WO2015025522A1 - Liquid crystal sealing agent, and method for manufacturing liquid crystal display panel - Google Patents

Liquid crystal sealing agent, and method for manufacturing liquid crystal display panel Download PDF

Info

Publication number
WO2015025522A1
WO2015025522A1 PCT/JP2014/004281 JP2014004281W WO2015025522A1 WO 2015025522 A1 WO2015025522 A1 WO 2015025522A1 JP 2014004281 W JP2014004281 W JP 2014004281W WO 2015025522 A1 WO2015025522 A1 WO 2015025522A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
resin
meth
mass
acryl
Prior art date
Application number
PCT/JP2014/004281
Other languages
French (fr)
Japanese (ja)
Inventor
達司 村田
祐司 溝部
磊 張
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201480045994.7A priority Critical patent/CN105474084B/en
Priority to JP2015532712A priority patent/JP6338586B2/en
Priority to KR1020167003763A priority patent/KR101831076B1/en
Publication of WO2015025522A1 publication Critical patent/WO2015025522A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Definitions

  • the present invention relates to a liquid crystal sealant and a method for producing a liquid crystal display panel using the same.
  • liquid crystal display panels have been widely used as image display panels for various electronic devices such as mobile phones and personal computers.
  • the liquid crystal display panel has a structure in which a liquid crystal material (hereinafter simply referred to as “liquid crystal”) is sandwiched between two transparent substrates having electrodes provided on the surface, and the periphery thereof is sealed with a liquid crystal sealant. It is.
  • liquid crystal sealant has a small influence on the reliability of the liquid crystal display panel because it is in direct contact with the liquid crystal although the amount used is small. Therefore, in order to achieve high image quality of the liquid crystal display panel, liquid crystal sealants are currently required to have advanced and diverse characteristics.
  • liquid crystal display panels are mainly manufactured by a liquid crystal injection method.
  • the liquid crystal injection method is (1) after applying a liquid crystal sealant on one transparent substrate to form a frame, and (2) drying the liquid crystal sealant by precuring the substrate.
  • the other substrate is bonded, (3) the two substrates are heated and pressed, and the substrates are bonded together to form a frame (cell) of the liquid crystal sealant between the substrates, and (4) empty
  • This is a method of manufacturing a liquid crystal display panel by injecting an appropriate amount of liquid crystal into a cell and then sealing the liquid crystal injection port.
  • liquid crystal dropping method has been studied as a method for manufacturing a liquid crystal display panel, which is expected to improve productivity.
  • a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal
  • (2) a minute liquid crystal is dropped into the frame
  • two substrates are stacked under high vacuum while the sealant is in an uncured state, and then (4) the liquid crystal sealant is cured to produce a panel.
  • a light and thermosetting liquid crystal sealant may be used.
  • the liquid crystal sealant is preliminarily cured by irradiating light such as ultraviolet rays, it is heated by heating. Curing may be performed.
  • liquid crystal sealing agent for the liquid crystal dropping method
  • a liquid epoxy resin Patent Document 1
  • an agent Patent Document 2.
  • a liquid crystal sealant containing resin fine particles having a core-shell structure has been proposed (Patent Document 3).
  • an organic filler to the liquid crystal sealant (Patent Document 4).
  • liquid crystal sealing agents containing organic fillers such as rubbery components and resin fine particles are known.
  • the organic filler plays a role as a stress relaxation agent in the liquid crystal sealant. Therefore, when the organic filler occupies a large proportion in the volume of the liquid crystal sealing agent, the effect as a stress relaxation agent can be expected.
  • organic fillers are not compatible with liquid components (such as acrylic resins and (meth) acryl-modified epoxy resins), it is difficult to mix and disperse a large amount of organic fillers. Therefore, the stress relaxation property of the liquid crystal seal obtained from the liquid crystal sealant is not sufficiently increased, and the adhesive strength is not sufficient. Even if a large amount of organic filler could be blended, the viscosity of the liquid crystal sealant was likely to increase, and the applicability was liable to be impaired.
  • liquid components such as acrylic resins and (meth) acryl-modified epoxy resins
  • the present invention by adding an organic filler having a small specific surface area to the liquid crystal sealant, a large amount of the organic filler is dispersed in the liquid crystal sealant, thereby improving the stress relaxation property and adhesive strength of the liquid crystal seal.
  • 1st of this invention is related with the manufacturing method of the liquid-crystal sealing compound and liquid crystal display panel which are shown below.
  • At least one resin selected from (1) acrylic resin (1a) or (meth) acryl-modified epoxy resin (1b) having an epoxy group and a (meth) acryl group in one molecule; ) An organic filler, and (3) a radical polymerization initiator, wherein the average specific surface area of the organic filler of (2) is 0.4 m 2 / g or more and 1.5 m 2 / g.
  • Liquid crystal sealing agent which is the following.
  • the hydrogen bonding functional group equivalent in one molecule of the (1) resin is 1.0 ⁇ 10 ⁇ 4 mol / g or more and 5.0 ⁇ 10 ⁇ 3 mol / g or less.
  • the content of the organic filler (2) is 30 to 100 parts by mass with respect to 100 parts by mass of the resin unit including the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b).
  • the liquid crystal sealing agent according to [1] or [2].
  • the organic filler (2) is selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles, urethane fine particles, acrylic / silicone composite fine particles, and polyolefin fine particles having a softening point of 30 to 120 ° C.
  • the radical polymerization initiator (3) is added in an amount of 0.01 to 3.0 with respect to 100 parts by mass of the resin unit obtained by combining the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b).
  • the resin unit further includes 3 to 30 parts by mass of (5) an inorganic filler with respect to 100 parts by mass of the resin unit in which the acrylic resin (1a) and the (meth) acryl-modified epoxy (1b) are combined.
  • the liquid crystal sealant according to any one of [8] to [8].
  • the liquid crystal sealant of the present invention is preferably used for the production of a liquid crystal display panel by a liquid crystal dropping method.
  • the liquid crystal sealant of the present invention is used for forming a liquid crystal seal of a liquid crystal display panel.
  • the formed liquid crystal seal effectively suppresses liquid crystal leakage and has high adhesive strength. Also, the gap width between the substrates of the liquid crystal cell can be adjusted appropriately.
  • the liquid crystal sealant of the present invention includes (1) at least one kind of resin, (2) an organic filler, and (3) a radical polymerization initiator. Furthermore, (4) an epoxy curing agent and (5) an inorganic filler may be included.
  • a liquid-crystal sealing compound contains at least 1 type of resin (1)
  • the said resin (1) is an acrylic resin (1a), or an epoxy group and (meth) acryl group in 1 molecule. It contains at least one resin selected from (meth) acryl-modified epoxy resins (1b).
  • the resin (1) includes a (meth) acryl-modified epoxy resin (1b). The (meth) acryl-modified epoxy resin (1b) improves the moisture resistance of the cured product.
  • Acrylic resin (1a) refers to a compound containing one or more (meth) acrylic groups. However, the acrylic resin (1a) does not contain an epoxy group.
  • acrylic resins include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; 4 per mole of neopentyl glycol.
  • Diacrylate and / or dimethacrylate of diol obtained by adding at least 1 mole of ethylene oxide or propylene oxide; Diacrylate and / or diacrylate of diol obtained by adding 2 mole of ethylene oxide or propylene oxide to 1 mole of bisphenol A Methacrylate: Diol of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A; tris (2-hydroxyethyl) isocyanurate triacrylate And / or trimethacrylate; trimethylolpropane triacrylate and / or trimethacrylate, or oligomer thereof; pentaerythritol triacrylate and / or trimethacrylate, or oligomer thereof; polyacrylate and / or polymethacrylate of dipentaery
  • the content of the acrylic resin (1a) in the liquid crystal sealant is preferably 0 to 80 parts by mass, and preferably 0 to 75 parts by mass with respect to 100 parts by mass of the liquid crystal sealant, although it depends on the required degree of curability. More preferably, it is 0 to 60 parts by mass.
  • the weight average molecular weight of the acrylic resin (1a) may be about 310 to 500, for example.
  • the weight average molecular weight Mw of the acrylic resin (1a) can be measured, for example, by gel permeation chromatography (GPC).
  • the (meth) acryl-modified epoxy resin (1b) is preferably a (meth) acryl-modified epoxy resin obtained by reacting an epoxy resin and (meth) acrylic acid, for example, in the presence of a basic catalyst.
  • (Meth) acryl may be either methacryl or acrylic.
  • the raw material epoxy resin may be a bifunctional or higher functional epoxy resin having two or more epoxy groups in the molecule, such as bisphenol A type, bisphenol F type, 2,2′-diallyl bisphenol A type, bisphenol AD type, And bisphenol type epoxy resins such as hydrogenated bisphenol type; novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type; biphenyl type epoxy resin; naphthalene type epoxy resin and the like.
  • bisphenol A type bisphenol F type
  • 2,2′-diallyl bisphenol A type bisphenol AD type
  • bisphenol type epoxy resins such as hydrogenated bisphenol type
  • novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type
  • biphenyl type epoxy resin naphthalene type epoxy resin and the like.
  • a (meth) acryl-modified epoxy resin obtained by (meth) acryl modification of a trifunctional or tetrafunctional polyfunctional epoxy resin is preferably a bifunctional epoxy resin because it has a high crosslinking density and is likely to have a low adhesive strength. .
  • the bifunctional epoxy resin is preferably a biphenyl type epoxy resin, a naphthalene type epoxy resin, or a bisphenol type epoxy resin, and bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are particularly preferable from the viewpoint of production efficiency. This is because the bisphenol type epoxy resin has advantages such as excellent applicability as compared with the biphenyl ether type epoxy resin.
  • the raw material epoxy resin may be one kind or a combination of two or more kinds. Moreover, it is preferable that the epoxy resin used as a raw material is highly purified by a molecular distillation method, a washing method, or the like.
  • the weight average molecular weight of the (meth) acryl-modified epoxy resin (1b) may be, for example, about 310 to 500.
  • the weight average molecular weight Mw of the (meth) acryl-modified epoxy resin (1b) can be measured, for example, by gel permeation chromatography (GPC).
  • the content of the (meth) acryl-modified epoxy resin (1b) in the liquid crystal sealant is preferably 0 to 80 parts by mass, more preferably 0 to 75 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the amount is preferably 0 to 60 parts by mass.
  • the (meth) acryl-modified epoxy resin has an epoxy group and a (meth) acryl group in the molecule, it can have both photocuring properties and thermosetting properties. Furthermore, even if the (meth) acryl-modified epoxy resin is an amorphous epoxy resin, since the ratio of the number of hydroxyl groups to the number of epoxy groups is large, dissolution in liquid crystals can be highly suppressed.
  • the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) have a hydrogen bonding functional group such as a hydroxyl group, a urethane bond, an amide group, or a carboxyl group.
  • a hydrogen bonding functional group such as a hydroxyl group, a urethane bond, an amide group, or a carboxyl group.
  • the hydrogen bondable functional group include at least a hydroxyl group generated by the reaction of the epoxy group of the epoxy resin with (meth) acrylic acid, but the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b)
  • the hydroxyl group, urethane bond, carboxyl group, amide group, and the like contained in (meth) acrylic acid and epoxy resin which are raw materials of Since a resin having a hydrogen bonding functional group has low compatibility with a liquid crystal material that is hydrophobic, dissolution in the liquid crystal material is suppressed. Therefore, a liquid crystal sealing agent suitable for the liquid crystal
  • the hydrogen-bonding functional group equivalent of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) is preferably 1.0 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 3 mol / g, ⁇ more preferably 10 -3 ⁇ 4.5 ⁇ 10 -3 mol / g, more preferably from 1.5 ⁇ 10 -3 ⁇ 4.0 ⁇ 10 -3 mol / g.
  • the hydrogen bondable functional group equivalent is 1.0 ⁇ 10 ⁇ 4 mol / g or more, the number of hydrogen bondable functional groups in one molecule of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) Since it is contained sufficiently, an effect of suppressing dissolution in liquid crystal is easily obtained.
  • the hydrogen bondable functional group equivalent is 5 ⁇ 10 ⁇ 3 mol / g or less
  • the cured product of the acrylic resin (1a) and the (meth) acrylic-modified epoxy resin (1b) is likely to have sufficient moisture resistance.
  • familiarity with the organic filler is extremely difficult to be impaired.
  • the hydrogen bondable functional group equivalent (mol / g) of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) is “one molecule acrylic resin (1a) or (meth) acryl-modified epoxy resin (1b)”.
  • Mw weight average molecular weight
  • the hydrogen bondable functional group equivalent of the (meth) acryl-modified epoxy resin can be adjusted, for example, by adjusting the number of moles of (meth) acrylic acid to be reacted with the raw material epoxy resin; the raw material (meth) acrylic acid or epoxy resin It can be controlled by adjusting the amount of the hydrogen-bonding functional group possessed by.
  • the hydroxyl value equivalent of the (meth) acryl-modified epoxy resin obtained by reacting the epoxy resin as a raw material with (meth) acrylic acid is 3 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 3 mol / g. preferable.
  • the total content of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) with respect to 100 parts by mass of the liquid crystal sealant is preferably 10 to 75 parts by mass, and preferably 10 to 70 parts by mass. Is more preferably 40 to 60 parts by mass.
  • the organic filler contained in the liquid crystal sealant is not particularly limited, but has a melting point or softening point of 30 to 120 from the viewpoint of preventing dripping of the liquid crystal sealant due to melting near the thermosetting temperature. Those having a temperature of ° C are preferred.
  • the liquid crystal sealant provided in the gap between the substrates of the liquid crystal cell is reversibly or irreversibly deformed (crushed or crushed), Prevent leaks. By setting the softening point of the organic filler to 30 to 120 ° C., the deformation of the organic filler is facilitated and the sealing ability of the liquid crystal sealing agent is enhanced.
  • organic filler examples include fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles such as styrene / divinylbenzene copolymer, urethane fine particles, acrylic / silicone composite fine particles, and polyolefin fine particles.
  • the average value of the specific surface area of the organic filler is preferably 0.4 m 2 / g or more and 1.5 m 2 / g or less, and more preferably 0.5 m 2 / g or more and 1.0 m 2 / g or less.
  • the specific surface area is measured according to JIS Z8830.
  • An organic filler having a small specific surface area (1.5 m 2 / g or less) hardly increases the viscosity of the liquid crystal sealant and does not easily form an aggregate of organic fillers even when added in a large amount to the liquid crystal sealant. .
  • the specific surface area of the organic filler can greatly depend not only on the particle diameter of the organic filler but also on the roughness of the particle surface.
  • the organic filler is not easily compatible with the resin component contained in the liquid crystal sealant. Therefore, the amount of the organic filler having a large specific surface area (greater than 1.5 m 2 / g) that can be blended in the liquid crystal sealant without causing aggregation becomes low. When there is little content of an organic filler, adhesive strength will fall. This is because the stress caused by curing shrinkage of the liquid crystal sealant is not sufficiently relaxed by the organic filler.
  • the organic filler is aggregated in the liquid crystal sealing agent, the organic filler cannot be uniformly distributed in the liquid crystal sealing agent. Therefore, the stress due to curing shrinkage of the liquid crystal sealant is not sufficiently relaxed by the organic filler, and the adhesive strength is reduced.
  • the viscosity of the liquid crystal sealant tends to increase.
  • the viscosity of the liquid crystal sealant is too high, the liquid crystal sealant is unlikely to be deformed into a predetermined shape when the liquid crystal cell substrate and the substrate are overlapped. This makes it difficult to properly control the gap width between the substrates of the liquid crystal cell.
  • the specific surface area of the organic filler within a certain range, the content of the organic filler in the liquid crystal sealing agent is increased, and as a result, while properly controlling the gap width between the substrates of the liquid crystal cell, the liquid crystal sealing agent ( Increasing the adhesive strength of the cured liquid crystal sealant).
  • the liquid crystal sealant of the present invention can appropriately control the gap width between the substrates even if the gap width between the substrates of the liquid crystal cell is 1 ⁇ m to 5 ⁇ m.
  • the contact area between the resin component contained in the liquid crystal sealant and the organic filler can be reduced, and the thixotropic index (TI value) can be lowered.
  • TI value thixotropic index
  • the viscosity at a low share is low.
  • the liquid crystal sealant is stirred, many bubbles are less likely to be involved, and the bubbles once contained tend to easily escape to the outside. That is, if there are few bubbles contained in the liquid crystal sealant, disconnection due to insufficient defoaming may be less likely to occur when the liquid crystal sealant is applied with a dispenser during liquid crystal cell manufacture.
  • the organic filler of the present invention is preferably spherical, more preferably spherical.
  • the particle diameter of the organic filler can be measured by microscopy, specifically by image analysis with an electron microscope.
  • the surface of the organic filler of the present invention is preferably smooth. If the surface is smooth, the specific surface area decreases, and the amount of the organic filler that can be added increases.
  • the organic filler preferably has a spherical shape or a smooth surface in the liquid crystal sealant, but does not have a smooth surface even if it is not spherical in the liquid crystal seal frame in the liquid crystal display panel. May be. This is because the organic filler in the liquid crystal sealant is deformed during the manufacturing process of the liquid crystal display panel.
  • the content of the organic filler in the liquid crystal sealing agent is 30 to 100 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b).
  • the amount is preferably 40 to 80 parts by mass, and more preferably 50 to 80 parts by mass.
  • the radical polymerization initiator contained in the liquid crystal sealant is a photo radical polymerization initiator for photocuring the acrylic resin (1a), the (meth) acryl-modified epoxy resin (1b), etc.
  • a thermal radical polymerization initiator for heat curing reaction is included.
  • photo radical polymerization initiators can be used. Examples include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, ⁇ -acyloxime ester compounds, Examples include phenyl glyoxylate compounds, benzyl compounds, azo compounds, diphenyl sulfide compounds, organic dye compounds, iron-phthalocyanine compounds, benzoin ether compounds, anthraquinone compounds, and the like.
  • alkylphenone compounds include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651); 2-methyl-2-morpholino (4-thiomethylphenyl) propane ⁇ -aminoalkylphenones such as -1-one (IRGACURE 907); ⁇ -hydroxyalkylphenones such as 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184) and the like.
  • the acylphosphine oxide compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the titanocene-based compound includes bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like.
  • Examples of the oxime ester compounds include 1,2-octanedione-1- [4- (phenylthio) -2- (0-benzoyloxime)] (IRGACURE OXE 01).
  • thermal radical polymerization initiator examples include organic peroxide compounds and azo compounds.
  • thermal radical polymerization initiator those having a lower limit of 10 hours half-life temperature of 80 ° C. and an upper limit of 150 ° C. are preferably used.
  • organic peroxide compound examples include ketone peroxide compounds such as methyl ethyl ketone peroxide, peroxyketal compounds such as 1,1-di (t-butyloxy) cyclohexane, and t-butyl peroxide.
  • Alkyl peroxyester compounds such as oxybivalate, diacyl peroxide compounds such as dilauroyl peroxide, peroxydicarbonate compounds such as (2-ethylhexyl) peroxydicarbonate, and t-butylperoxy
  • peroxycarbonate compounds such as isopropyl carbonate, dialkyl peroxide compounds such as di-t-butyl peroxide, hydroperoxide compounds such as t-amyl hydroperoxide, and the like.
  • the azo compound examples include 1,1′-azobis (2,4-cyclohexane) -1-carbonitrile, 2,2′-azobis [(2-imidazoline-2-el) propane] disulfate.
  • water-soluble azo compounds such as dihydrate
  • oil-soluble azo compounds such as 1-[(cyano-1-methyl) azo] formamide
  • polymer azo compounds examples include 1,1′-azobis (2,4-cyclohexane) -1-carbonitrile, 2,2′-azobis [(2-imidazoline-2-el) propane] disulfate.
  • water-soluble azo compounds such as dihydrate
  • oil-soluble azo compounds such as 1-[(cyano-1-methyl) azo] formamide, and polymer azo compounds.
  • the content of the (3) radical polymerization initiator in the liquid crystal sealant is 0.01 to 100 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b).
  • the amount is preferably 3.0 parts by mass, more preferably 0.1 to 2 parts by mass.
  • a liquid crystal sealant containing an epoxy curing agent is excellent in storage stability and thermosetting.
  • the epoxy curing agent may be a known one, but from the viewpoint of increasing the viscosity stability of the liquid crystal sealant and maintaining moisture resistance, the melting point is 50 ° C. or more and 250 ° C. or less, depending on the heat curing temperature.
  • a certain epoxy curing agent is preferable, an epoxy curing agent having a melting point of 100 ° C. or more and 200 ° C. or less is more preferable, and an epoxy curing agent having a melting point of 150 ° C. or more and 200 ° C. or less is further preferable.
  • Preferred examples of such an epoxy curing agent include organic acid dihydrazide compounds, imidazole compounds, dicyandiamide compounds, and polyamine compounds.
  • organic acid dihydrazide compounds include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point 120 ° C.), 7,11-octadecadien-1 , 18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.), and the like.
  • imidazole compounds include 2,4-diamino-6- [2′-ethylimidazolyl- (1 ′)]-ethyltriazine (melting point 215 to 225 ° C.) and 2-phenylimidazole (melting point 137 to 147 ° C. ) Etc. are included.
  • Examples of the dicyandiamide compound include dicyandiamide (melting point: 209 ° C.).
  • the polyamine-based compound is a thermal latent curing agent having a polymer structure obtained by reacting an amine and an epoxy.
  • ADEKA Hardener EH4339S softening point 120 to 130 ° C.
  • Adeka Hardener EH4357S softening point 73 to 83 ° C. manufactured by ADEKA Corporation is included. These may be used alone or in combination.
  • the content of the epoxy curing agent in the liquid crystal sealant is 3 to 30 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). Is preferred.
  • the liquid crystal sealing agent containing an epoxy curing agent can be a so-called one-part curable resin composition.
  • the one-component curable resin composition is excellent in workability because it is not necessary to mix the main agent and the curing agent when used.
  • the liquid crystal sealing agent of the present invention may further contain an inorganic filler.
  • an inorganic filler By adding the inorganic filler, it is possible to control the viscosity of the liquid crystal sealant, the strength of the cured product, and the linear expansion.
  • the inorganic filler is not particularly limited, but examples thereof include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, Inorganic fillers such as potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride are included, and silicon dioxide and talc are preferable.
  • the shape of the inorganic filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape.
  • the inorganic filler preferably has an average primary particle size of 1.5 ⁇ m or less and a specific surface area of 0.5 m 2 / g to 20 m 2 / g.
  • the average primary particle diameter of the inorganic filler can be measured by a laser diffraction method described in JIS Z8825-1.
  • the specific surface area can be measured by the BET method described in JIS Z8830.
  • the content of the inorganic filler in the liquid crystal sealant is 3 to 30 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). preferable.
  • Epoxy resin The liquid crystal sealant may contain an epoxy resin.
  • Epoxy resin has low solubility and diffusibility in liquid crystal, and not only good display characteristics of the obtained liquid crystal panel, but also can improve the moisture resistance of the cured product.
  • an epoxy resin shall not contain a (meth) acryl group.
  • Such an epoxy resin may be an aromatic epoxy resin having a weight average molecular weight of 500 to 10,000, preferably 1000 to 5,000.
  • the weight average molecular weight of the epoxy resin can be measured in the same manner as described above.
  • aromatic epoxy resins examples include aromatic diols represented by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and the like, and diols obtained by modifying them with ethylene glycol, propylene glycol, alkylene glycol, and epichlorohydrin.
  • Aromatic polyvalent glycidyl ether compounds obtained by the reaction with phenol; novolak resins derived from phenol or cresol and formaldehyde, polyphenols typified by polyalkenylphenol and copolymers thereof, and obtained by the reaction of epichlorohydrin
  • novolak-type polyvalent glycidyl ether compounds; glycidyl ether compounds of xylylene phenol resin, and the like are included.
  • the above aromatic epoxy resins include, among others, cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, triphenolmethane type epoxy resins, triphenolethane type epoxy resins, trisphenol type epoxy resins.
  • Resin, dicyclopentadiene type epoxy resin, diphenyl ether type epoxy resin, and biphenyl type epoxy resin are preferable. Furthermore, you may mix and use these.
  • the epoxy resin may be liquid or solid.
  • the softening point is preferably 40 ° C or higher and 150 ° C or lower.
  • the content of the epoxy resin is preferably 1 to 20 parts by mass and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. If the epoxy resin content is too high, the viscosity of the liquid crystal sealant will increase and the applicability may decrease. If the epoxy resin content is too low, the liquid crystal sealant will not have sufficient moisture resistance. It may become.
  • the liquid crystal sealant may be a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, a pigment, a dye, a plasticizer, if necessary.
  • An additive such as an antifoaming agent may further be included.
  • a spacer or the like may be blended in order to adjust the gap of the liquid crystal panel.
  • the viscosity of the liquid crystal sealant of the present invention at 25 ° C. and 2.5 rpm using an E-type viscometer is preferably 200 to 450 Pa ⁇ s, and more preferably 300 to 400 Pa ⁇ s.
  • the viscosity is in the above range, the liquid crystal sealing agent is likely to be deformed into a predetermined shape when the substrates of the liquid crystal cell are overlapped. Therefore, the gap width between the substrates of the liquid crystal cell can be controlled appropriately.
  • the thixotropy index (TI value) defined by the following formula of the liquid crystal sealant of the present invention is preferably 1.5 or less, and more preferably 1.3 or less.
  • TI value When the TI value is below a certain level, the viscosity at a low share is low. Thereby, when the liquid crystal sealant is agitated, it is difficult for air bubbles to be involved, and even if the air bubbles are entrained, the liquid crystal sealant is easily removed to the outside.
  • a liquid crystal sealing agent is applied with a dispenser, disconnection due to insufficient defoaming can be highly suppressed.
  • the liquid crystal sealant of the present invention is preferably used as a liquid crystal sealant for a liquid crystal dropping method.
  • the liquid crystal sealant may be cured by photocuring, thermosetting, or a combination of photocuring and thermosetting, but thermosetting is preferably used.
  • the liquid crystal display panel of the present invention is a display substrate, a counter substrate that is paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and a display substrate. And a liquid crystal layer filled in a space surrounded by a sealing member between the substrate and the substrate.
  • the cured product of the liquid crystal sealant of the present invention can be used as a seal member.
  • the display substrate and the counter substrate are both transparent substrates.
  • the material of the transparent substrate can be glass or plastic such as polycarbonate, polyethylene terephthalate, polyethersulfone and PMMA.
  • a matrix-like TFT, a color filter, a black matrix, or the like can be disposed on the surface of the display substrate or the counter substrate.
  • An alignment film is further formed on the surface of the display substrate or the counter substrate.
  • the alignment film includes a known organic alignment agent or inorganic alignment agent.
  • Such a liquid crystal display panel can be manufactured using the liquid crystal sealant of the present invention.
  • a liquid crystal dropping method and a liquid crystal injecting method as a manufacturing method of the liquid crystal display panel, but the liquid crystal dropping method is preferable as the manufacturing method of the liquid crystal display panel of the present invention.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is a1) a first step of forming a seal pattern of the liquid crystal sealant of the present invention on one substrate; a2) a second step of dropping liquid crystal in a region surrounded by the seal pattern of the substrate or a region of the other substrate facing the region surrounded by the seal pattern in an uncured state of the seal pattern; a3) a third step of superimposing one substrate and the other substrate via a seal pattern; a4) a fourth step of curing the seal pattern.
  • the state in which the seal pattern is uncured in step a2) means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. For this reason, in step a2), the seal pattern may be semi-cured by light irradiation or heating in order to suppress dissolution of the liquid crystal sealant in the liquid crystal.
  • One substrate and the other substrate are a display substrate or a counter substrate, respectively.
  • the organic filler contained in the liquid crystal sealant deforms reversibly or irreversibly. Deformation means being crushed or crouched. That is, the organic filler in the liquid crystal sealant is preferably spherical; however, the organic filler in the liquid crystal seal of the liquid crystal display panel does not need to be spherical and is crushed.
  • the liquid crystal sealant has a high organic filler content, and the liquid crystal seal in the liquid crystal display panel is crushed, so liquid crystal leaks (liquid crystal enters the liquid crystal seal or breaks through the liquid crystal seal and leaks. Is effectively suppressed. Moreover, the adhesive strength between the substrates increases.
  • the specific surface area of the organic filler contained in the liquid crystal sealant is small, the viscosity of the liquid crystal sealant is moderately low. Therefore, when the substrates of the liquid crystal cell are overlapped, it is easy to appropriately control the gap width between the substrates.
  • step a4) only curing by heating may be performed, but it is preferable to perform curing by heating (main curing) after curing by light irradiation (temporary curing). This is because the liquid crystal sealant can be instantly cured by temporary curing by light irradiation to suppress dissolution in the liquid crystal.
  • the photocuring time is, for example, about 10 minutes although it depends on the composition of the liquid crystal sealant.
  • the light irradiation energy may be energy that can cure an acrylic resin or a (meth) acryl-modified epoxy resin.
  • the light is preferably ultraviolet light.
  • the thermosetting temperature is 120 ° C., for example, although it depends on the composition of the liquid crystal sealant, and the thermosetting time is about 2 hours.
  • the liquid crystal display panel of the present invention provides a high-quality display device because liquid crystal leakage is suppressed and the gap width between the substrates is appropriately controlled.
  • Resin (1-1) Bifunctional acrylic monomer Bisphenol A type epoxy resin-modified diacrylate (3002A, manufactured by Kyoeisha Chemical Co., Ltd., hydrogen bonding functional group equivalent: 3.3 ⁇ 10 ⁇ 3
  • (1-2) Acrylic Modified Epoxy Resin In a 500 mL four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and cooling tube, 160 g of bisphenol F type epoxy resin (EXA-835LV DIC), 36 g of acrylic acid, tri Ethanolamine 0.2g was prepared and heated and stirred under a dry air stream at 110 ° C. for 5 hours to obtain an acrylic-modified epoxy resin. The obtained acrylic-modified epoxy resin was washed 12 times with ultrapure water. The hydrogen-bonding functional group equivalent of the acrylic-modified epoxy resin was 2.1 ⁇ 10 ⁇ 3 .
  • thermoplastic polymer particles (A) having a water content of 0.1% by mass or less. It was 80 degreeC when the softening point of the obtained thermoplastic polymer particle (A) was measured based on JISK2207 (ring ball method). It was 28 m ⁇ 2 > / g when the specific surface area of the thermoplastic polymer particle (A) was measured based on JIS Z8830. The average particle size was 0.18 ⁇ m.
  • the average particle size of the organic filler was measured by the following method. That is, the cured film of the liquid crystal sealant was observed at a magnification of 10,000 with a transmission electron microscope (TEM) (JEM-2200FS (manufactured by JEOL Ltd.)). The obtained image was analyzed, 50 organic fillers were selected, and their particle sizes were measured. The average value of the measured values obtained was defined as “average particle diameter of organic filler”.
  • TEM transmission electron microscope
  • the specific surface area of the organic filler was measured by the BET method from the amount of nitrogen adsorbed according to JIS Z8830. Specifically, the specific surface area of 100 organic fillers was measured by the above method, and the average value thereof was defined as “the average value of the specific surface area of the organic filler”.
  • Radical polymerization initiator (3-1) Thermal radical polymerization initiator: 1,1′-azobis (2,4-cyclohexane) -1-carbonitrile (V-40: manufactured by Wako Pure Chemical Industries, Ltd.) (3-2) Photoradical polymerization initiator: 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651, manufactured by BASF)
  • Epoxy resin (1) Epicron 850CRP (Bisphenol A type epoxy resin: manufactured by DIC)
  • Example 1 (1-1) bifunctional acrylic monomer 60 parts by mass, (2-1) filler 30 parts by mass, (3-1) thermal radical polymerization initiator 1 part by mass, (4-1) epoxy resin 5 parts by mass, (4 -2) A resin composition comprising 3 parts by mass of a thermal latent curing agent and (4-3) 1 part by mass of an additive is sufficiently mixed using a three-roll mill so as to form a uniform liquid, and a liquid crystal seal An agent was obtained.
  • Viscosity The viscosity of the obtained liquid crystal sealant was measured with an E-type viscometer at 25 ° C. and 2.5 rpm.
  • Adhesive strength After applying a circular seal pattern with a diameter of 1 mm on an alkali-free glass of 25 mm x 45 mm x 5 mm in thickness using a screen plate, and pasting the same pair of glasses together A test piece was prepared by fixing with a jig. Specifically, for Examples 2 and 3 and Comparative Example 2, a test piece fixed with a jig was irradiated with 100 mW / cm 2 of ultraviolet rays using an ultraviolet irradiation device (USHIO INC.), The liquid crystal sealant was cured. At this time, the illuminance energy of ultraviolet rays was set to 2000 mJ / cm 2 .
  • test piece for curing the liquid crystal sealant by light was heat-treated at 120 ° C. for 60 minutes using an oven to prepare a test piece for measuring adhesive strength.
  • test pieces fixed with a jig were heat-treated at 120 ° C. for 60 minutes using an oven, and the test pieces for measuring the adhesive strength were used.
  • the tensile rate was 2 mm / min, and the cured liquid crystal sealant was peeled off in a direction parallel to the glass bottom surface, thereby measuring the plane tensile strength.
  • the adhesive strength was evaluated in four stages according to the magnitude of the plane tensile strength. That is, when the tensile strength is 25 MPa or more, the adhesive strength is very good (A), and when the tensile strength is 20 MPa or more and less than 25 MPa, the adhesive strength is good (B), and the tensile strength is 10 MPa.
  • the case where the bond strength is less than 20 MPa is regarded as moderate (C)
  • the case where the tensile strength is less than 10 MPa is regarded as low and inferior (D).
  • a dispenser (Hitachi Plant Technology Co., Ltd.) was filled with the obtained composition, and a rectangular frame of 35 mm ⁇ 40 mm and a line width of 0.7 mm on an alkali-free glass substrate of 40 mm ⁇ 50 mm ⁇ thickness 0.7 mm.
  • the seal pattern was drawn with a cross-sectional area of 3500 ⁇ m 2 .
  • a liquid crystal material (MLC-11900-000: Merck) corresponding to the panel internal volume after bonding was precisely dropped into the seal pattern of the substrate using a dispenser (Hitachi Plant Technology Co., Ltd.).
  • a vacuum bonding apparatus Shin-Etsu Engineering Co., Ltd.
  • the glass substrate facing the above glass substrate was superposed under a reduced pressure of 10 Pa, and fixed under a load.
  • Example 2 For Examples 2 and 3 and Comparative Example 2, a test piece fixed with a jig was irradiated with 100 mW / cm 2 of ultraviolet rays using an ultraviolet irradiation device (USHIO INC.), And a liquid crystal sealant was applied. Cured. At this time, the illuminance energy of ultraviolet rays was set to 2000 mJ / cm 2 . After the liquid crystal sealant was cured by light, a liquid crystal display panel was produced by heat treatment at 120 ° C. for 60 minutes using an oven.
  • an ultraviolet irradiation device USHIO INC.
  • liquid crystal display panels were produced by heat-treating test pieces fixed with a jig at 120 ° C. for 60 minutes using an oven.
  • a cell gap inspection device manufactured by Otsuka Electronics Co., Ltd. was used to measure the in-plane distribution of the gap interval in the main seal in the sample. Then, the case where neither the maximum value nor the minimum value of the interval was within the range of 5 ⁇ m ⁇ 0.2 ⁇ m was evaluated as x, and the case where it was within the range of 5 ⁇ m ⁇ 0.2 ⁇ m was evaluated in two stages.
  • TI value Thixotropic index (TI value) Using an E-type viscometer, the viscosity ⁇ 1 of the liquid crystal sealant at room temperature (25 ° C.) and 0.5 rpm, and the viscosity ⁇ 2 of the liquid crystal sealant at 5 rpm were measured. These measured values were applied to the following formula (1) to obtain a TI value.
  • TI value (viscosity ⁇ 1 at 0.5 rpm (25 ° C.)) / (Viscosity ⁇ 2 at 5 rpm (25 ° C.)) (1)
  • composition and evaluation results of the liquid crystal sealant of each example are shown in Table 1; the composition and evaluation result of the liquid crystal sealant of each comparative example are shown in Table 2.
  • Examples 1 to 13 including the organic filler (2) having a specific surface area in the range of 0.4 to 1.5 m 2 / g have high adhesive strength and can control the gap width of the panel. You can see that Moreover, TI value is 1.5 or less, and defoaming property is also favorable.
  • Comparative Examples 1 to 7 include an organic filler (2) having a large specific surface area.
  • Comparative Examples 1, 2, 4, 6 and 7, 30 parts by mass of an organic filler having a large specific surface area was added in the same manner as in the Examples. Therefore, the viscosity of the liquid crystal sealant is increased, and the gap controllability of the panel is lowered. Moreover, TI value exceeds 1.5 and defoaming property is also falling. In Comparative Examples 1, 2, and 4, a decrease in adhesive strength was also observed. This is thought to be because the organic filler aggregated.
  • the content of the organic filler in Comparative Examples 3 and 5 is 15 parts by mass, which is half the content of the organic filler in Examples, and the adhesive strength is not sufficiently increased. This is probably because the stress due to curing shrinkage is not sufficiently relaxed.
  • the present invention can provide a high-quality liquid crystal display device in which liquid crystal leakage is suppressed and the panel gap width of the liquid crystal panel is appropriately controlled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

 The purpose of the present invention is to increase the stress relaxation properties and adhesive strength of a liquid crystal seal in a liquid crystal display device, and provide a high-quality liquid crystal display device. This liquid crystal sealing agent contains (1) at least one type of resin selected from acrylic resins (1a) and (meth)acrylic-modified epoxy resins (1b) having an epoxy group and a (meth)acrylic group in a molecule, (2) an organic filler, and (3) a radical polymerization initiator, the average value of the specific surface area of the (2) organic filler being 0.4 m2/g to 1.5 m2/g.

Description

液晶シール剤、および液晶表示パネルの製造方法Liquid crystal sealant and liquid crystal display panel manufacturing method
 本発明は、液晶シール剤、およびそれを用いた液晶表示パネルの製造方法に関する。 The present invention relates to a liquid crystal sealant and a method for producing a liquid crystal display panel using the same.
 近年、携帯電話やパーソナルコンピュータをはじめとする各種電子機器の画像表示パネルとして、液晶表示パネルが広く使用されている。液晶表示パネルは、表面に電極が設けられた2枚の透明基板の間に液晶材料(以下、単に「液晶」という)を挟み込み、その周りを液晶シール剤によってシールされた構造を有する画像表示パネルである。 In recent years, liquid crystal display panels have been widely used as image display panels for various electronic devices such as mobile phones and personal computers. The liquid crystal display panel has a structure in which a liquid crystal material (hereinafter simply referred to as “liquid crystal”) is sandwiched between two transparent substrates having electrodes provided on the surface, and the periphery thereof is sealed with a liquid crystal sealant. It is.
 上記液晶シール剤は、その使用量は僅かであるものの液晶と直接接触するため、液晶表示パネルの信頼性に大きな影響を与える。したがって、液晶表示パネルの高画質化を実現するため、現在、液晶シール剤には、高度かつ多様な特性が求められている。 The liquid crystal sealant has a small influence on the reliability of the liquid crystal display panel because it is in direct contact with the liquid crystal although the amount used is small. Therefore, in order to achieve high image quality of the liquid crystal display panel, liquid crystal sealants are currently required to have advanced and diverse characteristics.
 従来から、液晶表示パネルは、主に液晶注入工法によって製造されている。液晶注入工法は、一般に、(1)1枚の透明な基板の上に液晶シール剤を塗布して枠を形成し、(2)当該基板をプレキュア処理することによって液晶シール剤を乾燥させた後、他方の基板を貼り合わせ、(3)この2枚の基板を加熱圧締し、基板同士を接着させることにより基板の間に液晶シール剤の枠(セル)を形成し、(4)空のセル内に適量の液晶を注入した後、液晶の注入口を封止することにより液晶表示パネルを製造する方法である。 Conventionally, liquid crystal display panels are mainly manufactured by a liquid crystal injection method. In general, the liquid crystal injection method is (1) after applying a liquid crystal sealant on one transparent substrate to form a frame, and (2) drying the liquid crystal sealant by precuring the substrate. The other substrate is bonded, (3) the two substrates are heated and pressed, and the substrates are bonded together to form a frame (cell) of the liquid crystal sealant between the substrates, and (4) empty This is a method of manufacturing a liquid crystal display panel by injecting an appropriate amount of liquid crystal into a cell and then sealing the liquid crystal injection port.
 一方、最近では、生産性の向上が見込まれる液晶表示パネルの製造方法として液晶滴下工法が検討されている。液晶滴下工法は、(1)透明な基板の上に液晶シール剤を塗布して液晶を充填するための枠を形成し、(2)前記枠内に微小の液晶を滴下し、(3)液晶シール剤が未硬化状態のままで2枚の基板を高真空下で重ね合わせた後、(4)液晶シール剤を硬化させてパネルを製造する方法である。液晶滴下工法では、光および熱硬化性の液晶シール剤を使用してもよく、上記(3)の工程で、液晶シール剤に紫外線などの光を照射する仮硬化を行った後、加熱による後硬化を行ってもよい。 On the other hand, recently, a liquid crystal dropping method has been studied as a method for manufacturing a liquid crystal display panel, which is expected to improve productivity. In the liquid crystal dropping method, (1) a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal, (2) a minute liquid crystal is dropped into the frame, and (3) liquid crystal In this method, two substrates are stacked under high vacuum while the sealant is in an uncured state, and then (4) the liquid crystal sealant is cured to produce a panel. In the liquid crystal dropping method, a light and thermosetting liquid crystal sealant may be used. In the step (3), after the liquid crystal sealant is preliminarily cured by irradiating light such as ultraviolet rays, it is heated by heating. Curing may be performed.
 液晶滴下工法用の液晶シール剤としては、例えば液状エポキシ樹脂を用いることが提案されている(特許文献1)。液晶シール剤の接着性を高めたり、応力緩和性を向上させたりするために、ゴム状成分などを添加することや;液晶シール剤の耐熱性を高めるために、ガラス繊維やガラス粒子などの充填剤を添加することが提案されている(特許文献2)。また、コアシェル構造を有する樹脂微粒子を配合した液晶シール剤が提案されている(特許文献3)。また、液晶が液晶シール剤へ入り込むことを抑制するために、液晶シール剤に有機フィラーを添加することが提案されている(特許文献4)。 As a liquid crystal sealing agent for the liquid crystal dropping method, for example, it has been proposed to use a liquid epoxy resin (Patent Document 1). Add rubbery components to improve the adhesion of liquid crystal sealants and improve stress relaxation; and fill glass fibers and glass particles to increase the heat resistance of liquid crystal sealants It has been proposed to add an agent (Patent Document 2). In addition, a liquid crystal sealant containing resin fine particles having a core-shell structure has been proposed (Patent Document 3). In addition, in order to prevent liquid crystal from entering the liquid crystal sealant, it has been proposed to add an organic filler to the liquid crystal sealant (Patent Document 4).
特許第3955038号公報Japanese Patent No. 3955038 国際公開第2004/039885号公報International Publication No. 2004/039885 特開2010-277072号公報JP 2010-277072 A 特許第5531166号Japanese Patent No. 553166
 前述の通り、ゴム状成分や樹脂微粒子などの有機フィラーを配合した液晶シール剤が知られている。有機フィラーは液晶シール剤中で応力緩和剤としての役割を果たす。従って、有機フィラーが液晶シール剤の体積中で大きい割合を占めると、より応力緩和剤としての効果を期待できる。 As described above, liquid crystal sealing agents containing organic fillers such as rubbery components and resin fine particles are known. The organic filler plays a role as a stress relaxation agent in the liquid crystal sealant. Therefore, when the organic filler occupies a large proportion in the volume of the liquid crystal sealing agent, the effect as a stress relaxation agent can be expected.
 ところが、有機フィラーは液状成分(アクリル樹脂や(メタ)アクリル変性エポキシ樹脂など)となじみにくいため、有機フィラーを多量に配合して分散させることは困難であった。そのため、液晶シール剤から得られる液晶シールの応力緩和性が十分に高まらず、接着強度が十分でなかった。仮に、有機フィラーを多く配合できたとしても、液晶シール剤の粘度が高まりやすく、塗布性が損なわれやすかった。 However, since organic fillers are not compatible with liquid components (such as acrylic resins and (meth) acryl-modified epoxy resins), it is difficult to mix and disperse a large amount of organic fillers. Therefore, the stress relaxation property of the liquid crystal seal obtained from the liquid crystal sealant is not sufficiently increased, and the adhesive strength is not sufficient. Even if a large amount of organic filler could be blended, the viscosity of the liquid crystal sealant was likely to increase, and the applicability was liable to be impaired.
 そこで本発明は、比表面積の小さい有機フィラーを液晶シール剤に配合することで、多量の有機フィラーを液晶シール剤に分散させて、液晶シールの応力緩和性や接着強度を高める。 Therefore, in the present invention, by adding an organic filler having a small specific surface area to the liquid crystal sealant, a large amount of the organic filler is dispersed in the liquid crystal sealant, thereby improving the stress relaxation property and adhesive strength of the liquid crystal seal.
 本発明の第一は、以下に示す液晶シール剤および液晶表示パネルの製造方法に関する。 1st of this invention is related with the manufacturing method of the liquid-crystal sealing compound and liquid crystal display panel which are shown below.
 [1](1)アクリル樹脂(1a)、または1分子内にエポキシ基と(メタ)アクリル基とを有する(メタ)アクリル変性エポキシ樹脂(1b)から選ばれる少なくとも1種の樹脂と、(2)有機フィラーと、(3)ラジカル重合開始剤と、を含む液晶シール剤であって、前記(2)の有機フィラーの比表面積の平均値が0.4m2/g以上1.5m2/g以下である、液晶シール剤。 [1] (1) At least one resin selected from (1) acrylic resin (1a) or (meth) acryl-modified epoxy resin (1b) having an epoxy group and a (meth) acryl group in one molecule; ) An organic filler, and (3) a radical polymerization initiator, wherein the average specific surface area of the organic filler of (2) is 0.4 m 2 / g or more and 1.5 m 2 / g. Liquid crystal sealing agent which is the following.
 [2]前記(1)樹脂の1分子内の水素結合性官能基当量が1.0×10-4mol/g以上5.0×10-3mol/g以下である、[1]に記載の液晶シール剤。
 [3]前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ樹脂(1b)とを合わせた樹脂ユニット100質量部に対して、前記(2)有機フィラーの含有量は30~100質量部である、[1]または[2]に記載の液晶シール剤。
 [4]前記(2)有機フィラーは、軟化点が30~120℃である、シリコーン微粒子、アクリル微粒子、スチレン微粒子、ウレタン微粒子、アクリル・シリコーン複合微粒子、およびポリオレフィン微粒子からなる群より選ばれる一種類以上の微粒子である、[1]~[3]のいずれかに記載の液晶シール剤。
 [5]前記(2)有機フィラーの形状が球状である、[1]~[4]のいずれかに記載の液晶シール剤。
 [6]前記(1)の樹脂が、前記(メタ)アクリル変性エポキシ樹脂(1b)である、[1]~[5]のいずれかに記載の液晶シール剤。
 [7]前記(3)ラジカル重合開始剤を、前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ樹脂(1b)とを合わせた樹脂ユニット100質量部に対して0.01~3.0質量部含む、[1]~[6]のいずれかに記載の液晶シール剤。
 [8]前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ(1b)とを合わせた樹脂ユニット100質量部に対して、3~30質量部の(4)エポキシ硬化剤をさらに含む、[1]~[7]のいずれかに記載の液晶シール剤。
 [9]前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ(1b)とを合わせた樹脂ユニット100質量部に対して、3~30質量部の(5)無機フィラーをさらに含む、[1]~[8]のいずれかに記載の液晶シール剤。
[2] The hydrogen bonding functional group equivalent in one molecule of the (1) resin is 1.0 × 10 −4 mol / g or more and 5.0 × 10 −3 mol / g or less. Liquid crystal sealant.
[3] The content of the organic filler (2) is 30 to 100 parts by mass with respect to 100 parts by mass of the resin unit including the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). The liquid crystal sealing agent according to [1] or [2].
[4] The organic filler (2) is selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles, urethane fine particles, acrylic / silicone composite fine particles, and polyolefin fine particles having a softening point of 30 to 120 ° C. The liquid crystal sealant according to any one of [1] to [3], which is the fine particles described above.
[5] The liquid crystal sealant according to any one of [1] to [4], wherein the shape of the organic filler (2) is spherical.
[6] The liquid crystal sealant according to any one of [1] to [5], wherein the resin (1) is the (meth) acryl-modified epoxy resin (1b).
[7] The radical polymerization initiator (3) is added in an amount of 0.01 to 3.0 with respect to 100 parts by mass of the resin unit obtained by combining the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). The liquid crystal sealant according to any one of [1] to [6], which contains part by mass.
[8] Further comprising 3 to 30 parts by mass of (4) an epoxy curing agent with respect to 100 parts by mass of the resin unit in which the acrylic resin (1a) and the (meth) acryl-modified epoxy (1b) are combined. [1] The liquid crystal sealant according to any one of [7].
[9] The resin unit further includes 3 to 30 parts by mass of (5) an inorganic filler with respect to 100 parts by mass of the resin unit in which the acrylic resin (1a) and the (meth) acryl-modified epoxy (1b) are combined. ] The liquid crystal sealant according to any one of [8] to [8].
 [10]液晶滴下工法による液晶表示パネルの製造に用いられる、[1]に記載の液晶シール剤。
 [11]前記[1]に記載の液晶シール剤を用いて、一方の基板にシールパターンを形成する工程と、
 前記シールパターンが未硬化の状態において、前記一方の基板のシールパターン領域内、または前記一方の基板と対になる他方の基板に液晶を滴下する工程と、
 前記一方の基板と、前記他方の基板とを重ね合わせる工程と、
 前記シールパターンを硬化させる工程と、
 を含む液晶表示パネルの製造方法。
[10] The liquid crystal sealant according to [1], which is used for manufacturing a liquid crystal display panel by a liquid crystal dropping method.
[11] A step of forming a seal pattern on one substrate using the liquid crystal sealant according to [1],
In the uncured state of the seal pattern, dropping the liquid crystal in the seal pattern region of the one substrate or the other substrate paired with the one substrate;
Superimposing the one substrate and the other substrate;
Curing the seal pattern;
A method for manufacturing a liquid crystal display panel comprising:
 本発明の液晶シール剤は、液晶滴下工法による液晶表示パネルの製造に用いられることが好ましい。本発明の液晶シール剤は、液晶表示パネルの液晶シールの形成に用いられる。形成される液晶シールは、液晶のリークを効果的に抑制するとともに、その接着強度が高い。また、液晶セルの基板同士のギャップ幅も適正に調整できる。 The liquid crystal sealant of the present invention is preferably used for the production of a liquid crystal display panel by a liquid crystal dropping method. The liquid crystal sealant of the present invention is used for forming a liquid crystal seal of a liquid crystal display panel. The formed liquid crystal seal effectively suppresses liquid crystal leakage and has high adhesive strength. Also, the gap width between the substrates of the liquid crystal cell can be adjusted appropriately.
 1.液晶シール剤について
 本発明の液晶シール剤は、(1)少なくとも1種類の樹脂と、(2)有機フィラーと、(3)ラジカル重合開始剤とを含む。さらに、(4)エポキシ硬化剤や(5)無機フィラーなどを含みうる。
1. Liquid Crystal Sealant The liquid crystal sealant of the present invention includes (1) at least one kind of resin, (2) an organic filler, and (3) a radical polymerization initiator. Furthermore, (4) an epoxy curing agent and (5) an inorganic filler may be included.
 (1)樹脂成分について
 液晶シール剤は、少なくとも1種類の樹脂(1)を含むが、当該樹脂(1)は、アクリル樹脂(1a)、または1分子内にエポキシ基と(メタ)アクリル基とを有する(メタ)アクリル変性エポキシ樹脂(1b)から選ばれる少なくとも1種の樹脂を含む。好ましくは、当該樹脂(1)は、(メタ)アクリル変性エポキシ樹脂(1b)を含む。(メタ)アクリル変性エポキシ樹脂(1b)は、硬化物の耐湿性を向上させる。
(1) About resin component Although a liquid-crystal sealing compound contains at least 1 type of resin (1), the said resin (1) is an acrylic resin (1a), or an epoxy group and (meth) acryl group in 1 molecule. It contains at least one resin selected from (meth) acryl-modified epoxy resins (1b). Preferably, the resin (1) includes a (meth) acryl-modified epoxy resin (1b). The (meth) acryl-modified epoxy resin (1b) improves the moisture resistance of the cured product.
 アクリル樹脂(1a)は、1つ以上の(メタ)アクリル基を含む化合物をいう。ただし、アクリル樹脂(1a)はエポキシ基を含まない。 Acrylic resin (1a) refers to a compound containing one or more (meth) acrylic groups. However, the acrylic resin (1a) does not contain an epoxy group.
 アクリル樹脂の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレートおよび/またはジメタクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たトリオールのジまたはトリアクリレートおよび/またはジまたはトリメタクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレートおよび/またはトリメタクリレート;トリメチロールプロパントリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ペンタエリスリトールトリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;エチレンオキサイド変性リン酸アクリレートおよび/またはジメタクリレート;エチレンオキサイド変性アルキル化リン酸アクリレートおよび/またはジメタクリレート;ネオペンチルグルコール、トリメチロールプロパン、ペンタエリスリトールのオリゴアクリレートおよび/またはオリゴメタクリレート等が含まれる。 Examples of acrylic resins include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; 4 per mole of neopentyl glycol. Diacrylate and / or dimethacrylate of diol obtained by adding at least 1 mole of ethylene oxide or propylene oxide; Diacrylate and / or diacrylate of diol obtained by adding 2 mole of ethylene oxide or propylene oxide to 1 mole of bisphenol A Methacrylate: Diol of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A; tris (2-hydroxyethyl) isocyanurate triacrylate And / or trimethacrylate; trimethylolpropane triacrylate and / or trimethacrylate, or oligomer thereof; pentaerythritol triacrylate and / or trimethacrylate, or oligomer thereof; polyacrylate and / or polymethacrylate of dipentaerythritol; Loxyethyl) isocyanurate; caprolactone-modified tris (acryloxyethyl) isocyanate Caprolactone-modified tris (methacryloxyethyl) isocyanurate; alkyl-modified dipentaerythritol polyacrylate and / or polymethacrylate; caprolactone-modified dipentaerythritol polyacrylate and / or polymethacrylate; hydroxypivalate neopentyl glycol diacrylate and Caprolactone modified hydroxypivalate neopentyl glycol diacrylate and / or dimethacrylate; ethylene oxide modified phosphate acrylate and / or dimethacrylate; ethylene oxide modified alkylated phosphate acrylate and / or dimethacrylate; neopentyl glue Cole, trimethylolpropane, pentaerythritol Such as oligoacrylates and / or oligomethacrylates.
 液晶シール剤におけるアクリル樹脂(1a)の含有量は、求められる硬化性の程度にもよるが、液晶シール剤100質量部に対して、0~80質量部であることが好ましく、0~75質量部であることがより好ましく、0~60質量部であることがさらに好ましい。 The content of the acrylic resin (1a) in the liquid crystal sealant is preferably 0 to 80 parts by mass, and preferably 0 to 75 parts by mass with respect to 100 parts by mass of the liquid crystal sealant, although it depends on the required degree of curability. More preferably, it is 0 to 60 parts by mass.
 アクリル樹脂(1a)の重量平均分子量は、例えば310~500程度であってもよい。アクリル樹脂(1a)の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定できる。 The weight average molecular weight of the acrylic resin (1a) may be about 310 to 500, for example. The weight average molecular weight Mw of the acrylic resin (1a) can be measured, for example, by gel permeation chromatography (GPC).
 (メタ)アクリル変性エポキシ樹脂(1b)は、好ましくはエポキシ樹脂と(メタ)アクリル酸とを、例えば塩基性触媒の存在下で反応させることにより得られる(メタ)アクリル変性エポキシ樹脂である。(メタ)アクリルとは、メタアクリルまたはアクリルのいずれでもよい。 The (meth) acryl-modified epoxy resin (1b) is preferably a (meth) acryl-modified epoxy resin obtained by reacting an epoxy resin and (meth) acrylic acid, for example, in the presence of a basic catalyst. (Meth) acryl may be either methacryl or acrylic.
 原料となるエポキシ樹脂は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ樹脂であればよく、ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂等が含まれる。3官能や4官能などの多官能エポキシ樹脂を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ樹脂は、架橋密度が高く、密着強度が低下し易いことから、2官能エポキシ樹脂が好ましい。 The raw material epoxy resin may be a bifunctional or higher functional epoxy resin having two or more epoxy groups in the molecule, such as bisphenol A type, bisphenol F type, 2,2′-diallyl bisphenol A type, bisphenol AD type, And bisphenol type epoxy resins such as hydrogenated bisphenol type; novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type; biphenyl type epoxy resin; naphthalene type epoxy resin and the like. A (meth) acryl-modified epoxy resin obtained by (meth) acryl modification of a trifunctional or tetrafunctional polyfunctional epoxy resin is preferably a bifunctional epoxy resin because it has a high crosslinking density and is likely to have a low adhesive strength. .
 2官能エポキシ樹脂は、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、およびビスフェノール型エポキシ樹脂が好ましく、なかでもビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ樹脂が、製造効率という観点からは好ましい。ビスフェノール型エポキシ樹脂は、ビフェニルエーテル型等のエポキシ樹脂と比べて塗布性に優れる等の利点があるからである。 The bifunctional epoxy resin is preferably a biphenyl type epoxy resin, a naphthalene type epoxy resin, or a bisphenol type epoxy resin, and bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are particularly preferable from the viewpoint of production efficiency. This is because the bisphenol type epoxy resin has advantages such as excellent applicability as compared with the biphenyl ether type epoxy resin.
 原料となるエポキシ樹脂は、1種類であってもよいし、2種類以上の組み合わせであってもよい。また、原料となるエポキシ樹脂は、分子蒸留法、洗浄法等により高純度化されていることが好ましい。 The raw material epoxy resin may be one kind or a combination of two or more kinds. Moreover, it is preferable that the epoxy resin used as a raw material is highly purified by a molecular distillation method, a washing method, or the like.
 (メタ)アクリル変性エポキシ樹脂(1b)の重量平均分子量は、例えば310~500程度であってもよい。(メタ)アクリル変性エポキシ樹脂(1b)の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定できる。 The weight average molecular weight of the (meth) acryl-modified epoxy resin (1b) may be, for example, about 310 to 500. The weight average molecular weight Mw of the (meth) acryl-modified epoxy resin (1b) can be measured, for example, by gel permeation chromatography (GPC).
 液晶シール剤における(メタ)アクリル変性エポキシ樹脂(1b)の含有量は、液晶シール剤100質量部に対して、0~80質量部であることが好ましく、0~75質量部であることがより好ましく、0~60質量部であることがさらに好ましい。 The content of the (meth) acryl-modified epoxy resin (1b) in the liquid crystal sealant is preferably 0 to 80 parts by mass, more preferably 0 to 75 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. The amount is preferably 0 to 60 parts by mass.
 (メタ)アクリル変性エポキシ樹脂は、分子内にエポキシ基と(メタ)アクリル基とを有するため、光硬化性と熱硬化性とを併せ持つことができる。さらに、(メタ)アクリル変性エポキシ樹脂が、非結晶性のエポキシ樹脂であっても、エポキシ基の数に対する水酸基の数の割合が多いことから、液晶に対する溶解を高度に抑制できる。 Since the (meth) acryl-modified epoxy resin has an epoxy group and a (meth) acryl group in the molecule, it can have both photocuring properties and thermosetting properties. Furthermore, even if the (meth) acryl-modified epoxy resin is an amorphous epoxy resin, since the ratio of the number of hydroxyl groups to the number of epoxy groups is large, dissolution in liquid crystals can be highly suppressed.
 アクリル樹脂(1a)および(メタ)アクリル変性エポキシ樹脂(1b)は、水酸基、ウレタン結合、アミド基、カルボキシル基などの水素結合性官能基を有する。水素結合性官能基の例には、少なくともエポキシ樹脂のエポキシ基が(メタ)アクリル酸と反応することにより生成する水酸基が含まれるが、アクリル樹脂(1a)および(メタ)アクリル変性エポキシ樹脂(1b)の原料となる(メタ)アクリル酸やエポキシ樹脂に含まれる水酸基、ウレタン結合、カルボキシル基、およびアミド基等も含まれる。水素結合性官能基を有する樹脂は、疎水性である液晶材料との相溶性が低いため、液晶材料への溶解が抑制される。そのため、液晶滴下工法用に適した液晶シール剤が得られる。 The acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) have a hydrogen bonding functional group such as a hydroxyl group, a urethane bond, an amide group, or a carboxyl group. Examples of the hydrogen bondable functional group include at least a hydroxyl group generated by the reaction of the epoxy group of the epoxy resin with (meth) acrylic acid, but the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) The hydroxyl group, urethane bond, carboxyl group, amide group, and the like contained in (meth) acrylic acid and epoxy resin, which are raw materials of Since a resin having a hydrogen bonding functional group has low compatibility with a liquid crystal material that is hydrophobic, dissolution in the liquid crystal material is suppressed. Therefore, a liquid crystal sealing agent suitable for the liquid crystal dropping method can be obtained.
 アクリル樹脂(1a)および(メタ)アクリル変性エポキシ樹脂(1b)の水素結合性官能基当量は、1.0×10-4~5×10-3mol/gであることが好ましく、1.0×10-3~4.5×10-3mol/gであることがより好ましく、1.5×10-3~4.0×10-3mol/gであることがさらに好ましい。水素結合性官能基当量が1.0×10-4mol/g以上であると、1分子のアクリル樹脂(1a)および(メタ)アクリル変性エポキシ樹脂(1b)に水素結合性官能基の数が充分含まれるため、液晶への溶解の抑制効果が得られやすい。水素結合性官能基当量が5×10-3mol/g以下であると、アクリル樹脂(1a)および(メタ)アクリル変性エポキシ樹脂(1b)の硬化物が充分な耐湿性を有しやすいだけでなく、有機フィラーとのなじみも極端には損なわれにくい。 The hydrogen-bonding functional group equivalent of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) is preferably 1.0 × 10 −4 to 5 × 10 −3 mol / g, × more preferably 10 -3 ~ 4.5 × 10 -3 mol / g, more preferably from 1.5 × 10 -3 ~ 4.0 × 10 -3 mol / g. When the hydrogen bondable functional group equivalent is 1.0 × 10 −4 mol / g or more, the number of hydrogen bondable functional groups in one molecule of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) Since it is contained sufficiently, an effect of suppressing dissolution in liquid crystal is easily obtained. When the hydrogen bondable functional group equivalent is 5 × 10 −3 mol / g or less, the cured product of the acrylic resin (1a) and the (meth) acrylic-modified epoxy resin (1b) is likely to have sufficient moisture resistance. In addition, familiarity with the organic filler is extremely difficult to be impaired.
 アクリル樹脂(1a)および(メタ)アクリル変性エポキシ樹脂(1b)の水素結合性官能基当量(mol/g)は、「1分子のアクリル樹脂(1a)または(メタ)アクリル変性エポキシ樹脂(1b)に含まれる水素結合性官能基の数」/「アクリル樹脂(1a)または(メタ)アクリル変性エポキシ樹脂(1b)の重量平均分子量(Mw)」として表される。たとえば、水素結合性官能基として、(メタ)アクリル酸とエポキシ樹脂とを反応させて得られる水酸基のみを有する(メタ)アクリル変性エポキシ樹脂の水素結合性官能基当量は、反応させた(メタ)アクリル酸のモル数を、(メタ)アクリル変性エポキシ樹脂の重量平均分子量(Mw)で割ることにより求めることができる。 The hydrogen bondable functional group equivalent (mol / g) of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) is “one molecule acrylic resin (1a) or (meth) acryl-modified epoxy resin (1b)”. The number of hydrogen-bonding functional groups contained in “/ weight average molecular weight (Mw) of acrylic resin (1a) or (meth) acryl-modified epoxy resin (1b)”. For example, as a hydrogen bonding functional group, the hydrogen bonding functional group equivalent of a (meth) acryl-modified epoxy resin having only a hydroxyl group obtained by reacting (meth) acrylic acid with an epoxy resin reacted (meth). It can be determined by dividing the number of moles of acrylic acid by the weight average molecular weight (Mw) of the (meth) acryl-modified epoxy resin.
 (メタ)アクリル変性エポキシ樹脂の水素結合性官能基当量は、例えば、原料となるエポキシ樹脂に反応させる(メタ)アクリル酸のモル数を調整したり;原料となる(メタ)アクリル酸やエポキシ樹脂が有する水素結合性官能基の量を調整したりすることなどによって制御できる。 The hydrogen bondable functional group equivalent of the (meth) acryl-modified epoxy resin can be adjusted, for example, by adjusting the number of moles of (meth) acrylic acid to be reacted with the raw material epoxy resin; the raw material (meth) acrylic acid or epoxy resin It can be controlled by adjusting the amount of the hydrogen-bonding functional group possessed by.
 原料としてのエポキシ樹脂と(メタ)アクリル酸とを反応させて得られる、(メタ)アクリル変性エポキシ樹脂の水酸基価当量は、3×10-3~5×10-3mol/gであることが好ましい。 The hydroxyl value equivalent of the (meth) acryl-modified epoxy resin obtained by reacting the epoxy resin as a raw material with (meth) acrylic acid is 3 × 10 −3 to 5 × 10 −3 mol / g. preferable.
 液晶シール剤100質量部に対する、アクリル樹脂(1a)と(メタ)アクリル変性エポキシ樹脂(1b)との合計含有量は、10~75質量部であることが好ましく、10~70質量部であることがより好ましく、40~60質量部であることがさらに好ましい。 The total content of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) with respect to 100 parts by mass of the liquid crystal sealant is preferably 10 to 75 parts by mass, and preferably 10 to 70 parts by mass. Is more preferably 40 to 60 parts by mass.
 (2)有機フィラーについて
 液晶シール剤に含まれる有機フィラーは、特に制限されないが、熱硬化温度近傍で融解することによる液晶シール剤の液だれを防止する観点から、融点または軟化点が30~120℃であるものが好ましい。本発明の液晶表示パネルにおいて、液晶セルの基板同士の間のギャップに設けられた液晶シール剤は、有機フィラーが可逆的または不可逆的に変形する(押しつぶされるか、またはひしゃげている)ことで、リークを防止する。有機フィラーの軟化点を30~120℃とすることで、有機フィラーの変形を容易にして、液晶シール剤のシール能を高める。
(2) Organic Filler The organic filler contained in the liquid crystal sealant is not particularly limited, but has a melting point or softening point of 30 to 120 from the viewpoint of preventing dripping of the liquid crystal sealant due to melting near the thermosetting temperature. Those having a temperature of ° C are preferred. In the liquid crystal display panel of the present invention, the liquid crystal sealant provided in the gap between the substrates of the liquid crystal cell is reversibly or irreversibly deformed (crushed or crushed), Prevent leaks. By setting the softening point of the organic filler to 30 to 120 ° C., the deformation of the organic filler is facilitated and the sealing ability of the liquid crystal sealing agent is enhanced.
 有機フィラーの例には、シリコーン微粒子、アクリル微粒子、スチレン・ジビニルベンゼン共重合体等のスチレン微粒子、ウレタン微粒子、アクリル・シリコーン複合微粒子、およびポリオレフィン微粒子からなる群より選ばれる微粒子などが含まれる。 Examples of the organic filler include fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles such as styrene / divinylbenzene copolymer, urethane fine particles, acrylic / silicone composite fine particles, and polyolefin fine particles.
 有機フィラーの比表面積の平均値は0.4m/g以上1.5m/g以下であることが好ましく、0.5m/g以上1.0m/g以下であることがより好ましい。比表面積は、JIS Z8830に準じて測定される。比表面積が小さい(1.5m/g以下である)有機フィラーは、液晶シール剤に多量に添加されても、液晶シール剤の粘度を高めにくく、かつ有機フィラー同士の凝集物を形成しにくい。有機フィラーの比表面積は、有機フィラーの粒子径だけでなく、粒子表面の粗さにも大きく依存しうる。 The average value of the specific surface area of the organic filler is preferably 0.4 m 2 / g or more and 1.5 m 2 / g or less, and more preferably 0.5 m 2 / g or more and 1.0 m 2 / g or less. The specific surface area is measured according to JIS Z8830. An organic filler having a small specific surface area (1.5 m 2 / g or less) hardly increases the viscosity of the liquid crystal sealant and does not easily form an aggregate of organic fillers even when added in a large amount to the liquid crystal sealant. . The specific surface area of the organic filler can greatly depend not only on the particle diameter of the organic filler but also on the roughness of the particle surface.
 つまり有機フィラーは、液晶シール剤に含まれる樹脂成分となじみにくい。そのため、比表面積が大きい(1.5m/g超である)有機フィラーを、凝集を生じさせることなく液晶シール剤に配合可能な量は低くなる。有機フィラーの含有量が少ないと、接着強度が低下する。液晶シール剤の硬化収縮による応力が、有機フィラーによって十分に緩和されないためである。 That is, the organic filler is not easily compatible with the resin component contained in the liquid crystal sealant. Therefore, the amount of the organic filler having a large specific surface area (greater than 1.5 m 2 / g) that can be blended in the liquid crystal sealant without causing aggregation becomes low. When there is little content of an organic filler, adhesive strength will fall. This is because the stress caused by curing shrinkage of the liquid crystal sealant is not sufficiently relaxed by the organic filler.
 一方、液晶シール剤において有機フィラーが凝集していると、有機フィラーが液晶シール剤に均一に分布することができない。そのため、液晶シール剤の硬化収縮による応力が、有機フィラーによって十分に緩和されず、接着強度が低下する。 On the other hand, if the organic filler is aggregated in the liquid crystal sealing agent, the organic filler cannot be uniformly distributed in the liquid crystal sealing agent. Therefore, the stress due to curing shrinkage of the liquid crystal sealant is not sufficiently relaxed by the organic filler, and the adhesive strength is reduced.
 また、仮に比表面積が大きい(1.5m/g超である)有機フィラーを液晶シール剤に配合できたとしても、液晶シール剤の粘度が高まりやすい。液晶シール剤の粘度が高すぎると、液晶セルの基板と基板とを重ね合わせたときに、液晶シール剤が所定の形状に変形しにくくなる。そのため、液晶セルの基板と基板とのギャップ幅を適正に制御しにくくなる。 Even if an organic filler having a large specific surface area (over 1.5 m 2 / g) can be blended in the liquid crystal sealant, the viscosity of the liquid crystal sealant tends to increase. When the viscosity of the liquid crystal sealant is too high, the liquid crystal sealant is unlikely to be deformed into a predetermined shape when the liquid crystal cell substrate and the substrate are overlapped. This makes it difficult to properly control the gap width between the substrates of the liquid crystal cell.
 有機フィラーの比表面積を一定の範囲内にすることで、液晶シール剤における有機フィラーの含有率を高めて、その結果、液晶セルの基板同士のギャップ幅を適正に制御しつつ、液晶シール剤(液晶シール剤の硬化物)の接着強度を高める。本発明の液晶シール剤は、液晶セルの基板同士のギャップ幅が1μm~5μmであっても、基板同士のギャップ幅を適正に制御することができる。 By making the specific surface area of the organic filler within a certain range, the content of the organic filler in the liquid crystal sealing agent is increased, and as a result, while properly controlling the gap width between the substrates of the liquid crystal cell, the liquid crystal sealing agent ( Increasing the adhesive strength of the cured liquid crystal sealant). The liquid crystal sealant of the present invention can appropriately control the gap width between the substrates even if the gap width between the substrates of the liquid crystal cell is 1 μm to 5 μm.
 さらに、有機フィラーの比表面積の平均値を上記範囲とすることで、液晶シール剤に含まれる樹脂成分と有機フィラーとの接触面積を小さくすることができ、チクソトロピーインデックス(TI値)を低くしうる。TI値が低いと、低シェアでの粘度が低くなる。それにより、液晶シール剤を撹拌した際に、多くの気泡を巻き込むことが少なく、また一旦含有した気泡も外に抜けやすい傾向にある。つまり、液晶シール剤中に含まれる気泡が少ないと、液晶セル製造時にディスペンサーで液晶シール剤を塗布する際、脱泡不足に起因する断線を起きにくくしうる。 Furthermore, by making the average value of the specific surface area of the organic filler within the above range, the contact area between the resin component contained in the liquid crystal sealant and the organic filler can be reduced, and the thixotropic index (TI value) can be lowered. . When the TI value is low, the viscosity at a low share is low. As a result, when the liquid crystal sealant is stirred, many bubbles are less likely to be involved, and the bubbles once contained tend to easily escape to the outside. That is, if there are few bubbles contained in the liquid crystal sealant, disconnection due to insufficient defoaming may be less likely to occur when the liquid crystal sealant is applied with a dispenser during liquid crystal cell manufacture.
 本発明の有機フィラーは、球状であることが好ましく、より好ましくは真球状である。球状であるとは、1個の粒子の直径の最大値(a)に対する最小値(b)の比b/a=0.9~1.0であることをいう。有機フィラーの粒子径は、顕微鏡法、具体的には電子顕微鏡の画像解析により測定することができる。 The organic filler of the present invention is preferably spherical, more preferably spherical. Spherical shape means that the ratio of the minimum value (b) to the maximum value (a) of the diameter of one particle is b / a = 0.9 to 1.0. The particle diameter of the organic filler can be measured by microscopy, specifically by image analysis with an electron microscope.
 また、本発明の有機フィラーの表面は平滑であることが好ましい。表面が平滑であると比表面積が低下して、有機フィラーを配合可能な量が増加する。有機フィラーは、液晶シール剤においては球状であったり、平滑な表面を有したりすることが好ましいが、液晶表示パネルにおける液晶シール枠においては球状でなくても、平滑な表面を有していなくてもよい。液晶表示パネルの製造過程において、液晶シール剤中の有機フィラーが変形するからである。 Also, the surface of the organic filler of the present invention is preferably smooth. If the surface is smooth, the specific surface area decreases, and the amount of the organic filler that can be added increases. The organic filler preferably has a spherical shape or a smooth surface in the liquid crystal sealant, but does not have a smooth surface even if it is not spherical in the liquid crystal seal frame in the liquid crystal display panel. May be. This is because the organic filler in the liquid crystal sealant is deformed during the manufacturing process of the liquid crystal display panel.
 液晶シール剤における有機フィラーの含有量は、アクリル樹脂(1a)と(メタ)アクリル変性エポキシ樹脂(1b)との合計である樹脂ユニット100質量部に対して、30~100質量部であることが好ましく、40~80質量部であることがより好ましく、50~80質量部であることがさらに好ましい。 The content of the organic filler in the liquid crystal sealing agent is 30 to 100 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). The amount is preferably 40 to 80 parts by mass, and more preferably 50 to 80 parts by mass.
 (3)ラジカル重合開始剤について
 液晶シール剤に含まれるラジカル重合開始剤は、アクリル樹脂(1a)や(メタ)アクリル変性エポキシ樹脂(1b)などを光硬化反応させるための光ラジカル重合開始剤や熱硬化反応させるための熱ラジカル重合開始剤を含む。
(3) Radical polymerization initiator The radical polymerization initiator contained in the liquid crystal sealant is a photo radical polymerization initiator for photocuring the acrylic resin (1a), the (meth) acryl-modified epoxy resin (1b), etc. A thermal radical polymerization initiator for heat curing reaction is included.
 光ラジカル重合開始剤としては公知のものが使用できる。この例には、アルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾイン系化合物、アセトフェノン系化合物、ベンゾフェノン系化合物、チオキサトン系化合物、α-アシロキシムエステル系化合物、フェニルグリオキシレート系化合物、ベンジル系化合物、アゾ系化合物、ジフェニルスルフィド系化合物、有機色素系化合物、鉄-フタロシアニン系化合物、ベンゾインエーテル系化合物、アントラキノン系化合物等が含まれる。 Known photo radical polymerization initiators can be used. Examples include alkylphenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin compounds, acetophenone compounds, benzophenone compounds, thioxanthone compounds, α-acyloxime ester compounds, Examples include phenyl glyoxylate compounds, benzyl compounds, azo compounds, diphenyl sulfide compounds, organic dye compounds, iron-phthalocyanine compounds, benzoin ether compounds, anthraquinone compounds, and the like.
 アルキルフェノン系化合物の例には、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE 651)等のベンジルジメチルケタール;2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(IRGACURE 907)等のα-アミノアルキルフェノン;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IRGACURE 184)等のα-ヒドロキシアルキルフェノンなどが含まれる。アシルフォスフィンオキサイド系化合物の例には、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が含まれる。チタノセン系化合物には、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等が含まれる。オキシムエステル化合物の例には、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(0-ベンゾイルオキシム)](IRGACURE OXE 01)などが含まれる。 Examples of alkylphenone compounds include benzyl dimethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651); 2-methyl-2-morpholino (4-thiomethylphenyl) propane Α-aminoalkylphenones such as -1-one (IRGACURE 907); α-hydroxyalkylphenones such as 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184) and the like. Examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. The titanocene-based compound includes bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like. Examples of the oxime ester compounds include 1,2-octanedione-1- [4- (phenylthio) -2- (0-benzoyloxime)] (IRGACURE OXE 01).
 熱ラジカル重合開始剤の例には、有機過酸化物系化合物やアゾ化合物などが含まれる。熱ラジカル重合開始剤としては、10時間半減期温度の下限が80℃、上限が150℃のものが好適に用いられる。 Examples of the thermal radical polymerization initiator include organic peroxide compounds and azo compounds. As the thermal radical polymerization initiator, those having a lower limit of 10 hours half-life temperature of 80 ° C. and an upper limit of 150 ° C. are preferably used.
 有機過酸化物系化合物は、具体的には例えば、メチルエチルケトンパーオキサイド等のケトンパーオキサイド系化合物や、1,1-ジ(t-ブチルオキシ)シクロヘキサン等のパーオキシケタール系化合物や、t-ブチルパーオキシビバレート等のアルキルパーオキシエステル系化合物や、ジラウロイルパーオキサイド等のジアシルパーオキサイド系化合物や、(2-エチルヘキシル)パーオキシジカーボネイト等のパーオキシジカーボネイト系化合物や、t-ブチルパーオキシイソプロピルカーボネイト等のパーオキシカーボネイト系化合物や、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド系化合物や、t-アミルハイドロパーオキサイド等のハイドロパーオキサイド系化合物等が含まれる。 Specific examples of the organic peroxide compound include ketone peroxide compounds such as methyl ethyl ketone peroxide, peroxyketal compounds such as 1,1-di (t-butyloxy) cyclohexane, and t-butyl peroxide. Alkyl peroxyester compounds such as oxybivalate, diacyl peroxide compounds such as dilauroyl peroxide, peroxydicarbonate compounds such as (2-ethylhexyl) peroxydicarbonate, and t-butylperoxy Examples thereof include peroxycarbonate compounds such as isopropyl carbonate, dialkyl peroxide compounds such as di-t-butyl peroxide, hydroperoxide compounds such as t-amyl hydroperoxide, and the like.
 アゾ化合物は、具体的には例えば、1,1'-アゾビス(2,4-シクロヘキサン)-1-カルボニトリル、2,2'-アゾビス[(2-イミダゾリン-2-エル)プロパン]ジサルフェイトジハイドレイト等の水溶性アゾ化合物や、1-[(シアノ-1-メチル)アゾ]ホルママイド等の油溶性アゾ化合物や、高分子アゾ化合物等が挙げられる。 Specific examples of the azo compound include 1,1′-azobis (2,4-cyclohexane) -1-carbonitrile, 2,2′-azobis [(2-imidazoline-2-el) propane] disulfate. Examples thereof include water-soluble azo compounds such as dihydrate, oil-soluble azo compounds such as 1-[(cyano-1-methyl) azo] formamide, and polymer azo compounds.
 液晶シール剤における(3)ラジカル重合開始剤の含有量は、アクリル樹脂(1a)と(メタ)アクリル変性エポキシ樹脂(1b)との合計である樹脂ユニット100質量部に対して、0.01~3.0質量部であることが好ましく、0.1~2質量部であるとより好ましい。含有量を0.01質量部以上とすることにより液晶シール剤の硬化性が良好となり、3.0質量部以下とすることにより、基板への塗布時の安定性が良好となる。 The content of the (3) radical polymerization initiator in the liquid crystal sealant is 0.01 to 100 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). The amount is preferably 3.0 parts by mass, more preferably 0.1 to 2 parts by mass. By setting the content to 0.01 parts by mass or more, the curability of the liquid crystal sealant is improved, and by setting the content to 3.0 parts by mass or less, the stability when applied to the substrate is improved.
 (4)エポキシ硬化剤について
 エポキシ硬化剤は、エポキシ樹脂に混合されていても、樹脂を通常保存する状態(室温、可視光線下等)ではエポキシ樹脂を硬化させないが、熱を与えられるとエポキシ樹脂を硬化させる硬化剤である。エポキシ硬化剤を含有する液晶シール剤は、保存安定性に優れ、かつ熱硬化性に優れる。エポキシ硬化剤は、公知のものであってよいが、液晶シール剤の粘度安定性を高めるとともに、耐湿性を維持する観点から、熱硬化温度にもよるが、融点が50℃以上250℃以下であるエポキシ硬化剤が好ましく、融点が100℃以上200℃以下であるエポキシ硬化剤がより好ましく、融点が150℃以上200℃以下であるエポキシ硬化剤がさらに好ましい。
(4) About epoxy curing agent Even if epoxy curing agent is mixed with epoxy resin, it does not cure epoxy resin under normal storage conditions (room temperature, under visible light, etc.), but epoxy resin when heated. Is a curing agent that cures. A liquid crystal sealant containing an epoxy curing agent is excellent in storage stability and thermosetting. The epoxy curing agent may be a known one, but from the viewpoint of increasing the viscosity stability of the liquid crystal sealant and maintaining moisture resistance, the melting point is 50 ° C. or more and 250 ° C. or less, depending on the heat curing temperature. A certain epoxy curing agent is preferable, an epoxy curing agent having a melting point of 100 ° C. or more and 200 ° C. or less is more preferable, and an epoxy curing agent having a melting point of 150 ° C. or more and 200 ° C. or less is further preferable.
 そのようなエポキシ硬化剤の好ましい例には、有機酸ジヒドラジド系化合物、イミダゾール系化合物、ジシアンジアミド化合物、およびポリアミン系化合物等が含まれる。  Preferred examples of such an epoxy curing agent include organic acid dihydrazide compounds, imidazole compounds, dicyandiamide compounds, and polyamine compounds.
 有機酸ジヒドラジド系化合物の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)などが含まれる。イミダゾール系化合物の例には、2,4-ジアミノ-6-[2'-エチルイミダゾリル-(1')]-エチルトリアジン(融点215~225℃)、および2-フェニルイミダゾール(融点137~147℃)などが含まれる。ジシアンジアミド系化合物の例には、ジシアンジアミド(融点209℃)等が含まれる。ポリアミン系化合物は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在硬化剤であり、その具体例には、(株)ADEKA製アデカハードナーEH4339S(軟化点120~130℃)、および(株)ADEKA製アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。これらは単独で用いてもよいし、複数を組み合わせて用いてもよい。 Examples of organic acid dihydrazide compounds include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point 120 ° C.), 7,11-octadecadien-1 , 18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.), and the like. Examples of imidazole compounds include 2,4-diamino-6- [2′-ethylimidazolyl- (1 ′)]-ethyltriazine (melting point 215 to 225 ° C.) and 2-phenylimidazole (melting point 137 to 147 ° C. ) Etc. are included. Examples of the dicyandiamide compound include dicyandiamide (melting point: 209 ° C.). The polyamine-based compound is a thermal latent curing agent having a polymer structure obtained by reacting an amine and an epoxy. Specific examples thereof include ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) manufactured by ADEKA Corporation, and Adeka Hardener EH4357S (softening point 73 to 83 ° C.) manufactured by ADEKA Corporation is included. These may be used alone or in combination.
 液晶シール剤におけるエポキシ硬化剤の含有量は、アクリル樹脂(1a)と(メタ)アクリル変性エポキシ樹脂(1b)との合計である樹脂ユニット100質量部に対して、3~30質量部であることが好ましい。エポキシ硬化剤を含む液晶シール剤は、いわゆる一液硬化性樹脂組成物となりうる。一液硬化性樹脂組成物は使用に際して主剤と硬化剤を混合する必要がないので作業性に優れる。 The content of the epoxy curing agent in the liquid crystal sealant is 3 to 30 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). Is preferred. The liquid crystal sealing agent containing an epoxy curing agent can be a so-called one-part curable resin composition. The one-component curable resin composition is excellent in workability because it is not necessary to mix the main agent and the curing agent when used.
 (5)無機フィラー
 本発明の液晶シール剤は、さらに無機フィラーを含んでいてもよい。無機フィラーの添加により、液晶シール剤の粘度、硬化物の強度、および線膨張性の制御等を行うことができる。 
(5) Inorganic filler The liquid crystal sealing agent of the present invention may further contain an inorganic filler. By adding the inorganic filler, it is possible to control the viscosity of the liquid crystal sealant, the strength of the cured product, and the linear expansion.
 無機フィラーは、特に制限されないが、その例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等の無機フィラーが含まれ、好ましくは二酸化ケイ素、タルクである。 The inorganic filler is not particularly limited, but examples thereof include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, Inorganic fillers such as potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride are included, and silicon dioxide and talc are preferable.
 無機フィラーの形状は、特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。無機フィラーは平均一次粒子径が1.5μm以下であることが好ましく、かつその比表面積が0.5m/g~20m/gであることが好ましい。無機フィラーの平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法で測定できる。また、比表面積測定は、JIS Z8830に記載のBET法により測定できる。 The shape of the inorganic filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape. The inorganic filler preferably has an average primary particle size of 1.5 μm or less and a specific surface area of 0.5 m 2 / g to 20 m 2 / g. The average primary particle diameter of the inorganic filler can be measured by a laser diffraction method described in JIS Z8825-1. The specific surface area can be measured by the BET method described in JIS Z8830.
 液晶シール剤における無機フィラーの含有量は、アクリル樹脂(1a)と(メタ)アクリル変性エポキシ樹脂(1b)との合計である樹脂ユニット100質量部に対して、3~30質量部であることが好ましい。 The content of the inorganic filler in the liquid crystal sealant is 3 to 30 parts by mass with respect to 100 parts by mass of the resin unit that is the total of the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). preferable.
 (6)エポキシ樹脂
 液晶シール剤は、エポキシ樹脂を含有していてもよい。エポキシ樹脂は、液晶に対する溶解性、拡散性が低く、得られる液晶パネルの表示特性が良好であるだけでなく、硬化物の耐湿性を高めうる。ただし、エポキシ樹脂は、(メタ)アクリル基を含まないものとする。
(6) Epoxy resin The liquid crystal sealant may contain an epoxy resin. Epoxy resin has low solubility and diffusibility in liquid crystal, and not only good display characteristics of the obtained liquid crystal panel, but also can improve the moisture resistance of the cured product. However, an epoxy resin shall not contain a (meth) acryl group.
 このようなエポキシ樹脂は、重量平均分子量が500~10000、好ましくは1000~5000の芳香族エポキシ樹脂でありうる。エポキシ樹脂の重量平均分子量は、前述と同様に測定できる。 Such an epoxy resin may be an aromatic epoxy resin having a weight average molecular weight of 500 to 10,000, preferably 1000 to 5,000. The weight average molecular weight of the epoxy resin can be measured in the same manner as described above.
 このような芳香族エポキシ樹脂の例には、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類およびそれらをエチレングリコール、プロピレングリコール、アルキレングリコール変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物;フェノールまたはクレゾールとホルムアルデヒドとから誘導されたノボラック樹脂、ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類等が含まれる。  Examples of such aromatic epoxy resins include aromatic diols represented by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and the like, and diols obtained by modifying them with ethylene glycol, propylene glycol, alkylene glycol, and epichlorohydrin. Aromatic polyvalent glycidyl ether compounds obtained by the reaction with phenol; novolak resins derived from phenol or cresol and formaldehyde, polyphenols typified by polyalkenylphenol and copolymers thereof, and obtained by the reaction of epichlorohydrin In addition, novolak-type polyvalent glycidyl ether compounds; glycidyl ether compounds of xylylene phenol resin, and the like are included.
 上記芳香族エポキシ樹脂は、中でもクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールエタン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。さらにこれらを混合して用いてもよい。 The above aromatic epoxy resins include, among others, cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, triphenolmethane type epoxy resins, triphenolethane type epoxy resins, trisphenol type epoxy resins. Resin, dicyclopentadiene type epoxy resin, diphenyl ether type epoxy resin, and biphenyl type epoxy resin are preferable. Furthermore, you may mix and use these.
 エポキシ樹脂は、液状であってもよく、固形であってもよい。固形エポキシ樹脂の場合、軟化点が40℃以上150℃以下であることが好ましい。 The epoxy resin may be liquid or solid. In the case of a solid epoxy resin, the softening point is preferably 40 ° C or higher and 150 ° C or lower.
 エポキシ樹脂の含有量は、液晶シール剤100質量部に対して、1~20質量部であることが好ましく、3~10質量部であることがより好ましい。エポキシ樹脂の含有量が多すぎると、液晶シール剤の粘度が高くなり、塗布性が低下することがあり、エポキシ樹脂の含有量が少なすぎると、液晶シール剤の硬化物の耐湿性が不十分となることがある。 The content of the epoxy resin is preferably 1 to 20 parts by mass and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. If the epoxy resin content is too high, the viscosity of the liquid crystal sealant will increase and the applicability may decrease. If the epoxy resin content is too low, the liquid crystal sealant will not have sufficient moisture resistance. It may become.
 (7)その他の成分について
 液晶シール剤は、必要に応じて熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等の添加剤をさらに含んでいてもよい。また、液晶パネルのギャップを調整するためにスペーサー等を配合してもよい。 
(7) Other components The liquid crystal sealant may be a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, a pigment, a dye, a plasticizer, if necessary. An additive such as an antifoaming agent may further be included. Further, a spacer or the like may be blended in order to adjust the gap of the liquid crystal panel.
 本発明の液晶シール剤のE型粘度計を用いた25℃、2.5rpmでの粘度は、200~450Pa・sであることが好ましく、300~400Pa・sであることがより好ましい。粘度が上記範囲にあると、液晶セルの基板と基板とを重ね合わせたときに、液晶シール剤が所定の形状に変形しやすい。そのため、液晶セルの基板と基板とのギャップ幅を適正に制御できる。 The viscosity of the liquid crystal sealant of the present invention at 25 ° C. and 2.5 rpm using an E-type viscometer is preferably 200 to 450 Pa · s, and more preferably 300 to 400 Pa · s. When the viscosity is in the above range, the liquid crystal sealing agent is likely to be deformed into a predetermined shape when the substrates of the liquid crystal cell are overlapped. Therefore, the gap width between the substrates of the liquid crystal cell can be controlled appropriately.
 本発明の液晶シール剤の下記式で定義されるチクソトロピーインデックス(TI値)は、1.5以下であることが好ましく、1.3以下であることがより好ましい。TI値が一定以下であると、低シェアでの粘度が低くなる。それにより、液晶シール剤を撹拌した際に、気泡を巻き込みにくく、仮に気泡が巻き込まれても外部に抜けやすい。そのような液晶シール剤をディスペンサーで塗布する際、脱泡不足による断線を高度に抑制しうる。 The thixotropy index (TI value) defined by the following formula of the liquid crystal sealant of the present invention is preferably 1.5 or less, and more preferably 1.3 or less. When the TI value is below a certain level, the viscosity at a low share is low. Thereby, when the liquid crystal sealant is agitated, it is difficult for air bubbles to be involved, and even if the air bubbles are entrained, the liquid crystal sealant is easily removed to the outside. When such a liquid crystal sealing agent is applied with a dispenser, disconnection due to insufficient defoaming can be highly suppressed.
 TI値は、E型粘度計を用い、室温(25℃)、0.5rpmにおける液晶シール剤の粘度η1、および5rpmにおける液晶シール剤の粘度η2を測定し、これらの測定値を下記式(1)に当てはめて求められる。
 TI値=(0.5rpmにおける粘度η1(25℃))/(5rpmにおける粘度η2(25℃))・・・(1)
The TI value was determined by measuring the viscosity η1 of the liquid crystal sealant at room temperature (25 ° C.), 0.5 rpm, and the viscosity η2 of the liquid crystal sealant at 5 rpm using an E-type viscometer. ) Is required.
TI value = (viscosity η1 at 0.5 rpm (25 ° C.)) / (Viscosity η2 at 5 rpm (25 ° C.)) (1)
 本発明の液晶シール剤は、液晶滴下工法用の液晶シール剤に好ましく用いられる。液晶シール剤の硬化は、光硬化、熱硬化、光硬化と熱硬化の併用のいずれでもよいが、熱硬化が好ましく用いられる。 The liquid crystal sealant of the present invention is preferably used as a liquid crystal sealant for a liquid crystal dropping method. The liquid crystal sealant may be cured by photocuring, thermosetting, or a combination of photocuring and thermosetting, but thermosetting is preferably used.
 2.液晶表示パネルの製造方法
 本発明の液晶表示パネルは、表示基板と、それと対になる対向基板と、表示基板と対向基板との間に介在している枠状のシール部材と、表示基板と対向基板との間のシール部材で囲まれた空間に充填された液晶層とを含む。本発明の液晶シール剤の硬化物を、シール部材とすることができる。
2. Manufacturing method of liquid crystal display panel The liquid crystal display panel of the present invention is a display substrate, a counter substrate that is paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and a display substrate. And a liquid crystal layer filled in a space surrounded by a sealing member between the substrate and the substrate. The cured product of the liquid crystal sealant of the present invention can be used as a seal member.
 表示基板および対向基板は、いずれも透明基板である。透明基板の材質は、ガラス、または、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等のプラスチックでありうる。 The display substrate and the counter substrate are both transparent substrates. The material of the transparent substrate can be glass or plastic such as polycarbonate, polyethylene terephthalate, polyethersulfone and PMMA.
 表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクスなどが配置されうる。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤などが含まれる。 A matrix-like TFT, a color filter, a black matrix, or the like can be disposed on the surface of the display substrate or the counter substrate. An alignment film is further formed on the surface of the display substrate or the counter substrate. The alignment film includes a known organic alignment agent or inorganic alignment agent.
 このような液晶表示パネルは、本発明の液晶シール剤を用いて製造されうる。液晶表示パネルの製造方法には、一般に、液晶滴下工法と、液晶注入工法とがあるが、本発明の液晶表示パネルの製造方法は、液晶滴下工法が好ましい。 Such a liquid crystal display panel can be manufactured using the liquid crystal sealant of the present invention. In general, there are a liquid crystal dropping method and a liquid crystal injecting method as a manufacturing method of the liquid crystal display panel, but the liquid crystal dropping method is preferable as the manufacturing method of the liquid crystal display panel of the present invention.
 液晶滴下工法による液晶表示パネルの製造方法は、
 a1)一方の基板に、本発明の液晶シール剤のシールパターンを形成する第1の工程と、
 a2)シールパターンが未硬化の状態において、基板のシールパターンで囲まれた領域、またはシールパターンで囲まれた領域に対向する他方の基板の領域に、液晶を滴下する第2の工程と、
 a3)一方の基板と、他方の基板とを、シールパターンを介して重ね合わせる第3の工程と、
 a4)シールパターンを硬化させる第4の工程と、を含む。 
The manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is
a1) a first step of forming a seal pattern of the liquid crystal sealant of the present invention on one substrate;
a2) a second step of dropping liquid crystal in a region surrounded by the seal pattern of the substrate or a region of the other substrate facing the region surrounded by the seal pattern in an uncured state of the seal pattern;
a3) a third step of superimposing one substrate and the other substrate via a seal pattern;
a4) a fourth step of curing the seal pattern.
 工程a2)における、シールパターンが未硬化の状態とは、液晶シール剤の硬化反応がゲル化点までは進行していない状態を意味する。このため、工程a2)では、液晶シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。一方の基板および他方の基板は、それぞれ表示基板または対向基板である。  The state in which the seal pattern is uncured in step a2) means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. For this reason, in step a2), the seal pattern may be semi-cured by light irradiation or heating in order to suppress dissolution of the liquid crystal sealant in the liquid crystal. One substrate and the other substrate are a display substrate or a counter substrate, respectively.
 工程a3)において基板を重ね合わせたときに、液晶シール剤に含まれる有機フィラーが、可逆的または不可逆的に変形する。変形とは、押しつぶされるか、またはひしゃげていることなどをいう。つまり、液晶シール剤における有機フィラーは球状であることが好ましいが;一方で、液晶表示パネルの液晶シールにおける有機フィラーは球状である必要はなく、押しつぶされている。 When the substrates are superposed in step a3), the organic filler contained in the liquid crystal sealant deforms reversibly or irreversibly. Deformation means being crushed or crouched. That is, the organic filler in the liquid crystal sealant is preferably spherical; however, the organic filler in the liquid crystal seal of the liquid crystal display panel does not need to be spherical and is crushed.
 液晶シール剤における有機フィラーの含有量が高く、かつ液晶表示パネルにおける液晶シールにおいて有機フィラーが押しつぶされているので、液晶リーク(液晶が液晶シールに進入したり、液晶シールを突き破って漏洩したりすること)が効果的に抑制される。また、基板同士の接着強度が高まる。 The liquid crystal sealant has a high organic filler content, and the liquid crystal seal in the liquid crystal display panel is crushed, so liquid crystal leaks (liquid crystal enters the liquid crystal seal or breaks through the liquid crystal seal and leaks. Is effectively suppressed. Moreover, the adhesive strength between the substrates increases.
 さらに、液晶シール剤に含まれる有機フィラーの比表面積が小さいので、液晶シール剤の粘度が適度に低い。そのため、液晶セルの基板同士を重ねあわせるときに、基板間のギャップ幅を適正に制御しやすい。 Furthermore, since the specific surface area of the organic filler contained in the liquid crystal sealant is small, the viscosity of the liquid crystal sealant is moderately low. Therefore, when the substrates of the liquid crystal cell are overlapped, it is easy to appropriately control the gap width between the substrates.
 工程a4)では、加熱による硬化のみを行ってもよいが、光照射による硬化(仮硬化)を行った後、加熱による硬化(本硬化)を行うことが好ましい。光照射による仮硬化で液晶シール剤を瞬時に硬化させることで、液晶への溶解を抑制できるからである。 In step a4), only curing by heating may be performed, but it is preferable to perform curing by heating (main curing) after curing by light irradiation (temporary curing). This is because the liquid crystal sealant can be instantly cured by temporary curing by light irradiation to suppress dissolution in the liquid crystal.
 光硬化時間は、液晶シール剤の組成にもよるが、例えば10分程度である。光照射エネルギーは、アクリル樹脂や(メタ)アクリル変性エポキシ樹脂などを硬化させることができる程度のエネルギーであればよい。光は、好ましくは紫外線である。熱硬化温度は、液晶シール剤の組成にもよるが、例えば120℃であり、熱硬化時間は2時間程度である。 The photocuring time is, for example, about 10 minutes although it depends on the composition of the liquid crystal sealant. The light irradiation energy may be energy that can cure an acrylic resin or a (meth) acryl-modified epoxy resin. The light is preferably ultraviolet light. The thermosetting temperature is 120 ° C., for example, although it depends on the composition of the liquid crystal sealant, and the thermosetting time is about 2 hours.
 本発明の液晶表示パネルは、液晶リークが抑制されており、かつ基板同士のギャップ幅が適正に制御されているので、高品質の表示装置を提供する。 The liquid crystal display panel of the present invention provides a high-quality display device because liquid crystal leakage is suppressed and the gap width between the substrates is appropriately controlled.
 以下の樹脂成分を用意した。
 (1)樹脂
 (1-1)2官能アクリルモノマー:ビスフェノールA型エポキシ樹脂変性ジアクリレート(3002A、共栄社化学株式会社製、水素結合性官能基当量3.3×10-3
 (1-2)アクリル変性エポキシ樹脂
 攪拌機、気体導入管、温度計、冷却管を備えた500mLの四つ口フラスコにビスフェノールF型エポキシ樹脂(EXA-835LV DIC社製)160g、アクリル酸36g、トリエタノールアミン0.2gを仕込み乾燥エア気流下、110℃、5時間加熱攪拌してアクリル変性エポキシ樹脂を得た。得られたアクリル変性エポキシ樹脂を超純水にて12回洗浄した。アクリル変性エポキシ樹脂の水素結合性官能基当量は2.1×10-3であった。
The following resin components were prepared.
(1) Resin (1-1) Bifunctional acrylic monomer: Bisphenol A type epoxy resin-modified diacrylate (3002A, manufactured by Kyoeisha Chemical Co., Ltd., hydrogen bonding functional group equivalent: 3.3 × 10 −3 )
(1-2) Acrylic Modified Epoxy Resin In a 500 mL four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and cooling tube, 160 g of bisphenol F type epoxy resin (EXA-835LV DIC), 36 g of acrylic acid, tri Ethanolamine 0.2g was prepared and heated and stirred under a dry air stream at 110 ° C. for 5 hours to obtain an acrylic-modified epoxy resin. The obtained acrylic-modified epoxy resin was washed 12 times with ultrapure water. The hydrogen-bonding functional group equivalent of the acrylic-modified epoxy resin was 2.1 × 10 −3 .
 (2)有機フィラー
 (2-1)フィラー:GBM-55S(架橋ポリアクリル酸ブチル-メタクリル酸メチルグラフト共重合体、アイカ工業社製、平均粒子径8μm、球状)
 (2-2)フィラー:KMP600(シリコーンゴムパウダー、信越化学工業社製、平均粒子径5μm、球状)
 (2-3)フィラー:KMP597(シリコーンゴムパウダー、信越化学工業社製、平均粒子径5μm、球状)
 (2-4)フィラー:F351(メタクリル酸アルキル共重合体、アイカ工業社製、平均粒子径0.3μm、球状)
 (2-5)フィラー:E-601(シリコーンゴムパウダー、東レ・ダウコーニング・シリコーン社製、平均粒子径2μm、球状)
(2) Organic filler (2-1) Filler: GBM-55S (crosslinked polybutyl acrylate-methyl methacrylate graft copolymer, manufactured by Aika Kogyo Co., Ltd., average particle size 8 μm, spherical)
(2-2) Filler: KMP600 (silicone rubber powder, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 5 μm, spherical)
(2-3) Filler: KMP597 (silicone rubber powder, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 5 μm, spherical)
(2-4) Filler: F351 (alkyl methacrylate copolymer, manufactured by Aika Kogyo Co., Ltd., average particle size 0.3 μm, spherical)
(2-5) Filler: E-601 (silicone rubber powder, manufactured by Toray Dow Corning Silicone, average particle size 2 μm, spherical)
 (2-6)フィラー:熱可塑性ポリマーA(合成例1(軟化点温度:80℃))
 攪拌機、窒素導入管、温度計、還流冷却管を備えた1000mlの四つ口フラスコにイオン交換水400g、アルキルジフェニルエーテルジスルホン酸ナトリウム1.0gを仕込み65℃まで昇温した。
 さらに、前記四つ口フラスコ内に過硫酸カリウム0.4gを添加した後、ホモジナイザーで乳化したt-ドデシルメルカプタン1.2g、n-ブチルアクリレート156g、ジビニルベンゼン4.0g、アルキルジフェニルエーテルジスルホン酸ナトリウム3.0g、イオン交換水200gからなる混合溶液を4時間で連続滴下した。滴下後2時間反応を継続させた後、メチルメタクリレート232gを一括で添加し、1時間反応を継続させ、次いでアクリル酸8gを1時間で連続添加した。65℃一定で2時間反応を継続させた後冷却し、水酸化カリウムにてpH=7に中和して固形分40.6重量%のエマルション溶液を得た。
 このエマルション溶液の1,000gを噴霧乾燥器にかけて、0.1質量%以下の水分含有量を有する、球状の熱可塑性ポリマー粒子(A)約400gを得た。得られた熱可塑性ポリマー粒子(A)の軟化点をJIS K 2207(環球法)に準拠して測定したところ、80℃であった。熱可塑性ポリマー粒子(A)の比表面積をJIS Z8830に準拠して測定したところ、28m/gであった。また、平均粒子径は0.18μmであった。
(2-6) Filler: Thermoplastic polymer A (Synthesis example 1 (softening point temperature: 80 ° C.))
A 1000 ml four-necked flask equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a reflux condenser was charged with 400 g of ion exchange water and 1.0 g of sodium alkyldiphenyl ether disulfonate, and the temperature was raised to 65 ° C.
Furthermore, after adding 0.4 g of potassium persulfate into the four-necked flask, 1.2 g of t-dodecyl mercaptan emulsified with a homogenizer, 156 g of n-butyl acrylate, 4.0 g of divinylbenzene, sodium alkyldiphenyl ether disulfonate 3 A mixed solution consisting of 0.0 g and 200 g of ion-exchanged water was continuously added dropwise over 4 hours. After the reaction was continued for 2 hours after the dropping, 232 g of methyl methacrylate was added all at once, the reaction was continued for 1 hour, and then 8 g of acrylic acid was continuously added for 1 hour. The reaction was continued at 65 ° C. for 2 hours and then cooled, and neutralized with potassium hydroxide to pH = 7 to obtain an emulsion solution having a solid content of 40.6% by weight.
1,000 g of this emulsion solution was applied to a spray dryer to obtain about 400 g of spherical thermoplastic polymer particles (A) having a water content of 0.1% by mass or less. It was 80 degreeC when the softening point of the obtained thermoplastic polymer particle (A) was measured based on JISK2207 (ring ball method). It was 28 m < 2 > / g when the specific surface area of the thermoplastic polymer particle (A) was measured based on JIS Z8830. The average particle size was 0.18 μm.
 (2-7)フィラー:熱可塑性ポリマーB(合成例2(軟化点温度:40℃))
 攪拌機、窒素導入管、温度計、還流冷却管を備えた1000mlの四つ口フラスコにイオン交換水400g、アルキルジフェニルエーテルジスルホン酸ナトリウム1.0gを仕込み65℃まで昇温した。
 さらに、前記四つ口フラスコ内に過硫酸カリウム0.4gを添加した後、ホモジナイザーで乳化したt-ドデシルメルカプタン1.2g、n-ブチルアクリレート156g、ジビニルベンゼン4.0g、アルキルジフェニルエーテルジスルホン酸ナトリウム3.0g、イオン交換水200gからなる混合溶液を4時間で連続滴下した。滴下後、2時間反応を継続させた後、メチルメタクリレート142g、n-ブチルアクリレート90gを一括で添加した後1時間反応を継続させた。次いでアクリル酸8gを1時間で連続添加した。65℃一定で2時間反応を継続させた後、冷却し、水酸化カリウムにてpH=7に中和して固形分40.8質量%のエマルション溶液を得た。このエマルション溶液1,000gを噴霧乾燥器にかけて、0.1質量%以下の水分含有量を有する、球状の熱可塑性ポリマー粒子(B)約400gを得た。得られた熱可塑性ポリマー粒子(B)の軟化点をJIS K 2207(環球法)に準拠して測定したところ、35℃であった。得られた熱可塑性ポリマー粒子(B)の比表面積をJIS Z8830に準拠して測定したところ、33m/gであった。また、平均粒子径は0.25μmであった。
(2-7) Filler: Thermoplastic polymer B (Synthesis Example 2 (softening point temperature: 40 ° C.))
A 1000 ml four-necked flask equipped with a stirrer, a nitrogen inlet tube, a thermometer, and a reflux condenser was charged with 400 g of ion exchange water and 1.0 g of sodium alkyldiphenyl ether disulfonate, and the temperature was raised to 65 ° C.
Furthermore, after adding 0.4 g of potassium persulfate into the four-necked flask, 1.2 g of t-dodecyl mercaptan emulsified with a homogenizer, 156 g of n-butyl acrylate, 4.0 g of divinylbenzene, sodium alkyldiphenyl ether disulfonate 3 A mixed solution consisting of 0.0 g and 200 g of ion-exchanged water was continuously added dropwise over 4 hours. After dropping, the reaction was continued for 2 hours, and then 142 g of methyl methacrylate and 90 g of n-butyl acrylate were added all at once, and then the reaction was continued for 1 hour. Next, 8 g of acrylic acid was continuously added in 1 hour. The reaction was continued at 65 ° C. for 2 hours, then cooled and neutralized to pH = 7 with potassium hydroxide to obtain an emulsion solution having a solid content of 40.8% by mass. 1,000 g of this emulsion solution was applied to a spray dryer to obtain about 400 g of spherical thermoplastic polymer particles (B) having a water content of 0.1% by mass or less. It was 35 degreeC when the softening point of the obtained thermoplastic polymer particle (B) was measured based on JISK2207 (ring ball method). It was 33 m < 2 > / g when the specific surface area of the obtained thermoplastic polymer particle (B) was measured based on JISZ8830. The average particle diameter was 0.25 μm.
 (2-8)フィラー:S-2100(アクリル・シリコーン複合パウダー、三菱レイヨン社製、平均粒子径6μm、球状)
 (2-9)フィラー:P-800T(ウレタンパウダー、根上工業社製、平均粒子径7μm、球状)
 (2-10)フィラー:SE-006T(アクリルパウダー、根上工業社製、平均粒子径6μm、球状)
 (2-11)フィラー:BE-006T(アクリルパウダー、根上工業社製、平均粒子径6μm、球状)
(2-8) Filler: S-2100 (acrylic / silicone composite powder, manufactured by Mitsubishi Rayon Co., Ltd., average particle size 6 μm, spherical)
(2-9) Filler: P-800T (urethane powder, manufactured by Negami Kogyo Co., Ltd., average particle size 7 μm, spherical)
(2-10) Filler: SE-006T (acrylic powder, manufactured by Negami Kogyo Co., Ltd., average particle size 6 μm, spherical)
(2-11) Filler: BE-006T (acrylic powder, manufactured by Negami Kogyo Co., Ltd., average particle size 6 μm, spherical)
 有機フィラーの平均粒子径は、以下の方法で測定した。即ち、液晶シール剤の硬化膜を、透過型電子顕微鏡(TEM)(JEM-2200FS(日本電子(株)製))にて10000倍で観察した。得られた画像を解析し、有機フィラーを50個選別し、それらの粒子径を測定した。得られた測定値の平均値を「有機フィラーの平均粒子径」とした。 The average particle size of the organic filler was measured by the following method. That is, the cured film of the liquid crystal sealant was observed at a magnification of 10,000 with a transmission electron microscope (TEM) (JEM-2200FS (manufactured by JEOL Ltd.)). The obtained image was analyzed, 50 organic fillers were selected, and their particle sizes were measured. The average value of the measured values obtained was defined as “average particle diameter of organic filler”.
 有機フィラーの比表面積は、JIS Z8830に準拠して、窒素の吸着量からBET法で測定した。具体的には、100個の有機フィラーの比表面積を上記方法で測定し、それらの平均値を「有機フィラーの比表面積の平均値」とした。 The specific surface area of the organic filler was measured by the BET method from the amount of nitrogen adsorbed according to JIS Z8830. Specifically, the specific surface area of 100 organic fillers was measured by the above method, and the average value thereof was defined as “the average value of the specific surface area of the organic filler”.
 (3)ラジカル重合開始剤
 (3-1)熱ラジカル重合開始剤:1,1'-アゾビス(2,4-シクロヘキサン)-1-カルボニトリル(V-40:和光純薬工業株式会社製)
 (3-2)光ラジカル重合開始剤:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE 651、BASF社製)
(3) Radical polymerization initiator (3-1) Thermal radical polymerization initiator: 1,1′-azobis (2,4-cyclohexane) -1-carbonitrile (V-40: manufactured by Wako Pure Chemical Industries, Ltd.)
(3-2) Photoradical polymerization initiator: 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651, manufactured by BASF)
 (4)その他
 (4-1)エポキシ樹脂(1):エピクロン850CRP(ビスフェノールA型エポキシ樹脂:DIC社製)
 (4-2)熱潜在性硬化剤(1): 1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(アミキュアVHD 味の素社製)
 (4-3)添加剤:γ-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業社製)
(4) Others (4-1) Epoxy resin (1): Epicron 850CRP (Bisphenol A type epoxy resin: manufactured by DIC)
(4-2) Thermal latent curing agent (1): 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (Amicure VHD manufactured by Ajinomoto Co., Inc.)
(4-3) Additive: γ-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
 [実施例1]
 (1-1)2官能アクリルモノマー60質量部、(2-1)フィラー30質量部、(3-1)熱ラジカル重合開始剤1質量部、(4-1)エポキシ樹脂5質量部、(4-2)熱潜在性硬化剤3質量部、(4-3)添加剤1質量部からなる樹脂組成物を、三本ロールミルを用いて均一な液となるように十分に混合して、液晶シール剤を得た。
[Example 1]
(1-1) bifunctional acrylic monomer 60 parts by mass, (2-1) filler 30 parts by mass, (3-1) thermal radical polymerization initiator 1 part by mass, (4-1) epoxy resin 5 parts by mass, (4 -2) A resin composition comprising 3 parts by mass of a thermal latent curing agent and (4-3) 1 part by mass of an additive is sufficiently mixed using a three-roll mill so as to form a uniform liquid, and a liquid crystal seal An agent was obtained.
 [実施例2~13、比較例1~7]
 表1または2に記載の組成で、実施例1と同様に液晶シール剤を得た。
[Examples 2 to 13, Comparative Examples 1 to 7]
A liquid crystal sealant having the composition shown in Table 1 or 2 was obtained in the same manner as in Example 1.
 [液晶シール剤の評価方法]
 各実施例および比較例で得られた液晶シール剤について、以下の項目を評価した。
[Evaluation method of liquid crystal sealant]
The following items were evaluated for the liquid crystal sealants obtained in each Example and Comparative Example.
 1)粘度
 得られた液晶シール剤の粘度を、E型粘度計により25℃、2.5rpmで測定した。
1) Viscosity The viscosity of the obtained liquid crystal sealant was measured with an E-type viscometer at 25 ° C. and 2.5 rpm.
 2)接着強度
 スクリーン版を使用して液晶シール剤を25mm×45mm×厚さ5mmの無アルカリガラス上に直径1mmの円状のシールパターンを塗布し、対となる同様のガラスを貼り合せてから治具で固定して試験片を作製した。
 具体的に、実施例2、3、比較例2に関しては、治具で固定した試験片を、紫外線照射装置(ウシオ電機(株)製)を用いて、100mW/cmの紫外線を照射し、液晶シール剤を硬化させた。このとき、紫外線の照度エネルギーを2000mJ/cmとした。光によって液晶シール剤を硬化させた試験片を、オーブンを用いて120℃、60分加熱処理することにより、接着強度測定用の試験片を作製した。一方、実施例1、4~13、比較例1、3~7に関しては、治具で固定した試験片を、オーブンを用いて120℃、60分加熱処理することにより接着強度測定用の試験片を作製した。
2) Adhesive strength After applying a circular seal pattern with a diameter of 1 mm on an alkali-free glass of 25 mm x 45 mm x 5 mm in thickness using a screen plate, and pasting the same pair of glasses together A test piece was prepared by fixing with a jig.
Specifically, for Examples 2 and 3 and Comparative Example 2, a test piece fixed with a jig was irradiated with 100 mW / cm 2 of ultraviolet rays using an ultraviolet irradiation device (USHIO INC.), The liquid crystal sealant was cured. At this time, the illuminance energy of ultraviolet rays was set to 2000 mJ / cm 2 . The test piece for curing the liquid crystal sealant by light was heat-treated at 120 ° C. for 60 minutes using an oven to prepare a test piece for measuring adhesive strength. On the other hand, for Examples 1, 4 to 13 and Comparative Examples 1 and 3 to 7, the test pieces fixed with a jig were heat-treated at 120 ° C. for 60 minutes using an oven, and the test pieces for measuring the adhesive strength were used. Was made.
 引張試験機(インテスコ(株))を用いて、引張速度を2mm/分とし、硬化した液晶シール剤をガラス底面に対して平行な方向に引き剥がすことにより、平面引張強度を測定した。ここで、接着強度は、平面引張強度の大きさに応じて4段階で評価した。即ち、引張強度が25MPa以上となる場合を接着強度が非常に良好である(A)とし、引張強度が20MPa以上25MPa未満となる場合を接着強度が良好である(B)とし、引張強度が10MPa以上20MPa未満となる場合を接着強度が中程度である(C)とし、引張強度が10MPa未満となる場合を接着強度が低く劣る(D)とした。 Using a tensile tester (Intesco Corp.), the tensile rate was 2 mm / min, and the cured liquid crystal sealant was peeled off in a direction parallel to the glass bottom surface, thereby measuring the plane tensile strength. Here, the adhesive strength was evaluated in four stages according to the magnitude of the plane tensile strength. That is, when the tensile strength is 25 MPa or more, the adhesive strength is very good (A), and when the tensile strength is 20 MPa or more and less than 25 MPa, the adhesive strength is good (B), and the tensile strength is 10 MPa. The case where the bond strength is less than 20 MPa is regarded as moderate (C), and the case where the tensile strength is less than 10 MPa is regarded as low and inferior (D).
 3)パネルのギャップコントロールの評価方法
 各実施例および比較例の液晶シール剤に、5μmの球状スペーサーを1質量部さらに添加して、スペーサーが添加された液晶シール剤を調整した。
3) Evaluation method of panel gap control One part by mass of a 5 μm spherical spacer was further added to the liquid crystal sealant of each example and comparative example to prepare a liquid crystal sealant to which the spacer was added.
 得られた組成物をディスペンサー(日立プラントテクノロジー(株))に充填し、40mm×50mm×厚さ0.7mmの無アルカリガラスの基板の上に35mm×40mm、線幅0.7mmの四角形の枠状のシールパターンを断面積3500μmで描画した。当該基板のシールパターン内に、貼り合せ後のパネル内容量に相当する液晶材料(MLC-11900-000:メルク社)をディスペンサー(日立プラントテクノロジー(株))を使用して精密に滴下した。真空貼り合せ装置(信越エンジニアリング(株))を用いて10Paの減圧下で前述のガラス基板と対向するガラス基板を重ね合わせ、荷重をかけ固定した。 A dispenser (Hitachi Plant Technology Co., Ltd.) was filled with the obtained composition, and a rectangular frame of 35 mm × 40 mm and a line width of 0.7 mm on an alkali-free glass substrate of 40 mm × 50 mm × thickness 0.7 mm. The seal pattern was drawn with a cross-sectional area of 3500 μm 2 . A liquid crystal material (MLC-11900-000: Merck) corresponding to the panel internal volume after bonding was precisely dropped into the seal pattern of the substrate using a dispenser (Hitachi Plant Technology Co., Ltd.). Using a vacuum bonding apparatus (Shin-Etsu Engineering Co., Ltd.), the glass substrate facing the above glass substrate was superposed under a reduced pressure of 10 Pa, and fixed under a load.
 実施例2、3、比較例2に関しては、治具で固定した試験片を、紫外線照射装置(ウシオ電機(株)製)を用いて、100mW/cmの紫外線を照射し、液晶シール剤を硬化させた。このとき、紫外線の照度エネルギーを2000mJ/cmとした。光によって液晶シール剤を硬化させた後、オーブンを用いて120℃、60分加熱処理することによって液晶表示パネルを作製した。 For Examples 2 and 3 and Comparative Example 2, a test piece fixed with a jig was irradiated with 100 mW / cm 2 of ultraviolet rays using an ultraviolet irradiation device (USHIO INC.), And a liquid crystal sealant was applied. Cured. At this time, the illuminance energy of ultraviolet rays was set to 2000 mJ / cm 2 . After the liquid crystal sealant was cured by light, a liquid crystal display panel was produced by heat treatment at 120 ° C. for 60 minutes using an oven.
 一方、実施例1、4~13、比較例1、3~7に関しては、治具で固定した試験片を、オーブンを用いて120℃、60分加熱処理することによって液晶表示パネルを作製した。 On the other hand, for Examples 1, 4 to 13 and Comparative Examples 1 and 3 to 7, liquid crystal display panels were produced by heat-treating test pieces fixed with a jig at 120 ° C. for 60 minutes using an oven.
 完成した液晶表示パネルをサンプルとして、セルギャップ検査装置(大塚電子製)を使用して、サンプルにおけるメインシール内のギャップ間隔の面内分布を測定した。そして間隔の最大値、最小値の何れも5μm±0.2μmの範囲に無い場合を×、5μm±0.2μmの範囲内に有る場合を○、として2段階で評価した。 Using the completed liquid crystal display panel as a sample, a cell gap inspection device (manufactured by Otsuka Electronics Co., Ltd.) was used to measure the in-plane distribution of the gap interval in the main seal in the sample. Then, the case where neither the maximum value nor the minimum value of the interval was within the range of 5 μm ± 0.2 μm was evaluated as x, and the case where it was within the range of 5 μm ± 0.2 μm was evaluated in two stages.
 4)チクソトロピーインデックス(TI値)
 E型粘度計を用い、室温(25℃)、0.5rpmにおける液晶シール剤の粘度η1、および5rpmにおける液晶シール剤の粘度η2を測定した。これらの測定値を、下記式(1)に当てはめてTI値を求めた。
 TI値=(0.5rpmにおける粘度η1(25℃))/(5rpmにおける粘度η2(25℃))・・・(1)
4) Thixotropic index (TI value)
Using an E-type viscometer, the viscosity η1 of the liquid crystal sealant at room temperature (25 ° C.) and 0.5 rpm, and the viscosity η2 of the liquid crystal sealant at 5 rpm were measured. These measured values were applied to the following formula (1) to obtain a TI value.
TI value = (viscosity η1 at 0.5 rpm (25 ° C.)) / (Viscosity η2 at 5 rpm (25 ° C.)) (1)
 5)脱泡性テスト
 得られた液晶シール剤を、真空下(100Pa)で自転公転型攪拌機にて攪拌した。1分間攪拌後に、25℃、100Paの真空度下で2分間放置後、目視により気泡の発生状況を観察した。そして、気泡が全く発生しない場合を○、1mm以上の気泡は発生しないものの1mm未満の気泡が発生する場合を△、1mm以上の気泡の発生する場合を×として評価した。なお、攪拌機による攪拌時は、機械摩擦熱および攪拌による蓄熱により、液晶シール剤の温度が50℃以上に上昇しないよう管理した。
5) Defoaming property test The obtained liquid-crystal sealing compound was stirred with the rotation revolution type stirrer under vacuum (100 Pa). After stirring for 1 minute, the product was allowed to stand for 2 minutes at 25 ° C. under a vacuum of 100 Pa, and then the state of generation of bubbles was visually observed. The case where no bubbles were generated was evaluated as ◯, while the case where bubbles of less than 1 mm were generated while bubbles of 1 mm or more were not generated, and the case where bubbles of 1 mm or more were generated was evaluated as x. In addition, at the time of stirring with a stirrer, it managed so that the temperature of a liquid-crystal sealing compound might not rise to 50 degreeC or more by mechanical friction heat and the thermal storage by stirring.
 各実施例の液晶シール剤の組成と評価結果を表1に示し;各比較例の液晶シール剤の組成と評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The composition and evaluation results of the liquid crystal sealant of each example are shown in Table 1; the composition and evaluation result of the liquid crystal sealant of each comparative example are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、比表面積が0.4~1.5m/gの範囲の有機フィラー(2)を含む実施例1~13は、接着強度が高く、パネルのギャップ幅を制御できていることがわかる。また、TI値が1.5以下であり、脱泡性も良好である。 As shown in Table 1, Examples 1 to 13 including the organic filler (2) having a specific surface area in the range of 0.4 to 1.5 m 2 / g have high adhesive strength and can control the gap width of the panel. You can see that Moreover, TI value is 1.5 or less, and defoaming property is also favorable.
 これに対して、表2に示されるように比較例1~7では、比表面積の大きい有機フィラー(2)を含む。比較例1,2,4,6および7は、比表面積の大きい有機フィラーを、実施例と同様に30質量部添加している。そのため、液晶シール剤の粘度が高まっており、パネルのギャップコントロール性が低下している。また、TI値が1.5を超えており、脱泡性も低下している。また、比較例1、2および4では、接着強度の低下もみられた。有機フィラーが凝集したためであると考えられる。 On the other hand, as shown in Table 2, Comparative Examples 1 to 7 include an organic filler (2) having a large specific surface area. In Comparative Examples 1, 2, 4, 6 and 7, 30 parts by mass of an organic filler having a large specific surface area was added in the same manner as in the Examples. Therefore, the viscosity of the liquid crystal sealant is increased, and the gap controllability of the panel is lowered. Moreover, TI value exceeds 1.5 and defoaming property is also falling. In Comparative Examples 1, 2, and 4, a decrease in adhesive strength was also observed. This is thought to be because the organic filler aggregated.
 比較例3および5における有機フィラーの含有量は15質量部であり、実施例における有機フィラーの含有量の半分であり、接着強度が十分に高まっていない。硬化収縮による応力が十分に緩和されないためであると考えられる。 The content of the organic filler in Comparative Examples 3 and 5 is 15 parts by mass, which is half the content of the organic filler in Examples, and the adhesive strength is not sufficiently increased. This is probably because the stress due to curing shrinkage is not sufficiently relaxed.
 本出願は、2013年8月23日出願の特願2013-173361に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-173361 filed on August 23, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明は、液晶のリークが抑制され、液晶パネルのパネルギャップ幅が適正に制御された、高品質の液晶表示装置を提供することができる。 The present invention can provide a high-quality liquid crystal display device in which liquid crystal leakage is suppressed and the panel gap width of the liquid crystal panel is appropriately controlled.

Claims (11)

  1.  (1)アクリル樹脂(1a)、または1分子内にエポキシ基と(メタ)アクリル基とを有する(メタ)アクリル変性エポキシ樹脂(1b)から選ばれる少なくとも1種の樹脂と、(2)有機フィラーと、(3)ラジカル重合開始剤と、を含む液晶シール剤であって、
     前記(2)の有機フィラーの比表面積の平均値が0.4m2/g以上1.5m2/g以下である、液晶シール剤。
    (1) Acrylic resin (1a) or at least one resin selected from (meth) acryl-modified epoxy resin (1b) having an epoxy group and a (meth) acryl group in one molecule, and (2) an organic filler And (3) a radical polymerization initiator, a liquid crystal sealing agent comprising:
    The average value of the specific surface area of the organic filler (2) is less than 0.4 m 2 / g or more 1.5 m 2 / g, the liquid crystal sealant.
  2.  前記(1)樹脂の1分子内の水素結合性官能基当量が1.0×10-4mol/g以上5.0×10-3mol/g以下である、請求項1に記載の液晶シール剤。 2. The liquid crystal seal according to claim 1, wherein an equivalent of a hydrogen bonding functional group in one molecule of the (1) resin is 1.0 × 10 −4 mol / g or more and 5.0 × 10 −3 mol / g or less. Agent.
  3.  前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ樹脂(1b)とを合わせた樹脂ユニット100質量部に対して、前記(2)有機フィラーの含有量は30~100質量部である、請求項1に記載の液晶シール剤。 The content of the organic filler (2) is 30 to 100 parts by mass with respect to 100 parts by mass of the resin unit including the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b). Item 2. A liquid crystal sealant according to Item 1.
  4.  前記(2)有機フィラーは、軟化点が30~120℃である、シリコーン微粒子、アクリル微粒子、スチレン微粒子、ウレタン微粒子、アクリル・シリコーン複合微粒子、およびポリオレフィン微粒子からなる群より選ばれる一種類以上の微粒子である、請求項1に記載の液晶シール剤。 The organic filler (2) has at least one kind of fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles, urethane fine particles, acrylic / silicone composite fine particles, and polyolefin fine particles having a softening point of 30 to 120 ° C. The liquid crystal sealant according to claim 1, wherein
  5.  前記(2)有機フィラーの形状が球状である、請求項1に記載の液晶シール剤。 The liquid crystal sealing agent according to claim 1, wherein the shape of the (2) organic filler is spherical.
  6.  前記(1)の樹脂が、前記(メタ)アクリル変性エポキシ樹脂(1b)である、請求項1に記載の液晶シール剤。 The liquid crystal sealant according to claim 1, wherein the resin (1) is the (meth) acryl-modified epoxy resin (1b).
  7.  前記(3)ラジカル重合開始剤を、前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ樹脂(1b)とを合わせた樹脂ユニット100質量部に対して0.01~3.0質量部含む、請求項1に記載の液晶シール剤。 The (3) radical polymerization initiator is contained in an amount of 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the resin unit in which the acrylic resin (1a) and the (meth) acryl-modified epoxy resin (1b) are combined. The liquid crystal sealant according to claim 1.
  8.  前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ(1b)とを合わせた樹脂ユニット100質量部に対して、3~30質量部の(4)エポキシ硬化剤をさらに含む、請求項1に記載の液晶シール剤。 The method according to claim 1, further comprising 3 to 30 parts by mass of (4) an epoxy curing agent with respect to 100 parts by mass of the resin unit in which the acrylic resin (1a) and the (meth) acryl-modified epoxy (1b) are combined. Liquid crystal sealing agent of description.
  9.  前記アクリル樹脂(1a)と前記(メタ)アクリル変性エポキシ(1b)とを合わせた樹脂ユニット100質量部に対して、3~30質量部の(5)無機フィラーをさらに含む、請求項1に記載の液晶シール剤。 2. The composition according to claim 1, further comprising 3 to 30 parts by mass of (5) inorganic filler with respect to 100 parts by mass of the resin unit in which the acrylic resin (1a) and the (meth) acryl-modified epoxy (1b) are combined. Liquid crystal sealant.
  10.  液晶滴下工法による液晶表示パネルの製造に用いられる、請求項1に記載の液晶シール剤。 The liquid crystal sealing agent according to claim 1, which is used for production of a liquid crystal display panel by a liquid crystal dropping method.
  11.  請求項1に記載の液晶シール剤を用いて、一方の基板にシールパターンを形成する工程と、
     前記シールパターンが未硬化の状態において、前記一方の基板のシールパターン領域内、または前記一方の基板と対になる他方の基板に液晶を滴下する工程と、
     前記一方の基板と、前記他方の基板とを重ね合わせる工程と、
     前記シールパターンを硬化させる工程と、
     を含む液晶表示パネルの製造方法。
    Using the liquid crystal sealant according to claim 1 to form a seal pattern on one substrate;
    In the uncured state of the seal pattern, dropping the liquid crystal in the seal pattern region of the one substrate or the other substrate paired with the one substrate;
    Superimposing the one substrate and the other substrate;
    Curing the seal pattern;
    A method for manufacturing a liquid crystal display panel comprising:
PCT/JP2014/004281 2013-08-23 2014-08-21 Liquid crystal sealing agent, and method for manufacturing liquid crystal display panel WO2015025522A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480045994.7A CN105474084B (en) 2013-08-23 2014-08-21 The manufacturing method of liquid crystal sealing agent and liquid crystal display panel
JP2015532712A JP6338586B2 (en) 2013-08-23 2014-08-21 Liquid crystal sealant and liquid crystal display panel manufacturing method
KR1020167003763A KR101831076B1 (en) 2013-08-23 2014-08-21 Liquid crystal sealing agent, and method for manufacturing liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-173361 2013-08-23
JP2013173361 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025522A1 true WO2015025522A1 (en) 2015-02-26

Family

ID=52483316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004281 WO2015025522A1 (en) 2013-08-23 2014-08-21 Liquid crystal sealing agent, and method for manufacturing liquid crystal display panel

Country Status (5)

Country Link
JP (1) JP6338586B2 (en)
KR (1) KR101831076B1 (en)
CN (1) CN105474084B (en)
TW (1) TWI615663B (en)
WO (1) WO2015025522A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215514A (en) * 2014-05-12 2015-12-03 協立化学産業株式会社 Sealant for liquid crystal display
JP7489911B2 (en) 2020-12-11 2024-05-24 日本化薬株式会社 Liquid crystal sealant for liquid crystal dripping method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690488A (en) * 2022-04-15 2022-07-01 邯郸市富亚电子技术有限公司 Method for enhancing sealing performance of flexible liquid crystal display frame

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163766A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Curable resin, curable resin composition, sealing material for display element, end sealing material for display element, and display element
JP2009139922A (en) * 2007-11-16 2009-06-25 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same
JP2010256777A (en) * 2009-04-28 2010-11-11 Nippon Kayaku Co Ltd Liquid crystal sealing agent, and liquid crystal display cell using the same
JP2013101411A (en) * 2011-04-08 2013-05-23 Sekisui Chem Co Ltd Sealant for liquid crystal one-drop fill process, vertical conduction material, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163766A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Curable resin, curable resin composition, sealing material for display element, end sealing material for display element, and display element
JP2009139922A (en) * 2007-11-16 2009-06-25 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same
JP2010256777A (en) * 2009-04-28 2010-11-11 Nippon Kayaku Co Ltd Liquid crystal sealing agent, and liquid crystal display cell using the same
JP2013101411A (en) * 2011-04-08 2013-05-23 Sekisui Chem Co Ltd Sealant for liquid crystal one-drop fill process, vertical conduction material, and liquid crystal display element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN-ETSU CHEMICAL CO., LTD., CHUMOKU SEIHIN, 15 October 2014 (2014-10-15), Retrieved from the Internet <URL:http://www.silicone.jp/j/products> [retrieved on 20141015] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215514A (en) * 2014-05-12 2015-12-03 協立化学産業株式会社 Sealant for liquid crystal display
JP7489911B2 (en) 2020-12-11 2024-05-24 日本化薬株式会社 Liquid crystal sealant for liquid crystal dripping method

Also Published As

Publication number Publication date
JPWO2015025522A1 (en) 2017-03-02
CN105474084B (en) 2018-10-16
TW201510626A (en) 2015-03-16
CN105474084A (en) 2016-04-06
JP6338586B2 (en) 2018-06-06
TWI615663B (en) 2018-02-21
KR101831076B1 (en) 2018-02-21
KR20160030574A (en) 2016-03-18

Similar Documents

Publication Publication Date Title
JP5547642B2 (en) Liquid crystal sealant, liquid crystal display panel using the same, manufacturing method thereof, and liquid crystal display device
JP5345393B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
WO2011118191A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
CN106415381B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5055362B2 (en) Liquid crystal display panel mounting substrate and manufacturing method thereof
JP5221963B2 (en) Curable resin composition for liquid crystal seal and method for producing liquid crystal display panel using the same
JP5986987B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP4948317B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP4815027B1 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP2017223828A (en) Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
KR20170066276A (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
JP6338586B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
JP6370382B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
WO2016067582A1 (en) Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition
JP4845667B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP5424411B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel
TWI813690B (en) Sealant for liquid crystal display element, upper and lower conduction material, and liquid crystal display element
JP5395968B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5149487B2 (en) Liquid crystal sealant and liquid crystal display panel using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045994.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532712

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167003763

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837830

Country of ref document: EP

Kind code of ref document: A1