and a second branch terminal having a smaller resistance value than the first branch terminal,
    Based on the parasitic resistance of the first and second branch terminals, the conductor plate to which the first and second branch terminals are connected is more than the resistance value between the capacitor terminal and the first branch terminal. A path resistance increasing portion set so that a resistance value between the capacitor terminal and the second branch terminal is larger is formed on a current path between the capacitor terminal and the second branch terminal; The power converter characterized by the above-mentioned.
  3.  請求項2に記載の電力変換装置において、
     前記第1および第2分岐端子が接続される導体板は、
     該導体板の縁に形成される第1端子部と、
     前記第1端子部と所定間隔を空けて前記縁に形成される第2端子部と、
     前記第1端子部と前記第2端子部との間に前記縁から導体板側に切れ込むように形成された第1スリットと、を備え、
     前記第1端子部は、前記第1分岐端子と接続され、
     前記第2端子部は、前記第2分岐端子と接続され、
     前記経路抵抗増大部は、前記第2端子部から前記第1スリットを回り込むように形成された導体板領域である、ことを特徴とする電力変換装置。
    The power conversion device according to claim 2,
    The conductive plate to which the first and second branch terminals are connected is
    A first terminal portion formed on an edge of the conductor plate;
    A second terminal portion formed on the edge at a predetermined interval from the first terminal portion;
    A first slit formed between the first terminal portion and the second terminal portion so as to be cut from the edge toward the conductor plate;
    The first terminal portion is connected to the first branch terminal;
    The second terminal portion is connected to the second branch terminal;
    The path resistance increasing portion is a conductor plate region formed so as to go around the first slit from the second terminal portion.
  4.  請求項3に記載の電力変換装置において、
     前記第1および第2端子部の内、前記第2端子部が前記コンデンサ端子寄りに配置されており、
     前記第1および第2分岐端子が接続される導体板は、
     前記第2端子部を挟んで前記第1スリットと反対側に位置する導体板の縁に、該縁から前記第1スリットよりも深く導体板側に切れ込んだ第2スリットと、
     前記第2スリットから前記第1端子部側に折れ曲がるように延びる第3スリットと、を備え、
     前記経路抵抗増大部は、前記第1スリットと前記第2および第3スリットで挟まれた導体板領域である、ことを特徴とする電力変換装置。
    The power conversion device according to claim 3,
    Of the first and second terminal portions, the second terminal portion is disposed closer to the capacitor terminal,
    The conductive plate to which the first and second branch terminals are connected is
    On the edge of the conductor plate located on the opposite side of the first slit across the second terminal portion, a second slit cut from the edge to the conductor plate side deeper than the first slit,
    A third slit extending from the second slit so as to bend toward the first terminal portion, and
    The path resistance increasing portion is a conductor plate region sandwiched between the first slit and the second and third slits.
  5.  請求項2に記載の電力変換装置において、
     前記第1および第2分岐端子が接続される導体板は、
     該導体板の縁に形成される第1端子部と、
     前記第1端子部と所定間隔を空けて前記コンデンサ端子寄りに位置する前記縁に形成される第2端子部と、
     前記第2端子部を挟んで前記第1端子部と反対側に位置する導体板の縁に該縁から導体板側に切れ込むように形成された第1スリットと、
     前記第1スリットから前記第1端子部側に折れ曲がるように延びる第2スリットと、を備え、
     前記第1端子部は、前記第1分岐端子と接続され、
     前記第2端子部は、前記第2分岐端子と接続され、
     前記経路抵抗増大部は、前記第1スリットと前記第2スリットにより囲まれた導体板領域である、ことを特徴とする電力変換装置。
    The power conversion device according to claim 2,
    The conductive plate to which the first and second branch terminals are connected is
    A first terminal portion formed on an edge of the conductor plate;
    A second terminal portion formed on the edge located near the capacitor terminal at a predetermined interval from the first terminal portion;
    A first slit formed on the edge of the conductor plate located on the opposite side of the first terminal part across the second terminal part so as to cut from the edge to the conductor plate side;
    A second slit extending from the first slit so as to bend toward the first terminal portion, and
    The first terminal portion is connected to the first branch terminal;
    The second terminal portion is connected to the second branch terminal;
    The path resistance increasing portion is a conductor plate region surrounded by the first slit and the second slit.
  6.  請求項2に記載の電力変換装置において、
     前記第1および第2分岐端子が接続される導体板は、
     該導体板の縁に形成される第1端子部と、
     前記第1端子部と所定間隔を空けて前記コンデンサ端子寄りに位置する前記縁に形成される第2端子部と、を備え、
     前記第1端子部は、前記第1分岐端子と接続され、
     前記第2端子部は、前記第2分岐端子と接続され、
     前記第1端子部よりも前記第2端子部側における導体板領域の導体板厚さが、前記第1端子部を含む前記コンデンサ端子側における導体板領域の導体板厚さよりも薄いことを特徴とする電力変換装置。
    The power conversion device according to claim 2,
    The conductive plate to which the first and second branch terminals are connected is
    A first terminal portion formed on an edge of the conductor plate;
    A second terminal portion formed on the edge located near the capacitor terminal at a predetermined interval from the first terminal portion,
    The first terminal portion is connected to the first branch terminal;
    The second terminal portion is connected to the second branch terminal;
    The conductor plate thickness of the conductor plate region on the second terminal portion side of the first terminal portion is thinner than the conductor plate thickness of the conductor plate region on the capacitor terminal side including the first terminal portion. Power converter.
  7.  請求項2に記載の電力変換装置において、
     前記第1および第2分岐端子が接続される導体板は、
     該導体板の縁に形成される第1端子部と、
     前記第1端子部と所定間隔を空けて前記コンデンサ端子寄りに位置する前記縁に形成される第2端子部と、を備え、
     前記第1端子部は、前記第1分岐端子と接続され、
     前記第2端子部は、前記第2分岐端子と接続され、
     前記第1端子部よりも前記第2端子部側の導体板領域における、電流経路にほぼ直交する方向の導体板幅寸法が、前記第1端子部を含む前記コンデンサ端子側の導体板領域における、電流経路にほぼ直交する方向の導体板幅寸法よりも小さく設定されている、ことを特徴とする電力変換装置。
    The power conversion device according to claim 2,
    The conductive plate to which the first and second branch terminals are connected is
    A first terminal portion formed on an edge of the conductor plate;
    A second terminal portion formed on the edge located near the capacitor terminal at a predetermined interval from the first terminal portion,
    The first terminal portion is connected to the first branch terminal;
    The second terminal portion is connected to the second branch terminal;
    In the conductor plate region on the second terminal portion side of the first terminal portion, the conductor plate width dimension in the direction substantially perpendicular to the current path is in the conductor plate region on the capacitor terminal side including the first terminal portion, A power conversion device, characterized in that it is set to be smaller than a width of a conductor plate in a direction substantially perpendicular to the current path.
PCT/JP2014/064050 2013-08-23 2014-05-28 Power conversion device WO2015025580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013173328A JP6053642B2 (en) 2013-08-23 2013-08-23 Power converter
JP2013-173328 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025580A1 true WO2015025580A1 (en) 2015-02-26

Family

ID=52483365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064050 WO2015025580A1 (en) 2013-08-23 2014-05-28 Power conversion device

Country Status (2)

Country Link
JP (1) JP6053642B2 (en)
WO (1) WO2015025580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3092469A1 (en) * 2019-02-04 2020-08-07 Renault Power electronics system for electric or hybrid vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286158A (en) * 2000-03-30 2001-10-12 Hitachi Ltd Semiconductor device and power converter
JP2006203974A (en) * 2005-01-18 2006-08-03 Fuji Electric Fa Components & Systems Co Ltd Wiring structure of power converter
JP2009038961A (en) * 2007-07-06 2009-02-19 Nissan Motor Co Ltd Power conversion apparatus
JP2009284604A (en) * 2008-05-20 2009-12-03 Toyota Industries Corp Power conversion device
JP2009296727A (en) * 2008-06-03 2009-12-17 Toyota Industries Corp Power conversion apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286158A (en) * 2000-03-30 2001-10-12 Hitachi Ltd Semiconductor device and power converter
JP2006203974A (en) * 2005-01-18 2006-08-03 Fuji Electric Fa Components & Systems Co Ltd Wiring structure of power converter
JP2009038961A (en) * 2007-07-06 2009-02-19 Nissan Motor Co Ltd Power conversion apparatus
JP2009284604A (en) * 2008-05-20 2009-12-03 Toyota Industries Corp Power conversion device
JP2009296727A (en) * 2008-06-03 2009-12-17 Toyota Industries Corp Power conversion apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3092469A1 (en) * 2019-02-04 2020-08-07 Renault Power electronics system for electric or hybrid vehicles

Also Published As

Publication number Publication date
JP2015042116A (en) 2015-03-02
JP6053642B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP7116287B2 (en) power converter
US8045352B2 (en) Power converter
US8921998B2 (en) Semiconductor module
US8705257B2 (en) Switching module including a snubber circuit connected in parallel to a series-connected unit of flowing restriction elements
US10121784B2 (en) Semiconductor apparatus
JP5867472B2 (en) Power converter
JP7393387B2 (en) Semiconductor device with stacked terminals
US20220302075A1 (en) Power semiconductor module
CN105990284A (en) Semiconductor device
US9117789B2 (en) Semiconductor device
GB2539761A (en) Power converter and railway vehicle
KR102039013B1 (en) Power converter
WO2018220721A1 (en) Semiconductor power module
WO2020218014A1 (en) Power conversion device
JP6053642B2 (en) Power converter
WO2021015050A1 (en) Electric circuit device
JP4496896B2 (en) Power converter
JP6602474B2 (en) Semiconductor device and power conversion device
JPWO2014155486A1 (en) Power converter
JP5355506B2 (en) Semiconductor device
JP6493171B2 (en) Power converter
JP6772328B2 (en) Semiconductor device
JP6761908B2 (en) Power converter
CN110120751A (en) Power inverter
WO2023140077A1 (en) Semiconductor device and inverter provided with semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837660

Country of ref document: EP

Kind code of ref document: A1