WO2015024254A1 - 一种光调制器和光信号发射装置 - Google Patents

一种光调制器和光信号发射装置 Download PDF

Info

Publication number
WO2015024254A1
WO2015024254A1 PCT/CN2013/082183 CN2013082183W WO2015024254A1 WO 2015024254 A1 WO2015024254 A1 WO 2015024254A1 CN 2013082183 W CN2013082183 W CN 2013082183W WO 2015024254 A1 WO2015024254 A1 WO 2015024254A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
optical
signal
plc
level signal
Prior art date
Application number
PCT/CN2013/082183
Other languages
English (en)
French (fr)
Inventor
陈健
徐之光
文玥
周敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/082183 priority Critical patent/WO2015024254A1/zh
Priority to CN201380001603.7A priority patent/CN104583856B/zh
Publication of WO2015024254A1 publication Critical patent/WO2015024254A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode

Definitions

  • Light modulator and light signal emitting device are Light modulator and light signal emitting device
  • the present invention relates to the field of communications, and in particular, to an optical modulator and an optical signal transmitting apparatus. Background technique
  • the optical modulator is a key component of high-speed, long-distance optical communication, and is one of the most important integrated optical devices. It is mainly a device that finally regulates the refractive index, absorptance, amplitude or phase of the output light through changes in voltage or electric field.
  • Existing optical modulators include MZM (Mach-Zehnder Modulator), EAM (Electrical Absorption Modulator).
  • the ⁇ includes an input ⁇ branch, a substrate layer, two optical waveguides, an electrode, and an output ⁇ branch.
  • the direct current optical signal is split into two beams on the input splitter, and the two light respectively enter the two optical waveguides, and the refractive indices of the two optical waveguides are adjusted according to the voltage applied to the electrodes, and This changes the phase of the two optical signals such that the phase difference between the two beams is adjusted. Thereafter, the two beams are combined on the output splitter and interfered according to the phase difference to achieve a DC optical signal. modulation.
  • the structure of the crucible is complicated, and since the optical waveguide of the crucible is made of lithium niobate crystal LiNb03 based on the linear electro-optical effect, the lithium niobate crystal is expensive and therefore, through the MZM The cost of implementing light modulation is higher.
  • EMA it is made by the principle of electric absorption.
  • the voltage applied to the absorption layer By adjusting the voltage applied to the absorption layer to adjust the absorption degree of the DC light signal, the modulation of the DC light signal is realized.
  • the width of the absorption layer is determined according to the applied voltage. Adjustment and adjustment, however, the absorption layer material will produce insertion loss when the transmitted light power is maximum, and this insertion loss is the inevitable inherent loss of the EMA. Summary of the invention
  • Embodiments of the present invention provide a light modulator and an optical signal emitting device which are simple in structure, low in cost, and low in insertion loss.
  • an optical modulator comprising:
  • a planar optical waveguide PLC an electrode, a metal waveguide, and an electro-optic material layer
  • the electrode is in contact with a surface of the electro-optic material layer
  • the metal waveguide is located in a core layer of the PLC
  • the metal waveguide One surface is in contact with another surface of the electro-optic material layer, and a second surface of the metal waveguide is located in a core layer of the PLC;
  • the PLC is configured to transmit an optical signal through a core layer of the PLC
  • the metal waveguide is configured to split the optical signal transmitted in a core layer of the PLC into a first optical signal and a second optical signal at a start end, wherein the first optical signal is in the metal waveguide Transmitting on a first surface, the second optical signal is transmitted on the second surface, and the second surface is located in a core layer of the PLC;
  • the electro-optic material layer is for adjusting a refractive index by adjustment of a voltage applied to the electrode and the metal waveguide;
  • the metal waveguide is further configured to combine the first optical signal and the second optical signal at an end of the metal waveguide to obtain a modulated optical signal according to adjustment of a refractive index.
  • the PLC is specifically configured to transmit a DC optical signal through a core layer of the PLC;
  • the metal waveguide is specifically configured to divide, in the starting end, the DC optical signal transmitted in a waveguide mode in a core layer of the PLC into a first direct current optical signal and a second direct current optical signal, where the first a direct current optical signal is transmitted in a pattern of a surface plasmon SPP on a first surface of the metal waveguide, the second direct current optical signal being transmitted in the SPP mode on the second surface, the second surface Located in the core layer of the PLC;
  • the metal waveguide is further configured to combine the first direct current optical signal and the second direct current optical signal at an end of the metal waveguide to obtain a modulated optical signal according to an adjustment of a refractive index, and the SPP is Converting the transmission mode to the waveguide mode at the PLC Transmission in the core layer.
  • the electro-optic material layer is specifically configured to adjust the refractive index according to a voltage applied on the electrode and the metal waveguide to adjust a phase of the first direct current optical signal such that a phase difference between the first direct current optical signal and the second direct current optical signal is adjusted and interfered according to the phase difference when the ends of the metal waveguide are combined And obtaining the modulated optical signal according to the interference result.
  • the PLC is specifically configured to transmit a modulated optical signal by using a core layer of the PLC, where the modulated optical signal includes a high level signal and a low level signal.
  • the metal waveguide 13 is specifically configured to divide a high level signal in the modulated optical signal transmitted in a waveguide mode into a first high level signal and a second high level signal at a starting end, and the modulation
  • the low level signal in the optical signal is divided into a first low level signal and a second low level signal, wherein the first high level signal and the first low level signal are in the metal waveguide a surface is transmitted in the SPP mode, the second high level signal and the second low level signal are transmitted in the SPP mode on the second surface, the second surface is located in the core of the PLC In the layer;
  • the metal waveguide 13 is specifically configured to combine the first high level signal and the second high level signal at an end of the metal waveguide, and the first low level signal and the first Combining two low-level signals to obtain an adjusted modulated optical signal according to adjustment of the refractive index, and converting the transmission mode of the SPP into the waveguide mode for transmission in a core layer of the PLC;
  • the electro-optic material layer 14 is specifically configured to adjust the refractive index according to an applied voltage to adjust a phase of the first high level signal and the first low level signal, so that the first high power
  • the phase difference between the flat signal and the second high level signal is adjusted and constructively interfered according to the phase difference when the ends of the metal waveguide are combined to maintain the high level signal according to the interference result Transmitting power; adjusting a phase difference between the first low level signal and the second low level signal and performing destructive interference according to the phase difference when the ends of the metal waveguide are combined, according to the Interference junction
  • an optical signal transmitting apparatus including an optical signal transmitter and a light modulator;
  • the optical signal transmitter is configured to transmit a direct current optical signal to the optical modulator; the optical modulator comprising the optical modulator of any one of the first aspect to the second possible implementation.
  • the optical signal transmitter comprises a direct modulation laser DML.
  • an optical signal transmitting apparatus including an optical signal transmitter and a light modulator;
  • the optical signal transmitter is configured to send a modulated optical signal to the optical modulator; the optical modulator comprises the optical modulator of the third possible implementation of the first aspect.
  • the optical signal transmitter comprises a direct modulation laser DML.
  • the optical modulator divides the optical signal into a first optical signal and a second optical signal by using a metal waveguide, wherein the first optical signal is in the metal waveguide Transmitting on the first surface, the second optical signal is transmitted on the second surface, the second surface is located in the core layer of the PLC, and the refraction of the electro-optic material layer is adjusted by adjusting the voltage applied to the electrode and the metal waveguide
  • the PLC involved in the optical modulator has a wide range of materials, so the cost is low, and there is no need to provide a spectroscopic device, and the structure is simple and the insertion loss is small.
  • FIG. 1 is a schematic structural diagram of an optical modulator according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a relationship between a transmission power and a refractive index of an electro-optic material layer according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an optical signal transmitting apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another optical signal transmitting apparatus according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides an optical modulator 10, as shown in FIG. 1, the arrow indicates the transmission direction of the optical signal, and the optical modulator 10 includes: a PLC 11, an electrode 12, a metal waveguide 13, and an electro-optic material layer 14.
  • the PLC 11 includes a core layer 111, a backing layer 112 and a cover layer 113, and the electrode 12 is in contact with a surface of the electro-optic material layer 14 (the upper surface of the electro-optic material as shown in the figure), the metal waveguide 13 Located in the core layer 111 of the PLC 11, the first surface a of the metal waveguide 13 (the upper surface of the metal waveguide as shown in the figure) and the other surface of the electro-optic material layer (the electro-optic material as shown in the figure) The lower surface of the layer is in contact with, and the second surface b of the metal waveguide 13 (the lower surface of the metal waveguide as shown in the figure) is located in the core layer 111 of the PLC 11.
  • the PLC 11 is used to transmit optical signals through the core 111 of the PLC.
  • the refractive index of the substrate layer 112 and the cap layer 113 is smaller than that of the core layer 111, which limits the concentration of the optical signal to the transmission in the PLC core layer 111.
  • the optical signal may be a direct current optical signal or a modulated optical signal.
  • the optical signal transmitted in the core layer of the PLC may be a direct current optical signal.
  • the light modulator is used to increase the extinction ratio of the optical signal when the core layer of the PLC is transmitted
  • the transmitted optical signal can be a modulated optical signal.
  • the metal waveguide 13 is used to divide the optical signal transmitted in the core layer of the PLC into a first optical signal and a second optical signal at the beginning end (the A end of the metal waveguide shown in the figure).
  • the first optical signal is transmitted on a first surface of the metal waveguide, the second optical signal is transmitted on the second surface, and the second surface is located in a core layer of the PLC.
  • the upper and lower surfaces of the metal waveguide When excited by the electric field, the upper surface and the lower surface of the metal waveguide form an uneven density distribution according to the direction of the electric field, respectively. That is, an instantaneous induced electric dipole is generated, and collective electric dipole oscillation is performed at a specific frequency to form an SPP (Surface Plasmon Polariton), and the first optical signal and the second light are formed.
  • the signal transmits optical signals on the upper and lower surfaces of the metal waveguide in the SPP mode.
  • the electro-optic material layer 14 serves to adjust the refractive index by adjustment of the voltage applied to the electrode and the metal waveguide.
  • the voltage applied to adjust the refractive index of the electro-optic material layer is also different, that is, the relationship between the applied voltage and the refractive index is determined according to the material of the electro-optic material layer. of.
  • the metal waveguide 13 is further configured to combine the first optical signal and the second optical signal at an end of the metal waveguide (the B end shown in the figure) to obtain a modulated optical signal according to the adjustment of the refractive index.
  • the first optical signal and the second optical signal are synthesized as modulated optical signals at the end of the metal waveguide, and the combined modulated optical signal continues to be transmitted in the core layer of the PLC.
  • the force can be applied by the upper and lower surfaces of the layer of electro-optic material.
  • a voltage for example, applying a voltage to the electrode and the metal waveguide, since the lower surface of the electrode is in contact with the upper surface of the electro-optic material layer, and the upper surface of the metal waveguide is in contact with the lower surface of the electro-optic material layer, thereby
  • the conductivity of the metal waveguide applies the voltage to the upper surface and the lower surface of the electro-optic material layer, and the refractive index of the electro-optic material layer changes as the applied voltage changes.
  • the change in the refractive index of the electro-optic material layer changes the phase of the first optical signal, and at the end of the metal waveguide, when the first optical signal is combined with the second optical signal Forming a phase difference, and interfering according to the phase difference to obtain a modulated optical signal according to the interference result, and the modulated optical signal is transmitted in the PLC core layer in a waveguide mode, thereby realizing a transmission power of the optical signal.
  • the adjustment in turn, achieves modulation of the optical signal or increases the extinction ratio of the optical signal. For example, when the optical signal is a direct current optical signal, modulation of the optical signal is achieved, and when the optical signal is a modulated optical signal, the extinction ratio of the optical signal is increased.
  • the optical modulator can be used as a modulation of a direct current optical signal
  • the PLC 11 in the optical modulator 10 is specifically configured to be transmitted through the core layer 111 of the PLC 11.
  • the DC optical signal is specifically configured to divide the DC optical signal transmitted in the waveguide mode in the core layer 111 of the PLC 11 into a first direct current optical signal and a second direct current optical signal, where The first direct current optical signal is transmitted in the SPP mode on the first surface of the metal waveguide, and the second direct current optical signal is transmitted in the SPP mode on the second surface, the second surface being located in the PLC 11
  • the metal waveguide 13 is further configured to combine the first direct current optical signal and the second direct current optical signal at the end of the metal waveguide to obtain a modulated optical signal according to the adjustment of the refractive index, and the SPP is obtained.
  • the transmission mode is converted to the waveguide mode for transmission in the core layer of the PLC.
  • the electro-optic material layer 14 is specifically configured to adjust the refractive index according to a voltage applied on the electrode 12 and the metal waveguide 13 to adjust a phase of the first direct current optical signal, so that the first direct current optical signal is The phase difference between the second direct current optical signals is adjusted and interfered according to the phase difference when the metal waveguide ends are combined to obtain the modulated optical signal based on the interference result.
  • the direct current optical signal is incident from the core layer of the PLC parallel to the PLC, and is contacted to the first direct current optical signal and the second direct current optical signal when contacting the metal waveguide, wherein the first direct current optical signal is in the metal
  • the upper surface of the waveguide is transmitted in the SPP mode
  • the second direct current optical signal is transmitted in the SPP mode on the lower surface of the metal waveguide.
  • the refractive index of the electro-optic material layer is adjusted by the voltage applied to the electro-optic material layer.
  • the DC optical signal has a wavelength of 1 At 55 nm (nanometer), the refractive index of the electro-optic material layer is adjusted by the applied voltage, thereby obtaining the emission power of the modulated optical signal corresponding to the refractive index as shown in FIG.
  • the first optical signal and the second optical signal are divided by the metal waveguide, and the refractive index of the electro-optic material layer is adjusted by adjusting the voltage applied across the electro-optic material layer, thereby The modulated light signal is obtained according to the adjustment of the refractive index.
  • the above-mentioned PLC involves a wide range of materials, such as silicon dioxide, indium phosphide, etc., and the metal waveguide can be made of gold, silver, aluminum, copper, etc., and therefore, the cost is low.
  • the light modulator can be used to increase the extinction ratio of the optical signal.
  • DML Rect Modu ed ed Laser
  • the optical signal is caused to be positive, so that the signal pulse is broadened, resulting in a decrease in the extinction ratio, thereby causing dispersion, and the optical modulator is used to increase the extinction ratio, thereby eliminating signal distortion caused by dispersion.
  • the PLC 1 1 of the optical modulator 10 is specifically configured to transmit a modulated optical signal through the core layer 11 of the PLC.
  • the modulated optical signal includes a high level signal and a low level signal.
  • the metal waveguide 13 is specifically configured to divide the high-level signal in the modulated optical signal transmitted in the waveguide mode into a first high-level signal and a second high-level signal at the initial end, where the modulated optical signal is The low level signal is divided into a first low level signal and a second low level signal, wherein the first high level signal and the first low level signal are on the first surface of the metal waveguide with the SPP Mode transmission, the second high level signal and the second low level
  • the flat signal is transmitted in the SPP mode on the second surface, the second surface being located in the core layer of the PLC.
  • the metal waveguide 13 is specifically configured to combine the first high level signal and the second high level signal at an end of the metal waveguide, and combine the first low level signal and the second low level signal,
  • the adjusted modulated optical signal is obtained according to the adjustment of the refractive index, and the transmission mode of the SPP is converted into the waveguide mode and transmitted in the core layer of the PLC.
  • the electro-optic material layer 14 is specifically configured to adjust the refractive index according to the applied voltage to adjust the phase of the first high level signal and the first low level signal, so that the first high level signal and the second
  • the phase difference between the high level signals is adjusted and constructively interfered according to the phase difference when the metal waveguide ends are combined to maintain the transmission power of the high level signal according to the result of the constructive interference
  • the phase difference between the low level signal and the second low level signal is adjusted and destructively interfered according to the phase difference when the metal waveguide ends are combined to reduce the low level signal according to the destructive interference result
  • the emission power increases the extinction ratio of the modulated optical signal, wherein the extinction ratio is a ratio of a transmit power of the high level signal to a transmit power of the low level signal.
  • the high level signal and the low level signal in the modulated optical signal are incident from the core layer of the PLC parallel to the PLC, and when the metal waveguide is contacted, the high level signal is divided into the first high level signal and a second high level signal, wherein the power of the first high level signal and the second high level signal are both half of the power of the high level signal, and the first high level signal is on the metal waveguide
  • the surface is transmitted in the SPP mode
  • the second high level signal is transmitted in the SPP mode on the lower surface of the metal waveguide
  • the refractive index of the electro-optic material layer is adjusted by the voltage applied to the electro-optic material layer, so that the first
  • the phase difference between the high level signal and the second high level signal is adjusted and constructively interferes according to the phase difference when the metal waveguide ends are combined, and the power is the first high level of half of the original high level signal.
  • the flat signal and the second high level signal are still the transmit power of the high level signal due to the constructive interference, and the transmit power of the high level signal is maintained to maintain the transmit power of the high level signal in the modulated optical signal; a first low level signal and a second low level signal, wherein the first low level signal is transmitted in an SPP mode on an upper surface of the metal waveguide, and the second low level signal is in the metal waveguide Lower surface with the SPP Mode transmission, at this time, adjusting the refractive index of the electro-optic material layer by the voltage applied to the electro-optic material layer, so that the phase difference between the first low-level signal and the second low-level signal is adjusted and in the metal waveguide Destructive interference is performed according to the phase difference when the end is merged, so that the emission power of the low-level signal in the modulated optical signal is reduced according to the destructive interference result, so that the extinction ratio of the adjusted modulated optical signal is increased, wherein The adjusted modulated optical signal is transmitted in the core layer of the PLC in the waveguide mode
  • the optical modulator when the modulated optical signal is transmitted by DML, the optical modulator provided by the embodiment of the present invention can increase the extinction ratio of the modulated optical signal, thereby eliminating signal distortion caused by dispersion.
  • An embodiment of the present invention provides an optical signal transmitting apparatus 30, as shown in FIG. 3, including: an optical signal transmitter 31 and an optical modulator 10.
  • the optical signal transmitter 3 1 is configured to send a direct current optical signal to the optical modulator 10.
  • the optical modulator 10 includes the above-mentioned optical modulator for modulating the optical signal. For a specific description, reference may be made to the corresponding description of the optical modulator for modulating the optical signal in the previous embodiment, where No longer.
  • the optical signal transmitter may be a DML.
  • the DML transmits a DC optical signal
  • the optical modulator 10 modulates the DC optical signal as an external modulator to obtain a modulated optical signal, because the optical modulation
  • the device can obtain a high operating rate in the process of modulation, the frequency of the modulated signal is very small, and the modulation performance has little dependence on the wavelength. Therefore, the dispersion of the optical signal is not generated, so that the signal caused by the dispersion can be suppressed. distortion.
  • the optical modulator in the optical signal transmitting apparatus divides the direct current optical signal into a first direct current optical signal and a second direct current optical signal through a metal waveguide, wherein the first a direct current optical signal is transmitted on the first surface of the metal waveguide, the second direct current optical signal is transmitted on the second surface, the second surface is located in the core layer of the PLC, and is applied to the electrode and the metal waveguide
  • the voltage is adjusted to adjust the refractive index of the electro-optic material layer, and finally the modulation of the refractive index is realized by adjusting the refractive index.
  • the PLC in the optical modulator has a wide range of materials, so the cost is low, and no spectroscopic setting is required.
  • the device has a simple process and a small insertion loss.
  • An embodiment of the present invention provides an optical signal transmitting apparatus 40. As shown in FIG. 4, the optical signal transmitting apparatus 40 and the optical modulator 10 are included.
  • the optical signal transmitter 41 is configured to transmit a modulated optical signal to the optical modulator 10.
  • the optical modulator 10 includes the above-described optical modulator for enhancing the extinction ratio of the optical signal. For a specific description, reference may be made to the corresponding description of the optical modulator for increasing the extinction ratio of the optical signal in the previous embodiment. I won't go into details here.
  • the optical signal transmitter may be DML.
  • the DML emits a modulated optical signal
  • the optical modulator 10 is used to enhance the extinction ratio of the modulated optical signal, thereby eliminating signal distortion caused by dispersion.
  • the extinction ratio of the modulated optical signal can be increased, thereby eliminating signal distortion caused by dispersion.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明实施例提供了一种光调制器和光信号发射装置,涉及通信领域,该光调制器的结构简单、成本低且插入损耗小。该光调制器包括PLC、电极、金属波导和电光材料层,其中,该电极与该电光材料层的一表面相接触,该金属波导位于该PLC的芯层中,该金属波导的第一表面与该电光材料层的另一表面相接触,该金属波导的第二表面位于该PLC的芯层中,该光调制器用于对光信号进行调制。

Description

一种光调制器和光信号发射装置 技术领域
本发明涉及通信领域, 尤其涉及一种光调制器和光信号发射装置。 背景技术
光调制器是高速、 长距离光通信的关键器件, 也是最重要的集 成光学器件之一, 主要是通过电压或电场的变化最终调控输出光的 折射率、 吸收率、 振幅或相位的器件。
现有的光调制器包括 MZM ( Mach-Zehnder Modulator, 马赫曾 德、调制器), EAM ( Electro Absorption Modulator , 电吸 4丈光调制 器)。 其中, ΜΖΜ包括输入 Υ分支器、 衬底层、 两个光波导、 电极、 输出 Υ分支器。 其中, 直流光信号在输入 Υ分支器上被分成两束光, 两束光分别进入两个光波导, 根据通过调整施加在电极上的电压, 使得两个光波导的折射率得到调整, 并由此改变两束光信号的相位, 使得两束光之间的相位差得到调整, 之后, 两束光在输出 Υ 分支器 上进行合并, 并根据该相位差进行干涉, 以实现对直流光信号的调 制。
从上所述可知 ΜΖΜ 需要分别调整通过电极施加在两个光波导上 的电压, 从而调整两个光波导的折射率, 另外, ΜΖΜ 需要通过如输 入 Υ分支器和输出 Υ分支器等分光器件对光信号进行分路和合路, 因此, 该 ΜΖΜ 的结构复杂, 并且由于 ΜΖΜ 的光波导釆用基于线性电 光效应的铌酸锂晶体 LiNb03制作, 而铌酸锂晶体造价辱贵, 因此, 通过该 MZM实现光调制的成本较高。
而对于 EMA, 它釆用电吸收原理制成, 通过调整施加在吸收层 上的电压对直流光信号吸收程度进行调整, 实现对直流光信号的调 制, 其中, 吸收层的宽度会根据施加电压的调整而调整, 但是, 吸 收层材料在透射光功率最大时会产生插入损耗, 而这种插入损耗是 釆用 EMA所不可避免的固有损耗。 发明内容
本发明的实施例提供一种光调制器和光信号发射装置, 该光调 制器的结构简单、 成本低且插入损耗小。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供一种光调制器, 包括:
平面光波导 PLC、 电极、 金属波导和电光材料层, 其中, 所述 电极与所述电光材料层的一表面相接触,所述金属波导位于所述 PLC 的芯层中, 所述金属波导的第一表面与所述电光材料层的另一表面 相接触, 所述金属波导的第二表面位于所述 PLC的芯层中;
所述 PLC用于通过所述 PLC的芯层传输光信号;
所述金属波导用于在起始端将在所述 PLC 的芯层中传输的所述 光信号分为第一光信号和第二光信号, 其中, 所述第一光信号在所 述金属波导的第一表面上传输, 所述第二光信号在所述第二表面上 传输, 所述第二表面位于所述 PLC的芯层中;
所述电光材料层用于通过施加在所述电极和所述金属波导上电 压的调整而调整折射率;
所述金属波导还用于, 在所述金属波导的末端将所述第一光信 号和所述第二光信号合并, 以根据折射率的调整得到调制光信号。
在第一方面第一种可能的实现方式中, 所述 PLC 具体用于, 通 过所述 PLC的芯层传输直流光信号;
所述金属波导具体用于, 在起始端将在所述 PLC 的芯层中以波 导模式传输的所述直流光信号分为第一直流光信号和第二直流光信 号, 其中, 所述第一直流光信号在所述金属波导的第一表面上以表 面等离子体振子 SPP 的模式传输, 所述第二直流光信号在所述第二 表面上以所述 SPP 的模式传输, 所述第二表面位于所述 PLC 的芯层 中;
所述金属波导还用于, 在所述金属波导的末端将所述第一直流 光信号和所述第二直流光信号合并, 以根据折射率的调整得到调制 光信号, 并将所述 SPP 的传输模式转换为所述波导模式在所述 PLC 的芯层中传输。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所 述电光材料层具体用于, 根据在所述电极和所述金属波导上施加的 电压调整所述折射率, 以调整所述第一直流光信号的相位, 使得所 述第一直流光信号与所述第二直流光信号之间的相位差得到调整并 在所述金属波导的末端合并时根据所述相位差进行干涉, 以根据所 述干涉结果得到所述调制光信号。
结合第一方面, 在第三种可能的实现方式中, 所述 P L C 具体用 于, 通过所述 P L C 的芯层传输调制光信号, 其中, 所述调制光信号 包括高电平信号和低电平信号。
所述金属波导 1 3具体用于, 在起始端将以波导模式传输的所述 调制光信号中的高电平信号分为第一高电平信号和第二高电平信 号, 将所述调制光信号中的低电平信号分为第一低电平信号和第二 低电平信号, 其中, 所述第一高电平信号和所述第一低电平信号在 所述金属波导的第一表面上以 S P P 的模式传输, 所述第二高电平信 号和所述第二低电平信号在所述第二表面上以 S P P 的模式传输, 所 述第二表面位于所述 P L C的芯层中;
所述金属波导 1 3具体用于, 在所述金属波导的末端将所述第一 高电平信号和所述第二高电平信号合并, 将所述第一低电平信号和 所述第二低电平信号合并, 以根据折射率的调整得到调整后的调制 光信号, 并将所述 S P P 的传输模式转换为所述波导模式在所述 P L C 的芯层中传输;
所述电光材料层 1 4 具体用于, 根据施加的电压调整所述折射 率, 以调整所述第一高电平信号和所述第一低电平信号的相位, 使 得所述第一高电平信号与所述第二高电平信号之间的相位差得到调 整并在金属波导的末端合并时根据所述相位差进行相长干涉, 以根 据所述干涉结果保持所述高电平信号的发射功率; 使得所述第一低 电平信号与所述第二低电平信号之间的相位差得到调整并在金属波 导的末端合并时根据所述相位差进行相消干涉, 以根据所述干涉结 果减小所述低电平信号的发射功率, 使得所述调制光信号的消光比 增大, 其中, 所述消光比为所述高电平信号的发射功率与所述低电 平信号的发射功率之比。
第二方面, 提供一种光信号发射装置, 包括光信号发射器和光 调制器;
所述光信号发射器, 用于向所述光调制器发送直流光信号; 所述光调制器包括上述第一方面至第二种可能的实现方式中任 一所述的光调制器。
在第二方面第一种可能的实现方式中, 所述光信号发射器包括 直调激光器 DML。
第三方面, 提供一种光信号发射装置, 包括光信号发射器和光 调制器;
所述光信号发射器, 用于向所述光调制器发送调制光信号; 所述光调制器包括上述第一方面第三种可能的实现方式所述的 光调制器。
在第三方面第一种可能的实现方式中, 所述光信号发射器包括 直调激光器 DML。
釆用本发明实施例提供的光调制器和光信号发射装置, 该光调 制器通过金属波导将光信号分为第一光信号和第二光信号, 其中, 该第一光信号在该金属波导的第一表面上传输, 该第二光信号在该 第二表面上传输, 该第二表面位于该 PLC 的芯层中, 并通过施加在 电极和金属波导上电压的调整而调整电光材料层的折射率, 并最终 通过折射率的调整实现对光信号的调制, 该光调制器中的 PLC 所涉 及的材料广泛, 因此成本较低, 且不需要设置分光器件, 实现结构 简单且插损较小。 附图说明 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述 中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅 仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种光调制器的结构示意图;
图 2为本发明实施例提供的一种发射功率与电光材料层的折射率之 间的关系示意图;
图 3为本发明实施例提供的一种光信号发射装置的结构示意图; 图 4为本发明实施例提供的另一种光信号发射装置的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供一种光调制器 10, 如图 1 所示, 图中箭头表 示光信号的传输方向, 该光调制器 10 包括: PLC 11、 电极 12、 金 属波导 13和电光材料层 14。
其中, 该 PLC 11 包括芯层 111、 底衬层 112和覆盖层 113, 该 电极 12 与该电光材料层 14 的一表面 (如图中所示的电光材料上表 面) 相接触, 该金属波导 13位于该 PLC 11 的芯层 111 中, 该金属 波导 13的第一表面 a (如图中所示的金属波导的上表面) 与该电光 材料层的另一表面 (如图中所示的电光材料层的下表面 ) 相接触, 该金属波导 13的第二表面 b (如图中所示的金属波导的下表面 ) 位 于该 PLC 11 的芯层 111 中。 其中, 该 PLC 11 用于通过该 PLC的芯 层 111传输光信号。
需要说明的是,衬底层 112和覆盖层 113的折射率小于芯层 111, 这就将光信号集中限制在 PLC 芯层 111 中传输。 其中, 该光信号可 以是直流光信号, 也可以是调制光信号, 当该光调制器用于对光信 号进行调制时, 则在该 PLC 的芯层中传输的光信号可以为直流光信 号, 当该光调制器用于增加光信号的消光比时, 该 PLC 的芯层中传 输的光信号可以为调制光信号。
该金属波导 13用于在起始端 (如图中所示金属波导的 A端)将 在该 PLC的芯层中传输的该光信号分为第一光信号和第二光信号。
其中, 该第一光信号在该金属波导的第一表面上传输, 该第二 光信号在该第二表面上传输, 该第二表面位于该 PLC的芯层中。
需要说明的是, 在金属波导的上下表面有着密度很高且分布均 匀的自由电子, 当受到电场的激发时, 该金属波导的上表面和下表 面分别依电场方向形成不均匀的密度分布, 亦即生成瞬间的诱导式 电偶极, 并以某一特定频率进行集体式的电偶极振荡, 形成 SPP ( Surface Plasmon Polariton, 表面等离子体振子), 贝' J该第一光 信号和第二光信号以该 SPP 的模式在金属波导的上表面和下表面传 输光信号。
该电光材料层 14 用于通过施加在该电极和该金属波导上电压 的调整而调整折射率。
需要说明的是, 由于该电光材料层的不同, 则调整该电光材料 层的折射率施加的电压也不同, 也就是说, 施加的电压与折射率之 间的关系是根据电光材料层的材料决定的。
该金属波导 13还用于, 在该金属波导的末端 (如图中所示的 B 端) 将该第一光信号和该第二光信号合并, 以根据折射率的调整得 到调制光信号。
具体地, 该第一光信号和第二光信号在该金属波导的末端合成 为调制光信号, 则合成后的调制光信号继续在该 PLC的芯层中传输。
在本发明实施例中, 可以通过在电光材料层的上表面和下表面 施力。电压, 例如, 在电极和金属波导上施加电压, 由于电极的下表 面与电光材料层的上表面相接触, 且该金属波导的上表面与电光材 料层的下表面相接触, 因此, 通过电极和金属波导的导电性将该电 压施加在该电光材料层的上表面和下表面, 则该电光材料层的折射 率随着该施加的电压的变化而变化, 另外, 由于第一光信号在金属 波导的上表面以 SPP 的模式传输且该金属波导的上表面与该电光材 料层的下表面相接触, 因此, 该电光材料层折射率的变化, 改变了 该第一光信号的相位, 则在该金属波导的末端, 当该第一光信号与 该第二光信号合并时, 形成相位差, 并根据该相位差发生干涉, 以 根据干涉结果得到调制光信号, 并且, 该调制光信号以波导模式在 该 PLC 芯层中传输, 从而实现了对该光信号的发射功率的调整, 进 而实现对该光信号的调制或者提高了该光信号的消光比。 例如, 当 光信号为直流光信号时, 实现了光信号的调制, 当光信号为调制光 信号, 则增加了该光信号的消光比。
在本发明实施例一种可能的实现方式中, 该光调制器可以用作 对直流光信号的调制, 则该光调制器 10 中的 PLC 11 具体用于, 通 过所述 PLC 11 的芯层 111传输直流光信号, 该金属波导 13具体用 于, 在起始端将在该 PLC 11 的芯层 111 中以波导模式传输的该直流 光信号分为第一直流光信号和第二直流光信号, 其中, 该第一直流 光信号在该金属波导的第一表面上以该 SPP 的模式传输, 该第二直 流光信号在该第二表面上以该 SPP 的模式传输, 该第二表面位于该 PLC 11 的芯层 111 中, 该金属波导 13 还用于, 在该金属波导的末 端将该第一直流光信号和该第二直流光信号合并, 以根据折射率的 调整得到调制光信号, 并将该 SPP 的传输模式转换为该波导模式在 所述 PLC的芯层中传输。
具体地, 该电光材料层 14 具体用于, 根据在该电极 12 和该金 属波导 13上施加的电压调整该折射率, 以调整该第一直流光信号的 相位, 使得该第一直流光信号与该第二直流光信号之间的相位差得 到调整并在金属波导末端合并时根据该相位差进行干涉, 以根据该 干涉结果得到该调制光信号。
示例地, 直流光信号从 PLC 的芯层平行于该 PLC入射, 在接触 到该金属波导时, 分为第一直流光信号和第二直流光信号, 其中, 该第一直流光信号在该金属波导的上表面以该 SPP 的模式传输, 该 第二直流光信号在该金属波导的下表面以该 SPP的模式传输, 此时, 通过施加在电光材料层的电压调整该电光材料层的折射率, 从而实 现对该第一直流光信号相位的调整, 这样, 当该第一直流光信号在 该金属波导的末端与该第二直流光信号合并时, 产生相位差, 并根 据该相位差进行干涉, 以根据干涉结果得到调制光信号, 该调制光 信号以该波导模式在该 PLC 芯层中传输, 从而实现对该直流光信号 的调制。
图 2 展示了直流光信号经过该光调制器调制后的调制光信号的 发射功率与电光材料层的折射率之间的关系, 在图 2 所示的实施例 中, 该直流光信号波长为 1 55 0nm (纳米), 则通过施加的电压对电 光材料层的折射率进行调整, 进而得到如图 2 所示的折射率所对应 的调制光信号的发射功率。
这样, 光信号在 PLC 的芯层中传输时, 通过该金属波导分为第 一光信号和第二光信号, 并通过调整施加在电光材料层两端的电压 调整该电光材料层的折射率, 从而根据折射率的调整得到调制光信 号。
需要说明的是, 上述 PLC所涉及材料非常广泛, 例如二氧化硅、 磷化铟等材料, 金属波导可用金、 银、 铝、 铜等, 因此, 成本较低。
在本发明另一种可能的实现方式中, 该光调制器可以用作增加 光信号的消光比, 当本发明实施例釆用 DML ( D i r e c t Modu l a t ed La s e r , 直调激光器) 作为高速光信号发射器时, 会使得光信号产生 正啁啾, 使得信号脉冲展宽, 导致消光比降低, 从而发生色散, 则 该光调制器用于增大消光比, 从而消除色散引起的信号畸变。
可选地, 该光调制器 1 0 中的 PLC 1 1 具体用于, 通过该 PLC 的 芯层 1 1 1传输调制光信号。
其中, 该调制光信号包括高电平信号和低电平信号。
该金属波导 1 3具体用于, 在起始端将以波导模式传输的该调制 光信号中的高电平信号分为第一高电平信号和第二高电平信号, 将 该调制光信号中的低电平信号分为第一低电平信号和第二低电平信 号, 其中, 该第一高电平信号和该第一低电平信号在该金属波导的 第一表面上以该 SPP 的模式传输, 该第二高电平信号和该第二低电 平信号在该第二表面上以该 SPP的模式传输,该第二表面位于该 PLC 的芯层中。
该金属波导 13具体用于, 在该金属波导的末端将该第一高电平 信号和该第二高电平信号合并, 将该第一低电平信号和该第二低电 平信号合并, 以根据折射率的调整得到调整后的调制光信号, 并将 该 SPP的传输模式转换为该波导模式在所述 PLC的芯层中传输。
该电光材料层 14具体用于, 根据施加的电压调整该折射率, 以 调整该第一高电平信号和该第一低电平信号的相位, 使得该第一高 电平信号与该第二高电平信号之间的相位差得到调整并在该金属波 导末端合并时根据该相位差进行相长干涉, 以根据该相长干涉的结 果保持该高电平信号的发射功率; 使得该第一低电平信号与该第二 低电平信号之间的相位差得到调整并在该金属波导末端合并时根据 该相位差进行相消干涉, 以根据该相消干涉结果减小该低电平信号 的发射功率, 使得该调制光信号的消光比增大, 其中, 该消光比为 该高电平信号的发射功率与该低电平信号的发射功率之比。
示例的, 调制光信号中的高电平信号和低电平信号从 PLC 的芯 层平行于该 PLC 入射, 在接触到该金属波导时, 该高电平信号分为 第一高电平信号和第二高电平信号, 其中, 该第一高电平信号与该 第二高电平信号的功率均为该高电平信号功率的一半, 该第一高电 平信号在该金属波导的上表面以该 SPP 的模式传输, 该第二高电平 信号在该金属波导的下表面以该 SPP 的模式传输,通过施加在电光 材料层的电压调整该电光材料层的折射率, 使得该第一高电平信号 与该第二高电平信号之间的相位差得到调整并在金属波导末端合并 时根据该相位差进行相长干涉, 则功率均为原高电平信号一半的第 一高电平信号与第二高电平信号由于相长干涉合并后的信号的发射 功率依然为该高电平信号的发射功率, 以保持该调制光信号中高电 平信号的发射功率; 该低电平信号分为第一低电平信号和第二低电 平信号, 其中, 该第一低电平信号在该金属波导的上表面以该 SPP 的模式传输, 该第二低电平信号在该金属波导的下表面以该 SPP 的 模式传输, 此时, 通过施加在电光材料层的电压调整该电光材料层 的折射率, 使得该第一低电平信号与该第二低电平信号之间的相位 差得到调整并在金属波导末端合并时根据该相位差进行相消干涉, 以根据该相消干涉结果减小该调制光信号中低电平信号的发射功 率, 使得该调整后的调制光信号的消光比增大, 其中, 该调整后的 调制光信号以该波导模式在该 PLC的芯层中传输。
这样, 当釆用 DML 发射调制光信号时, 本发明实施例提供的光 调制器能够增大该调制光信号的消光比, 从而消除色散引起的信号 畸变。
本发明实施例提供一种光信号发射装置 3 0 , 如图 3所示, 包括: 光信号发射器 3 1和光调制器 1 0。
该光信号发射器 3 1 , 用于向该光调制器 1 0发送直流光信号。 该光调制器 1 0 包括上述用于对光信号进行调制时的光调制器, 其具体的描述可以参照上一实施例中用于对光信号进行调制时的光 调制器的对应描述, 此处不再赘述。
需要说明的是, 该光信号发射器可以为 DML , 此时, 该 DML 发 射直流光信号, 该光调制器 1 0作为外调制器对该直流光信号进行调 制得到调制光信号, 由于该光调制器在调制的过程中可获得很高的 工作速率, 调制信号的频率啁啾非常小, 调制性能对波长的依赖性 很小, 因此, 不会对光信号产生色散, 从而能够抑制色散引起的信 号畸变。
这样, 釆用本发明实施例提供的光信号发射装置, 该光信号发 射装置中的光调制器通过金属波导将直流光信号分为第一直流光信 号和第二直流光信号, 其中, 该第一直流光信号在该金属波导的第 一表面上传输, 该第二直流光信号在该第二表面上传输, 该第二表 面位于该 PLC 的芯层中, 并通过施加在电极和金属波导上电压的调 整而调整电光材料层的折射率, 并最终通过折射率的调整实现对直 流光信号的调制, 该光调制器中的 PLC 所涉及的材料广泛, 因此成 本较低, 且不需要设置分光器件, 实现工艺简单且插损较小。 本发明实施例提供一种光信号发射装置 40, 如图 4所示, 包括: 光信号发射器 41和光调制器 10。
该光信号发射器 41, 用于向该光调制器 10发送调制光信号。 该光调制器 10 包括上述用于增强光信号的消光比时的光调制 器, 其具体的描述可以参照上一实施例中用于增加光信号的消光比 时的光调制器的对应描述, 此处不再赘述。
需要说明的是, 该光信号发射器可以为 DML, 此时, 该 DML 发 射调制光信号, 该光调制器 10用于增强该调制光信号的消光比, 从 而消除色散引起的信号畸变。
这样, 釆用本发明实施例提供的光信号发射装置, 能够增大调 制光信号的消光比, 从而消除色散引起的信号畸变。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种光调制器, 其特征在于, 包括: 平面光波导 PL C、 电极、 金属波导和电光材料层, 其中, 所述电极与所述电光材料层的一表 面相接触, 所述金属波导位于所述 P L C 的芯层中, 所述金属波导的 第一表面与所述电光材料层的另一表面相接触, 所述金属波导的第 二表面位于所述 P LC的芯层中;
所述 P LC用于通过所述 P LC的芯层传输光信号;
所述金属波导用于在起始端将在所述 P LC 的芯层中传输的所述 光信号分为第一光信号和第二光信号, 其中, 所述第一光信号在所 述金属波导的第一表面上传输, 所述第二光信号在所述第二表面上 传输, 所述第二表面位于所述 P LC的芯层中;
所述电光材料层用于通过施加在所述电极和所述金属波导上电 压的调整而调整折射率;
所述金属波导还用于, 在所述金属波导的末端将所述第一光信 号和所述第二光信号合并, 以根据折射率的调整得到调制光信号。
2、 根据权利要求 1所述的光调制器, 其特征在于, 所述 PL C具 体用于, 通过所述 P LC的芯层传输直流光信号;
所述金属波导具体用于, 在起始端将在所述 P LC 的芯层中以波 导模式传输的所述直流光信号分为第一直流光信号和第二直流光信 号, 其中, 所述第一直流光信号在所述金属波导的第一表面上以表 面等离子体振子 S PP 的模式传输, 所述第二直流光信号在所述第二 表面上以所述 S P P的模式传输, 所述第二表面位于所述 PL C的芯层 中;
所述金属波导还用于, 在所述金属波导的末端将所述第一直流 光信号和所述第二直流光信号合并, 以根据折射率的调整得到调制 光信号, 并将所述 S P P 的传输模式转换为所述波导模式在所述 P LC 的芯层中传输。
3、 根据权利要求 2所述的光调制器, 其特征在于, 所述电光材 料层具体用于, 根据在所述电极和所述金属波导上施加的电压调整 所述折射率, 以调整所述第一直流光信号的相位, 使得所述第一直 流光信号与所述第二直流光信号之间的相位差得到调整并在金属波 导的末端合并时根据所述相位差进行干涉, 以根据所述干涉结果得 到所述调制光信号。
4、 根据权利要求 1所述的光调制器, 其特征在于, 所述 PL C具 体用于, 通过所述 P LC 的芯层传输调制光信号, 其中, 所述调制光 信号包括高电平信号和低电平信号;
所述金属波导具体用于, 在起始端将以波导模式传输的所述调 制光信号中的高电平信号分为第一高电平信号和第二高电平信号, 将所述调制光信号中的低电平信号分为第一低电平信号和第二低电 平信号, 其中, 所述第一高电平信号和所述第一低电平信号在所述 金属波导的第一表面上以所述 S PP 的模式传输, 所述第二高电平信 号和所述第二低电平信号在所述第二表面上以所述 S PP 的模式传 输, 所述第二表面位于所述 PL C的芯层中;
所述金属波导具体用于, 在所述金属波导的末端将所述第一高 电平信号和所述第二高电平信号合并, 将所述第一低电平信号和所 述第二低电平信号合并, 以根据折射率的调整得到调整后的调制光 信号, 并将所述 S P P的传输模式转换为所述波导模式在所述 P LC的 芯层中传输;
所述电光材料层具体用于, 根据施加的电压调整所述折射率, 以调整所述第一高电平信号和所述第一低电平信号的相位, 使得所 述第一高电平信号与所述第二高电平信号之间的相位差得到调整并 在金属波导的末端合并时根据所述相位差进行相长干涉, 以根据所 述干涉结果保持所述高电平信号的发射功率; 使得所述第一低电平 信号与所述第二低电平信号之间的相位差得到调整并在金属波导的 末端合并时根据所述相位差进行相消干涉, 以根据所述干涉结果减 小所述低电平信号的发射功率,使得所述调制光信号的消光比增大, 其中, 所述消光比为所述高电平信号的发射功率与所述低电平信号 的发射功率之比。
5、 一种光信号发射装置, 其特征在于, 包括光信号发射器和光 调制器;
所述光信号发射器, 用于向所述光调制器发送直流光信号; 所述光调制器包括上述权利要求 1至 3任一项所述的光调制器。
6、 根据权利要求 5所述的装置, 其特征在于, 所述光信号发射 器包括直调激光器 DML。
7、 一种光信号发射装置, 其特征在于, 包括光信号发射器和光 调制器,
所述光信号发射器, 用于向所述光调制器发送调制光信号; 所述光调制器包括上述权利要求 4所述的光调制器。
8、 根据权利要求 7所述的装置, 其特征在于, 所述光信号发射 器包括直调激光器 DML。
PCT/CN2013/082183 2013-08-23 2013-08-23 一种光调制器和光信号发射装置 WO2015024254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/082183 WO2015024254A1 (zh) 2013-08-23 2013-08-23 一种光调制器和光信号发射装置
CN201380001603.7A CN104583856B (zh) 2013-08-23 2013-08-23 一种光调制器和光信号发射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/082183 WO2015024254A1 (zh) 2013-08-23 2013-08-23 一种光调制器和光信号发射装置

Publications (1)

Publication Number Publication Date
WO2015024254A1 true WO2015024254A1 (zh) 2015-02-26

Family

ID=52482986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082183 WO2015024254A1 (zh) 2013-08-23 2013-08-23 一种光调制器和光信号发射装置

Country Status (2)

Country Link
CN (1) CN104583856B (zh)
WO (1) WO2015024254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186312A1 (en) * 2022-03-31 2023-10-05 Huawei Technologies Co., Ltd. Electro-optical device with increased extinction ratio

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115857200B (zh) * 2023-02-27 2023-06-02 中科鑫通微电子技术(北京)有限公司 电光调制器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095485A1 (en) * 2006-10-20 2008-04-24 Fujitsu Limited Optical modulator and transmitter
CN101622570A (zh) * 2007-03-01 2010-01-06 朗讯科技公司 高速半导体光调制器
CN102445769A (zh) * 2010-10-06 2012-05-09 三菱电机株式会社 光调制器
CN102819120A (zh) * 2011-06-09 2012-12-12 三菱电机株式会社 光调制器以及光调制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394962B2 (en) * 2006-02-20 2008-07-01 Samsung Electro-Mechanics Co., Ltd. Optical waveguide for transmitting surface plasmon-polariton wave
US8218226B2 (en) * 2008-08-15 2012-07-10 Corning Incorporated Surface-plasmon-based optical modulator
KR101647046B1 (ko) * 2010-09-03 2016-08-10 삼성전자주식회사 표면 플라즈몬 폴라리톤 변조기
CN102955268B (zh) * 2012-10-29 2015-10-28 上海交通大学 基于金属纳米波导的表面等离子光学调制器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095485A1 (en) * 2006-10-20 2008-04-24 Fujitsu Limited Optical modulator and transmitter
CN101622570A (zh) * 2007-03-01 2010-01-06 朗讯科技公司 高速半导体光调制器
CN102445769A (zh) * 2010-10-06 2012-05-09 三菱电机株式会社 光调制器
CN102819120A (zh) * 2011-06-09 2012-12-12 三菱电机株式会社 光调制器以及光调制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186312A1 (en) * 2022-03-31 2023-10-05 Huawei Technologies Co., Ltd. Electro-optical device with increased extinction ratio

Also Published As

Publication number Publication date
CN104583856A (zh) 2015-04-29
CN104583856B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
Janner et al. Micro‐structured integrated electro‐optic LiNbO3 modulators
JP5185939B2 (ja) 電界吸収型変調器の干渉動作
US9568801B2 (en) Optical modulator
WO2007023857A1 (ja) 強度バランス機能を有する光fsk/ssb変調器
JP2007531022A (ja) 光変調器
JP2008116865A (ja) ネスト型変調器
US20110097029A1 (en) Super Flat Optical Frequency Comb Signal Generator
JP4527993B2 (ja) 光変調装置及び光変調方法
US20110188800A1 (en) Optical modulation device and optical modulation method
JP5198996B2 (ja) 光変調器
Haffner et al. High-speed plasmonic Mach-Zehnder modulator in a waveguide
JP5594192B2 (ja) 光変調器
Yamaguchi et al. Single Mach-Zehnder modulator with active Y-branch for higher than 60 dB extinction-ratio operation
JP4980620B2 (ja) 集積型光変調器及びその製造方法
WO2015024254A1 (zh) 一种光调制器和光信号发射装置
JPH02269309A (ja) 光変調方法及び光変調器
JPH0713111A (ja) 偏光光信号の変調装置及び方法
JP2002062516A (ja) 周期ドメイン反転構造電気光学ssb光変調器・光周波数シフタ
Tyagi et al. A Review on Optical Modulators Used in Radio Over Fiber (RoF) System for 6G IoT Applications
JPH08160368A (ja) 半導体光強度変調装置及び半導体光装置
Arya et al. Performance improved tunable millimeter‐wave signal generation employing UFBG based AOTF with bit walk‐off effect compensation
JP5622293B2 (ja) ネスト型変調器
US8023776B2 (en) Mach-Zehnder type optical modulator
US20230056833A1 (en) Optical device and optical communication apparatus
JP2011186057A (ja) 半導体マッハツェンダ型光変調器、光伝送装置、半導体マッハツェンダ型光変調器の製造方法及び半導体マッハツェンダ型光変調器の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891661

Country of ref document: EP

Kind code of ref document: A1