WO2015025530A1 - Organic semiconductor device - Google Patents

Organic semiconductor device Download PDF

Info

Publication number
WO2015025530A1
WO2015025530A1 PCT/JP2014/052140 JP2014052140W WO2015025530A1 WO 2015025530 A1 WO2015025530 A1 WO 2015025530A1 JP 2014052140 W JP2014052140 W JP 2014052140W WO 2015025530 A1 WO2015025530 A1 WO 2015025530A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
layer
semiconductor device
upper electrode
foil
Prior art date
Application number
PCT/JP2014/052140
Other languages
French (fr)
Japanese (ja)
Inventor
宜範 松浦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2015025530A1 publication Critical patent/WO2015025530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/88Terminals, e.g. bond pads
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to organic semiconductor devices such as organic EL elements, organic EL lighting, and organic solar cells.
  • organic EL lighting In recent years, light-emitting elements such as organic EL lighting have attracted attention as environmentally friendly green devices.
  • Features of organic EL lighting include 1) low power consumption compared to incandescent lamps, 2) thin and lightweight, and 3) flexibility.
  • organic EL lighting is being developed to realize the features 2) and 3). In this regard, it is impossible to realize the characteristics 2) and 3) above with a glass substrate that has been conventionally used in flat panel displays (FPD) or the like.
  • Ultra-thin glass is excellent in heat resistance, barrier properties, and light transmission properties, and has good flexibility, but handling properties are slightly inferior, thermal conductivity is low, and material cost is high.
  • the resin film is excellent in handling properties and flexibility, has a low material cost, and has good light transmittance, but has poor heat resistance and barrier properties, and has low thermal conductivity.
  • the metal foil has excellent characteristics such as excellent heat resistance, barrier properties, handling properties, thermal conductivity, good flexibility, and low material cost, except that it has no light transmittance.
  • the thermal conductivity of a typical flexible glass or film is as low as 1 W / m ° C. or less, whereas in the case of a copper foil, it is extremely high as about 400 W / m ° C.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-152113
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-243772 proposes that a nickel plating layer is provided on a metal substrate so that a smooth surface is formed without polishing and an organic EL element is formed thereon.
  • smoothing the surface of the metal substrate is an important issue in order to prevent a short circuit between the electrodes.
  • Patent Document 3 International Application No. 2011-152091
  • Patent Document 4 International Application No. 2011-152092
  • Patent Documents 3 and 4 also disclose organic EL elements using electrode foils.
  • An example of an organic EL element having such a conventional configuration is shown in FIG.
  • an organic semiconductor layer 118 and an upper electrode layer 120 are laminated on an electrode foil 100 including a metal foil 112, a reflective layer 114, and a buffer layer 116, thereby forming a light emitting region.
  • An interlayer insulating film 117 is provided in a bank shape (bank shape) at or near the end of the light emitting region. The end portions of the organic semiconductor layer 118 and the upper electrode layer 120 extend to the end portion of the bank-like interlayer insulating film 117 or the vicinity thereof.
  • the exposed portions of the upper electrode layer 120 and the interlayer insulating film 117 are covered with a sealing layer 124 including a sealing material 124 a and a glass substrate 124 b, but one end of the upper electrode layer 120 is not covered with the sealing layer 124.
  • the extraction electrode can be formed by being exposed.
  • the interlayer insulating film 117 is provided in a bank shape at or near the end of the organic semiconductor layer 118 constituting the light emitting region, and the light emitting region is thereby defined. It has become.
  • the interlayer insulating film 117 provided in a bank shape is formed by masking a non-formed region of the interlayer insulating film 117 to form a film, and then removing the masking.
  • the formation of the interlayer insulating film 117 is preferably performed by a coating method when a roll-to-roll process, which is a manufacturing process with high mass productivity, is employed.
  • the present inventors have now provided a contact hole in a sealing layer covering the upper electrode layer and the like, and ensuring electrical connection with the upper electrode layer through the contact hole from above the upper electrode layer. It was found that an interlayer insulating film that can cause this problem can be eliminated. In addition, it has also been found that by eliminating the need for an interlayer insulating film, an organic semiconductor device having a simplified configuration suitable for a roll-to-roll process, which is a mass-productive manufacturing process, can be provided.
  • an object of the present invention is to provide an organic semiconductor device having a simplified configuration that is suitable for a roll-to-roll process without requiring an interlayer insulating film.
  • an electrode foil comprising at least a metal foil; An organic semiconductor layer partially provided on the surface of the electrode foil; An upper electrode layer provided on the organic semiconductor layer; A sealing layer provided on the electrode foil, the organic semiconductor layer, and the upper electrode layer, and covering an exposed portion of the electrode foil, the organic semiconductor layer, and the upper electrode layer; At least one contact hole provided to penetrate the sealing layer and enabling electrical connection with the upper electrode layer; An organic semiconductor device is provided.
  • the organic semiconductor device of the present invention uses an electrode foil.
  • the electrode foil is a foil comprising at least a metal foil as described in Patent Documents 3 and 4, and can be preferably used as an electrode (that is, an anode or a cathode) for various organic semiconductor devices.
  • the electrode foil is particularly preferably used as an electrode for a flexible organic semiconductor device because it is generally low stress and easy to bend, but may be used for an organic semiconductor device having poor flexibility or rigidity.
  • Examples of such organic semiconductor devices (mainly flexible organic semiconductor devices) include i) light emitting elements such as organic EL elements, organic EL lighting, organic EL displays, electronic paper, liquid crystal displays, ii) photoelectric elements such as thin film solar.
  • Examples of the battery include organic EL elements, organic EL lighting, organic EL displays, organic solar cells, and dye-sensitized solar cells, and more preferably organic EL lighting in that ultra-thin and high-luminance emission can be obtained. It is.
  • organic solar cell many of the characteristics required for the electrode material are in common with the characteristics required for the organic EL element, so that the electrode foil can be preferably used as the anode or cathode of the organic solar battery. That is, the organic semiconductor device can be configured as either an organic EL element or an organic solar cell by appropriately selecting the type of the organic semiconductor functional layer to be laminated on the electrode foil according to a known technique.
  • FIGS. 1 and 2 are schematic perspective views of an organic semiconductor device according to an embodiment of the present invention.
  • the organic semiconductor device shown in FIGS. 1 and 2 includes an electrode foil 10 including at least a metal foil, an organic semiconductor layer 18, an upper electrode layer 20, and a sealing layer 24 stacked in this order.
  • a plurality of organic semiconductor layers 18 may be arranged on the electrode foil 10, and the organic semiconductor layers 18 may be configured to be separated from each other.
  • at least one contact hole 26 that enables electrical connection with the upper electrode layer 20 is provided so as to penetrate the sealing layer 24. According to this configuration, since the electrical connection with the upper electrode layer 20 can be secured from above the upper electrode layer 20 through the contact hole 26, the conventionally required interlayer insulating film is eliminated. Can do.
  • the organic semiconductor device of the present invention can have flexibility because the flexible electrode foil 10 can be used as a supporting substrate and electrode. For this reason, at least a part, preferably most, ideally all of the manufacturing process of the organic semiconductor device can be performed by a roll-to-roll process.
  • the roll-to-roll process is an extremely advantageous process for efficiently mass-producing electronic devices in which a long foil wound in a roll shape is drawn out and subjected to a predetermined process and then wound up again. This is a key process for realizing mass production of organic semiconductor devices.
  • the outer edge of the interlayer insulating film avoids a decrease in coating accuracy that tends to occur due to the bank-like shape, and as a result, the light emitting region It is possible to suppress the occurrence of leakage current at the outer edge of the element constituting the light emission and the occurrence of uneven light emission. That is, by reducing the leakage current, carriers can be easily spread uniformly in the light emitting region, and uniform light emission can be realized.
  • the organic semiconductor layer 18 and the upper electrode layer 20 can be provided parallel to the electrode foil 10 over the entire surface thereof, thereby greatly simplifying the layer configuration. be able to. That is, by eliminating the need for an interlayer insulating film, it is possible to provide an organic semiconductor device having a simplified configuration suitable for a roll-to-roll process, which is a mass-productive manufacturing process.
  • the electrode foil 10 has a region where the organic semiconductor layer 18 is not formed along the outer edge of the organic semiconductor layer 18, and the sealing layer 24 is bonded to the electrode foil 10 in the region where the organic semiconductor layer is not formed.
  • the interlayer insulating film does not exist at a position where the interlayer insulating film should exist, and instead, the sealing layer 24 is formed on the outer edge of the organic semiconductor layer 18. It will be arranged along. For this reason, the sealing layer 24 is joined to the electrode foil 10 in the region where the organic semiconductor layer is not formed, and the insulation required near the outer edge of the organic semiconductor layer 18 can be ensured.
  • the organic semiconductor layer 18 has a region where the upper electrode layer 20 is not formed along the outer edge of the upper electrode layer 20, and the sealing layer 24 is joined to the organic semiconductor layer 18 in the region where the upper electrode layer is not formed.
  • the upper electrode layer 20 preferably has an area smaller than that of the organic semiconductor layer 18, and the outer edge of the upper electrode layer 20 is preferably located on the inner side of the outer edge of the organic semiconductor layer 18.
  • the organic semiconductor layer 18 typically has a function of excitation light emission or photoexcitation power generation, whereby the organic semiconductor device can function as a light emitting element or a photoelectric element.
  • the organic semiconductor layer 18 may have a known layer configuration employed in various organic semiconductor devices such as organic EL elements, and is not particularly limited.
  • organic semiconductor devices such as organic EL elements
  • it can be laminated
  • As the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer layers having various known configurations and compositions can be appropriately used and are not particularly limited.
  • the upper electrode layer 20 may have a known electrode configuration employed in various organic semiconductor devices such as an organic EL element, and is not particularly limited. Further, the upper electrode layer 20 may be configured as either a cathode or an anode. When the upper electrode layer 20 is configured as a cathode, a 0.5 to 50 nm thick layer is formed on a buffer layer made of a material having a low work function ( ⁇ 3 eV) such as Ca, Ba, LiF, Cs, Mg, and Mg—Ag.
  • the upper electrode layer 20 is preferably formed by laminating metal films such as Al and Ag by vacuum deposition.
  • IZO indium zinc oxide
  • ITO indium tin oxide
  • ITZO indium tin zinc oxide
  • IGO indium germanium oxide
  • ZTO zinc tin oxide
  • AZO aluminum doped zinc oxide
  • a transparent conductive film such as the above may be formed on the buffer layer made of the above-described material having a low work function ( ⁇ 3 eV) with a counter cathode sputtering apparatus.
  • the transparent conductive film in consideration of transmittance and refractive index, it is preferably 200 nm or less, more preferably 150 nm or less, and its lower limit is Considering the sheet resistance, 30 nm or more is preferable.
  • the upper electrode layer 20 when the upper electrode layer 20 is configured as an anode, a metal film or a transparent conductive film is formed on a buffer layer made of a material having a high work function (> 4.5 eV) such as MoO 3 , V 2 O 5 , C, and the like.
  • the upper electrode layer 20 is preferably formed by laminating films.
  • the laminated material and / or film thickness of the upper electrode layer 20 so that the electrical conductivity is 0.01 S / cm or more. More preferable conductivity is 0.1 S / cm or more.
  • the film thickness of the upper electrode layer 20 increases, the influence of the cavity increases, making optical design difficult, and as a result, the external quantum efficiency decreases. For this reason, optimization of electrical conductivity and optical characteristics is important.
  • the auxiliary wiring 22 is formed on the upper electrode layer 20 in a mesh pattern.
  • the area of the auxiliary wiring 22 is preferably 20% or less of the light emitting region, more preferably 15% or less, and further preferably 10% or less.
  • the lower limit value may be determined in consideration of the sheet resistance of the upper electrode layer 20, but may be, for example, 0.1% or more of the light emitting region.
  • auxiliary wiring 22 is directly provided on the upper electrode layer 20.
  • the auxiliary wiring 22 is effective in reducing the unevenness of the sheet resistance of the upper electrode layer 20 and improving the light emission uniformity, and is a very effective means particularly for emitting light uniformly over a large area.
  • the auxiliary wiring 22 is made of a known conductive material such as Cu, Al, Ni, Ag, Zn, Sn, Au, or Ti, and a known method such as a vacuum deposition method, an inkjet method, a screen printing method, or a nozzle jet method. What is necessary is just to form using.
  • the thickness of the auxiliary wiring 22 is preferably 50 nm or more.
  • the auxiliary wiring 22 is thick, it is preferably 5 ⁇ m or less in view of mass productivity. However, when the scrubbing method (Scrabble method) is used to form the contact hole 26 described later, the auxiliary wiring 22 is preferably thicker from the viewpoint of preventing scratches.
  • the auxiliary wiring 22 can block light, it is preferable that the auxiliary wiring 22 is provided on at least a part of the outer edge of the upper electrode layer 20 and / or the vicinity thereof.
  • the auxiliary wiring 22 constitutes the outer edge of the rectangular upper electrode layer 20 and / or at least one side in the vicinity thereof. More preferably, two sides that are parallel to each other, more preferably four sides may be configured.
  • the auxiliary wiring 22 may be formed along the circumference of the upper electrode layer 20 '.
  • the auxiliary wiring 22 may be formed in the light emitting surface.
  • the width of the auxiliary wiring 22 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and still more preferably 150 ⁇ m or less.
  • the minimum width of the auxiliary wiring 22 is preferably determined by appropriately calculating from the sheet resistance considering the thickness of the auxiliary wiring 22, but is preferably 10 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the auxiliary wiring 22 extends to the vicinity of the outer edge of the upper electrode layer 20 on the organic semiconductor layer 18, thereby at least part of the boundary line between the organic semiconductor layer 18 and the upper electrode layer 20. May be covered with the auxiliary wiring 22. According to this configuration, since the auxiliary wiring 22 is also contacted at the side end surface of the upper electrode layer 20, the electrical connection with the upper electrode layer 20 can be further ensured. However, in this embodiment, since it is desired that carriers are spread over the entire upper electrode layer 20 without causing light emission at the contact portion between the auxiliary wiring 22 and the organic semiconductor layer 18, such light emission is caused. It is desirable to configure the auxiliary wiring 22 using a material having a work function that does not occur.
  • a material having a high work function such as Cu, Ni, Au is used.
  • materials having a low work function such as Al, Ag, Zn, Sn, and Ti can be used.
  • the sealing layer 24 is a layer that is provided on the electrode foil 10, the organic semiconductor layer 18, and the upper electrode layer 20 and covers the exposed portions of the electrode foil 10, the organic semiconductor layer 18, and the upper electrode layer 20, and preferably has an insulating property.
  • Have The sealing layer 24 is desirably transparent, but irregularities may be formed on the surface in order to increase the light extraction efficiency.
  • the sealing layer 24 may have any known material and configuration, but a laminated structure of SiNx or SiOx is preferable from the viewpoint of environmental resistance.
  • the formation of the sealing layer 24 may be performed according to a known method, but is preferably performed by a PE-CVD method (plasma CVD method).
  • an acrylic resin layer or the like may be inserted into the sealing layer 24 in order to prevent generation of cracks in the SiNx or SiOx layer.
  • a resin film 24b such as PEN (polyethylene naphthalate), PET (polyethylene terephthalate), PC (polycarbonate), etc. is disposed on the sealing material 24a made of SiNx, SiOx layer, or the like using an acrylic adhesive. Also good. Even when the sealing layer 24 is formed using the sealing material 24a and the resin film 24b, the contact hole 26 can be easily formed according to a conventional method. In particular, when the resin film 24b exists, it is desirable to form the contact hole 26 using a laser or an ion beam.
  • the contact hole 26 is a hole that is provided so as to penetrate the sealing layer 24 and enables electrical connection with the upper electrode layer 20. Since electrical connection with the upper electrode layer 20 can be ensured from above the upper electrode layer 20 through the contact hole 26, the conventionally required interlayer insulating film can be eliminated. It is sufficient that at least one contact hole is formed in one place, but a plurality of contact holes may be formed in one place in order to increase the reliability of electrical contact. In addition, when the auxiliary wiring 22 is present, the contact hole 26 is preferably disposed on the auxiliary wiring 22, whereby electrical contact with the upper electrode layer 20 can be made more reliable.
  • the formation of the contact hole 26 may be performed according to a known method.
  • preferable methods include a dry etching method, a laser etching method, a reactive ion beam etching method, and a scrubbing method (Scrabble method).
  • the dry etching method is a method of etching a sealing film with plasma using a fluorine-based gas such as CF 4 or SF 6.
  • a fluorine-based gas such as CF 4 or SF 6.
  • an RIE apparatus reactive ion etching apparatus
  • the laser that can be used for the laser etching method include a carbon dioxide gas laser and a YAG laser.
  • the Scrabble method is a method in which a scratch is formed at a necessary location with a needle having a tip of 0.1 mm to 2 mm in diameter.
  • the tip of the needle comprises a DLC (diamond-like carbon) coated alloy, nitride or oxide containing Al, Cu, Mo, C, Si, Ti, Ta, Fe, Ni or the like as a main component. It is desirable that the processing is performed so as to have an angle of 10 ° to 170 °.
  • the tip of the needle need not be a single point, and there may be a plurality of points.
  • the tip may be formed in a linear shape. From the viewpoint of durability, it is desirable that the tip of the needle is coated with DLC, but the tip hardness may be increased by other methods such as oxidation treatment and nitriding treatment. Further, during the scrubbing process, it is desirable that a nozzle for sucking the generated particles is attached, and more desirably, a blow nozzle for removing the particles from the element may be separately provided.
  • the extraction electrode 28 is an electrode for ensuring electrical connection with the upper electrode layer 20 through the contact hole 26.
  • the extraction electrode 28 may be formed by a known technique such as vacuum deposition, ink jet, screen printing, or nozzle jet. However, a method that does not use a vacuum process is more desirable from the viewpoint of productivity and cost.
  • the constituent material of the extraction electrode 28 include solder (eg, Sn or Zn alloy), Ag ink, Ni ink, Cu ink, Al, Ag, Ni, Zn, Zn, Ti, Ta, Au, Cu, and the like. It is done.
  • the contact hole 26 is preferably filled with the constituent material of the extraction electrode 28.
  • the electrode foil electrode foil 10 only needs to include at least the metal foil 12, and known electrode foils described in Patent Documents 3 and 4 can be used and are not particularly limited. However, as shown in FIG. 1, the electrode foil 10 is provided directly on the metal foil 12, the reflection layer 14 provided on at least one surface of the metal foil as required, and on the metal foil 12 or the reflection layer 14 as required.
  • the buffer layer 16 is preferably provided. That is, the electrode foil 10 shown in FIG. 1 has a three-layer configuration including the metal foil 12, the reflective layer 14, and the buffer layer 16, but the electrode foil of the present invention is not limited to this, and only the metal foil 12 is 1 A layer structure may be sufficient, and the two-layer structure of the metal foil 12 and the reflection layer 14 may be sufficient.
  • an electrode foil 12 By using the metal foil 12 as an electrode as well as a support substrate, an electrode foil having the functions of a support substrate, an electrode, and a reflective layer can be provided.
  • a metal foil 12 of typically 1 to 250 ⁇ m instead of a metal plate it can be used as an electrode that also serves as a support substrate for a flexible organic semiconductor device.
  • the electrode foil 10 since the electrode foil 10 is based on a metal foil, it can be efficiently manufactured by, for example, a roll-to-roll process without particularly requiring a supporting substrate. Can do.
  • the roll-to-roll process is an extremely advantageous process for efficiently mass-producing electronic devices in which a long foil wound in a roll shape is drawn out and subjected to a predetermined process and then wound up again. This is a key process for realizing mass production of organic semiconductor devices.
  • the electrode foil 10 can eliminate the support base material and the reflective layer. For this reason, it is preferable that the electrode foil 10 does not have an insulating layer at least in a part where an electronic device is constructed, and more preferably does not have an insulating layer in any part.
  • the metal foil 12 is not particularly limited as long as it is a foil-like metal material having strength as a supporting substrate and electrical characteristics necessary as an electrode.
  • a preferred metal foil is a nonmagnetic metal foil from the viewpoint of preventing adhesion of particulate matter generated during processing due to magnetism.
  • Preferred examples of the nonmagnetic metal include copper, aluminum, nonmagnetic stainless steel, titanium, tantalum, and molybdenum, and more preferred are copper, aluminum, and nonmagnetic stainless steel.
  • the most preferred metal foil is a copper foil. Copper foil is excellent in strength, flexibility, electrical characteristics and the like while being relatively inexpensive.
  • the outermost surface on the reflective layer side of the electrode foil 10 is preferably an ultra-flat surface having an arithmetic average roughness Ra of 60.0 nm or less, more preferably 30.0 nm or less, still more preferably 20.0 nm or less, particularly
  • the thickness is preferably 10.0 nm or less, more preferably 7.0 nm or less, and the roughness may be appropriately determined according to the application and performance required for the electrode foil.
  • the lower limit of the arithmetic average roughness Ra is not particularly limited and may be zero. However, in consideration of the efficiency of the flattening process, 0.5 nm is cited as a guideline for the lower limit value.
  • This arithmetic average roughness Ra can be measured using a commercially available roughness measuring device in accordance with JIS B 0601-2001.
  • the outermost surface on the reflective layer side of the electrode foil 10 means the surface of the reflective layer 14 or the buffer layer 16 located on the outermost side.
  • the arithmetic average roughness Ra is realized by setting the arithmetic average roughness Ra of the surface of the metal foil 12 on which the reflective layer 14 and the buffer layer 16 are formed as the case may be.
  • the same range that is, 60.0 nm or less, preferably 30.0 nm or less, more preferably 20.0 nm or less, further preferably 10.0 nm or less, particularly preferably 7.0 nm or less, and most preferably 5.0 nm or less.
  • the reflection layer 14 and optionally the buffer layer 16 may be formed thereon.
  • an arithmetic average roughness Ra that is equal to or slightly smaller than the arithmetic average roughness Ra to be applied on the outermost surface is provided on the surface of the lower layer or foil.
  • the arithmetic average roughness Ra of the surface of the metal foil that does not constitute the outermost surface due to the laminated state is evaluated by creating a cross section from the surface of the metal foil by FIB (Focused Ion Beam) processing, and using the transmission electron microscope ( TEM), and the arithmetic average roughness Ra of the reflective layer surface that does not constitute the outermost surface due to the laminated state can be evaluated in the same manner.
  • the ultra-flat surface of the metal foil 12 can also be realized by polishing the metal foil 12 using an electrolytic polishing method, a buff polishing method, a chemical polishing method, a physicochemical polishing method, or a combination thereof.
  • the chemical polishing method is not particularly limited as long as the chemical solution, the chemical solution temperature, the chemical solution immersion time, etc. are appropriately adjusted.
  • the chemical polishing of copper foil uses a mixture of 2-aminoethanol and ammonium chloride. Can be performed.
  • the temperature of the chemical solution is preferably room temperature, and it is preferable to use an immersion method (Dip method). Further, since the chemical solution immersion time tends to deteriorate the flatness as it becomes longer, it is preferably 10 to 120 seconds, and more preferably 30 to 90 seconds.
  • the metal foil after chemical polishing is preferably washed with running water. According to such a flattening process, a surface having an arithmetic average roughness Ra of about 12 nm can be flattened to a Ra of 10.0 nm or less, for example, about 3.0 nm.
  • the ultra-flat surface of the metal foil 12 can be realized by a method of polishing the surface of the metal foil 12 by blasting, a method of rapidly cooling the surface of the metal foil 12 after being melted by a technique such as laser, resistance heating, or lamp heating. You can also
  • the thickness of the metal foil 12 is not particularly limited as long as it is a thickness that can be handled alone as a foil without impairing flexibility, but is typically 1 to 250 ⁇ m, preferably 5 to 200 ⁇ m, more The thickness is preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, but the thickness may be appropriately determined according to the application and performance required for the electrode foil. Therefore, the upper limit of the thickness is particularly preferably 50 ⁇ m, 35 ⁇ m, or 25 ⁇ m when reduction of the amount of metal used or weight reduction is desired, while the lower limit of the thickness is 25 ⁇ m when strength is more desired. , 35 ⁇ m or 50 ⁇ m is particularly preferable. With such a thickness, it is possible to easily cut using a commercially available cutting machine.
  • the metal foil 12 has no problems such as cracking and chipping, and has advantages such as less generation of particles during cutting.
  • the metal foil 12 can have various shapes other than a quadrangle, for example, a circle, a triangle, a polygon, and can be cut and welded. It is also possible to manufacture an electronic device. In this case, it is preferable not to form the organic semiconductor layer at the cut portion or welded portion of the metal foil 12.
  • a reflective layer 14 may be provided on the surface of the metal foil 12.
  • the reflective layer 14 is preferably composed of at least one selected from the group consisting of aluminum, aluminum-based alloys, silver, and silver-based alloys. These materials are suitable for the reflective layer because of their high light reflectivity, and also have excellent flatness when thinned.
  • aluminum or an aluminum-based alloy is preferable because it is an inexpensive material.
  • an aluminum alloy and a silver alloy those having a general alloy composition used as an anode or a cathode in a light emitting element or a photoelectric element can be widely used.
  • Examples of preferable aluminum-based alloy compositions include Al—Ni, Al—Cu, Al—Ag, Al—Ce, Al—Zn, Al—B, Al—Ta, Al—Nd, Al—Si, Al—La, Examples include Al—Co, Al—Ge, Al—Fe, Al—Li, Al—Mg, Al—Mn, and Al—Ti alloys. Any element constituting these alloys can be arbitrarily combined according to the required characteristics.
  • Examples of preferable silver alloy compositions include Ag—Pd, Ag—Cu, Ag—Al, Ag—Zn, Ag—Mg, Ag—Mn, Ag—Cr, Ag—Ti, Ag—Ta, and Ag—Co.
  • the thickness of the reflective layer 14 is not particularly limited, but preferably has a thickness of 30 to 500 nm, more preferably 50 to 300 nm, and still more preferably 100 to 250 nm.
  • a buffer layer 16 may be provided on the surface of the metal foil 12 or the reflective layer 14.
  • the buffer layer 16 is not particularly limited as long as it provides a desired work function in contact with the organic semiconductor layer.
  • the buffer layer 16 is preferably transparent or translucent in order to ensure a sufficient light scattering effect.
  • the buffer layer 16 is preferably at least one selected from a conductive amorphous carbon film, a conductive oxide film, a magnesium-based alloy film, and a fluoride film. What is necessary is just to select suitably according to a characteristic.
  • the thickness of the electrode foil 10 is preferably 1 to 300 ⁇ m, more preferably 1 to 250 ⁇ m, still more preferably 5 to 200 ⁇ m, particularly preferably 10 to 150 ⁇ m, and most preferably 15 to 100 ⁇ m. What is necessary is just to determine thickness suitably according to the use, performance, etc. which are calculated
  • the thicknesses of these electrode foils are all the same as the thickness of the metal foil 12 described above, but this is usually the thickness of the reflective layer 14 and / or the buffer layer 16 that may be formed on the metal foil 12. This is because the thickness of the metal foil 12 is small enough to be ignored.
  • the back surface of the electrode foil 10 or the metal foil 12 (the surface on which the organic semiconductor layer 18 is not formed) is measured with respect to a rectangular area of 181 ⁇ m ⁇ 136 ⁇ m in accordance with JIS B 0601-2001. It is desirable that the surface has a recess-dominant surface where the Pv / Pp ratio of the maximum valley depth Pv of the cross-sectional curve with respect to the depth Pp is a predetermined value or more.
  • the maximum peak height Pp represents the height of the convex portion, while the maximum valley depth Pv represents the depth of the concave portion.
  • a Pv / Pp ratio equal to or greater than a predetermined value means a specific surface profile having a concave portion preferentially over a convex portion.
  • the Pv / Pp ratio of the concave dominant surface is preferably 1.10 or more, more preferably 1.20 or more, more preferably 1.30 or more, and further preferably 1.40 or more. .
  • the surface of the electrode foil 10 or the metal foil 12 has a deep scratch, particularly a scratch (a deep scratch, not a shallow scratch, for example, a depth of 0.
  • a protrusion When there is a scratch of 1 ⁇ m or more, a protrusion may be generated around the scratch due to the generation of the scratch, and the protrusion is a portion where light emission called a dark spot is deteriorated in a light emitting element such as an organic EL. May occur.
  • the Pv / Pp ratio of the recess-dominant surface is 1.10 or more, the occurrence of the above-mentioned blemishes on the foil surface drawn out from the roll state is significantly suppressed, and thereby dark spots are significantly reduced.
  • High-performance light-emitting elements can be provided.
  • a concave dominant surface with a Pv / Pp ratio of 1.10 or more can be conveniently realized by setting the back surface processing conditions of the metal foil to a level at which gloss occurs on the back surface according to the initial back surface roughness. it can.
  • the Pv / Pp ratio is preferably as high as possible and is not particularly limited. However, the upper limit value is practically around 10.0.
  • the maximum peak height Pp and the maximum valley depth Pv can be measured in accordance with JIS B 0601-2001 using a commercially available non-contact surface shape measuring machine.
  • Ra on the foil back surface is preferably 80 nm or less, more preferably 70 nm or less, further preferably 60 nm or less, particularly preferably 50 nm or less, and particularly preferably 40 nm or less. Yes, most preferably 30 nm or less.
  • Example 1 Production of Cu / Al Alloy / C Electrode Foil An electrode foil composed of 50 mm square Cu foil / Al reflective film / C buffer layer was produced as follows.
  • a metal foil a commercially available double-sided flat electrolytic copper foil having a thickness of 64 ⁇ m (DFF (Dual Flat Foil) manufactured by Mitsui Mining & Smelting Co., Ltd.) was prepared.
  • DFF Double Flat Foil
  • the arithmetic average roughness Ra was 12.20 nm, and this measurement was performed in a taping mode AFM in the range of 10 ⁇ m square.
  • This copper foil was subjected to a CMP treatment using a polishing machine manufactured by MTT.
  • This CMP treatment was performed using a polishing pad with XY grooves and a colloidal silica-based polishing liquid under the conditions of pad rotation speed: 30 rpm, load: 200 gf / cm 2 , and liquid supply amount: 100 cc / min.
  • the roughness of the copper foil surface thus treated with CMP was measured in accordance with JIS B 0601-2001 using a scanning probe microscope (Veeco, Nano Scope V). The arithmetic average roughness Ra was 0.7 nm. Met. This measurement was performed in a taping mode AFM for a 10 ⁇ m square range.
  • the thickness of the copper foil after the CMP treatment was 48 ⁇ m.
  • a 150 nm-thick Al alloy reflective layer was formed on the surface of the CMP-treated copper foil by sputtering.
  • This sputtering is performed by a magnetron sputtering apparatus (MSL-) in which an aluminum alloy target (diameter 203.2 mm ⁇ 8 mm thickness) having a composition of Al-0.2B-3.2Ni (at.%) Is connected to a Cryo pump. 464, manufactured by Tokki Co., Ltd.), input power (DC): 1000 W (3.1 W / cm 2 ), ultimate vacuum: ⁇ 5 ⁇ 10 ⁇ 5 Pa, sputtering pressure: 0.5 Pa, Ar flow rate: The measurement was performed under the conditions of 100 sccm and substrate temperature: room temperature.
  • MSL- magnetron sputtering apparatus
  • a carbon buffer layer having a film thickness of 3.5 nm was formed on the surface of the aluminum alloy reflective layer thus obtained by sputtering.
  • a carbon target for sputtering a carbon target having a purity of 5N (99.999%) prepared by subjecting a carbon material (IGS743 material, manufactured by Tokai Carbon Co., Ltd.) to a purification treatment with a halogen gas was prepared.
  • a carbon buffer layer was formed by sputtering using each of these targets.
  • each carbon target (diameter 203.2 mm ⁇ 8 mm thickness) was mounted on a magnetron sputtering apparatus (multi-chamber single-wafer type film forming apparatus MSL-464, manufactured by Tokki Co., Ltd.) connected to a cryo pump.
  • ultimate vacuum ⁇ 5 ⁇ 10 ⁇ 5 Pa
  • sputtering pressure 0.5 Pa
  • Ar flow rate 100 sccm
  • substrate temperature room temperature.
  • the film thickness was controlled by controlling the discharge time.
  • Example 2 Production of Organic EL Element An organic EL element having a structure as shown in FIG. 2 was prepared using the electrode foil made of 50 mm square Cu foil / Al reflective film / C buffer layer produced in Example 1 as an anode. Produced. Specifically, a 1.3% by mass PEDOT: PSS dispersion solution (manufactured by Heraeus) was spin coated at 5000 rpm on the surface of the buffer layer of the electrode foil 10 to form a 30 nm thick film as a hole injection layer. Thereafter, the area from the end of the electrode foil 10 to about 1 cm inside is wiped off with a dust-free cloth soaked with pure water to define a 30 mm square area coated with PEDOT: PPS, and then on the hot plate.
  • PEDOT: PSS dispersion solution manufactured by Heraeus
  • the hole injection layer was obtained by baking at 120 ° C. for 20 minutes. Next, using a metal mask having the same size as the hole injection layer (30 mm square), 4,4′-bis (N, N ′-(3-tolyl) amino) -3,3 is formed on the hole injection layer.
  • An electron transport layer made of Alq3 and having a thickness of 30 nm was sequentially laminated by a vacuum deposition method.
  • a LiF layer (thickness 0.8 nm) / Al layer (thickness 0. 5 mm) is formed on the 30 mm square organic semiconductor layer 18 formed in this manner using a metal mask having a 25 mm square opening having a smaller area.
  • An upper electrode layer 20 having a laminated structure of 8 nm) / Ag layer (thickness 20 nm) was produced. At this time, the outer edge of the upper electrode layer 20 was positioned inside the outer edge of the organic semiconductor layer 18.
  • Al was deposited in the vicinity of the four sides constituting the outer edge of the upper electrode layer 20 to form an auxiliary wiring 22 ′ having a thickness of 0.5 ⁇ m.
  • the PEN film in which the surface on which the upper electrode layer 20 and the auxiliary wiring 22 ′ are provided is coated with the SiNx layer (thickness 300 nm), the adhesive layer (thickness 2000 nm), and the SiNx layer (thickness 200 nm) by CVD.
  • Sealing was performed with a sealing layer 24 (thickness: 200 ⁇ m).
  • a carbon dioxide laser was irradiated from above the PEN film of the sealing layer 24 at a position where the auxiliary wiring 22 'was formed, thereby forming a contact hole 26 having a diameter of 1.0 mm reaching the auxiliary wiring 22'.
  • An extraction electrode 28 was formed with silver paste ink so as to extend in and from the contact hole 26, and left at room temperature to evaporate the solvent in the paste.
  • an organic EL element was formed. When the obtained organic EL element was operated, no leak current was generated, and uniform light emission was observed over the entire pixel region.

Abstract

 Provided is an organic semiconductor device of simplified structure without an interlayer insulating film. This organic semiconductor device is provided with: an electrode foil including at least a metal foil; an organic semiconductor layer partially provided on the surface of the electrode foil; an upper electrode layer provided on the organic semiconductor layer; a sealing layer provided on the electrode foil, the organic semiconductor layer, and the upper electrode layer, the sealing layer covering the exposed portions of the electrode foil, the organic semiconductor layer and the upper electrode layer; and at least one contact hole provided so as to pass through the sealing layer, the contact hole enabling electrical connectivity with the upper electrode layer.

Description

有機半導体デバイスOrganic semiconductor device
 本発明は、有機EL素子、有機EL照明、有機太陽電池等の有機半導体デバイスに関する。 The present invention relates to organic semiconductor devices such as organic EL elements, organic EL lighting, and organic solar cells.
 近年、有機EL照明等の発光素子が、環境に配慮したグリーンデバイスとして注目されている。有機EL照明の特徴としては、1)白熱灯に対して低消費電力であること、2)薄型かつ軽量であること、3)フレキシブルであることが挙げられる。現在、有機EL照明は、上記2)及び3)の特徴を実現すべく開発が進められている。この点、フラットパネルディスプレイ(FPD)等で従来使用されてきたガラス基板では、上記2)及び3)の特徴を実現することは不可能である。 In recent years, light-emitting elements such as organic EL lighting have attracted attention as environmentally friendly green devices. Features of organic EL lighting include 1) low power consumption compared to incandescent lamps, 2) thin and lightweight, and 3) flexibility. Currently, organic EL lighting is being developed to realize the features 2) and 3). In this regard, it is impossible to realize the characteristics 2) and 3) above with a glass substrate that has been conventionally used in flat panel displays (FPD) or the like.
 そこで、有機EL照明のための支持体としての基板(以下、支持基材という)に対する研究が進められており、その候補として、極薄ガラス、樹脂フィルム、金属箔等が提案されている。極薄ガラスは、耐熱性、バリア性、及び光透過性に優れ、フレキシブル性も良好であるが、ハンドリング性がやや劣り、熱伝導性が低く、材料コストも高い。また、樹脂フィルムは、ハンドリング性及びフレキシブル性に優れ、材料コストも低く、光透過性も良好であるが、耐熱性及びバリア性に乏しく、熱伝導性が低い。 Therefore, research on a substrate as a support for organic EL lighting (hereinafter referred to as a support base material) is underway, and ultrathin glass, resin film, metal foil, and the like have been proposed as candidates. Ultra-thin glass is excellent in heat resistance, barrier properties, and light transmission properties, and has good flexibility, but handling properties are slightly inferior, thermal conductivity is low, and material cost is high. In addition, the resin film is excellent in handling properties and flexibility, has a low material cost, and has good light transmittance, but has poor heat resistance and barrier properties, and has low thermal conductivity.
 これに対し、金属箔は、光透過性が無いことを除けば、耐熱性、バリア性、ハンドリング性、熱伝導性に優れ、フレキシブル性も良好であり、材料コストも低いといった優れた特徴を有する。特に、熱伝導性については、典型的なフレキシブルガラスやフィルムが1W/m℃以下と極めて低いのに対し、銅箔の場合、400W/m℃程度と極めて高い。 On the other hand, the metal foil has excellent characteristics such as excellent heat resistance, barrier properties, handling properties, thermal conductivity, good flexibility, and low material cost, except that it has no light transmittance. . In particular, the thermal conductivity of a typical flexible glass or film is as low as 1 W / m ° C. or less, whereas in the case of a copper foil, it is extremely high as about 400 W / m ° C.
 金属基板を用いた発光素子を実現するために、特許文献1(特開2009-152113号公報)では金属基板の表面を研磨処理やメッキ処理により平滑化して、その上に有機層を形成することが提案されている。また、特許文献2(特開2008-243772号公報)では金属基板上にニッケルめっき層を設けることで研磨等をすることなく平滑面を形成し、その上に有機EL素子を形成することが提案されている。これらの技術においては、電極間の短絡防止のため、金属基板表面の平滑化が重要な課題となっている。この課題に対処した技術として、特許文献3(国際出願第2011/152091号)及び特許文献4(国際出願第2011/152092号)では、算術平均粗さRaが10.0nm以下と極めて低い超平坦面を備えた金属箔を支持基材兼電極として用いることが提案されている。 In order to realize a light emitting element using a metal substrate, in Patent Document 1 (Japanese Patent Laid-Open No. 2009-152113), the surface of the metal substrate is smoothed by polishing treatment or plating treatment, and an organic layer is formed thereon. Has been proposed. Patent Document 2 (Japanese Patent Laid-Open No. 2008-243772) proposes that a nickel plating layer is provided on a metal substrate so that a smooth surface is formed without polishing and an organic EL element is formed thereon. Has been. In these techniques, smoothing the surface of the metal substrate is an important issue in order to prevent a short circuit between the electrodes. As a technique for coping with this problem, Patent Document 3 (International Application No. 2011-152091) and Patent Document 4 (International Application No. 2011-152092) have an extremely low arithmetic average roughness Ra of 10.0 nm or less. It has been proposed to use a metal foil having a surface as a supporting substrate and electrode.
特開2009-152113号公報JP 2009-152113 A 特開2008-243772号公報JP 2008-243772 A 国際公開第2011/152091号International Publication No. 2011-152091 国際公開第2011/152092号International Publication No. 2011-152092
 特許文献3及び4には電極箔を用いた有機EL素子も開示されている。このような従来の構成による有機EL素子の一例が図4に示される。図4に示される有機EL素子は、金属箔112、反射層114及びバッファ層116からなる電極箔100上に、有機半導体層118及び上部電極層120が積層されて発光領域を構成しているが、その発光領域の端部ないしその近傍には層間絶縁膜117が土手状(バンク状)に設けられる。そして、有機半導体層118及び上部電極層120の端部は土手状の層間絶縁膜117の端部又はその近傍にまで延在してなる。上部電極層120及び層間絶縁膜117の露出部分は、封止材124a及びガラス基板124bからなる封止層124で被覆されるが、上部電極層120の一端は封止層124で被覆されずに露出されて取出電極を構成しうる。 Patent Documents 3 and 4 also disclose organic EL elements using electrode foils. An example of an organic EL element having such a conventional configuration is shown in FIG. In the organic EL element shown in FIG. 4, an organic semiconductor layer 118 and an upper electrode layer 120 are laminated on an electrode foil 100 including a metal foil 112, a reflective layer 114, and a buffer layer 116, thereby forming a light emitting region. An interlayer insulating film 117 is provided in a bank shape (bank shape) at or near the end of the light emitting region. The end portions of the organic semiconductor layer 118 and the upper electrode layer 120 extend to the end portion of the bank-like interlayer insulating film 117 or the vicinity thereof. The exposed portions of the upper electrode layer 120 and the interlayer insulating film 117 are covered with a sealing layer 124 including a sealing material 124 a and a glass substrate 124 b, but one end of the upper electrode layer 120 is not covered with the sealing layer 124. The extraction electrode can be formed by being exposed.
 このように、従来の有機EL素子においては、発光領域を構成する有機半導体層118の端部ないしその近傍には層間絶縁膜117が土手状に設けられ、それにより発光領域が画定される構成となっている。この土手状に設けられる層間絶縁膜117は、層間絶縁膜117の非形成領域をマスキングして被膜形成を行った後、マスキングを除去することにより形成される。この層間絶縁膜117の形成は、量産性の高い製造プロセスであるロール・トゥ・ロール・プロセスを採用する場合、塗布法により行われるのが望ましい。しかしながら、この場合、その土手状の形状に起因して、層間絶縁膜117の外縁で塗布精度が低下して塗りムラが生じやすい。その結果、発光領域を構成する素子の外縁でリーク電流が発生して、発光領域にキャリアが均一に行き渡りにくくなり、発光にムラが生じうるとの懸念がある。 As described above, in the conventional organic EL device, the interlayer insulating film 117 is provided in a bank shape at or near the end of the organic semiconductor layer 118 constituting the light emitting region, and the light emitting region is thereby defined. It has become. The interlayer insulating film 117 provided in a bank shape is formed by masking a non-formed region of the interlayer insulating film 117 to form a film, and then removing the masking. The formation of the interlayer insulating film 117 is preferably performed by a coating method when a roll-to-roll process, which is a manufacturing process with high mass productivity, is employed. However, in this case, due to the bank-like shape, the coating accuracy is reduced at the outer edge of the interlayer insulating film 117 and uneven coating tends to occur. As a result, there is a concern that leakage current is generated at the outer edge of the element constituting the light emitting region, carriers are not easily distributed uniformly in the light emitting region, and light emission may be uneven.
 本発明者らは、今般、上部電極層等を覆う封止層にコンタクトホールを設け、このコンタクトホールを介して上部電極層との電気的接続を上部電極層の上方から確保することで、上述の問題を生じうる層間絶縁膜を不要にできるとの知見を得た。しかも、層間絶縁膜を不要にすることで、量産性の高い製造プロセスであるロール・トゥ・ロール・プロセスにも適した簡略化された構成の有機半導体デバイスを提供できるとの知見も得た。 The present inventors have now provided a contact hole in a sealing layer covering the upper electrode layer and the like, and ensuring electrical connection with the upper electrode layer through the contact hole from above the upper electrode layer. It was found that an interlayer insulating film that can cause this problem can be eliminated. In addition, it has also been found that by eliminating the need for an interlayer insulating film, an organic semiconductor device having a simplified configuration suitable for a roll-to-roll process, which is a mass-productive manufacturing process, can be provided.
 したがって、本発明の目的は、層間絶縁膜を不要として、ロール・トゥ・ロール・プロセスにも適した簡略化された構成の有機半導体デバイスを提供することにある。 Therefore, an object of the present invention is to provide an organic semiconductor device having a simplified configuration that is suitable for a roll-to-roll process without requiring an interlayer insulating film.
 本発明の一態様によれば、少なくとも金属箔を含んでなる電極箔と、
 前記電極箔の表面に部分的に設けられる有機半導体層と、
 前記有機半導体層上に設けられる上部電極層と、
 前記電極箔、前記有機半導体層及び前記上部電極層上に設けられ、前記電極箔、前記有機半導体層及び前記上部電極層の露出部分を覆う封止層と、
 前記封止層を貫通するように設けられ、前記上部電極層との電気的接続を可能にする少なくとも1つのコンタクトホールと、
を備えてなる、有機半導体デバイスが提供される。
According to one aspect of the invention, an electrode foil comprising at least a metal foil;
An organic semiconductor layer partially provided on the surface of the electrode foil;
An upper electrode layer provided on the organic semiconductor layer;
A sealing layer provided on the electrode foil, the organic semiconductor layer, and the upper electrode layer, and covering an exposed portion of the electrode foil, the organic semiconductor layer, and the upper electrode layer;
At least one contact hole provided to penetrate the sealing layer and enabling electrical connection with the upper electrode layer;
An organic semiconductor device is provided.
本発明による有機半導体デバイスの一形態を示す概略断面図である。It is a schematic sectional drawing which shows one form of the organic-semiconductor device by this invention. 本発明による有機半導体デバイスの一形態を示す概略斜視図である。It is a schematic perspective view which shows one form of the organic-semiconductor device by this invention. 本発明による有機半導体層及び補助配線の一形態を示す概略斜視図である。It is a schematic perspective view which shows one form of the organic-semiconductor layer and auxiliary wiring by this invention. 従来技術による有機EL素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic EL element by a prior art.
 有機半導体デバイス
 本発明の有機半導体デバイスは電極箔を用いたものである。電極箔は特許文献3及び4に記載されるように少なくとも金属箔を含んでなる箔であり、各種有機半導体デバイス用の電極(すなわちアノード又はカソード)として好ましく用いることができる。電極箔は、概して低応力で屈曲が容易なことからフレキシブル有機半導体デバイス用の電極として用いるのが特に好ましいが、フレキシブル性に劣る又は剛性のある有機半導体デバイスに用いるものであってもよい。そのような有機半導体デバイス(主としてフレキシブル有機半導体デバイス)の例としては、i)発光素子、例えば有機EL素子、有機EL照明、有機ELディスプレイ、電子ペーパー、液晶ディスプレイ、ii)光電素子、例えば薄膜太陽電池が挙げられるが、好ましくは有機EL素子、有機EL照明、有機ELディスプレイ、有機太陽電池、色素増感太陽電池であり、より好ましくは極薄で高輝度の発光が得られる点で有機EL照明である。また、有機太陽電池の場合、電極材料に求められる特性の多くが有機EL素子の場合に求められる特性と共通するため、電極箔を有機太陽電池のアノード又はカソードとして好ましく用いることができる。すなわち、電極箔上に積層させる有機半導体機能層の種類を公知の技術に従い適宜選択することにより、有機半導体デバイスを有機EL素子及び有機太陽電池のいずれにも構成することが可能となる。
Organic Semiconductor Device The organic semiconductor device of the present invention uses an electrode foil. The electrode foil is a foil comprising at least a metal foil as described in Patent Documents 3 and 4, and can be preferably used as an electrode (that is, an anode or a cathode) for various organic semiconductor devices. The electrode foil is particularly preferably used as an electrode for a flexible organic semiconductor device because it is generally low stress and easy to bend, but may be used for an organic semiconductor device having poor flexibility or rigidity. Examples of such organic semiconductor devices (mainly flexible organic semiconductor devices) include i) light emitting elements such as organic EL elements, organic EL lighting, organic EL displays, electronic paper, liquid crystal displays, ii) photoelectric elements such as thin film solar. Examples of the battery include organic EL elements, organic EL lighting, organic EL displays, organic solar cells, and dye-sensitized solar cells, and more preferably organic EL lighting in that ultra-thin and high-luminance emission can be obtained. It is. In the case of an organic solar cell, many of the characteristics required for the electrode material are in common with the characteristics required for the organic EL element, so that the electrode foil can be preferably used as the anode or cathode of the organic solar battery. That is, the organic semiconductor device can be configured as either an organic EL element or an organic solar cell by appropriately selecting the type of the organic semiconductor functional layer to be laminated on the electrode foil according to a known technique.
 図1及び2に本発明の一形態による有機半導体デバイスの概略斜視図を示す。なお、図示例の有機半導体デバイスは有機EL素子を想定しているが、その構成は有機太陽電池等の他の有機半導体デバイスにも適用可能であるのは前述のとおりである。図1及び2に示される有機半導体デバイスは、少なくとも金属箔を含んでなる電極箔10、有機半導体層18、上部電極層20及び封止層24をこの順に積層させて備えてなる。なお、有機半導体層18は電極箔10上に複数個配列されてよく、各有機半導体層18が互いに離間されてなるように構成されてもよい。そして、上部電極層20との電気的接続を可能にする少なくとも1つのコンタクトホール26が封止層24を貫通するように設けられる。この構成によれば、コンタクトホール26を介して上部電極層20との電気的接続を上部電極層20の上方から確保することができるため、従来必要とされてきた層間絶縁膜を不要にすることができる。 1 and 2 are schematic perspective views of an organic semiconductor device according to an embodiment of the present invention. In addition, although the organic semiconductor device of the example of illustration assumes the organic EL element, it is as above-mentioned that the structure is applicable also to other organic semiconductor devices, such as an organic solar cell. The organic semiconductor device shown in FIGS. 1 and 2 includes an electrode foil 10 including at least a metal foil, an organic semiconductor layer 18, an upper electrode layer 20, and a sealing layer 24 stacked in this order. Note that a plurality of organic semiconductor layers 18 may be arranged on the electrode foil 10, and the organic semiconductor layers 18 may be configured to be separated from each other. Then, at least one contact hole 26 that enables electrical connection with the upper electrode layer 20 is provided so as to penetrate the sealing layer 24. According to this configuration, since the electrical connection with the upper electrode layer 20 can be secured from above the upper electrode layer 20 through the contact hole 26, the conventionally required interlayer insulating film is eliminated. Can do.
 本発明の有機半導体デバイスは、フレキシブル性を有する電極箔10を支持基材兼電極として使用できるため、フレキシブル性を有することができる。このため、有機半導体デバイスの製造工程の少なくとも一部、望ましくは大半、理想的には全部を、ロール・トゥ・ロール・プロセスにより行うことが可能である。ロール・トゥ・ロール・プロセスは、ロール状に巻いた長尺状の箔を引き出して所定のプロセスを施したのち再び巻き取るという電子デバイスを効率的に量産する上で極めて有利なプロセスであり、有機半導体デバイスの量産化を実現する上で鍵になるプロセスである。ロール・トゥ・ロール・プロセスを採用する場合、層形成を塗布法により行うのが生産性向上の観点から望ましい。この点、層間絶縁膜を有しない本発明の層構成にあっては、層間絶縁膜の外縁でその土手状の形状に起因して起こりがちな塗布精度の低下を回避し、その結果、発光領域を構成する素子の外縁でのリーク電流の発生及びそれによる発光ムラの発生を抑制することができる。すなわち、リーク電流を低減することで、発光領域にキャリアを均一に行き渡らせやすくして、均一な発光を実現することができる。また、土手状の層間絶縁膜が無いことで、有機半導体層18及び上部電極層20をそれらの全面にわたって電極箔10に対して平行に設けることができ、それにより層構成を大幅に簡略化することができる。すなわち、層間絶縁膜を不要にすることで、量産性の高い製造プロセスであるロール・トゥ・ロール・プロセスにも適した簡略化された構成の有機半導体デバイスを提供できる。 The organic semiconductor device of the present invention can have flexibility because the flexible electrode foil 10 can be used as a supporting substrate and electrode. For this reason, at least a part, preferably most, ideally all of the manufacturing process of the organic semiconductor device can be performed by a roll-to-roll process. The roll-to-roll process is an extremely advantageous process for efficiently mass-producing electronic devices in which a long foil wound in a roll shape is drawn out and subjected to a predetermined process and then wound up again. This is a key process for realizing mass production of organic semiconductor devices. When employing a roll-to-roll process, it is desirable from the viewpoint of improving productivity that the layer is formed by a coating method. In this respect, in the layer structure of the present invention having no interlayer insulating film, the outer edge of the interlayer insulating film avoids a decrease in coating accuracy that tends to occur due to the bank-like shape, and as a result, the light emitting region It is possible to suppress the occurrence of leakage current at the outer edge of the element constituting the light emission and the occurrence of uneven light emission. That is, by reducing the leakage current, carriers can be easily spread uniformly in the light emitting region, and uniform light emission can be realized. Further, since there is no bank-like interlayer insulating film, the organic semiconductor layer 18 and the upper electrode layer 20 can be provided parallel to the electrode foil 10 over the entire surface thereof, thereby greatly simplifying the layer configuration. be able to. That is, by eliminating the need for an interlayer insulating film, it is possible to provide an organic semiconductor device having a simplified configuration suitable for a roll-to-roll process, which is a mass-productive manufacturing process.
 電極箔10は、有機半導体層18の外縁に沿って有機半導体層18が形成されていない領域を有し、有機半導体層非形成領域において封止層24が電極箔10と接合されているのが好ましい。すなわち、本発明の層構成によれば、従来の有機半導体デバイスでは層間絶縁膜が存在すべき箇所に層間絶縁膜が存在せず、その代わりに、封止層24が有機半導体層18の外縁に沿って配設されることになる。このため、有機半導体層非形成領域において封止層24が電極箔10と接合されることになり、有機半導体層18の外縁近傍で必要とされる絶縁性を確保することができる。同様に、有機半導体層18は上部電極層20の外縁に沿って上部電極層20が形成されてない領域を有し、上部電極層非形成領域において封止層24が有機半導体層18と接合されているのが好ましい。すなわち、上部電極層20は有機半導体層18よりも小さい面積を有し、かつ、上部電極層20の外縁が有機半導体層18の外縁よりも内側に位置するのが好ましい。こうすることで、上部電極層非形成領域において封止層24が有機半導体層18と接合されることになるので、上部電極層20の端部が有機半導体層18の外縁に及ぶことによって起こりやすくなるリーク電流の発生をより一層確実に阻止することができる。 The electrode foil 10 has a region where the organic semiconductor layer 18 is not formed along the outer edge of the organic semiconductor layer 18, and the sealing layer 24 is bonded to the electrode foil 10 in the region where the organic semiconductor layer is not formed. preferable. That is, according to the layer structure of the present invention, in the conventional organic semiconductor device, the interlayer insulating film does not exist at a position where the interlayer insulating film should exist, and instead, the sealing layer 24 is formed on the outer edge of the organic semiconductor layer 18. It will be arranged along. For this reason, the sealing layer 24 is joined to the electrode foil 10 in the region where the organic semiconductor layer is not formed, and the insulation required near the outer edge of the organic semiconductor layer 18 can be ensured. Similarly, the organic semiconductor layer 18 has a region where the upper electrode layer 20 is not formed along the outer edge of the upper electrode layer 20, and the sealing layer 24 is joined to the organic semiconductor layer 18 in the region where the upper electrode layer is not formed. It is preferable. That is, the upper electrode layer 20 preferably has an area smaller than that of the organic semiconductor layer 18, and the outer edge of the upper electrode layer 20 is preferably located on the inner side of the outer edge of the organic semiconductor layer 18. By doing so, since the sealing layer 24 is bonded to the organic semiconductor layer 18 in the region where the upper electrode layer is not formed, it easily occurs when the end portion of the upper electrode layer 20 reaches the outer edge of the organic semiconductor layer 18. It is possible to more reliably prevent the occurrence of leak current.
 有機半導体層18は、典型的には励起発光又は光励起発電の機能を有し、それにより有機半導体デバイスが発光素子又は光電素子として機能しうる。有機半導体層18は、有機EL素子等の各種有機半導体デバイスにおいて採用されている公知の層構成を有するものであってよく、特に限定されない。例えば、有機EL素子の場合、所望により正孔注入層及び/又は正孔輸送層、発光層、ならびに所望により電子輸送層及び/又は電子注入層を、電極箔10から上部電極層20に向かって又はその逆方向に順次積層してなることができる。正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層としては、それぞれ公知の種々の構成ないし組成の層が適宜使用可能であり特に限定されるものではない。 The organic semiconductor layer 18 typically has a function of excitation light emission or photoexcitation power generation, whereby the organic semiconductor device can function as a light emitting element or a photoelectric element. The organic semiconductor layer 18 may have a known layer configuration employed in various organic semiconductor devices such as organic EL elements, and is not particularly limited. For example, in the case of an organic EL element, a hole injection layer and / or a hole transport layer, a light-emitting layer, and an electron transport layer and / or an electron injection layer, as desired, from the electrode foil 10 toward the upper electrode layer 20 as desired. Or it can be laminated | stacked sequentially in the reverse direction. As the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer, layers having various known configurations and compositions can be appropriately used and are not particularly limited.
 上部電極層20は、有機EL素子等の各種有機半導体デバイスにおいて採用されている公知の電極構成を有するものであってよく、特に限定されない。また、上部電極層20は、カソード及びアノードのいずれに構成されてもよい。上部電極層20をカソードとして構成する場合、Ca、Ba、LiF、Cs、Mg、Mg-Ag等の低仕事関数(<3eV)の材料からなるバッファ層上に、厚さ0.5~50nmのAl、Ag等の金属膜を真空蒸着により積層させて上部電極層20とするのが好ましい。あるいは、IZO(インジウム亜鉛酸化物)、ITO(インジウム錫酸化物)、ITZO(インジウム錫亜鉛酸化物)、IGO(インジウムゲルマニウム酸化物)、ZTO(亜鉛錫酸化物)、AZO(アルミニウムドープ酸化亜鉛)等の透明導電膜を対向カソード型スパッタリング装置にて、上述した低仕事関数(<3eV)の材料からなるバッファ層上に成膜してもよい。この透明導電膜の厚さは、シート抵抗を低くするためには大きくするのが望ましいものの、透過率や屈折率を考慮すると、200nm以下が好ましく、より好ましくは150nm以下であり、その下限値はシート抵抗を考慮すると30nm以上が好ましい。一方、上部電極層20をアノードとして構成する場合、MoO、V、C等の高仕事関数(>4.5eV)の材料からなるバッファ層上に、上記同様、金属膜又は透明導電膜を積層させて上部電極層20とするのが好ましい。また、金属膜や透明導電膜の代わりにPEDOT:PSS等の高導電性高分子材料を使用してもよい。 The upper electrode layer 20 may have a known electrode configuration employed in various organic semiconductor devices such as an organic EL element, and is not particularly limited. Further, the upper electrode layer 20 may be configured as either a cathode or an anode. When the upper electrode layer 20 is configured as a cathode, a 0.5 to 50 nm thick layer is formed on a buffer layer made of a material having a low work function (<3 eV) such as Ca, Ba, LiF, Cs, Mg, and Mg—Ag. The upper electrode layer 20 is preferably formed by laminating metal films such as Al and Ag by vacuum deposition. Alternatively, IZO (indium zinc oxide), ITO (indium tin oxide), ITZO (indium tin zinc oxide), IGO (indium germanium oxide), ZTO (zinc tin oxide), AZO (aluminum doped zinc oxide) A transparent conductive film such as the above may be formed on the buffer layer made of the above-described material having a low work function (<3 eV) with a counter cathode sputtering apparatus. Although it is desirable to increase the thickness of the transparent conductive film in order to reduce the sheet resistance, in consideration of transmittance and refractive index, it is preferably 200 nm or less, more preferably 150 nm or less, and its lower limit is Considering the sheet resistance, 30 nm or more is preferable. On the other hand, when the upper electrode layer 20 is configured as an anode, a metal film or a transparent conductive film is formed on a buffer layer made of a material having a high work function (> 4.5 eV) such as MoO 3 , V 2 O 5 , C, and the like. The upper electrode layer 20 is preferably formed by laminating films. Moreover, you may use highly conductive polymer materials, such as PEDOT: PSS, instead of a metal film and a transparent conductive film.
 発光均一性を考慮した場合、導電率が0.01S/cm以上となるように上部電極層20の積層材料及び/又は膜厚を選択するのが好ましい。より好ましい導電率は0.1S/cm以上である。上部電極層20の膜厚が大きくなるとキャビティーの影響が大きくなるため光学設計が難しくなり、その結果、外部量子効率が低くなってしまう。このため、導電率と光学特性の最適化が重要となる。 In consideration of the light emission uniformity, it is preferable to select the laminated material and / or film thickness of the upper electrode layer 20 so that the electrical conductivity is 0.01 S / cm or more. More preferable conductivity is 0.1 S / cm or more. As the film thickness of the upper electrode layer 20 increases, the influence of the cavity increases, making optical design difficult, and as a result, the external quantum efficiency decreases. For this reason, optimization of electrical conductivity and optical characteristics is important.
 発光均一性を確保すべく上部電極層20全域にわたる導電率の最適化を図るためには、補助配線22を網の目状に上部電極層20上に形成することが有効であると考えられる。しかしながら、補助配線22は光を遮断しうるため、補助配線22の面積は、発光領域の20%以下が好ましく、より好ましくは15%以下、さらに好ましくは10%以下である。その下限値は、上部電極層20のシート抵抗を併せて考慮して決定すればよいが、例えば発光領域の0.1%以上とすればよい。 In order to optimize the conductivity over the entire upper electrode layer 20 in order to ensure the light emission uniformity, it is considered effective to form the auxiliary wiring 22 on the upper electrode layer 20 in a mesh pattern. However, since the auxiliary wiring 22 can block light, the area of the auxiliary wiring 22 is preferably 20% or less of the light emitting region, more preferably 15% or less, and further preferably 10% or less. The lower limit value may be determined in consideration of the sheet resistance of the upper electrode layer 20, but may be, for example, 0.1% or more of the light emitting region.
 すなわち、上部電極層20上には少なくとも1つの補助配線22が直接設けられるのが好ましい。補助配線22は、上部電極層20のシート抵抗のムラを低減して発光均一性を向上する上で有効であり、特に大面積を均一に発光させる際に非常に有効な手段となる。補助配線22は、Cu、Al、Ni、Ag、Zn、Sn、Au、Ti等の公知の導電性材料を用いて、真空蒸着法、インクジェット法、スクリーン印刷法、ノズルジェット法等の公知の手法を用いて形成すればよい。補助配線22の厚さは50nm以上が好ましい。補助配線22は厚い分には問題はないが、量産性を考慮すると5μm以下が望ましい。もっとも、後述するコンタクトホール26の形成にスクラブル法(Scrabble法)を使用する場合には、キズ防止の観点からより補助配線22は厚い方が望ましい。 That is, it is preferable that at least one auxiliary wiring 22 is directly provided on the upper electrode layer 20. The auxiliary wiring 22 is effective in reducing the unevenness of the sheet resistance of the upper electrode layer 20 and improving the light emission uniformity, and is a very effective means particularly for emitting light uniformly over a large area. The auxiliary wiring 22 is made of a known conductive material such as Cu, Al, Ni, Ag, Zn, Sn, Au, or Ti, and a known method such as a vacuum deposition method, an inkjet method, a screen printing method, or a nozzle jet method. What is necessary is just to form using. The thickness of the auxiliary wiring 22 is preferably 50 nm or more. Although there is no problem with the auxiliary wiring 22 being thick, it is preferably 5 μm or less in view of mass productivity. However, when the scrubbing method (Scrabble method) is used to form the contact hole 26 described later, the auxiliary wiring 22 is preferably thicker from the viewpoint of preventing scratches.
 補助配線22は光を遮断しうるため、上部電極層20上における、上部電極層20の外縁及び/又はその近傍の少なくとも一部の領域に設けられるのが好ましい。例えば、図2に示されるように、上部電極層20が矩形状に形成される場合、補助配線22が矩形状の上部電極層20の外縁及び/又はその近傍の少なくとも1辺を構成するのが好ましく、より好ましくは互いに平行な2辺、さらに好ましくは4辺を構成すればよい。あるいは、図3に示されるように発光素子が円形に構成される場合、補助配線22’’は上部電極層20’の円周に沿って形成すればよい。もっとも、発光面積が大きい場合、特に発光領域の面積が30mm四方以上となる場合は、発光面内に補助配線22を形成してもよい。その場合、補助配線22の幅は、500μm以下が好ましく、より好ましくは300μm以下、さらに好ましくは150μm以下である。補助配線22の最小幅は、補助配線22の厚さを考慮したシート抵抗から適宜計算されることにより決定されるのが望ましいが、好ましくは10μm以上であり、より好ましくは50μm以上である。 Since the auxiliary wiring 22 can block light, it is preferable that the auxiliary wiring 22 is provided on at least a part of the outer edge of the upper electrode layer 20 and / or the vicinity thereof. For example, as shown in FIG. 2, when the upper electrode layer 20 is formed in a rectangular shape, the auxiliary wiring 22 constitutes the outer edge of the rectangular upper electrode layer 20 and / or at least one side in the vicinity thereof. More preferably, two sides that are parallel to each other, more preferably four sides may be configured. Alternatively, when the light emitting element is formed in a circular shape as shown in FIG. 3, the auxiliary wiring 22 "may be formed along the circumference of the upper electrode layer 20 '. However, when the light emitting area is large, particularly when the area of the light emitting region is 30 mm square or more, the auxiliary wiring 22 may be formed in the light emitting surface. In that case, the width of the auxiliary wiring 22 is preferably 500 μm or less, more preferably 300 μm or less, and still more preferably 150 μm or less. The minimum width of the auxiliary wiring 22 is preferably determined by appropriately calculating from the sheet resistance considering the thickness of the auxiliary wiring 22, but is preferably 10 μm or more, and more preferably 50 μm or more.
 補助配線22は、図1に示されるように、有機半導体層18上における上部電極層20の外縁近傍にまで延在し、それにより有機半導体層18と上部電極層20の境界線の少なくとも一部が補助配線22で被覆されてなるように構成してもよい。この構成によれば、上部電極層20の側端面においても補助配線22と接触することになるため、上部電極層20との電気的接続をより一層確実なものにすることができる。もっとも、この態様においては、補助配線22と有機半導体層18の接触部位において発光させることなく、キャリアを上部電極層20の全体に行き渡らせるようにすることが望まれることから、そのような発光が生じないような仕事関数の材料を用いて補助配線22を構成することが望まれる。この場合、補助配線22を構成する好ましい材料の例としては、上部電極層20がカソードの場合にはCu、Ni、Auのような高仕事関数(>4.5eV)の材料が、上部電極層20がアノードの場合にはAl、Ag、Zn、Sn、Tiのような低仕事関数(<4.0eV)の材料が挙げられる。 As shown in FIG. 1, the auxiliary wiring 22 extends to the vicinity of the outer edge of the upper electrode layer 20 on the organic semiconductor layer 18, thereby at least part of the boundary line between the organic semiconductor layer 18 and the upper electrode layer 20. May be covered with the auxiliary wiring 22. According to this configuration, since the auxiliary wiring 22 is also contacted at the side end surface of the upper electrode layer 20, the electrical connection with the upper electrode layer 20 can be further ensured. However, in this embodiment, since it is desired that carriers are spread over the entire upper electrode layer 20 without causing light emission at the contact portion between the auxiliary wiring 22 and the organic semiconductor layer 18, such light emission is caused. It is desirable to configure the auxiliary wiring 22 using a material having a work function that does not occur. In this case, as an example of a preferable material constituting the auxiliary wiring 22, when the upper electrode layer 20 is a cathode, a material having a high work function (> 4.5 eV) such as Cu, Ni, Au is used. In the case where 20 is an anode, materials having a low work function (<4.0 eV) such as Al, Ag, Zn, Sn, and Ti can be used.
 封止層24は、電極箔10、有機半導体層18及び上部電極層20上に設けられ、電極箔10、有機半導体層18及び上部電極層20の露出部分を覆う層であり、望ましくは絶縁性を有する。封止層24は、透明であることが望ましいが、光取り出し効率を高めるべく表面に凹凸が形成されていてもよい。封止層24は、公知の材質及び構成を有するものであればよいが、耐環境性の観点からSiNxやSiOxの積層構造が好ましい。封止層24の形成は公知の手法にしたがって行えばよいが、PE-CVD法(プラズマCVD法)により行うのが好ましい。また、SiNxやSiOx層のクラック発生防止のために、アクリル系樹脂層等を封止層24に挿入してもよい。また、SiNxやSiOx層等からなる封止材24a上にアクリル系接着材を用いて、PEN(ポリエチレンナフタレート)、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)等の樹脂フィルム24bを配設してもよい。これらの封止材24a及び樹脂フィルム24bを用いて封止層24を形成した場合でも、従来の方法に従い、容易にコンタクトホール26を形成することができる。特に、樹脂フィルム24bが存在する場合は、レーザーやイオンビームを用いてコンタクトホール26を形成するのが望ましい。 The sealing layer 24 is a layer that is provided on the electrode foil 10, the organic semiconductor layer 18, and the upper electrode layer 20 and covers the exposed portions of the electrode foil 10, the organic semiconductor layer 18, and the upper electrode layer 20, and preferably has an insulating property. Have The sealing layer 24 is desirably transparent, but irregularities may be formed on the surface in order to increase the light extraction efficiency. The sealing layer 24 may have any known material and configuration, but a laminated structure of SiNx or SiOx is preferable from the viewpoint of environmental resistance. The formation of the sealing layer 24 may be performed according to a known method, but is preferably performed by a PE-CVD method (plasma CVD method). Further, an acrylic resin layer or the like may be inserted into the sealing layer 24 in order to prevent generation of cracks in the SiNx or SiOx layer. In addition, a resin film 24b such as PEN (polyethylene naphthalate), PET (polyethylene terephthalate), PC (polycarbonate), etc. is disposed on the sealing material 24a made of SiNx, SiOx layer, or the like using an acrylic adhesive. Also good. Even when the sealing layer 24 is formed using the sealing material 24a and the resin film 24b, the contact hole 26 can be easily formed according to a conventional method. In particular, when the resin film 24b exists, it is desirable to form the contact hole 26 using a laser or an ion beam.
 コンタクトホール26は、封止層24を貫通するように設けられ、上部電極層20との電気的接続を可能にする孔である。コンタクトホール26を介して上部電極層20との電気的接続を上部電極層20の上方から確保することができるため、従来必要とされてきた層間絶縁膜を不要にすることができる。コンタクトホールは1か所に少なくとも1つのホールが形成されていればよいが、電気的接触の信頼性を高めるべく、1か所に複数個形成されていてもよい。また、補助配線22が存在する場合、コンタクトホール26は補助配線22上に配置されるのが好ましく、それにより上部電極層20との電気的接触をより確実なものとすることができる。 The contact hole 26 is a hole that is provided so as to penetrate the sealing layer 24 and enables electrical connection with the upper electrode layer 20. Since electrical connection with the upper electrode layer 20 can be ensured from above the upper electrode layer 20 through the contact hole 26, the conventionally required interlayer insulating film can be eliminated. It is sufficient that at least one contact hole is formed in one place, but a plurality of contact holes may be formed in one place in order to increase the reliability of electrical contact. In addition, when the auxiliary wiring 22 is present, the contact hole 26 is preferably disposed on the auxiliary wiring 22, whereby electrical contact with the upper electrode layer 20 can be made more reliable.
 コンタクトホール26の形成は公知の手法にしたがって行えばよく、好ましい手法の例としては、ドライエッチング法、レーザーエッチング法、反応性イオンビームエッチング法、スクラブル法(Scrabble法)が挙げられる。ドライエッチング法は、CF、SF等のフッ素系ガスを用いたプラズマにより、封止膜をエッチングする方法であり、例えば、RIE装置(反応性イオンエッチング装置)(サムコ社製、RIE10NR)を用いて、RFプラズマ:0.1~0.5W/cm、ガス種:CH/O=40/10sccm、圧力:10Paの条件で好ましく行うことができる。レーザーエッチング法に使用可能なレーザーの例としては、炭酸ガスレーザー、YAGレーザーが挙げられる。スクラブル法(Scrabble法)は、先端が直径0.1mm~2mmのニードルで必要箇所にスクラッチを形成する方法である。このニードルの先端は、DLC(ダイヤモンドライクカーボン)コートされた、Al、Cu、Mo、C、Si、Ti、Ta、Fe、Ni等を主成分とする合金、窒化物又は酸化物を含んでなり、10°~170°の角度を有するように加工が施されていることが望ましい。ニードルの先端は1点である必要はなく、複数点存在していてもよい。また、マイナスドライバーの先端のように、その先端が線状に形成されていてもよい。耐久性の観点からニードルの先端はDLCで被覆されるのが望ましいが、その他、酸化処理、窒化処理等の手法により先端の硬度を高くしてもよい。また、スクラブル処理中は、発生したパーティクルを吸引するノズルが装着されていることが望ましく、さらに望ましくはパーティクルを素子上から除去するためのブローノズルが別途設けられていてもよい。 The formation of the contact hole 26 may be performed according to a known method. Examples of preferable methods include a dry etching method, a laser etching method, a reactive ion beam etching method, and a scrubbing method (Scrabble method). The dry etching method is a method of etching a sealing film with plasma using a fluorine-based gas such as CF 4 or SF 6. For example, an RIE apparatus (reactive ion etching apparatus) (manufactured by Samco, RIE10NR) is used. It can be preferably carried out under the conditions of RF plasma: 0.1 to 0.5 W / cm 2 , gas type: CH 4 / O 2 = 40/10 sccm, and pressure: 10 Pa. Examples of the laser that can be used for the laser etching method include a carbon dioxide gas laser and a YAG laser. The Scrabble method (Scrabble method) is a method in which a scratch is formed at a necessary location with a needle having a tip of 0.1 mm to 2 mm in diameter. The tip of the needle comprises a DLC (diamond-like carbon) coated alloy, nitride or oxide containing Al, Cu, Mo, C, Si, Ti, Ta, Fe, Ni or the like as a main component. It is desirable that the processing is performed so as to have an angle of 10 ° to 170 °. The tip of the needle need not be a single point, and there may be a plurality of points. Further, like the tip of a minus driver, the tip may be formed in a linear shape. From the viewpoint of durability, it is desirable that the tip of the needle is coated with DLC, but the tip hardness may be increased by other methods such as oxidation treatment and nitriding treatment. Further, during the scrubbing process, it is desirable that a nozzle for sucking the generated particles is attached, and more desirably, a blow nozzle for removing the particles from the element may be separately provided.
 引出電極28は、コンタクトホール26を介して上部電極層20との電気的接続を確保するための電極である。補助配線22上にコンタクトホール26が存在する場合、引出電極28はコンタクトホール26を介して補助配線22に接触し、この補助配線22を介して上部電極層20との電気的接続を確保する構成とするのが好ましい。引出電極28の形成は、真空蒸着法、インクジェット法、スクリーン印刷法、ノズルジェット法等の公知の技術により行えばよい。もっとも、生産性及びコストの観点から、真空プロセスを使用しない方法がより望ましい。引出電極28の構成材料の例としては、はんだ(例えばSnやZnの合金)、Agインク、Niインク、Cuインク、Al、Ag、Ni、Zn、Zn、Ti、Ta、Au、Cu等が挙げられる。電気的接続を確保するため、引出電極28の構成材料でコンタクトホール26内が充填されるのが望ましい。 The extraction electrode 28 is an electrode for ensuring electrical connection with the upper electrode layer 20 through the contact hole 26. When the contact hole 26 exists on the auxiliary wiring 22, the extraction electrode 28 contacts the auxiliary wiring 22 through the contact hole 26, and the electrical connection with the upper electrode layer 20 is ensured through the auxiliary wiring 22. Is preferable. The extraction electrode 28 may be formed by a known technique such as vacuum deposition, ink jet, screen printing, or nozzle jet. However, a method that does not use a vacuum process is more desirable from the viewpoint of productivity and cost. Examples of the constituent material of the extraction electrode 28 include solder (eg, Sn or Zn alloy), Ag ink, Ni ink, Cu ink, Al, Ag, Ni, Zn, Zn, Ti, Ta, Au, Cu, and the like. It is done. In order to ensure electrical connection, the contact hole 26 is preferably filled with the constituent material of the extraction electrode 28.
 電極箔
 電極箔10は、少なくとも金属箔12を含んでなるものであればよく、特許文献3及び4に記載されるような公知の電極箔が使用可能であり特に限定されない。もっとも、電極箔10は、図1に示されるように、金属箔12と、所望により金属箔の少なくとも一方の面に設けられる反射層14と、所望により金属箔12又は反射層14上に直接設けられるバッファ層16とを備えてなるのが好ましい。すなわち、図1に示される電極箔10は金属箔12、反射層14及びバッファ層16を備えた3層構成であるが、本発明の電極箔はこれに限定されず、金属箔12のみの1層構成であってもよいし、金属箔12及び反射層14の2層構成であってもよい。
The electrode foil electrode foil 10 only needs to include at least the metal foil 12, and known electrode foils described in Patent Documents 3 and 4 can be used and are not particularly limited. However, as shown in FIG. 1, the electrode foil 10 is provided directly on the metal foil 12, the reflection layer 14 provided on at least one surface of the metal foil as required, and on the metal foil 12 or the reflection layer 14 as required. The buffer layer 16 is preferably provided. That is, the electrode foil 10 shown in FIG. 1 has a three-layer configuration including the metal foil 12, the reflective layer 14, and the buffer layer 16, but the electrode foil of the present invention is not limited to this, and only the metal foil 12 is 1 A layer structure may be sufficient, and the two-layer structure of the metal foil 12 and the reflection layer 14 may be sufficient.
 金属箔12を支持基材のみならず電極として用いることで、支持基材、電極及び反射層の機能を兼ね備えた電極箔を提供することができる。その上、金属板ではなく、典型的には1~250μmの金属箔12を用いたことで、フレキシブル有機半導体デバイス用の支持基材を兼ねた電極として用いることができる。このようなフレキシブル有機半導体デバイスの製造に関して、電極箔10は、金属箔をベースとしているため、支持基材を特に必要とすることなく、例えばロール・トゥ・ロール・プロセスによって効率的に製造することができる。ロール・トゥ・ロール・プロセスは、ロール状に巻いた長尺状の箔を引き出して所定のプロセスを施したのち再び巻き取るという電子デバイスを効率的に量産する上で極めて有利なプロセスであり、有機半導体デバイスの量産化を実現する上で鍵になるプロセスである。このように、電極箔10は、支持基材及び反射層を不要にすることができる。このため、電極箔10は、少なくとも電子デバイスが構築される部分に絶縁層を有しないのが好ましく、より好ましくはいかなる部位にも絶縁層を有しない。 By using the metal foil 12 as an electrode as well as a support substrate, an electrode foil having the functions of a support substrate, an electrode, and a reflective layer can be provided. In addition, by using a metal foil 12 of typically 1 to 250 μm instead of a metal plate, it can be used as an electrode that also serves as a support substrate for a flexible organic semiconductor device. Regarding the manufacture of such a flexible organic semiconductor device, since the electrode foil 10 is based on a metal foil, it can be efficiently manufactured by, for example, a roll-to-roll process without particularly requiring a supporting substrate. Can do. The roll-to-roll process is an extremely advantageous process for efficiently mass-producing electronic devices in which a long foil wound in a roll shape is drawn out and subjected to a predetermined process and then wound up again. This is a key process for realizing mass production of organic semiconductor devices. Thus, the electrode foil 10 can eliminate the support base material and the reflective layer. For this reason, it is preferable that the electrode foil 10 does not have an insulating layer at least in a part where an electronic device is constructed, and more preferably does not have an insulating layer in any part.
 金属箔12は、支持基材としての強度及び電極として必要な電気的特性を有する箔状金属材料であれば特に限定されない。好ましい金属箔は、加工時に発生する粒子状物の帯磁による付着を防止できる観点から、非磁性金属箔である。非磁性金属の好ましい例としては、銅、アルミニウム、非磁性ステンレス、チタン、タンタル、モリブデン等が挙げられ、より好ましくは銅、アルミニウム、及び非磁性ステンレスである。最も好ましい金属箔は銅箔である。銅箔は比較的安価でありながら、強度、フレキシブル性、電気的特性等に優れる。 The metal foil 12 is not particularly limited as long as it is a foil-like metal material having strength as a supporting substrate and electrical characteristics necessary as an electrode. A preferred metal foil is a nonmagnetic metal foil from the viewpoint of preventing adhesion of particulate matter generated during processing due to magnetism. Preferred examples of the nonmagnetic metal include copper, aluminum, nonmagnetic stainless steel, titanium, tantalum, and molybdenum, and more preferred are copper, aluminum, and nonmagnetic stainless steel. The most preferred metal foil is a copper foil. Copper foil is excellent in strength, flexibility, electrical characteristics and the like while being relatively inexpensive.
 電極箔10の反射層側の最表面は、60.0nm以下の算術平均粗さRaを有する超平坦面であるのが好ましく、より好ましくは30.0nm以下、さらに好ましくは20.0nm以下、特に好ましくは10.0nm以下、より特に好ましくは7.0nm以下であり、電極箔に求められる用途や性能等に応じて粗さを適宜決定すればよい。算術平均粗さRaの下限は特に限定されずゼロであってもよいが、平坦化処理の効率を考慮すると0.5nmが下限値の目安として挙げられる。この算術平均粗さRaは、JIS B 0601-2001に準拠して市販の粗さ測定装置を用いて測定することができる。 The outermost surface on the reflective layer side of the electrode foil 10 is preferably an ultra-flat surface having an arithmetic average roughness Ra of 60.0 nm or less, more preferably 30.0 nm or less, still more preferably 20.0 nm or less, particularly The thickness is preferably 10.0 nm or less, more preferably 7.0 nm or less, and the roughness may be appropriately determined according to the application and performance required for the electrode foil. The lower limit of the arithmetic average roughness Ra is not particularly limited and may be zero. However, in consideration of the efficiency of the flattening process, 0.5 nm is cited as a guideline for the lower limit value. This arithmetic average roughness Ra can be measured using a commercially available roughness measuring device in accordance with JIS B 0601-2001.
 前述のとおり、電極箔10の反射層側の最表面とは、最も外側に位置する反射層14又はバッファ層16の表面を意味する。もっとも、このような複数層構成の場合における上記算術平均粗さRaの実現は、反射層14及び場合によりバッファ層16が形成されることになる金属箔12の表面の算術平均粗さRaを上記同様の範囲、すなわち60.0nm以下、好ましくは30.0nm以下、より好ましくは20.0nm以下、さらに好ましくは10.0nm以下、特に好ましくは7.0nm以下、最も好ましくは5.0nm以下にしておき、その上に反射層14及び場合によりバッファ層16を成膜することにより行うことができる。このように、最表面において付与されるべき算術平均粗さRaよりも同等もしくは若干小さめの算術平均粗さRaをそれよりも下の層ないし箔の表面に付与しておくのが好ましい。なお、積層状態のため最表面を構成しない金属箔表面の算術平均粗さRaの評価は、金属箔表面からFIB(Focused Ion Beam)加工にて断面を作製し、その断面を透過型電子顕微鏡(TEM)にて観察することにより行うことができ、積層状態のため最表面を構成しない反射層表面の算術平均粗さRaの評価も同様にして行うことができる。 As described above, the outermost surface on the reflective layer side of the electrode foil 10 means the surface of the reflective layer 14 or the buffer layer 16 located on the outermost side. However, in the case of such a multi-layer configuration, the arithmetic average roughness Ra is realized by setting the arithmetic average roughness Ra of the surface of the metal foil 12 on which the reflective layer 14 and the buffer layer 16 are formed as the case may be. The same range, that is, 60.0 nm or less, preferably 30.0 nm or less, more preferably 20.0 nm or less, further preferably 10.0 nm or less, particularly preferably 7.0 nm or less, and most preferably 5.0 nm or less. In addition, the reflection layer 14 and optionally the buffer layer 16 may be formed thereon. As described above, it is preferable that an arithmetic average roughness Ra that is equal to or slightly smaller than the arithmetic average roughness Ra to be applied on the outermost surface is provided on the surface of the lower layer or foil. The arithmetic average roughness Ra of the surface of the metal foil that does not constitute the outermost surface due to the laminated state is evaluated by creating a cross section from the surface of the metal foil by FIB (Focused Ion Beam) processing, and using the transmission electron microscope ( TEM), and the arithmetic average roughness Ra of the reflective layer surface that does not constitute the outermost surface due to the laminated state can be evaluated in the same manner.
 金属箔12の超平坦面は、電解研磨法、バフ研磨法、薬液研磨法、物理化学研磨法、及びこれらの組み合わせ等を用いて金属箔12を研磨することによっても実現することができる。薬液研磨法は、薬液、薬液温度、薬液浸漬時間等を適宜調整して行えばよく特に限定されないが、例えば、銅箔の薬液研磨は、2-アミノエタノールと塩化アンモニウムとの混合物を使用することにより行うことができる。薬液温度は室温が好ましく、浸漬法(Dip法)を用いるのが好ましい。また、薬液浸漬時間は、長くなると平坦性が悪化する傾向があるため、10~120秒間が好ましく、30~90秒間がより好ましい。薬液研磨後の金属箔は流水により洗浄されるのが好ましい。このような平坦化処理によれば、算術平均粗さRaが12nm程度の表面を10.0nm以下、例えば3.0nm程度のRaにまで平坦化することができる。金属箔12の超平坦面は、金属箔12の表面をブラストにより研磨する方法や、金属箔12の表面をレーザー、抵抗加熱、ランプ加熱等の手法により溶融させた後に急冷させる方法等によっても実現することもできる。 The ultra-flat surface of the metal foil 12 can also be realized by polishing the metal foil 12 using an electrolytic polishing method, a buff polishing method, a chemical polishing method, a physicochemical polishing method, or a combination thereof. The chemical polishing method is not particularly limited as long as the chemical solution, the chemical solution temperature, the chemical solution immersion time, etc. are appropriately adjusted. For example, the chemical polishing of copper foil uses a mixture of 2-aminoethanol and ammonium chloride. Can be performed. The temperature of the chemical solution is preferably room temperature, and it is preferable to use an immersion method (Dip method). Further, since the chemical solution immersion time tends to deteriorate the flatness as it becomes longer, it is preferably 10 to 120 seconds, and more preferably 30 to 90 seconds. The metal foil after chemical polishing is preferably washed with running water. According to such a flattening process, a surface having an arithmetic average roughness Ra of about 12 nm can be flattened to a Ra of 10.0 nm or less, for example, about 3.0 nm. The ultra-flat surface of the metal foil 12 can be realized by a method of polishing the surface of the metal foil 12 by blasting, a method of rapidly cooling the surface of the metal foil 12 after being melted by a technique such as laser, resistance heating, or lamp heating. You can also
 金属箔12の厚さは、フレキシブル性を損なうことなく、箔として単独でハンドリングが可能な厚さである限り特に限定されないが、典型的には1~250μmであり、好ましくは5~200μm、より好ましくは10~150μm、さらに好ましくは15~100μmであるが、電極箔に求められる用途や性能等に応じて厚さを適宜決定すればよい。したがって、金属の使用量の低減や軽量化がより望まれる場合には厚さの上限は50μm、35μm又は25μmとするのが特に好ましい一方、強度がより望まれる場合には厚さの下限を25μm、35μm又は50μmとするのが特に好ましい。このような厚さであれば、市販の裁断機を用いて簡単に切断することが可能である。また、金属箔12は、ガラス基板と異なり、割れ、欠け等の問題が無く、また、切断時のパーティクルが発生しづらい等の利点も有する。金属箔12は、四角形以外の形状、例えば、円形、三角形、多角形といった様々な形状とすることができ、しかも切断及び溶接も可能なことから、切り貼りによりキュービック状やボール状といった立体的な形状の電子デバイスを作製することも可能である。この場合、金属箔12の切断部や溶接部には、有機半導体層を形成しないことが好ましい。 The thickness of the metal foil 12 is not particularly limited as long as it is a thickness that can be handled alone as a foil without impairing flexibility, but is typically 1 to 250 μm, preferably 5 to 200 μm, more The thickness is preferably 10 to 150 μm, more preferably 15 to 100 μm, but the thickness may be appropriately determined according to the application and performance required for the electrode foil. Therefore, the upper limit of the thickness is particularly preferably 50 μm, 35 μm, or 25 μm when reduction of the amount of metal used or weight reduction is desired, while the lower limit of the thickness is 25 μm when strength is more desired. , 35 μm or 50 μm is particularly preferable. With such a thickness, it is possible to easily cut using a commercially available cutting machine. In addition, unlike the glass substrate, the metal foil 12 has no problems such as cracking and chipping, and has advantages such as less generation of particles during cutting. The metal foil 12 can have various shapes other than a quadrangle, for example, a circle, a triangle, a polygon, and can be cut and welded. It is also possible to manufacture an electronic device. In this case, it is preferable not to form the organic semiconductor layer at the cut portion or welded portion of the metal foil 12.
 金属箔12の表面には反射層14が設けられてもよい。反射層14は、アルミニウム、アルミニウム系合金、銀、及び銀系合金からなる群から選択される少なくとも一種で構成されるのが好ましい。これらの材料は、光の反射率が高いため反射層に適しており、しかも薄膜化した際の平坦性にも優れる。特に、アルミニウム又はアルミニウム系合金は安価な材料であることから好ましい。アルミニウム系合金及び銀系合金としては、発光素子や光電素子においてアノード又はカソードとして使用される一般的な合金組成を有するものが幅広く採用可能である。好ましいアルミニウム系合金組成の例としては、Al-Ni、Al-Cu、Al-Ag、Al-Ce、Al-Zn、Al-B、Al-Ta、Al-Nd、Al-Si、Al-La、Al-Co、Al-Ge、Al-Fe、Al-Li、Al-Mg、Al-Mn、Al-Ti合金が挙げられる。これらの合金を構成する元素であれば、必要な特性に合わせて任意に組み合わせることが可能である。また、好ましい銀合金組成の例としては、Ag-Pd、Ag-Cu、Ag-Al、Ag-Zn、Ag-Mg、Ag-Mn、Ag-Cr、Ag-Ti、Ag-Ta、Ag-Co、Ag-Si、Ag-Ge、Ag-Li、Ag-B、Ag-Pt、Ag-Fe、Ag-Nd、Ag-La、Ag-Ce合金が挙げられる。これらの合金を構成する元素であれば、必要な特性に合わせて任意に組み合わせることが可能である。反射層14の膜厚は特に限定されるものではないが、30~500nmの厚さを有するのが好ましく、より好ましくは50~300nmであり、さらに好ましくは100~250nmである。 A reflective layer 14 may be provided on the surface of the metal foil 12. The reflective layer 14 is preferably composed of at least one selected from the group consisting of aluminum, aluminum-based alloys, silver, and silver-based alloys. These materials are suitable for the reflective layer because of their high light reflectivity, and also have excellent flatness when thinned. In particular, aluminum or an aluminum-based alloy is preferable because it is an inexpensive material. As an aluminum alloy and a silver alloy, those having a general alloy composition used as an anode or a cathode in a light emitting element or a photoelectric element can be widely used. Examples of preferable aluminum-based alloy compositions include Al—Ni, Al—Cu, Al—Ag, Al—Ce, Al—Zn, Al—B, Al—Ta, Al—Nd, Al—Si, Al—La, Examples include Al—Co, Al—Ge, Al—Fe, Al—Li, Al—Mg, Al—Mn, and Al—Ti alloys. Any element constituting these alloys can be arbitrarily combined according to the required characteristics. Examples of preferable silver alloy compositions include Ag—Pd, Ag—Cu, Ag—Al, Ag—Zn, Ag—Mg, Ag—Mn, Ag—Cr, Ag—Ti, Ag—Ta, and Ag—Co. , Ag—Si, Ag—Ge, Ag—Li, Ag—B, Ag—Pt, Ag—Fe, Ag—Nd, Ag—La, and Ag—Ce alloy. Any element constituting these alloys can be arbitrarily combined according to the required characteristics. The thickness of the reflective layer 14 is not particularly limited, but preferably has a thickness of 30 to 500 nm, more preferably 50 to 300 nm, and still more preferably 100 to 250 nm.
 金属箔12又は反射層14の表面にはバッファ層16が設けられてもよい。バッファ層16は、有機半導体層と接触して所望の仕事関数を与えるものであれば特に限定されない。バッファ層16は、光散乱効果を十分に確保するため、透明又は半透明であるのが好ましい。バッファ層16は、導電性非晶質炭素膜、導電性酸化物膜、マグネシウム系合金膜、及びフッ化物膜から選択される少なくとも一種であるのが好ましく、アノード又はカソードといった適用用途及び要求される特性に応じて適宜選択すればよい。 A buffer layer 16 may be provided on the surface of the metal foil 12 or the reflective layer 14. The buffer layer 16 is not particularly limited as long as it provides a desired work function in contact with the organic semiconductor layer. The buffer layer 16 is preferably transparent or translucent in order to ensure a sufficient light scattering effect. The buffer layer 16 is preferably at least one selected from a conductive amorphous carbon film, a conductive oxide film, a magnesium-based alloy film, and a fluoride film. What is necessary is just to select suitably according to a characteristic.
 電極箔10の厚さは1~300μmであるのが好ましく、より好ましくは1~250μmであり、さらに好ましくは5~200μm、特に好ましくは10~150μm、最も好ましくは15~100μmであるが、電極箔に求められる用途や性能等に応じて厚さを適宜決定すればよい。したがって、金属の使用量の低減や軽量化がより望まれる場合には厚さの上限は50μm、35μm又は25μmとするのが特に好ましい一方、強度がより望まれる場合には厚さの下限を25μm、35μm又は50μmとするのが特に好ましい。これらの電極箔の厚さはいずれも前述した金属箔12の厚さと同様であるが、これは金属箔12上に形成されてもよい反射層14及び/又はバッファ層16の厚さは、通常、金属箔12の厚さに比べて無視できるほどに小さいためである。 The thickness of the electrode foil 10 is preferably 1 to 300 μm, more preferably 1 to 250 μm, still more preferably 5 to 200 μm, particularly preferably 10 to 150 μm, and most preferably 15 to 100 μm. What is necessary is just to determine thickness suitably according to the use, performance, etc. which are calculated | required by foil. Therefore, the upper limit of the thickness is particularly preferably 50 μm, 35 μm, or 25 μm when reduction of the amount of metal used or weight reduction is desired, while the lower limit of the thickness is 25 μm when strength is more desired. , 35 μm or 50 μm is particularly preferable. The thicknesses of these electrode foils are all the same as the thickness of the metal foil 12 described above, but this is usually the thickness of the reflective layer 14 and / or the buffer layer 16 that may be formed on the metal foil 12. This is because the thickness of the metal foil 12 is small enough to be ignored.
 電極箔10又は金属箔12の裏面(有機半導体層18が形成されない側の面)は、JIS B 0601-2001に準拠して181μm×136μmの矩形領域に対して測定される、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvのPv/Pp比が所定値以上である凹部優位面であるのが望ましい。最大山高さPpは凸部の高さを表す一方、最大谷深さPvは凹部の深さを表す。したがって、所定値以上のPv/Pp比は、凹部を凸部よりも優先的に備えた特異的な表面プロファイルを意味する。具体的には、凹部優位面のPv/Pp比は1.10以上が好ましく、より好ましくは1.20以上であり、より好ましくは1.30以上であり、さらに好ましくは1.40以上である。これにより、有機EL等の発光素子とした場合に問題となりうるダークスポットの低減を図ることができる。すなわち、電極箔10又は金属箔12の表面(有機半導体層18が形成される側の面)に深めの傷、特にえぐれ傷(浅いひっかき傷ではなく深くえぐれた形態の傷、例えば深さ0.1μm以上の傷)が存在する場合、その傷の発生に起因してその傷の周囲に突起が生じることがあり、その突起が、有機EL等の発光素子においてダークスポットと呼ばれる発光が劣化した部分を生じさせることがある。この点、凹部優位面のPv/Pp比を1.10以上とした場合、ロール状態から引き出された箔表面において上述したえぐれ傷の発生が有意に抑制され、それによりダークスポットが有意に低減された高性能な発光素子の提供が可能となる。Pv/Pp比を1.10以上の凹部優位面は、裏面初期粗さに応じて、金属箔の裏面処理条件を裏面に光沢が発生するようなレベルに設定することで都合良く実現することができる。Pv/Pp比は高ければ高い程望ましいため特に限定されないが、その上限値は10.0辺りが現実的である。なお、最大山高さPp及び最大谷深さPvは、市販の非接触表面形状測定機を用いてJIS B 0601-2001に準拠して測定することができる。この態様において、箔裏面(凹部優位面)のRaは80nm以下が好ましく、より好ましくは70nm以下であり、さらに好ましくは60nm以下であり、特に好ましくは50nm以下であり、特により好ましくは40nm以下であり、最も好ましくは30nm以下である。 The back surface of the electrode foil 10 or the metal foil 12 (the surface on which the organic semiconductor layer 18 is not formed) is measured with respect to a rectangular area of 181 μm × 136 μm in accordance with JIS B 0601-2001. It is desirable that the surface has a recess-dominant surface where the Pv / Pp ratio of the maximum valley depth Pv of the cross-sectional curve with respect to the depth Pp is a predetermined value or more. The maximum peak height Pp represents the height of the convex portion, while the maximum valley depth Pv represents the depth of the concave portion. Therefore, a Pv / Pp ratio equal to or greater than a predetermined value means a specific surface profile having a concave portion preferentially over a convex portion. Specifically, the Pv / Pp ratio of the concave dominant surface is preferably 1.10 or more, more preferably 1.20 or more, more preferably 1.30 or more, and further preferably 1.40 or more. . As a result, it is possible to reduce dark spots that may be problematic when a light emitting element such as an organic EL is used. That is, the surface of the electrode foil 10 or the metal foil 12 (the surface on the side where the organic semiconductor layer 18 is formed) has a deep scratch, particularly a scratch (a deep scratch, not a shallow scratch, for example, a depth of 0. When there is a scratch of 1 μm or more, a protrusion may be generated around the scratch due to the generation of the scratch, and the protrusion is a portion where light emission called a dark spot is deteriorated in a light emitting element such as an organic EL. May occur. In this respect, when the Pv / Pp ratio of the recess-dominant surface is 1.10 or more, the occurrence of the above-mentioned blemishes on the foil surface drawn out from the roll state is significantly suppressed, and thereby dark spots are significantly reduced. High-performance light-emitting elements can be provided. A concave dominant surface with a Pv / Pp ratio of 1.10 or more can be conveniently realized by setting the back surface processing conditions of the metal foil to a level at which gloss occurs on the back surface according to the initial back surface roughness. it can. The Pv / Pp ratio is preferably as high as possible and is not particularly limited. However, the upper limit value is practically around 10.0. The maximum peak height Pp and the maximum valley depth Pv can be measured in accordance with JIS B 0601-2001 using a commercially available non-contact surface shape measuring machine. In this embodiment, Ra on the foil back surface (recess dominant surface) is preferably 80 nm or less, more preferably 70 nm or less, further preferably 60 nm or less, particularly preferably 50 nm or less, and particularly preferably 40 nm or less. Yes, most preferably 30 nm or less.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例1:Cu/Al合金/C電極箔の作製
 50mm四方のCu箔/Al反射膜/Cバッファ層からなる電極箔を以下のようにして作製した。金属箔として、厚さ64μmの市販の両面平坦電解銅箔(三井金属鉱業社製DFF(Dual Flat Foil)を用意した。銅箔表面の粗さを走査型プローブ顕微鏡(Veeco社製、Nano Scope V)を用いてJIS B 0601-2001に準拠して測定したところ、算術平均粗さRa:12.20nmであった。この測定は、10μm四方の範囲について、Tapping Mode AFMにて行った。
Example 1 Production of Cu / Al Alloy / C Electrode Foil An electrode foil composed of 50 mm square Cu foil / Al reflective film / C buffer layer was produced as follows. As a metal foil, a commercially available double-sided flat electrolytic copper foil having a thickness of 64 μm (DFF (Dual Flat Foil) manufactured by Mitsui Mining & Smelting Co., Ltd.) was prepared. ) Was measured according to JIS B 0601-2001, and the arithmetic average roughness Ra was 12.20 nm, and this measurement was performed in a taping mode AFM in the range of 10 μm square.
 この銅箔を、エムエーティー社製研磨機を用いたCMP処理に付した。このCMP処理は、XY溝付き研磨パット及びコロイダルシリカ系研磨液を用いて、パッド回転数:30rpm、荷重:200gf/cm、液供給量:100cc/minの条件で行った。こうしてCMP処理された銅箔表面の粗さを走査型プローブ顕微鏡(Veeco社製、Nano Scope V)を用いてJIS B 0601-2001に準拠して測定したところ、算術平均粗さRaは0.7nmであった。この測定は、10μm四方の範囲について、Tapping Mode AFMにて行った。CMP処理後の銅箔の厚さは48μmであった。 This copper foil was subjected to a CMP treatment using a polishing machine manufactured by MTT. This CMP treatment was performed using a polishing pad with XY grooves and a colloidal silica-based polishing liquid under the conditions of pad rotation speed: 30 rpm, load: 200 gf / cm 2 , and liquid supply amount: 100 cc / min. The roughness of the copper foil surface thus treated with CMP was measured in accordance with JIS B 0601-2001 using a scanning probe microscope (Veeco, Nano Scope V). The arithmetic average roughness Ra was 0.7 nm. Met. This measurement was performed in a taping mode AFM for a 10 μm square range. The thickness of the copper foil after the CMP treatment was 48 μm.
 CMP処理された銅箔の表面に、膜厚150nmのAl合金反射層をスパッタリング法により成膜した。このスパッタリングは、Al-0.2B-3.2Ni(at.%)の組成を有するアルミニウム合金ターゲット(直径203.2mm×8mm厚)をクライオ(Cryo)ポンプが接続されたマグネトロンスパッタ装置(MSL-464、トッキ株式会社製)に装着した後、投入パワー(DC):1000W(3.1W/cm)、到達真空度:<5×10-5Pa、スパッタ圧力:0.5Pa、Ar流量:100sccm、基板温度:室温の条件で行った。 A 150 nm-thick Al alloy reflective layer was formed on the surface of the CMP-treated copper foil by sputtering. This sputtering is performed by a magnetron sputtering apparatus (MSL-) in which an aluminum alloy target (diameter 203.2 mm × 8 mm thickness) having a composition of Al-0.2B-3.2Ni (at.%) Is connected to a Cryo pump. 464, manufactured by Tokki Co., Ltd.), input power (DC): 1000 W (3.1 W / cm 2 ), ultimate vacuum: <5 × 10 −5 Pa, sputtering pressure: 0.5 Pa, Ar flow rate: The measurement was performed under the conditions of 100 sccm and substrate temperature: room temperature.
 こうして得られたアルミ合金反射層の表面に、膜厚3.5nmのカーボンバッファ層をスパッタリング法により成膜した。このスパッタリングのためのカーボンターゲットとしては、カーボン材料(IGS743材、東海カーボン社製)にハロゲンガスによる純化処理を施して作製された純度5N(99.999%)のカーボンターゲットを用意した。これらのターゲットの各々を用いてスパッタリング法によりカーボンバッファ層を成膜した。このスパッタリングは、各カーボンターゲット(直径203.2mm×8mm厚)をクライオ(Cryo)ポンプが接続されたマグネトロンスパッタ装置(マルチチャンバー枚葉式成膜装置MSL-464、トッキ株式会社製)に装着した後、投入パワー(DC):250W(0.8W/cm)、到達真空度:<5×10-5Pa、スパッタ圧力:0.5Pa、Ar流量:100sccm、基板温度:室温の条件で行った。膜厚の制御は、放電時間を制御することにより行った。こうして得られたバッファ層表面の粗さを上記同様にして測定したところ、算術平均粗さRaは2.45nmであった。得られた電極箔の全体としての厚さは48μmであった。 A carbon buffer layer having a film thickness of 3.5 nm was formed on the surface of the aluminum alloy reflective layer thus obtained by sputtering. As a carbon target for sputtering, a carbon target having a purity of 5N (99.999%) prepared by subjecting a carbon material (IGS743 material, manufactured by Tokai Carbon Co., Ltd.) to a purification treatment with a halogen gas was prepared. A carbon buffer layer was formed by sputtering using each of these targets. In this sputtering, each carbon target (diameter 203.2 mm × 8 mm thickness) was mounted on a magnetron sputtering apparatus (multi-chamber single-wafer type film forming apparatus MSL-464, manufactured by Tokki Co., Ltd.) connected to a cryo pump. Input power (DC): 250 W (0.8 W / cm 2 ), ultimate vacuum: <5 × 10 −5 Pa, sputtering pressure: 0.5 Pa, Ar flow rate: 100 sccm, substrate temperature: room temperature. The film thickness was controlled by controlling the discharge time. When the roughness of the surface of the buffer layer thus obtained was measured in the same manner as described above, the arithmetic average roughness Ra was 2.45 nm. The total thickness of the obtained electrode foil was 48 μm.
 例2:有機EL素子の作製
 例1で作製された50mm四方のCu箔/Al反射膜/Cバッファ層からなる電極箔をアノードとして用いて、図2に示されるような構造の有機EL素子を作製した。具体的には、電極箔10のバッファ層表面に1.3質量%のPEDOT:PSS分散溶液(Heraeus社製)を5000rpmでスピンコートして厚さ30nmの膜を正孔注入層として形成した。その後、電極箔10の端部から約1cm内側までの領域を、純水を染み込ませた無塵布で拭き取り、PEDOT:PPSが塗布された30mm四方の領域を画定した後、ホットプレート上にて120℃で20分間焼成して正孔注入層とした。次いで、正孔注入層と同じサイズ(30mm四方)のメタルマスクを用いて、正孔注入層上に、4,4’-ビス(N,N’-(3-トリル)アミノ)-3,3’-ジメチルビフェニル(HMTPD)からなる厚さ40nmの正孔輸送層、トリス(2-フェニルピリジン)イリジウム錯体(Ir(ppy))がホスト材料中にドープされてなる厚さ30nmの発光層、Alq3からなる厚さ30nmの電子輸送層を真空蒸着法により順次積層させた。
Example 2 Production of Organic EL Element An organic EL element having a structure as shown in FIG. 2 was prepared using the electrode foil made of 50 mm square Cu foil / Al reflective film / C buffer layer produced in Example 1 as an anode. Produced. Specifically, a 1.3% by mass PEDOT: PSS dispersion solution (manufactured by Heraeus) was spin coated at 5000 rpm on the surface of the buffer layer of the electrode foil 10 to form a 30 nm thick film as a hole injection layer. Thereafter, the area from the end of the electrode foil 10 to about 1 cm inside is wiped off with a dust-free cloth soaked with pure water to define a 30 mm square area coated with PEDOT: PPS, and then on the hot plate. The hole injection layer was obtained by baking at 120 ° C. for 20 minutes. Next, using a metal mask having the same size as the hole injection layer (30 mm square), 4,4′-bis (N, N ′-(3-tolyl) amino) -3,3 is formed on the hole injection layer. A 40 nm thick hole transport layer made of '-dimethylbiphenyl (HMTPD), a 30 nm thick light emitting layer in which tris (2-phenylpyridine) iridium complex (Ir (ppy) 3 ) is doped in the host material, An electron transport layer made of Alq3 and having a thickness of 30 nm was sequentially laminated by a vacuum deposition method.
 こうして形成された30mm四方の有機半導体層18上に、それより面積の小さい25mm四方の開口部を備えたメタルマスクを用いて、LiF層(厚さ0.8nm)/Al層(厚さ0.8nm)/Ag層(厚さ20nm)の積層構造からなる上部電極層20を作製した。このとき、上部電極層20の外縁が有機半導体層18の外縁よりも内側に位置するようにした。補助配線用のマスクを用いて、図2に示されるように上部電極層20の外縁を構成する4辺の近傍にAlを蒸着して、厚さ0.5μmの補助配線22’を形成した。こうして上部電極層20及び補助配線22’が設けられた側の表面を、SiNx層(厚さ300nm)、接着層(厚さ2000nm)及びSiNx層(厚さ200nm)がCVDで被覆されたPENフィルム(厚さ200μm)からなる封止層24で封止した。補助配線22’が形成された位置において封止層24のPENフィルム上から炭酸ガスレーザーを照射して、補助配線22’に到達する直径1.0mmのコンタクトホール26を形成した。コンタクトホール26内及びそこから延在させるように銀ペーストインクで引出電極28を形成し、室温で放置してペースト内の溶剤を蒸発させた。こうして有機EL素子を形成した。得られた有機EL素子を作動させたところ、リーク電流は発生せず、画素領域の全体にわたって均一な発光が観察された。 A LiF layer (thickness 0.8 nm) / Al layer (thickness 0. 5 mm) is formed on the 30 mm square organic semiconductor layer 18 formed in this manner using a metal mask having a 25 mm square opening having a smaller area. An upper electrode layer 20 having a laminated structure of 8 nm) / Ag layer (thickness 20 nm) was produced. At this time, the outer edge of the upper electrode layer 20 was positioned inside the outer edge of the organic semiconductor layer 18. Using an auxiliary wiring mask, as shown in FIG. 2, Al was deposited in the vicinity of the four sides constituting the outer edge of the upper electrode layer 20 to form an auxiliary wiring 22 ′ having a thickness of 0.5 μm. Thus, the PEN film in which the surface on which the upper electrode layer 20 and the auxiliary wiring 22 ′ are provided is coated with the SiNx layer (thickness 300 nm), the adhesive layer (thickness 2000 nm), and the SiNx layer (thickness 200 nm) by CVD. Sealing was performed with a sealing layer 24 (thickness: 200 μm). A carbon dioxide laser was irradiated from above the PEN film of the sealing layer 24 at a position where the auxiliary wiring 22 'was formed, thereby forming a contact hole 26 having a diameter of 1.0 mm reaching the auxiliary wiring 22'. An extraction electrode 28 was formed with silver paste ink so as to extend in and from the contact hole 26, and left at room temperature to evaporate the solvent in the paste. Thus, an organic EL element was formed. When the obtained organic EL element was operated, no leak current was generated, and uniform light emission was observed over the entire pixel region.

Claims (19)

  1.  少なくとも金属箔を含んでなる電極箔と、
     前記電極箔の表面に部分的に設けられる有機半導体層と、
     前記有機半導体層上に設けられる上部電極層と、
     前記電極箔、前記有機半導体層及び前記上部電極層上に設けられ、前記電極箔、前記有機半導体層及び前記上部電極層の露出部分を覆う封止層と、
     前記封止層を貫通するように設けられ、前記上部電極層との電気的接続を可能にする少なくとも1つのコンタクトホールと、
    を備えてなる、有機半導体デバイス。
    An electrode foil comprising at least a metal foil;
    An organic semiconductor layer partially provided on the surface of the electrode foil;
    An upper electrode layer provided on the organic semiconductor layer;
    A sealing layer provided on the electrode foil, the organic semiconductor layer, and the upper electrode layer, and covering an exposed portion of the electrode foil, the organic semiconductor layer, and the upper electrode layer;
    At least one contact hole provided to penetrate the sealing layer and enabling electrical connection with the upper electrode layer;
    An organic semiconductor device comprising:
  2.  前記電極箔が前記有機半導体層の外縁に沿って前記有機半導体層が形成されていない領域を有し、該有機半導体層非形成領域において前記封止層が前記電極箔と接合されている、請求項1に記載の有機半導体デバイス。 The electrode foil has a region where the organic semiconductor layer is not formed along an outer edge of the organic semiconductor layer, and the sealing layer is bonded to the electrode foil in the region where the organic semiconductor layer is not formed. Item 10. The organic semiconductor device according to Item 1.
  3.  前記有機半導体層及び前記上部電極層がそれらの全面にわたって前記電極箔に対して平行に設けられている、請求項1又は2に記載の有機半導体デバイス。 The organic semiconductor device according to claim 1 or 2, wherein the organic semiconductor layer and the upper electrode layer are provided in parallel to the electrode foil over the entire surface thereof.
  4.  前記有機半導体層が前記上部電極層の外縁に沿って前記上部電極層が形成されてない領域を有し、該上部電極層非形成領域において前記封止層が前記有機半導体層と接合されている、請求項1~3のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor layer has a region where the upper electrode layer is not formed along an outer edge of the upper electrode layer, and the sealing layer is bonded to the organic semiconductor layer in the region where the upper electrode layer is not formed The organic semiconductor device according to any one of claims 1 to 3.
  5.  前記上部電極層上に直接設けられる少なくとも1つの補助配線をさらに備えた、請求項1~4のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 4, further comprising at least one auxiliary wiring provided directly on the upper electrode layer.
  6.  前記補助配線上に前記コンタクトホールが配置される、請求項5に記載の有機半導体デバイス。 The organic semiconductor device according to claim 5, wherein the contact hole is disposed on the auxiliary wiring.
  7.  前記補助配線が、前記上部電極層上における、前記上部電極層の外縁及び/又はその近傍の少なくとも一部の領域に設けられる、請求項5又は6に記載の有機半導体デバイス。 The organic semiconductor device according to claim 5 or 6, wherein the auxiliary wiring is provided on at least a part of the outer edge of the upper electrode layer and / or the vicinity thereof on the upper electrode layer.
  8.  前記補助配線が、前記有機半導体層上における前記上部電極層の外縁近傍にまで延在し、それにより前記有機半導体層と前記上部電極層の境界線の少なくとも一部が補助配線で被覆されてなる、請求項7に記載の有機半導体デバイス。 The auxiliary wiring extends to the vicinity of the outer edge of the upper electrode layer on the organic semiconductor layer, whereby at least part of the boundary line between the organic semiconductor layer and the upper electrode layer is covered with the auxiliary wiring. The organic-semiconductor device of Claim 7.
  9.  前記上部電極層が矩形状に形成され、前記補助配線が前記矩形状の上部電極層の外縁及び/又はその近傍の少なくとも1辺を構成している、請求項7又は8に記載の有機半導体デバイス。 The organic semiconductor device according to claim 7 or 8, wherein the upper electrode layer is formed in a rectangular shape, and the auxiliary wiring constitutes at least one side of the outer edge of the rectangular upper electrode layer and / or the vicinity thereof. .
  10.  前記有機半導体層が前記電極箔上に複数個配列されてなり、各有機半導体層が互いに離間されてなる、請求項1~9のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 9, wherein a plurality of the organic semiconductor layers are arranged on the electrode foil, and the organic semiconductor layers are separated from each other.
  11.  前記金属箔が1~250μmの厚さを有する、請求項1~10のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 10, wherein the metal foil has a thickness of 1 to 250 µm.
  12.  前記電極箔又は電極箔の裏面が、JIS B 0601-2001に準拠して181μm×136μmの矩形領域に対して測定される、断面曲線の最大山高さPpに対する断面曲線の最大谷深さPvのPv/Pp比で1.10以上を有する、請求項1~11のいずれか一項に記載の有機半導体デバイス。 The electrode foil or the back surface of the electrode foil is measured with respect to a rectangular area of 181 μm × 136 μm according to JIS B 0601-2001, Pv of the maximum valley depth Pv of the cross-sectional curve with respect to the maximum peak height Pp of the cross-sectional curve The organic semiconductor device according to any one of claims 1 to 11, which has a / Pp ratio of 1.10 or more.
  13.  前記電極箔の表面が、JIS B 0601-2001に準拠して測定される、60.0nm以下の算術平均粗さRaを有する、請求項1~12のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 12, wherein the surface of the electrode foil has an arithmetic average roughness Ra of 60.0 nm or less as measured in accordance with JIS B 0601-2001.
  14.  前記金属箔が、銅箔である、請求項1~13のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 13, wherein the metal foil is a copper foil.
  15.  前記電極箔が前記金属箔上に反射層をさらに備えた、請求項1~14のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 14, wherein the electrode foil further comprises a reflective layer on the metal foil.
  16.  前記電極箔が前記金属箔上に透明又は半透明のバッファ層をさらに備えた、請求項1~14のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 14, wherein the electrode foil further comprises a transparent or translucent buffer layer on the metal foil.
  17.  前記電極箔が前記反射層上に透明又は半透明のバッファ層をさらに備えた、請求項15に記載の有機半導体デバイス。 The organic semiconductor device according to claim 15, wherein the electrode foil further includes a transparent or translucent buffer layer on the reflective layer.
  18.  前記有機半導体層が励起発光又は光励起発電の機能を有し、それにより前記有機半導体デバイスが発光素子又は光電素子として機能する、請求項1~17のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 17, wherein the organic semiconductor layer has a function of excitation light emission or photoexcitation power generation, whereby the organic semiconductor device functions as a light emitting element or a photoelectric element.
  19.  フレキシブル性を有する、請求項1~18のいずれか一項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 18, which has flexibility.
PCT/JP2014/052140 2013-08-23 2014-01-30 Organic semiconductor device WO2015025530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013173045A JP2015041566A (en) 2013-08-23 2013-08-23 Organic semiconductor device
JP2013-173045 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025530A1 true WO2015025530A1 (en) 2015-02-26

Family

ID=52483324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052140 WO2015025530A1 (en) 2013-08-23 2014-01-30 Organic semiconductor device

Country Status (3)

Country Link
JP (1) JP2015041566A (en)
TW (1) TW201508965A (en)
WO (1) WO2015025530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188924A1 (en) * 2015-05-26 2016-12-01 Astron Fiamm Safety Method for manufacturing an organic light-emitting diode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568036B (en) * 2015-11-23 2017-01-21 財團法人工業技術研究院 Illumination device
US9923135B2 (en) 2015-11-23 2018-03-20 Industrial Technology Research Institute Light-emitting assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243772A (en) * 2007-03-29 2008-10-09 Seiko Epson Corp Light-emitting apparatus and manufacturing method therefor
WO2011152092A1 (en) * 2010-06-04 2011-12-08 三井金属鉱業株式会社 Electrode foil and organic device
WO2011152091A1 (en) * 2010-06-04 2011-12-08 三井金属鉱業株式会社 Electrode foil and organic device
JP2012142315A (en) * 2007-02-08 2012-07-26 Seiko Epson Corp Light emitting device
JP2012517091A (en) * 2009-02-05 2012-07-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sealed electroluminescent device
WO2013051358A1 (en) * 2011-10-04 2013-04-11 コニカミノルタホールディングス株式会社 Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142315A (en) * 2007-02-08 2012-07-26 Seiko Epson Corp Light emitting device
JP2008243772A (en) * 2007-03-29 2008-10-09 Seiko Epson Corp Light-emitting apparatus and manufacturing method therefor
JP2012517091A (en) * 2009-02-05 2012-07-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sealed electroluminescent device
WO2011152092A1 (en) * 2010-06-04 2011-12-08 三井金属鉱業株式会社 Electrode foil and organic device
WO2011152091A1 (en) * 2010-06-04 2011-12-08 三井金属鉱業株式会社 Electrode foil and organic device
WO2013051358A1 (en) * 2011-10-04 2013-04-11 コニカミノルタホールディングス株式会社 Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188924A1 (en) * 2015-05-26 2016-12-01 Astron Fiamm Safety Method for manufacturing an organic light-emitting diode
FR3036853A1 (en) * 2015-05-26 2016-12-02 Astron Fiamm Safety METHOD FOR PRODUCING AN ORGANIC ELECTROLUMINESCENT DIODE

Also Published As

Publication number Publication date
JP2015041566A (en) 2015-03-02
TW201508965A (en) 2015-03-01

Similar Documents

Publication Publication Date Title
US9490440B2 (en) Electrode foil and organic device
US8586976B2 (en) Electrode foil and organic device
US8816338B2 (en) Electrode foil and organic device
WO2013118325A1 (en) Electrode foil and electronic device
JP5297546B1 (en) Electrode foil and electronic device
JP6141641B2 (en) Electrolytic copper foil and electronic device
US20140008634A1 (en) Electrode Sheet for Organic Device, Organic Device Module, and Method for Producing Same
TW200527970A (en) Electrode for organic light emitting device and organic light emitting device comprising the same
WO2015025530A1 (en) Organic semiconductor device
KR20160098196A (en) Electrolytic copper foil and manufacturing method therefor
KR101597749B1 (en) Metal foil and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837505

Country of ref document: EP

Kind code of ref document: A1