WO2013051358A1 - Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element - Google Patents

Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element Download PDF

Info

Publication number
WO2013051358A1
WO2013051358A1 PCT/JP2012/072434 JP2012072434W WO2013051358A1 WO 2013051358 A1 WO2013051358 A1 WO 2013051358A1 JP 2012072434 W JP2012072434 W JP 2012072434W WO 2013051358 A1 WO2013051358 A1 WO 2013051358A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
hole
organic
sealing
substrate
Prior art date
Application number
PCT/JP2012/072434
Other languages
French (fr)
Japanese (ja)
Inventor
小島 茂
源田 和男
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2013051358A1 publication Critical patent/WO2013051358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Definitions

  • the present invention relates to an organic electroluminescence device, a planar light emitter, and a method for manufacturing an organic electroluminescence device.
  • An organic electroluminescent element is an element using electroluminescence of an organic material (hereinafter referred to as an organic EL element), and mainly includes an anode, a cathode, and an organic light emitting functional layer provided between the anode and the cathode. Composed.
  • an organic EL element having such a configuration light generated in the organic light emitting functional layer (hereinafter referred to as light emission) is extracted from the surface of the anode or the cathode, so that uniform illumination can be obtained on the emission surface.
  • light emission light generated in the organic light emitting functional layer
  • organic EL elements can obtain emitted light that does not contain ultraviolet rays, a light source that is gentle to the eyes can be obtained.
  • an organic EL element does not contain a harmful metal, it is an element with high environmental suitability. From the above, recently, organic EL elements are promising as planar light emitters in applications such as display devices and lighting devices (displays).
  • the organic EL element normally seals the organic light emitting functional layer using a sealing member in order to prevent deterioration due to the ingress of active gas or moisture. For this reason, a sealing region is provided at the peripheral portion of the organic EL element, and a non-light emitting region in which the organic light emitting functional layer is not disposed is formed. Furthermore, since the organic EL element is also provided with a power supply terminal region for supplying power to the anode and the cathode, a non-light emitting region in which the organic light emitting functional layer is not disposed is also formed in the power supply terminal region.
  • Patent Document 1 in an organic EL element in which a first electrode (anode), an organic layer, a second electrode (cathode), and a sealing film are stacked in this order on a substrate, a part of the sealing film is provided with a first There has been proposed a technique in which one terminal is provided and the first terminal and the first electrode are connected by a through hole penetrating the organic layer, the second electrode, and the sealing film.
  • Patent Document 1 an opening is provided in a part of the sealing film formed on the second electrode, and the second electrode exposed in the opening is used as the second terminal.
  • the non-light emitting region is reduced by adopting such an electrode configuration.
  • the present invention has been made to meet the above-mentioned demands, and an object of the present invention is to reduce the non-light emitting region and improve the performance and quality, an organic EL element, a planar light emitter, and It is providing the manufacturing method of an organic EL element.
  • an organic EL device of the present invention includes an element substrate, a first electrode formed on the element substrate, an organic compound formed on the first electrode and including a light emitting layer. A layer, a second electrode formed on the organic compound layer, and an insulating sealing material provided to cover the surface of the element base on the second electrode side.
  • the organic EL element of the present invention is provided in a part of a region facing the first electrode of one member of the insulating sealing material and the element base material so as to penetrate in the thickness direction of the member, and A first through-hole electrode whose tip is in contact with the first electrode, and a part of a region of the member facing the second electrode, which is provided so as to penetrate in the thickness direction of the member;
  • the second through-hole electrode is in contact with the two electrodes.
  • the planar light-emitting body of the present invention includes a plurality of the organic EL elements of the present invention and a support member that supports the plurality of organic EL elements arranged in a predetermined form.
  • the manufacturing method of the organic EL element of this invention shall be performed in the following procedure.
  • an organic compound layer including a light emitting layer is formed on the first electrode.
  • a second electrode is formed on the organic compound layer.
  • an insulating sealing material for sealing the surface of the element base on the second electrode side, a part of the region facing the first electrode of one member of the element base, and the first of the member A first through hole and a second through hole are formed in a part of the region facing the two electrodes, respectively.
  • a first through-hole electrode having a shape extending along the thickness direction of the member and protruding from the surface of the member on the organic compound layer side and electrically connected to the first electrode and the second electrode, respectively
  • the second through-hole electrode is formed to seal the first through-hole and the second through-hole, respectively.
  • an insulating sealing material is provided on an element base material so that the surface by the side of the 2nd electrode of an element base material may be sealed.
  • the first through-hole electrode and the second through-hole electrode that are in contact with the first electrode and the second electrode, respectively, on one member of the insulating sealing material and the element base material. Is provided. That is, in the organic EL element of the present invention, the first through-hole electrode and the second through-hole electrode are used as power supply terminals. Therefore, in the present invention, the non-light emitting region can be reduced.
  • the first through-hole electrode and the second through-hole electrode act as a part of the sealing member. Therefore, in the present invention, an organic EL element having excellent moisture resistance can be provided.
  • the non-light emitting region can be reduced and the performance and quality can be improved.
  • FIG. 1 is a schematic cross-sectional view of an organic EL element according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the organic light emitting functional layer.
  • FIG. 3 is a diagram showing the relationship between the sealing margin and the dark spot generation area.
  • FIG. 4 is a schematic cross-sectional view of a planar light emitter according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of the organic EL element of Modification 1.
  • FIG. 6 is a schematic cross-sectional view of an organic EL element according to Modification 2.
  • FIG. 7 is a schematic cross-sectional view of an organic EL element of Modification 3.
  • FIG. 8 is a schematic cross-sectional view of the element main body in the organic EL element of Example 1.
  • FIG. 9A and 9B are diagrams for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 10A and 10B are diagrams for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 11A and 11B are diagrams for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 12A and 12B are diagrams for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 13 is a diagram illustrating a light emitting region of the organic EL element of Example 1.
  • FIG. 14A and 14B are diagrams for explaining a method of manufacturing the organic EL element of Example 1.
  • FIG. 15A and 15B are diagrams for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 16A and 16B are diagrams for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 17 is a diagram for explaining a method for manufacturing the organic EL element of Example 1.
  • FIG. 18A and 18B are schematic configuration diagrams of a sealing substrate of Example 2.
  • FIG. 19 is a schematic cross-sectional view of a sealing substrate on which through-hole electrodes are formed in Example 2.
  • FIG. 20 is a schematic configuration diagram of a sealing substrate of a comparative example.
  • FIG. 21 is a schematic cross-sectional view of a sealing substrate on which through-hole electrodes of Example 6 are formed.
  • FIG. 22 is a schematic cross-sectional view of a sealing substrate on which through-hole electrodes of Example 7 are formed.
  • FIG. 1 is a schematic cross-sectional view of the organic EL element of the present embodiment.
  • the organic EL element 10 includes an element substrate 1 (element base), an anode 2 (first electrode), an organic light emitting functional layer 3 (organic compound layer), a cathode 4 (second electrode), and a cathode lead electrode 4a.
  • a sealing base material 5 insulating sealing material
  • a sealing material 6 adheresive material
  • an anode through-hole electrode 7 first through-hole electrode
  • a cathode through-hole electrode 8 second through-hole. Hall electrode).
  • the anode 2, the organic light emitting functional layer 3, and the cathode 4 are laminated on the element substrate 1 in this order. That is, on the element substrate 1, the anode 2 and the cathode 4 are configured by the organic light emitting functional layer 3 in a state in which insulation is maintained.
  • the cathode lead electrode 4 a is formed in a region different from the anode 2 on the surface of the element substrate 1. Further, a part of the cathode 4 is formed on a partial region of the cathode lead electrode 4a. As a result, the cathode 4 is electrically connected to the cathode lead electrode 4a.
  • the organic EL element 10 of the present embodiment is an organic EL element manufactured by a solid adhesion sealing type sealing method
  • the sealing substrate 5 is a cathode of the element substrate 1 through the sealing material 6. It is fixed over the entire surface on the 4 side.
  • the inside of the organic EL element 10 is sealed with the sealing base material 5 in order to prevent the deterioration of the organic light emitting functional layer 3.
  • a space for sealing the organic EL element is provided, and the organic light emitting functional layer 3 is disposed at the approximate center of the element substrate 1.
  • the anode through-hole electrode 7 is a vertical hole electrode formed through the sealing substrate 5 and the sealing material 6 in the thickness direction of the organic EL element 10, and is provided near the outer peripheral end of the anode 2. It is formed on the region of the extraction electrode portion.
  • the anode through-hole electrode 7 is formed of a conductive material, and extends from the surface of the sealing substrate 5 opposite to the sealing material 6 side to the surface of the anode 2. At this time, one end portion (upper portion in FIG. 1) of the anode through-hole electrode 7 is formed so as to be exposed on the surface of the sealing substrate 5 opposite to the sealing material 6 side, and the other end portion ( In FIG. 1, the lower part (tip) is formed so as to contact the anode 2. As a result, the anode through-hole electrode 7 is electrically connected to the anode 2.
  • the shape of the anode through-hole electrode 7 is substantially conical and the tip surface thereof is a flat surface (hereinafter referred to as a truncated cone shape).
  • a truncated cone shape An example is shown.
  • the diameter of the anode through-hole electrode 7 shows an example in which the diameter gradually decreases from the sealing substrate 5 toward the anode 2.
  • the cathode through-hole electrode 8 is a vertical hole electrode formed through the sealing substrate 5 and the sealing material 6 in the thickness direction of the organic EL element 10 in the same manner as the anode through-hole electrode 7. It is formed on the region of the cathode lead electrode 4a.
  • the cathode through-hole electrode 8 is formed of a conductive material and extends from the surface of the sealing substrate 5 opposite to the sealing material 6 side to the surface of the cathode lead electrode 4a. At this time, one end portion (upper portion in FIG. 1) of the cathode through-hole electrode 8 is formed so as to be exposed on the surface of the sealing substrate 5 opposite to the sealing material 6 side, and the other end portion ( The lower part in FIG. 1 is formed in contact with the cathode lead electrode 4a. Thereby, the through-hole electrode 8 for cathodes is electrically connected with the cathode 4 via the cathode extraction electrode 4a.
  • the shape of the cathode through-hole electrode 8 is the same as the shape of the anode through-hole electrode 7. Note that the present invention is not limited to this, and the configuration (shape, size, etc.) of the cathode through-hole electrode 8 is different from the configuration of the anode through-hole electrode 7 depending on conditions such as the use and surrounding wiring pattern. May be different.
  • FIG. 1 shows an example in which the anode 2, the organic light emitting functional layer 3 and the cathode 4 are formed in this order on the element substrate 1.
  • the present invention is not limited to this, and the lamination of these layers is shown. The order may be reversed.
  • an electrode disposed on the element substrate 1 side of the organic light emitting functional layer 3 is formed of a transparent electrode.
  • the electrode (the other of the anode 2 and the cathode 4) disposed on the side opposite to the element substrate 1 side of the organic light emitting functional layer 3 is composed of an electrode (reflecting electrode) having light reflectivity.
  • the entire element substrate 1 is covered with the sealing base material 5 and two through holes 5a and 5b are formed in the sealing base material 5 and then each through hole is sealed.
  • through-hole electrodes are provided (filled) in the respective through-holes.
  • the anode through-hole electrode 7 is provided in one through-hole 5a (first through-hole)
  • the cathode through-hole electrode 8 is provided in the other through-hole 5b (second through-hole).
  • the through-hole electrode is brought into contact (electrically connected) with the corresponding electrode film (anode 2 and cathode 4). That is, in the present embodiment, the through-hole electrode is used as a power supply terminal to the corresponding electrode film and also used as a part of the sealing member.
  • the organic EL element 10 of the present embodiment it is not necessary to separately provide a power supply terminal area in the surface of the element substrate 1, and the non-light emitting area can be reduced.
  • the non-light emitting region can be designed in consideration of only the sealing performance.
  • the entire element substrate 1 is covered with the sealing base material 5 and the power feeding portion is sealed with the through-hole electrode. Therefore, in this embodiment, sufficient high temperature storage stability and high humidity storage stability can be ensured. Further, since the power supply terminal portion (electrode connection portion) is exposed on the outer surface of the sealing substrate 5, wiring from the power source can be easily connected, and an increase in drive voltage can be avoided. . That is, in the organic EL element 10 of the present embodiment, high temperature / high humidity storage stability can be maintained, an increase in driving voltage can be suppressed, and a non-light emitting region can be reduced.
  • Patent Document 1 The inventor has verified the method proposed in the above-mentioned Patent Document 1 using the through-hole electrode as the anode power supply terminal and the cathode region exposed at the opening of the sealing film as the cathode power supply terminal. As a result, it was found that it was difficult to maintain high temperature and high humidity storage stability with this configuration. It was also found that with this configuration, a good wiring connection to the power feeding portion could not be obtained, and the drive voltage increased. However, with the configuration of the present embodiment, problems that may occur in the technique described in Patent Document 1 can be solved.
  • the element substrate 1 is a substrate that supports the anode 2, the cathode 4, and the organic light emitting functional layer 3.
  • the element substrate 1 is formed of a material having high light transmittance with respect to visible light.
  • a plate-like member such as a glass substrate, a quartz substrate, or a transparent resin film can be used.
  • polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN)
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • materials such as polyethylene, a polypropylene, a cellophane, can be used, for example.
  • cellulose esters such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate (TAC), and cellulose nitrate, or derivatives thereof can be added to the transparent resin film. It can be used as a forming material.
  • Examples of the material for forming the transparent resin film include polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, and polyether sulfone (PES). , Polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic, polyarylate, and the like can be used.
  • cycloolefin-based resins called Arton (registered trademark: manufactured by JSR) or Apel (registered trademark: manufactured by Mitsui Chemicals) can be used as a material for forming a transparent resin film.
  • the surface of the transparent resin film is formed of a barrier film made of an inorganic material or an organic material in order to suppress the transmission of, for example, water vapor or oxygen into the organic EL element 10.
  • a barrier film or a hybrid film in which these barrier films are stacked may be provided.
  • the barrier film is preferably a barrier film having a water vapor permeability (measuring environment: 40 ° C., relative humidity 90% RH) of 0.01 g / (m 2 ⁇ 24 h) or less.
  • the barrier film has an oxygen permeability (measuring environment: 20 ° C., relative humidity 100% RH) of 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 3 g. / (M 2 ⁇ 24h) or less is preferable.
  • the water vapor permeability of the barrier film is 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability is particularly preferably 10 ⁇ 5 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less.
  • water vapor permeability is a value measured by a method according to JIS-K-7129-1992
  • oxygen permeability is according to JIS-K-7126-1992. It is a value measured by the method.
  • the barrier film having the above-described characteristics for example, an inorganic material film such as a silicon oxide film, a silicon dioxide film, or a silicon nitride film can be used. Furthermore, in order to improve the fragility of the barrier film, a hybrid barrier film in which the inorganic material film and the organic material film are stacked may be used as the barrier film. In this case, the order of laminating the inorganic material film and the organic material film is arbitrary, but it is preferable that the both are alternately laminated a plurality of times.
  • any method can be used as long as it can form the barrier film on the element substrate 1 (transparent resin film).
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method (see JP 2004-68143 A), Techniques such as plasma CVD (Chemical Vapor Deposition), laser CVD, thermal CVD, and coating can be used.
  • plasma CVD Chemical Vapor Deposition
  • laser CVD thermal CVD
  • coating it is particularly preferable to use an atmospheric pressure plasma polymerization method.
  • the anode 2 is an electrode film that supplies holes to the organic light emitting functional layer 3 and can be formed of a conductive material having a large work function (for example, 4 eV or more) that can exhibit a hole injection function.
  • a conductive material a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
  • light of metals such as gold (Au), copper iodide (CuI), indium tin oxide (SnO 2 —In 2 O 3 : ITO), tin oxide (SnO 2 ), zinc oxide (ZnO), etc.
  • the anode 2 can be formed of a conductive material having transparency.
  • the anode 2 can also be formed of an amorphous transparent electrode material such as IDIXO (registered trademark: In 2 O 3 —ZnO).
  • IDIXO registered trademark: In 2 O 3 —ZnO
  • the anode 2 (transparent electrode) should just be formed using the light-transmitting conductive material among the above-mentioned materials.
  • the sheet resistance of the anode 2 is several hundred ⁇ / sq. The following is preferable. Further, the film thickness of the anode 2 is appropriately set according to the forming material, but is usually set in the range of about 10 to 1000 nm, preferably about 10 to 200 nm.
  • the anode 2 configured as described above can be formed on the element substrate 1 by a technique such as vapor deposition or sputtering.
  • the anode 2 may be formed in a desired pattern shape using a photolithography technique.
  • a desired pattern shape is formed when the anode 2 is formed by a technique such as vapor deposition or sputtering.
  • the anode 2 having a desired pattern may be formed on the element substrate 1 through the mask.
  • the anode 2 when the anode 2 is formed using a conductive material that can be applied, such as an organic conductive compound, the anode 2 can be formed using a wet film forming method such as a printing method or a coating method.
  • a wet film forming method such as a printing method or a coating method.
  • the cathode 4 is an electrode film that supplies electrons to the organic light emitting functional layer 3 and can be formed of a conductive material having a small work function (for example, 4 eV or less) that can exhibit an electron injection function.
  • a conductive material a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
  • the cathode 4 can be formed of a conductive material such as indium, a lithium / aluminum mixture, or a rare earth metal.
  • the cathode 4 when taking out light from the cathode 4 side, can be formed with the electrode material which has a light transmittance similarly to the said anode 2, for example.
  • magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, etc. that is, a mixture of an electron injecting metal and a second metal, which is a stable metal having a larger work function than that, is preferably used as a material for forming the cathode 4. is there.
  • the sheet resistance of the cathode 4 is several hundred ⁇ / sq. The following is preferable. Furthermore, the film thickness of the cathode 4 is appropriately set according to the forming material, and is set, for example, in the range of about 10 nm to 5 ⁇ m, preferably about 50 nm to 200 nm.
  • the cathode 4 having the above configuration is formed by a technique such as vapor deposition or sputtering. Further, when the cathode 4 is formed in a predetermined pattern shape, the same method as the pattern forming method of the anode 2 described above can be used.
  • the cathode lead electrode 4a is formed on the element substrate 1 like the anode 2 as will be described later, it is preferable to form the cathode lead electrode 4a with the same material as the anode 2.
  • the material for forming the cathode lead electrode 4 a is preferably the same as that of the anode 2.
  • the cathode lead electrode 4 a can be formed simultaneously with the anode 2. Becomes simpler.
  • the cathode through-hole electrode 8 may be configured to be in direct contact with the cathode 4, and in this case, the cathode lead electrode 4a may not be provided.
  • FIG. 2 is a schematic cross-sectional view in the vicinity of the organic light emitting functional layer 3, and the anode 2 and the cathode 4 are also shown for convenience of explanation.
  • the organic light emitting functional layer 3 includes a light emitting layer 11, a hole transport layer 12 provided on the anode 2 side of the light emitting layer 11, and an electron transport provided on the cathode 4 side of the light emitting layer 11.
  • Layer 13
  • the organic light emitting functional layer 3 having such a configuration, holes are injected from the anode 2 into the light emitting layer 11 through the hole transport layer 12, and electrons are injected from the cathode 4 into the light emitting layer 11 through the electron transport layer 13. Is done. The injected holes and the injected electrons recombine in the light emitting layer 11 to emit light. The emitted light generated in the light emitting layer 11 is extracted from the anode 2 or the cathode 4 to the outside. Below, each layer which comprises the organic light emission functional layer 3 is demonstrated in detail.
  • the light-emitting layer 11 is a layer that generates emitted light by recombination of holes supplied from the anode 2 and electrons supplied from the cathode 4.
  • a light emitting layer 11 contains a host material and a guest material having a light emitting property (light emitting dopant compound). In the light emitting layer 11, the light emission efficiency can be increased by causing the guest material to emit light.
  • the light emitting layer 11 may be composed of a single layer or a structure in which a plurality of light emitting layers having different emission colors (wavelength regions) are laminated. In the latter case, an intermediate layer may be provided between the light emitting layers. Note that the intermediate layer may function as a hole blocking layer or an electron blocking layer.
  • the host material a known host material can be used. In this case, one type of host material may be used alone, or a plurality of types of host materials may be used in combination. When a plurality of types of host materials are used, the movement of charges in the light emitting layer 11 can be adjusted, and the light emission efficiency of the organic EL element 10 can be increased. In addition, by using a plurality of types of light emitting materials (guest materials) described later, it becomes possible to mix a plurality of light emissions having different wavelengths, thereby obtaining an arbitrary light emission color.
  • a conventionally known low molecular compound may be used, or a high molecular compound having a repeating unit may be used.
  • a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host) may be used.
  • glass transition temperature (Tg) is a value determined by a method based on JIS-K7121 using a DSC (Differential Scanning Calorimetry) method.
  • the host material it is preferable to use a material having a hole transport function and an electron transport function, that is, a carrier transport function as described above.
  • a carrier transport function carrier mobility
  • the material having high electric field strength dependency tends to break the balance between injection and transport of holes and electrons. Therefore, as the host material, it is preferable to use a material whose carrier mobility is less dependent on the electric field strength, or a combination of a plurality of materials having the same electric field strength dependency. In this case, the variation in emission color in the organic EL element 10 can be minimized.
  • a material having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative
  • a material having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative
  • Diazacarbazole derivatives herein, diazacarbazole derivatives are those in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom
  • the intermediate layer In the configuration in which a plurality of light emitting layers having different emission colors are provided via an intermediate layer, the intermediate layer also has properties similar to those of the host material. Therefore, by using the material having the above-described physical properties as the material constituting the intermediate layer, the variation in the emission color in the organic EL element 10 can be minimized.
  • a phosphorescent material phosphorescent dopant
  • a fluorescent material fluorescent dopant
  • a plurality of guest materials may be mixed, or a phosphorescent material and a fluorescent material may be mixed in the same light emitting layer 11.
  • the phosphorescent material is also referred to as a phosphorescent compound or a phosphorescent compound, and can generally be appropriately selected from known materials used for the light emitting layer of the organic EL element.
  • a complex compound containing a group 8-10 metal in the periodic table of elements as the phosphorescent material, and further, an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or It is preferable to use a rare earth complex.
  • an iridium compound (iridium complex) as the phosphorescent material.
  • fluorescent light-emitting materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, and perylene dyes.
  • the material include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • Two or more types of guest materials having the above light-emitting properties may be contained in one light-emitting layer 11, and the concentration ratio of the guest materials in the light-emitting layer 11 changes in the thickness direction of the light-emitting layer 11. You may do it.
  • the light emitting layer 11 and the intermediate layer formed using the host material and the guest material are, for example, an evaporation method, a spin coating method, a casting method, an LB (Langmuir Blodgett) method, an ink jet method, a printing method, and the like. It can produce by the well-known thin film formation method.
  • the hole transport layer 12 and the electron transport layer 13 provided between the anode 2 and the light emitting layer 11 and between the cathode 4 and the light emitting layer 11 are the light emitting layer 11.
  • it can be formed of a conventionally known material.
  • the layer configuration of the organic light emitting functional layer 3 is not limited to the configuration example shown in FIG. 2, and any layer configuration generally known from the past is applied. Can do.
  • the organic light emitting functional layer 3 can be arbitrarily configured as long as it has at least the light emitting layer 11.
  • a hole injection layer may be provided between the anode 2 and the hole transport layer 12, and an electron injection layer may be provided between the cathode 4 and the electron transport layer 13.
  • you may provide a hole-blocking layer, an electron blocking layer, etc. suitably as needed.
  • Various injection layers are provided for lowering the driving voltage and improving the luminance of light emission. Examples of the material for forming them include “Organic EL elements and their forefront of industrialization” (published by NTS Corporation on November 30, 1998). The materials described in detail in Chapter 2, “Electrode Materials” (pages 123 to 166) in the second volume of “2)” can be used as appropriate. Further, the structure of each electrode film (the anode 2 and the cathode 4) may be a multilayer structure as necessary.
  • Example of Method for Producing Organic EL Element an example of a technique for producing the element body (element substrate 1, organic light emitting functional layer 3, and various electrode films) of the organic EL element 10 of the present embodiment shown in FIG. Will be explained. A more specific manufacturing method of the organic EL element 10 as a whole will be described in Example 1 described later.
  • a thin film made of a material for an anode is laminated on the element substrate 1 by a method such as vapor deposition or sputtering to form the anode 2.
  • the film thickness of the anode 2 is set to 1 ⁇ m or less, preferably about 10 nm to 200 nm.
  • the cathode lead electrode 4 a is formed in a region different from the anode 2 on the element substrate 1.
  • the film configuration (formation material, film thickness, etc.) of the cathode lead electrode 4a is preferably the same as that of the anode 2 and the cathode lead electrode 4a is preferably formed simultaneously with the anode 2.
  • the organic light emitting functional layer 3 is formed on the anode 2. Specifically, on the anode 2, the organic compound thin films of the hole transport layer 12, the light emitting layer 11, and the electron transport layer 13 are formed in this order to form the organic light emitting functional layer 3.
  • each organic compound thin film methods such as a vapor deposition method, a spin coating method, a casting method, an LB method, an ink-jet method, and a printing method can be used as described above.
  • a vapor deposition method, a spin coating method, an ink jet method, or a printing method it is particularly preferable to use a vapor deposition method, a spin coating method, an ink jet method, or a printing method.
  • the vapor deposition conditions are suitably set according to conditions, such as the kind of organic compound to be used.
  • the boat heating temperature is about 50 ° C. to 450 ° C.
  • the degree of vacuum is about 10 ⁇ 6 Pa to 10 ⁇ 2 Pa
  • the deposition rate is about 0.01 nm / second to 50 nm / second
  • the substrate temperature is about ⁇ 50. It is preferable to set the vapor deposition conditions by appropriately selecting from a range of about 150 to 150 ° C. and a film thickness of about 0.1 nm to 5 ⁇ m (preferably 5 nm to 200 nm).
  • a cathode 4 is formed by laminating a thin film made of a cathode material on the organic light emitting functional layer 3 by a method such as vapor deposition or sputtering.
  • the film forming conditions such as the degree of vacuum, the deposition rate, and the substrate temperature at the time of forming the cathode 4 are appropriately selected from the same condition range as the film forming conditions for the organic compound thin film described above.
  • the thickness of the cathode 4 is set to 1 ⁇ m or less, preferably about 50 nm to 200 nm.
  • the cathode 4 is formed in a pattern shape that is electrically connected to the cathode lead electrode 4a while maintaining an insulating state with respect to the anode 2 via the organic light emitting functional layer 3.
  • the desired organic light emitting functional layer 3 and various electrode films are formed on the element substrate 1 as described above.
  • the organic light emitting functional layer 3 and various electrode films may be formed using different film forming methods by taking out the substrate member for each film forming process. In that case, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the cathode 4 is formed of a transparent electrode.
  • the sealing substrate 5 is a member that covers the element main body (the element substrate 1, the organic light emitting functional layer 3, and various electrodes) of the organic EL element 10.
  • the sealing substrate 5 is used to ensure the insulation between them. It is made of an insulating material.
  • the sealing base material 5 can be comprised with a plate-shaped (film-shaped) sealing member.
  • a substantially plate-like substrate having a recess formed on one surface that is, a concave plate-shaped sealing member
  • a plate-like substrate having a flat surface That is, a flat sealing member may be used.
  • the plate-like (concave plate or flat plate) sealing substrate 5 is disposed at a position facing the element substrate 1 with the element main body interposed therebetween.
  • a transparent substrate such as a glass plate or a polymer plate
  • a transparent substrate such as a glass plate or a polymer plate
  • a transparent substrate such as a glass plate or a polymer plate
  • a substrate formed of a material such as alkali-free glass, soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, or quartz is used. be able to.
  • substrate formed with materials such as a polycarbonate, an acryl, a polyethylene terephthalate, a polyether sulfide, a polysulfone, can be used, for example.
  • the linear expansion coefficient of the sealing substrate 5 is a value close to that of the element substrate 1.
  • difference between the linear expansion coefficient of is preferably 10 ⁇ 10 -6 / °C or less, more preferably 5 ⁇ 10 -6 / °C less, 2 ⁇ 10 -6 / °C
  • the structure of the element substrate 1 and the sealing base material 5 is a multilayer film structure composed of a plurality of material films, the thickest material film of the plurality of material films constituting each base material is used.
  • the linear expansion coefficients are preferably close to each other.
  • a polymer plate As the sealing substrate 5, it is preferable to use a polymer plate as the sealing substrate 5.
  • a barrier film made of an inorganic material an organic material is used on the surface of the polymer plate in order to suppress, for example, water vapor and oxygen from passing into the organic EL element 10.
  • Such a barrier film has an oxygen permeability of 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • membrane which is.
  • the water vapor permeability of the barrier film is 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less, or the oxygen permeability of the barrier film is 10 ⁇ 5 cm 3 / (m 2 ⁇ 24 h ⁇ atm). The following is preferable.
  • a flat sealing member as the sealing substrate 5, and to stick the whole surface to the element substrate 1 with an adhesive.
  • a thin and lightweight organic EL element 10 planar light emitter
  • a flexible base material is used for the element substrate 1 and the sealing base material 5
  • a flexible organic EL element 10 planar light emitter
  • FIG. 3 shows the relationship between the distance (sealing margin) from the side end of the light emitting region to the sealing side end of the organic light emitting functional layer 3 and the area where dark spots are generated in the organic EL element 10.
  • the horizontal axis is the margin for sealing
  • the vertical axis is the dark spot generation area.
  • the sealing substrate 5 when the sealing substrate 5 is constituted by a concave plate-shaped sealing member (when can sealing), the concave portion is formed by a process such as a sandblasting process or a chemical etching process.
  • the sealing base material 5 and the element main-body part (the element substrate 1, the organic light emission functional layer 3, and various electrodes) of the organic EL element 10 are included.
  • the gap is preferably filled with, for example, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil.
  • the gap between the sealing substrate 5 and the element main body of the organic EL element 10 may be in a vacuum state, or a hygroscopic compound may be sealed in the gap.
  • the hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, Cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium chlorate, magnesium perchlorate, etc.) can be used.
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, Cobalt sulfate, etc.
  • metal halides eg, calcium
  • a sealing film may be used as the sealing substrate 5.
  • the organic light emitting functional layer 3 is completely covered with the sealing film.
  • the anode through-hole electrode 7 and the cathode through-hole electrode 8 are provided as power supply terminals, an opening is provided in each through-hole electrode formation region of the sealing film, and the opening is provided in the opening.
  • a sealing film is formed so that the anode 2 and the cathode 4 are exposed.
  • Such a sealing film can be composed of a film made of an inorganic material or an organic material.
  • the sealing film is formed of a material having a function of suppressing intrusion of a substance such as moisture or oxygen, which causes deterioration of the organic light emitting functional layer 3.
  • the material having such properties include inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride.
  • the structure of the sealing film may be a multilayer structure in which a film made of these inorganic materials and a film made of an organic material are laminated.
  • any method can be used as the method for forming the sealing film described above.
  • a vacuum deposition method a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, Techniques such as plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, laser CVD, thermal CVD, and coating can be used.
  • the sealing material 6 is formed of, for example, a liquid adhesive, a sheet-like adhesive, a thermoplastic resin adhesive, or the like when the sealing substrate 5 is a flat sealing member (in the case of solid adhesive sealing). can do.
  • liquid adhesive examples include photo-curing or thermosetting sealing agents having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing adhesives such as 2-cyanoacrylate, Epoxy-based thermosetting and chemical curing (two-component mixed) adhesives, cationic curing ultraviolet curing epoxy resin adhesives, and the like can be used.
  • a filler to the liquid adhesive as necessary.
  • the amount of filler added is preferably 5 to 70% by volume in consideration of adhesive strength.
  • the size of the filler to be added is preferably 1 ⁇ m to 100 ⁇ m in consideration of the adhesive strength, the thickness of the adhesive after bonding and bonding, and the like.
  • Any filler can be used, for example, soda glass, alkali-free glass, silica, or the like.
  • the filler for example, metal oxides such as titanium dioxide, antimony oxide, titania, alumina, zirconia, and tungsten oxide can be used.
  • the sealing substrate 5 and the element main body of the organic EL element 10 are bonded using a liquid adhesive, the bonding stability, the prevention of air bubbles from being mixed into the bonding part, the flexible sealing group In consideration of maintaining the flatness of the material, it is preferable to perform the bonding process under reduced pressure conditions of 10 Pa to 1 ⁇ 10 ⁇ 5 Pa.
  • the sheet-like adhesive is an adhesive formed into a sheet shape that exhibits non-flowability at room temperature (about 25 ° C.) and exhibits fluidity in the range of 50 ° C. to 100 ° C. when heated.
  • the sheet-like adhesive include a photo-curing resin mainly composed of a compound having an ethylenic double bond at the molecular end or side chain and a photopolymerization initiator.
  • a photo-curing resin mainly composed of a compound having an ethylenic double bond at the molecular end or side chain and a photopolymerization initiator.
  • thermoplastic resin it is preferable to use a thermoplastic resin having a melt flow rate of 5 to 20 [g / 10 min] according to JIS-K-7210, and a melt flow rate of 6 to 15 [g / 10 min]. It is preferable to use a thermoplastic resin. This is because if a thermoplastic resin having a melt flow rate of 5 [g / 10 min] or less is used, it is difficult to completely fill a gap formed by the step of the extraction electrode portion (extraction electrode portion) of each electrode film with the resin. It is.
  • the reason why the range of the melt flow rate is preferable is that when a resin having a melt flow rate of 20 [g / 10 min] or more is used, characteristics such as tensile strength, stress cracking resistance, and workability are deteriorated. Because.
  • thermoplastic resin When a thermoplastic resin is used, it is preferable to use the thermoplastic resin molded into a film shape and the molded film resin bonded to the sealing substrate 5.
  • the bonding method various generally known methods such as a wet laminating method, a dry laminating method, a hot melt laminating method, an extrusion laminating method, and a thermal laminating method can be used.
  • thermoplastic resin any resin can be used as long as the melt flow rate satisfies the above numerical range.
  • LDPE Low density polyethylene
  • HDPE linear low density polyethylene
  • LLDPE linear low density polyethylene
  • CPP unstretched polypropylene
  • OPP ONy
  • PET cellophane
  • PVA polyvinyl alcohol
  • OV stretched vinylon
  • EVOH ethylene-vinyl acetate copolymer
  • EVOH ethylene-propylene copolymer
  • PVDC vinylidene chloride
  • thermoplastic resins it is particularly preferable to use LDPE or LLDPE. Further, LDPE or LLDPE produced using a metallocene catalyst may be used as the thermoplastic resin. Further, a thermoplastic resin obtained by mixing LDPE or LLDPE and an HDPE film may be used.
  • the sealing base material 5 is a concave-plate-shaped sealing member (in the case of can sealing)
  • the sealing material 6 the photocuring which has the reactive vinyl group of an acrylic acid type oligomer or a methacrylic acid type oligomer is carried out.
  • a mold or thermosetting adhesive, a moisture curable adhesive such as 2-cyanoacrylate, and the like can be used.
  • an epoxy-based thermosetting type or chemical curing type (two-component mixed) adhesive can be used as the sealing material 6.
  • hot-melt type polyamide, polyester, polyolefin or the like may be used as the sealing material 6.
  • a cationic curing type ultraviolet curing epoxy resin adhesive may be used as the sealing material 6.
  • the sealing base material 5 is a concave plate-shaped sealing member, among the various adhesives that can be used as the sealing material 6, in order to prevent deterioration due to heat treatment of the organic EL element 10, the temperature is changed from room temperature to 80 ° C. It is preferable to use an adhesive that cures within a temperature range up to. Further, a desiccant may be dispersed in the various adhesives described above. In addition, the application
  • each through hole can be any shape, for example, a circular shape.
  • the through-hole electrode can be easily formed.
  • the opening area of each through hole is preferably smaller from the viewpoint of sealing performance, and specifically, it is preferably 1 mm 2 or less. From this viewpoint, the opening area of each through hole is more preferably 0.8 mm 2 or less, and particularly preferably 0.5 mm 2 or less.
  • the opening area of the surface opposite to the sealing material 6 side of each through hole (the one with the larger opening diameter) The opening area) preferably satisfies this area range.
  • the opening area of each through hole is preferably larger and is preferably 0.3 mm 2 or more from the viewpoint of improving the conductivity and suppressing the increase in driving voltage. From this viewpoint, the opening area of each through hole is more preferably 0.7 mm 2 or more, and particularly preferably 0.9 mm 2 or more.
  • the opening area of the surface on the sealing material 6 side of each through hole is It is preferable to satisfy this area range.
  • a known method can be used.
  • a technique such as sand blasting or processing using a micro drill can be used.
  • a blasting material of about 10 ⁇ m to 100 ⁇ m, it is possible to easily form a through hole having a size within the above-mentioned preferred range.
  • a micro drill it is preferable to use a diamond drill or the like as the micro drill.
  • a minute through hole can be formed by using a technique such as drilling or laser processing.
  • each through-hole of the sealing base material 5 is filled with the formation material of a through-hole electrode, and after that, it shape
  • the “filler having sealing properties” referred to here has an oxygen permeability of 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 3 g / It refers to a filler that is (m 2 ⁇ 24h) or less.
  • any material can be used as long as it satisfies the above conditions.
  • a low melting point alloy such as solder can be used as the filler.
  • the through-hole electrode can be formed by melting the low melting point alloy and filling the through hole, and then forming the filler by, for example, machining.
  • a metal paste such as a silver paste may be used as the filler.
  • metal nanoparticles a paste-like filler in which metal nanoparticles are contained in a solvent or the like
  • a through-hole electrode can be formed by filling a through-hole with a paste-like filler and firing, and then molding the fired filler, for example, by machining. .
  • the through-hole electrode is formed so that the hole electrode protrudes outward from the surface of the sealing substrate 5 on the sealing material 6 side (becomes convex).
  • the shape of the through-hole electrode the shape of the tip portion of the through-hole electrode on the sealing material 6 side is more from the viewpoint of penetrability with respect to the sealing material 6 (sealing adhesive) and improvement of contact with the electrode film.
  • a sharp shape is preferred.
  • the shape of the tip portion of the through-hole electrode may be a truncated cone shape or a conical shape as shown in FIG. Note that the through-hole electrode may be cylindrical, as will be described in the examples described later.
  • the organic EL element 10 of the present embodiment transmits incident light to the light extraction surface (surface opposite to the sealing base 5 of the element substrate 1) and emits it. You may provide the light extraction member which has the function to do.
  • the light extraction member is composed of a sheet-like, film-like, plate-like, or film-like optical member. Here, the arrangement state and configuration of the light extraction member will be briefly described.
  • the light extraction member is configured by using, for example, a light diffusion sheet or a light collecting sheet.
  • a light diffusion sheet a conventional general light diffusion sheet can be used, and for example, a sheet member having irregularities formed on the surface can be used.
  • a condensing sheet a general condensing sheet called a prism sheet can be used.
  • a sheet practically used for an LED (Light Emitting Diode) backlight of a liquid crystal display device can be used. it can.
  • the condensing sheet for example, a sheet in which a plurality of stripes having an apex angle of 90 degrees and a triangular cross-sectional shape are formed on a sheet base material at a pitch of 50 ⁇ m can be used.
  • the uneven shape on the surface of the light collecting sheet can be applied as various shapes, and can be appropriately set in consideration of, for example, the use and the required light collecting property.
  • the uneven shape on the surface of the light collecting sheet may be a shape in which the apex angle of the stripe is rounded (the cross-sectional shape is substantially triangular), or a shape in which the pitch of the stripe is randomly changed. .
  • the light extraction member having the above-described configuration is attached to the element substrate 1 via an adhesive (not shown).
  • this adhesive agent has high light transmittance.
  • an adhesive having a refractive index comparable to that of the element substrate 1 may be used.
  • planar light emitter produced by arranging (tiling) a plurality of organic EL elements 10 will be described.
  • FIG. 4 shows a schematic cross-sectional view of a planar light emitter according to an embodiment of the present invention.
  • FIG. 4 shows a configuration example in which two organic EL elements 10 are arranged for the sake of simplification, but the present invention is not limited to this, and the organic EL element 10 constituting a planar light emitter is shown.
  • the number of sheets and the arrangement form are appropriately set according to, for example, the application.
  • the planar light emitter 20 includes two organic EL elements 10, a support substrate 21 (support member), and an adhesive member 22 for fixing each organic EL element 10 on the support substrate 21.
  • each organic EL element 10 on the sealing substrate 5 side is fixed on the large support substrate 21 by the adhesive member 22.
  • the through-hole electrodes (the anode through-hole electrode 7 and the cathode through-hole electrode 8) are exposed on the surface of each organic EL element 10 on the sealing substrate 5 side.
  • the adhesive member 22 is provided in a region where there is not.
  • the two organic EL elements 10 are arranged on the support substrate 21 so that the opposing side surfaces of the element substrate 1 are in contact with each other at the joint portion between the two organic EL elements 10. To do. At this time, the two organic EL elements 10 are arranged so that the light extraction surfaces (surfaces opposite to the sealing substrate 5 of the element substrate 1) are flush with each other. The EL elements 10 are arranged on the support substrate 21.
  • the configuration of each part of the planar light emitter 20 will be described more specifically.
  • the support substrate 21 can be composed of any plate-like member as long as it can hold the state of the two organic EL elements 10 mounted thereon via the adhesive member 22. In this embodiment, since light is not extracted from the support substrate 21 side, the support substrate 21 does not need to be formed of a light-transmitting material and can be formed of an arbitrary material.
  • the support substrate 21 is comprised with the flexible substrate which has a flexibility.
  • a flexible substrate for example, a resin film or a glass substrate having a thickness of about 0.01 mm to 0.50 mm can be used.
  • Adhesive member In this embodiment, in various industrial fields, it is applied onto the support substrate 21 or the sealing substrate 5 among the adhesive members used in designations such as pressure-sensitive adhesives, adhesives, or pressure-sensitive adhesives, adhesives, After the organic EL element 10 and the support substrate 21 are bonded together, a curable adhesive member 22 that forms a high molecular weight body or a crosslinked structure by various chemical reactions is used. That is, the bonding member 22 is formed of a material that cures the bonded portion by irradiating light such as ultraviolet rays, applying heat, or applying pressure.
  • Examples of the adhesive member 22 having the above-described physical properties include urethane type, epoxy type, fluorine-containing type, aqueous polymer-isocyanate type, acrylic type curable adhesives, moisture-cured urethane adhesives, polyethers, and the like.
  • Examples include anaerobic adhesives such as methacrylate type, ester type methacrylate type, and oxidized polyether methacrylate, cyanoacrylate type instant adhesives, and acrylate and peroxide type two-pack type instant adhesives.
  • any method can be used, and in particular, a method capable of supplying an uncured adhesive can be used.
  • a method capable of supplying an uncured adhesive examples include techniques such as a gravure coater, a micro gravure coater, a comma coater, a bar coater, spray coating, and an ink jet method.
  • a method suitable for the adhesive to be used is used as a method for curing the uncured adhesive member 22.
  • the light emitting region of the organic EL element 10 is covered with a mask, and then the light irradiation is performed. Can be cured. Further, when a thermosetting adhesive is used, it is preferable to cure the adhesive by low-temperature heating to such an extent that deterioration of the organic light emitting functional layer 3 due to heating can be prevented.
  • an adhesive in which a predetermined material is added to the above-described various curable adhesives in a range that does not impair the adhesiveness may be used.
  • an adhesive for example, an adhesive in which an inorganic material such as glass or silica is dispersed may be used, or an adhesive to which a resin, a pressure-sensitive adhesive, or another adhesive is added (mixed). May be used.
  • resin added to an adhesive agent transparent resins, such as PET (polyethylene terephthalate), TAC (triacetylcellulose), PC (polycarbonate), PMMA (polymethylmethacrylate) etc.
  • transparent resins such as PET (polyethylene terephthalate), TAC (triacetylcellulose), PC (polycarbonate), PMMA (polymethylmethacrylate) etc.
  • the pressure-sensitive adhesive include an anaerobic pressure-sensitive adhesive such as urethane-based, epoxy-based, aqueous polymer-isocyanate-based, and acrylic-based pressure-sensitive adhesives, polyether methacrylate-type, ester-based methacrylate-type, and oxidized polyether methacrylate.
  • curable adhesives such as urethane, epoxy, aqueous polymer-isocyanate, and acrylic can be used.
  • various UV curable resins, thermosetting resins, and the like can be used as additive materials.
  • Modification 1 In the above embodiment, the configuration of the solid adhesion sealing type organic EL element 10 has been described, but the present invention is not limited thereto. The above technique of the present invention can also be applied to an organic EL element of a type that seals in a state where a gap is provided between an element substrate and a sealing substrate, such as a can sealing type. In Modification 1, a can-sealed organic EL element will be described as a first example of such an organic EL element.
  • FIG. 5 shows a schematic cross-sectional view of the organic EL element of Modification 1.
  • symbol is attached
  • the organic EL element 30 includes an element substrate 1, an anode 2, an organic light emitting functional layer 3, a cathode 4, a cathode lead electrode 4 a, a sealing substrate 31, a sealing material 32, and an anode through-hole electrode 7. And a through-hole electrode 8 for cathode.
  • the configuration other than the sealing base material 31 and the sealing material 32 is the same as the corresponding configuration of the organic EL element 10 of the above embodiment. It is the same. Therefore, only the configuration of the sealing base material 31 and the sealing material 32 will be described here.
  • the sealing substrate 31 is formed of a concave plate-shaped sealing member having a concave portion 31c formed on one surface.
  • the sealing base material 31 can be formed with the material similar to the sealing base material 5 of the organic EL element 10 of the said embodiment.
  • the recess 31c of the sealing substrate 31 is formed by a process such as a sandblasting process or a chemical etching process.
  • tapered through holes (31a, 31b) are formed at positions corresponding to the region of the extraction electrode portion of each electrode film, as in the above embodiment.
  • a frustum-shaped through-hole electrode (7, 8) is formed in the through-hole. At this time, the through-hole electrode is formed so as to protrude outward from the concave portion 31 c of the sealing substrate 31.
  • the sealing material 32 is provided on the upper surface of the convex outer peripheral end portion 31 d that defines the concave portion 31 c of the sealing base material 31.
  • a photocurable or thermosetting adhesive having a reactive vinyl group of an acrylic acid oligomer or a methacrylic acid oligomer, 2-cyanoacrylic acid.
  • a moisture curable adhesive such as an ester can be used.
  • the inside is sealed by bonding the sealing substrate 31 and the element substrate 1 so that the recess 31c and the surface of the element substrate 1 on the organic light emitting functional layer 3 side face each other.
  • the organic EL element 30 is produced.
  • a gap 33 is defined between the sealing substrate 31 and the element body (element substrate 1, organic light emitting functional layer 3, and various electrode films) of the organic EL element 30.
  • the gap 33 it is preferable to fill the gap 33 with an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil, as described above.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil, as described above.
  • the gap 33 may be in a vacuum state, or a hygroscopic compound may be enclosed in the gap 33.
  • the entire element substrate 1 is covered with the sealing substrate 31, and a through-hole electrode is provided for each electrode film. Therefore, also in this example, the same effect as the above embodiment can be obtained.
  • FIG. 6 shows a schematic cross-sectional view of the organic EL element of Modification 2.
  • symbol is attached
  • the organic EL element 40 includes an element substrate 1, an anode 2, an organic light emitting functional layer 3, a cathode 4, a cathode lead electrode 4 a, a sealing substrate 5, a sealing material 41, and an anode through-hole electrode 7. And a through-hole electrode 8 for cathode.
  • the configuration other than the sealing material 41 is the same as the corresponding configuration of the organic EL element 10 of the above embodiment. Therefore, only the configuration of the sealing material 41 will be described here.
  • a flat plate-shaped sealing member is used as the sealing substrate 5 as in the above embodiment. Then, when the sealing substrate 5 and the element substrate 1 are bonded together, the sealing material 41 is provided only in the vicinity of the outer peripheral end portion of the sealing substrate 5. At this time, the sealing material 41 is provided in a region from a predetermined position on the outer peripheral end side of the sealing substrate 5 to the outer peripheral end from the through-hole electrode. Moreover, the sealing material 41 can be formed with the material similar to the sealing material 6 of the said embodiment.
  • the sealing base material 5 and the element substrate 1 are bonded to each other using the sealing material 41 having the above-described configuration, the element main body portion (the element substrate 1, the organic substrate) of the organic EL element 40 is the same as the first modification.
  • a gap 42 is defined between the light emitting functional layer 3 and various electrode films) and the sealing substrate 5.
  • the entire element substrate 1 is covered with the sealing substrate 5 and a through-hole electrode is provided for each electrode film. Therefore, also in this example, the same effect as the above embodiment can be obtained.
  • FIG. 7 shows a schematic cross-sectional view of an organic EL element of Modification 3.
  • symbol is attached
  • the organic EL element 50 includes an element substrate 1, an anode 2, an organic light emitting functional layer 3, a cathode 4, a cathode lead electrode 4 a, a sealing substrate 5, a sealing material 51, and an anode through-hole electrode 7. And a through-hole electrode 8 for cathode.
  • the configuration of the organic EL element 50 in this example is a configuration in which the formation region of the seal material 51 is changed from that of the second modification.
  • Other configurations are the same as the corresponding configurations of the organic EL element 40 of the second modification. Therefore, only the configuration of the sealing material 51 will be described here.
  • a flat sealing member is used as the sealing substrate 5 as in the above embodiment.
  • the sealing material 51 is provided in the area
  • the sealing material 51 is formed so as to cover the side wall of the through-hole electrode protruding from the surface of the sealing substrate 5 on the sealing material 51 side.
  • the sealing material 51 can be formed with the material similar to the sealing material 6 of the said embodiment.
  • the sealing base material 5 and the element substrate 1 are bonded together using the sealing material 51 having the above-described configuration, the element main body (the element substrate 1 and the organic substrate) of the organic EL element 50 are formed in the same manner as in the second modification.
  • a gap 52 is defined between the light emitting functional layer 3 and various electrode films) and the sealing substrate 5.
  • the entire element substrate 1 is covered with the sealing substrate 5 and a through-hole electrode is provided for each electrode film. Therefore, also in this example, the same effect as the above embodiment can be obtained.
  • the cathode and the sealing substrate it is necessary to form the cathode and the sealing substrate with a transparent material.
  • the through-hole electrode may be provided on the element substrate. Good.
  • planar light-emitting body 20 of the said embodiment demonstrated the structural example which supports the some organic EL element 10 using the large sized support substrate 21, this invention is not limited to this.
  • the side walls of the opposing element substrates may be joined with an adhesive between two adjacent organic EL elements.
  • the adhesive can be used as a support member for the organic EL element, and the large support substrate 21 need not be provided separately.
  • FIG. 8 shows a schematic cross-sectional view of the element body used in the organic EL elements of various examples.
  • the element body portion 60 of the organic EL element of various embodiments described below includes an element substrate 61, an anode 62, a hole injection layer 63, a hole transport layer 64, a yellow light emitting layer 65, and a blue light emitting layer. 66, a hole blocking layer 67, an electron transport layer 68, an electron injection layer 69, and a cathode 70.
  • the layer 69 and the cathode 70 are laminated in this order.
  • the organic EL elements of the following various examples are bottom emission type elements that extract light emitted from the light emitting layer (the yellow light emitting layer 65 and the blue light emitting layer 66) from the anode 62 side, the anode 62 is transparent.
  • the cathode 70 is composed of a reflective electrode (metal film).
  • Example 1 Here, the manufacturing method of the organic EL element of Example 1 and the configuration (for example, material, dimensions, etc.) of each part will be specifically described with reference to the drawings.
  • FIGS. 9A and 9B to FIGS. 12A and 12B are diagrams showing a schematic configuration of the substrate member obtained by each processing step, and FIGS. 9A, 10A, 11A and 12A are plan views of the base member. 9B, 10B, 11B, and 12B are cross-sectional views taken along line AA in FIGS. 9A, 10A, 11A, and 12A, respectively.
  • FIG. 13 is a diagram showing a light emitting region.
  • a transparent glass substrate (Corning EAGLE XG: non-alkali glass) having a thickness of 0.7 mm and an area of 60 mm ⁇ 60 mm (a square shape) was prepared as the element substrate 61 (state of FIGS. 9A and 9B). .
  • an ITO film transparent conductive material having a film thickness of 150 nm was formed on one surface 61a of the element substrate 61 (upper surface in FIG. 10B).
  • a patterning process was performed on the ITO film to form an anode 62 having a predetermined shape and a cathode lead electrode 70a (states of FIGS. 10A and 10B).
  • the cathode lead-out electrode 70a was formed of a striped ITO film extending in the vicinity of one side of the element substrate 61 along the side.
  • the anode 62 was formed over substantially the entire region other than the formation region of the cathode lead electrode 70a on one surface 61a of the element substrate 61, and the anode 62 having a substantially rectangular surface was formed.
  • both were formed separated by a predetermined distance.
  • the element substrate 61 on which the anode 62 and the cathode lead electrode 70a were formed was ultrasonically cleaned with isopropyl alcohol. Thereafter, the cleaned element substrate 61 was dried with dry nitrogen gas, and further, UV ozone cleaning was performed on the dried element substrate 61 for 5 minutes.
  • the element substrate 61 on which the anode 62 and the cathode lead-out electrode 70a were formed was fixed to a substrate holder of a vacuum evaporation apparatus, and a vapor deposition mask was disposed opposite to the formation surface side of the anode 62 of the element substrate 61.
  • each of the various vapor deposition boats in the vacuum vapor deposition apparatus was filled with the material for forming the various layers constituting the organic light emitting functional layer 71 and the cathode 70 in an optimum amount for forming each layer.
  • the boat for vapor deposition used what was produced with the resistance heating material of molybdenum or tungsten.
  • the vapor deposition boat containing the respective materials is sequentially energized and heated.
  • a light emitting functional layer 71 was formed.
  • the hole injection layer 63 As a material for forming the hole injection layer 63, CuPc (copper phthalocyanine) represented by the following structural formula (1) is used, and this hole injection material is deposited on the anode 62 at a deposition rate of 0.1 nm / second.
  • the hole injection layer 63 having a thickness of 15 nm was formed by vapor deposition.
  • a triarylamine derivative represented by the following structural formula (2) ( ⁇ -NPD) is used as a material for forming the hole transport layer 64, and this hole transport material is deposited on the hole injection layer 63. Vapor deposition was performed at a rate of 0.1 nm / second to form a hole transport layer 64 having a thickness of 25 nm.
  • a carbazole derivative represented by the following structural formula (3) (HA) is used as the host material, and an iridium compound represented by the following structural formula (4) (DB) is used as the green guest material.
  • an iridium compound represented by the following structural formula (5) (DC) is used as the red guest material, and these compounds are deposited on the hole transport layer 64 at a total deposition rate of 0.1 nm / second.
  • the yellow light emitting layer 65 having a film thickness of 10 nm was formed by co-evaporation.
  • the proportion of the green guest material (DB) was 10 mass%
  • the proportion of the red guest material (DC) was 2 mass%.
  • the carbazole derivative represented by the above structural formula (3) (HA) is used as the host material
  • the iridium compound represented by the following structural formula (6) (DA) is used as the blue guest material.
  • These compounds were co-evaporated on the yellow light-emitting layer 65 at a total deposition rate (sum of the deposition rates of the respective materials) of 0.1 nm / second to form a blue light-emitting layer 66 having a thickness of 15 nm.
  • the ratio of the blue guest material in the blue light emitting layer 66 was 10 mass%.
  • an aluminum quinolinol complex represented by the following structural formula (7) (BAlq) is used as a material for forming the hole blocking layer 67, and this hole blocking material is deposited on the blue light emitting layer 66 at a deposition rate of 0.1 nm.
  • the hole blocking layer 67 having a film thickness of 15 nm was formed by vapor deposition at a rate of / sec.
  • an aluminum quinolinol complex represented by the following structural formula (8) (Alq3) is used as a material for forming the electron transport layer 68, and this electron transport material is deposited on the hole blocking layer 67 at a deposition rate of 0.1 nm / Evaporation was performed in seconds to form an electron transport layer 68 having a thickness of 30 nm.
  • lithium fluoride (LiF) is used as a material for forming the electron injection layer 69, and this electron injection material is deposited on the electron transport layer 68 at a deposition rate of 0.1 nm / second, thereby injecting an electron with a thickness of 1 nm.
  • Layer 69 was formed.
  • an organic light emitting functional layer 71 was formed in this way (the state shown in FIGS. 11A and 11B). At this time, as shown in FIG. 11A, the organic light emitting functional layer 71 was formed in a region other than the lead electrode portion of the anode 62 (a region where the anode through-hole electrode was brought into contact). At this time, the organic light emitting functional layer 71 was formed so that the organic light emitting functional layer 71 did not cover the cathode extraction electrode 70a.
  • the cathode 70 was formed so as to cover not only the organic light emitting functional layer 71 but also a part of the cathode lead electrode 70a. As a result, the cathode 70 is electrically connected to the cathode lead electrode 70a.
  • the element body 60 of the organic EL element was produced as described above.
  • the element main body 60 manufactured as described above as shown in FIG. 13, a region where the anode 62 and the cathode 70 face each other with the organic light emitting functional layer 71 interposed therebetween (hatched region in FIG. 13). ) Is the light emitting area SA.
  • FIGS. 14A and 14B to 16A and 16B are diagrams showing a schematic configuration of the substrate member obtained by each processing step, and FIGS. 14A, 15A and 16A are plan views of the base member, respectively. 14B, 15B, and 16B are cross-sectional views taken along line BB in FIGS. 14A, 15A, and 16A, respectively.
  • FIG. 17 is a diagram showing a state when the element substrate 61 (element main body portion 60) and the sealing base material are bonded together.
  • a non-alkali glass having a thickness of 0.7 mm (CAGING EAGLE XG) was cut into a size of 60 ⁇ 60 mm to produce a sealing substrate 80.
  • tapered through holes 80a and 80b were formed at two predetermined locations of the sealing substrate 80 by sandblasting.
  • a blast material was continuously sprayed onto the sealing substrate 80 with a line width of about 20 ⁇ m to form a through hole.
  • the sealing substrate 80 Tapered through-holes were formed by continuously spraying a blasting material so as to cut through.
  • a tapered through hole having one opening diameter of 1 mm and the other opening diameter of 0.7 mm was formed.
  • one through hole 80a is provided in the vicinity of one side of the sealing substrate 80 (in the vicinity of the left side in FIG. 14A), and in the vicinity of the side opposite to the side (on the right side in FIG. 14A).
  • the other through hole 80b is provided in the vicinity of the side).
  • one through hole 80a was formed at a position facing a region of the lead electrode portion of the anode 2 (a region where the organic light emitting functional layer 71 was not formed).
  • the other through hole 80b was formed at a position facing the cathode lead electrode 70a.
  • FIG. 14A shows an example in which each through hole is formed at the center of the corresponding side portion in the extending direction, but the present invention is not limited to this. As long as each through hole is located at a position facing the region of the corresponding extraction electrode portion, the through hole can be formed at an arbitrary position.
  • each through-hole electrode 81 (anode through-hole electrode and cathode through-hole electrode) is formed by pouring low melting point solder (Cerasolzer Eco # 182 manufactured by Kuroda Techno) into each through-hole and then molding by machining. Was formed (state of FIGS. 15A and 15B).
  • low melting point solder Cerasolzer Eco # 182 manufactured by Kuroda Techno
  • a truncated cone-shaped through-hole electrode 81 was formed.
  • the through-hole electrode 81 was formed so that the through-hole electrode 81 protrudes from one surface of the sealing substrate 80 (the surface having the smaller opening diameter of the through hole 80a).
  • the protruding amount of the through-hole electrode 81 is 0.05 to 0.15 mm.
  • the sealing substrate 80 provided with the through-hole electrode 81 was subjected to ultrasonic cleaning with isopropyl alcohol. Thereafter, the cleaned sealing substrate 80 was dried with dry nitrogen gas, and further, UV ozone cleaning was performed on the dried sealing substrate 80 for 5 minutes.
  • thermosetting adhesive 82 (sealing material) is uniformly applied to the surface of the cleaned sealing substrate 80 from which the through-hole electrode 81 protrudes using a dispenser. did.
  • the thickness of the thermosetting adhesive 82 was 20 ⁇ m.
  • bisphenol A diglycidyl ether (DGEBA), dicyandiamide (DICY), and an epoxy adduct curing accelerator (epoxy adhesive) were used as the thermosetting adhesive.
  • the sealing substrate 80 on which the through-hole electrode and the sealing material were formed in this way was produced.
  • the element main body 60 manufactured as described above and the sealing base material 80 on which the through-hole electrode and the sealing material are formed are bonded using a vacuum laminator whose sample stage is heated to 80 ° C. It was.
  • the thermosetting adhesive 82 (sealing material) of the sealing substrate 80 and the cathode 70 of the element main body 60 were pasted together so as to face each other.
  • the bonded member was heated at 130 degreeC with the hotplate for 30 minutes, and the organic EL element was manufactured.
  • the present invention is not limited to this.
  • a hole that penetrates from the sealing substrate side to the electrode is provided, and the through hole is filled with a conductive filler to form a through-hole electrode. May be.
  • Example 2 a can-sealed organic EL element was produced. That is, an organic EL element having the same configuration as that of the organic EL element of Modification 1 shown in FIG. 5 was produced.
  • the method for forming the sealing substrate and the bonding method are different from those in Example 1.
  • the method for forming the element body is the same as that in Example 1. Therefore, here, only the manufacturing method and the bonding method of the sealing substrate will be described, and the description of the manufacturing method of the element main body will be omitted.
  • a commercially available soda glass having a thickness of 1.8 mm was cut into a size of 60 mm ⁇ 60 mm to prepare a sealing substrate.
  • a concave portion (spot) having a depth of 0.6 mm was formed in the central portion of one surface of the sealing substrate by sandblasting processing and etching processing. Thereby, the sealing base material was produced.
  • FIG. 18A and 18B show a schematic configuration of a sealing substrate in which a through hole is formed.
  • 18A is a plan view of the sealing substrate in which the through hole is formed
  • FIG. 18B is a cross-sectional view taken along the line CC in FIG. 18A.
  • one through hole 90a is provided in the vicinity of one side of the recess 91 of the sealing substrate 90 (in the vicinity of the left side in FIG. 18A), and in the vicinity of the side of the recess 91 facing the side.
  • the other through-hole 90b was provided (near the right side in FIG. 18A).
  • each through hole was formed at a position facing the corresponding region of the extraction electrode portion.
  • a tapered through hole was formed such that the diameter of the opening of the through hole on the surface of the sealing substrate 90 on the concave portion 91 side was smaller than that on the surface opposite to the concave portion 91 side. .
  • FIG. 19 shows a schematic cross-sectional view of a sealing substrate 90 on which through-hole electrodes are formed.
  • the through-hole electrode 93 was formed so that the through-hole electrode 93 protrudes from the surface of the sealing substrate 90 on the recess 91 side.
  • the through-hole electrode 93 was formed so that the protruding amount of the through-hole electrode 93 from the upper surface of the outer peripheral end portion 92 was 0.1 to 0.2 mm.
  • the sealing substrate 90 provided with the through-hole electrode 93 was subjected to ultrasonic cleaning with isopropyl alcohol. Thereafter, the cleaned sealing substrate 90 was dried with dry nitrogen gas, and UV ozone cleaning was further performed on the dried sealing substrate 90 for 5 minutes. In this example, the sealing substrate 90 provided with the through-hole electrode 93 was produced in this way.
  • a water replenisher made of barium oxide was provided in the recess 91 of the sealing substrate 90.
  • high-purity barium oxide powder made by Aldrich was used as a water replenisher, and this high-purity barium oxide powder was applied to a fluororesin semi-permeable membrane (Microtex S-NTF8031Q made by Nitto Denko) with an adhesive. Affixed to the recess 91 of the sealing substrate 90.
  • an ultraviolet curable adhesive was applied to the upper surface of the convex outer peripheral end 92 defining the recess 91 of the sealing substrate 90. And the sealing base material 90 and the element main-body part which apply
  • Example 3 In Example 3, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, a commercially available soda glass having a thickness of 0.7 mm was used as a forming material for the sealing substrate. In the organic EL element of this example, the configuration other than the above configuration of the sealing substrate is the same as that of the first embodiment. In this example, an organic EL element was produced using the same method as in Example 1.
  • FIG. 20 shows a schematic configuration plan view of the sealing substrate of this example.
  • an opening 100b having a size sufficiently larger than the through hole 100a was provided in a region corresponding to the cathode lead electrode of the sealing substrate 100.
  • power is supplied to the cathode directly from the outside to the cathode lead electrode exposed in the opening 100b.
  • the structure was the same as that of the organic EL element of Example 2 except that the opening 100b was provided in the region corresponding to the cathode lead electrode of the sealing substrate 100.
  • the method for producing the organic EL element in this example was also the same as the method of Example 2 except that the opening 100b was provided in the sealing substrate 100.
  • the through-hole electrode was produced by molding a low melting point solder.
  • the evaluation value calculated by the following formula was used for evaluation of deterioration based on the change in the size of the non-light-emitting portion. 100 ⁇ [(light emitting area before storage under high humidity) ⁇ (light emitting area after storage under high humidity)] / (light emitting area before storage under high humidity) In the said evaluation value, it shows that there are few increases of a non-light-emission part, and moisture resistance is so high that the value is small.
  • the evaluation value calculated by the following formula was used for evaluation of deterioration based on the change in drive voltage before and after storage. 100 x (Voltage value after storage) / (Voltage value before storage) In addition, in the said evaluation value, the raise of a drive voltage is so small that the value is small, and it shows that moisture resistance is high.
  • solid sealing described in the column of the sealing form in Table 1 below means solid contact sealing
  • vertical hole in the column of power feeding method means a through-hole electrode.
  • Example 4 In Example 4, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, metal nanoparticles were used as the conductive filler for forming the through-hole electrode. Silver nano paste (Daiken Chemical Industry Co., Ltd .: NAG-10) was used as the metal nanoparticles. The firing condition of the silver nanopaste was 300 ° C. for 30 minutes.
  • the configuration other than the use of silver nanopaste as the conductive filler is the same as the corresponding configuration of the organic EL element of Example 1.
  • an organic EL element was produced in the same manner as in Example 1, and the shape of the through-hole electrode was the same as that in Example 1 (conical frustum shape).
  • Example 5 In Example 5, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, a low melting point alloy (manufactured by Fuji Metal Industry Co., Ltd .: No. 10 (42% tin, 58% bismuth, melting point 138 ° C.)) was used as the conductive filler for forming the through-hole electrode. .
  • a low melting point alloy manufactured by Fuji Metal Industry Co., Ltd .: No. 10 (42% tin, 58% bismuth, melting point 138 ° C.)
  • the structure other than the low melting point alloy used for the conductive filler is the same as the corresponding structure of the organic EL element of Example 1.
  • an organic EL element was produced in the same manner as in Example 1, and the shape of the through-hole electrode was the same as that in Example 1 (conical frustum shape).
  • Evaluation Test 2 In the evaluation test 2, an initial voltage characteristic test and a moisture resistance test were performed on the organic EL elements of Examples 4 and 5 described above in the same manner as in the evaluation test 1, and the performance of each organic EL element was compared. The evaluation results are shown in Table 2 below. In Table 2, the evaluation results of Example 1 are also shown for comparison.
  • the organic EL elements of Examples 1, 4 and 5 have both improved initial voltage characteristics and moisture resistance as compared with the organic EL elements of Comparative Examples shown in Table 1 above. I understood. That is, it was found that both the initial voltage characteristics and the moisture resistance are improved by using metal nanoparticles or a low melting point alloy in addition to the low melting point solder as the conductive filler for forming the through-hole electrode.
  • Example 6 In Example 6, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, the shape of the tip portion of the through-hole electrode was different from the shape (conical frustum shape) of the tip portion of the through-hole electrode of Example 1.
  • FIG. 21 shows a schematic cross-sectional view of a sealing substrate on which through-hole electrodes in this example are formed.
  • the shape of the tip portion of the through-hole electrode 111 is conical.
  • the dimension of the through hole 111a in which the through hole electrode 111 is formed is the same as that of the through hole 80a of the first embodiment.
  • the through-hole electrode 111 was formed so that the through-hole electrode 111 protruded from the surface of the sealing substrate 110, and the protruding amount was 005 to 0.15 mm. did.
  • the through-hole 110a of the sealing substrate 110 on which the through-hole electrode 111 is provided is a tapered through-hole as in the first embodiment.
  • the through-hole electrode 111 was formed using low melting point solder as in the first embodiment.
  • the configuration of the organic EL element of this example is the same as the corresponding configuration of the organic EL element of Example 1 except that the shape of the tip portion of the through-hole electrode 111 is changed.
  • an organic EL element was produced in the same manner as in Example 1 except that the shape of the tip portion of the through-hole electrode 111 was changed.
  • Example 7 In Example 7, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, similarly to Example 6, the shape of the through-hole electrode (the shape of the tip portion) was different from the shape of the through-hole electrode of Example 1 (conical frustum shape).
  • FIG. 22 shows a schematic cross-sectional view of a sealing substrate on which through-hole electrodes in this example are formed.
  • the shape of the through-hole electrode 121 (the shape of the tip portion) is a cylindrical shape having a diameter of 1.0 mm.
  • the through-hole electrode 121 was formed so that the through-hole electrode 121 protruded from the surface of the sealing substrate 120, and the protruding amount was 005 to 0.15 mm. did.
  • the through hole 120a of the sealing substrate 120 on which the through hole electrode 121 is provided is also a cylindrical through hole (diameter is 1.0 mm).
  • the through-hole electrode 121 was formed using low melting point solder as in the first embodiment.
  • the configuration other than that of changing the shape of the through-hole electrode 121 is the same as the corresponding configuration of the organic EL element of Example 1.
  • an organic EL element was produced in the same manner as in Example 1 except that the shape of the through-hole electrode 121 was changed.
  • Evaluation Test 3 In the evaluation test 3, an initial voltage characteristic test and a moisture resistance test were performed on the organic EL elements of Examples 6 and 7 described above in the same manner as in the evaluation test 1, and the performance of each organic EL element was compared. Table 3 below shows the evaluation results. In Table 3 below, the evaluation results of Example 1 are also shown for comparison.
  • the organic EL elements of Examples 1, 6 and 7 have both improved initial voltage characteristics and moisture resistance as compared with the organic EL elements of the comparative examples shown in Table 1 above. I understood. That is, it was found that both the initial voltage characteristics and the moisture resistance are improved even when the shape of the tip portion of the through-hole electrode is changed.
  • Example 8 In Example 8, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, the through hole of the sealing substrate was formed by an etching process using hydrofluoric acid. The shape of the through hole was a columnar shape as in Example 7.
  • an organic EL element was produced in the same manner as in Example 7 except that the through hole of the sealing substrate was formed by etching.
  • the through-hole electrode was formed using low melting point solder as in Example 7.
  • Example 9 In Example 9, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, the through hole of the sealing substrate was formed by machining using a diamond drill. The shape of the through hole was a columnar shape as in Example 7.
  • an organic EL element was produced in the same manner as in Example 7 except that the through hole of the sealing substrate was formed using a diamond drill.
  • the through-hole electrode was formed using low melting point solder as in Example 7.
  • Evaluation Test 4 In the evaluation test 4, an initial voltage characteristic test and a moisture resistance test were performed on each organic EL element of Examples 8 and 9 described above in the same manner as in the evaluation test 1, and the performance of each organic EL element was compared. The evaluation results are shown in Table 4 below. In Table 4 below, the evaluation results of Example 7 are also shown for comparison.
  • the entire element substrate is covered with the sealing substrate, and the anode and cathode are both fed via the through-hole electrode.

Abstract

Provided is an organic EL element in which the non-light-emitting region is reduced and the performance and quality can be improved. An organic EL element (10) configured so as to be provided with: a first through-hole electrode (7) provided to a part of a region of either an insulating sealing material (5) or an element base material (1) facing a first electrode (2), the first through-hole electrode being provided so as to penetrate the member in the thickness direction of the member, and the tip of the first through-hole electrode being in contact with the first electrode (2); and a second through-hole electrode (8) provided to a part of a region of said member facing second electrodes (4), (4a), the second through-hole electrode being provided so as to penetrate the member in the thickness direction of the member, and the tip of the second through-hole electrode being in contact with the second electrode (4).

Description

有機エレクトロルミネッセンス素子、面状発光体、及び、有機エレクトロルミネッセンス素子の製造方法ORGANIC ELECTROLUMINESCENT ELEMENT, SURFACE LIGHT EMITTER, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
 本発明は、有機エレクトロルミネッセンス素子、面状発光体、及び、有機エレクトロルミネッセンス素子の製造方法に関する。 The present invention relates to an organic electroluminescence device, a planar light emitter, and a method for manufacturing an organic electroluminescence device.
 有機電界発光素子は、有機材料のエレクトロルミネッセンスを利用した素子(以下、有機EL素子という)であり、主に、陽極と、陰極と、陽極及び陰極の間に設けられた有機発光機能層とで構成される。このような構成の有機EL素子では、有機発光機能層で発生した光(以下、発光光という)が陽極又は陰極の面から取り出されるため、その出射面において、均一な照明を得ることができる。また、有機EL素子では紫外線を含まない発光光を得ることができるため、目に優しい光源が得られる。さらに、有機EL素子は、有害性金属を含まないので、環境適性の高い素子である。以上のことから、最近では、有機EL素子は、例えば表示装置、照明装置(ディスプレイ)等の用途における面状発光体として有望視されている。 An organic electroluminescent element is an element using electroluminescence of an organic material (hereinafter referred to as an organic EL element), and mainly includes an anode, a cathode, and an organic light emitting functional layer provided between the anode and the cathode. Composed. In the organic EL element having such a configuration, light generated in the organic light emitting functional layer (hereinafter referred to as light emission) is extracted from the surface of the anode or the cathode, so that uniform illumination can be obtained on the emission surface. In addition, since organic EL elements can obtain emitted light that does not contain ultraviolet rays, a light source that is gentle to the eyes can be obtained. Furthermore, since an organic EL element does not contain a harmful metal, it is an element with high environmental suitability. From the above, recently, organic EL elements are promising as planar light emitters in applications such as display devices and lighting devices (displays).
 ところで、有機EL素子は、通常、活性ガスや水分の浸入による劣化を防止するために、封止部材を用いて有機発光機能層を封止する。このため、有機EL素子の周縁部には封止領域が設けられ、有機発光機能層が配置されない非発光領域が形成される。さらに、有機EL素子には、陽極及び陰極に給電するための給電端子領域も設けられるので、その給電端子領域にも有機発光機能層が配置されない非発光領域が形成される。 Incidentally, the organic EL element normally seals the organic light emitting functional layer using a sealing member in order to prevent deterioration due to the ingress of active gas or moisture. For this reason, a sealing region is provided at the peripheral portion of the organic EL element, and a non-light emitting region in which the organic light emitting functional layer is not disposed is formed. Furthermore, since the organic EL element is also provided with a power supply terminal region for supplying power to the anode and the cathode, a non-light emitting region in which the organic light emitting functional layer is not disposed is also formed in the power supply terminal region.
 このような非発光領域が大きくなると、有機EL素子の設置面積(素子基板の面積)に対する発光領域の面積が小さくなるので設置効率が低下し、コストが増大する。また、複数の有機EL素子を配列して面状発光体を構成した場合、非発光領域が暗線として現れ、上述した均一照明の利点が損なわれるという問題が生じる。さらに、複数の有機EL素子を配列して面状発光体を構成した場合には非発光領域が大きくなり、見栄えが悪くなるといった問題も生じる。そこで、従来、このような問題を解消するための様々な技術が提案されている(例えば、特許文献1参照)。 When such a non-light-emitting region is increased, the area of the light-emitting region is reduced with respect to the installation area of the organic EL element (area of the element substrate), so that the installation efficiency is reduced and the cost is increased. Moreover, when a planar light-emitting body is configured by arranging a plurality of organic EL elements, a non-light-emitting region appears as a dark line, causing a problem that the above-described advantage of uniform illumination is impaired. Furthermore, when a planar light emitter is configured by arranging a plurality of organic EL elements, there is a problem that the non-light emitting region becomes large and the appearance is deteriorated. Therefore, conventionally, various techniques for solving such problems have been proposed (see, for example, Patent Document 1).
 特許文献1では、基板上に、第1電極(陽極)、有機層、第2電極(陰極)及び封止膜がこの順で積層された有機EL素子において、封止膜上の一部に第1端子を設け、該第1端子と第1電極とを、有機層、第2電極及び封止膜を貫通するスルーホールで接続する技術が提案されている。なお、特許文献1では、第2電極上に形成された封止膜の一部に開口部を設け、その開口部に露出した第2電極を第2端子として用いている。特許文献1では、このような電極構成にすることで非発光領域を減らしている。 In Patent Document 1, in an organic EL element in which a first electrode (anode), an organic layer, a second electrode (cathode), and a sealing film are stacked in this order on a substrate, a part of the sealing film is provided with a first There has been proposed a technique in which one terminal is provided and the first terminal and the first electrode are connected by a through hole penetrating the organic layer, the second electrode, and the sealing film. In Patent Document 1, an opening is provided in a part of the sealing film formed on the second electrode, and the second electrode exposed in the opening is used as the second terminal. In Patent Document 1, the non-light emitting region is reduced by adopting such an electrode configuration.
特開2005-158371号公報JP 2005-158371 A
 上述のように、従来、有機EL素子及びそれを用いた面状発光体では、非発光領域を低減するための様々な技術が提案されている。しかしながら、この技術分野では、非発光領域を低減するだけでなく、同時に高性能及び高品質も実現可能な技術の開発が求められている。 As described above, conventionally, various techniques for reducing the non-light-emitting region have been proposed for organic EL elements and planar light emitters using the same. However, in this technical field, there is a demand for the development of a technology that not only reduces the non-light-emitting region, but also realizes high performance and high quality at the same time.
 本発明は、上記要望に応えるためになされたものであり、本発明の目的は、非発光領域を低減するとともに、性能及び品質も向上可能とする構成の有機EL素子、面状発光体、及び、有機EL素子の製造方法を提供することである。 The present invention has been made to meet the above-mentioned demands, and an object of the present invention is to reduce the non-light emitting region and improve the performance and quality, an organic EL element, a planar light emitter, and It is providing the manufacturing method of an organic EL element.
 上記課題を解決するために、本発明の有機EL素子は、素子基材と、素子基材上に形成された第1電極と、第1電極上に形成され、かつ、発光層を含む有機化合物層と、有機化合物層上に形成された第2電極と、素子基材の第2電極側の表面を覆うようにして設けられた絶縁性封止材とを備える構成とする。さらに、本発明の有機EL素子は、絶縁性封止材及び素子基材の一方の部材の第1電極と対向する領域の一部に、該部材の厚さ方向に貫通して設けられ、かつ、先端が第1電極と接触している第1スルーホール電極と、該部材の第2電極と対向する領域の一部に、部材の厚さ方向に貫通して設けられ、かつ、先端が第2電極と接触している第2スルーホール電極とを備える構成とする。 In order to solve the above problems, an organic EL device of the present invention includes an element substrate, a first electrode formed on the element substrate, an organic compound formed on the first electrode and including a light emitting layer. A layer, a second electrode formed on the organic compound layer, and an insulating sealing material provided to cover the surface of the element base on the second electrode side. Furthermore, the organic EL element of the present invention is provided in a part of a region facing the first electrode of one member of the insulating sealing material and the element base material so as to penetrate in the thickness direction of the member, and A first through-hole electrode whose tip is in contact with the first electrode, and a part of a region of the member facing the second electrode, which is provided so as to penetrate in the thickness direction of the member; The second through-hole electrode is in contact with the two electrodes.
 また、本発明の面状発光体は、複数の上記本発明の有機EL素子と、複数の有機EL素子を、所定の形態で配列して支持する支持部材とを備える構成とする。 The planar light-emitting body of the present invention includes a plurality of the organic EL elements of the present invention and a support member that supports the plurality of organic EL elements arranged in a predetermined form.
 さらに、本発明の有機EL素子の製造方法は、次の手順で行うものとする。まず、素子基材上に第1電極を形成する。次いで、第1電極上に、発光層を含む有機化合物層を形成する。次いで、有機化合物層上に、第2電極を形成する。次いで、素子基材の第2電極側の表面を封止するための絶縁性封止材、及び、素子基材の一方の部材の第1電極と対向する領域の一部、並びに、部材の第2電極と対向する領域の一部に、それぞれ第1貫通孔及び第2貫通孔を形成する。次いで、部材の厚さ方向に沿って延在しかつ部材の有機化合物層側の面から突出した形状を有し、第1電極及び第2電極と電気的にそれぞれ接続される第1スルーホール電極及び第2スルーホール電極を、それぞれ第1貫通孔及び第2貫通孔を封止するように形成する。また、本発明の有機EL素子の製造方法では、素子基材の第2電極側の表面を封止するように、絶縁性封止材を素子基材上に設ける。 Furthermore, the manufacturing method of the organic EL element of this invention shall be performed in the following procedure. First, the first electrode is formed on the element substrate. Next, an organic compound layer including a light emitting layer is formed on the first electrode. Next, a second electrode is formed on the organic compound layer. Next, an insulating sealing material for sealing the surface of the element base on the second electrode side, a part of the region facing the first electrode of one member of the element base, and the first of the member A first through hole and a second through hole are formed in a part of the region facing the two electrodes, respectively. Next, a first through-hole electrode having a shape extending along the thickness direction of the member and protruding from the surface of the member on the organic compound layer side and electrically connected to the first electrode and the second electrode, respectively The second through-hole electrode is formed to seal the first through-hole and the second through-hole, respectively. Moreover, in the manufacturing method of the organic EL element of this invention, an insulating sealing material is provided on an element base material so that the surface by the side of the 2nd electrode of an element base material may be sealed.
 上述のように、本発明の有機EL素子では、絶縁性封止材及び素子基材の一方の部材に、第1電極及び第2電極とそれぞれ接触した第1スルーホール電極及び第2スルーホール電極を設ける。すなわち、本発明の有機EL素子では、給電端子として第1スルーホール電極及び第2スルーホール電極を用いる。それゆえ、本発明では、非発光領域を低減することができる。 As described above, in the organic EL element of the present invention, the first through-hole electrode and the second through-hole electrode that are in contact with the first electrode and the second electrode, respectively, on one member of the insulating sealing material and the element base material. Is provided. That is, in the organic EL element of the present invention, the first through-hole electrode and the second through-hole electrode are used as power supply terminals. Therefore, in the present invention, the non-light emitting region can be reduced.
 また、本発明の有機EL素子では、第1スルーホール電極及び第2スルーホール電極は、封止部材の一部として作用する。それゆえ、本発明では、耐湿性に優れた有機EL素子を提供することができる。 Moreover, in the organic EL element of the present invention, the first through-hole electrode and the second through-hole electrode act as a part of the sealing member. Therefore, in the present invention, an organic EL element having excellent moisture resistance can be provided.
 以上のことから、本発明の有機EL素子、面状発光体、及び、有機EL素子の製造方法によれば、非発光領域を低減できるとともに、性能及び品質も向上させることができる。 As described above, according to the organic EL element, the planar light emitter, and the method for producing the organic EL element of the present invention, the non-light emitting region can be reduced and the performance and quality can be improved.
図1は、本発明の一実施形態に係る有機EL素子の概略構成断面図である。FIG. 1 is a schematic cross-sectional view of an organic EL element according to an embodiment of the present invention. 図2は、有機発光機能層の一構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the organic light emitting functional layer. 図3は、封止しろと、ダークスポット発生面積との関係を示す図である。FIG. 3 is a diagram showing the relationship between the sealing margin and the dark spot generation area. 図4は、本発明の一実施形態に係る面状発光体の概略構成断面図である。FIG. 4 is a schematic cross-sectional view of a planar light emitter according to an embodiment of the present invention. 図5は、変形例1の有機EL素子の概略構成断面図である。FIG. 5 is a schematic cross-sectional view of the organic EL element of Modification 1. 図6は、変形例2の有機EL素子の概略構成断面図である。FIG. 6 is a schematic cross-sectional view of an organic EL element according to Modification 2. 図7は、変形例3の有機EL素子の概略構成断面図である。FIG. 7 is a schematic cross-sectional view of an organic EL element of Modification 3. 図8は、実施例1の有機EL素子における素子本体部の概略構成断面図である。FIG. 8 is a schematic cross-sectional view of the element main body in the organic EL element of Example 1. 図9A及び図9Bは、実施例1の有機EL素子の作製手法を説明するための図である。9A and 9B are diagrams for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図10A及び図10Bは、実施例1の有機EL素子の作製手法を説明するための図である。10A and 10B are diagrams for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図11A及び図11Bは、実施例1の有機EL素子の作製手法を説明するための図である。11A and 11B are diagrams for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図12A及び図12Bは、実施例1の有機EL素子の作製手法を説明するための図である。12A and 12B are diagrams for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図13は、実施例1の有機EL素子の発光領域を示す図である。FIG. 13 is a diagram illustrating a light emitting region of the organic EL element of Example 1. FIG. 図14A及び図14Bは、実施例1の有機EL素子の作製手法を説明するための図である。14A and 14B are diagrams for explaining a method of manufacturing the organic EL element of Example 1. FIG. 図15A及び図15Bは、実施例1の有機EL素子の作製手法を説明するための図である。15A and 15B are diagrams for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図16A及び図16Bは、実施例1の有機EL素子の作製手法を説明するための図である。16A and 16B are diagrams for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図17は、実施例1の有機EL素子の作製手法を説明するための図である。FIG. 17 is a diagram for explaining a method for manufacturing the organic EL element of Example 1. FIG. 図18A及び図18Bは、実施例2の封止基材の概略構成図である。18A and 18B are schematic configuration diagrams of a sealing substrate of Example 2. FIG. 図19は、実施例2において、スルーホール電極が形成された封止基材の概略構成断面図である。FIG. 19 is a schematic cross-sectional view of a sealing substrate on which through-hole electrodes are formed in Example 2. 図20は、比較例の封止基材の概略構成図である。FIG. 20 is a schematic configuration diagram of a sealing substrate of a comparative example. 図21は、実施例6のスルーホール電極が形成された封止基材の概略構成断面図である。FIG. 21 is a schematic cross-sectional view of a sealing substrate on which through-hole electrodes of Example 6 are formed. 図22は、実施例7のスルーホール電極が形成された封止基材の概略構成断面図である。FIG. 22 is a schematic cross-sectional view of a sealing substrate on which through-hole electrodes of Example 7 are formed.
 以下に、本発明の一実施形態に係る有機EL素子、面状発光体、及び、有機EL素子の製造方法の一例を、図面を参照しながら具体的に説明するが、本発明は下記の例に限定されない。 Hereinafter, an example of a method for manufacturing an organic EL element, a planar light emitter, and an organic EL element according to an embodiment of the present invention will be described in detail with reference to the drawings. It is not limited to.
<1.有機EL素子の構成>
[有機EL素子の全体構成]
 図1に、本発明の一実施形態に係る有機EL素子の構成例を示す。なお、図1は、本実施形態の有機EL素子の概略構成断面図である。
<1. Configuration of organic EL element>
[Overall configuration of organic EL element]
In FIG. 1, the structural example of the organic EL element which concerns on one Embodiment of this invention is shown. FIG. 1 is a schematic cross-sectional view of the organic EL element of the present embodiment.
 有機EL素子10は、素子基板1(素子基材)と、陽極2(第1電極)と、有機発光機能層3(有機化合物層)と、陰極4(第2電極)と、陰極引き出し電極4aと、封止基材5(絶縁性封止材)と、シール材6(接着材)と、陽極用スルーホール電極7(第1スルーホール電極)と、陰極用スルーホール電極8(第2スルーホール電極)とを備える。 The organic EL element 10 includes an element substrate 1 (element base), an anode 2 (first electrode), an organic light emitting functional layer 3 (organic compound layer), a cathode 4 (second electrode), and a cathode lead electrode 4a. A sealing base material 5 (insulating sealing material), a sealing material 6 (adhesive material), an anode through-hole electrode 7 (first through-hole electrode), and a cathode through-hole electrode 8 (second through-hole). Hall electrode).
 本実施形態では、素子基板1上に、陽極2、有機発光機能層3及び陰極4がこの順で積層される。すなわち、素子基板1上において、陽極2及び陰極4は、有機発光機能層3によって、互いに絶縁性が保たれた状態で構成される。また、陰極引き出し電極4aは、素子基板1の表面上において、陽極2とは異なる領域に形成される。さらに、該陰極引き出し電極4aの一部の領域上に、陰極4の一部が形成される。これにより、陰極4が陰極引き出し電極4aと電気的に接続される。 In the present embodiment, the anode 2, the organic light emitting functional layer 3, and the cathode 4 are laminated on the element substrate 1 in this order. That is, on the element substrate 1, the anode 2 and the cathode 4 are configured by the organic light emitting functional layer 3 in a state in which insulation is maintained. The cathode lead electrode 4 a is formed in a region different from the anode 2 on the surface of the element substrate 1. Further, a part of the cathode 4 is formed on a partial region of the cathode lead electrode 4a. As a result, the cathode 4 is electrically connected to the cathode lead electrode 4a.
 また、本実施形態の有機EL素子10は、固体密着封止タイプの封止手法により作製された有機EL素子であり、封止基材5は、シール材6を介して、素子基板1の陰極4側の表面全体に渡って固着される。このような封止形態にすることにより、スルーホール電極と対応する電極膜との接点部分がシール材の内側に保護されるので、経時劣化を抑制することができる。 In addition, the organic EL element 10 of the present embodiment is an organic EL element manufactured by a solid adhesion sealing type sealing method, and the sealing substrate 5 is a cathode of the element substrate 1 through the sealing material 6. It is fixed over the entire surface on the 4 side. By adopting such a sealing form, the contact portion between the through-hole electrode and the corresponding electrode film is protected on the inner side of the sealing material, so that deterioration with time can be suppressed.
 なお、本実施形態では、上述のように、有機発光機能層3の劣化を防止するために封止基材5で有機EL素子10の内部を封止するので、素子基板1の周縁部には、有機EL素子を封止するためのスペースを設け、有機発光機能層3を素子基板1の略中央に配置する。 In the present embodiment, as described above, the inside of the organic EL element 10 is sealed with the sealing base material 5 in order to prevent the deterioration of the organic light emitting functional layer 3. In addition, a space for sealing the organic EL element is provided, and the organic light emitting functional layer 3 is disposed at the approximate center of the element substrate 1.
 陽極用スルーホール電極7は、有機EL素子10の厚さ方向において、封止基材5及びシール材6を貫通して形成された縦孔電極であり、陽極2の外周端付近に設けられた引き出し電極部分の領域上に形成される。陽極用スルーホール電極7は、導電性材料で形成され、封止基材5のシール材6側とは反対側の表面から陽極2の表面まで延在して形成される。この際、陽極用スルーホール電極7の一方の端部(図1では上部)は封止基材5のシール材6側とは反対側の表面に露出するように形成され、他方の端部(図1では下部:先端)は、陽極2に接触するように形成される。これにより、陽極用スルーホール電極7が陽極2と電気的に接続される。 The anode through-hole electrode 7 is a vertical hole electrode formed through the sealing substrate 5 and the sealing material 6 in the thickness direction of the organic EL element 10, and is provided near the outer peripheral end of the anode 2. It is formed on the region of the extraction electrode portion. The anode through-hole electrode 7 is formed of a conductive material, and extends from the surface of the sealing substrate 5 opposite to the sealing material 6 side to the surface of the anode 2. At this time, one end portion (upper portion in FIG. 1) of the anode through-hole electrode 7 is formed so as to be exposed on the surface of the sealing substrate 5 opposite to the sealing material 6 side, and the other end portion ( In FIG. 1, the lower part (tip) is formed so as to contact the anode 2. As a result, the anode through-hole electrode 7 is electrically connected to the anode 2.
 なお、本実施形態では、図1に示すように、陽極用スルーホール電極7の形状が、略円錐状であり、かつ、その先端面が平坦面である形状(以下、円錐台状という)の例を示す。また、本実施形態では、陽極用スルーホール電極7の径は、封止基材5から陽極2に向かって、連続的に小さくなる例を示す。 In the present embodiment, as shown in FIG. 1, the shape of the anode through-hole electrode 7 is substantially conical and the tip surface thereof is a flat surface (hereinafter referred to as a truncated cone shape). An example is shown. Moreover, in this embodiment, the diameter of the anode through-hole electrode 7 shows an example in which the diameter gradually decreases from the sealing substrate 5 toward the anode 2.
 陰極用スルーホール電極8は、陽極用スルーホール電極7と同様に、有機EL素子10の厚さ方向において、封止基材5及びシール材6を貫通して形成された縦孔電極であり、陰極引き出し電極4aの領域上に形成される。陰極用スルーホール電極8は、導電性材料で形成され、封止基材5のシール材6側とは反対側の表面から陰極引き出し電極4aの表面まで延在して形成される。この際、陰極用スルーホール電極8の一方の端部(図1では上部)は封止基材5のシール材6側とは反対側の表面に露出するように形成され、他方の端部(図1では下部)は、陰極引き出し電極4aに接触するように形成される。これにより、陰極用スルーホール電極8が、陰極引き出し電極4aを介して陰極4と電気的に接続される。 The cathode through-hole electrode 8 is a vertical hole electrode formed through the sealing substrate 5 and the sealing material 6 in the thickness direction of the organic EL element 10 in the same manner as the anode through-hole electrode 7. It is formed on the region of the cathode lead electrode 4a. The cathode through-hole electrode 8 is formed of a conductive material and extends from the surface of the sealing substrate 5 opposite to the sealing material 6 side to the surface of the cathode lead electrode 4a. At this time, one end portion (upper portion in FIG. 1) of the cathode through-hole electrode 8 is formed so as to be exposed on the surface of the sealing substrate 5 opposite to the sealing material 6 side, and the other end portion ( The lower part in FIG. 1 is formed in contact with the cathode lead electrode 4a. Thereby, the through-hole electrode 8 for cathodes is electrically connected with the cathode 4 via the cathode extraction electrode 4a.
 また、本実施形態では、図1に示すように、陰極用スルーホール電極8の形状は、陽極用スルーホール電極7の形状と同様とする。なお、本発明はこれに限定されず、例えば用途や周囲の配線パターン等の条件に応じて、陰極用スルーホール電極8の構成(形状、サイズ等)が、陽極用スルーホール電極7の構成と異なっていてもよい。 In the present embodiment, as shown in FIG. 1, the shape of the cathode through-hole electrode 8 is the same as the shape of the anode through-hole electrode 7. Note that the present invention is not limited to this, and the configuration (shape, size, etc.) of the cathode through-hole electrode 8 is different from the configuration of the anode through-hole electrode 7 depending on conditions such as the use and surrounding wiring pattern. May be different.
 また、図1には、素子基板1上に、陽極2、有機発光機能層3及び陰極4をこの順で形成した例を示したが、本発明はこれに限定されず、これらの層の積層順序を逆にしてもよい。ただし、有機EL素子10が、有機発光機能層3で発生した発光光を素子基板1側から取り出すボトムエミッション型の素子とする場合には、有機発光機能層3の素子基板1側に配置する電極(陽極2及び陰極4の一方)を、透明電極で構成する。また、この場合、有機発光機能層3の素子基板1側とは反対側に配置する電極(陽極2及び陰極4の他方)は、光反射性を有する電極(反射電極)で構成される。 FIG. 1 shows an example in which the anode 2, the organic light emitting functional layer 3 and the cathode 4 are formed in this order on the element substrate 1. However, the present invention is not limited to this, and the lamination of these layers is shown. The order may be reversed. However, when the organic EL element 10 is a bottom emission type element that extracts emitted light generated in the organic light emitting functional layer 3 from the element substrate 1 side, an electrode disposed on the element substrate 1 side of the organic light emitting functional layer 3 (One of the anode 2 and the cathode 4) is formed of a transparent electrode. In this case, the electrode (the other of the anode 2 and the cathode 4) disposed on the side opposite to the element substrate 1 side of the organic light emitting functional layer 3 is composed of an electrode (reflecting electrode) having light reflectivity.
 本実施形態の有機EL素子10では、素子基板1全体を封止基材5で覆うとともに、封止基材5に2つの貫通孔5a,5bを形成し、その後、各貫通孔を封止するようにスルーホール電極を各貫通孔に設ける(充填する)。なお、この際、一方の貫通孔5a(第1貫通孔)には、陽極用スルーホール電極7が設けられ、他方の貫通孔5b(第2貫通孔)には、陰極用スルーホール電極8が設けられる。そして、該スルーホール電極を、対応する電極膜(陽極2及び陰極4)に接触させる(電気的に接続する)。すなわち、本実施形態では、スルーホール電極を、対応する電極膜への給電端子として用いるとともに、封止部材の一部としても用いる。 In the organic EL element 10 of the present embodiment, the entire element substrate 1 is covered with the sealing base material 5 and two through holes 5a and 5b are formed in the sealing base material 5 and then each through hole is sealed. Thus, through-hole electrodes are provided (filled) in the respective through-holes. At this time, the anode through-hole electrode 7 is provided in one through-hole 5a (first through-hole), and the cathode through-hole electrode 8 is provided in the other through-hole 5b (second through-hole). Provided. Then, the through-hole electrode is brought into contact (electrically connected) with the corresponding electrode film (anode 2 and cathode 4). That is, in the present embodiment, the through-hole electrode is used as a power supply terminal to the corresponding electrode film and also used as a part of the sealing member.
 それゆえ、本実施形態の有機EL素子10では、素子基板1の面内に給電端子領域を別途設ける必要が無くなり、非発光領域を減少させることができる。この場合、封止性能のみを考慮して非発光領域を設計することができる。 Therefore, in the organic EL element 10 of the present embodiment, it is not necessary to separately provide a power supply terminal area in the surface of the element substrate 1, and the non-light emitting area can be reduced. In this case, the non-light emitting region can be designed in consideration of only the sealing performance.
 さらに、本実施形態では、封止基材5により素子基板1全体を覆うとともに、給電部分をスルーホール電極により封止する。それゆえ、本実施形態では、十分な高温保存性や高湿保存性を確保することができる。また、給電端子部分(電極接続部)が封止基材5の外側表面に露出した状態となるので、電源からの配線を容易に接続することができ、駆動電圧の上昇を回避することができる。すなわち、本実施形態の有機EL素子10では、高温・高湿保存性を保つことができ、駆動電圧の上昇を抑制することができ、かつ、非発光領域を減少させることができる。 Further, in the present embodiment, the entire element substrate 1 is covered with the sealing base material 5 and the power feeding portion is sealed with the through-hole electrode. Therefore, in this embodiment, sufficient high temperature storage stability and high humidity storage stability can be ensured. Further, since the power supply terminal portion (electrode connection portion) is exposed on the outer surface of the sealing substrate 5, wiring from the power source can be easily connected, and an increase in drive voltage can be avoided. . That is, in the organic EL element 10 of the present embodiment, high temperature / high humidity storage stability can be maintained, an increase in driving voltage can be suppressed, and a non-light emitting region can be reduced.
 なお、上記特許文献1で提案されている、陽極の給電端子としてスルーホール電極を用い、陰極の給電端子として封止膜の開口部に露出した陰極領域を用いる手法について、本発明者が検証を行ったところ、この構成では、高温・高湿保存性を維持することが難しいことが分かった。また、この構成では、給電部分への良好な配線接続が得られず、駆動電圧が上昇することも分かった。しかしながら、本実施形態の構成では、このような特許文献1に記載の技術において発生し得る課題も解消することができる。 The inventor has verified the method proposed in the above-mentioned Patent Document 1 using the through-hole electrode as the anode power supply terminal and the cathode region exposed at the opening of the sealing film as the cathode power supply terminal. As a result, it was found that it was difficult to maintain high temperature and high humidity storage stability with this configuration. It was also found that with this configuration, a good wiring connection to the power feeding portion could not be obtained, and the drive voltage increased. However, with the configuration of the present embodiment, problems that may occur in the technique described in Patent Document 1 can be solved.
 以下、有機EL素子10の各部及び各層の構成をより具体的に説明する。 Hereinafter, the configuration of each part and each layer of the organic EL element 10 will be described more specifically.
[素子基板]
 素子基板1は、陽極2、陰極4及び有機発光機能層3を支持する基板である。本実施形態では、有機発光機能層3で生じた発光光を素子基板1の側から取り出すので、素子基板1は、可視光に対して高い光透過性を有する材料で形成される。例えば、素子基板1としては、ガラス基板、石英基板、透明樹脂フィルム等の板状部材を用いることができる。
[Element substrate]
The element substrate 1 is a substrate that supports the anode 2, the cathode 4, and the organic light emitting functional layer 3. In the present embodiment, since the emitted light generated in the organic light emitting functional layer 3 is taken out from the element substrate 1 side, the element substrate 1 is formed of a material having high light transmittance with respect to visible light. For example, as the element substrate 1, a plate-like member such as a glass substrate, a quartz substrate, or a transparent resin film can be used.
 このうち、透明樹脂フィルムの形成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルを用いることができる。また、透明樹脂フィルムの形成材料としては、例えば、ポリエチレン、ポリプロピレン、セロファン等の材料を用いることができる。さらに、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類、又は、それらの誘導体を、透明樹脂フィルムの形成材料として用いることができる。 Among these, as a material for forming the transparent resin film, for example, polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) can be used. Moreover, as a formation material of a transparent resin film, materials, such as polyethylene, a polypropylene, a cellophane, can be used, for example. In addition, cellulose esters such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate (TAC), and cellulose nitrate, or derivatives thereof can be added to the transparent resin film. It can be used as a forming material.
 また、透明樹脂フィルムの形成材料としては、例えば、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、ポリアリレート類等の材料を用いることができる。さらに、例えば、アートン(登録商標:JSR社製)、又は、アペル(登録商標:三井化学社製)と呼ばれるシクロオレフィン系樹脂を、透明樹脂フィルムの形成材料として用いることもできる。 Examples of the material for forming the transparent resin film include polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, and polyether sulfone (PES). , Polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic, polyarylate, and the like can be used. Furthermore, for example, cycloolefin-based resins called Arton (registered trademark: manufactured by JSR) or Apel (registered trademark: manufactured by Mitsui Chemicals) can be used as a material for forming a transparent resin film.
 素子基板1を透明樹脂フィルムで構成した場合、有機EL素子10内への例えば水蒸気、酸素等の透過を抑制するために、透明樹脂フィルムの表面に、無機材料からなるバリア膜、有機材料からなるバリア膜、又は、これらのバリア膜を積層したハイブリッド膜を設けてもよい。 When the element substrate 1 is composed of a transparent resin film, the surface of the transparent resin film is formed of a barrier film made of an inorganic material or an organic material in order to suppress the transmission of, for example, water vapor or oxygen into the organic EL element 10. A barrier film or a hybrid film in which these barrier films are stacked may be provided.
 なお、上記バリア膜は、水蒸気透過度(測定環境:40℃、相対湿度90%RH)が、0.01g/(m・24h)以下となるようなバリア性フィルムであることが好ましい。また、バリア膜は、酸素透過度(測定環境:20℃、相対湿度100%RH)が10-3cm/(m・24h・atm)以下で、かつ、水蒸気透過度が10-3g/(m・24h)以下となるような高バリア性フィルムであることが好ましい。さらに、バリア膜の水蒸気透過度が10-5g/(m・24h)以下であり、かつ、酸素透過度が10-5cm/(m・24h・atm)以下であることが特に好ましい。なお、本明細書でいう「水蒸気透過度」は、JIS-K-7129-1992に準拠した方法で測定された値であり、「酸素透過度」は、JIS-K-7126-1992に準拠した方法で測定された値である。 The barrier film is preferably a barrier film having a water vapor permeability (measuring environment: 40 ° C., relative humidity 90% RH) of 0.01 g / (m 2 · 24 h) or less. The barrier film has an oxygen permeability (measuring environment: 20 ° C., relative humidity 100% RH) of 10 −3 cm 3 / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −3 g. / (M 2 · 24h) or less is preferable. Furthermore, the water vapor permeability of the barrier film is 10 −5 g / (m 2 · 24 h) or less, and the oxygen permeability is particularly preferably 10 −5 cm 3 / (m 2 · 24 h · atm) or less. preferable. In this specification, “water vapor permeability” is a value measured by a method according to JIS-K-7129-1992, and “oxygen permeability” is according to JIS-K-7126-1992. It is a value measured by the method.
 上述した特性を有するバリア膜としては、例えば、酸化珪素膜、二酸化珪素膜、窒化珪素膜等の無機材料膜を用いることができる。さらに、バリア膜の脆弱性を改良するために、該無機材料膜と有機材料膜とを積層したハイブリッドバリア膜をバリア膜として用いてもよい。この場合、無機材料膜と有機材料膜との積層順は任意であるが、両者を交互に複数回積層させることが好ましい。 As the barrier film having the above-described characteristics, for example, an inorganic material film such as a silicon oxide film, a silicon dioxide film, or a silicon nitride film can be used. Furthermore, in order to improve the fragility of the barrier film, a hybrid barrier film in which the inorganic material film and the organic material film are stacked may be used as the barrier film. In this case, the order of laminating the inorganic material film and the organic material film is arbitrary, but it is preferable that the both are alternately laminated a plurality of times.
 また、バリア膜の形成手法としては、バリア膜を素子基板1(透明樹脂フィルム)上に形成できる手法であれば任意の手法を用いることができる。例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法(特開2004-68143号公報参照)、プラズマCVD(Chemical Vapor Deposition)法、レーザーCVD法、熱CVD法、コーティング法等の手法を用いることができる。なお、本実施形態では、特に、大気圧プラズマ重合法を用いることが好ましい。 Also, as a method for forming the barrier film, any method can be used as long as it can form the barrier film on the element substrate 1 (transparent resin film). For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method (see JP 2004-68143 A), Techniques such as plasma CVD (Chemical Vapor Deposition), laser CVD, thermal CVD, and coating can be used. In the present embodiment, it is particularly preferable to use an atmospheric pressure plasma polymerization method.
[陽極]
 陽極2は、有機発光機能層3に正孔を供給する電極膜であり、正孔注入機能を発現し得る程度の大きな仕事関数(例えば4eV以上)を有する導電性材料で形成することができる。このような導電性材料としては、金属、合金、有機又は無機の導電性化合物、及び、これらの混合物が用いられる。具体的には、金(Au)等の金属、ヨウ化銅(CuI)、酸化インジウムスズ(SnO-In:ITO)、酸化スズ(SnO)、酸化亜鉛(ZnO)等の光透過性を有する導電性材料で陽極2を形成することができる。また、例えばIDIXO(登録商標:In-ZnO)等の非晶質の透明電極材料で陽極2を形成することもできる。なお、陽極2の側から発光光を取り出す場合には、上述した材料のうち光透過性を有する導電性材料を用いて陽極2(透明電極)を形成すればよい。
[anode]
The anode 2 is an electrode film that supplies holes to the organic light emitting functional layer 3 and can be formed of a conductive material having a large work function (for example, 4 eV or more) that can exhibit a hole injection function. As such a conductive material, a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used. Specifically, light of metals such as gold (Au), copper iodide (CuI), indium tin oxide (SnO 2 —In 2 O 3 : ITO), tin oxide (SnO 2 ), zinc oxide (ZnO), etc. The anode 2 can be formed of a conductive material having transparency. The anode 2 can also be formed of an amorphous transparent electrode material such as IDIXO (registered trademark: In 2 O 3 —ZnO). In addition, when taking out emitted light from the anode 2 side, the anode 2 (transparent electrode) should just be formed using the light-transmitting conductive material among the above-mentioned materials.
 また、陽極2のシート抵抗は、数百Ω/sq.以下であることが好ましい。さらに、陽極2の膜厚は、形成材料に応じて適宜設定されるが、通常、約10~1000nm、好ましくは約10~200nmの範囲で設定される。 The sheet resistance of the anode 2 is several hundred Ω / sq. The following is preferable. Further, the film thickness of the anode 2 is appropriately set according to the forming material, but is usually set in the range of about 10 to 1000 nm, preferably about 10 to 200 nm.
 上記構成の陽極2は、例えば蒸着やスパッタリングなどの手法により、素子基板1上に形成することができる。また、この際、フォトリソグラフィー技術を用いて、陽極2を所望のパターン形状で形成してもよい。なお、陽極2において、パターン形状の精度を必要としない場合(精度が100μm以上程度の場合)には、陽極2を例えば蒸着やスパッタリングなどの手法により形成する際に、所望のパターン形状が形成されたマスクを介して、所望パターンの陽極2を素子基板1上に形成してもよい。 The anode 2 configured as described above can be formed on the element substrate 1 by a technique such as vapor deposition or sputtering. At this time, the anode 2 may be formed in a desired pattern shape using a photolithography technique. When the accuracy of the pattern shape is not required in the anode 2 (when the accuracy is about 100 μm or more), a desired pattern shape is formed when the anode 2 is formed by a technique such as vapor deposition or sputtering. Alternatively, the anode 2 having a desired pattern may be formed on the element substrate 1 through the mask.
 また、有機導電性化合物のように塗布可能な導電性材料を用いて陽極2を形成する場合には、印刷方式、コーティング方式等の湿式成膜法を用いて陽極2を形成することができる。 Further, when the anode 2 is formed using a conductive material that can be applied, such as an organic conductive compound, the anode 2 can be formed using a wet film forming method such as a printing method or a coating method.
[陰極及び陰極引き出し電極]
 陰極4は、有機発光機能層3に電子を供給する電極膜であり、電子注入機能を発現し得る程度の小さな仕事関数(例えば4eV以下)を有する導電性材料で形成することができる。このような導電性材料としては、金属、合金、有機又は無機の導電性化合物、及び、これらの混合物が用いられる。
[Cathode and cathode lead electrode]
The cathode 4 is an electrode film that supplies electrons to the organic light emitting functional layer 3 and can be formed of a conductive material having a small work function (for example, 4 eV or less) that can exhibit an electron injection function. As such a conductive material, a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
 具体的には、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等の導電性材料で陰極4を形成することができる。なお、陰極4の側から光を取り出す場合には、陰極4を、例えば、上記陽極2と同様に、光透過性を有する電極材料で形成することができる。 Specifically, aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, The cathode 4 can be formed of a conductive material such as indium, a lithium / aluminum mixture, or a rare earth metal. In addition, when taking out light from the cathode 4 side, the cathode 4 can be formed with the electrode material which has a light transmittance similarly to the said anode 2, for example.
 なお、電子注入性能、及び、酸化等に対する耐久性の観点では、陰極4の上記各種形成材料のうち、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物等、すなわち、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物を陰極4の形成材料として用いることが好適である。 In addition, from the viewpoint of electron injection performance and durability against oxidation, among the various forming materials of the cathode 4, for example, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, etc., that is, a mixture of an electron injecting metal and a second metal, which is a stable metal having a larger work function than that, is preferably used as a material for forming the cathode 4. is there.
 また、陰極4のシート抵抗は、数百Ω/sq.以下であることが好ましい。さらに、陰極4の膜厚は、形成材料に応じて適宜設定され、例えば、約10nm~5μm、好ましくは、約50nm~200nmの範囲で設定される。 The sheet resistance of the cathode 4 is several hundred Ω / sq. The following is preferable. Furthermore, the film thickness of the cathode 4 is appropriately set according to the forming material, and is set, for example, in the range of about 10 nm to 5 μm, preferably about 50 nm to 200 nm.
 上記構成の陰極4は、例えば蒸着法やスパッタリング法等の手法により形成される。また陰極4を所定のパターン形状で形成する場合には、上述した陽極2のパターン形成手法と同様の手法を用いることができる。 The cathode 4 having the above configuration is formed by a technique such as vapor deposition or sputtering. Further, when the cathode 4 is formed in a predetermined pattern shape, the same method as the pattern forming method of the anode 2 described above can be used.
 また、陰極引き出し電極4aは、後述するように、陽極2と同様に、素子基板1上に形成されるので、陽極2と同様の材料で形成することが好ましい。特に、陰極引き出し電極4aの形成材料を陽極2のそれと同一にすることが好ましく、この場合には、陽極2と同時に、陰極引き出し電極4aを形成することができるので、有機EL素子10の作製プロセスがより簡易になる。 Further, since the cathode lead electrode 4a is formed on the element substrate 1 like the anode 2 as will be described later, it is preferable to form the cathode lead electrode 4a with the same material as the anode 2. In particular, the material for forming the cathode lead electrode 4 a is preferably the same as that of the anode 2. In this case, the cathode lead electrode 4 a can be formed simultaneously with the anode 2. Becomes simpler.
 なお、本実施形態では、陰極引き出し電極4aを介して、陰極4と陰極用スルーホール電極8とを電気的に接続する例を示したが、本発明はこれに限定されない。例えば、陰極用スルーホール電極8を、直接陰極4に接触させるような構成にしてもよく、この場合には、陰極引き出し電極4aを設けなくてよい。 In the present embodiment, the example in which the cathode 4 and the cathode through-hole electrode 8 are electrically connected via the cathode lead electrode 4a is shown, but the present invention is not limited to this. For example, the cathode through-hole electrode 8 may be configured to be in direct contact with the cathode 4, and in this case, the cathode lead electrode 4a may not be provided.
[有機発光機能層]
 図2には、本実施形態の有機EL素子10における有機発光機能層3の一構成例を示す。なお、図2は、有機発光機能層3付近の概略断面図であり、説明の便宜上、陽極2及び陰極4も一緒に示す。
[Organic light emitting functional layer]
In FIG. 2, the example of 1 structure of the organic light emission functional layer 3 in the organic EL element 10 of this embodiment is shown. FIG. 2 is a schematic cross-sectional view in the vicinity of the organic light emitting functional layer 3, and the anode 2 and the cathode 4 are also shown for convenience of explanation.
 図2に示す例では、有機発光機能層3は、発光層11と、発光層11の陽極2側に設けられた正孔輸送層12と、発光層11の陰極4側に設けられた電子輸送層13とを備える。 In the example shown in FIG. 2, the organic light emitting functional layer 3 includes a light emitting layer 11, a hole transport layer 12 provided on the anode 2 side of the light emitting layer 11, and an electron transport provided on the cathode 4 side of the light emitting layer 11. Layer 13.
 このような構成の有機発光機能層3では、陽極2から正孔輸送層12を介して発光層11に正孔が注入され、陰極4から電子輸送層13を介して発光層11に電子が注入される。そして、注入された正孔と、注入された電子とは発光層11において再結合することにより発光が生じる。発光層11で発生した発光光は、陽極2又は陰極4から外部に取り出される。以下に、有機発光機能層3を構成する各層について、より詳細に説明する。 In the organic light emitting functional layer 3 having such a configuration, holes are injected from the anode 2 into the light emitting layer 11 through the hole transport layer 12, and electrons are injected from the cathode 4 into the light emitting layer 11 through the electron transport layer 13. Is done. The injected holes and the injected electrons recombine in the light emitting layer 11 to emit light. The emitted light generated in the light emitting layer 11 is extracted from the anode 2 or the cathode 4 to the outside. Below, each layer which comprises the organic light emission functional layer 3 is demonstrated in detail.
(1)発光層
 発光層11は、陽極2から供給された正孔と、陰極4から供給された電子とが再結合して発光光を発生する層である。このような発光層11は、ホスト材料及び発光性を有するゲスト材料(発光ドーパント化合物)を含有する。発光層11内では、ゲスト材料において発光させることにより、発光効率を高めることができる。
(1) Light-Emitting Layer The light-emitting layer 11 is a layer that generates emitted light by recombination of holes supplied from the anode 2 and electrons supplied from the cathode 4. Such a light emitting layer 11 contains a host material and a guest material having a light emitting property (light emitting dopant compound). In the light emitting layer 11, the light emission efficiency can be increased by causing the guest material to emit light.
 また、発光層11は、一層で構成してもよいし、互いに発光色(波長領域)の異なる複数の発光層を積層した構成にしてもよい。後者の場合には、各発光層間に中間層を設けてもよい。なお、中間層は、正孔阻止層または電子阻止層として機能させてもよい。 Further, the light emitting layer 11 may be composed of a single layer or a structure in which a plurality of light emitting layers having different emission colors (wavelength regions) are laminated. In the latter case, an intermediate layer may be provided between the light emitting layers. Note that the intermediate layer may function as a hole blocking layer or an electron blocking layer.
 ホスト材料としては、公知のホスト材料を用いることができ、その際、一種のホスト材料を単独で用いてもよいし、複数種のホスト材料を併用して用いてもよい。ホスト材料を複数種用いた場合には、発光層11内における電荷の移動を調整することができ、有機EL素子10の発光効率を高めることができる。また、後述する発光材料(ゲスト材料)を複数種用いることで互いに波長が異なる複数の発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host material, a known host material can be used. In this case, one type of host material may be used alone, or a plurality of types of host materials may be used in combination. When a plurality of types of host materials are used, the movement of charges in the light emitting layer 11 can be adjusted, and the light emission efficiency of the organic EL element 10 can be increased. In addition, by using a plurality of types of light emitting materials (guest materials) described later, it becomes possible to mix a plurality of light emissions having different wavelengths, thereby obtaining an arbitrary light emission color.
 このようなホスト材料としては、従来公知の低分子化合物を用いてもよいし、繰り返し単位をもつ高分子化合物を用いてもよい。また、ホスト材料として、例えばビニル基、エポキシ基等の重合性基を有する低分子化合物(蒸着重合性発光ホスト)を用いてもよい。 As such a host material, a conventionally known low molecular compound may be used, or a high molecular compound having a repeating unit may be used. Further, as the host material, for example, a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host) may be used.
 また、公知のホスト材料としては、正孔及び電子(キャリア)の輸送を担う物質であり、正孔輸送機能及び電子輸送機能を有し、発光の長波長化を防止する機能を有し、かつ、高ガラス転移点(Tg)を有する化合物を用いることが好ましい。なお、本明細書でいう、「ガラス転移温度(Tg)」とは、DSC(Differential Scanning Calorimetry:示差走査熱量)法を用いて、JIS-K7121に準拠した手法により求められる値である。 Further, as a known host material, it is a substance responsible for transporting holes and electrons (carriers), has a hole transport function and an electron transport function, has a function of preventing the emission of longer wavelengths, and It is preferable to use a compound having a high glass transition point (Tg). As used herein, “glass transition temperature (Tg)” is a value determined by a method based on JIS-K7121 using a DSC (Differential Scanning Calorimetry) method.
 それゆえ、ホスト材料としては、上述したように正孔輸送機能及び電子輸送機能、すなわち、キャリア輸送機能を有する材料を用いることが好ましい。しかしながら、一般には、有機材料のキャリア輸送機能(キャリア移動度)は電界強度に依存するので、電界強度依存性の高い材料では、正孔及び電子の注入・輸送のバランスが崩れやすい。このため、ホスト材料としては、キャリア移動度の電界強度依存性が小さい材料を用いるか、又は、電界強度依存性が同程度の材料を複数組み合わせて用いることが好ましい。この場合、有機EL素子10における発光色のばらつきを最小限に抑えることができる。 Therefore, as the host material, it is preferable to use a material having a hole transport function and an electron transport function, that is, a carrier transport function as described above. However, generally, since the carrier transport function (carrier mobility) of an organic material depends on the electric field strength, the material having high electric field strength dependency tends to break the balance between injection and transport of holes and electrons. Therefore, as the host material, it is preferable to use a material whose carrier mobility is less dependent on the electric field strength, or a combination of a plurality of materials having the same electric field strength dependency. In this case, the variation in emission color in the organic EL element 10 can be minimized.
 また、ホスト材料としては、例えば、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有する材料、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す)などを用いることができる。 As the host material, for example, a material having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative Diazacarbazole derivatives (herein, diazacarbazole derivatives are those in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom) and the like can be used .
 なお、互いに発光色の異なる複数の発光層を、中間層を介して設ける構成では、中間層もまた、上記ホスト材料の性質と同様の性質を有する。それゆえ、中間層を構成する材料として、上述した物性を有する材料を用いることにより、有機EL素子10における発光色のばらつきを最小限に抑えることができる。 In the configuration in which a plurality of light emitting layers having different emission colors are provided via an intermediate layer, the intermediate layer also has properties similar to those of the host material. Therefore, by using the material having the above-described physical properties as the material constituting the intermediate layer, the variation in the emission color in the organic EL element 10 can be minimized.
 一方、ゲスト材料としては、燐光発光材料(燐光性ドーパント)及び蛍光発光材料(蛍光性ドーパント)を用いることができ、特に、燐光発光材料を用いることが好ましい。また、複数のゲスト材料を混合してもよいし、燐光発光材料と蛍光発光材料とを同一の発光層11中に混合してもよい。 On the other hand, as the guest material, a phosphorescent material (phosphorescent dopant) and a fluorescent material (fluorescent dopant) can be used, and it is particularly preferable to use a phosphorescent material. A plurality of guest materials may be mixed, or a phosphorescent material and a fluorescent material may be mixed in the same light emitting layer 11.
 燐光発光材料は、燐光性化合物又は燐光発光性化合物とも言い、一般に、有機EL素子の発光層に使用される公知の材料の中から適宜選択して用いることができる。その中でも、燐光発光材料として、元素の周期表で8~10族の金属を含有する錯体系化合物を用いることが好ましく、さらには、イリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)、又は、希土類錯体を用いることが好ましい。そして、特に、燐光発光材料として、イリジウム化合物(イリジウム錯体)を用いることが好ましい。 The phosphorescent material is also referred to as a phosphorescent compound or a phosphorescent compound, and can generally be appropriately selected from known materials used for the light emitting layer of the organic EL element. Among them, it is preferable to use a complex compound containing a group 8-10 metal in the periodic table of elements as the phosphorescent material, and further, an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or It is preferable to use a rare earth complex. In particular, it is preferable to use an iridium compound (iridium complex) as the phosphorescent material.
 また、蛍光発光材料としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は、希土類錯体系蛍光体等の材料が挙げられる。 Examples of fluorescent light-emitting materials include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, and perylene dyes. Examples of the material include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 上述のような発光性を有するゲスト材料は、一つの発光層11に2種以上、含有されていてもよいし、発光層11内のゲスト材料の濃度比が発光層11の厚さ方向において変化していてもよい。 Two or more types of guest materials having the above light-emitting properties may be contained in one light-emitting layer 11, and the concentration ratio of the guest materials in the light-emitting layer 11 changes in the thickness direction of the light-emitting layer 11. You may do it.
 以上説明したような、ホスト材料及びゲスト材料を用いて構成される発光層11及び中間層は、例えば、蒸着法、スピンコート法、キャスト法、LB(Langmuir Blodgett)法、インクジェット法、印刷法等の公知の薄膜形成法により作製することができる。 As described above, the light emitting layer 11 and the intermediate layer formed using the host material and the guest material are, for example, an evaporation method, a spin coating method, a casting method, an LB (Langmuir Blodgett) method, an ink jet method, a printing method, and the like. It can produce by the well-known thin film formation method.
(2)正孔輸送層,電子輸送層
 陽極2及び発光層11間、並びに、陰極4及び発光層11間にそれぞれ設けられた正孔輸送層12、並びに、電子輸送層13は、発光層11との組み合わせを考慮して、従来公知の材料で形成することができる。
(2) Hole Transport Layer, Electron Transport Layer The hole transport layer 12 and the electron transport layer 13 provided between the anode 2 and the light emitting layer 11 and between the cathode 4 and the light emitting layer 11 are the light emitting layer 11. In consideration of the combination, it can be formed of a conventionally known material.
(3)その他の構成層
 本実施形態では、有機発光機能層3の層構成は、図2に示す構成例に限定されず、従来から一般的に知られている任意の層構成を適用することができる。なお、有機発光機能層3は、少なくとも発光層11を有する構成であれば、任意に構成することができる。
(3) Other configuration layers In this embodiment, the layer configuration of the organic light emitting functional layer 3 is not limited to the configuration example shown in FIG. 2, and any layer configuration generally known from the past is applied. Can do. The organic light emitting functional layer 3 can be arbitrarily configured as long as it has at least the light emitting layer 11.
 例えば、陽極2と正孔輸送層12との間に正孔注入層を設け、陰極4と電子輸送層13との間に電子注入層を設けてもよい。さらに、正孔阻止層や電子阻止層等を必要に応じて適宜設けてもよい。なお、各種注入層は、駆動電圧低下や発光輝度向上のために設けられ、その形成材料としては、例えば「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている材料を適宜用いることができる。また、各電極膜(陽極2及び陰極4)の構造を、必要に応じて、多層構造にしてもよい。 For example, a hole injection layer may be provided between the anode 2 and the hole transport layer 12, and an electron injection layer may be provided between the cathode 4 and the electron transport layer 13. Furthermore, you may provide a hole-blocking layer, an electron blocking layer, etc. suitably as needed. Various injection layers are provided for lowering the driving voltage and improving the luminance of light emission. Examples of the material for forming them include “Organic EL elements and their forefront of industrialization” (published by NTS Corporation on November 30, 1998). The materials described in detail in Chapter 2, “Electrode Materials” (pages 123 to 166) in the second volume of “2)” can be used as appropriate. Further, the structure of each electrode film (the anode 2 and the cathode 4) may be a multilayer structure as necessary.
(4)有機EL素子の作製手法の一例
 ここで、図1に示す本実施形態の有機EL素子10の素子本体部(素子基板1、有機発光機能層3及び各種電極膜)の作製手法の一例を説明する。なお、有機EL素子10全体のより具体的な作製手法については、後述の実施例1で説明する。
(4) Example of Method for Producing Organic EL Element Here, an example of a technique for producing the element body (element substrate 1, organic light emitting functional layer 3, and various electrode films) of the organic EL element 10 of the present embodiment shown in FIG. Will be explained. A more specific manufacturing method of the organic EL element 10 as a whole will be described in Example 1 described later.
 まず、素子基板1上に、例えば蒸着法やスパッタリング等の手法により、陽極用物質からなる薄膜を積層して、陽極2を形成する。この際、陽極2の膜厚は、1μm以下、好ましくは、約10nm~200nmの膜厚に設定する。また、この際、本実施形態では、素子基板1上において、陰極引き出し電極4aを陽極2と異なる領域に形成する。なお、陰極引き出し電極4aの膜構成(形成材料、膜厚など)は、陽極2の膜と同様の構成とし、陰極引き出し電極4aを陽極2と同時に形成することが好ましい。 First, a thin film made of a material for an anode is laminated on the element substrate 1 by a method such as vapor deposition or sputtering to form the anode 2. At this time, the film thickness of the anode 2 is set to 1 μm or less, preferably about 10 nm to 200 nm. At this time, in this embodiment, the cathode lead electrode 4 a is formed in a region different from the anode 2 on the element substrate 1. The film configuration (formation material, film thickness, etc.) of the cathode lead electrode 4a is preferably the same as that of the anode 2 and the cathode lead electrode 4a is preferably formed simultaneously with the anode 2.
 次いで、陽極2上に、有機発光機能層3を形成する。具体的には、陽極2上に、正孔輸送層12、発光層11及び電子輸送層13の各有機化合物薄膜をこの順で成膜して、有機発光機能層3を形成する。 Next, the organic light emitting functional layer 3 is formed on the anode 2. Specifically, on the anode 2, the organic compound thin films of the hole transport layer 12, the light emitting layer 11, and the electron transport layer 13 are formed in this order to form the organic light emitting functional layer 3.
 なお、各有機化合物薄膜の成膜手法としては、上述したように、蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、印刷法等の手法を用いることができる。これらの手法の中でも、蒸着法、スピンコート法、インクジェット法、印刷法を用いることが特に好ましい。これらの手法で各有機化合物薄膜を成膜した場合、例えば、均質な膜が得られ易い、ピンホールが生成され難い等の利点が得られる。なお、有機発光機能層3の形成工程において、全ての有機化合物薄膜を同じ成膜法で形成してもよいし、有機化合物薄膜毎に成膜法を変更してもよい。 In addition, as a film-forming method of each organic compound thin film, methods such as a vapor deposition method, a spin coating method, a casting method, an LB method, an ink-jet method, and a printing method can be used as described above. Among these methods, it is particularly preferable to use a vapor deposition method, a spin coating method, an ink jet method, or a printing method. When each organic compound thin film is formed by these methods, for example, there are obtained advantages such that a homogeneous film is easily obtained and pinholes are hardly generated. In the step of forming the organic light emitting functional layer 3, all the organic compound thin films may be formed by the same film forming method, or the film forming method may be changed for each organic compound thin film.
 また、有機化合物薄膜の成膜法として蒸着法を採用する場合、その蒸着条件は、使用する有機化合物の種類等の条件に応じて適宜設定される。具体的には、ボート加熱温度を約50℃~450℃、真空度を約10-6Pa~10-2Pa、蒸着速度を約0.01nm/秒~50nm/秒、基板温度を約-50℃~150℃、そして、膜厚を約0.1nm~5μm(好ましくは5nm~200nm)の各範囲からそれぞれ適宜選択して、蒸着条件を設定することが好ましい。 Moreover, when employ | adopting a vapor deposition method as a film-forming method of an organic compound thin film, the vapor deposition conditions are suitably set according to conditions, such as the kind of organic compound to be used. Specifically, the boat heating temperature is about 50 ° C. to 450 ° C., the degree of vacuum is about 10 −6 Pa to 10 −2 Pa, the deposition rate is about 0.01 nm / second to 50 nm / second, and the substrate temperature is about −50. It is preferable to set the vapor deposition conditions by appropriately selecting from a range of about 150 to 150 ° C. and a film thickness of about 0.1 nm to 5 μm (preferably 5 nm to 200 nm).
 上述のようにして有機発光機能層3を形成した後、有機発光機能層3上に、例えば蒸着法やスパッタリング等の手法により、陰極用物質からなる薄膜を積層して、陰極4を形成する。なお、陰極4の形成時における真空度、蒸着速度、基板温度等の成膜条件は、上述した有機化合物薄膜の成膜条件と同様の条件範囲から適宜選択する。この際、陰極4の膜厚は、1μm以下、好ましくは、約50nm~200nmの膜厚に設定する。また、この際、陰極4は、有機発光機能層3を介して陽極2に対して絶縁状態を保ちつつ、陰極引き出し電極4aと電気的に接続されるようなパターン形状で形成される。 After forming the organic light emitting functional layer 3 as described above, a cathode 4 is formed by laminating a thin film made of a cathode material on the organic light emitting functional layer 3 by a method such as vapor deposition or sputtering. The film forming conditions such as the degree of vacuum, the deposition rate, and the substrate temperature at the time of forming the cathode 4 are appropriately selected from the same condition range as the film forming conditions for the organic compound thin film described above. At this time, the thickness of the cathode 4 is set to 1 μm or less, preferably about 50 nm to 200 nm. At this time, the cathode 4 is formed in a pattern shape that is electrically connected to the cathode lead electrode 4a while maintaining an insulating state with respect to the anode 2 via the organic light emitting functional layer 3.
 本実施形態では、上述のようにして、素子基板1上に所望の有機発光機能層3及び各種電極膜を形成する。なお、上述した作製手法では、同じ成膜装置内で、一回の真空引きで一貫して陽極2、有機発光機能層3及び陰極4を形成するのが好ましいが、本発明はこれに限定されない。成膜工程毎に基板部材を成膜装置から取り出して、異なる成膜法を用いて有機発光機能層3及び各種電極膜を形成してもよい。なお、その場合には、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 In the present embodiment, the desired organic light emitting functional layer 3 and various electrode films are formed on the element substrate 1 as described above. In the above-described manufacturing method, it is preferable to form the anode 2, the organic light emitting functional layer 3, and the cathode 4 consistently by a single evacuation in the same film forming apparatus, but the present invention is not limited to this. . The organic light emitting functional layer 3 and various electrode films may be formed using different film forming methods by taking out the substrate member for each film forming process. In that case, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 また、本実施形態では、素子基板1上に、陽極2、正孔輸送層12、発光層11、電子輸送層13及び陰極4をこの順で成膜する例を説明したが、本発明はこれに限定されない。例えば、各膜(各層)の積層順序を逆にして、素子基板1上に、陰極4、電子輸送層13、発光層11、正孔輸送層12及び陽極2をこの順で形成してもよい。なお、この場合には、陰極4を透明電極で形成する。 In this embodiment, the example in which the anode 2, the hole transport layer 12, the light emitting layer 11, the electron transport layer 13, and the cathode 4 are formed in this order on the element substrate 1 has been described. It is not limited to. For example, the cathode 4, the electron transport layer 13, the light emitting layer 11, the hole transport layer 12, and the anode 2 may be formed in this order on the element substrate 1 by reversing the stacking order of each film (each layer). . In this case, the cathode 4 is formed of a transparent electrode.
[封止基材]
 封止基材5は、有機EL素子10の素子本体部(素子基板1、有機発光機能層3及び各種電極)を覆う部材である。なお、本実施形態では、陽極用スルーホール電極7及び陰極用スルーホール電極8を、封止基材5を貫通させて設けるので、両者の絶縁性を確保するために、封止基材5は絶縁性材料で形成する。
[Sealing substrate]
The sealing substrate 5 is a member that covers the element main body (the element substrate 1, the organic light emitting functional layer 3, and various electrodes) of the organic EL element 10. In the present embodiment, since the anode through-hole electrode 7 and the cathode through-hole electrode 8 are provided through the sealing substrate 5, the sealing substrate 5 is used to ensure the insulation between them. It is made of an insulating material.
 また、封止基材5は、板状(フィルム状)の封止部材で構成することができる。この場合、封止基材5として、一方の面に凹部が形成された略板状基材、すなわち、凹板状の封止部材を用いてもよいし、面が平坦な板状基材、すなわち、平板状の封止部材を用いてもよい。なお、板状(凹板状又は平板状)の封止基材5は、間に素子本体部を挟んで、素子基板1と対向する位置に配置される。 Moreover, the sealing base material 5 can be comprised with a plate-shaped (film-shaped) sealing member. In this case, as the sealing substrate 5, a substantially plate-like substrate having a recess formed on one surface, that is, a concave plate-shaped sealing member, a plate-like substrate having a flat surface, That is, a flat sealing member may be used. The plate-like (concave plate or flat plate) sealing substrate 5 is disposed at a position facing the element substrate 1 with the element main body interposed therebetween.
 封止基材5としては、例えば、ガラス板、ポリマー板等の透明基板を用いることができる。なお、ガラス板としては、例えば、無アルカリガラス、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等の材料で形成された基板を用いることができる。この中でも、特に、無アルカリガラスやソーダ石灰ガラスで形成されたガラス基板を用いる好ましい。また、ポリマー板としては、例えば、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等の材料で形成された基板を用いることができる。 As the sealing substrate 5, for example, a transparent substrate such as a glass plate or a polymer plate can be used. As the glass plate, for example, a substrate formed of a material such as alkali-free glass, soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, or quartz is used. be able to. Among these, it is particularly preferable to use a glass substrate formed of alkali-free glass or soda-lime glass. Moreover, as a polymer board, the board | substrate formed with materials, such as a polycarbonate, an acryl, a polyethylene terephthalate, a polyether sulfide, a polysulfone, can be used, for example.
 さらに、本実施形態では、封止基材5の線膨張係数が、素子基板1のそれに近い値であることが好ましい。具体的には、両者の線膨張係数の差が、10×10-6/℃以下であることが好ましく、5×10-6/℃以下であることがより好ましく、2×10-6/℃以下であることが最も好ましい。なお、素子基板1及び封止基材5の構造が複数の材料膜からなる多層膜構造である場合には、各基材を構成する複数の材料膜の中で最も膜厚の厚い材料膜の線膨張係数が互い近い値であることが好ましい。このように、封止基材5の線膨張係数を素子基板1のそれと略同じ値にすることにより、両者を貼り合わせた後の有機EL素子10の曲がりや、封止基材5の剥がれなどの発生を抑制することができる。 Furthermore, in this embodiment, it is preferable that the linear expansion coefficient of the sealing substrate 5 is a value close to that of the element substrate 1. Specifically, difference between the linear expansion coefficient of, is preferably 10 × 10 -6 / ℃ or less, more preferably 5 × 10 -6 / ℃ less, 2 × 10 -6 / ℃ Most preferably: In addition, when the structure of the element substrate 1 and the sealing base material 5 is a multilayer film structure composed of a plurality of material films, the thickest material film of the plurality of material films constituting each base material is used. The linear expansion coefficients are preferably close to each other. Thus, by making the linear expansion coefficient of the sealing substrate 5 substantially the same value as that of the element substrate 1, the organic EL element 10 after being bonded together, the sealing substrate 5 is peeled off, or the like. Can be suppressed.
 また、有機EL素子10の薄型化という観点では、封止基材5としてポリマー板を用いることが好ましい。なお、封止基材5としてポリマー板を用いる場合には、有機EL素子10内への例えば水蒸気、酸素等の透過を抑制するために、ポリマー板の表面に、無機材料からなるバリア膜、有機材料からなるバリア膜、又は、これらのバリア膜を積層したハイブリッド膜を設けることが好ましい。なお、このようなバリア膜としては、酸素透過度が10-3cm/(m・24h・atm)以下であり、かつ、水蒸気透過度が10-3g/(m・24h)以下である膜を用いることが好ましい。さらに、バリア膜の水蒸気透過度は、10-5g/(m・24h)以下であるか、又は、バリア膜の酸素透過度は、10-5cm/(m・24h・atm)以下であることが好ましい。 In terms of reducing the thickness of the organic EL element 10, it is preferable to use a polymer plate as the sealing substrate 5. In the case where a polymer plate is used as the sealing substrate 5, a barrier film made of an inorganic material, an organic material is used on the surface of the polymer plate in order to suppress, for example, water vapor and oxygen from passing into the organic EL element 10. It is preferable to provide a barrier film made of a material or a hybrid film in which these barrier films are stacked. Such a barrier film has an oxygen permeability of 10 −3 cm 3 / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −3 g / (m 2 · 24 h) or less. It is preferable to use the film | membrane which is. Further, the water vapor permeability of the barrier film is 10 −5 g / (m 2 · 24 h) or less, or the oxygen permeability of the barrier film is 10 −5 cm 3 / (m 2 · 24 h · atm). The following is preferable.
 なお、本実施形態では、図1に示すように、封止基材5として、平板状の封止部材を用い、その全面を、接着剤を介して素子基板1に貼り合わせることが好ましい。このような封止形態をとることで、薄くて軽量の有機EL素子10(面状発光体)を提供することができる。また、素子基板1及び封止基材5に可撓性基材を用いた場合には、フレキシブルな有機EL素子10(面状発光体)を提供することもできる。 In addition, in this embodiment, as shown in FIG. 1, it is preferable to use a flat sealing member as the sealing substrate 5, and to stick the whole surface to the element substrate 1 with an adhesive. By adopting such a sealing form, a thin and lightweight organic EL element 10 (planar light emitter) can be provided. Moreover, when a flexible base material is used for the element substrate 1 and the sealing base material 5, a flexible organic EL element 10 (planar light emitter) can also be provided.
 ただし、このような封止形態で、乾燥材を封入しない場合には、保存特性が、有機発光機能層3の発光領域の側端部から封止側端部までの距離により影響を受ける。図3に、有機発光機能層3の発光領域の側端部から封止側端部までの距離(封止しろ)と有機EL素子10に発生するダークスポットの発生面積との関係を示す。図3に示す特性では、横軸は封止しろであり、縦軸はダークスポット発生面積である。図3から明らかなように、封止しろが小さい場合には、ダークスポット発生面積は大きくなるが(保存特性は劣化する)が、封止しろが大きくなると、ダークスポット発生面積は小さくなり、最終的には、飽和することが分かる。すなわち、良好な保存特性を確保するためには、ある程度の幅の封止しろ、すなわち、非発光領域が必要になる。 However, when the desiccant is not encapsulated in such a sealing form, the storage characteristics are affected by the distance from the side end of the light emitting region of the organic light emitting functional layer 3 to the end of the sealing side. FIG. 3 shows the relationship between the distance (sealing margin) from the side end of the light emitting region to the sealing side end of the organic light emitting functional layer 3 and the area where dark spots are generated in the organic EL element 10. In the characteristics shown in FIG. 3, the horizontal axis is the margin for sealing, and the vertical axis is the dark spot generation area. As is clear from FIG. 3, when the sealing margin is small, the dark spot generation area is large (the storage characteristic is deteriorated), but when the sealing margin is large, the dark spot generation area is small, and finally, It turns out that it is saturated. That is, in order to ensure good storage characteristics, a certain amount of sealing width, that is, a non-light emitting region is required.
 また、封止基材5を凹板状の封止部材で構成する場合(缶封止する場合)、その凹部は、例えば、サンドブラスト加工、化学エッチング加工等の処理により形成される。なお、封止基材5を凹板状の封止部材で構成する場合、封止基材5と有機EL素子10の素子本体部(素子基板1、有機発光機能層3及び各種電極)との間隙に、例えば、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイル等の不活性液体を充填することが好ましい。また、封止基材5と有機EL素子10の素子本体部との間隙を真空状態にしてもよいし、間隙に吸湿性化合物を封入してもよい。 Further, when the sealing substrate 5 is constituted by a concave plate-shaped sealing member (when can sealing), the concave portion is formed by a process such as a sandblasting process or a chemical etching process. In addition, when comprising the sealing base material 5 with a concave-plate-shaped sealing member, the sealing base material 5 and the element main-body part (the element substrate 1, the organic light emission functional layer 3, and various electrodes) of the organic EL element 10 are included. The gap is preferably filled with, for example, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil. Further, the gap between the sealing substrate 5 and the element main body of the organic EL element 10 may be in a vacuum state, or a hygroscopic compound may be sealed in the gap.
 なお、吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等を用いることができる。これらの化合物の中でも、吸湿性化合物として、硫酸塩、金属ハロゲン化物、又は、過塩素酸類を使用する場合には、無水塩を用いることが好ましい。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, Cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium chlorate, magnesium perchlorate, etc.) can be used. Among these compounds, when a sulfate, a metal halide, or perchloric acid is used as the hygroscopic compound, it is preferable to use an anhydrous salt.
 また、封止基材5としては、封止膜を用いてもよい。膜封止の手法を用いる場合には、有機発光機能層3を封止膜で完全に覆う。なお、本実施形態では、給電端子として、陽極用スルーホール電極7及び陰極用スルーホール電極8を設けるので、封止膜の各スルーホール電極の形成領域には開口部を設け、該開口部に陽極2及び陰極4が露出するように封止膜を形成する。 Further, as the sealing substrate 5, a sealing film may be used. When the film sealing method is used, the organic light emitting functional layer 3 is completely covered with the sealing film. In the present embodiment, since the anode through-hole electrode 7 and the cathode through-hole electrode 8 are provided as power supply terminals, an opening is provided in each through-hole electrode formation region of the sealing film, and the opening is provided in the opening. A sealing film is formed so that the anode 2 and the cathode 4 are exposed.
 このような封止膜は、無機材料や有機材料からなる膜で構成することができる。なお、封止膜は、有機発光機能層3の劣化をもたらす、水分や酸素等の物質の浸入を抑制する機能を有する材料で形成される。このような性質を有する材料としては、例えば、酸化珪素、二酸化珪素、窒化珪素等の無機材料が挙げられる。さらに、封止膜の脆弱性を改良するために、封止膜の構造を、これらの無機材料からなる膜と、有機材料からなる膜とを積層した多層構造としてもよい。 Such a sealing film can be composed of a film made of an inorganic material or an organic material. Note that the sealing film is formed of a material having a function of suppressing intrusion of a substance such as moisture or oxygen, which causes deterioration of the organic light emitting functional layer 3. Examples of the material having such properties include inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride. Furthermore, in order to improve the brittleness of the sealing film, the structure of the sealing film may be a multilayer structure in which a film made of these inorganic materials and a film made of an organic material are laminated.
 上述した封止膜の形成手法としては、任意の手法を用いることができ、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等の手法を用いることができる。 Any method can be used as the method for forming the sealing film described above. For example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, Techniques such as plasma polymerization, atmospheric pressure plasma polymerization, plasma CVD, laser CVD, thermal CVD, and coating can be used.
[シール材]
 シール材6は、封止基材5が平板状の封止部材である場合(固体密着封止の場合)には、例えば、液状接着剤、シート状接着剤、熱可塑性樹脂接着剤等で形成することができる。
[Sealant]
The sealing material 6 is formed of, for example, a liquid adhesive, a sheet-like adhesive, a thermoplastic resin adhesive, or the like when the sealing substrate 5 is a flat sealing member (in the case of solid adhesive sealing). can do.
 液状接着剤としては、例えばアクリル酸系オリゴマー、メタクリル酸系オリゴマー等の反応性ビニル基を有する光硬化型又は熱硬化型シール剤、2-シアノアクリル酸エステルなどの湿気硬化型等の接着剤、エポキシ系などの熱硬化型及び化学硬化型(二液混合)等の接着剤、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤等を用いることができる。 Examples of the liquid adhesive include photo-curing or thermosetting sealing agents having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture-curing adhesives such as 2-cyanoacrylate, Epoxy-based thermosetting and chemical curing (two-component mixed) adhesives, cationic curing ultraviolet curing epoxy resin adhesives, and the like can be used.
 なお、液状接着剤には必要に応じてフィラーを添加することが好ましい。フィラーの添加量としては、接着力を考慮して、5~70体積%とすることが好ましい。また、添加するフィラーの大きさは、接着力、貼合圧着後の接着剤厚み等を考慮して、1μm~100μmであることが好ましい。添加するフィラーとしては、任意のものを用いることができ、例えば、ソーダガラス、無アルカリガラス、シリカ等を用いることができる。また、フィラーとしては、例えば、二酸化チタン、酸化アンチモン、チタニア、アルミナ、ジルコニア、酸化タングステン等の金属酸化物を用いることもできる。 In addition, it is preferable to add a filler to the liquid adhesive as necessary. The amount of filler added is preferably 5 to 70% by volume in consideration of adhesive strength. In addition, the size of the filler to be added is preferably 1 μm to 100 μm in consideration of the adhesive strength, the thickness of the adhesive after bonding and bonding, and the like. Any filler can be used, for example, soda glass, alkali-free glass, silica, or the like. As the filler, for example, metal oxides such as titanium dioxide, antimony oxide, titania, alumina, zirconia, and tungsten oxide can be used.
 液状接着剤を使用して封止基材5と有機EL素子10の素子本体部とを貼り合わせる場合には、貼合安定性、貼合部内への気泡混入の防止、可撓性封止基材の平面性保持等を考慮して、10Pa~1×10-5Paの減圧条件で、貼り合わせ処理を行うことが好ましい。 When the sealing substrate 5 and the element main body of the organic EL element 10 are bonded using a liquid adhesive, the bonding stability, the prevention of air bubbles from being mixed into the bonding part, the flexible sealing group In consideration of maintaining the flatness of the material, it is preferable to perform the bonding process under reduced pressure conditions of 10 Pa to 1 × 10 −5 Pa.
 シート状接着剤は、常温(25℃程度)では非流動性を示し、且つ、加熱すると50℃~100℃の範囲で流動性を発現する、シート状に成形された接着剤である。シート状接着剤としては、例えば分子の末端又は側鎖にエチレン性二重結合を有する化合物と、光重合開始剤とを主成分とする光硬化性樹脂が挙げられる。このシート状接着剤を使用する際には、例えば、予め、封止基材5にシート状接着剤を貼合した状態で、かつ、常温(25℃程度)以下で使用することが好ましい。 The sheet-like adhesive is an adhesive formed into a sheet shape that exhibits non-flowability at room temperature (about 25 ° C.) and exhibits fluidity in the range of 50 ° C. to 100 ° C. when heated. Examples of the sheet-like adhesive include a photo-curing resin mainly composed of a compound having an ethylenic double bond at the molecular end or side chain and a photopolymerization initiator. When using this sheet-like adhesive, for example, it is preferable to use the sheet-like adhesive in a state in which the sheet-like adhesive is bonded to the sealing substrate 5 in advance and at room temperature (about 25 ° C.) or lower.
 熱可塑性樹脂としては、JIS-K-7210規定のメルトフローレートが5~20[g/10min]である熱可塑性樹脂を用いることが好ましく、さらに、メルトフローレートが6~15[g/10min]である熱可塑性樹脂を用いることが好ましい。これは、メルトフローレートが5[g/10min]以下の熱可塑性樹脂を用いると、各電極膜の引き出し電極部(取り出し電極部)の段差により生じる隙間部を樹脂で完全に埋めることが難しいためである。また、上記メルトフローレートの範囲が好ましい理由は、メルトフローレートが20[g/10min]以上の樹脂を用いた場合には、引っ張り強さ、耐ストレスクラッキング性、加工性などの特性が低下するためである。 As the thermoplastic resin, it is preferable to use a thermoplastic resin having a melt flow rate of 5 to 20 [g / 10 min] according to JIS-K-7210, and a melt flow rate of 6 to 15 [g / 10 min]. It is preferable to use a thermoplastic resin. This is because if a thermoplastic resin having a melt flow rate of 5 [g / 10 min] or less is used, it is difficult to completely fill a gap formed by the step of the extraction electrode portion (extraction electrode portion) of each electrode film with the resin. It is. The reason why the range of the melt flow rate is preferable is that when a resin having a melt flow rate of 20 [g / 10 min] or more is used, characteristics such as tensile strength, stress cracking resistance, and workability are deteriorated. Because.
 熱可塑性樹脂を使用する場合には、熱可塑性樹脂をフィルム状に成形し、該成形したフィルム状樹脂を封止基材5に貼合して使用することが好ましい。貼合手法としては、一般的に知られている各種の手法、例えば、ウェットラミネート法、ドライラミネート法、ホットメルトラミネート法、押出しラミネート法、熱ラミネート法等の手法を用いることができる。 When a thermoplastic resin is used, it is preferable to use the thermoplastic resin molded into a film shape and the molded film resin bonded to the sealing substrate 5. As the bonding method, various generally known methods such as a wet laminating method, a dry laminating method, a hot melt laminating method, an extrusion laminating method, and a thermal laminating method can be used.
 なお、熱可塑性樹脂としては、メルトフローレートが上記数値範囲を満たすものであれば任意のものを用いることができ、例えば「機能性包装材料の新展開」(株式会社東レリサーチセンター)に記載されている高分子フィルムである低密度ポリエチレン(LDPE)、HDPE、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン、未延伸ポリプロピレン(CPP)、OPP、ONy、PET、セロハン、ポリビニルアルコール(PVA)、延伸ビニロン(OV)、エチレン-酢酸ビニル共重合体(EVOH)、エチレン-プロピレン共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、塩化ビニリデン(PVDC)等を用いることができる。これらの熱可塑性樹脂の中でも、特に、LDPE又はLLDPEを用いることが好ましい。また、メタロセン触媒を使用して製造したLDPE又はLLDPEを熱可塑性樹脂として用いてもよい。さらに、LDPE或いはLLDPEと、HDPEフィルムとを混合した熱可塑性樹脂を用いてもよい。 As the thermoplastic resin, any resin can be used as long as the melt flow rate satisfies the above numerical range. For example, it is described in “New development of functional packaging material” (Toray Research Center, Inc.). Low density polyethylene (LDPE), HDPE, linear low density polyethylene (LLDPE), medium density polyethylene, unstretched polypropylene (CPP), OPP, ONy, PET, cellophane, polyvinyl alcohol (PVA), Use of stretched vinylon (OV), ethylene-vinyl acetate copolymer (EVOH), ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, vinylidene chloride (PVDC), etc. it can. Among these thermoplastic resins, it is particularly preferable to use LDPE or LLDPE. Further, LDPE or LLDPE produced using a metallocene catalyst may be used as the thermoplastic resin. Further, a thermoplastic resin obtained by mixing LDPE or LLDPE and an HDPE film may be used.
 また、封止基材5が凹板状の封止部材である場合(缶封止の場合)、シール材6としては、アクリル酸系オリゴマー又はメタクリル酸系オリゴマーの反応性ビニル基を有する光硬化型又は熱硬化型接着剤や、2-シアノアクリル酸エステル等の湿気硬化型接着剤などを用いることができる。さらに、この場合、シール材6としては、エポキシ系等の熱硬化型又は化学硬化型(二液混合)接着剤を用いることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィン等をシール材6として用いてもよい。その他、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤をシール材6として用いてもよい。 Moreover, when the sealing base material 5 is a concave-plate-shaped sealing member (in the case of can sealing), as the sealing material 6, the photocuring which has the reactive vinyl group of an acrylic acid type oligomer or a methacrylic acid type oligomer is carried out. A mold or thermosetting adhesive, a moisture curable adhesive such as 2-cyanoacrylate, and the like can be used. Further, in this case, as the sealing material 6, an epoxy-based thermosetting type or chemical curing type (two-component mixed) adhesive can be used. Further, hot-melt type polyamide, polyester, polyolefin or the like may be used as the sealing material 6. In addition, a cationic curing type ultraviolet curing epoxy resin adhesive may be used as the sealing material 6.
 なお、封止基材5が凹板状の封止部材である場合、シール材6として用い得る上記各種接着剤の中でも、有機EL素子10の熱処理による劣化を防止するために、室温から80℃までの温度範囲で接着硬化するものを用いることが好ましい。また、上述した各種接着剤中に乾燥剤を分散させておいてもよい。なお、封止部分への接着剤の塗布処理は、ディスペンサーを用いて実施してもよいし、スクリーン印刷を用いて実施してもよい。 In addition, when the sealing base material 5 is a concave plate-shaped sealing member, among the various adhesives that can be used as the sealing material 6, in order to prevent deterioration due to heat treatment of the organic EL element 10, the temperature is changed from room temperature to 80 ° C. It is preferable to use an adhesive that cures within a temperature range up to. Further, a desiccant may be dispersed in the various adhesives described above. In addition, the application | coating process of the adhesive agent to a sealing part may be implemented using a dispenser, and may be implemented using screen printing.
[スルーホール電極及び封止基材の貫通孔]
 本実施形態の有機EL素子10では、素子基板1と封止基材5とを対向させて配置した際に、陽極2の引き出し電極部分及び陰極引き出し電極4aに対向する封止基材5内の位置に、それぞれ陽極用スルーホール電極7及び陰極用スルーホール電極8を設けるための貫通孔5a及び5bを形成する。
[Through hole of through hole electrode and sealing substrate]
In the organic EL element 10 of the present embodiment, when the element substrate 1 and the sealing base material 5 are disposed to face each other, the lead electrode part of the anode 2 and the inside of the sealing base material 5 facing the cathode lead electrode 4a are arranged. Through holes 5a and 5b for forming the anode through-hole electrode 7 and the cathode through-hole electrode 8 are formed at positions.
 各貫通孔の開口形状は、任意の形状にすることができ、例えば円状にすることができる。この場合、スルーホール電極を成形し易くなる。また、各貫通孔の開口面積(径)を、シール材6側の表面からシール材6側とは反対側の面に向かって大きくすることが好ましい。すなわち、各貫通孔を画成する封止基材5の側壁面をテーパー状にすることが好ましい。 The opening shape of each through hole can be any shape, for example, a circular shape. In this case, the through-hole electrode can be easily formed. Moreover, it is preferable to increase the opening area (diameter) of each through-hole from the surface on the sealing material 6 side toward the surface opposite to the sealing material 6 side. That is, it is preferable that the side wall surface of the sealing substrate 5 that defines each through hole is tapered.
 各貫通孔の開口面積は、封止性能の観点では、小さい方が好ましく、具体的には、1mm以下であることが好ましい。また、この観点では、各貫通孔の開口面積を、0.8mm以下にすることがより好ましく、特に、0.5mm以下とすることがさらに好ましい。なお、各貫通孔を画成する封止基材5の側壁面がテーパー状である場合には、各貫通孔のシール材6側とは反対側の面の開口面積(開口径が大きい方の開口面積)が、この面積範囲を満たすようにすることが好ましい。 The opening area of each through hole is preferably smaller from the viewpoint of sealing performance, and specifically, it is preferably 1 mm 2 or less. From this viewpoint, the opening area of each through hole is more preferably 0.8 mm 2 or less, and particularly preferably 0.5 mm 2 or less. In addition, when the side wall surface of the sealing base material 5 that defines each through hole is tapered, the opening area of the surface opposite to the sealing material 6 side of each through hole (the one with the larger opening diameter) The opening area) preferably satisfies this area range.
 また、各貫通孔の開口面積は、通電性の向上及び駆動電圧の上昇の抑制という観点では、大きい方が好ましく、0.3mm以上とすることが好ましい。また、この観点では、各貫通孔の開口面積を、0.7mm以上とすることがより好ましく、特に、0.9mm以上とすることがさらに好ましい。なお、各貫通孔を画成する封止基材5の側壁面がテーパー状である場合には、各貫通孔のシール材6側の面の開口面積(開口径が小さい方の開口面積)が、この面積範囲を満たすようにすることが好ましい。 In addition, the opening area of each through hole is preferably larger and is preferably 0.3 mm 2 or more from the viewpoint of improving the conductivity and suppressing the increase in driving voltage. From this viewpoint, the opening area of each through hole is more preferably 0.7 mm 2 or more, and particularly preferably 0.9 mm 2 or more. In addition, when the side wall surface of the sealing base material 5 that defines each through hole is tapered, the opening area of the surface on the sealing material 6 side of each through hole (the opening area with the smaller opening diameter) is It is preferable to satisfy this area range.
 貫通孔の形成手法としては、公知の手法を用いることができる。封止基材5がガラスで形成されている場合には、例えば、サンドブラスト加工や微小ドリルを用いた加工などの手法を用いることができる。サンドブラストを用いる場合は、約10μm~100μm程度のブラスト材を用いることにより、上述した好ましい範囲の大きさの貫通孔を容易に形成することができる。微小ドリルを用いる場合には、微小ドリルとしてダイヤモンドドリルなどが用いることが好ましい。また、封止基材5が樹脂で形成されている場合には、例えば、ドリル加工やレーザー加工などの手法を用いて、微小な貫通孔を形成することができる。 As a method for forming the through hole, a known method can be used. When the sealing substrate 5 is made of glass, for example, a technique such as sand blasting or processing using a micro drill can be used. In the case of using sandblasting, by using a blasting material of about 10 μm to 100 μm, it is possible to easily form a through hole having a size within the above-mentioned preferred range. When a micro drill is used, it is preferable to use a diamond drill or the like as the micro drill. Moreover, when the sealing base material 5 is formed with resin, for example, a minute through hole can be formed by using a technique such as drilling or laser processing.
 そして、本実施形態では、封止基材5の各貫通孔に、スルーホール電極の形成材料を充填し、その後、機械加工により成形してスルーホール電極を形成する。なお、スルーホール電極は、上述のように、陽極2及び陰極4への給電端子(外部取り出し端子)としてだけでなく、封止部材としても作用させる必要があるので、貫通孔に充填する充填材(スルーホール電極の形成材料)には、導電性及び封止性を有する充填材が用いられる。なお、ここでいう「封止性を有する充填材」とは、酸素透過度が10-3cm/(m・24h・atm)以下であり、かつ、水蒸気透過度が10-3g/(m・24h)以下である充填材のことを言う。 And in this embodiment, each through-hole of the sealing base material 5 is filled with the formation material of a through-hole electrode, and after that, it shape | molds by machining and forms a through-hole electrode. Since the through-hole electrode needs to act not only as a power supply terminal (external lead-out terminal) to the anode 2 and the cathode 4 as described above, but also as a sealing member, the filler filling the through hole As the (forming material for the through-hole electrode), a filler having conductivity and sealing properties is used. Note that the “filler having sealing properties” referred to here has an oxygen permeability of 10 −3 cm 3 / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −3 g / It refers to a filler that is (m 2 · 24h) or less.
 充填材としては、上記条件を満たす材料であれば、任意の材料を用いることができる。例えば、半田のような低融点合金を充填材として用いることができる。なお、この場合には、低融点合金を溶かして貫通孔に充填し、その後、充填材を例えば機械加工により成形することによりスルーホール電極を形成することができる。 As the filler, any material can be used as long as it satisfies the above conditions. For example, a low melting point alloy such as solder can be used as the filler. In this case, the through-hole electrode can be formed by melting the low melting point alloy and filling the through hole, and then forming the filler by, for example, machining.
 また、充填材として、銀ペーストなどの金属ペーストを用いてもよい。さらに、充填材として、金属ナノ粒子(金属ナノ粒子を溶媒等に含有させたペースト状の充填材)を用いてもよい。これらの充填材を用いた場合には、ペースト状の充填材を貫通孔に充填して焼成し、その後、焼成した充填材を例えば機械加工により成形することによりスルーホール電極を形成することができる。 Also, a metal paste such as a silver paste may be used as the filler. Furthermore, metal nanoparticles (a paste-like filler in which metal nanoparticles are contained in a solvent or the like) may be used as the filler. When these fillers are used, a through-hole electrode can be formed by filling a through-hole with a paste-like filler and firing, and then molding the fired filler, for example, by machining. .
 なお、素子基板1と封止基材5とを貼り合わせた際には、スルーホール電極を対応する電極膜(陽極2又は陰極4)に接触させて電気的に接続する必要があるので、スルーホール電極が封止基材5のシール材6側の表面から外側に突出するように(凸状となるように)、スルーホール電極を成形する。スルーホール電極の形状としては、シール材6(封止用接着剤)に対する貫通性、及び、電極膜とのコンタクトの向上という観点では、スルーホール電極のシール材6側の先端部分の形状はより鋭利な形状とすることが好ましい。例えば、スルーホール電極の先端部分の形状が、図1に示すように、円錐台状であってもよいし、円錐状であってもよい。なお、後述の実施例で説明するように、スルーホール電極が円柱状であってもよい。 In addition, when the element substrate 1 and the sealing substrate 5 are bonded together, it is necessary to bring the through-hole electrode into contact with the corresponding electrode film (anode 2 or cathode 4) to be electrically connected. The through-hole electrode is formed so that the hole electrode protrudes outward from the surface of the sealing substrate 5 on the sealing material 6 side (becomes convex). As for the shape of the through-hole electrode, the shape of the tip portion of the through-hole electrode on the sealing material 6 side is more from the viewpoint of penetrability with respect to the sealing material 6 (sealing adhesive) and improvement of contact with the electrode film. A sharp shape is preferred. For example, the shape of the tip portion of the through-hole electrode may be a truncated cone shape or a conical shape as shown in FIG. Note that the through-hole electrode may be cylindrical, as will be described in the examples described later.
[光取り出し部材]
 図1には示さないが、本実施形態の有機EL素子10は、光の取り出し面(素子基板1の封止基材5とは反対側の表面)に、入射された光を透過して放出する機能を有する光取り出し部材を設けてもよい。光取り出し部材は、シート状、フィルム状、板状、又は、膜状の光学部材で構成される。ここで、光取り出し部材の配置状態及び構成について簡単に説明する。
[Light extraction member]
Although not shown in FIG. 1, the organic EL element 10 of the present embodiment transmits incident light to the light extraction surface (surface opposite to the sealing base 5 of the element substrate 1) and emits it. You may provide the light extraction member which has the function to do. The light extraction member is composed of a sheet-like, film-like, plate-like, or film-like optical member. Here, the arrangement state and configuration of the light extraction member will be briefly described.
 光取り出し部材は、例えば、光拡散シートや集光シートなどを用いて構成される。光拡散シートとしては、従来の一般的な光拡散シートを用いることができ、例えば表面に凹凸が形成されたシート部材を用いることができる。また、集光シートとしては、プリズムシートと呼ばれる一般的な集光シートを用いることができ、例えば液晶表示装置のLED(Light Emitting Diode)バックライト用に実用化されているシートなどを用いることができる。具体的には、集光シートとして、例えば、頂角が90度でありかつ断面形状が三角形状である複数のストライプが、シート基材に、ピッチ50μmで形成されたシートを用いることができる。 The light extraction member is configured by using, for example, a light diffusion sheet or a light collecting sheet. As the light diffusion sheet, a conventional general light diffusion sheet can be used, and for example, a sheet member having irregularities formed on the surface can be used. In addition, as the condensing sheet, a general condensing sheet called a prism sheet can be used. For example, a sheet practically used for an LED (Light Emitting Diode) backlight of a liquid crystal display device can be used. it can. Specifically, as the condensing sheet, for example, a sheet in which a plurality of stripes having an apex angle of 90 degrees and a triangular cross-sectional shape are formed on a sheet base material at a pitch of 50 μm can be used.
 なお、集光シートの表面の凹凸形状としては、様々な形状を適用することができ、例えば用途、必要とする集光性等を考慮して適宜設定することができる。例えば、集光シートの表面の凹凸形状を、ストライプの頂角が丸みを帯びた形状(断面形状が略三角形状)にしてもよいし、ストライプのピッチをランダムに変化させた形状にしてもよい。 In addition, various shapes can be applied as the uneven shape on the surface of the light collecting sheet, and can be appropriately set in consideration of, for example, the use and the required light collecting property. For example, the uneven shape on the surface of the light collecting sheet may be a shape in which the apex angle of the stripe is rounded (the cross-sectional shape is substantially triangular), or a shape in which the pitch of the stripe is randomly changed. .
 上述した構成の光取り出し部材は、接着剤(不図示)を介して、素子基板1に貼り付けられる。なお、この接着剤は、高い光透過性を有することが好ましい。また、この接着剤として、素子基板1の屈折率と同程度の屈折率を有する接着剤を用いてもよい。 The light extraction member having the above-described configuration is attached to the element substrate 1 via an adhesive (not shown). In addition, it is preferable that this adhesive agent has high light transmittance. Further, as this adhesive, an adhesive having a refractive index comparable to that of the element substrate 1 may be used.
<2.面状発光体の構成>
 次に、複数の有機EL素子10を配列(タイリング)して作製された面状発光体について説明する。
<2. Structure of planar light emitter>
Next, a planar light emitter produced by arranging (tiling) a plurality of organic EL elements 10 will be described.
[面状発光体の構成]
 図4に、本発明の一実施形態に係る面状発光体の概略構成断面図を示す。なお、図4には、説明を簡略化するため、2枚の有機EL素子10を配列した構成例を示すが、本発明はこれに限定されず、面状発光体を構成する有機EL素子10の枚数及び配列形態は、例えば用途等に応じて適宜設定される。
[Configuration of planar light emitter]
FIG. 4 shows a schematic cross-sectional view of a planar light emitter according to an embodiment of the present invention. FIG. 4 shows a configuration example in which two organic EL elements 10 are arranged for the sake of simplification, but the present invention is not limited to this, and the organic EL element 10 constituting a planar light emitter is shown. The number of sheets and the arrangement form are appropriately set according to, for example, the application.
 面状発光体20は、2枚の有機EL素子10と、支持基板21(支持部材)と、各有機EL素子10を支持基板21上に固定するための接着部材22とを備える。 The planar light emitter 20 includes two organic EL elements 10, a support substrate 21 (support member), and an adhesive member 22 for fixing each organic EL element 10 on the support substrate 21.
 面状発光体20では、各有機EL素子10の封止基材5側の面が接着部材22により大型の支持基板21上に固定される。なお、この際、図4に示す例では、各有機EL素子10の封止基材5側の面において、スルーホール電極(陽極用スルーホール電極7及び陰極用スルーホール電極8)が露出していない領域に接着部材22を設ける。 In the planar light-emitting body 20, the surface of each organic EL element 10 on the sealing substrate 5 side is fixed on the large support substrate 21 by the adhesive member 22. At this time, in the example shown in FIG. 4, the through-hole electrodes (the anode through-hole electrode 7 and the cathode through-hole electrode 8) are exposed on the surface of each organic EL element 10 on the sealing substrate 5 side. The adhesive member 22 is provided in a region where there is not.
 また、面状発光体20では、2枚の有機EL素子10間の継ぎ目部分において、素子基板1の対向する側面同士が互いに接するように、2枚の有機EL素子10を支持基板21上に配列する。なお、この際、配列された2枚の有機EL素子10の光取り出し面(素子基板1の封止基材5とは反対側の面)が、互いに面一となるように、2枚の有機EL素子10を支持基板21上に配列する。以下、面状発光体20の各部の構成をより具体的に説明する。 Further, in the planar light-emitting body 20, the two organic EL elements 10 are arranged on the support substrate 21 so that the opposing side surfaces of the element substrate 1 are in contact with each other at the joint portion between the two organic EL elements 10. To do. At this time, the two organic EL elements 10 are arranged so that the light extraction surfaces (surfaces opposite to the sealing substrate 5 of the element substrate 1) are flush with each other. The EL elements 10 are arranged on the support substrate 21. Hereinafter, the configuration of each part of the planar light emitter 20 will be described more specifically.
[支持基板]
 支持基板21は、2枚の有機EL素子10を、接着部材22を介して搭載した際に、その状態を保持可能な板状部材であれば、任意の板状部材で構成することができる。また、本実施形態では、支持基板21側から光を取り出さないので、支持基板21は、光透過性を有する材料で形成する必要はなく、任意の材料で形成することができる。
[Support substrate]
The support substrate 21 can be composed of any plate-like member as long as it can hold the state of the two organic EL elements 10 mounted thereon via the adhesive member 22. In this embodiment, since light is not extracted from the support substrate 21 side, the support substrate 21 does not need to be formed of a light-transmitting material and can be formed of an arbitrary material.
 なお、面状発光体20をフレキシブルに屈曲する構成とする場合には、支持基板21を、屈曲性を有する可撓性基板で構成する。このような可撓性基板としては、例えば樹脂フィルムや、板厚0.01mm~0.50mm程度のガラス基板などを用いることができる。 In addition, when it is set as the structure which bends the planar light-emitting body 20 flexibly, the support substrate 21 is comprised with the flexible substrate which has a flexibility. As such a flexible substrate, for example, a resin film or a glass substrate having a thickness of about 0.01 mm to 0.50 mm can be used.
[接着部材]
 本実施形態では、各種工業分野において、粘着剤、接着剤等、又は、粘着材、接着材等の呼称で用いられる接着部材のうち、支持基板21又は封止基材5上に塗布して、有機EL素子10と支持基板21とを貼り合わせた後に、種々の化学反応により高分子量体又は架橋構造体を形成する硬化型の接着部材22を用いる。すなわち、接着部材22は、紫外線のような光を照射するか、熱を加えるか、又は、加圧することによって接着部分が硬化する材料で形成される。
[Adhesive member]
In this embodiment, in various industrial fields, it is applied onto the support substrate 21 or the sealing substrate 5 among the adhesive members used in designations such as pressure-sensitive adhesives, adhesives, or pressure-sensitive adhesives, adhesives, After the organic EL element 10 and the support substrate 21 are bonded together, a curable adhesive member 22 that forms a high molecular weight body or a crosslinked structure by various chemical reactions is used. That is, the bonding member 22 is formed of a material that cures the bonded portion by irradiating light such as ultraviolet rays, applying heat, or applying pressure.
 上述のような物性を備えた接着部材22としては、例えば、ウレタン系、エポキシ系、フッ素含有系、水性高分子-イソシアネート系、アクリル系等の硬化型接着剤、湿気硬化ウレタン接着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性接着剤、シアノアクリレート系の瞬間接着剤、アクリレートとペルオキシド系の2液型瞬間接着剤等の接着剤が挙げられる。 Examples of the adhesive member 22 having the above-described physical properties include urethane type, epoxy type, fluorine-containing type, aqueous polymer-isocyanate type, acrylic type curable adhesives, moisture-cured urethane adhesives, polyethers, and the like. Examples include anaerobic adhesives such as methacrylate type, ester type methacrylate type, and oxidized polyether methacrylate, cyanoacrylate type instant adhesives, and acrylate and peroxide type two-pack type instant adhesives.
 また、接着部材22の形成手法としては、任意の手法を用いることができ、特に、未硬化の接着剤を供給可能な手法を用いることができる。このような手法としては、例えば、グラビアコーター、マイクログラビアコーター、コンマコーター、バーコーター、スプレー塗布、インクジェット法等の手法が挙げられる。また、未硬化の接着部材22の硬化手法には、用いる接着剤に適した手法を用いる。 Also, as a method for forming the adhesive member 22, any method can be used, and in particular, a method capable of supplying an uncured adhesive can be used. Examples of such a technique include techniques such as a gravure coater, a micro gravure coater, a comma coater, a bar coater, spray coating, and an ink jet method. In addition, a method suitable for the adhesive to be used is used as a method for curing the uncured adhesive member 22.
 なお、光硬化型の接着剤を用いた場合には、光照射による有機発光機能層3の劣化を防止するために、有機EL素子10の発光領域をマスクで覆った後、光照射により接着剤を硬化させればよい。さらに、熱硬化型の接着剤を用いる場合には、加熱による有機発光機能層3の劣化を防止できる程度の低温加熱によって接着剤を硬化させることが好ましい。 In the case of using a photo-curing type adhesive, in order to prevent the deterioration of the organic light emitting functional layer 3 due to light irradiation, the light emitting region of the organic EL element 10 is covered with a mask, and then the light irradiation is performed. Can be cured. Further, when a thermosetting adhesive is used, it is preferable to cure the adhesive by low-temperature heating to such an extent that deterioration of the organic light emitting functional layer 3 due to heating can be prevented.
 さらに、接着部材22として、上述した硬化型の各種接着剤に、接着性を損なわない範囲の含有量で所定の材料が添加された接着剤を用いてもよい。そのような接着剤としては、例えば、ガラス、シリカ等の無機材料を分散させた接着剤を用いてもよいし、樹脂、粘着剤、又は、他の接着剤などを添加(混合)した接着剤を用いてもよい。 Furthermore, as the adhesive member 22, an adhesive in which a predetermined material is added to the above-described various curable adhesives in a range that does not impair the adhesiveness may be used. As such an adhesive, for example, an adhesive in which an inorganic material such as glass or silica is dispersed may be used, or an adhesive to which a resin, a pressure-sensitive adhesive, or another adhesive is added (mixed). May be used.
 なお、接着剤に添加する樹脂としては、例えば、PET(ポリエチレンテレフタレート)、TAC(トリアセチルセルロース)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)等のような透明樹脂が用いられる。また、粘着剤としては、例えば、ウレタン系、エポキシ系、水性高分子-イソシアネート系、アクリル系等の粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、ウレタン系、エポキシ系、水性高分子-イソシアネート系、アクリル系等の硬化型粘着剤等を用いることができる。さらに、各種のUV硬化樹脂、熱硬化樹脂等を、添加材料として用いることができる。また、接着部材22に、光散乱性又は光反射性の材料を添加(分散)してもよい。 In addition, as resin added to an adhesive agent, transparent resins, such as PET (polyethylene terephthalate), TAC (triacetylcellulose), PC (polycarbonate), PMMA (polymethylmethacrylate) etc., are used, for example. Examples of the pressure-sensitive adhesive include an anaerobic pressure-sensitive adhesive such as urethane-based, epoxy-based, aqueous polymer-isocyanate-based, and acrylic-based pressure-sensitive adhesives, polyether methacrylate-type, ester-based methacrylate-type, and oxidized polyether methacrylate. Further, curable adhesives such as urethane, epoxy, aqueous polymer-isocyanate, and acrylic can be used. Furthermore, various UV curable resins, thermosetting resins, and the like can be used as additive materials. Further, a light scattering or light reflecting material may be added (dispersed) to the adhesive member 22.
<3.各種変形例>
 以下に、上記実施形態の有機EL素子10及び面状発光体20の各種変形例について説明する。
<3. Various modifications>
Below, the various modifications of the organic EL element 10 and the planar light-emitting body 20 of the said embodiment are demonstrated.
[変形例1]
 上記実施形態では、固体密着封止タイプの有機EL素子10の構成を説明したが、本発明はこれに限定されない。本発明の上記技術は、例えば缶封止タイプのような、素子基板と封止基材との間に空隙を設けた状態で封止するタイプの有機EL素子にも適用可能である。変形例1では、そのようなタイプの有機EL素子の第1の例として、缶封止タイプの有機EL素子を説明する。
[Modification 1]
In the above embodiment, the configuration of the solid adhesion sealing type organic EL element 10 has been described, but the present invention is not limited thereto. The above technique of the present invention can also be applied to an organic EL element of a type that seals in a state where a gap is provided between an element substrate and a sealing substrate, such as a can sealing type. In Modification 1, a can-sealed organic EL element will be described as a first example of such an organic EL element.
 図5に、変形例1の有機EL素子の概略構成断面図を示す。なお、図5に示す有機EL素子30において、図1に示す上記実施形態の有機EL素子10と同じ構成には、同じ符号を付して示す。 FIG. 5 shows a schematic cross-sectional view of the organic EL element of Modification 1. In addition, in the organic EL element 30 shown in FIG. 5, the same code | symbol is attached | subjected and shown to the structure same as the organic EL element 10 of the said embodiment shown in FIG.
 有機EL素子30は、素子基板1と、陽極2と、有機発光機能層3と、陰極4と、陰極引き出し電極4aと、封止基材31と、シール材32と、陽極用スルーホール電極7と、陰極用スルーホール電極8とを備える。 The organic EL element 30 includes an element substrate 1, an anode 2, an organic light emitting functional layer 3, a cathode 4, a cathode lead electrode 4 a, a sealing substrate 31, a sealing material 32, and an anode through-hole electrode 7. And a through-hole electrode 8 for cathode.
 図5と図1との比較から明らかなように、この例の有機EL素子30において、封止基材31及びシール材32以外の構成は、上記実施形態の有機EL素子10の対応する構成と同様である。それゆえ、ここでは、封止基材31及びシール材32の構成のみを説明する。 As is clear from comparison between FIG. 5 and FIG. 1, in the organic EL element 30 of this example, the configuration other than the sealing base material 31 and the sealing material 32 is the same as the corresponding configuration of the organic EL element 10 of the above embodiment. It is the same. Therefore, only the configuration of the sealing base material 31 and the sealing material 32 will be described here.
 封止基材31は、一方の面に凹部31cが形成された凹板状の封止部材で構成される。なお、封止基材31は、上記実施形態の有機EL素子10の封止基材5と同様の材料で形成することができる。封止基材31の凹部31cは、上述のように、例えば、サンドブラスト加工、化学エッチング加工等の処理により形成される。 The sealing substrate 31 is formed of a concave plate-shaped sealing member having a concave portion 31c formed on one surface. In addition, the sealing base material 31 can be formed with the material similar to the sealing base material 5 of the organic EL element 10 of the said embodiment. As described above, the recess 31c of the sealing substrate 31 is formed by a process such as a sandblasting process or a chemical etching process.
 また、この例では、封止基材31の凹部31cには、各電極膜の引き出し電極部分の領域と対応する位置に、上記実施形態と同様に、テーパー状の貫通孔(31a,31b)が設けられ、該貫通孔に、円錐台状のスルーホール電極(7,8)が形成される。この際、スルーホール電極は、封止基材31の凹部31cから外部に向かって突出して形成される。 Further, in this example, in the recess 31c of the sealing substrate 31, tapered through holes (31a, 31b) are formed at positions corresponding to the region of the extraction electrode portion of each electrode film, as in the above embodiment. A frustum-shaped through-hole electrode (7, 8) is formed in the through-hole. At this time, the through-hole electrode is formed so as to protrude outward from the concave portion 31 c of the sealing substrate 31.
 シール材32は、封止基材31の凹部31cを画成する凸状の外周端部31dの上面に設けられる。なお、シール材32としては、上記実施形態のシール材6と同様に、アクリル酸系オリゴマー又はメタクリル酸系オリゴマーの反応性ビニル基を有する光硬化型又は熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型接着剤等を用いることができる。 The sealing material 32 is provided on the upper surface of the convex outer peripheral end portion 31 d that defines the concave portion 31 c of the sealing base material 31. As the sealing material 32, similar to the sealing material 6 of the above embodiment, a photocurable or thermosetting adhesive having a reactive vinyl group of an acrylic acid oligomer or a methacrylic acid oligomer, 2-cyanoacrylic acid. A moisture curable adhesive such as an ester can be used.
 そして、この例では、凹部31cと素子基板1の有機発光機能層3側の表面とが対向するように、封止基材31と素子基板1とを貼り合わせることにより内部を封止して、有機EL素子30が作製される。この場合、図5に示すように、封止基材31と、有機EL素子30の素子本体部(素子基板1、有機発光機能層3及び各種電極膜)との間に空隙33が画成される。 And in this example, the inside is sealed by bonding the sealing substrate 31 and the element substrate 1 so that the recess 31c and the surface of the element substrate 1 on the organic light emitting functional layer 3 side face each other. The organic EL element 30 is produced. In this case, as shown in FIG. 5, a gap 33 is defined between the sealing substrate 31 and the element body (element substrate 1, organic light emitting functional layer 3, and various electrode films) of the organic EL element 30. The
 なお、この例の有機EL素子30では、上述のように、空隙33に、例えば、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイル等の不活性液体を充填することが好ましい。また、この例では、空隙33を真空状態にしてもよいし、空隙33内に吸湿性化合物を封入してもよい。 In the organic EL element 30 of this example, it is preferable to fill the gap 33 with an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil, as described above. . In this example, the gap 33 may be in a vacuum state, or a hygroscopic compound may be enclosed in the gap 33.
 この例においても、上記実施形態と同様に、封止基材31により素子基板1全体を覆うとともに、スルーホール電極を電極膜毎に設ける。それゆえ、この例においても、上記実施形態と同様の効果が得られる。 Also in this example, as in the above-described embodiment, the entire element substrate 1 is covered with the sealing substrate 31, and a through-hole electrode is provided for each electrode film. Therefore, also in this example, the same effect as the above embodiment can be obtained.
[変形例2]
 変形例2では、素子基板と封止基材との間に空隙を設けた状態で封止するタイプの有機EL素子の第2の例を説明する。図6に、変形例2の有機EL素子の概略構成断面図を示す。なお、図6に示す有機EL素子40において、図1に示す上記実施形態の有機EL素子10と同じ構成には、同じ符号を付して示す。
[Modification 2]
In Modification 2, a second example of an organic EL element that is sealed in a state where a gap is provided between the element substrate and the sealing substrate will be described. FIG. 6 shows a schematic cross-sectional view of the organic EL element of Modification 2. In addition, in the organic EL element 40 shown in FIG. 6, the same code | symbol is attached | subjected and shown to the structure same as the organic EL element 10 of the said embodiment shown in FIG.
 有機EL素子40は、素子基板1と、陽極2と、有機発光機能層3と、陰極4と、陰極引き出し電極4aと、封止基材5と、シール材41と、陽極用スルーホール電極7と、陰極用スルーホール電極8とを備える。 The organic EL element 40 includes an element substrate 1, an anode 2, an organic light emitting functional layer 3, a cathode 4, a cathode lead electrode 4 a, a sealing substrate 5, a sealing material 41, and an anode through-hole electrode 7. And a through-hole electrode 8 for cathode.
 図6と図1との比較から明らかなように、この例の有機EL素子40において、シール材41以外の構成は、上記実施形態の有機EL素子10の対応する構成と同様である。それゆえ、ここでは、シール材41の構成のみを説明する。 As apparent from the comparison between FIG. 6 and FIG. 1, in the organic EL element 40 of this example, the configuration other than the sealing material 41 is the same as the corresponding configuration of the organic EL element 10 of the above embodiment. Therefore, only the configuration of the sealing material 41 will be described here.
 この例では、封止基材5として、上記実施形態のそれと同様に、平板状の封止部材を用いる。そして、封止基材5と素子基板1とを貼り合わせる際に、封止基材5の外周端部付近にのみシール材41を設ける。なお、この際、シール材41を、スルーホール電極より封止基材5の外周端側の所定位置から外周端までの領域に設ける。また、シール材41は、上記実施形態のシール材6と同様の材料で形成することができる。 In this example, a flat plate-shaped sealing member is used as the sealing substrate 5 as in the above embodiment. Then, when the sealing substrate 5 and the element substrate 1 are bonded together, the sealing material 41 is provided only in the vicinity of the outer peripheral end portion of the sealing substrate 5. At this time, the sealing material 41 is provided in a region from a predetermined position on the outer peripheral end side of the sealing substrate 5 to the outer peripheral end from the through-hole electrode. Moreover, the sealing material 41 can be formed with the material similar to the sealing material 6 of the said embodiment.
 上記構成のシール材41を用いて、封止基材5と素子基板1とを貼り合わせた場合には、上記変形例1と同様に、有機EL素子40の素子本体部(素子基板1、有機発光機能層3及び各種電極膜)と封止基材5との間に空隙42が画成される。 When the sealing base material 5 and the element substrate 1 are bonded to each other using the sealing material 41 having the above-described configuration, the element main body portion (the element substrate 1, the organic substrate) of the organic EL element 40 is the same as the first modification. A gap 42 is defined between the light emitting functional layer 3 and various electrode films) and the sealing substrate 5.
 なお、この例においても、上記実施形態と同様に、封止基材5により素子基板1全体を覆うとともに、スルーホール電極を電極膜毎に設ける。それゆえ、この例においても、上記実施形態と同様の効果が得られる。 In this example as well, as in the above embodiment, the entire element substrate 1 is covered with the sealing substrate 5 and a through-hole electrode is provided for each electrode film. Therefore, also in this example, the same effect as the above embodiment can be obtained.
[変形例3]
 変形例3では、素子基板と封止基材との間に空隙を設けた状態で封止するタイプの有機EL素子の第3の例を説明する。図7に、変形例3の有機EL素子の概略構成断面図を示す。なお、図7に示す有機EL素子50において、図6に示す変形例2の有機EL素子40と同じ構成には、同じ符号を付して示す。
[Modification 3]
In Modification 3, a third example of an organic EL element that is sealed in a state where a gap is provided between the element substrate and the sealing substrate will be described. FIG. 7 shows a schematic cross-sectional view of an organic EL element of Modification 3. In addition, in the organic EL element 50 shown in FIG. 7, the same code | symbol is attached | subjected and shown to the same structure as the organic EL element 40 of the modification 2 shown in FIG.
 有機EL素子50は、素子基板1と、陽極2と、有機発光機能層3と、陰極4と、陰極引き出し電極4aと、封止基材5と、シール材51と、陽極用スルーホール電極7と、陰極用スルーホール電極8とを備える。 The organic EL element 50 includes an element substrate 1, an anode 2, an organic light emitting functional layer 3, a cathode 4, a cathode lead electrode 4 a, a sealing substrate 5, a sealing material 51, and an anode through-hole electrode 7. And a through-hole electrode 8 for cathode.
 図7と図6との比較から明らかなように、この例の有機EL素子50の構成は、シール材51の形成領域を変形例2のそれと変えた構成である。それ以外の構成は、変形例2の有機EL素子40の対応する構成と同様である。それゆえ、ここでは、シール材51の構成のみを説明する。 As is clear from a comparison between FIG. 7 and FIG. 6, the configuration of the organic EL element 50 in this example is a configuration in which the formation region of the seal material 51 is changed from that of the second modification. Other configurations are the same as the corresponding configurations of the organic EL element 40 of the second modification. Therefore, only the configuration of the sealing material 51 will be described here.
 この例では、封止基材5として、上記実施形態のそれと同様に、平坦状の封止部材を用いる。そして、この例では、シール材51を、スルーホール電極より封止基材5の中心側の所定位置から外周端までの領域に設ける。この場合、封止基材5のシール材51側の表面から突出したスルーホール電極の側壁を覆うように、シール材51が形成される。なお、シール材51は、上記実施形態のシール材6と同様の材料で形成することができる。 In this example, a flat sealing member is used as the sealing substrate 5 as in the above embodiment. And in this example, the sealing material 51 is provided in the area | region from the predetermined position of the center side of the sealing base material 5 to an outer periphery end from a through-hole electrode. In this case, the sealing material 51 is formed so as to cover the side wall of the through-hole electrode protruding from the surface of the sealing substrate 5 on the sealing material 51 side. In addition, the sealing material 51 can be formed with the material similar to the sealing material 6 of the said embodiment.
 上記構成のシール材51を用いて、封止基材5と素子基板1とを貼り合わせた場合にも、上記変形例2と同様に、有機EL素子50の素子本体部(素子基板1、有機発光機能層3及び各種電極膜)と封止基材5との間に空隙52が画成される。 Even when the sealing base material 5 and the element substrate 1 are bonded together using the sealing material 51 having the above-described configuration, the element main body (the element substrate 1 and the organic substrate) of the organic EL element 50 are formed in the same manner as in the second modification. A gap 52 is defined between the light emitting functional layer 3 and various electrode films) and the sealing substrate 5.
 なお、この例においても、上記実施形態と同様に、封止基材5により素子基板1全体を覆うとともに、スルーホール電極を電極膜毎に設ける。それゆえ、この例においても、上記実施形態と同様の効果が得られる。 In this example as well, as in the above embodiment, the entire element substrate 1 is covered with the sealing substrate 5 and a through-hole electrode is provided for each electrode film. Therefore, also in this example, the same effect as the above embodiment can be obtained.
[変形例4]
 上記実施形態では、陽極2及び陰極4のそれぞれ(各電極膜)に、スルーホール電極を1つ設ける例を説明したが、本発明はこれに限定されず、各電極膜に複数のスルーホール電極を設けてもよい。
[Modification 4]
In the above embodiment, an example in which one through-hole electrode is provided in each of the anode 2 and the cathode 4 (each electrode film) is described. However, the present invention is not limited to this, and a plurality of through-hole electrodes are provided in each electrode film. May be provided.
[変形例5]
 上記実施形態では、素子基板1側から光を取り出すボトムエミッション型の有機EL素子10に、本発明の上記技術を適用する例を説明したが、本発明はこれに限定されない。封止基材側から光を取り出すトップエミッション型の有機EL素子にも、本発明の上記技術を適用可能である。
[Modification 5]
In the above embodiment, the example in which the above-described technique of the present invention is applied to the bottom emission type organic EL element 10 that extracts light from the element substrate 1 side has been described, but the present invention is not limited to this. The above technique of the present invention can also be applied to a top emission type organic EL element that extracts light from the sealing substrate side.
 この場合には、陰極及び封止基材を透明性材料で形成する必要がある。なお、この場合、スルーホール電極の作製容易性の観点では、スルーホール電極を封止基材に設けることが好ましいが、発光領域をより大きくするために、スルーホール電極を素子基板に設けてもよい。 In this case, it is necessary to form the cathode and the sealing substrate with a transparent material. In this case, from the viewpoint of ease of production of the through-hole electrode, it is preferable to provide the through-hole electrode on the sealing substrate. However, in order to enlarge the light emitting region, the through-hole electrode may be provided on the element substrate. Good.
[変形例6]
 上記実施形態の面状発光体20では、大型の支持基板21を用いて複数の有機EL素子10を支持する構成例を説明したが、本発明はこれに限定されない。例えば、互いに隣り合う2枚の有機EL素子間において、対向する素子基板の側壁同士を接着剤で接合してもよい。この場合には、接着剤を有機EL素子の支持部材として用いることができ、大型の支持基板21を別途設けなくてもよい。
[Modification 6]
Although the planar light-emitting body 20 of the said embodiment demonstrated the structural example which supports the some organic EL element 10 using the large sized support substrate 21, this invention is not limited to this. For example, the side walls of the opposing element substrates may be joined with an adhesive between two adjacent organic EL elements. In this case, the adhesive can be used as a support member for the organic EL element, and the large support substrate 21 need not be provided separately.
<4.各種実施例及び評価結果>
 次に、実際に作製した本発明の有機EL素子の各種実施例の構成、並びに、各実施例で作製した有機EL素子のサンプルに対して行った評価試験及びその結果を説明する。
<4. Various Examples and Evaluation Results>
Next, the structure of various examples of the organic EL element of the present invention actually produced, the evaluation test performed on the sample of the organic EL element produced in each example, and the results will be described.
[素子本体部の構成]
 まず、各種実施例の具体的な構成及び作製手法を説明する前に、各種実施例の有機EL素子で用いる素子本体部の構成を説明する。図8に、各種実施例の有機EL素子で用いた素子本体部の概略構成断面図を示す。
[Configuration of element body]
First, before describing the specific configuration and manufacturing method of various examples, the configuration of the element body used in the organic EL elements of the various examples will be described. FIG. 8 shows a schematic cross-sectional view of the element body used in the organic EL elements of various examples.
 以下に説明する各種実施例の有機EL素子の素子本体部60は、素子基板61と、陽極62と、正孔注入層63と、正孔輸送層64と、黄色発光層65と、青色発光層66と、正孔阻止層67と、電子輸送層68と、電子注入層69と、陰極70とを備える。なお、この例では、素子基板61上に、陽極62、正孔注入層63、正孔輸送層64、黄色発光層65、青色発光層66、正孔阻止層67、電子輸送層68、電子注入層69、及び、陰極70がこの順で積層される。 The element body portion 60 of the organic EL element of various embodiments described below includes an element substrate 61, an anode 62, a hole injection layer 63, a hole transport layer 64, a yellow light emitting layer 65, and a blue light emitting layer. 66, a hole blocking layer 67, an electron transport layer 68, an electron injection layer 69, and a cathode 70. In this example, on the element substrate 61, the anode 62, the hole injection layer 63, the hole transport layer 64, the yellow light emitting layer 65, the blue light emitting layer 66, the hole blocking layer 67, the electron transport layer 68, the electron injection. The layer 69 and the cathode 70 are laminated in this order.
 すなわち、この例では、正孔注入層63、正孔輸送層64、黄色発光層65、青色発光層66、正孔阻止層67、電子輸送層68及び電子注入層69で、有機発光機能層71を構成する。また、下記の各種実施例の有機EL素子は、発光層(黄色発光層65及び青色発光層66)で発光させた光を陽極62側から取り出すボトムエミッション型の素子であるので、陽極62を透明電極で構成し、陰極70を反射電極(金属膜)で構成する。 That is, in this example, the hole emitting layer 63, the hole transporting layer 64, the yellow light emitting layer 65, the blue light emitting layer 66, the hole blocking layer 67, the electron transporting layer 68, and the electron injecting layer 69, and the organic light emitting functional layer 71. Configure. In addition, since the organic EL elements of the following various examples are bottom emission type elements that extract light emitted from the light emitting layer (the yellow light emitting layer 65 and the blue light emitting layer 66) from the anode 62 side, the anode 62 is transparent. The cathode 70 is composed of a reflective electrode (metal film).
[実施例1]
 ここで、実施例1の有機EL素子の製造手法、及び、各部の構成(例えば材料、寸法等)を、図面を参照しながら具体的に説明する。
[Example 1]
Here, the manufacturing method of the organic EL element of Example 1 and the configuration (for example, material, dimensions, etc.) of each part will be specifically described with reference to the drawings.
(1)素子本体部の作製手法
 最初に、図9A及び9B~図13を参照しながら、素子本体部60の作製手法を説明する。なお、図9A及び9B~図12A及び12Bは、各処理工程により得られた基板部材の概略構成を示す図であり、図9A、10A、11A及び12Aのそれぞれは基材部材の平面図であり、図9B、10B、11B及び12Bは、それぞれ、図9A、10A、11A及び12A中のA-A断面図である。また、図13は、発光領域を示す図である。
(1) Manufacturing Method of Element Main Body First, a manufacturing method of the element main body 60 will be described with reference to FIGS. 9A and 9B to 13. 9A and 9B to FIGS. 12A and 12B are diagrams showing a schematic configuration of the substrate member obtained by each processing step, and FIGS. 9A, 10A, 11A and 12A are plan views of the base member. 9B, 10B, 11B, and 12B are cross-sectional views taken along line AA in FIGS. 9A, 10A, 11A, and 12A, respectively. FIG. 13 is a diagram showing a light emitting region.
 まず、素子基板61として、厚さ0.7mm、面積60mm×60mm(面形状が正方形状)の透明ガラス基板(コーニング社製EAGLE XG:無アルカリガラス)を用意した(図9A及び9Bの状態)。 First, a transparent glass substrate (Corning EAGLE XG: non-alkali glass) having a thickness of 0.7 mm and an area of 60 mm × 60 mm (a square shape) was prepared as the element substrate 61 (state of FIGS. 9A and 9B). .
 次いで、素子基板61の一方の面61a上(図10Bでは上面)に、膜厚150nmのITO膜(透明導電性材料)を成膜した。次いで、ITO膜に対してパターニング処理を行い、所定形状の陽極62と、陰極引き出し電極70aとを形成した(図10A及び10Bの状態)。 Next, an ITO film (transparent conductive material) having a film thickness of 150 nm was formed on one surface 61a of the element substrate 61 (upper surface in FIG. 10B). Next, a patterning process was performed on the ITO film to form an anode 62 having a predetermined shape and a cathode lead electrode 70a (states of FIGS. 10A and 10B).
 この際、図10Aに示すように、陰極引き出し電極70aは、素子基板61の一つの辺部付近に、該辺部に沿って延在したストライプ状のITO膜で構成した。一方、陽極62は、素子基板61の一方の面61aにおいて、陰極引き出し電極70aの形成領域以外の領域の略全体に渡って形成され、膜面形状が略矩形状となる陽極62を形成した。なお、この際、陽極62と陰極引き出し電極70aとの絶縁性を確保するため、両者を所定間隔離して形成した。 At this time, as shown in FIG. 10A, the cathode lead-out electrode 70a was formed of a striped ITO film extending in the vicinity of one side of the element substrate 61 along the side. On the other hand, the anode 62 was formed over substantially the entire region other than the formation region of the cathode lead electrode 70a on one surface 61a of the element substrate 61, and the anode 62 having a substantially rectangular surface was formed. At this time, in order to ensure insulation between the anode 62 and the cathode lead-out electrode 70a, both were formed separated by a predetermined distance.
 次いで、陽極62及び陰極引き出し電極70aが形成された素子基板61を、イソプロピルアルコールで超音波洗浄した。その後、洗浄された素子基板61を乾燥窒素ガスで乾燥し、さらに、乾燥後の素子基板61に対して、UVオゾン洗浄を5分間行った。 Next, the element substrate 61 on which the anode 62 and the cathode lead electrode 70a were formed was ultrasonically cleaned with isopropyl alcohol. Thereafter, the cleaned element substrate 61 was dried with dry nitrogen gas, and further, UV ozone cleaning was performed on the dried element substrate 61 for 5 minutes.
 次いで、陽極62及び陰極引き出し電極70aが形成された素子基板61を真空蒸着装置の基板ホルダーに固定するとともに、素子基板61の陽極62の形成面側に蒸着マスクを対向配置した。また、真空蒸着装置内の各種蒸着用ボートのそれぞれに、有機発光機能層71及び陰極70を構成する各種層の形成材料を、各層の成膜に最適な量で充填した。なお、蒸着用ボートは、モリブデン又はタングステンの抵抗加熱用材料で作製されたものを用いた。 Next, the element substrate 61 on which the anode 62 and the cathode lead-out electrode 70a were formed was fixed to a substrate holder of a vacuum evaporation apparatus, and a vapor deposition mask was disposed opposite to the formation surface side of the anode 62 of the element substrate 61. Further, each of the various vapor deposition boats in the vacuum vapor deposition apparatus was filled with the material for forming the various layers constituting the organic light emitting functional layer 71 and the cathode 70 in an optimum amount for forming each layer. In addition, the boat for vapor deposition used what was produced with the resistance heating material of molybdenum or tungsten.
 次いで、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧した後、各材料が入った蒸着用ボートに順次通電して加熱し、以下のようにして、陽極62上に、有機発光機能層71を形成した。 Next, after the pressure in the vapor deposition chamber of the vacuum vapor deposition apparatus is reduced to a vacuum degree of 4 × 10 −4 Pa, the vapor deposition boat containing the respective materials is sequentially energized and heated. A light emitting functional layer 71 was formed.
 まず、正孔注入層63の形成材料として、下記構造式(1)で表されるCuPc(銅フタロシアニン)を用い、この正孔注入材料を、陽極62上に、蒸着速度0.1nm/秒で蒸着し、厚さ15nmの正孔注入層63を形成した。 First, as a material for forming the hole injection layer 63, CuPc (copper phthalocyanine) represented by the following structural formula (1) is used, and this hole injection material is deposited on the anode 62 at a deposition rate of 0.1 nm / second. The hole injection layer 63 having a thickness of 15 nm was formed by vapor deposition.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 次いで、正孔輸送層64の形成材料として、下記構造式(2)(α-NPD)で表されるトリアリールアミン誘導体を用い、この正孔輸送材料を、正孔注入層63上に、蒸着速度0.1nm/秒で蒸着し、厚さ25nmの正孔輸送層64を形成した。 Next, a triarylamine derivative represented by the following structural formula (2) (α-NPD) is used as a material for forming the hole transport layer 64, and this hole transport material is deposited on the hole injection layer 63. Vapor deposition was performed at a rate of 0.1 nm / second to form a hole transport layer 64 having a thickness of 25 nm.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 次いで、ホスト材料として、下記構造式(3)(H-A)で表されるカルバゾール誘導体を用い、緑色ゲスト材料として、下記構造式(4)(D-B)で表されるイリジウム化合物を用い、かつ、赤色ゲスト材料として、下記構造式(5)(D-C)で表されるイリジウム化合物を用い、これらの化合物を、正孔輸送層64上に、合計の蒸着速度0.1nm/秒で共蒸着し、膜厚10nmの黄色発光層65を形成した。なお、黄色発光層65における、緑色ゲスト材料(D-B)の割合は10質量%とし、赤色ゲスト材料(D-C)の割合は2質量%とした。 Next, a carbazole derivative represented by the following structural formula (3) (HA) is used as the host material, and an iridium compound represented by the following structural formula (4) (DB) is used as the green guest material. As the red guest material, an iridium compound represented by the following structural formula (5) (DC) is used, and these compounds are deposited on the hole transport layer 64 at a total deposition rate of 0.1 nm / second. The yellow light emitting layer 65 having a film thickness of 10 nm was formed by co-evaporation. In the yellow light emitting layer 65, the proportion of the green guest material (DB) was 10 mass%, and the proportion of the red guest material (DC) was 2 mass%.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 次いで、ホスト材料として、上記構造式(3)(H-A)で表されるカルバゾール誘導体を用い、かつ、青色ゲスト材料として、下記構造式(6)(D-A)で表されるイリジウム化合物を用い、これらの化合物を、黄色発光層65上に、合計の蒸着速度(各材料の蒸着速度の和)0.1nm/秒で共蒸着し、膜厚15nmの青色発光層66を形成した。なお、青色発光層66における青色ゲスト材料の割合は10質量%とした。 Next, the carbazole derivative represented by the above structural formula (3) (HA) is used as the host material, and the iridium compound represented by the following structural formula (6) (DA) is used as the blue guest material. These compounds were co-evaporated on the yellow light-emitting layer 65 at a total deposition rate (sum of the deposition rates of the respective materials) of 0.1 nm / second to form a blue light-emitting layer 66 having a thickness of 15 nm. In addition, the ratio of the blue guest material in the blue light emitting layer 66 was 10 mass%.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 次いで、正孔阻止層67の形成材料として、下記構造式(7)(BAlq)で表されるアルミキノリノール錯体を用い、この正孔阻止材料を、青色発光層66上に、蒸着速度0.1nm/秒で蒸着し、膜厚15nmの正孔阻止層67を形成した。 Next, an aluminum quinolinol complex represented by the following structural formula (7) (BAlq) is used as a material for forming the hole blocking layer 67, and this hole blocking material is deposited on the blue light emitting layer 66 at a deposition rate of 0.1 nm. The hole blocking layer 67 having a film thickness of 15 nm was formed by vapor deposition at a rate of / sec.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 次いで、電子輸送層68の形成材料として、下記構造式(8)(Alq3)で表されるアルミキノリノール錯体を用い、この電子輸送材料を、正孔阻止層67上に、蒸着速度0.1nm/秒で蒸着し、膜厚30nmの電子輸送層68を形成した。 Next, an aluminum quinolinol complex represented by the following structural formula (8) (Alq3) is used as a material for forming the electron transport layer 68, and this electron transport material is deposited on the hole blocking layer 67 at a deposition rate of 0.1 nm / Evaporation was performed in seconds to form an electron transport layer 68 having a thickness of 30 nm.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 そして、電子注入層69の形成材料として、フッ化リチウム(LiF)を用い、この電子注入材料を、電子輸送層68上に、蒸着速度0.1nm/秒で蒸着し、膜厚1nmの電子注入層69を形成した。 Then, lithium fluoride (LiF) is used as a material for forming the electron injection layer 69, and this electron injection material is deposited on the electron transport layer 68 at a deposition rate of 0.1 nm / second, thereby injecting an electron with a thickness of 1 nm. Layer 69 was formed.
 この例では、このようにして、有機発光機能層71を形成した(図11A及び11Bの状態)を作製した。なお、この際、図11Aに示すように、有機発光機能層71は、陽極62の引き出し電極部分(陽極用スルーホール電極を接触させる領域)以外の領域に形成した。また、この際、有機発光機能層71が陰極引き出し電極70a上を覆わないように、有機発光機能層71を形成した。 In this example, an organic light emitting functional layer 71 was formed in this way (the state shown in FIGS. 11A and 11B). At this time, as shown in FIG. 11A, the organic light emitting functional layer 71 was formed in a region other than the lead electrode portion of the anode 62 (a region where the anode through-hole electrode was brought into contact). At this time, the organic light emitting functional layer 71 was formed so that the organic light emitting functional layer 71 did not cover the cathode extraction electrode 70a.
 次いで、陰極70の形成材料として、アルミニウム(Al)を用い、この陰極材料を、有機発光機能層71(電子注入層69)上に蒸着し、膜厚110nmの陰極70を形成した(図12A及び12Bの状態)。この際、図12Aに示すように、陰極70を、有機発光機能層71上だけでなく、陰極引き出し電極70aの一部を覆うように形成した。これにより、陰極70が陰極引き出し電極70aと電気的に接続される。 Next, aluminum (Al) was used as a material for forming the cathode 70, and this cathode material was deposited on the organic light emitting functional layer 71 (electron injection layer 69) to form the cathode 70 with a film thickness of 110 nm (FIGS. 12A and 12B). 12B state). At this time, as shown in FIG. 12A, the cathode 70 was formed so as to cover not only the organic light emitting functional layer 71 but also a part of the cathode lead electrode 70a. As a result, the cathode 70 is electrically connected to the cathode lead electrode 70a.
 この例では、上述のようにして、有機EL素子の素子本体部60を作製した。上述のようにして作製された素子本体部60では、図13に示すように、陽極62と陰極70とが、間に有機発光機能層71を挟んで対向する領域(図13中のハッチングした領域)が、発光領域SAとなる。 In this example, the element body 60 of the organic EL element was produced as described above. In the element main body 60 manufactured as described above, as shown in FIG. 13, a region where the anode 62 and the cathode 70 face each other with the organic light emitting functional layer 71 interposed therebetween (hatched region in FIG. 13). ) Is the light emitting area SA.
(2)封止基材の作製手法及び貼り合わせ手法
 次に、スルーホール電極及びシール材が形成された封止基材の作製手法を、図14A及び14B~図17を参照しながら具体的に説明する。なお、図14A及び14B~図16A及び16Bは、各処理工程により得られた基板部材の概略構成を示す図であり、図14A、15A及び16Aのそれぞれは基材部材の平面図であり、図14B、15B及び16Bは、それぞれ、図14A、15A及び16A中のB-B断面図である。また、図17は、素子基板61(素子本体部60)と封止基材とを貼り合わせる際の様子を示す図である。
(2) Manufacturing method and bonding method of sealing substrate Next, a manufacturing method of the sealing substrate on which the through-hole electrode and the sealing material are formed is specifically described with reference to FIGS. 14A and 14B to FIG. explain. 14A and 14B to 16A and 16B are diagrams showing a schematic configuration of the substrate member obtained by each processing step, and FIGS. 14A, 15A and 16A are plan views of the base member, respectively. 14B, 15B, and 16B are cross-sectional views taken along line BB in FIGS. 14A, 15A, and 16A, respectively. FIG. 17 is a diagram showing a state when the element substrate 61 (element main body portion 60) and the sealing base material are bonded together.
 まず、厚さ0.7mmの無アルカリガラス(コーニング社製EAGLE XG)を60×60mmのサイズに裁断し、封止基材80を作製した。 First, a non-alkali glass having a thickness of 0.7 mm (CAGING EAGLE XG) was cut into a size of 60 × 60 mm to produce a sealing substrate 80.
 次いで、図14A及び14Bに示すように、封止基材80の所定の2箇所にテーパー状の貫通孔80a,80bを、サンドブラスト加工により形成した。なお、この際、20μm程度の線幅でブラスト材を連続的に封止基材80に吹き付けて貫通孔を形成した。具体的には、封止基材80の表面に対するブラスト材の吹き付け角度を90度より小さくし、かつ、ブラスト材の吹き付け方向を貫通孔の中心軸の回りに回転させながら、封止基材80をくり抜くようにブラスト材を連続して吹き付けることにより、テーパー状の貫通孔を形成した。なお、この例では、一方の開口径が1mmとなり、他方の開口径が0.7mmとなるテーパー状の貫通孔を形成した。 Next, as shown in FIGS. 14A and 14B, tapered through holes 80a and 80b were formed at two predetermined locations of the sealing substrate 80 by sandblasting. At this time, a blast material was continuously sprayed onto the sealing substrate 80 with a line width of about 20 μm to form a through hole. Specifically, while the blasting material spraying angle with respect to the surface of the sealing substrate 80 is smaller than 90 degrees and the blasting material spraying direction is rotated around the central axis of the through hole, the sealing substrate 80 Tapered through-holes were formed by continuously spraying a blasting material so as to cut through. In this example, a tapered through hole having one opening diameter of 1 mm and the other opening diameter of 0.7 mm was formed.
 また、この例では、一方の貫通孔80aを、封止基材80の一つの辺部付近(図14Aでは左辺部付近)に設け、該辺部と対向する辺部の付近(図14Aでは右側辺部付近)に他方の貫通孔80bを設けた。この際、一方の貫通孔80aを、陽極2の引き出し電極部分の領域(有機発光機能層71が形成されていない領域)と対向する位置に形成した。また、他方の貫通孔80bを、陰極引き出し電極70aと対向する位置に形成した。 In this example, one through hole 80a is provided in the vicinity of one side of the sealing substrate 80 (in the vicinity of the left side in FIG. 14A), and in the vicinity of the side opposite to the side (on the right side in FIG. 14A). The other through hole 80b is provided in the vicinity of the side). At this time, one through hole 80a was formed at a position facing a region of the lead electrode portion of the anode 2 (a region where the organic light emitting functional layer 71 was not formed). The other through hole 80b was formed at a position facing the cathode lead electrode 70a.
 なお、図14Aには、各貫通孔が、対応する辺部の延在方向において、その辺部の中央に形成した例を示したが、本発明はこれに限定されない。各貫通孔が対応する引き出し電極部分の領域と対向する位置であれば、任意の位置に貫通孔を形成することができる。 FIG. 14A shows an example in which each through hole is formed at the center of the corresponding side portion in the extending direction, but the present invention is not limited to this. As long as each through hole is located at a position facing the region of the corresponding extraction electrode portion, the through hole can be formed at an arbitrary position.
 次いで、各貫通孔に、低融点半田(黒田テクノ製セラソルザEco#182)を流し込み、その後、機械加工によって成形することにより、各スルーホール電極81(陽極用スルーホール電極及び陰極用スルーホール電極)を形成した(図15A及び15Bの状態)。この例では、図15Bに示すように、円錐台状のスルーホール電極81を形成した。また、この例では、スルーホール電極81が封止基材80の一方の面(貫通孔80aの開口径が小さい方の表面)から突出するようにスルーホール電極81を成形した。なお、この例では、スルーホール電極81の突出量は0.05~0.15mmとした。その後、スルーホール電極81が設けられた封止基材80に対して、イソプロピルアルコールで超音波洗浄を実施した。その後、洗浄された封止基材80を乾燥窒素ガスで乾燥し、さらに、乾燥後の封止基材80に対して、UVオゾン洗浄を5分間行った。 Next, each through-hole electrode 81 (anode through-hole electrode and cathode through-hole electrode) is formed by pouring low melting point solder (Cerasolzer Eco # 182 manufactured by Kuroda Techno) into each through-hole and then molding by machining. Was formed (state of FIGS. 15A and 15B). In this example, as shown in FIG. 15B, a truncated cone-shaped through-hole electrode 81 was formed. In this example, the through-hole electrode 81 was formed so that the through-hole electrode 81 protrudes from one surface of the sealing substrate 80 (the surface having the smaller opening diameter of the through hole 80a). In this example, the protruding amount of the through-hole electrode 81 is 0.05 to 0.15 mm. Thereafter, the sealing substrate 80 provided with the through-hole electrode 81 was subjected to ultrasonic cleaning with isopropyl alcohol. Thereafter, the cleaned sealing substrate 80 was dried with dry nitrogen gas, and further, UV ozone cleaning was performed on the dried sealing substrate 80 for 5 minutes.
 次いで、図16A及び16Bに示すように、洗浄した封止基材80のスルーホール電極81が突出している面に、熱硬化性接着剤82(シール材)を、ディスペンサーを使用して均一に塗布した。なお、熱硬化性接着剤82の厚さは20μmとした。また、この例では、熱硬化接着剤として、ビスフェノールAジグリシジルエーテル(DGEBA)、ジシアンジアミド(DICY)及びエポキシアダクト系硬化促進剤(エポキシ系接着剤)を用いた。この例では、このようにして、スルーホール電極及びシール材が形成された封止基材80を作製した。 Next, as shown in FIGS. 16A and 16B, a thermosetting adhesive 82 (sealing material) is uniformly applied to the surface of the cleaned sealing substrate 80 from which the through-hole electrode 81 protrudes using a dispenser. did. The thickness of the thermosetting adhesive 82 was 20 μm. In this example, bisphenol A diglycidyl ether (DGEBA), dicyandiamide (DICY), and an epoxy adduct curing accelerator (epoxy adhesive) were used as the thermosetting adhesive. In this example, the sealing substrate 80 on which the through-hole electrode and the sealing material were formed in this way was produced.
 次いで、上述のようにして作製された素子本体部60と、スルーホール電極及びシール材が形成された封止基材80とを、試料台が80℃に加熱された真空ラミネータを用いて貼り合わせた。この際、図17に示すように、封止基材80の熱硬化性接着剤82(シール材)と、素子本体部60の陰極70とが対向するように両者を貼り付けた。そして、貼り合わせた部材を、ホットプレートにより130℃で30分間加熱し、有機EL素子を製作した。 Next, the element main body 60 manufactured as described above and the sealing base material 80 on which the through-hole electrode and the sealing material are formed are bonded using a vacuum laminator whose sample stage is heated to 80 ° C. It was. At this time, as shown in FIG. 17, the thermosetting adhesive 82 (sealing material) of the sealing substrate 80 and the cathode 70 of the element main body 60 were pasted together so as to face each other. And the bonded member was heated at 130 degreeC with the hotplate for 30 minutes, and the organic EL element was manufactured.
 なお、この例では、素子本体部と封止基材とを貼り合せる前に、スルーホール電極を封止基材に予め設ける例を説明したが、本発明はこれに限定されない。例えば、素子本体部と封止基材とを貼り合せた後、封止基材側から、電極まで貫通した孔を設け、その貫通孔に導電性充填材を充填して、スルーホール電極を形成してもよい。 In this example, the example in which the through-hole electrode is provided on the sealing base material in advance before the element body and the sealing base material are bonded to each other has been described. However, the present invention is not limited to this. For example, after bonding the element body and the sealing substrate, a hole that penetrates from the sealing substrate side to the electrode is provided, and the through hole is filled with a conductive filler to form a through-hole electrode. May be.
[実施例2]
 実施例2では、缶封止タイプの有機EL素子を作製した。すなわち、図5に示す変形例1の有機EL素子と同様の構成の有機EL素子を作製した。なお、実施例2では、封止基材の作製手法及び貼り合わせ手法が、実施例1と異なるが、素子本体部の形成手法は実施例1と同様である。それゆえ、ここでは、封止基材の作製手法及び貼り合わせ手法についてのみ説明し、素子本体部の作製手法の説明は省略する。
[Example 2]
In Example 2, a can-sealed organic EL element was produced. That is, an organic EL element having the same configuration as that of the organic EL element of Modification 1 shown in FIG. 5 was produced. In Example 2, the method for forming the sealing substrate and the bonding method are different from those in Example 1. However, the method for forming the element body is the same as that in Example 1. Therefore, here, only the manufacturing method and the bonding method of the sealing substrate will be described, and the description of the manufacturing method of the element main body will be omitted.
 まず、厚さ1.8mmの市販のソーダガラスを60mm×60mmのサイズに裁断して、封止基板を用意した。次いで、封止基板の一方の面の中央部をサンドブラスト加工処理及びエッチング処理により深さ0.6mmの凹部(ざぐり)を形成した。これにより、封止基材を作製した。 First, a commercially available soda glass having a thickness of 1.8 mm was cut into a size of 60 mm × 60 mm to prepare a sealing substrate. Next, a concave portion (spot) having a depth of 0.6 mm was formed in the central portion of one surface of the sealing substrate by sandblasting processing and etching processing. Thereby, the sealing base material was produced.
 次いで、実施例1と同様にして、封止基材の所定の2箇所にテーパー状の貫通孔を、サンドブラスト加工により形成した。図18A及び18Bに、貫通孔が形成された封止基材の概略構成を示す。なお、図18Aは、貫通孔が形成された封止基材の平面図であり、図18Bは、図18A中のC-C断面図である。 Next, in the same manner as in Example 1, tapered through holes were formed by sandblasting at two predetermined locations of the sealing substrate. 18A and 18B show a schematic configuration of a sealing substrate in which a through hole is formed. 18A is a plan view of the sealing substrate in which the through hole is formed, and FIG. 18B is a cross-sectional view taken along the line CC in FIG. 18A.
 この例では、一方の貫通孔90aを、封止基材90の凹部91の一つの辺部付近(図18Aでは左側の辺部付近)に設け、該辺部と対向する凹部91の辺部付近(図18Aでは右側辺部付近)に他方の貫通孔90bを設けた。この際、この例においても、各貫通孔を、対応する引き出し電極部分の領域と対向する位置に形成した。また、この際、封止基材90の凹部91側の面における貫通孔の開口部の径が、凹部91側とは反対側の面におけるそれより小さくなるようなテーパー状の貫通孔を形成した。 In this example, one through hole 90a is provided in the vicinity of one side of the recess 91 of the sealing substrate 90 (in the vicinity of the left side in FIG. 18A), and in the vicinity of the side of the recess 91 facing the side. The other through-hole 90b was provided (near the right side in FIG. 18A). At this time, also in this example, each through hole was formed at a position facing the corresponding region of the extraction electrode portion. At this time, a tapered through hole was formed such that the diameter of the opening of the through hole on the surface of the sealing substrate 90 on the concave portion 91 side was smaller than that on the surface opposite to the concave portion 91 side. .
 次いで、実施例1と同様に、低融点半田を貫通孔に充填し、その後、機械加工により成形し、スルーホール電極を作製した。図19に、スルーホール電極が形成された封止基材90の概略構成断面図を示す。この例においても、実施例1と同様に、スルーホール電極93が封止基材90の凹部91側の表面から突出するように、スルーホール電極93を成形した。なお、この際、外周端部92の上面からのスルーホール電極93の突出量が0.1~0.2mmとなるようにスルーホール電極93を成形した。 Next, in the same manner as in Example 1, low-melting-point solder was filled in the through holes, and then molded by machining to produce a through-hole electrode. FIG. 19 shows a schematic cross-sectional view of a sealing substrate 90 on which through-hole electrodes are formed. Also in this example, similarly to Example 1, the through-hole electrode 93 was formed so that the through-hole electrode 93 protrudes from the surface of the sealing substrate 90 on the recess 91 side. At this time, the through-hole electrode 93 was formed so that the protruding amount of the through-hole electrode 93 from the upper surface of the outer peripheral end portion 92 was 0.1 to 0.2 mm.
 次いで、スルーホール電極93が設けられた封止基材90に対して、イソプロピルアルコールで超音波洗浄を実施した。その後、洗浄された封止基材90を乾燥窒素ガスで乾燥し、さらに、乾燥後の封止基材90に対して、UVオゾン洗浄を5分間行った。この例では、このようにしてスルーホール電極93が設けられた封止基材90を作製した。  Next, the sealing substrate 90 provided with the through-hole electrode 93 was subjected to ultrasonic cleaning with isopropyl alcohol. Thereafter, the cleaned sealing substrate 90 was dried with dry nitrogen gas, and UV ozone cleaning was further performed on the dried sealing substrate 90 for 5 minutes. In this example, the sealing substrate 90 provided with the through-hole electrode 93 was produced in this way.
 次いで、封止基材90の凹部91に、酸化バリウムからなる補水剤を設けた。具体的には、補水剤として、アルドリッチ社製の高純度酸化バリウム粉末を用い、この高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S-NTF8031Q 日東電工製)により封止基材90の凹部91に貼りつけた。 Next, a water replenisher made of barium oxide was provided in the recess 91 of the sealing substrate 90. Specifically, high-purity barium oxide powder made by Aldrich was used as a water replenisher, and this high-purity barium oxide powder was applied to a fluororesin semi-permeable membrane (Microtex S-NTF8031Q made by Nitto Denko) with an adhesive. Affixed to the recess 91 of the sealing substrate 90.
 次いで、封止基材90の凹部91を画成する凸状の外周端部92の上面に紫外線硬化型の接着剤を塗布した。そして、この接着剤が塗布された封止基材90と素子本体部とを、接着剤と介して貼り合せて有機EL素子を作製した。 Next, an ultraviolet curable adhesive was applied to the upper surface of the convex outer peripheral end 92 defining the recess 91 of the sealing substrate 90. And the sealing base material 90 and the element main-body part which apply | coated this adhesive agent were bonded together through the adhesive agent, and the organic EL element was produced.
[実施例3]
 実施例3では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、封止基材の形成材料として、厚さ0.7mmの市販のソーダガラスを用いた。この例の有機EL素子において、封止基材の上記構成以外の構成は、実施例1と同様の構成である。また、この例では、実施例1と同様の手法を用いて有機EL素子を作製した。
[Example 3]
In Example 3, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, a commercially available soda glass having a thickness of 0.7 mm was used as a forming material for the sealing substrate. In the organic EL element of this example, the configuration other than the above configuration of the sealing substrate is the same as that of the first embodiment. In this example, an organic EL element was produced using the same method as in Example 1.
[比較例]
 比較例では、実施例2と同様に、缶封止タイプの有機EL素子を作製した。ただし、この例では、スルーホール電極を陽極に対してのみ設け、陰極に対しては、陰極引き出し電極と対向する封止基材の領域に開口部を設けた。図20に、この例の封止基材の概略構成平面図を示す。
[Comparative example]
In the comparative example, similarly to Example 2, a can-sealed type organic EL element was produced. However, in this example, the through-hole electrode was provided only for the anode, and for the cathode, an opening was provided in the region of the sealing substrate facing the cathode lead electrode. FIG. 20 shows a schematic configuration plan view of the sealing substrate of this example.
 この例では、図20に示すように、封止基材100の陰極引き出し電極に対応する領域に貫通孔100aより十分大きなサイズの開口部100bを設けた。そして、この例では、陰極に対する給電は、開口部100bに露出した陰極引き出し電極に直接、外部から給電する方式を用いた。 In this example, as shown in FIG. 20, an opening 100b having a size sufficiently larger than the through hole 100a was provided in a region corresponding to the cathode lead electrode of the sealing substrate 100. In this example, power is supplied to the cathode directly from the outside to the cathode lead electrode exposed in the opening 100b.
 この例では、封止基材100の陰極引き出し電極に対応する領域に開口部100bを設けたこと以外は、実施例2の有機EL素子と同様の構成とした。また、この例における有機EL素子の作製手法も、封止基材100に開口部100bを設けたこと以外は、上記実施例2の手法と同様とした。なお、スルーホール電極は、低融点半田を成形して作製した。 In this example, the structure was the same as that of the organic EL element of Example 2 except that the opening 100b was provided in the region corresponding to the cathode lead electrode of the sealing substrate 100. The method for producing the organic EL element in this example was also the same as the method of Example 2 except that the opening 100b was provided in the sealing substrate 100. The through-hole electrode was produced by molding a low melting point solder.
[評価試験1]
 上述した実施例1~3の各有機EL素子、及び、比較例の有機EL素子に対して、初期電圧特性試験、及び、耐湿性試験を行い、各有機EL素子の性能を比較した(評価試験1)。なお、初期電圧特性試験、及び、耐湿性試験の概要は、次の通りである。
[Evaluation Test 1]
An initial voltage characteristic test and a moisture resistance test were performed on each of the organic EL elements in Examples 1 to 3 and Comparative Example, and the performance of each organic EL element was compared (evaluation test). 1). The outline of the initial voltage characteristic test and the moisture resistance test is as follows.
(1)初期電圧特性試験
 初期電圧特性試験では、電圧/電流発生器・モニタを用いて、実施例1~3及び比較例で作製した各有機EL素子に、所定の電流を流し、その時の電圧を測定した。なお、この試験では、電圧/電流発生器・モニタとしては、株式会社エーディーシー製6243を用い、各有機EL素子には、40mA(2mA/cm)の電流を流した。また、各有機EL素子の測定結果(電圧値)は、実施例2の測定結果を基準(100%)とし、その基準に対する相対値で示す。なお、この評価基準は、後述の評価試験2~4においても同様に用いる。
(1) Initial voltage characteristic test In the initial voltage characteristic test, a voltage / current generator / monitor is used to apply a predetermined current to each organic EL element produced in Examples 1 to 3 and the comparative example, and the voltage at that time. Was measured. In this test, 6243 manufactured by ADC Co., Ltd. was used as the voltage / current generator / monitor, and a current of 40 mA ( 2 mA / cm 2 ) was passed through each organic EL element. Moreover, the measurement result (voltage value) of each organic EL element is shown as a relative value with respect to the reference with the measurement result of Example 2 as the reference (100%). This evaluation standard is used in the same manner in evaluation tests 2 to 4 described later.
(2)耐湿性試験
 耐湿性試験では、実施例1~3及び比較例で作製した各有機EL素子を60℃、相対湿度90%の環境で300時間保管し、保管前後における、非発光部の大きさの比較評価、及び、駆動電圧の変化の評価を行った。
(2) Moisture resistance test In the moisture resistance test, each organic EL device produced in Examples 1 to 3 and Comparative Example was stored for 300 hours in an environment of 60 ° C and 90% relative humidity. The comparative evaluation of the magnitude | size and the evaluation of the change of a drive voltage were performed.
(a)非発光部評価
 有機EL素子の保管前後において、市販のデジタル一眼レフカメラ(市販のマクロレンズを使用)を用いて、有機EL素子の発光画像を撮影した。そして、撮影した発光画像に対して所定の画像処理を行い、非発光面積の増加量を評価した。
(A) Evaluation of non-light emitting part Before and after storing the organic EL element, a light emitting image of the organic EL element was taken using a commercially available digital single lens reflex camera (using a commercially available macro lens). Then, predetermined image processing was performed on the captured light emitting image, and the increase in the non-light emitting area was evaluated.
 なお、非発光部の大きさの変化に基づく劣化の評価には、下記式で計算される評価値を用いた。
 100×[(高湿下保管前の発光部面積)-(高湿下保管後の発光部面積)]/(高湿下保管前の発光部面積)
 上記評価値では、その値が小さいほど非発光部の増加が少なく、耐湿性が高いことを示す。
In addition, the evaluation value calculated by the following formula was used for evaluation of deterioration based on the change in the size of the non-light-emitting portion.
100 × [(light emitting area before storage under high humidity) − (light emitting area after storage under high humidity)] / (light emitting area before storage under high humidity)
In the said evaluation value, it shows that there are few increases of a non-light-emission part, and moisture resistance is so high that the value is small.
(b)駆動電圧の変化
 有機EL素子の保管前後において、駆動電圧の変化を測定した。この測定では、初期電圧の測定と同様に、40mAの電流を有機EL素子に流し、その時の電圧を測定した。
(B) Change in drive voltage The change in drive voltage was measured before and after storage of the organic EL element. In this measurement, similarly to the measurement of the initial voltage, a current of 40 mA was passed through the organic EL element, and the voltage at that time was measured.
 保管前後の駆動電圧の変化に基づく劣化の評価には、下記式で計算される評価値を用いた。
 100×(保管後の電圧値)/(保管前の電圧値)
 なお、上記評価値では、その値が小さいほど駆動電圧の上昇が小さく、耐湿性が高いことを示す。
The evaluation value calculated by the following formula was used for evaluation of deterioration based on the change in drive voltage before and after storage.
100 x (Voltage value after storage) / (Voltage value before storage)
In addition, in the said evaluation value, the raise of a drive voltage is so small that the value is small, and it shows that moisture resistance is high.
 上述した評価試験1の結果を、下記表1に示す。なお、下記表1中の封止形態の欄に記載の「固体封止」は固体密着封止を意味し、給電方法の欄の「縦孔」はスルーホール電極を意味する。 The results of the evaluation test 1 described above are shown in Table 1 below. In addition, “solid sealing” described in the column of the sealing form in Table 1 below means solid contact sealing, and “vertical hole” in the column of power feeding method means a through-hole electrode.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
 表1の結果から明らかなように、実施例1~3の有機EL素子では、比較例の有機EL素子に比べて、初期電圧特性及び耐湿性が両方とも向上することが分かった。すなわち、実施例1~3の有機EL素子のように、陽極及び陰極の両方の給電を、スルーホール電極を介して行うことにより、初期電圧特性及び耐湿性がともに向上することが分かった。 As is clear from the results in Table 1, it was found that the organic EL elements of Examples 1 to 3 both improved the initial voltage characteristics and the moisture resistance compared to the organic EL elements of the comparative examples. That is, it was found that both the initial voltage characteristics and the moisture resistance are improved by feeding both the anode and the cathode through the through-hole electrodes as in the organic EL elements of Examples 1 to 3.
[実施例4]
 実施例4では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、スルーホール電極を形成するための導電性充填材として、金属ナノ粒子を用いた。金属ナノ粒子としては、銀ナノペースト(大研化学工業株式会社製:NAG-10)を用いた。この銀ナノペーストの焼成条件は、300℃で30分とした。
[Example 4]
In Example 4, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, metal nanoparticles were used as the conductive filler for forming the through-hole electrode. Silver nano paste (Daiken Chemical Industry Co., Ltd .: NAG-10) was used as the metal nanoparticles. The firing condition of the silver nanopaste was 300 ° C. for 30 minutes.
 この例の有機EL素子において、導電性充填材に銀ナノペーストを用いたこと以外の構成は、実施例1の有機EL素子の対応する構成と同様の構成である。また、この例では、実施例1と同様にして有機EL素子を作製し、スルーホール電極の形状も、実施例1と同様の形状(円錐台状)とした。 In the organic EL element of this example, the configuration other than the use of silver nanopaste as the conductive filler is the same as the corresponding configuration of the organic EL element of Example 1. In this example, an organic EL element was produced in the same manner as in Example 1, and the shape of the through-hole electrode was the same as that in Example 1 (conical frustum shape).
[実施例5]
 実施例5では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、スルーホール電極を形成するための導電性充填材として、低融点合金(フジメタル工業株式会社製:No.10(スズ42%、ビスマス58%、融点138℃))を用いた。
[Example 5]
In Example 5, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, a low melting point alloy (manufactured by Fuji Metal Industry Co., Ltd .: No. 10 (42% tin, 58% bismuth, melting point 138 ° C.)) was used as the conductive filler for forming the through-hole electrode. .
 この例の有機EL素子において、導電性充填材に低融点合金を用いたこと以外の構成は、実施例1の有機EL素子の対応する構成と同様の構成である。また、この例では、実施例1と同様にして有機EL素子を作製し、スルーホール電極の形状も、実施例1と同様の形状(円錐台状)とした。 In the organic EL element of this example, the structure other than the low melting point alloy used for the conductive filler is the same as the corresponding structure of the organic EL element of Example 1. In this example, an organic EL element was produced in the same manner as in Example 1, and the shape of the through-hole electrode was the same as that in Example 1 (conical frustum shape).
[評価試験2]
 評価試験2では、上述した実施例4及び5の各有機EL素子に対して、評価試験1と同様にして、初期電圧特性試験及び耐湿性試験を行い、各有機EL素子の性能を比較した。下記表2に、その評価結果を示す。なお、下記表2では、比較のため、実施例1の評価結果も一緒に示す。
[Evaluation Test 2]
In the evaluation test 2, an initial voltage characteristic test and a moisture resistance test were performed on the organic EL elements of Examples 4 and 5 described above in the same manner as in the evaluation test 1, and the performance of each organic EL element was compared. The evaluation results are shown in Table 2 below. In Table 2, the evaluation results of Example 1 are also shown for comparison.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 表2から明らかなように、実施例1、4及び5の有機EL素子では、上記表1に示した比較例の有機EL素子に比べて、初期電圧特性及び耐湿性が両方とも向上することが分かった。すなわち、スルーホール電極を形成するための導電性充填材として、低融点半田以外に、金属ナノ粒子や低融点合金を用いても、初期電圧特性及び耐湿性がともに向上することが分かった。 As is apparent from Table 2, the organic EL elements of Examples 1, 4 and 5 have both improved initial voltage characteristics and moisture resistance as compared with the organic EL elements of Comparative Examples shown in Table 1 above. I understood. That is, it was found that both the initial voltage characteristics and the moisture resistance are improved by using metal nanoparticles or a low melting point alloy in addition to the low melting point solder as the conductive filler for forming the through-hole electrode.
 また、表2から、スルーホール電極を形成するための導電性充填材として、金属ナノ粒子を用いた場合に、最も良好な特性が得られることが分かった。 Also, from Table 2, it was found that the best characteristics were obtained when metal nanoparticles were used as the conductive filler for forming the through-hole electrode.
[実施例6]
 実施例6では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、スルーホール電極の先端部分の形状を、実施例1のスルーホール電極の先端部分の形状(円錐台状)と異なる形状とした。
[Example 6]
In Example 6, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, the shape of the tip portion of the through-hole electrode was different from the shape (conical frustum shape) of the tip portion of the through-hole electrode of Example 1.
 図21に、この例におけるスルーホール電極が形成された封止基材の概略構成断面図を示す。この例では、スルーホール電極111の先端部分の形状を円錐状にした。なお、スルーホール電極111が形成される貫通孔111aの寸法は、実施例1の貫通孔80aと同じである。 FIG. 21 shows a schematic cross-sectional view of a sealing substrate on which through-hole electrodes in this example are formed. In this example, the shape of the tip portion of the through-hole electrode 111 is conical. The dimension of the through hole 111a in which the through hole electrode 111 is formed is the same as that of the through hole 80a of the first embodiment.
 なお、この例においても、実施例1と同様に、スルーホール電極111が封止基材110の表面から突出するように、スルーホール電極111を成形し、その突出量は005~0.15mmとした。 In this example as well, as in Example 1, the through-hole electrode 111 was formed so that the through-hole electrode 111 protruded from the surface of the sealing substrate 110, and the protruding amount was 005 to 0.15 mm. did.
 さらに、この例では、スルーホール電極111を設ける封止基材110の貫通孔110aを、実施例1と同様に、テーパー状の貫通孔とした。また、スルーホール電極111は、実施例1と同様に低融点半田を用いて形成した。 Furthermore, in this example, the through-hole 110a of the sealing substrate 110 on which the through-hole electrode 111 is provided is a tapered through-hole as in the first embodiment. The through-hole electrode 111 was formed using low melting point solder as in the first embodiment.
 この例の有機EL素子において、スルーホール電極111の先端部分の形状を変えたこと以外の構成は、実施例1の有機EL素子の対応する構成と同様の構成である。また、この例では、スルーホール電極111の先端部分の形状を変えたこと以外は、実施例1と同様にして有機EL素子を作製した。 The configuration of the organic EL element of this example is the same as the corresponding configuration of the organic EL element of Example 1 except that the shape of the tip portion of the through-hole electrode 111 is changed. In this example, an organic EL element was produced in the same manner as in Example 1 except that the shape of the tip portion of the through-hole electrode 111 was changed.
[実施例7]
 実施例7では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、実施例6と同様に、スルーホール電極の形状(先端部分の形状)を、実施例1のスルーホール電極の形状(円錐台状)と異なる形状とした。
[Example 7]
In Example 7, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, similarly to Example 6, the shape of the through-hole electrode (the shape of the tip portion) was different from the shape of the through-hole electrode of Example 1 (conical frustum shape).
 図22に、この例におけるスルーホール電極が形成された封止基材の概略構成断面図を示す。この例では、スルーホール電極121の形状(先端部分の形状)を径が1.0mmの円柱状とした。 FIG. 22 shows a schematic cross-sectional view of a sealing substrate on which through-hole electrodes in this example are formed. In this example, the shape of the through-hole electrode 121 (the shape of the tip portion) is a cylindrical shape having a diameter of 1.0 mm.
 なお、この例においても、実施例1と同様に、スルーホール電極121が封止基材120の表面から突出するように、スルーホール電極121を成形し、その突出量は005~0.15mmとした。 In this example as well, as in Example 1, the through-hole electrode 121 was formed so that the through-hole electrode 121 protruded from the surface of the sealing substrate 120, and the protruding amount was 005 to 0.15 mm. did.
 さらに、この例では、スルーホール電極121を設ける封止基材120の貫通孔120aも、円柱状(径は1.0mm)の貫通孔とした。なお、スルーホール電極121は、実施例1と同様に低融点半田を用いて形成した。 Furthermore, in this example, the through hole 120a of the sealing substrate 120 on which the through hole electrode 121 is provided is also a cylindrical through hole (diameter is 1.0 mm). The through-hole electrode 121 was formed using low melting point solder as in the first embodiment.
 この例の有機EL素子において、スルーホール電極121の形状を変えたこと以外の構成は、実施例1の有機EL素子の対応する構成と同様の構成である。また、この例では、スルーホール電極121の形状を変えたこと以外は、実施例1と同様にして有機EL素子を作製した。 In the organic EL element of this example, the configuration other than that of changing the shape of the through-hole electrode 121 is the same as the corresponding configuration of the organic EL element of Example 1. In this example, an organic EL element was produced in the same manner as in Example 1 except that the shape of the through-hole electrode 121 was changed.
[評価試験3]
 評価試験3では、上述した実施例6及び7の各有機EL素子に対して、評価試験1と同様にして、初期電圧特性試験及び耐湿性試験を行い、各有機EL素子の性能を比較した。下記表3に、その評価結果を示す。なお、下記表3では、比較のため、実施例1の評価結果も一緒に示す。
[Evaluation Test 3]
In the evaluation test 3, an initial voltage characteristic test and a moisture resistance test were performed on the organic EL elements of Examples 6 and 7 described above in the same manner as in the evaluation test 1, and the performance of each organic EL element was compared. Table 3 below shows the evaluation results. In Table 3 below, the evaluation results of Example 1 are also shown for comparison.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 表3から明らかなように、実施例1、6及び7の有機EL素子では、上記表1に示した比較例の有機EL素子に比べて、初期電圧特性及び耐湿性が両方とも向上することが分かった。すなわち、スルーホール電極の先端部分の形状を変化させても、初期電圧特性及び耐湿性がともに向上することが分かった。 As is apparent from Table 3, the organic EL elements of Examples 1, 6 and 7 have both improved initial voltage characteristics and moisture resistance as compared with the organic EL elements of the comparative examples shown in Table 1 above. I understood. That is, it was found that both the initial voltage characteristics and the moisture resistance are improved even when the shape of the tip portion of the through-hole electrode is changed.
 また、表3から、スルーホール電極の先端部分の形成が鋭利なほど、初期電圧特性及び耐湿性がより向上することが分かった。 Further, from Table 3, it was found that the sharper the tip portion of the through-hole electrode is, the more the initial voltage characteristics and the moisture resistance are improved.
[実施例8]
 実施例8では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、封止基材の貫通孔を、フッ酸によるエッチング処理により形成した。なお、貫通孔の形状は、実施例7と同様に円柱状とした。
[Example 8]
In Example 8, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, the through hole of the sealing substrate was formed by an etching process using hydrofluoric acid. The shape of the through hole was a columnar shape as in Example 7.
 この例では、封止基材の貫通孔をエッチング処理により形成したこと以外は、実施例7と同様にして有機EL素子を作製した。なお、スルーホール電極は、実施例7と同様に低融点半田を用いて形成した。 In this example, an organic EL element was produced in the same manner as in Example 7 except that the through hole of the sealing substrate was formed by etching. The through-hole electrode was formed using low melting point solder as in Example 7.
[実施例9]
 実施例9では、実施例1と同様に、固体密着タイプの有機EL素子を作製した。ただし、この例では、封止基材の貫通孔を、ダイヤモンドドリルを用いた機械加工処理により形成した。なお、貫通孔の形状は、実施例7と同様に円柱状とした。
[Example 9]
In Example 9, similarly to Example 1, a solid contact type organic EL element was produced. However, in this example, the through hole of the sealing substrate was formed by machining using a diamond drill. The shape of the through hole was a columnar shape as in Example 7.
 この例では、封止基材の貫通孔を、ダイヤモンドドリルを用いて形成したこと以外は、実施例7と同様にして有機EL素子を作製した。なお、スルーホール電極は、実施例7と同様に低融点半田を用いて形成した。 In this example, an organic EL element was produced in the same manner as in Example 7 except that the through hole of the sealing substrate was formed using a diamond drill. The through-hole electrode was formed using low melting point solder as in Example 7.
[評価試験4]
 評価試験4では、上述した実施例8及び9の各有機EL素子に対して、評価試験1と同様にして、初期電圧特性試験及び耐湿性試験を行い、各有機EL素子の性能を比較した。下記表4に、その評価結果を示す。なお、下記表4では、比較のため、実施例7の評価結果も一緒に示す。
[Evaluation Test 4]
In the evaluation test 4, an initial voltage characteristic test and a moisture resistance test were performed on each organic EL element of Examples 8 and 9 described above in the same manner as in the evaluation test 1, and the performance of each organic EL element was compared. The evaluation results are shown in Table 4 below. In Table 4 below, the evaluation results of Example 7 are also shown for comparison.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 表4から明らかなように、実施例7~9の有機EL素子では、上記表1に示した比較例の有機EL素子に比べて、初期電圧特性及び耐湿性が両方とも向上することが分かった。すなわち、封止基材の貫通孔の形成手法を変えても、初期電圧特性及び耐湿性がともに向上することが分かった。 As is clear from Table 4, it was found that both the initial voltage characteristics and the moisture resistance of the organic EL elements of Examples 7 to 9 were improved as compared with the organic EL elements of the comparative examples shown in Table 1 above. . That is, it was found that both the initial voltage characteristics and the moisture resistance are improved even when the through hole forming method of the sealing substrate is changed.
 また、表4から、封止基材の貫通孔の形成手法として、サンドブラスト加工を用いた場合に、最も良好な特性が得られることが分かった。これは、サンドブラスト加工で貫通孔を形成した場合、貫通孔を画成する封止基材の側壁部の凹凸のサイズがより大きくなり、側壁部とスルーホール電極との密着性が増大し、封止特性が向上したためであると考えられる。 Also, from Table 4, it was found that the best characteristics can be obtained when sandblasting is used as a method for forming the through hole of the sealing substrate. This is because when the through hole is formed by sandblasting, the size of the unevenness of the side wall portion of the sealing substrate that defines the through hole becomes larger, the adhesion between the side wall portion and the through hole electrode increases, This is thought to be due to improved stopping characteristics.
 以上説明した各種評価試験の結果から、本発明の有機EL素子のように、封止基材により素子基板全体を覆うとともに、陽極及び陰極の給電をともにスルーホール電極を介して行うような構成にすることにより、高温・高湿保存性を保つことができ、駆動電圧の上昇を抑制することができることが分かった。 From the results of the various evaluation tests described above, as in the organic EL element of the present invention, the entire element substrate is covered with the sealing substrate, and the anode and cathode are both fed via the through-hole electrode. As a result, it was found that high temperature and high humidity storage stability can be maintained, and an increase in driving voltage can be suppressed.
 1…素子基板、2…陽極、3…有機発光機能層、4…陰極、4a…陰極引き出し電極、5…封止基材、5a…貫通孔、6…シール材、7…陽極用スルーホール電極、8…陰極用スルーホール電極、10…有機EL素子、20…面状発光体、21…支持基板、22…接着部材 DESCRIPTION OF SYMBOLS 1 ... Element board | substrate, 2 ... Anode, 3 ... Organic light emission functional layer, 4 ... Cathode, 4a ... Cathode extraction electrode, 5 ... Sealing base material, 5a ... Through-hole, 6 ... Sealing material, 7 ... Through-hole electrode for anode 8 through-hole electrode for cathode, 10 organic EL element, 20 planar light emitter, 21 support substrate, 22 adhesive member

Claims (13)

  1.  素子基材と、
     前記素子基材上に形成された第1電極と、
     前記第1電極上に形成され、かつ、発光層を含む有機化合物層と、
     前記有機化合物層上に形成された第2電極と、
     前記素子基材の前記第2電極側の表面を覆うようにして設けられた絶縁性封止材と、
     前記絶縁性封止材及び前記素子基材の一方の部材の前記第1電極と対向する領域の一部に、該部材の厚さ方向に貫通して設けられ、かつ、先端が前記第1電極と接触している第1スルーホール電極と、
     前記部材の前記第2電極と対向する領域の一部に、前記部材の厚さ方向に貫通して設けられ、かつ、先端が前記第2電極と接触している第2スルーホール電極と
     を備える有機エレクトロルミネッセンス素子。
    An element substrate;
    A first electrode formed on the element substrate;
    An organic compound layer formed on the first electrode and including a light emitting layer;
    A second electrode formed on the organic compound layer;
    An insulating sealing material provided so as to cover the surface of the element base on the second electrode side;
    The insulating sealing material and one element of the element base member are provided in a part of a region facing the first electrode in the thickness direction of the member, and the tip is the first electrode. A first through-hole electrode in contact with,
    A second through-hole electrode provided in a part of a region of the member facing the second electrode so as to penetrate in the thickness direction of the member and having a tip contacting the second electrode. Organic electroluminescence device.
  2.  さらに、前記素子基材の前記第2電極側の表面全域に渡って設けられた接着材を備え、
     前記接着材を介して、前記絶縁性封止材が前記素子基材の前記第2電極側の表面に接着されている
     請求項1に記載の有機エレクトロルミネッセンス素子。
    Furthermore, an adhesive provided over the entire surface of the element base on the second electrode side,
    The organic electroluminescent element according to claim 1, wherein the insulating sealing material is bonded to the surface of the element base on the second electrode side via the adhesive.
  3.  前記絶縁性封止材及び前記素子基材の一方の部材の前記第1スルーホール電極及び前記第2スルーホール電極の配置領域に、それぞれ、第1貫通孔及び第2貫通孔が形成されており、該第1貫通孔及び該第2貫通孔がともにテーパー状の孔であり、かつ、該第1貫通孔及び該第2貫通孔の前記有機化合物層側の開口面積が、前記有機化合物層側とは反対側の開口面積より小さい
     請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    A first through hole and a second through hole are formed in an arrangement region of the first through hole electrode and the second through hole electrode of one member of the insulating sealing material and the element base material, respectively. The first through hole and the second through hole are both tapered holes, and the opening area of the first through hole and the second through hole on the organic compound layer side is the organic compound layer side. The organic electroluminescence element according to claim 1, wherein the organic electroluminescence element is smaller than the opening area on the opposite side of the electrode.
  4.  前記第1スルーホール電極の先端部分の形状、及び、前記第2スルーホール電極の先端部分の形状がともに円錐状である
     請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to any one of claims 1 to 3, wherein a shape of a tip portion of the first through-hole electrode and a shape of a tip portion of the second through-hole electrode are both conical.
  5.  前記第1スルーホール電極及び前記第2スルーホール電極がともに、銀ナノ粒子で形成されている
     請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to any one of claims 1 to 4, wherein both the first through-hole electrode and the second through-hole electrode are formed of silver nanoparticles.
  6.  前記素子基材の線膨張係数と、前記絶縁性封止材の線膨張係数との差が、10×10-6/℃以下である
     請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The organic electro according to any one of claims 1 to 5, wherein a difference between a linear expansion coefficient of the element base material and a linear expansion coefficient of the insulating sealing material is 10 × 10 -6 / ° C or less. Luminescence element.
  7.  前記第1スルーホール電極及び前記第2スルーホール電極が、前記絶縁性封止材に設けられている
     請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence element according to any one of claims 1 to 6, wherein the first through-hole electrode and the second through-hole electrode are provided in the insulating sealing material.
  8.  素子基材と、前記素子基材上に形成された第1電極と、前記第1電極上に形成され、かつ、発光層を含む有機化合物層と、前記有機化合物層上に形成された第2電極と、前記素子基材の前記第2電極側の表面を覆うようにして設けられた絶縁性封止材と、前記絶縁性封止材及び前記素子基材の一方の部材の前記第1電極と対向する領域の一部に、該部材の厚さ方向に貫通して設けられ、かつ、先端が前記第1電極と接触している第1スルーホール電極と、前記部材の前記第2電極と対向する領域の一部に、前記部材の厚さ方向に貫通して設けられ、かつ、先端が前記第2電極と接触している第2スルーホール電極とを有する複数の有機エレクトロルミネッセンス素子と、
     前記複数の有機エレクトロルミネッセンス素子を、所定の形態で配列して支持する支持部材と
     を備える面状発光体。
    An element substrate, a first electrode formed on the element substrate, an organic compound layer formed on the first electrode and including a light emitting layer, and a second formed on the organic compound layer An electrode, an insulating sealing material provided so as to cover the surface of the element base on the second electrode side, and the first electrode of one member of the insulating sealing material and the element base A first through-hole electrode that penetrates in a thickness direction of the member and has a tip in contact with the first electrode; and the second electrode of the member; A plurality of organic electroluminescence elements having a second through-hole electrode that is provided in a part of the opposing region so as to penetrate in the thickness direction of the member and whose tip is in contact with the second electrode;
    A planar light-emitting body comprising: a support member configured to support the plurality of organic electroluminescence elements arranged in a predetermined form.
  9.  素子基材上に第1電極を形成することと、
     前記第1電極上に、発光層を含む有機化合物層を形成することと、
     前記有機化合物層上に、第2電極を形成することと、
     前記素子基材の前記第2電極側の表面を封止するための絶縁性封止材、及び、前記素子基材の一方の部材の前記第1電極と対向する領域の一部、並びに、該部材の前記第2電極と対向する領域の一部に、それぞれ第1貫通孔及び第2貫通孔を形成することと、
     前記部材の厚さ方向に沿って延在しかつ前記部材の前記有機化合物層側の面から突出した形状を有し、前記第1電極及び前記第2電極と電気的にそれぞれ接続される第1スルーホール電極及び第2スルーホール電極を、それぞれ前記第1貫通孔及び前記第2貫通孔を封止するように形成することと、
     前記素子基材の前記第2電極側の表面を封止するように、絶縁性封止材を前記素子基材上に設けることと
     を含む有機エレクトロルミネッセンス素子の製造方法。
    Forming a first electrode on the element substrate;
    Forming an organic compound layer including a light emitting layer on the first electrode;
    Forming a second electrode on the organic compound layer;
    Insulating sealing material for sealing the surface of the element base on the second electrode side, a part of the region facing the first electrode of one member of the element base, and the Forming a first through hole and a second through hole in a part of a region of the member facing the second electrode,
    The first member extends along the thickness direction of the member and protrudes from the surface of the member on the organic compound layer side, and is electrically connected to the first electrode and the second electrode, respectively. Forming a through hole electrode and a second through hole electrode so as to seal the first through hole and the second through hole, respectively;
    An insulating sealing material is provided on the element base so as to seal the surface of the element base on the second electrode side. A method for manufacturing an organic electroluminescence element.
  10.  前記第1貫通孔及び前記第2貫通孔を、前記絶縁性封止材に形成し、
     前記第1スルーホール電極及び前記第2スルーホール電極が形成された前記絶縁性封止材を、前記素子基材の前記第2電極側の表面を封止するように、前記素子基材上に設ける
     請求項9に記載の有機エレクトロルミネッセンス素子の製造方法。
    Forming the first through hole and the second through hole in the insulating sealing material;
    The insulating sealing material on which the first through-hole electrode and the second through-hole electrode are formed is formed on the element substrate so as to seal a surface of the element substrate on the second electrode side. The manufacturing method of the organic electroluminescent element of Claim 9.
  11.  前記第1貫通孔及び前記第2貫通孔を、サンドブラスト加工により形成する
     請求項10に記載の有機エレクトロルミネッセンス素子の製造方法。
    The method for manufacturing an organic electroluminescence element according to claim 10, wherein the first through hole and the second through hole are formed by sandblasting.
  12.  前記絶縁性封止材を、接着材を介して、前記素子基材の前記第2電極側の表面全域に渡って接着する
     請求項9~11のいずれか一項に記載の有機エレクトロルミネッセンス素子の製造方法。
    The organic electroluminescent element according to any one of claims 9 to 11, wherein the insulating sealing material is bonded to the entire surface of the element base on the second electrode side via an adhesive. Production method.
  13.  前記接着材としてシート状接着材を用いる
     請求項12に記載の有機エレクトロルミネッセンス素子の製造方法。
    The method for manufacturing an organic electroluminescent element according to claim 12, wherein a sheet-like adhesive is used as the adhesive.
PCT/JP2012/072434 2011-10-04 2012-09-04 Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element WO2013051358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011220365 2011-10-04
JP2011-220365 2011-10-04

Publications (1)

Publication Number Publication Date
WO2013051358A1 true WO2013051358A1 (en) 2013-04-11

Family

ID=48043526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072434 WO2013051358A1 (en) 2011-10-04 2012-09-04 Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element

Country Status (2)

Country Link
JP (1) JPWO2013051358A1 (en)
WO (1) WO2013051358A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025530A1 (en) * 2013-08-23 2015-02-26 三井金属鉱業株式会社 Organic semiconductor device
WO2016136577A1 (en) * 2015-02-26 2016-09-01 コニカミノルタ株式会社 Planar light-emitting module
WO2016188924A1 (en) * 2015-05-26 2016-12-01 Astron Fiamm Safety Method for manufacturing an organic light-emitting diode
JP2017068979A (en) * 2015-09-29 2017-04-06 凸版印刷株式会社 Flexible organic el device and method for manufacturing the same
WO2017111259A1 (en) * 2015-12-22 2017-06-29 주식회사 나노브릭 Display apparatus and manufacturing method therefor
EP2983224B1 (en) * 2013-09-30 2020-08-26 LG Display Co., Ltd. Organic electronic device
JP2020188006A (en) * 2014-11-26 2020-11-19 株式会社半導体エネルギー研究所 Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001022293A (en) * 1999-07-07 2001-01-26 Sony Corp Planar display element
JP2002299047A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Electroluminescence display device and method of manufacture therefor
JP2003036034A (en) * 2001-07-25 2003-02-07 Sony Corp Method for producing display device and display device
JP2003168558A (en) * 2001-09-18 2003-06-13 Seiko Precision Inc El compound member
JP2006092809A (en) * 2004-09-21 2006-04-06 Victor Co Of Japan Ltd Sheet display
JP2007220402A (en) * 2006-02-15 2007-08-30 Konica Minolta Holdings Inc Method of encapsulating organic electroluminescent element and organic electroluminescent element
WO2010089681A1 (en) * 2009-02-05 2010-08-12 Philips Intellectual Property & Standards Gmbh Electroluminescent device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243559A (en) * 1999-02-18 2000-09-08 Kawaguchiko Seimitsu Co Ltd Electroluminescence
JP2005183106A (en) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp Pm type organic el panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001022293A (en) * 1999-07-07 2001-01-26 Sony Corp Planar display element
JP2002299047A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Electroluminescence display device and method of manufacture therefor
JP2003036034A (en) * 2001-07-25 2003-02-07 Sony Corp Method for producing display device and display device
JP2003168558A (en) * 2001-09-18 2003-06-13 Seiko Precision Inc El compound member
JP2006092809A (en) * 2004-09-21 2006-04-06 Victor Co Of Japan Ltd Sheet display
JP2007220402A (en) * 2006-02-15 2007-08-30 Konica Minolta Holdings Inc Method of encapsulating organic electroluminescent element and organic electroluminescent element
WO2010089681A1 (en) * 2009-02-05 2010-08-12 Philips Intellectual Property & Standards Gmbh Electroluminescent device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025530A1 (en) * 2013-08-23 2015-02-26 三井金属鉱業株式会社 Organic semiconductor device
EP2983224B1 (en) * 2013-09-30 2020-08-26 LG Display Co., Ltd. Organic electronic device
JP2020188006A (en) * 2014-11-26 2020-11-19 株式会社半導体エネルギー研究所 Display device
US11372276B2 (en) 2014-11-26 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11635648B2 (en) 2014-11-26 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
WO2016136577A1 (en) * 2015-02-26 2016-09-01 コニカミノルタ株式会社 Planar light-emitting module
EP3264862A4 (en) * 2015-02-26 2018-02-07 Konica Minolta, Inc. Planar light-emitting module
WO2016188924A1 (en) * 2015-05-26 2016-12-01 Astron Fiamm Safety Method for manufacturing an organic light-emitting diode
FR3036853A1 (en) * 2015-05-26 2016-12-02 Astron Fiamm Safety METHOD FOR PRODUCING AN ORGANIC ELECTROLUMINESCENT DIODE
JP2017068979A (en) * 2015-09-29 2017-04-06 凸版印刷株式会社 Flexible organic el device and method for manufacturing the same
WO2017111259A1 (en) * 2015-12-22 2017-06-29 주식회사 나노브릭 Display apparatus and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2013051358A1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
WO2013051358A1 (en) Organic electroluminescence element, planar light-emitting body, and method for manufacturing organic electroluminescence element
TWI333276B (en) Method for packaging organic light emitting display with frit seal and reinforcing structure
TWI338530B (en) Organic light emitting display and method of fabricating the same
CN105165122A (en) Organic electroluminescent element
JP7274102B2 (en) Sealing structure, display device and display apparatus
JP2013500579A (en) Encapsulated optoelectronic device and manufacturing method thereof
JP6003892B2 (en) Planar light emitter
JP2007200884A (en) Organic electroluminescent display and its manufacturing method
JP2008210788A (en) Organic el device
WO2016009958A1 (en) Organic electroluminescent element
JP2010027428A (en) Surface emitter and display device using the same, and lighting device
JP2008084599A (en) Organic electroluminescent device and manufacturing method of organic electroluminescent device
KR20160108535A (en) Organic electroluminescent element, and lighting device and display device each using same
JP2002050471A (en) Organic electroluminescence element and its manufacturing method
JP2008293676A (en) Top emission type organic electroluminescent element, and its manufacturing method
JP2005063976A (en) Organic electroluminescent element and its manufacturing method
KR100595167B1 (en) organic electroluminescence device with organic coating layer for preventing penetration of moisture
KR20060023652A (en) Encapsulation technologies of organic light-emitting device displays using the film absorbing agents
CN100426550C (en) Planar display device and its manufacture
JP6032206B2 (en) Planar light emitter
CN102651453B (en) Organic light-emitting diode sealed by thin film and manufacturing method thereof
JP4990967B2 (en) Organic light emitting device unit and method for manufacturing the same
JP2015181137A (en) Planar light emitter
KR100961954B1 (en) The Method For Fabricating Organic Light Emitting Display
JP2011119176A (en) Organic electroluminescent display, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838167

Country of ref document: EP

Kind code of ref document: A1