WO2015023157A1 - 고전압 dc 차단기 - Google Patents

고전압 dc 차단기 Download PDF

Info

Publication number
WO2015023157A1
WO2015023157A1 PCT/KR2014/007604 KR2014007604W WO2015023157A1 WO 2015023157 A1 WO2015023157 A1 WO 2015023157A1 KR 2014007604 W KR2014007604 W KR 2014007604W WO 2015023157 A1 WO2015023157 A1 WO 2015023157A1
Authority
WO
WIPO (PCT)
Prior art keywords
main switch
current
capacitor
circuit
voltage
Prior art date
Application number
PCT/KR2014/007604
Other languages
English (en)
French (fr)
Inventor
박정수
한세희
황휘동
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to US14/912,092 priority Critical patent/US10170903B2/en
Priority to EP14836732.9A priority patent/EP3035471B1/en
Priority to CN201480055456.6A priority patent/CN105659459B/zh
Publication of WO2015023157A1 publication Critical patent/WO2015023157A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order

Definitions

  • the present invention relates to a high voltage direct current (DC) circuit breaker, and more particularly, to a high voltage DC circuit breaker that blocks a fault current flowing in a DC line when a fault occurs on one side of a DC line for transmission or distribution.
  • DC direct current
  • a high voltage DC circuit breaker is a switching device capable of blocking a current flowing through a high voltage transmission line of about 50 mA or more, such as a high voltage direct current (HVDC) transmission system.
  • This high voltage DC circuit breaker serves to block the fault current in the event of a fault in the DC line.
  • the present invention can also be applied to a medium voltage DC power distribution system having a DC voltage level of about 1 to 50 mA.
  • an object of the present invention is to provide a high voltage DC circuit breaker capable of completely blocking a fault current in the main switch even when a high voltage DC circuit breaker does not apply a resonance current to the main switch.
  • Another object of the present invention is to provide a high voltage DC circuit breaker capable of blocking fault currents in both directions with a single circuit.
  • the present invention has an additional object to provide a high voltage DC circuit breaker to apply a small number of semiconductor devices to block the fault current.
  • Another object of the present invention is to provide a high voltage DC circuit breaker implemented to perform a reclosing operation through a main switch.
  • a high voltage DC circuit breaker for blocking a current flowing in a DC line, the high voltage DC circuit breaker comprising: a main switch installed at the DC line and open when a failure occurs on one side or the other side of the DC line to cut off the current of the DC line; A nonlinear resistor connected in parallel to the main switch; An LC circuit connected to said main switch and including a capacitor and a reactor connected in series for generating LC resonance; A first bidirectional switching element connected in series with the LC circuit to switch a bidirectional current flow; And a second bidirectional switching device connected to the LC circuit in parallel to switch the current flow to achieve LC resonance in both directions. It includes.
  • the charging resistor for charging a DC voltage (Vc) to the capacitor at initial startup, the charging resistor is installed between the contact between the LC circuit and the first bi-directional switching element and the ground (GND) do.
  • each of the first and second bidirectional switching elements includes a pair of power semiconductor switches, each of which can be turned on or turned on / off, and the pair of power semiconductor switches are connected in parallel in opposite directions.
  • the power semiconductor switch (G1-G2) of the first bidirectional switching device is After the power semiconductor switch G4 of one of the second bidirectional switching devices is turned on in the OFF state, a voltage of -Vc is charged to the capacitor by LC resonance between the reactor and the capacitor of the LC circuit.
  • the power semiconductor switch G4 is turned off, and the power semiconductor switch G2 of one of the first bidirectional switching elements is turned on to supply current to the main switch by the voltage -Vc charged to the capacitor.
  • the supplied current becomes a zero current in the main switch so that the arc generated in the main switch is extinguished.
  • the current supplied to the main switch by -Vc charged by the capacitor is opposite in direction to the fault current sustained through the arc in the main switch and is larger in magnitude.
  • the power semiconductor switch G2 is turned OFF after the capacitor is recharged to + Vc.
  • the power semiconductor switch G3-G4 of the second bidirectional switching element when the main switch is opened due to a failure on the other side of the DC line and an arc occurs when the main switch is opened, the power semiconductor switch G3-G4 of the second bidirectional switching element is In the OFF state, the power semiconductor switch G1 of one of the first bidirectional switching devices is turned ON to supply current to the main switch by a + Vc voltage precharged to a capacitor of the LC circuit. By the supplied current, the main switch 110 becomes a zero current so that the arc generated in the main switch is extinguished.
  • the current supplied to the main switch by + Vc precharged by the capacitor is opposite in direction and larger in magnitude to the fault current sustained through the arc in the main switch.
  • the capacitor of the LC circuit is charged to ⁇ Vc by the voltage of one side that is relatively higher than the other side of the DC line, and then the power semiconductor switch G1 is OFF, after which the power semiconductor switch G3 of one of the second bidirectional switching elements is turned ON to recharge the + Vc voltage to the capacitor by LC resonance between the capacitor and the reactor of the LC circuit. do.
  • the voltage at one side that is relatively higher than the other side of the DC line is consumed in the nonlinear resistor.
  • the present invention allows the arc to be easily and quickly extinguished when an arc occurs during the switching operation of the main switch in the high voltage DC circuit breaker to completely block the fault current.
  • the high voltage DC circuit breaker is implemented by minimizing the number of electric devices, the size and cost of the circuit breaker can be reduced.
  • the blocking operation can be performed again.
  • FIG. 1 is a block diagram of a conventional high voltage DC circuit breaker.
  • FIG. 2 is a block diagram of a high-voltage DC circuit breaker according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a fault current blocking process in the high voltage DC circuit breaker when a fault occurs on one side of the high voltage DC line according to the present invention.
  • FIG. 4 is a schematic diagram showing a fault current blocking process in a high voltage DC circuit breaker when a fault occurs on the other side of the high voltage DC line according to the present invention.
  • FIG. 2 is a block diagram of a high voltage DC circuit breaker according to an exemplary embodiment of the present invention.
  • the high voltage DC circuit breaker 100 includes a main switch 110 installed on the DC line 10 connecting the A side and the B side.
  • the main switch 110 basically serves to block the DC line 10 so that a fault current does not continuously flow into a circuit in which a fault occurs when a fault occurs in the A side or the B side. To this end, the main switch 110 is closed in the normal state and is opened when a failure occurs.
  • the main switch 110 is controlled by the control signal of the control unit (not shown).
  • the nonlinear resistor 120 is connected to the main switch 110 in parallel to prevent excessive voltage above the rated voltage from being applied to both ends of the high voltage DC circuit breaker 100 when the main switch 110 is blocked.
  • the nonlinear resistor 120 may be implemented as, for example, a varistor.
  • the series connection of the LC circuit 130 and the first bidirectional switching device 140 is connected in parallel to the main switch 110.
  • the second bidirectional switching device 150 is connected in parallel to the LC circuit 130.
  • the LC circuit 130 is configured by connecting the capacitor 131 and the reactor 132 in series.
  • Each bidirectional switching device 150 and 160 has a structure in which two power semiconductor switches G1 to G4 are connected in parallel so that current flows in both directions, and they are arranged in opposite directions.
  • the operations of the power semiconductor switches G1 to G4 are controlled by a controller (not shown).
  • the power semiconductor switches G1 to G4 are turn-on controllable devices, for example, may be implemented as a thyristor.
  • the turn-on / turn-off controllable element may be implemented by, for example, GTO, IGCT, IGBT, or the like.
  • the charging resistor 160 is connected between the LC circuit 130 and the contact of the first bidirectional switching element 140 and the ground GND.
  • the charging resistor 160 allows the capacitor 131 of the LC circuit 130 to be initially charged by the DC voltage Vc.
  • FIG. 3 is a schematic diagram showing a fault current blocking process when a fault occurs in one side B of the high voltage DC breaker according to an embodiment of the present invention
  • FIG. 4 is the other side A of the high voltage DC breaker according to another embodiment of the present invention. Is a schematic diagram showing the fault current blocking process in case of fault.
  • the main switch 110 is closed.
  • the first bidirectional switching device 140 and the second bidirectional switching device 150 are turned off and blocked. Accordingly, when a voltage is applied to the DC line 10, the normal current flows along the DC line 10 through the main switch 110, and the capacitor 131 and the reactor 132 of the LC circuit 130, The DC voltage Vc is charged in the capacitor 131 through the charging resistor 160.
  • the controller detects a failure and opens the main switch 110.
  • the main switch 110 is opened, an arc occurs between the switching terminals of the main switch 110 so that a fault current flows continuously from A to B.
  • the power semiconductor switches G1 and G2 connected in parallel with each other in the first bidirectional switching device 140 are turned off, and the power semiconductor switch G4 at the bottom of the second bidirectional switching device 150 is turned on.
  • LC resonance occurs between the reactor 132 and the capacitor 131 through the lower power semiconductor switch G4, and the voltage of the capacitor 131 becomes -Vc.
  • the lower power semiconductor switch G4 is turned off and the power semiconductor switch G2 on the right side of the first bidirectional switching element 140 is turned on and is charged by the -Vc voltage charged in the capacitor 131.
  • Current is supplied to the B side through the power semiconductor switch G2 on the right side.
  • the current supplied in this way the current in the main switch 110 becomes 0 (zero) and the arc is extinguished.
  • the current supplied to the B side as described above is the opposite direction and the fault current that is sustained through the arc in the main switch 110 is preferably larger in size. To this end, the charging capacity of the capacitor can be determined.
  • the voltage of the A side is rapidly increased relative to the B side.
  • the voltage on the A side increased in this manner is consumed by the nonlinear resistor 120 connected in parallel to the main switch 110, and the capacitor 131 is recharged to + Vc through the LC circuit 130 and the first bidirectional switching device 140. do. Thereafter, the power semiconductor switch G2 on the right side is turned off.
  • the high voltage DC circuit breaker 100 of the present invention is characterized in that the reclosing operation of the main switch 110 is possible. That is, when the B side fault is removed, the control unit may close the main switch 110 to form a close in the DC line 10. When closing the main switch 110 to form a closed, if the B-side failure is not removed to repeat the above process. This reclosing is possible because the capacitor 131 remains charged at + Vc in the LC circuit 130 after the arc is extinguished in the main switch 110.
  • an arc generated in the main switch 110 is blocked by one LC resonance in the LC circuit 130 to block a fault current flowing through the arc.
  • the control unit detects the failure to open the main switch 110.
  • the main switch 110 is opened, an arc occurs between the switching terminals of the main switch 110 so that a fault current continuously flows from B ⁇ A.
  • the power semiconductor switches G3 and G4 connected in parallel with each other of the second bidirectional switching element 150 are turned off and the power semiconductor switch G1 on the left side of the first bidirectional switching element 140 is turned on. ON)
  • the current is supplied to the A side by the voltage stored in the capacitor 131 of the LC circuit 130.
  • the current supplied to the A side is opposite in direction to the fault current sustained through the arc in the main switch 110 and is preferably larger.
  • the high voltage DC circuit breaker 100 of the present invention may operate by reclosing the main switch 110. That is, when the A side fault is removed, the control unit may close the main switch 110 to form a close in the DC line 10. At this time, in the case of closing the main switch 110 to form a closed, if the A-side failure is not removed to repeat the above process. This reclosing is possible because the LC resonance is made in the LC circuit 130 after the arc is extinguished in the main switch 110, so that the capacitor 131 always maintains the charging state at + Vc.
  • the high voltage DC circuit breaker 100 is a power semiconductor of the second bidirectional switching element 150, not the main switch (CB) as the current caused by the LC resonance shown in FIG. It is characterized in that it is made through the switches (G3, G4). Therefore, the current oscillation due to the LC resonance is not increased as in the prior art.
  • the LC resonance is performed only once so that the voltage polarity of the capacitor 131 of the LC circuit 130 is reversed by the LC resonance. This causes the blocking speed to increase compared to the prior art.
  • the current stored in the opposite direction to the fault current flowing in the main switch 110 is injected into the main switch 110 by the voltage stored in the capacitor 131 to make zero current so as to extinguish the arc. .

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

본 발명은 송전 또는 배전용 직류(DC) 선로의 일측에 고장발생시 그 DC 선로에 흐르는 고장전류를 차단하도록 하는 고전압 DC 차단기에 관한 것이다. 본 발명에 따른 고전압 DC 차단기는, 직류(DC) 선로에 흐르는 전류를 차단하기 위한 고전압 DC 차단기에 있어서, 상기 DC 선로에 설치되고 상기 DC 선로의 일측 또는 타측에 고장발생시 개방되어 상기 DC 선로의 전류를 차단하기 위한 메인스위치; 상기 메인스위치에 병렬연결된 비선형 저항기; 상기 메인스위치에 병렬연결되고 LC 공진을 발생하기 위해 직렬연결된 커패시터 및 리액터를 포함하는 LC 회로; 상기 LC 회로에 직렬연결되어 양방향 전류흐름을 스위칭하는 제1 양방향 스위칭소자; 및 상기 LC 회로에 병렬연결되어 양방향으로 LC 공진이 이루어지도록 전류흐름을 스위칭하는 제2 양방향 스위칭소자를 포함한다.

Description

고전압 DC 차단기
본 발명은 고전압 직류(DC) 차단기에 관한 것으로서, 특히 송전 또는 배전용 직류(DC) 선로의 일측에 고장발생시 그 DC 선로에 흐르는 고장전류를 차단하도록 하는 고전압 DC 차단기에 관한 것이다.
통상 고전압 DC 차단기(circuit breaker)는 고전압 직류(HVDC: High Voltage Direct Current) 송전 시스템 등과 같은 약 50㎸ 이상의 고전압 송전선로를 통해 흐르는 전류를 차단할 수 있는 스위칭 장치이다. 이러한 고전압 DC 차단기는 DC 선로에 고장발생시 고장전류를 차단하는 역할을 한다. 물론, 약 1~50㎸의 DC 전압레벨의 중간전압 DC 배전 시스템에도 적용이 가능하다.
이러한 고전압 DC 차단기의 경우 시스템에 고장전류가 발생하면 메인스위치를 개방시켜 고장이 발생한 회로를 분리하여 그 고장전류를 차단하도록 한다. 하지만, DC 선로에는 전류 0(zero)점이 존재하지 않기 때문에 메인스위치의 개방시 메인스위치의 단자간에 발생한 아크(arc)가 소호되지 않고 고장전류가 이러한 아크를 통해 지속적으로 흐르게 되어 고장전류를 차단하지 못하는 문제점이 있다.
도 1에 도시된 일본공개특허 제1984-068128호에는 고전압 DC 차단기에서 메인스위치(CB)의 오픈동작시 발생된 아크(arc)를 소호하여 고장전류를 차단하기 위해 DC선로에 흐르는 전류(IDC)에 LC 회로에 의한 공진전류(Ip)를 중첩시켜서(Idc=IDC+Ip) 메인스위치(CB)에서 0(zero) 전류를 만들어 아크를 소호시키는 기술을 제공한다. 즉, 메인스위치(CB)가 오픈되고 아크가 발생한 상태에서 보조스위치(S)가 닫히면 양(+)의 공진전류(Ip>0)가 DC전류(IDC)에 중첩되도록 주입되고, 이후 L과 C간의 공진에 의해 공진전류(Ip)는 양(+)과 음(-)간에 진동하는 전류가 되고 메인스위치(CB)를 따라 진동을 반복하면서 점점 크기가 커지게 된다. 이로써, 음(-)의 공진전류(Ip<0)가 IDC와 크기가 같아지게 되면 전류(Idc)가 0(zero) 전류가 되고 메인스위치(CB)의 아크가 소호된다. 하지만, 이러한 종래기술은 DC 전류(IDC)보다 같거나 더 큰 양(+)의 공진전류(Ip)가 겹쳐져야 하기 때문에 회로정격이 정격전류의 2배 이상이어야 하며, 이와 같이 큰 공진전류(Ip)를 발생시키기 위해 여러 번의 공진이 이루어져야 하기 때문에 차단속도가 느려지는 문제점이 있다. 또한 종래의 DC 차단기는 양방향 고장전류의 차단이 불가능하다는 문제점이 있다.
이에, 본 발명은 고전압 DC 차단기에서 메인스위치에 공진전류를 인가하지 않더라도 메인스위치에서 고장전류를 완전히 차단할 수 있도록 하는 고전압 DC 차단기를 제공하는데 목적이 있다.
또한, 본 발명은 단일 회로로 양방향의 고장전류를 차단할 수 있도록 하는 고전압 DC 차단기를 제공하는데 다른 목적이 있다.
또한, 본 발명은 적은 개수의 반도체 소자를 적용하여 고장전류를 차단하도록 하는 고전압 DC 차단기를 제공하는데 추가적인 목적이 있다.
나아가, 본 발명은 메인스위치를 통해 재폐로 동작을 수행할 수 있도록 구현된 고전압 DC 차단기를 제공하는데 다른 추가적인 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 고전압 DC 차단기는,
직류(DC) 선로에 흐르는 전류를 차단하기 위한 고전압 DC 차단기에 있어서, 상기 DC 선로에 설치되고 상기 DC 선로의 일측 또는 타측에 고장발생시 개방되어 상기 DC 선로의 전류를 차단하기 위한 메인스위치; 상기 메인스위치에 병렬연결된 비선형 저항기; 상기 메인스위치에 병렬연결되고 LC 공진을 발생하기 위해 직렬연결된 커패시터 및 리액터를 포함하는 LC 회로; 상기 LC 회로에 직렬연결되어 양방향 전류흐름을 스위칭하는 제1 양방향 스위칭소자; 및 상기 LC 회로에 병렬연결되어 양방향으로 LC 공진이 이루어지도록 전류흐름을 스위칭하는 제2 양방향 스위칭소자; 를 포함한다.
본 발명에서, 초기 기동시 상기 커패시터에 DC 전압(Vc)을 충전하기 위한 충전저항을 더 포함하고, 상기 충전저항은 상기 LC 회로 및 상기 제1 양방향 스위칭소자 간의 접점과 접지(GND) 사이에 설치된다.
본 발명에서, 상기 제1 및 제2 양방향 스위칭소자는, 각각 턴온 또는 턴온/턴오프 제어가능한 한 쌍의 전력 반도체 스위치를 포함하고 상기 각 쌍의 전력 반도체 스위치는 서로 반대방향으로 병렬연결된다.
본 발명에서, 상기 DC 선로의 상기 일측에 고장발생으로 상기 메인스위치가 개방되고 상기 메인스위치의 개방시 아크(arc)가 발생하면, 상기 제1 양방향 스위칭소자의 전력 반도체 스위치(G1-G2)는 오프(OFF)된 상태에서 상기 제2 양방향 스위칭소자 중 하나의 전력 반도체 스위치(G4)가 온(ON)되어 상기 LC 회로의 리액터와 커패시터 간 LC 공진에 의해 상기 커패시터에 -Vc 전압이 충전된 후 상기 전력 반도체 스위치(G4)가 오프(OFF)되고, 상기 제1 양방향 스위칭소자 중 하나의 전력 반도체 스위치(G2)가 온되어 상기 커패시터에 충전된 -Vc 전압에 의해 상기 메인스위치로 전류를 공급하고, 상기 공급된 전류에 의해 상기 메인스위치에서 0(zero) 전류가 되어 상기 메인스위치에 발생된 아크가 소호되도록 한다.
본 발명에서, 상기 커패시터에 의해 충전된 -Vc에 의해 상기 메인스위치로 공급되는 전류는 상기 메인스위치에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 크다.
본 발명에서, 상기 메인스위치에서 발생한 아크가 소호된 이후에, 상기 DC선로의 일측보다 상대적으로 높아진 타측의 전압은 상기 비선형 저항기에서 소모됨과 동시에 상기 LC 회로 및 제1 양방향 스위칭소자를 통해 흐르는 전류에 의해 상기 커패시터는 +Vc로 재충전된 후 상기 전력 반도체 스위치(G2)가 오프(OFF)된다.
본 발명에서, 상기 DC 선로의 상기 타측에 고장발생으로 상기 메인스위치가 개방되고 상기 메인스위치의 개방시 아크(arc)가 발생하면, 상기 제2 양방향 스위칭소자의 전력 반도체 스위치(G3-G4)는 오프(OFF)된 상태에서 상기 제1 양방향 스위칭소자 중 하나의 전력 반도체 스위치(G1)가 온(ON)되어 상기 LC 회로의 커패시터에 기충전된 +Vc 전압에 의해 상기 메인스위치로 전류를 공급하고, 상기 공급된 전류에 의해 상기 메인스위치(110)에서 0(zero) 전류가 되어 상기 메인스위치에 발생된 아크가 소호되도록 한다.
본 발명에서, 상기 커패시터에 의해 기충전된 +Vc에 의해 상기 메인스위치로 공급되는 전류는 상기 메인스위치에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 크다.
본 발명에서, 상기 메인스위치에서 발생한 아크가 소호된 이후에, 상기 DC 선로의 타측보다 상대적으로 높아진 일측의 전압에 의해 상기 LC 회로의 커패시터는 -Vc로 충전된 후 상기 전력 반도체 스위치(G1)이 오프(OFF)되고, 이후에 상기 제2 양방향 스위칭소자 중 하나의 전력 반도체 스위치(G3)가 온(ON)되어 상기 LC 회로의 커패시터와 리액터 간 LC 공진에 의해 상기 커패시터에 +Vc 전압이 재충전되도록 한다.
본 발명에서, 상기 DC 선로의 타측보다 상대적으로 높아진 일측에서의 전압은 상기 비선형 저항기에서 소모된다.
본 발명은 고전압 DC 차단기에서 메인스위치의 스위칭 동작시 아크가 발생하는 경우 쉽고 빠르게 아크를 소호시킬 수 있도록 하여 고장전류를 완전히 차단할 수 있도록 한다.
또한, 본 발명에 의한 고전압 DC 차단기에서는 단일회로로 양방향의 고장전류를 차단할 수 있다.
또한, 본 발명에 의하면 전기소자의 개수를 최소화하여 고전압 DC 차단기를 구현하기 때문에 차단기의 크기 및 비용을 줄일 수 있다.
나아가, 본 발명에 따른 고전압 DC 차단기에서는 메인스위치의 재폐로 동작시 고장전류가 제거되지 않으면 재차 차단동작을 수행할 수 있도록 한다.
도 1은 종래의 고전압 DC 차단기의 구성도.
도 2는 본 발명의 실시 예에 따른 고전압 DC 차단기의 구성도.
도 3은 본 발명에 따른 고전압 DC 선로의 일측에 고장발생시 고전압 DC 차단기에서의 고장전류 차단과정을 보이는 개요도.
도 4는 본 발명에 따른 고전압 DC 선로의 타측에 고장발생시 고전압 DC 차단기에서의 고장전류 차단과정을 보이는 개요도.
이하에서, 본 발명의 바람직한 실시 예가 첨부된 도면들을 참조하여 설명할 것이다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
도 2는 본 발명의 실시 예에 따른 고전압 DC 차단기의 구성도이다.
도 2를 참조하면, 본 발명의 실시 예에 따른 고전압 DC 차단기(100)는 A측과 B측을 연결하는 DC 선로(10)에 설치된 메인스위치(110)를 포함한다. 이러한 메인스위치(110)는 기본적으로 A측 또는 B측에 고장발생시 고장이 발생한 회로로 고장전류가 지속적으로 흘러들어가지 않도록 하기 위해 DC 선로(10)를 차단하는 역할을 한다. 이를 위해 메인스위치(110)는 정상상태에서는 닫혀 있다가 고장발생시 개방된다. 이러한 메인스위치(110)는 제어부(미도시)의 제어신호에 의해 그 스위칭 동작이 제어된다.
본 실시 예에서 이러한 메인스위치(110)에 병렬로 비선형 저항기(120)가 연결되어 메인스위치(110)의 차단시 정격전압 이상의 과도한 전압이 고전압 DC 차단기(100)의 양단에 가해지지 못하도록 하기 위한 것으로서 고장에 의한 고전압이 기설정된 기준치 이상으로 고전압 DC 차단기(100)의 양단에 걸리면 자동으로 온(ON)되어 고전압을 소모하도록 한다. 본 실시 예에서 비선형 저항기(120)는 예컨대 바리스터(varistor)로 구현될 수 있다.
본 실시 예에서 DC 선로(10)에 고전압이 걸리기 때문에 메인스위치(110)에는 대전류가 흐르게 된다. 이 때문에 고장발생시 메인스위치(110)가 개방될 때 메인스위치(110)의 스위치 단자 간에 아크(arc)가 발생하게 되고, 이러한 아크를 통해 DC고장전류가 DC 선로(10)에 계속해서 흐르게 된다. 따라서 본 발명에서는 이러한 아크를 소호하여 고장전류를 완전히 차단하기 위해 추가적인 소자가 필요하게 된다.
구체적으로, LC 회로(130) 및 제1 양방향 스위칭소자(140)의 직렬연결이 메인스위치(110)에 병렬로 연결된다. 또한, LC 회로(130)에 제2 양방향 스위칭소자(150)이 병렬로 연결된다. LC 회로(130)는 커패시터(131)와 리액터(132)가 직렬로 연결되어 구성된다. 각 양방향 스위칭소자(150,160)는 양방향으로 전류가 흐르도록, 예컨대 2개의 전력 반도체 스위치(G1~G4)가 각각 병렬로 연결되는 구조를 이루며, 이들은 서로 반대방향으로 배열된다. 도면에는 도시하지 않았으나 전력 반도체 스위치(G1~G4)는 제어부(미도시)에 의해 그 동작이 제어된다. 본 실시 예에서 전력 반도체 스위치(G1~G4)는 턴온(turn-on) 제어가능한 소자로서, 예컨대 싸이리스터(thyristor)로 구현될 수 있다. 또는 턴온(turn-on)/턴오프(turn-off) 제어가능한 소자로서는 예컨대 GTO, IGCT, IGBT 등으로 구현될 수도 있다.
나아가, 본 실시 예의 고전압 DC 차단기(100)는 LC 회로(130)와 제1 양방향 스위칭소자(140)의 접점과 접지(GND) 사이에 충전저항(160)이 연결된다. 이러한 충전저항(160)을 통해 LC 회로(130)의 커패시터(131)가 DC 전압(Vc)만큼 초기 충전되도록 한다.
도 3은 본 발명의 일 실시 예에 따른 고전압 DC 차단기의 일측(B)에 고장발생시 고장전류 차단과정을 보이는 개요도이고, 도 4는 본 발명의 다른 실시 예에 따른 고전압 DC 차단기의 타측(A)에 고장발생시 고장전류 차단과정을 보이는 개요도이다.
우선, 본 발명에 따른 고전압 DC 차단기(100)는 정상상태인 경우에는 메인스위치(110)가 닫혀 있다. 또한, 제1 양방향 스위칭소자(140) 및 제2 양방향 스위칭소자(150)는 오프(OFF)되어 차단되어 있다. 이에 따라 DC 선로(10)에 전압이 인가되면 정상전류는 메인스위치(110)를 통해 DC 선로(10)를 따라 흐르게 되고, 또한, LC 회로(130)의 커패시터(131) 및 리액터(132), 그리고 충전저항(160)을 통해 커패시터(131)에 DC 전압 Vc가 충전된다.
만약, B측에 고장이 발생한 경우는 도 3에 도시된 바와 같이, 제어부에서 고장발생을 감지하여 메인스위치(110)를 개방시킨다. 메인스위치(110)가 개방될 때 메인스위치(110)의 스위칭단자 간에 아크(arc)가 발생하여 A→B로 고장전류가 지속적으로 흐르게 된다. 이때, 제1 양방향 스위칭소자(140)의 병렬연결된 전력 반도체 스위치(G1,G2)는 모두 오프(OFF)된 상태에서 제2 양방향 스위칭소자(150)의 하단의 전력 반도체 스위치(G4)가 온(ON)되면 상기 하단의 전력 반도체 스위치(G4)를 통해 리액터(132)와 커패시터(131) 간에 LC 공진이 발생하여 커패시터(131)의 전압은 -Vc가 된다.
이후, 상기 하단의 전력 반도체 스위치(G4)는 오프(OFF)되고, 제1 양방향 스위칭소자(140)의 우측의 전력 반도체 스위치(G2)가 온되어 커패시터(131)에 충전된 -Vc 전압에 의해 전류가 상기 우측의 전력 반도체 스위치(G2)를 통해 B측으로 공급된다. 이와 같이 공급된 전류에 의해 메인스위치(110)에서의 전류는 0(zero)가 되어 아크가 소호된다. 이때, 상기와 같이 B측으로 공급되는 전류는 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 것이 바람직하다. 이를 위해 커패시터의 충전용량이 결정될 수 있다.
상기와 같이 메인스위치(110)에 발생한 아크(arc)가 완전히 소호되어 고장전류가 메인스위치(110)에 의해 차단되면 상대적으로 B측에 비해 A측 전압이 급격히 상승하게 된다. 이와 같이 상승한 A측 전압은 메인스위치(110)에 병렬연결된 비선형 저항기(120)에서 소모됨과 동시에, LC 회로(130)와 제1 양방향 스위칭소자(140)를 통해 커패시터(131)는 +Vc로 재충전된다. 이후, 상기 우측의 전력 반도체 스위치(G2)가 오프(OFF)된다.
여기서, 본 발명의 고전압 DC 차단기(100)는 메인스위치(110)의 재폐로 동작이 가능하다는 특징이 있다. 즉, B측 고장이 제거되면 제어부는 메인스위치(110)을 닫아 DC 선로(10)에서 폐로를 형성할 수 있다. 메인스위치(110)를 닫아 폐로를 형성한 경우, 만약 B측 고장이 제거되지 않은 상태라면 상기한 과정들을 반복하도록 한다. 이러한 재폐로는 메인스위치(110)에서 아크가 소호된 이후에 LC 회로(130)에서 커패시터(131)가 +Vc로 충전상태를 유지하기 때문에 가능한 것이다.
상기한 바와 같이, 본 발명에 따른 고전압 DC 차단기(100)에서는 LC 회로(130)에서 한 번의 LC 공진을 통해 메인스위치(110)에 발생한 아크를 소호하여 아크를 통해 흐르는 고장전류를 차단하도록 한다.
한편, A측에 고장이 발생한 경우는 도 4에 도시된 바와 같이, 제어부에서 고장발생을 감지하여 메인스위치(110)를 개방시킨다. 메인스위치(110)가 개방될 때 메인스위치(110)의 스위칭단자 간에 아크(arc)가 발생하여 B→A로 고장전류가 지속적으로 흐르게 된다. 이때, 제2 양방향 스위칭소자(150)의 병렬연결된 전력 반도체 스위치(G3,G4)는 모두 오프(OFF)된 상태에서 제1 양방향 스위칭소자(140)의 좌측의 전력 반도체 스위치(G1)가 온(ON)되면 LC 회로(130)의 커패시터(131)에 저장된 전압에 의해 A측으로 전류가 공급된다. 이와 같이 공급된 전류에 의해 메인스위치(110)에서의 전류는 0(zero)이 되어 아크가 소호된다. 이때, 상기와 같이 A측으로 공급되는 전류는 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 것이 바람직하다.
이후, 상기와 같이 메인스위치(110)에 발생한 아크(arc)가 완전히 소호되어 고장전류가 메인스위치(110)에서 차단되면 B측 전압이 급격히 상승하게 되고 LC 회로(130)의 커패시터(131)는 -Vc로 충전된다. 이후, 상기 좌측의 전력 반도체 스위치(G1)이 오프된다. 이때, 제2 양방향 스위칭소자(150)의 상부의 전력 반도체 스위치(G3)가 온(ON)되면 전류는 상기 상부의 전력 반도체 스위치(G3)를 통해 커패시터(131)와 리액터(132) 간에 LC 공진이 발생하여 커패시터(131)의 전압은 +Vc가 된다. 이후 상기한 상부의 전력 반도체 스위치(G3)가 오프(OFF)된다. 또한, A측보다 상대적으로 높아진 B측 전압은 메인스위치(110)에 병렬연결된 비선형 저항기(120)에서 소모된다.
여기서, 도 4에서도 본 발명의 고전압 DC 차단기(100)는 메인스위치(110)의 재폐로 동작이 가능하다. 즉, A측 고장이 제거되면 제어부는 메인스위치(110)을 닫아 DC 선로(10)에서 폐로를 형성할 수 있다. 이때, 메인스위치(110)를 닫아 폐로를 형성한 경우에, 만약 A측 고장이 제거되지 않은 상태라면 상기한 과정들을 반복하도록 한다. 이러한 재폐로는 메인스위치(110)에서 아크가 소호된 이후에 LC 회로(130)에서 LC 공진이 이루어져 커패시터(131)가 항상 +Vc로 충전상태를 유지하기 때문에 가능한 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 고전압 DC 차단기(100)는 LC 공진에 의한 전류가 도 1에 도시된 종래기술과 같이 메인스위치(CB)가 아니라 제2 양방향 스위칭소자(150)의 전력 반도체 스위치(G3,G4)를 통해 이루어진다는 특징이 있다. 따라서, 종래기술과 같이 LC 공진에 의한 전류 진동이 커지는 것이 아니라, 본 발명에서는 LC 공진에 의해 LC 회로(130)의 커패시터(131)의 전압극성이 반대로 바뀌도록 LC 공진이 한번만 이루어진다. 이는 종래기술에 비해 차단속도가 증가하는 원인이 된다. 또한, 본 발명에서는 종래기술과 달리 커패시터(131)에 저장된 전압에 의해 메인스위치(110)에 흐르는 고장전류와 반대방향의 전류가 메인스위치(110)에 주입하여 zero 전류를 만들어 아크를 소호하도록 한다.
이상에서 설명한 본 발명은 바람직한 실시 예들을 통하여 상세하게 설명되었지만, 본 발명은 이러한 실시 예들의 내용에 한정되는 것이 아님을 밝혀둔다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 비록 실시 예에 제시되지 않았지만 첨부된 청구항의 기재 범위 내에서 다양한 본 발명에 대한 모조나 개량이 가능하며, 이들 모두 본 발명의 기술적 범위에 속함은 너무나 자명하다 할 것이다. 이에, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (10)

  1. 직류(DC) 선로에 흐르는 전류를 차단하기 위한 고전압 DC 차단기에 있어서,
    상기 DC 선로에 설치되고 상기 DC 선로의 일측 또는 타측에 고장발생시 개방되어 상기 DC 선로의 전류를 차단하기 위한 메인스위치(110);
    상기 메인스위치(110)에 병렬연결된 비선형 저항기(120);
    상기 메인스위치(110)에 병렬연결되고 LC 공진을 발생하기 위해 직렬연결된 커패시터(131) 및 리액터(132)를 포함하는 LC 회로(130);
    상기 LC 회로(130)에 직렬연결되어 양방향 전류흐름을 스위칭하는 제1 양방향 스위칭소자(140); 및
    상기 LC 회로(130)에 병렬연결되어 양방향으로 LC 공진이 이루어지도록 전류흐름을 스위칭하는 제2 양방향 스위칭소자(150); 를 포함하는 고전압 DC 차단기.
  2. 제1항에 있어서,
    초기 기동시 상기 커패시터(131)에 DC 전압(Vc)을 충전하기 위한 충전저항(160)을 더 포함하고, 상기 충전저항(160)은 상기 LC 회로(130) 및 상기 제1 양방향 스위칭소자(140) 간의 접점과 접지(GND) 사이에 설치되는 고전압 DC 차단기.
  3. 제1항 또는 제2항에 있어서,
    상기 제1 및 제2 양방향 스위칭소자는,
    각각 턴온 또는 턴온/턴오프 제어가능한 한 쌍의 전력 반도체 스위치(G1-G2,G3-G4)를 포함하고 상기 각 쌍의 전력 반도체 스위치는 서로 반대방향으로 병렬연결되는 고전압 DC 차단기.
  4. 제3항에 있어서,
    상기 DC 선로의 상기 일측에 고장발생으로 상기 메인스위치(110)가 개방되고 상기 메인스위치(110)의 개방시 아크(arc)가 발생하면,
    상기 제1 양방향 스위칭소자(140)의 전력 반도체 스위치(G1-G2)는 오프(OFF)된 상태에서 상기 제2 양방향 스위칭소자(150) 중 하나의 전력 반도체 스위치(G4)가 온(ON)되어 상기 LC 회로(130)의 리액터(132)와 커패시터(131) 간 LC 공진에 의해 상기 커패시터(131)에 -Vc 전압이 충전된 후 상기 전력 반도체 스위치(G4)가 오프(OFF)되고, 상기 제1 양방향 스위칭소자(140) 중 하나의 전력 반도체 스위치(G2)가 온되어 상기 커패시터(131)에 충전된 -Vc 전압에 의해 상기 메인스위치(110)로 전류를 공급하고, 상기 공급된 전류에 의해 상기 메인스위치(110)에서 0(zero) 전류가 되어 상기 메인스위치(110)에 발생된 아크가 소호되도록 하는 고전압 DC 차단기.
  5. 제4항에 있어서,
    상기 커패시터(131)에 의해 충전된 -Vc에 의해 상기 메인스위치(110)로 공급되는 전류는 상기 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 고전압 DC 차단기.
  6. 제4항에 있어서,
    상기 메인스위치(110)에서 발생한 아크가 소호된 이후에,
    상기 DC선로의 일측보다 상대적으로 높아진 타측의 전압은 상기 비선형 저항기(120)에서 소모됨과 동시에 상기 LC 회로(130) 및 제1 양방향 스위칭소자(140)를 통해 흐르는 전류에 의해 상기 커패시터(131)는 +Vc로 재충전된 후 상기 전력 반도체 스위치(G2)가 오프(OFF)되는 고전압 DC 차단기.
  7. 제3항에 있어서,
    상기 DC 선로의 상기 타측에 고장발생으로 상기 메인스위치(110)가 개방되고 상기 메인스위치(110)의 개방시 아크(arc)가 발생하면,
    상기 제2 양방향 스위칭소자(150)의 전력 반도체 스위치(G3-G4)는 오프(OFF)된 상태에서 상기 제1 양방향 스위칭소자(140) 중 하나의 전력 반도체 스위치(G1)가 온(ON)되어 상기 LC 회로(130)의 커패시터(131)에 기충전된 +Vc 전압에 의해 상기 메인스위치(110)로 전류를 공급하고, 상기 공급된 전류에 의해 상기 메인스위치(110)에서 0(zero) 전류가 되어 상기 메인스위치(110)에 발생된 아크가 소호되도록 하는 고전압 DC 차단기.
  8. 제7항에 있어서,
    상기 커패시터(131)에 의해 기충전된 +Vc에 의해 상기 메인스위치(110)로 공급되는 전류는 상기 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 고전압 DC 차단기.
  9. 제7항에 있어서,
    상기 메인스위치(110)에서 발생한 아크가 소호된 이후에,
    상기 DC 선로의 타측보다 상대적으로 높아진 일측의 전압에 의해 상기 LC 회로(130)의 커패시터(131)는 -Vc로 충전된 후 상기 전력 반도체 스위치(G1)이 오프(OFF)되고,
    이후에 상기 제2 양방향 스위칭소자(150) 중 하나의 전력 반도체 스위치(G3)가 온(ON)되어 상기 LC 회로(130)의 커패시터(131)와 리액터(132) 간 LC 공진에 의해 상기 커패시터(131)에 +Vc 전압이 재충전되도록 하는 고전압 DC 차단기.
  10. 제9항에 있어서,
    상기 DC 선로의 타측보다 상대적으로 높아진 일측에서의 전압은 상기 비선형 저항기(120)에서 소모되는 고전압 DC 차단기.
PCT/KR2014/007604 2013-08-14 2014-08-14 고전압 dc 차단기 WO2015023157A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/912,092 US10170903B2 (en) 2013-08-14 2014-08-14 High voltage DC circuit breaker
EP14836732.9A EP3035471B1 (en) 2013-08-14 2014-08-14 High voltage dc breaker
CN201480055456.6A CN105659459B (zh) 2013-08-14 2014-08-14 高压直流断路器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130096253A KR101506581B1 (ko) 2013-08-14 2013-08-14 고전압 dc 차단기
KR10-2013-0096253 2013-08-14

Publications (1)

Publication Number Publication Date
WO2015023157A1 true WO2015023157A1 (ko) 2015-02-19

Family

ID=52468484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007604 WO2015023157A1 (ko) 2013-08-14 2014-08-14 고전압 dc 차단기

Country Status (5)

Country Link
US (1) US10170903B2 (ko)
EP (1) EP3035471B1 (ko)
KR (1) KR101506581B1 (ko)
CN (1) CN105659459B (ko)
WO (1) WO2015023157A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059827A1 (en) * 2015-02-20 2016-08-24 ABB Technology Ltd Switching system for breaking a current and method of performing a current breaking operation
CN111355213A (zh) * 2018-12-21 2020-06-30 平高集团有限公司 一种直流断路器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550374B1 (ko) * 2013-12-31 2015-09-04 주식회사 효성 고전압 dc 차단기
CN204242871U (zh) * 2014-03-07 2015-04-01 广州市金矢电子有限公司 电容耦合式灭弧电路及装置
WO2016042601A1 (ja) * 2014-09-16 2016-03-24 三菱電機株式会社 風力発電システムおよび直流送電システム
US10447023B2 (en) * 2015-03-19 2019-10-15 Ripd Ip Development Ltd Devices for overvoltage, overcurrent and arc flash protection
KR101766229B1 (ko) * 2015-04-13 2017-08-09 한국전기연구원 갭 스위치를 이용한 고압 직류 차단 장치 및 방법
KR101688921B1 (ko) * 2015-06-22 2017-01-02 주식회사 효성 Dc 차단기
KR101872873B1 (ko) * 2016-11-07 2018-06-29 연세대학교 산학협력단 충전된 커패시터와 직렬 인덕터를 사용한 초고속 dc 차단기
KR101872869B1 (ko) * 2016-11-07 2018-08-02 연세대학교 산학협력단 충전된 커패시터와 병렬 lc 회로를 사용한 초고속 dc 차단기
KR101894970B1 (ko) * 2016-12-02 2018-10-18 공주대학교 산학협력단 고전압직류용 복합형 회로차단기
KR101959616B1 (ko) 2017-02-20 2019-03-18 전남대학교산학협력단 양방향 dc 차단기
CN107968388A (zh) * 2018-01-11 2018-04-27 国家电网公司 一种直流输电用高压直流断路器
KR102089141B1 (ko) * 2018-04-05 2020-03-13 한국전력공사 양방향 dc 전류 차단 장치
US10734834B2 (en) * 2018-06-04 2020-08-04 Abb Schweiz Ag Static transfer switch with resonant turn-off
US11646575B2 (en) 2018-10-24 2023-05-09 The Florida State University Research Foundation, Inc. Direct current hybrid circuit breaker with reverse biased voltage source
US11424093B2 (en) * 2018-10-24 2022-08-23 The Florida State University Research Foundation, Inc. Direct current hybrid circuit breaker with reverse biased voltage source
CN111224383A (zh) * 2018-11-26 2020-06-02 平高集团有限公司 一种具有快速重合闸功能的直流断路器
KR102164984B1 (ko) 2019-01-29 2020-10-13 전남대학교산학협력단 양방향 dc 차단기
CN110086152A (zh) * 2019-04-02 2019-08-02 陕西秦屿电器有限公司 一种快速直流开关及其控制方法
CN110190589A (zh) * 2019-04-25 2019-08-30 国家电网有限公司 一种谐振型混合式直流开关
CN111585258A (zh) * 2020-07-06 2020-08-25 中天电气技术有限公司 一种混合式直流断路器以及一种直流电网
WO2023097103A1 (en) * 2021-11-29 2023-06-01 The Florida State University Research Foundation, Inc. Direct current hybrid circuit breaker with reverse biased voltage source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968128A (ja) 1982-10-13 1984-04-18 株式会社日立製作所 直流しや断器
JPH063872A (ja) * 1992-06-19 1994-01-14 Ricoh Co Ltd 電子写真装置
JPH06181027A (ja) * 1989-12-08 1994-06-28 Gec Alsthom Sa 高電圧dc電流の限流遮断器
JPH0917294A (ja) * 1995-06-28 1997-01-17 Mitsubishi Electric Corp 両方向直流遮断器
JPH11146555A (ja) * 1997-11-05 1999-05-28 Toshiba Corp 超電導限流装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110806A (en) * 1976-01-08 1978-08-29 Tokyo Shibaura Denki Kabushiki Kaisha Circuit interrupting apparatus for use in direct current circuits
JPS6013254B2 (ja) * 1976-09-30 1985-04-05 株式会社東芝 直流しや断器
JPS6065411A (ja) * 1983-09-21 1985-04-15 株式会社日立製作所 線路充電式直流遮断器
US4740858A (en) * 1985-08-06 1988-04-26 Mitsubishi Denki Kabushiki Kaisha Zero-current arc-suppression dc circuit breaker
JP2679997B2 (ja) * 1986-10-15 1997-11-19 株式会社日立製作所 直流遮断器
DE3688469T2 (de) * 1986-12-22 1993-10-28 Anomyme Acec Transport Charler Durch Halbleiter unterstützter ultra-schneller Schalter.
KR0179365B1 (ko) * 1989-08-04 1999-05-15 미쓰다 가쓰시게 직류고속도 진공차단기 및 직류고속도 차단기를 구비한 전기차
JP3114328B2 (ja) * 1992-02-20 2000-12-04 株式会社日立製作所 直流遮断器
JP3135338B2 (ja) * 1992-02-21 2001-02-13 株式会社日立製作所 転流式直流遮断器
SE514827C2 (sv) * 1993-12-09 2001-04-30 Abb Ab Likströmsbrytaranordning för hög effekt
JP3239754B2 (ja) * 1995-06-20 2001-12-17 株式会社日立製作所 限流装置
EP1538645B1 (fr) * 2003-12-05 2006-03-01 Société Technique pour l'Energie Atomique TECHNICATOME Dispositif disjoncteur hybride
KR100780706B1 (ko) * 2006-08-17 2007-11-30 엘에스산전 주식회사 복합형 초전도 한류기
CN101540493B (zh) * 2009-04-22 2011-01-19 南京航空航天大学 谐振型直流固态断路器
WO2011141055A1 (en) * 2010-05-11 2011-11-17 Abb Technology Ag A high voltage dc breaker apparatus
US9208979B2 (en) * 2010-05-11 2015-12-08 Abb Technology Ag High voltage DC breaker apparatus
WO2012100831A1 (en) * 2011-01-27 2012-08-02 Alstom Technology Ltd Circuit breaker apparatus
EP2695267B1 (en) * 2011-04-04 2015-04-01 ABB Technology AG Fast breaker failure detection for hvdc circuit breakers
EP2523204B1 (en) * 2011-05-12 2019-09-04 ABB Schweiz AG Circuit arrangement and method for interrupting a current flow in a DC current path
EP2846342B1 (en) * 2012-05-01 2019-02-06 Mitsubishi Electric Corporation Dc circuit breaker
CN103219698B (zh) * 2013-02-06 2015-05-20 西安交通大学 一种混合式直流断路器
KR101522412B1 (ko) * 2013-12-26 2015-05-26 주식회사 효성 양방향 직류 차단장치
KR20150078491A (ko) * 2013-12-30 2015-07-08 주식회사 효성 고전압 dc 차단기
KR101697623B1 (ko) * 2014-12-29 2017-01-18 주식회사 효성 Dc 차단기
KR101652937B1 (ko) * 2014-12-29 2016-09-01 주식회사 효성 Dc 차단기
KR101630093B1 (ko) * 2014-12-29 2016-06-13 주식회사 효성 고전압 dc 차단기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968128A (ja) 1982-10-13 1984-04-18 株式会社日立製作所 直流しや断器
JPH06181027A (ja) * 1989-12-08 1994-06-28 Gec Alsthom Sa 高電圧dc電流の限流遮断器
JPH063872A (ja) * 1992-06-19 1994-01-14 Ricoh Co Ltd 電子写真装置
JPH0917294A (ja) * 1995-06-28 1997-01-17 Mitsubishi Electric Corp 両方向直流遮断器
JPH11146555A (ja) * 1997-11-05 1999-05-28 Toshiba Corp 超電導限流装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059827A1 (en) * 2015-02-20 2016-08-24 ABB Technology Ltd Switching system for breaking a current and method of performing a current breaking operation
WO2016131949A1 (en) * 2015-02-20 2016-08-25 Abb Technology Ltd Switching system for breaking a current and method of performing a current breaking operation
CN107251351A (zh) * 2015-02-20 2017-10-13 Abb瑞士股份有限公司 用于断开电流的开关系统和执行电流断开操作的方法
US10002722B2 (en) 2015-02-20 2018-06-19 Abb Schweiz Ag Switching system for breaking a current and method of performing a current breaking operation
CN107251351B (zh) * 2015-02-20 2019-05-31 Abb瑞士股份有限公司 用于断开电流的开关系统和执行电流断开操作的方法
CN111355213A (zh) * 2018-12-21 2020-06-30 平高集团有限公司 一种直流断路器
CN111355213B (zh) * 2018-12-21 2023-09-01 平高集团有限公司 一种直流断路器

Also Published As

Publication number Publication date
EP3035471B1 (en) 2018-04-25
CN105659459A (zh) 2016-06-08
KR20150019416A (ko) 2015-02-25
KR101506581B1 (ko) 2015-03-27
US20160204595A1 (en) 2016-07-14
US10170903B2 (en) 2019-01-01
EP3035471A1 (en) 2016-06-22
CN105659459B (zh) 2019-06-14
EP3035471A4 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2015023157A1 (ko) 고전압 dc 차단기
WO2015102311A1 (ko) 고전압 dc 차단기
WO2015102383A1 (ko) 고전압 dc 차단기
WO2015099468A1 (ko) 양방향 직류 차단장치
WO2016108530A1 (ko) Dc 차단기
WO2015053484A1 (ko) 고압 직류 전류 차단 장치 및 방법
WO2016108524A1 (ko) 고전압 dc 차단기
CN104488156B (zh) 故障排除的方法
WO2016108528A1 (ko) Dc 차단기
KR101653847B1 (ko) 독립형 직류 전력 공급망 내 고출력 배터리를 위한 고속 스위칭 장치
CN105745730B (zh) 用于切换直流电的装置和方法
WO2015099467A1 (ko) 단일회로로 양방향 고장전류를 차단하는 dc차단기
WO2015099470A1 (ko) 자계를 이용한 직류차단기
WO2016208968A1 (ko) Dc 차단기
WO2015102307A1 (ko) 고전압 dc 차단기
US20150236498A1 (en) Circuit interruption device
WO2016043508A1 (ko) 직류전류 차단을 위한 장치 및 방법
KR102541790B1 (ko) 고전압 배터리 클러스터 및 과전류 보호 회로 및 고전압 배터리 클러스터의 스위치 박스
WO2016167490A1 (ko) 갭 스위치를 이용한 고압 직류 차단 장치 및 방법
CA3000574A1 (en) Mechatronic circuit-breaker device
KR101802509B1 (ko) 캐스케이드 하프 브리지 sscb
GB2487918A (en) DC power network protection system
CN114156846B (zh) 低损耗多端直流断路器及其控制方法
JP2024129785A (ja) バッテリパックとその手動サービスディスコネクト、バッテリの保護方法
CN117877904A (zh) 用于对电池的触点进行开关的开关装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14912092

Country of ref document: US

Ref document number: 2014836732

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016003021

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016003021

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160212

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016003021

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2430 DE 01/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016003021

Country of ref document: BR

Kind code of ref document: A2

Free format text: 1) APRESENTAR, EM ATE 60 (SESSENTA) DIAS, DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM E REGULARIZEM A DIVERGENCIA NOS NOMES DOS INVENTORES CONSTANTES NA PUBLICACAO INTERNACIONAL WO/2015/023157 DE 19/02/2015 COMO JUNG SOO PARK, SE HEE HAN E HUI DONG HWANG E O CONSTANTE NO FORMULARIO DA PETICAO INICIAL NO 870160004102 DE 12/02/2016 COMO JUNG-SOO PARK, SE-HEE HAN E HUI-DONG HWANG UMA VEZ QUE NAO HOUVE ENVIO DE DOCUMENTO COMPROVANDO QUE OS NOME CORRETO DO INVENTOR E O DECLARADO NA ENTRADA NACIONAL. 2) APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE KR 10-2013-0096253 DE 14/08/2013 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DE

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112016003021

Country of ref document: BR

Kind code of ref document: A2

Free format text: PEDIDO RETIRADO POR NAO CUMPRIMENTO DA EXIGENCIA PUBLICADA NA RPI 2629 DE 25/05/2021.