WO2015022872A1 - Method for automatically determining authenticity of individual article using micro contour shape of printing as identifier - Google Patents

Method for automatically determining authenticity of individual article using micro contour shape of printing as identifier Download PDF

Info

Publication number
WO2015022872A1
WO2015022872A1 PCT/JP2014/070503 JP2014070503W WO2015022872A1 WO 2015022872 A1 WO2015022872 A1 WO 2015022872A1 JP 2014070503 W JP2014070503 W JP 2014070503W WO 2015022872 A1 WO2015022872 A1 WO 2015022872A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification mark
image
color
value
identifier
Prior art date
Application number
PCT/JP2014/070503
Other languages
French (fr)
Japanese (ja)
Inventor
平山貞宏
三輪忠仁
尾形廣秋
Original Assignee
株式会社偽物識別技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社偽物識別技術研究所 filed Critical 株式会社偽物識別技術研究所
Publication of WO2015022872A1 publication Critical patent/WO2015022872A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/305Associated digital information
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/2033Matching unique patterns, i.e. patterns that are unique to each individual paper

Definitions

  • the present invention relates to an automatic authenticity determination method or automatic recognition method for individual articles that can be easily executed by an ordinary imaging device by an ordinary person using a micro-contour shape of a print that cannot be copied because a person cannot control the shape as an identifier. .
  • a micro-identification mark is printed on an article or its certificate, and a micro-contour shape of printing that cannot be copied because a person cannot control the shape is used as an identifier.
  • the identifier and the article identification code (manufacturing number) , Serial number, etc.) and storing them in a storage device, when the goods are shipped together with the identification mark, and then it is desired to determine the authenticity of the shipped goods, the article identification code and the identification mark Is read by a general daily imaging device (such as a camera-equipped mobile phone) and transmitted to the authenticity judging person via the Internet, and the authenticity judging person compares the received article identification code and the identification mark with those stored.
  • An authenticity determination system configured to determine the authenticity of an article according to the degree of coincidence and return the result is disclosed or patent-patented.
  • the work of imaging the identification mark and storing the microscopic contour shape in the database as a master image is performed by a specialist, so the imaging equipment and imaging environment (quality of irradiation light, irradiation angle, position in the image of the identification mark, size) , Resolution) or imaging technology (good or bad focus) (hereinafter, the shooting environment and shooting technology are collectively referred to as shooting conditions) can be made stable with high quality, but the general public is popular.
  • the imaging device for example, a camera-equipped mobile phone
  • the quality of the imaging device is low, the quality of the captured image varies depending on the device, the imaging environment varies, and the imaging technology is also general. Inferior.
  • images are captured by optical and electronic enlargement, so the image on the display screen is constantly vibrated greatly due to camera shake, and it is difficult for ordinary people to focus accurately. It is.
  • the image quality of the identification mark imaged by a general person and transmitted to the authenticity judgment person is low, the imaging light quality, the irradiation angle, the brightness, the image position and the size are various, and the focus is often not clear. That is, the image quality is low because the quality of the imaging conditions is low and not stable. These must be automatically checked against the stored master image to determine whether or not they match. That is not technically easy. The characteristics of the captured image will be described below.
  • FIG. As an example of a micro printed matter, there are three printed matter by an ink jet printer having a length of about 1 mm.
  • the printed microscopic contour shape which is the identifier of the present application, can be visually observed that even if the printed material has exactly the same shape, the printed material has different individual characteristics as long as the printed material is different.
  • These microscopic contours have randomness that cannot be controlled by humans. If the printing of the identification mark is viewed microscopically, random irregularities, enclaves (small islands), blurring, etc. are unavoidable at the boundary of the ink region. In addition, as shown in FIG. 6, the brightness intensity changes continuously in each boundary region.
  • FIGS. 9 and 10 show images obtained by picking up the upper part of the printed matter (vertical and horizontal length of about 1 mm) in FIG. 8 with various camera-equipped mobile phones. Even if the same individual printed matter is imaged, the contour shape differs little by little depending on the model of the camera-equipped mobile phone, and there are various image quality, both good and bad. Further, the brightness, color, shading, size, position, and imaging angle of the identification mark on the screen are not exactly the same.
  • the contour area is gradation. Changes due to the binarization threshold of the contour shape. Further, when the identification mark is viewed microscopically in the boundary region, the color (for example, luminance) is gradation, so that the specific boundary position cannot be determined and the contour shape cannot be determined. In other words, in the microscopic contour region of the image obtained by capturing the printed identification mark, the color (for example, luminance) continuously and gently changes for each light receiving cell. Therefore, the shape of the contour varies greatly depending on which color value (for example, luminance value) is used as the threshold value to define the contour. Accordingly, the microscopic contour shape cannot be uniquely determined. A part of the identification mark of FIG. 4 is enlarged and shown in FIG.
  • FIG. 7 shows a histogram of the brightness of the image and the number of light receiving cells in FIG. 6, and changes in the threshold value of luminance and changes in contour shape when binarized.
  • the left contour diagram is, for example, a luminance value 110 as a threshold
  • the right contour diagram is a contour when, for example, 155 is taken. It shows that the contour shape changes significantly if the threshold value changes.
  • a step of printing the identification mark in a color that is clearly different from the background color Please refer to FIG. 12 (printing of an identification mark on an article certificate).
  • a fine mark having an arbitrary shape is printed on the target article or its certificate in a color that is clearly different from the background color, and this is used as an identification mark. If the color of the mark is not clearly different from the background color, the color change in the microscopic outline of the identification mark of the printed matter is too gradual. Therefore, as described in paragraph 0005 above, the imaging conditions (imaging environment and imaging technology) ) And, as described in paragraph 0009 above, the microscopic contour shape as an identifier changes greatly depending on how to set the threshold for binarization of the image, and automatic determination with high accuracy cannot be performed.
  • the identification mark is not clearly different from the background color on the microscopic image obtained by capturing it as described above with reference to FIG. Accordingly, it is necessary to quantitatively define what is “the color of the identification mark is clearly different from the background color”, which is the core of the present application, rather than sensory.
  • the definition is defined by the image of the identification mark taken as follows. Note that the background color may be printed in a dark color and the identification mark may be a color having a large color difference from that in the printing. As an example, the identification mark may be a blank area of ink having an arbitrary shape in a dark color.
  • FIG. 11 shows the original image of the upper half part of FIG. 4 (horizontal No. 1 printing, length of about 1 mm), a histogram of its luminance value and the number of pixels, and a binarized contour diagram with a specific threshold value. Yes. If the luminance value expressed in RGB format is used for the color information of the image, the value can be expressed with a minimum of 1 and a maximum of 255.
  • the degree of clearness from the background color is greater as the difference in luminance values corresponding to the peaks of the two peaks is larger and the width of the bottom of the pan is longer and lower. Therefore, the degree of definition can be quantitatively defined by the distance between the two peaks and the width of the bottom.
  • the difference between the brightness values corresponding to the peaks of two peaks is 60 or more, and the bottom of the pan
  • the difference between the luminance values at the two ends should be 30 or more.
  • the height of the pan bottom is limited to be low.
  • the identification mark is printed in such a color.
  • the color information used for the histogram reference is not limited to the RGB luminance value. Color attributes such as saturation and lightness may be used as color information.
  • a histogram similar to the histogram of the luminance value and the number of pixels described above is obtained, and in the histogram, the length and height of the width of the bottom and the width of the bottom are defined, and the “clearness with respect to the background color” is defined. “Different colors” may be defined. The specified values to be set depend on the determination accuracy required for coincidence / mismatch.
  • a step of imaging the regular identification mark See FIG. 3 (capturing and storing an image of an identification mark on a certificate).
  • the identification mark printed in the step (1) is imaged by an imaging device capable of recognizing the features of the micro contour shape, and a primitive electronic image is acquired.
  • a step of inputting an individual article identification code See FIG. 3 (capturing and storing an image of an identification mark on a certificate).
  • the individual article identification code (article serial number, manufacturing number, etc.) of the target article is stored in the electronic storage device in association with the regular identification information stored in the electronic storage device in step (3).
  • Step of inputting the image of the identification mark to be verified and the individual article identification code to be verified See Fig. 1 (Conceptual diagram of automatic authentication system).
  • An ordinary person who wants to determine the authenticity of an article takes an image with a terminal device with camera capable of recognizing the feature of the microscopic contour shape of the identification mark to be verified, or acquires a reading original electronic image with an electronic reading device such as a scanner. Further, the individual article identification code to be verified corresponding to the identification mark to be verified is read or inputted by the terminal device.
  • FIG. 1 ceptual diagram of the automatic authentication system.
  • the general person side transmits the collated individual article identification code and the original electronic image of the collation identification mark input in step (5) to the authenticity determination person side.
  • the authenticity determination side receives the transmission information of step (6) above.
  • the general person side transmits only the verified individual article identification code input in step (5) to the authenticity determination person side, and the corresponding regular identification mark stored in the electronic storage device in step (3) corresponding thereto.
  • the computer automatically generates a binarized micro image from the original electronic image of the verification identification mark obtained in step (5) above.
  • both binarized micro images are automatically collated, and the coincidence / mismatch is automatically judged.
  • the automatic generation of the above-described collated binarized micro images and the automatic collation and automatic determination of coincidence / non-coincidence may be performed on the authenticity determination center side, or may be performed on the general person side with software obtained in advance. That is to say.
  • step (9) A step of notifying the result. See FIG. 1 (conceptual diagram of the automatic authentication system). The authenticity of the target article is determined based on the result of determination of coincidence / non-coincidence in step (8), and is returned or displayed.
  • Fig. 15 Threshold values at both ends of the bottom of the histogram and binarized micro image
  • Fig. 16 Low, middle and high threshold values near the center of the bottom of the histogram and a binarized micro image
  • Fig. 17 Minimum area that does not overlap Same printing and different printing.
  • all the pixels are binarized by automatically setting a threshold value to obtain a binarized micro image.
  • An automatic threshold setting method for binarization will be described.
  • the identification mark is printed in a color that is clearly different from the background color.
  • the background area is large enough, the original electronic image will not show anything other than the identification mark and the background.
  • the background area is not sufficiently large and the identification mark and the object other than the background are captured, only the identification mark is captured through the process of extracting only the identification mark from the identification mark template.
  • the histogram of the luminance and the number of pixels of the image always has two and only two peaks as described in paragraph 0014 above.
  • the valley between the two peaks is a flat pan bottom with a long width and a very low height.
  • FIG. 15 FIG. 16, and FIG. 17, only the upper half of the horizontal bar identification mark is cut out to simplify the explanation, but of course the same applies to the whole.
  • the threshold value is set near both end points of the pan bottom (the luminance is 93 in the upper diagram and the luminance 174 in the lower diagram), but the outline shape clearly loses its individual characteristics.
  • a low luminance value (middle part 119) and a high luminance value near the median value of the two luminance values corresponding to the peaks of the two peaks (upper figure 137) and to the extent that the features of the contour shape are not significantly lost.
  • the three contours (lower figure 149) are taken as threshold values to obtain respective contour shapes.
  • the width of the low luminance value and the high luminance value is as large as 30 and wide, but the feature of the contour shape is not lost significantly. However, there are some changes in the contour shape. Therefore, whether or not the contour shape is effective for determining the coincidence / non-coincidence of the printed matter even if the contour shape slightly changes is verified as follows.
  • two binarized micro images of a low luminance value (119) and a high luminance value (149) with a large threshold are compared for the binarized micro image of No. 1 printing.
  • the minimum area where they do not overlap is defined as the difference area SI (filled portion).
  • SI space between identical
  • SI space between identical
  • the threshold value is set near the central value of the two peaks (99) to obtain a binarized micro image, and the identification mark (No. 1 printing) of FIG.
  • the threshold value is taken around the median value of the two peaks (137) to obtain a binarized micro image, and the two are compared.
  • the minimum non-overlapping area is obtained as a difference area SD (space between different). Comparing both different areas SI and SD, in the case of the same printing solids, even if the threshold fluctuates considerably around the median of the peaks of the two peaks, the size of the difference area is different between different printing solids We found that it was significantly smaller than the area. That is, SI ⁇ SD. It has been found that this relational expression is maintained even if the threshold value changes as long as it is near the median value of the two peaks.
  • the automatic threshold setting may be the median of the luminance values corresponding to the peaks of two peaks, and statistics such as a method for deriving the luminance values in the vicinity thereof, such as a discriminant analysis method for deriving a threshold value that maximizes the interclass variance
  • An automatic threshold automatic derivation method may be used. And if the minimum area that does not overlap, that is, the difference area is measured and it is a value less than a certain value (SIT) determined by trial, it is SI and it is judged as the same printing solid, or it is a certain value determined by trial ( It was found that if the value is greater than or equal to (SDT), it is SD and can be determined as a separate print object.
  • the large difference between SI and SD is due to the difference in the contour shape of the binarized micro image.
  • the difference may be expressed by a minimum area that does not overlap as described above, or, as described in paragraph 0030 “A method for automatically matching binarized micro images and a method for automatically determining coincidence / mismatch”, other quantitative indicators such as You may express by the correlation coefficient of two outline shapes.
  • the correlation coefficient is very high, and in the case of different printed solids, the correlation coefficient is very low. This makes it possible to determine whether the printed solids match or not, regardless of the type of imaging and imaging conditions (imaging environment and imaging technology), and if the binarization threshold is near the center value of the two peaks, Nevertheless, it was discovered that it can be carried out with high accuracy.
  • This discovery is a decisive indispensable discovery in an authenticity determination method that uses an image that is unavoidably unstable because the image is taken by an ordinary person using a general device (mobile phone with camera).
  • the quantitative index of the approximation or the difference may be any quantity representing similarity such as the minimum area that does not overlap, the correlation coefficient of the contour shape, and RMS (Root Mean Square). These indices are automatically calculated by a computer, and when they exceed a certain numerical value or smaller than a certain numerical value, it is determined that the two printed identification marks match or do not match.
  • This natural phenomenon that the degree of difference is greatly different between the same printing and different printing is due to the printing characteristics (randomness without unevenness of the microscopic contour, gradation characteristics of the boundary area between the ink and the printing medium) and digital imaging. This is based on the optical characteristics of the device (relationship between resolution, focus failure, binarization threshold, etc. and contour shape). Utilizing this natural phenomenon, the automatic authentication method of the present application was invented. This is a surprising natural phenomenon.
  • the reading device for the regular identification mark or the identification mark to be collated is mainly a digital camera (including a digital camera attached to a mobile phone), but the reading device may be a scanner.
  • a manufacturer or distributor of a target article or a contractor entrusted with the article first places a micro-identification mark having a color clearly different from the background color as shown in FIG. 2 (certificate). Or print on the certificate.
  • the width of the minute identification mark should be about 0.2 to 1 mm, and if it is long, the probability of reproducing the features of the random contour shape that cannot be controlled by humans can be made almost infinitely small, and it can be easily observed visually.
  • the presence of minute identification marks can be searched.
  • the size of the background zone around the identification mark is preferably such that when the identification mark is imaged by a reading device, no image other than the identification mark is imaged on the display screen. A width of about 3 times is desirable. Then, there is no worry that some dark colors other than the identification mark (color that becomes black when automatic binarization) are captured on the screen of the reading device.
  • printing inks that have strong water resistance, light resistance and aging stability.
  • a combination of printing ink, printing medium, and printing machine is selected so that ink bleeds, protrusions, and omissions occur moderately in the micro contour portion.
  • printing machines such as offset printing, gravure printing, letterpress printing, screen printing, ink jet printing, laser printing, etc., and any of them may be used, but the magnification required for the lens of the reader is microscopic depending on each. To be able to recognize the difference in contour shape.
  • the individual article identification code (manufacturing number or the like) of the target article is printed on this print medium (certificate).
  • the certificate may be printed electronically with the URL of the destination authenticator who transmits the identification mark of the present application.
  • the contractor is near the center of the printing ink blank zone in the thick frame printed on the certificate 33.
  • a minute identification mark and a part of the surrounding background zone are magnified by a 32 lens, and an enlarged image is captured by a 31 digital camera and read.
  • the overall magnification of the lens and the digital camera zoom it is necessary to have a total magnification that can read the features of the micro outline shape that cannot be controlled by the person of the identification mark.
  • the basic shape of the identification mark is registered in advance, and only the identification mark and its peripheral region are cut out from the original electronic image as a template and used as the original electronic image. It is also good.
  • the read original electronic image of the identification mark is transmitted to the server 35 of FIG. 3 and recorded in the storage device (database) 36, which is used as the original electronic image of the normal identification mark.
  • the individual article identification code of the target article is simultaneously input and stored in the database.
  • a binary micro image is automatically extracted from the original electronic image of the read regular identification mark by automatically setting a threshold value as described in paragraph 0028 above.
  • a threshold value as described in paragraph 0028 above.
  • This certificate is attached to the target item.
  • the attaching method may not be physically connected. Thereafter, the target article is shipped to the market together with the certificate and distributed to the market.
  • the authenticity of the article can be determined by the following procedure. This will be described with reference to FIG. 1 (conceptual diagram of the automatic authentication system).
  • the general person reads the individual article identification code printed on the target article or the certificate attached thereto.
  • the micro-identification mark is enlarged to a proper magnification with the zoom function of the digital camera and, if necessary, with a simple lens function attached to the digital camera, and then it is copied to the screen of the mobile phone and expanded until the micro contour shape can be recognized. To do.
  • the image is transmitted to the authentication center together with the individual article identification code.
  • the original electronic image of the verification identification mark received at the authentication center is binarized by automatically setting a threshold value by computer processing as described in paragraph 0028 above, and the binary of the verification identification mark Obtain a micro image.
  • the basic shape of the identification mark may be registered in advance, and only the identification mark and the peripheral area in the vicinity thereof may be cut out from the original electronic image using the template as a template and automatically binarized as the original electronic image.
  • the binarized micro image and the binarized micro image of the regular identification mark stored in the database are subjected to matching processing by a computer, and a difference between them is calculated. In the following, a method for matching contour shapes and determining whether or not they match by a computer will be described.
  • a binary image of a collation binary image is obtained by automatically binarizing the original image of the collation identification mark.
  • a binarized micro image obtained by automatically binarizing regular identification marks is called a master binarized micro image.
  • the identification mark is black and the periphery is white.
  • a micro-image obtained by automatically binarizing an identification mark is composed of a peninsula, a bay, a small island, a rock, a lake, and a pond. And the land is uniformly black and the water surface is uniformly white.
  • DS The area of the black area of both images that does not overlap is determined as DS, and when the rotation angle is ⁇ (i), it is defined as DS ( ⁇ (i)).
  • a reference angle mark may be printed to set a reference angle, and the reference angles of the two images may be matched.
  • minR (I) The minR between the same printing individuals is minR (I), and that between different printing individuals is minR (D).
  • minR (D) The minR between the same printing individuals is minR (I), and that between different printing individuals is minR (D).
  • minR (I) ⁇ minR (D).
  • SIT and SDT as threshold values for determining whether the prints are the same or different are obtained as empirical values. Since minR (I) ⁇ SIT ⁇ SDT ⁇ minR (D), it can be determined whether minR (I) or minR (D) based on the obtained difference minR. That is, it is possible to determine whether the print solid is the same print solid or another print solid.
  • the authenticity of the target article is determined and returned.
  • it can be determined with a very high probability whether or not the identification mark corresponding to the article has been properly printed. If the image received by the Authenticity Judgment Management Center and the master image can be determined to be the same as the binarized micro image, “the article with this identification mark is genuine”, or if it cannot be determined to be the same “ It is very likely that the item with the mark is not genuine. " The ordinary person can receive it and obtain the result of the authenticity judgment at the professional level.
  • the authenticity of the article with the identification mark of the present application can be determined with extremely high accuracy. If it is determined that the identification mark is genuine, it is confirmed that it is unique in the world, so it is almost certain that the article to which the identification mark is attached is also genuine. This is because there is no fake trader who purchases a large number of genuine articles to obtain a genuine identification mark and sells the purchased genuine certificate with a large number of goods. That's because you never get it.
  • the above explanation is mainly based on the assumption that a mobile phone with a digital camera is used. However, since its function is to capture, transmit, receive and display identification marks, a digital camera, a microscope, a USB microscope, etc. The same function can be obtained even if used.
  • the other operations are the same as those in the first embodiment except that the method for matching the binarized micro image of the regular identification mark and the binarized micro image of the identification mark to be compared is different from that of the first embodiment.
  • Various methods of contour shape matching by a computer other than the first embodiment are disclosed and put into practical use. For example, in all combinations obtained by changing the size, horizontal / vertical movement, and rotation angle in a constant step, the sum of absolute values of the difference in y-axis values corresponding to certain x-axis values of both contour shapes The minimum difference is obtained as an index of the difference by calculating by a statistical processing method such as sum of squares, correlation coefficient, and the like.
  • feature points such as end points, cusps, corner points, and bending points of both contour shapes are calculated by a computer, and they are compared to find inconsistent points, and the values obtained by quantifying the number and characteristics of the differences are used as a difference indicator. Get as. If the obtained difference index is within a certain value, it is automatically determined as a match, and if it exceeds a certain value, it is automatically determined as a mismatch.
  • the authenticity determination is performed according to the following series of steps (1) to (15).
  • (1) Print of identification mark and reference angle mark Please refer to FIG. Similar to the first embodiment or the second embodiment, a minute mark having an arbitrary shape and another arbitrary minute mark inside or near the mark on the target article or its certificate are displayed on the background. Print in a color that is distinctly different from the color. When it is provided inside the mark, it becomes an ink blank area.
  • One mark is an identification mark and the other mark is a reference angle mark.
  • a characteristic shape such as a concave portion or a convex portion may be provided on a part of the edge of the identification mark and printed as a reference angle mark.
  • Threshold setting and automatic binarization See FIG. Since the identification mark and the reference angle mark are printed in a color that is clearly different from the background color as described in the above (1), the histogram of the luminance and the number of pixels of the pixel of the original electronic image as described in paragraph 0014 above. Always have two and only two mountains. The median value of the luminance values corresponding to these two peaks or the luminance value in the vicinity thereof is automatically calculated as a threshold value by any general method, and the threshold value is automatically calculated as described in paragraph 0028 above. To automatically binarize the original image and obtain the original binarized micro image.
  • the primitive binarized micro image obtained in the above (3) is a binarized identification mark and reference angle mark, but a peninsula, a bay, a small island, and a pond are scattered as black areas. Among them, only the maximum area area (for example, the identification mark here) and the second area area (for example, the reference angle mark here) are extracted, and the identification mark binarized micro image and the reference angle mark 2 are extracted. A valued micro image is obtained.
  • an identifier filled identification mark binarized micro image
  • a filled reference angle mark binarized micro image are obtained.
  • the representation method may be an angular distance method (polar coordinate method) or an orthogonal coordinate method.
  • (Y 1 to n , X 1 to m ) points are assigned as 1 when the points are on the outline, and 0 when there are no points, and the numerical sequence becomes an identifier.
  • the representation and the identifier can be easily verified. For this purpose, first, the area barycentric position (B) of only the “fill reference angle mark binarized micro image” is obtained. Next, the area centroid position (A) of only the identifier (filled identification mark binarized micro image) is obtained, and the straight line connecting A and B is set as the reference angle of the identifier.
  • the reference angle can be obtained by another method.
  • a reference angle mark of a color distinctly different from the identification mark is printed inside or outside the identification mark area, or a blank area of printing ink is set and imaged in the same manner as described above.
  • automatic binarization is performed, and a maximum area area is extracted to obtain an identification mark binarized micro image.
  • a blank area having a maximum area as a reference angle mark is extracted from the image area, and the barycentric position is obtained.
  • all blanks or light-colored zones (including reference angle marks) in the area of the image are filled to obtain a filled identification mark binarized micro image (identifier).
  • the barycentric position of the identifier is obtained, and the barycentric position of the reference angle mark is connected to the barycentric position to obtain the reference angle.
  • the distance by the above-mentioned angular distance method is the shortest distance angle, the longest distance angle, or a change in distance.
  • the reference angle may be obtained based on an angle having a large value. There may be other methods for obtaining the reference angle, but any method may be used as long as the reference angle is obtained.
  • the contour shape consists of a complex peninsula or bay, and the bay bites along the contour line or the peninsula exists along the contour line, there will be multiple contour points encountered on the line from the center of gravity A, Measure the distance to the first encountered contour and ignore the others. Since the regular identifier to be stored and the identifier to be collated are similar in shape, they can be ignored. The above measurement is measured in a range of 360 degrees or a specific angle, and is defined as l ( ⁇ i ). This number string represents the contour-shaped waveform almost continuously, and is an identifier.
  • the size of both contour shapes must be the same.
  • there is no strict constant size for the micro contour shape This is because the shape of each printed micro identification mark is random, and the contour region has a gradation of brightness, so there is no fixed size. Strictly speaking, it is impossible to equalize the size of individual printed matter.
  • the stored regular identification mark was taken by a contractor, whereas the verification identification mark was taken by an ordinary person with a camera-equipped mobile phone with an appropriately enlarged image. Different. Even in the same printed matter, the size of the image is different for each shot. Furthermore, the size of the binarized image also changes depending on the threshold value when binarizing the captured original image.
  • this l ( ⁇ i ) is divided by the average value and indexed. By doing so, it is possible to collate / determine the coincidence / disagreement by calculating the degree of similarity of the contour shape regardless of the size of the identification mark.
  • both the original electronic image of the identification mark of (2) and the reference angle mark and the identifier consisting of the numerical sequence of l ( ⁇ i ) of (7), or the latter, are electronically stored as normal identification information of the identification mark.
  • FIG. 1 schematic diagram of automatic authentication system.
  • the general public who wants to determine the authenticity of an article captures each collated identification mark and reference angle mark (both are collectively referred to as a minute mark) with a terminal device that can recognize the microscopic contour shape of each original electronic image. To get. Further, a collated individual article identification code corresponding to the collation identification mark is input to the terminal device.
  • FIG. 1 (conceptual diagram of automatic authentication system).
  • the general person side transmits the original electronic image of the individual article identification code to be collated and the minute mark (the collation identification mark and the reference angle mark) input in (10) to the authenticity judgment person side through the Internet.
  • the reception authenticity determination side receives the original electronic image of the collated individual article identification code and the minute mark (the collation identification mark and the reference angle mark) of (11) above.
  • the statistical value is a statistical index representing the degree of difference such as the correlation coefficient between X i and Y i , the root mean square of the difference between the two, or the sum of absolute values of the difference between the two.
  • the reason why the coincidence / non-coincidence can be determined with high accuracy in this way is that the identification mark and the reference angle mark are printed in a color that is clearly different from the background color as described in (1) above, and (3) to (7) This is because computer processing was performed. Further, in order to further increase the accuracy of coincidence / non-coincidence determination and reduce the amount of computer processing, before calculating the statistical index, the identifier (numerical string of l ( ⁇ i )) is Fourier-transformed within a range where the accuracy of determination does not deteriorate. You may perform the process which smooths a fine unevenness
  • the general person side does not transmit both the captured image and the individual product identification code to be verified to the authenticator side, but only the individual product identification code input in (10) above is sent to the authenticator side.
  • the identifier (l ( ⁇ i )) of the regular identification mark stored in the electronic storage device of (8) is received and the corresponding identification mark and reference angle mark acquired in (10) are received.
  • the identifier l ( ⁇ i ) of the identification mark to be verified is automatically created from the electronic image by the method described in the above (3) to (7), both identifiers are automatically verified, and the coincidence mismatch is determined by the above statistical index. Automatic determination may be performed. That is, the automatic generation of the identifier of the identification mark to be verified and the automatic determination of coincidence and coincidence with the automatic verification may be performed on the authenticity determination center side or on the general public side.
  • the identifier of the verification identification mark is an identifier based on a newly captured image. Instead, it is considered that an identifier based on a past captured image was stolen and transmitted to the authenticator. This is because images that completely match cannot be captured. In that case, the computer is programmed to issue a warning instead of a match.
  • the packaging is almost the same as the real product, and if the form and chemical composition of the drug are almost the same, even an authorized manufacturer cannot immediately distinguish between the real product and the bag. Even in that case, if the micro-identification mark according to the present invention is printed or attached to the packaging box, the authenticity can be discriminated quickly. As a result, counterfeit goods cannot exist and the huge cost of extermination is unnecessary.
  • the feature of the present invention is that it can be executed only with devices that are used by ordinary people or devices that are available at a very low cost, and as a business operator on the authenticity judgment side, there is no need for completely new technology development and almost no capital investment. Therefore, it is possible to execute immediately with little cost. However, an article that is manufactured and sold as a counterfeit product is not effective because it is known that the product is a counterfeit product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Analysis (AREA)

Abstract

[Problem] There is no method which is for automatically determining the authenticity of an article and which can be executed by an average person using a camera-equipped cell phone. [Solution] The color of an ink (for which the difference between an attribute such as the color luminance and that of a background color is equal to or greater than a fixed value) is specified, and a fine unique shape is printed in that color as an identification mark. A computer is used to binarize a digital image of the identification mark automatically using, as a threshold value, a value which is near the central value of the luminance (or the like) corresponding to two peaks appearing in a histogram of the luminance (or the like) of that digital image, and a micro contour shape which is equal to or less than the shape control limit of that identification mark is used as an identifier. The identifier of an identification mark to be compared is compared with the identifier of a stored legitimate identification mark, and the degree of matching therebetween is represented with a unique statistical index calculated automatically by a computer, thereby enabling the authenticity of the identification mark and an individual article to be determined with high precision by an average person using a camera-equipped cell phone.

Description

印刷のミクロ的輪郭形状を識別子とする個別物品の自動真贋判定方法Automatic authenticity judgment method for individual articles using printed micro contour as identifier
人が形状を制御することが不可能であるため複製が出来ない印刷のミクロ的輪郭形状を識別子とし、一般人が日常の撮像機器で容易に実行できる個別物品の自動真贋判定方法或いは自動認識方法に関する。
 
The present invention relates to an automatic authenticity determination method or automatic recognition method for individual articles that can be easily executed by an ordinary imaging device by an ordinary person using a micro-contour shape of a print that cannot be copied because a person cannot control the shape as an identifier. .
物品或いはその証明書に微小な識別マークを印刷し、人が形状制御をすることが不可能であるため複製が出来ない印刷のミクロ的輪郭形状を識別子とし、その識別子と物品識別符号(製造番号、シリアル番号等)を対応させ、それらを記憶装置に記憶させた後に、該識別マークと共に物品を出荷し、その後、出荷された該物品の真贋を判定したい時に、該物品識別符号と該識別マークを一般日常の撮像機器(カメラ付携帯電話等)で読取って、それをインターネットで真贋判定者に送信し、真贋判定者は受信した該物品識別符号及び該識別マークを記憶してあるそれらと照合して、その一致不一致の程度によって物品の真贋を判定し、結果を返信する、ことから構成される真贋判定システムが開示又は特許出願されている。
 
A micro-identification mark is printed on an article or its certificate, and a micro-contour shape of printing that cannot be copied because a person cannot control the shape is used as an identifier. The identifier and the article identification code (manufacturing number) , Serial number, etc.) and storing them in a storage device, when the goods are shipped together with the identification mark, and then it is desired to determine the authenticity of the shipped goods, the article identification code and the identification mark Is read by a general daily imaging device (such as a camera-equipped mobile phone) and transmitted to the authenticity judging person via the Internet, and the authenticity judging person compares the received article identification code and the identification mark with those stored. An authenticity determination system configured to determine the authenticity of an article according to the degree of coincidence and return the result is disclosed or patent-patented.
特願2010-283691上記の特許出願は、特許第4775727号として登録されている。The above patent application is registered as Japanese Patent No. 4775727. 特願2011-103830上記の特許出願は、特許文献1の分割出願である。Japanese Patent Application No. 2011-103830 The above patent application is a divisional application of Patent Document 1. PCT/JP2011/065915上記特許出願は、日本国内に移行され、特許5071592号として登録されている。PCT / JP2011 / 065915 The above patent application was transferred to Japan and registered as Japanese Patent No. 5071592. 特願2011-282547Japanese Patent Application No. 2011-282547
微小な識別マークを印刷しその形状制御限界以下のミクロ的輪郭線の形状のみを識別子とする特許文献1乃至4の真贋判定方法には、真贋判定の自動化の方法は記載されていない。一般人の真贋判定要求者から要求される膨大な数の識別マークの真贋を瞬時に判定しその結果を返信するためには、人の肉眼による判定による方法では真贋判定センターに膨大な数の判定要員を準備しなければならない。ミクロ的輪郭線の形状特徴が十分読み取れるまで拡大された画像の肉眼による照合と判定は本来極めて正確であるが、人は時にエラーもするし、肉眼判定では判定のための数量的指標を設けることも不可能である。だからコンピュータによって一致度の数量的指標を計算し、それを基にして判定を自動化することが強く望まれる。 The authenticity determination methods of Patent Documents 1 to 4 in which a minute identification mark is printed and only the shape of a micro contour line below the shape control limit is used as an identifier does not describe an automatic authentication method. In order to instantly determine the authenticity of the huge number of identification marks required by the general person's authenticity requester and send back the results, a method using the naked eye of the human being makes a huge number of determination personnel at the authentication center. Must be prepared. Collation and judgment with the naked eye of the enlarged image until the shape characteristics of the microscopic outline can be read sufficiently is inherently very accurate, but humans sometimes make errors, and in the judgment with the naked eye, a quantitative index for judgment should be provided Is also impossible. Therefore, it is highly desirable to calculate a quantitative index of the degree of coincidence by a computer and to automate the judgment based on it.
しかし印刷した識別マークのミクロ的輪郭形状を識別子にした真贋判定方法について、未だ自動化の方法は実績もないし開示もされていない。まして一般人が日常の普及機器をもって実行できる該識別子を用いた自動真贋判定方法は開示されていない。該真贋判定の自動化のためには、技術的に解決しなければならない問題が多い。即ち、識別マークを撮像しそのミクロ的輪郭形状をマスター画像としてデータベースに記憶する作業は、専門業者側が行うので撮像機器や撮像環境(照射光の質、照射角度、識別マークの画像内位置、サイズ、解像度)或いは撮像技術(ピントの良し悪し)(以降、撮影環境と撮影技術を総称して撮影条件と呼ぶ)を高品質で安定したものにすることが出来るのに反して、一般人が一般普及の撮像機器(例えばカメラ付携帯電話)で該識別マークを撮像する際には、撮像機器の品質は低く且つ撮像画像の品質は機器によって様々であるし、撮像環境も様々だし、撮像技術も一般的に劣る。ミクロ的輪郭形状を撮像するためには光学的及び電子的に拡大して画像を撮像するのであるから表示画面の画像が手振れによって常に大きく振動しており、一般人が焦点を正確に合わせることは困難である。 However, as for the authenticity determination method using the micro-contour shape of the printed identification mark as an identifier, no automated method has been proven or disclosed yet. Moreover, there is no disclosure of an automatic authentication method using the identifier that can be executed by ordinary people with daily popular devices. There are many problems that must be solved technically in order to automate the authentication. That is, the work of imaging the identification mark and storing the microscopic contour shape in the database as a master image is performed by a specialist, so the imaging equipment and imaging environment (quality of irradiation light, irradiation angle, position in the image of the identification mark, size) , Resolution) or imaging technology (good or bad focus) (hereinafter, the shooting environment and shooting technology are collectively referred to as shooting conditions) can be made stable with high quality, but the general public is popular. When imaging the identification mark with an imaging device (for example, a camera-equipped mobile phone), the quality of the imaging device is low, the quality of the captured image varies depending on the device, the imaging environment varies, and the imaging technology is also general. Inferior. In order to capture microscopic contours, images are captured by optical and electronic enlargement, so the image on the display screen is constantly vibrated greatly due to camera shake, and it is difficult for ordinary people to focus accurately. It is.
したがって一般人によって撮像され真贋判定者に送信されてくる該識別マークの画質は低いし、撮像光質・照射角度・輝度・画像位置・サイズは様々であり、ピントも鮮明でないことも多い。即ち撮像条件の質が低く安定もしていないので画質が低い。これらを、記憶されているマスター画像と自動的に照合し一致不一致を判定なければならない。それは技術的に容易なことではない。以下に撮像画像の特性を述べる。 Therefore, the image quality of the identification mark imaged by a general person and transmitted to the authenticity judgment person is low, the imaging light quality, the irradiation angle, the brightness, the image position and the size are various, and the focus is often not clear. That is, the image quality is low because the quality of the imaging conditions is low and not stable. These must be automatically checked against the stored master image to determine whether or not they match. That is not technically easy. The characteristics of the captured image will be described below.
(1)印刷物の個別特徴。
図5を参照願いたい。微小印刷物の例として長さ約1mmのインクジェットプリンターによる印刷物3個である。本願の識別子である印刷のミクロ的輪郭の形状は、目視では全く同じ形状の印刷物でも、ミクロ的には印刷物個体が違えば個々に異なる個別の特徴を持っていることが分かる。これらのミクロ的輪郭形状は人が制御できないランダム性を持っている。識別マークの印刷をミクロ的に見れば、インクの領域境界においてランダムな凹凸、飛び地(小島)、にじみ、等が避けられない。しかも図6に示すようにそれぞれの境界領域では輝度の濃淡は連続的に変化している。
(1) Individual characteristics of printed matter.
Please refer to FIG. As an example of a micro printed matter, there are three printed matter by an ink jet printer having a length of about 1 mm. The printed microscopic contour shape, which is the identifier of the present application, can be visually observed that even if the printed material has exactly the same shape, the printed material has different individual characteristics as long as the printed material is different. These microscopic contours have randomness that cannot be controlled by humans. If the printing of the identification mark is viewed microscopically, random irregularities, enclaves (small islands), blurring, etc. are unavoidable at the boundary of the ink region. In addition, as shown in FIG. 6, the brightness intensity changes continuously in each boundary region.
(2)撮像機種及び撮像条件による撮像画像の変化。
更に図8、図9、図10を参照願いたい。図8の印刷物(縦横約1mm)の上部を各種のカメラ付携帯電話で撮像した画像が図9及び図10である。
同じ印刷物個体を撮像しても、撮像するカメラ付携帯電話の機種によって輪郭形状が少しずつ違うし、良い画質もあるし悪い画質もあり様々である。また画面上の識別マークの明るさ、色、濃淡、サイズ、位置、撮像角度、は正確に同一ではない。
(2) Change in captured image depending on the imaging model and imaging conditions.
Please refer to FIG. 8, FIG. 9, and FIG. FIGS. 9 and 10 show images obtained by picking up the upper part of the printed matter (vertical and horizontal length of about 1 mm) in FIG. 8 with various camera-equipped mobile phones.
Even if the same individual printed matter is imaged, the contour shape differs little by little depending on the model of the camera-equipped mobile phone, and there are various image quality, both good and bad. Further, the brightness, color, shading, size, position, and imaging angle of the identification mark on the screen are not exactly the same.
(3)輪郭領域はグラデーション。輪郭形状の二値化閾値による変化。
更に、識別マークは境界領域においてミクロ的に見れば色(例えば輝度)がグラデーションしているために特定な境界位置を確定できず輪郭形状は確定できない。即ち、印刷された識別マークを撮像した画像のミクロ的輪郭領域においては、受光セル毎に色(例えば輝度)が連続的に緩やかに変化している。従って、どの色値(例えば輝度値)を閾値として輪郭を定義するかによって輪郭の形状が大幅に変化する。従ってミクロ的輪郭形状は一義的には決められない。図4の識別マークの一部を拡大して図6に示す。輪郭領域の輝度は断層的に変化するのではなく緩やかにグラデーションしながら変化していることが分かる。
図7に図6の画像の輝度と受光セル数のヒストグラム、及び二値化する際の輝度の閾値の変化と輪郭形状の変化を示す。左側の輪郭図は閾値として例えば輝度値110、右側の輪郭図は例えば155を撮ったときの輪郭である。閾値が変われば輪郭形状が大幅に変わることを示している。
(3) The contour area is gradation. Changes due to the binarization threshold of the contour shape.
Further, when the identification mark is viewed microscopically in the boundary region, the color (for example, luminance) is gradation, so that the specific boundary position cannot be determined and the contour shape cannot be determined. In other words, in the microscopic contour region of the image obtained by capturing the printed identification mark, the color (for example, luminance) continuously and gently changes for each light receiving cell. Therefore, the shape of the contour varies greatly depending on which color value (for example, luminance value) is used as the threshold value to define the contour. Accordingly, the microscopic contour shape cannot be uniquely determined. A part of the identification mark of FIG. 4 is enlarged and shown in FIG. It can be seen that the brightness of the contour region does not change in a tomographic manner but changes while gradually gradation.
FIG. 7 shows a histogram of the brightness of the image and the number of light receiving cells in FIG. 6, and changes in the threshold value of luminance and changes in contour shape when binarized. The left contour diagram is, for example, a luminance value 110 as a threshold, and the right contour diagram is a contour when, for example, 155 is taken. It shows that the contour shape changes significantly if the threshold value changes.
上記のように一般人が一般撮像機器で撮像した画質が不安定な画像と記憶装置に記憶されている画質が良い画像を照合して、しかも輪郭形状を出すための二値化閾値の取り方によって輪郭形状が大幅に変わる画像を照合して、それらの輪郭形状の合致不合致を精度高くコンピュータによって自動的に判定するのは容易なことではない。コンピュータによって照合判定を自動化するには上述の諸課題を全て解決しなければならない。これらの課題に対して本願は下記の一連のステップを用いて解決手段を発明した。
 
As described above, by comparing the image with unstable image quality captured by a general person with a general imaging device and the image with good image quality stored in the storage device, and by taking the binarization threshold value for producing the contour shape It is not easy to collate images with greatly changing contour shapes and automatically determine whether the contour shapes match or not with high accuracy by a computer. All the above-mentioned problems must be solved in order to automate the collation determination by a computer. In order to solve these problems, the present application has invented a solution using the following series of steps.
目次
1.課題を解決するための自動真贋判定方法の概要。
2.二値化ミクロ画像の自動生成方法。
3.二値化ミクロ画像の自動照合方法及び一致不一致の自動判定の方法。
 
Table of contents Overview of automatic authentication method for solving problems.
2. Automatic generation method of binarized micro image.
3. Automatic collation method of binarized micro image and automatic judgment method of coincidence / mismatch.
1.課題を解決するためのコンピュータによる自動真贋判定方法の概要。
次に記載する(1)乃至(9)の一連のステップにより課題を解決する。
1. An overview of a computer-based automatic authentication method for solving problems.
The problem is solved by a series of steps (1) to (9) described below.
(1)背景色と鮮明に異なる色で識別マークを印刷するステップ。
図12(物品証明書へ識別マークの印刷)を参照願いたい。対象物品又はその証明書の上に、任意の形状の微小なマークをその背景色と鮮明に異なる色で印刷し、それを識別マークとする。該マークの色が背景色と鮮明に異ならないと、印刷物の識別マークのミクロ的輪郭部における色の変化が緩やか過ぎるので、前記の段落番号0005に記載したように撮像条件(撮像環境及び撮像技術)によって、また前記段落番号0009に記載したように画像の二値化の閾値の取り方によって識別子であるミクロ的輪郭形状が大きく変化し、精度の高い自動判定が出来ない。
しかし、背景色と鮮明に異なる色と言っても、図6で前述した通り、それを撮像したミクロ的画像上では識別マークは決して背景色と鮮明に異なってはいない。従って本願の核心である「識別マークの色が背景色と鮮明に異なる」とは何かを感覚的ではなく数量的に定義する必要がある。その定義を撮像した識別マークの画像で下記のように規定する。
なお、背景色を濃い色で印刷し識別マークをその印刷の中でそれと色差が大きい色としても良い。その一例として識別マークは濃い色の中の任意の形をしたインクの空白地帯とすることが挙げられる。
(1) A step of printing the identification mark in a color that is clearly different from the background color.
Please refer to FIG. 12 (printing of an identification mark on an article certificate). A fine mark having an arbitrary shape is printed on the target article or its certificate in a color that is clearly different from the background color, and this is used as an identification mark. If the color of the mark is not clearly different from the background color, the color change in the microscopic outline of the identification mark of the printed matter is too gradual. Therefore, as described in paragraph 0005 above, the imaging conditions (imaging environment and imaging technology) ) And, as described in paragraph 0009 above, the microscopic contour shape as an identifier changes greatly depending on how to set the threshold for binarization of the image, and automatic determination with high accuracy cannot be performed.
However, even if the color is clearly different from the background color, the identification mark is not clearly different from the background color on the microscopic image obtained by capturing it as described above with reference to FIG. Accordingly, it is necessary to quantitatively define what is “the color of the identification mark is clearly different from the background color”, which is the core of the present application, rather than sensory. The definition is defined by the image of the identification mark taken as follows.
Note that the background color may be printed in a dark color and the identification mark may be a color having a large color difference from that in the printing. As an example, the identification mark may be a blank area of ink having an arbitrary shape in a dark color.
背景色と鮮明に異なる色の量的定義をする。
例として図11( 横一No.1印刷の上半分、ヒストグラム、鮮明な色差の定義)で説明する。図11は図4(横一No.1印刷、長さ約1mm)の上半分部分の原始画像、その輝度値と画素数のヒストグラム及び特定の閾値での二値化した輪郭図が示されている。画像の色情報をRGB形式で表現される輝度値を用いればその値は最小1、最大255で表現できる。その輝度値と画素数のヒストグラムにおいて、識別マークが背景色と鮮明に異なる色で印刷されていると、必ず二山とその間に低いなべ底が現れる。明るい背景色が右の山、暗い識別マークの色が左の山、なべ底部分は背景と識別マークの境界領域のグラデーション部分である。背景色と鮮明に異なる程度は、該二山のピークに対応する輝度値の差異が大きい程、且つ、なべ底の幅が長くて低い程、鮮明の度合いが大きい。したがって鮮明度の度合いを二山の距離となべ底の幅の長さで定量的に規定できる。印刷する識別マークの「背景色と鮮明に異なる色」は、該色の輝度値とピクセル数のヒストグラムにおいて、一例として二つの山のピークに対応する輝度値の差異が60以上あり、且つなべ底の両端(急に輝度の勾配の絶対値が大きく変化する直後と直前の輝度値)の輝度値の差異が30以上あるようにする。更に厳密にするためにはなべ底の高さを低く制限する。識別マークをこのような色で印刷する。
Quantitative definition of colors that are distinctly different from the background color.
An example will be described with reference to FIG. 11 (upper half of horizontal No. 1 printing, histogram, definition of clear color difference). FIG. 11 shows the original image of the upper half part of FIG. 4 (horizontal No. 1 printing, length of about 1 mm), a histogram of its luminance value and the number of pixels, and a binarized contour diagram with a specific threshold value. Yes. If the luminance value expressed in RGB format is used for the color information of the image, the value can be expressed with a minimum of 1 and a maximum of 255. In the histogram of the luminance value and the number of pixels, if the identification mark is printed in a color that is clearly different from the background color, there will always be two peaks and a low pan bottom between them. The bright background color is the right peak, the dark identification mark color is the left peak, and the pan bottom part is the gradation part of the boundary area between the background and the identification mark. The degree of clearness from the background color is greater as the difference in luminance values corresponding to the peaks of the two peaks is larger and the width of the bottom of the pan is longer and lower. Therefore, the degree of definition can be quantitatively defined by the distance between the two peaks and the width of the bottom. For example, in the histogram of the brightness value and the number of pixels of the identification mark to be printed, the difference between the brightness values corresponding to the peaks of two peaks is 60 or more, and the bottom of the pan The difference between the luminance values at the two ends (the luminance value immediately before and immediately after the absolute value of the luminance gradient suddenly changes greatly) should be 30 or more. In order to make it more precise, the height of the pan bottom is limited to be low. The identification mark is printed in such a color.
上記のように印刷された識別マークによって、追って段落番号0028で記載する通り、
(a)撮像機種に拘わらず、
(b)撮像条件(撮像環境と撮像技術)に拘わらず、更に
(c)二値化するための閾値が二山のピークに対応する輝度値の中央付近でありさえすればその何処を取るかに拘わらず、
高い精度の真贋判定が出来ることを発見した。ミクロ的な輪郭形状を得るために二値化する際の閾値が二山のピークに対応する輝度値の中央付近でありさえすれば、その付近のどこを取っても重要な輪郭の特徴が保持されており、従って判定精度は落ちないのである。これら(a)、(b)、及び(c)の三つの許容性は、背景色と識別マークの色差を段落番号0014に記載の通り設定したことによってもたらされた特性である。該識別マークが該特性を持つことを発見したのである。の、その特性は本願のように一般人が撮像する画質の不安定な画像で真贋判定するためには決定的に重要な必要条件である。
By the identification mark printed as described above, as described later in paragraph number 0028,
(a) Regardless of imaging model
(b) Regardless of the imaging conditions (imaging environment and imaging technology)
(c) As long as the threshold for binarization is near the center of the luminance value corresponding to the peaks of the two peaks,
I discovered that I can make high-precision authentication. As long as the threshold when binarizing to obtain a microscopic contour shape is near the center of the luminance value corresponding to the peak of two peaks, important contour features are retained no matter where it is taken. Therefore, the determination accuracy does not drop. These three tolerances (a), (b), and (c) are characteristics brought about by setting the color difference between the background color and the identification mark as described in paragraph 0014. It was discovered that the identification mark has the characteristic. This characteristic is a crucial requirement for authenticity determination with an unstable image captured by a general person as in the present application.
なお、識別マークを撮像し電子的色情報に変換した際に、ヒストグラムの基準に用いる色情報は上記のRGB輝度値に限らない。色の属性である彩度、明度などを色情報として用いても良い。夫々の色情報において上記の輝度値と画素数のヒストグラムと同様なヒストグラムを得て、該ヒストグラムにおいて二山の距離となべ底の幅の長さ及び高さを規定して「背景色との鮮明に異なる色」を規定しても良い。それらの設定する規定値は一致不一致の要求する判定精度による。 Note that when the identification mark is imaged and converted into electronic color information, the color information used for the histogram reference is not limited to the RGB luminance value. Color attributes such as saturation and lightness may be used as color information. For each color information, a histogram similar to the histogram of the luminance value and the number of pixels described above is obtained, and in the histogram, the length and height of the width of the bottom and the width of the bottom are defined, and the “clearness with respect to the background color” is defined. “Different colors” may be defined. The specified values to be set depend on the determination accuracy required for coincidence / mismatch.
(2)正規識別マークの撮像するステップ。
図3(証明書上の識別マークの画像の撮像と記憶)参照。上記(1)のステップで印刷した識別マークをそのミクロ的輪郭形状の特徴を認識できる撮像装置で撮像し原始電子画像を取得する。
(2) A step of imaging the regular identification mark.
See FIG. 3 (capturing and storing an image of an identification mark on a certificate). The identification mark printed in the step (1) is imaged by an imaging device capable of recognizing the features of the micro contour shape, and a primitive electronic image is acquired.
(3)識別マークの自動二値化と記憶・登録するステップ。
図13(正規識別情報の自動登録)参照。上記(2)のステップで撮像した原始電子画像を段落番号0026で後述する「2.二値化画像の自動生成方法」によって自動二値化し、「二値化ミクロ画像」を得る。
次に上記の原始電子画像及び該二値化ミクロ画像の両方、又は後者を該識別マークの正規識別情報として電子記憶装置に記憶・登録する。
(3) A step of automatically binarizing the identification mark and storing / registering it.
See FIG. 13 (Regular Identification Information Automatic Registration). The original electronic image captured in the step (2) is automatically binarized by “2. Binarized image automatic generation method” described later in paragraph No. 0026 to obtain a “binarized micro image”.
Next, both the original electronic image and the binarized micro image, or the latter, are stored and registered in the electronic storage device as regular identification information of the identification mark.
(4)個別物品識別符号の入力するステップ。
図3(  証明書上の識別マークの画像の撮像と記憶)参照。対象物品の個別物品識別符号(物品のシリアル番号、製造番号など)を、上記(3)ステップの電子記憶装置に記憶された正規識別情報と対応させて、電子記憶装置に記憶する。
(4) A step of inputting an individual article identification code.
See FIG. 3 (capturing and storing an image of an identification mark on a certificate). The individual article identification code (article serial number, manufacturing number, etc.) of the target article is stored in the electronic storage device in association with the regular identification information stored in the electronic storage device in step (3).
(5)被照合識別マークの撮像と被照合個別物品識別符号を入力するステップ。
図1(  自動真贋判定システムの概念図)参照。物品の真贋判定をしたい一般人側は、被照合識別マークについて、そのミクロ的輪郭形状の特徴を認識できるカメラ付端末装置で撮像し或いはスキャナー等の電子的読取装置で読取り原始電子画像を取得する。更に該被照合識別マークに対応する被照合個別物品識別符号を端末装置で読取り或いは入力する。
(5) Step of inputting the image of the identification mark to be verified and the individual article identification code to be verified.
See Fig. 1 (Conceptual diagram of automatic authentication system). An ordinary person who wants to determine the authenticity of an article takes an image with a terminal device with camera capable of recognizing the feature of the microscopic contour shape of the identification mark to be verified, or acquires a reading original electronic image with an electronic reading device such as a scanner. Further, the individual article identification code to be verified corresponding to the identification mark to be verified is read or inputted by the terminal device.
(6)送信するステップ。
図1(自動真贋判定システムの概念図)参照。一般人側は、上記(5)ステップで入力した被照合個別物品識別符号と被照合識別マークの原始電子画像を真贋判定者側に送信する。
(6) Transmitting step.
See FIG. 1 (conceptual diagram of the automatic authentication system). The general person side transmits the collated individual article identification code and the original electronic image of the collation identification mark input in step (5) to the authenticity determination person side.
(7)受信するステップ。
真贋判定者側は、上記(6)ステップの送信情報を受信する。
(7) A receiving step.
The authenticity determination side receives the transmission information of step (6) above.
(8)自動照合・判定するステップ。
図1(No.11自動真贋判定システムの概念図)参照。真贋判定者側は、上記(7)ステップで受信した被照合識別マークの原始電子画像を段落番号0026で後述する「2.二値化画像の自動生成方法」によって自動二値化し、「二値化ミクロ画像」を得る。それと、受信した被照合個別物品識別符号に対応する電子記憶装置に記憶されている正規識別マークの二値化ミクロ画像と自動照合し、その一致不一致を判定する。コンピュータによる二値化ミクロ画像の自動照合方法及び一致不一致の自動判定の方法は段落番号0030で後述する「3.二値化ミクロ画像の自動照合方法及び一致不一致の自動判定の方法」で説明する。図14( 画像の自動照合・判定方法)参照。
(8) Automatic collation / determination step.
See Fig. 1 (Conceptual diagram of No. 11 automatic authentication system). The authenticity judge side automatically binarizes the original electronic image of the verification identification mark received in the step (7) by paragraph number 0026 according to “2. Automatic generation method of binarized image” described later. A micro-image ". Then, it automatically collates with the binarized micro image of the regular identification mark stored in the electronic storage device corresponding to the received individual article identification code to be verified, and determines the coincidence or inconsistency. A method of automatically collating a binarized micro image and a method of automatically determining coincidence / mismatch by a computer will be described in “3. Automatic method of collating binarized micro image and method of automatically determining coincidence / mismatch” described later in paragraph 0030. . See FIG. 14 (Automatic image collation / judgment method).
或いは、一般人側は、上記(5)ステップにおいて入力した被照合個別物品識別符号のみを真贋判定者側に送信し、それに対応する上記(3)ステップの電子記憶装置に記憶されている正規識別マークの二値化ミクロ画像を受信し、上記(5)ステップで取得した被照合識別マークの原始電子画像から後記段落番号0028に記載した通りコンピュータによって二値化ミクロ画像を自動作成し、それを後記段落番号0030に記載した通り両二値化ミクロ画像を自動照合し、その一致不一致を自動判定する。
つまり、上記の被照合二値化ミクロ画像の自動生成及びそれらの自動照合と一致不一致の自動判定は、真贋判定センター側で行っても良いし、あらかじめ入手したソフトウェアによって一般人側で行っても良いと言うことである。
Alternatively, the general person side transmits only the verified individual article identification code input in step (5) to the authenticity determination person side, and the corresponding regular identification mark stored in the electronic storage device in step (3) corresponding thereto. As shown in paragraph number 0028 below, the computer automatically generates a binarized micro image from the original electronic image of the verification identification mark obtained in step (5) above. As described in paragraph 0030, both binarized micro images are automatically collated, and the coincidence / mismatch is automatically judged.
In other words, the automatic generation of the above-described collated binarized micro images and the automatic collation and automatic determination of coincidence / non-coincidence may be performed on the authenticity determination center side, or may be performed on the general person side with software obtained in advance. That is to say.
 
(9)結果を通知するステップ。
図1(自動真贋判定システムの概念図)参照。上記(8)ステップの一致不一致の判定の結果に基づき対象物品の真贋を判定して返信或いは表示する。

(9) A step of notifying the result.
See FIG. 1 (conceptual diagram of the automatic authentication system). The authenticity of the target article is determined based on the result of determination of coincidence / non-coincidence in step (8), and is returned or displayed.
2.コンピュータによる二値化ミクロ画像の自動生成方法。
以下の図を参照願いたい。
図15 ヒストグラムのなべ底両端の閾値と二値化ミクロ画像、
図16 ヒストグラムのなべ底中央付近の低中高閾値と二値化ミクロ画像、
図17 重ならない最小面積 同一印刷と別印刷。
 
識別マークの原始電子画像の全画素の持つ輝度値について、閾値の自動設定により全画素を二値化して二値化ミクロ画像を得る。
二値化するための閾値の自動設定方法について述べる。
識別マークは背景色と鮮明に異なる色で印刷されている。背景面積を十分取れば、原始電子画像には識別マークと背景以外は写っていない。或いは背景面積が十分取れなくて識別マークと背景以外のものが写ってしまう場合は、識別マークのテンプレートで識別マークのみを抽出するプロセスを通し識別マークのみが写っているようにする。その画像の画素の輝度と画素数のヒストグラムは、前述の段落番号0014で述べた通り、必ず二つそして二つだけの山を持っている。また二つの山の間の谷は、幅が長く高さが非常に低い平坦ななべ底型である。
2. A method for automatically generating a binarized micro image by a computer.
Please refer to the figure below.
Fig. 15 Threshold values at both ends of the bottom of the histogram and binarized micro image,
Fig. 16 Low, middle and high threshold values near the center of the bottom of the histogram and a binarized micro image,
Fig. 17 Minimum area that does not overlap Same printing and different printing.

With respect to the luminance values of all the pixels of the original electronic image of the identification mark, all the pixels are binarized by automatically setting a threshold value to obtain a binarized micro image.
An automatic threshold setting method for binarization will be described.
The identification mark is printed in a color that is clearly different from the background color. If the background area is large enough, the original electronic image will not show anything other than the identification mark and the background. Alternatively, if the background area is not sufficiently large and the identification mark and the object other than the background are captured, only the identification mark is captured through the process of extracting only the identification mark from the identification mark template. The histogram of the luminance and the number of pixels of the image always has two and only two peaks as described in paragraph 0014 above. The valley between the two peaks is a flat pan bottom with a long width and a very low height.
図15、図16、図17では、説明を簡単化するために、横棒の識別マークの上半分のみ切り取って説明しているが勿論全体でも同じである。図15では、閾値をなべ底の両端点付近(上部図は輝度93,下部図は輝度174)に取っているが、それでは輪郭形状は明らかにその個別特徴を失っている。図16では、二山のピークに対応する二つの輝度値の中央値付近(上部図137)、及び輪郭形状の特徴を大幅には失わない程度に低輝度値(中部図119)と高輝度値(下部図149)の三つを閾値として取り、夫々の輪郭形状を得る。該低輝度値と該高輝度値の幅は30にもなり幅は広いが、輪郭形状の特徴は大幅には失われない。しかし輪郭形状の多少の変化はある。だから輪郭形状が多少変化しても印刷物固体の一致不一致の判定にその輪郭形状が有効であるかを下記のように検証する。 In FIG. 15, FIG. 16, and FIG. 17, only the upper half of the horizontal bar identification mark is cut out to simplify the explanation, but of course the same applies to the whole. In FIG. 15, the threshold value is set near both end points of the pan bottom (the luminance is 93 in the upper diagram and the luminance 174 in the lower diagram), but the outline shape clearly loses its individual characteristics. In FIG. 16, a low luminance value (middle part 119) and a high luminance value near the median value of the two luminance values corresponding to the peaks of the two peaks (upper figure 137) and to the extent that the features of the contour shape are not significantly lost. The three contours (lower figure 149) are taken as threshold values to obtain respective contour shapes. The width of the low luminance value and the high luminance value is as large as 30 and wide, but the feature of the contour shape is not lost significantly. However, there are some changes in the contour shape. Therefore, whether or not the contour shape is effective for determining the coincidence / non-coincidence of the printed matter even if the contour shape slightly changes is verified as follows.
図17において、No.1印刷の二値化ミクロ画像について閾値が大きく離れた低輝度値(119)と高輝度値(149)の二つの二値化ミクロ画像を比較する。それらの重ならない最小面積を相違面積SIとする(塗りつぶしてある部分)。SI(space between identical)は同一印刷の場合で閾値を大きく違えて二値化した時のミクロ二値化画像の重ならない最小相違面積である。一方、別の印刷固体の識別マーク(No.2印刷)について、閾値を二山の中央値付近(99)に取って二値化ミクロ画像を得、それと図16の識別マーク(No.1印刷)について、閾値を二山の中央値付近(137)に取って二値化ミクロ画像を得、それら二つを比較する。それらの重ならない最小面積を相違面積SD(space between different即ち別印刷間の相違面積。閾値は二山の中央)として得る。両相違面積SIとSDを比較すると、同一印刷固体同志の場合は、閾値が二山のピークの中央値付近で相当大きく変動しても、その相違面積の大きさは、異なる印刷固体同志の相違面積に比較して大幅に小さいことを発見した。即ちSI<< SDである。この関係式は閾値が変化してもそれが二山の中央値付近でありさえすれば維持されることが分かったのである。即ち閾値の自動設定は二山のピークに対応する輝度値の中央値でもよく、またその付近の輝度値を導出する方法、例えばクラス間分散が最も大きくなる閾値を導出する判別分析法などの統計的閾値自動導出方法でも良いのである。そして重ならない最小面積即ち相違面積を測定しそれが試行によって決まる一定の値(SITとする)以下の値であればSIであり同一印刷固体と判定し、或いはそれが試行によって決まる一定の値(SDTとする)以上の値であればSDであり別印刷個体と判定することが出来ることが分かった。SITとSDTが大きく異なるので判定は容易である。
以上述べたとおりの発見に基づいて、ヒストグラムの中の二山の中央値付近の任意の輝度の値を自動的に閾値とし、原始画像を自動二値化し二値化ミクロ画像を得る。
上記の相違面積の関係式及び判定基準は、撮像機種、撮像環境(照射光の質、照射角度、識別マークの画像内位置、サイズ、解像度)或いは撮像技術(ピントの良し悪し)が異なる画像間の照合においても維持されることが試行により分かった。
なおピントが悪い場合には同一印刷固体を別印刷固体と判定するので、画質を判定してピントが一定以下の場合は再撮像して照合と判定を再度行う必要がある。
In FIG. 17, two binarized micro images of a low luminance value (119) and a high luminance value (149) with a large threshold are compared for the binarized micro image of No. 1 printing. The minimum area where they do not overlap is defined as the difference area SI (filled portion). SI (space between identical) is a minimum difference area where micro-binarized images do not overlap when binarization is performed with greatly different threshold values in the case of the same printing. On the other hand, with respect to another printed solid identification mark (No. 2 printing), the threshold value is set near the central value of the two peaks (99) to obtain a binarized micro image, and the identification mark (No. 1 printing) of FIG. ), The threshold value is taken around the median value of the two peaks (137) to obtain a binarized micro image, and the two are compared. The minimum non-overlapping area is obtained as a difference area SD (space between different). Comparing both different areas SI and SD, in the case of the same printing solids, even if the threshold fluctuates considerably around the median of the peaks of the two peaks, the size of the difference area is different between different printing solids We found that it was significantly smaller than the area. That is, SI << SD. It has been found that this relational expression is maintained even if the threshold value changes as long as it is near the median value of the two peaks. In other words, the automatic threshold setting may be the median of the luminance values corresponding to the peaks of two peaks, and statistics such as a method for deriving the luminance values in the vicinity thereof, such as a discriminant analysis method for deriving a threshold value that maximizes the interclass variance An automatic threshold automatic derivation method may be used. And if the minimum area that does not overlap, that is, the difference area is measured and it is a value less than a certain value (SIT) determined by trial, it is SI and it is judged as the same printing solid, or it is a certain value determined by trial ( It was found that if the value is greater than or equal to (SDT), it is SD and can be determined as a separate print object. Judgment is easy because SIT and SDT differ greatly.
Based on the findings as described above, an arbitrary luminance value in the vicinity of the median value of the two peaks in the histogram is automatically set as a threshold, and the original image is automatically binarized to obtain a binarized micro image.
The relational expression and judgment criteria for the above different areas are between images with different imaging models, imaging environments (quality of irradiation light, irradiation angle, position of identification mark in image, size, resolution) or imaging technology (good or bad focus) It was proved by the trial that it was maintained even in the verification.
If the focus is poor, the same print solid is determined as another print solid. Therefore, if the image quality is determined and the focus is below a certain level, it is necessary to re-image and check and determine again.
SIとSDの大幅な差異は、二値化ミクロ画像の輪郭形状の相違性の大きさによるものである。同一印刷固体間の比較の場合は撮像機種や撮像条件や閾値の取り方が違っても輪郭形状の変化は少なく、別印刷間の比較の場合は輪郭形状の違いは機種や撮像条件や閾値と取り方に拘わらず元々非常に大きいことが発見された。その差異は上述のように重ならない最小面積で表現しても良いし、段落番号0030「二値化ミクロ画像の自動照合方法及び一致不一致の自動判定方法」で述べる通り、他の数量的指標例えば二つの輪郭形状の相関係数によって表現しても良い。同一印刷固体間の場合は、相関係数が非常に高く、異なる印刷固体間の場合は、相関係数が非常に低い。これによって印刷固体の一致不一致の判定は、撮像する機種や撮像条件(撮像環境と撮像技術)に拘わらず、また二値化の閾値が二山の中央値付近であればその値の取り方に拘わらず、精度高く実施できることが発見されたのである。一般機器(カメラ付携帯電話)によって一般人が撮像するため画質が不安定であることが避けられない画像を判定の手段にする真贋判定方法において、この発見は決定的に不可欠な発見である。 The large difference between SI and SD is due to the difference in the contour shape of the binarized micro image. In the case of comparison between the same printing solids, there is little change in the contour shape even if the imaging model, imaging conditions and threshold value are different, and in the case of comparison between different printing, the difference in contour shape is different from the model, imaging conditions and threshold value. It was originally found to be very large regardless of how it was taken. The difference may be expressed by a minimum area that does not overlap as described above, or, as described in paragraph 0030 “A method for automatically matching binarized micro images and a method for automatically determining coincidence / mismatch”, other quantitative indicators such as You may express by the correlation coefficient of two outline shapes. In the case of the same printed solid, the correlation coefficient is very high, and in the case of different printed solids, the correlation coefficient is very low. This makes it possible to determine whether the printed solids match or not, regardless of the type of imaging and imaging conditions (imaging environment and imaging technology), and if the binarization threshold is near the center value of the two peaks, Nevertheless, it was discovered that it can be carried out with high accuracy. This discovery is a decisive indispensable discovery in an authenticity determination method that uses an image that is unavoidably unstable because the image is taken by an ordinary person using a general device (mobile phone with camera).
3.コンピュータによる二値化ミクロ画像の自動照合方法及び一致不一致の自動判定の方法。
識別マークの二値化ミクロ画像は一枚一枚必ず互いに異なることは前述の通りである。完全な一致はあり得ない。それらの一致不一致の判定は、それらの輪郭形状の近似性又は相違性の程度によって行う。識別マークの印刷物が同じであればそれら二つの二値化ミクロ画像の輪郭形状の近似性が非常に高い一方、識別マークの印刷物が異なればそれらの二つの二値化ミクロ画像の輪郭形状の相違性は非常に高い。これは段落番号0028で述べた通りである。近似性或いは相違性の数量的指標としては、段落番号0029に記載した通り、重ならない最小面積、輪郭形状の相関係数、RMS(Root Mean Square)等相似性を表す任意の数量で良い。これらの指標をコンピュータで自動計算し、それらが一定の数値を超えたり或いは一定の数値より小さい場合に、二つの印刷された識別マークが一致或いは不一致であると判定する。
3. An automatic collation method of binarized micro images and a method of automatic determination of coincidence / mismatch by a computer.
As described above, the binarized micro images of the identification mark are always different from each other. There cannot be an exact match. The determination of the coincidence / non-coincidence is performed based on the degree of approximation or difference between the contour shapes. If the printed matter of the identification mark is the same, the closeness of the contour shape of the two binarized micro images is very high, while if the printed matter of the identification mark is different, the contour shape of the two binarized micro images is different. Sex is very high. This is as described in paragraph 0028. As described in paragraph 0029, the quantitative index of the approximation or the difference may be any quantity representing similarity such as the minimum area that does not overlap, the correlation coefficient of the contour shape, and RMS (Root Mean Square). These indices are automatically calculated by a computer, and when they exceed a certain numerical value or smaller than a certain numerical value, it is determined that the two printed identification marks match or do not match.
相違度が同一印刷間と別印刷間で大幅に異なると言うこの自然現象は、印刷特性(ミクロ的輪郭形状の偏りのないランダム性、インクと印刷媒体の境界領域のグラデーション特性、)とデジタル撮像機器の光学特性(解像度、ピント不良、二値化の閾値、等と輪郭形状の関係)に基づくものである。この自然現象を利用して本願の自動真贋判定方法が発明された。これは意外な自然現象である。一般人による一般機器での読取が前提条件であるため、撮像機器の機種が変わり、撮像条件(撮像環境と撮像技術)が変わり、撮像画像の解像度や輝度が変わり、また輝度の二値化の閾値が変わるので、輪郭形状の特徴は大幅に変わってしまい一致不一致の判定の精度が維持できないと考えるのが常識ではなかろうか。しかし、識別マークを段落番号0014に記載したように印刷し、閾値を前記段落番号0028に記載したように自動設定し、輪郭形状の相違度を表す任意の量的指標を計算すると、この自然現象が成立することを発見した。
 
This natural phenomenon that the degree of difference is greatly different between the same printing and different printing is due to the printing characteristics (randomness without unevenness of the microscopic contour, gradation characteristics of the boundary area between the ink and the printing medium) and digital imaging. This is based on the optical characteristics of the device (relationship between resolution, focus failure, binarization threshold, etc. and contour shape). Utilizing this natural phenomenon, the automatic authentication method of the present application was invented. This is a surprising natural phenomenon. Since reading by a general device by a general person is a precondition, the model of the imaging device changes, the imaging condition (imaging environment and imaging technology) changes, the resolution and luminance of the captured image change, and the threshold for binarization of luminance Therefore, it may be common sense to think that the accuracy of the judgment of coincidence / non-coincidence cannot be maintained because the feature of the contour shape changes greatly. However, when an identification mark is printed as described in paragraph 0014, a threshold is automatically set as described in paragraph 0028, and an arbitrary quantitative index representing the difference in contour shape is calculated, this natural phenomenon I found out that
世界の膨大な贋物を退治するために様々な方法が開発されている。それらの方法のほとんどは、偽造の困難な高度の技術を施された識別マークを物品に付することにより偽造を防止する方法である。しかし本物に極めて高度の偽造防止技術が施されても、一般人の間の偽物流通を防止する目的のためには無意味である。なぜなら識別マークの真と贋を区別する知識を持たない一般人が真贋判定することは不可能だからである。真贋判定をするには専門家の所まで物品を持っていかなければならない。専門家による真贋判定なら現在でも真贋判定は十分可能である。しかしそれを事実上一般人は面倒で普通は行わない。
世界の膨大な贋物を退治するためには、一般人自らが、一般普及機器で、容易に、瞬時に、殆ど只で、精度高く、全ての物品について、自動的に、真贋判定出来る方法が必要である。これらの能力を持つ真贋判定システムが普及すれば、世界の膨大な贋物は、存在し得なくなり、劇的に退治される筈である。
 
Various methods have been developed to combat the vast array of things in the world. Most of these methods are methods for preventing counterfeiting by attaching an identification mark that has been subjected to advanced technology that is difficult to counterfeit. However, even if a very high level of anti-counterfeiting technology is applied to the genuine article, it is meaningless for the purpose of preventing counterfeit distribution among ordinary people. This is because it is impossible for an ordinary person who does not have the knowledge to distinguish between the authenticity of the identification mark and the authenticity to determine the authenticity. To make an authenticity decision, you must bring the item to an expert. Even if an authenticity judgment is made by an expert, an authenticity judgment is still possible. However, the general public is bothersome and not usually done.
In order to get rid of the vast amount of treasures in the world, it is necessary for ordinary people to be able to determine the authenticity of all articles automatically, easily, instantaneously, almost in a habit, with high accuracy, using general-purpose devices. is there. If an authentication system with these abilities becomes widespread, the vast amount of the world's treasures can no longer exist and should be exterminated dramatically.
自動真贋判定システムの概念図。The conceptual diagram of an automatic authentication system. 証明書。Certificate. 証明書上の識別マークの画像の撮像と記録(マスター情報の取得と保管)Capture and record the image of the identification mark on the certificate (acquisition and storage of master information) 識別マークの例(横一No.1印刷 長さ1mm)Example of identification mark (No.1 horizontal printing, 1mm length) ミクロ的輪郭形状の固有の特徴。同一識別マーク形状で別印刷固体の輪郭形状比較。スマホ+2倍レンズ。上段よりNo.1, No.2, No.3 識別マーク。左より原始画像、拡大トリミング、二値化後のミクロ画像Inherent feature of micro contour shape. Compare contour shapes of different printed solids with the same identification mark shape. Smartphone + 2x lens. No.1, NoNo.2, No.3 identification mark from the top. Original image from the left, enlarged trimming, and micro image after binarization ミクロ的輪郭領域のグラデーションGradient of micro outline area グラデーション画像のヒストグラムと閾値による輪郭形状の変化Change of contour shape by histogram and threshold of gradation image 逆コ型識別マークReverse U type identification mark 多機種カメラ付携帯電話による識別マーク同一印刷個体の画像。その1An image of an individual printed with the same identification mark by a mobile phone with multiple models. Part 1 多機種カメラ付携帯電話による識別マーク同一印刷個体の画像。その2An image of an individual printed with the same identification mark by a mobile phone with multiple models. Part 2 横一識別マーク(図4)の上半部分 ヒストグラム 鮮明な色差の定義Upper half of horizontal one identification mark (Fig. 4) Histogram Definition of clear color difference 物品証明書に識別マークとシリアル番号の印刷Printing the identification mark and serial number on the product certificate 正規識別情報の自動登録Automatic registration of regular identification information 画像の自動照合・判定方法Automatic image collation / judgment method ヒストグラムのなべ底両端の閾値と二値化ミクロ画像Threshold values at both ends of the bottom of the histogram and binarized micro image ヒストグラムのなべ底中央付近の低中高閾値と二値化ミクロ画像Low, medium and high threshold values near the center of the bottom of the histogram and binarized micro image 重ならない最小面積 同一印刷と別印刷Minimum area that does not overlap The same printing and separate printing 識別マークと基準角度マークの原始電子画像Primitive electronic image of identification mark and reference angle mark 原始電子画像のヒストグラムと閾値と原始二値化ミクロ画像Histogram and threshold of primitive electron image and primitive binarized micro image 識別マークと基準角度マークの二値化ミクロ画像Binary micro image of identification mark and reference angle mark 識別マークと基準角度マークの二値化ミクロ画像の塗りつぶしFilling the binarized micro image of the identification mark and reference angle mark 基準角度の設定と基準角度マークの除去Setting the reference angle and removing the reference angle mark 照合する物理量の測定と識別子Physical quantity measurement and identifier to be matched 識別マークと基準角度マークの印刷Printing identification marks and reference angle marks 角度距離法 正規識別情報の自動登録Angular distance method Automatic registration of regular identification information
以下に発明を実施するための幾つかの形態を記す。実施形態は当然のことながら、ここに記載した方法に限らない。また以下の説明は、正規識別マーク或いは被照合識別マークの読取装置は主としてデジタルカメラ(携帯電話に付属しているデジタルカメラを含む)であるが、読取装置はスキャナーでも良い。
 
Several modes for carrying out the invention will be described below. Of course, embodiments are not limited to the methods described herein. In the following description, the reading device for the regular identification mark or the identification mark to be collated is mainly a digital camera (including a digital camera attached to a mobile phone), but the reading device may be a scanner.
まず、対象とする物品の製造業者または販売業者またはそれらから委託を受けた業者(業者という)は、まず図2(証明書)に示すように背景色と鮮明に異なる色の微小識別マークを物品又は証明書の上に印刷する。微小識別マークの幅は凡そ0.2~1mmあれば十分であり、その長さがあれば人が制御できないランダムな輪郭の形状の特徴を再現する確率を殆ど無限小に出来るし、且つ目視で容易に微小識別マークの存在を探索できる。識別マークの周辺の背景地帯の大きさは、識別マークを読取機器で撮像する際に、その表示画面に識別マーク以外が撮像されないことが望ましいので、識別マークの縦横の長い方の幅の2~3倍程度の幅が望ましい。そうすれば読取装置の画面に識別マーク以外の濃い色(自動二値化した時に黒になる色)の何物かが撮像される心配はなくなる。 First, a manufacturer or distributor of a target article or a contractor (referred to as a trader) entrusted with the article first places a micro-identification mark having a color clearly different from the background color as shown in FIG. 2 (certificate). Or print on the certificate. The width of the minute identification mark should be about 0.2 to 1 mm, and if it is long, the probability of reproducing the features of the random contour shape that cannot be controlled by humans can be made almost infinitely small, and it can be easily observed visually. The presence of minute identification marks can be searched. The size of the background zone around the identification mark is preferably such that when the identification mark is imaged by a reading device, no image other than the identification mark is imaged on the display screen. A width of about 3 times is desirable. Then, there is no worry that some dark colors other than the identification mark (color that becomes black when automatic binarization) are captured on the screen of the reading device.
印刷インキは耐水性と耐光性、経年安定性が強いものを選ぶ。またミクロ的輪郭部分においてインクのにじみ、はみ出し、及び欠落が適度に生ずるように、印刷インキと印刷媒体、印刷機の組み合わせを選定する。
印刷機の種類はオフセット印刷、グラビア印刷、活版印刷、スクリーン印刷、インクジェット印刷、レーザー印刷等各種ありそれらの内の任意でよいが、夫々に応じて読取装置のレンズの必要な拡大倍率はミクロ的な輪郭形状の差異が認識できるように選ぶ。
さらにこの印刷媒体(証明書)には対象物品の個別物品識別符号(製造番号等)を印刷する。
該証明書には本願識別マークを送信するあて先の真贋判定者のURLを印刷し、電子的に読み取らせても良い。
Select printing inks that have strong water resistance, light resistance and aging stability. In addition, a combination of printing ink, printing medium, and printing machine is selected so that ink bleeds, protrusions, and omissions occur moderately in the micro contour portion.
There are various types of printing machines such as offset printing, gravure printing, letterpress printing, screen printing, ink jet printing, laser printing, etc., and any of them may be used, but the magnification required for the lens of the reader is microscopic depending on each. To be able to recognize the difference in contour shape.
Furthermore, the individual article identification code (manufacturing number or the like) of the target article is printed on this print medium (certificate).
The certificate may be printed electronically with the URL of the destination authenticator who transmits the identification mark of the present application.
次に図3(証明書上の識別マークの画像の撮像と記録)に示すように、業者は、符号33証明書の上に印刷してある太枠の中の印刷インキ空白地帯の中心付近に位置する微小識別マークと周辺の背景地帯の一部を符号32レンズで拡大し、その拡大像を符号31デジタルカメラで撮像して読取る。レンズとデジタルカメラズームの総合拡大倍率については、識別マークの人が制御できないミクロ的輪郭線形状の特徴が読取れるような総合拡大倍率が必要である。
以上の方法で原始電子画像を得るのではなく、予め識別マークの基本形状を登録しておき、それをテンプレートとして原始電子画像から識別マークとその近傍の周辺領域だけを切り出してそれを原始電子画像としても良い。
Next, as shown in FIG. 3 (capturing and recording the image of the identification mark on the certificate), the contractor is near the center of the printing ink blank zone in the thick frame printed on the certificate 33. A minute identification mark and a part of the surrounding background zone are magnified by a 32 lens, and an enlarged image is captured by a 31 digital camera and read. Regarding the overall magnification of the lens and the digital camera zoom, it is necessary to have a total magnification that can read the features of the micro outline shape that cannot be controlled by the person of the identification mark.
Rather than obtaining the original electronic image by the above method, the basic shape of the identification mark is registered in advance, and only the identification mark and its peripheral region are cut out from the original electronic image as a template and used as the original electronic image. It is also good.
次に読取った識別マークの原始電子画像を図3の符号35サーバーに送信し、符号36記憶装置(データベース)に記録させ、それを正規の識別マークの原始電子画像とする。この時対象物品の個別物品識別符号も同時にデータベースに入力して保存する。 Next, the read original electronic image of the identification mark is transmitted to the server 35 of FIG. 3 and recorded in the storage device (database) 36, which is used as the original electronic image of the normal identification mark. At this time, the individual article identification code of the target article is simultaneously input and stored in the database.
上記の読取られた正規識別マークの原始電子画像から二値化ミクロ画像を、前記段落番号0028に記したように閾値を自動的に設定して、自動的に抽出する。自動二値化する場合、輝度のヒストグラムの中の二山の高さがアンバランスになり、一方の山が低くなってそのピークの輝度位置が明瞭でなくなる場合には、原始画像周辺の面積をトリムして減少させる。これらの原始画像と二値化ミクロ画像の両者或いは後者を正規識別マークの識別情報としてデータベースに記憶する。 A binary micro image is automatically extracted from the original electronic image of the read regular identification mark by automatically setting a threshold value as described in paragraph 0028 above. In the case of automatic binarization, if the height of two peaks in the luminance histogram becomes unbalanced and one peak becomes lower and the luminance position of the peak becomes unclear, the area around the original image is reduced. Trim to decrease. Both the original image and the binarized micro image or the latter are stored in the database as identification information of the regular identification mark.
この証明書を対象物品に付ける。付ける方法は物理的に連結しなくてもよい。その後、対象物品は証明書と共に市場に出荷され市場に流通する。一般人が対象物品は正規の製造業者によって製造されたのかどうかについて知りたいと思う時、以下のような手順によって当該物品の真贋の判定をする事が出来る。
図1(自動真贋判定システムの概念図)によって説明する。
This certificate is attached to the target item. The attaching method may not be physically connected. Thereafter, the target article is shipped to the market together with the certificate and distributed to the market. When an ordinary person wants to know whether the target article is manufactured by an authorized manufacturer, the authenticity of the article can be determined by the following procedure.
This will be described with reference to FIG. 1 (conceptual diagram of the automatic authentication system).
先ず一般人は対象物品又はそれに付されている証明書に印刷されている個別物品識別符号を読取る。次に微小識別マークを適度の倍率までデジタルカメラのズーム機能及び必要ならデジタルカメラに付着させた簡単なレンズ機能で拡大し、それを携帯電話の画面に写し、ミクロ的輪郭形状が認識できるまで拡大する。その画像を上記個別物品識別符号と共に真贋判定センターに送信する。 First, the general person reads the individual article identification code printed on the target article or the certificate attached thereto. Next, the micro-identification mark is enlarged to a proper magnification with the zoom function of the digital camera and, if necessary, with a simple lens function attached to the digital camera, and then it is copied to the screen of the mobile phone and expanded until the micro contour shape can be recognized. To do. The image is transmitted to the authentication center together with the individual article identification code.
真贋判定センターで受信された被照合識別マークの原始電子画像を、前記の段落番号0028に記載したように、コンピュータ処理によって自動的に閾値を設定して二値化し、被照合識別マークの二値化ミクロ画像を得る。或いは、予め識別マークの基本形状を登録しておき、それをテンプレートとして原始電子画像から識別マークとその近傍の周辺領域だけを切り出してそれを原始電子画像としてそれを自動二値化しても良い。
この二値化ミクロ画像とデータベースに記憶されている正規識別マークの二値化ミクロ画像とをコンピュータでマッチング処理してそれらの間の差異を算出する。
以下にコンピュータによる輪郭形状のマッチング及びそれらの一致不一致の判定の方法について述べる。
The original electronic image of the verification identification mark received at the authentication center is binarized by automatically setting a threshold value by computer processing as described in paragraph 0028 above, and the binary of the verification identification mark Obtain a micro image. Alternatively, the basic shape of the identification mark may be registered in advance, and only the identification mark and the peripheral area in the vicinity thereof may be cut out from the original electronic image using the template as a template and automatically binarized as the original electronic image.
The binarized micro image and the binarized micro image of the regular identification mark stored in the database are subjected to matching processing by a computer, and a difference between them is calculated.
In the following, a method for matching contour shapes and determining whether or not they match by a computer will be described.
マッチングと判定は次の(1)乃至(8)の一連のステップに従って実施される。
(1)被照合識別マークの原始画像を自動二値化して被照合二値化ミクロ画像を得る。一方、正規の識別マークを自動二値化した二値化ミクロ画像をマスター二値化ミクロ画像と呼ぶ。二値化された画像は識別マークが黒色、周辺が白色となる。識別マークの自動二値化されたミクロ画像は、地図で言えば半島や湾や小島や岩や湖水や池から成り立ち複雑な形状をしている。そして陸地が一様な黒色、水面が一様な白色である。
(2)マスター二値化ミクロ画像と被照合二値化ミクロ画像の黒色画素の夫々の重心位置(全陸地の面積の重心)を求めて両重心位置を重ねる。
(3)被照合二値化ミクロ画像の黒色領域の全面積を拡大・縮小してマスター二値化ミクロ画像の黒色領域の全面積に同一化する。領域の面積とは領域のピクセル数である。これで識別マークのサイズが「ほぼ」同一化された。
(4)重心点が重なっている二つの二値化ミクロ画像の重心点を軸として、任意の方角を角度0度としそこから出発して刻み角度△θで一方の二値化ミクロ画像を右又は左に回転する。両画像の黒色領域で且つ重なっていない面積を求めDSとし、回転角度がθ(i)の時それをDS(θ(i))とする。段落番号0049の実施例3に記載したように、基準角度マークを印刷して基準角度を設定し、二つの画像の基準角度を合わせても良い。
Matching and determination are performed according to the following series of steps (1) to (8).
(1) A binary image of a collation binary image is obtained by automatically binarizing the original image of the collation identification mark. On the other hand, a binarized micro image obtained by automatically binarizing regular identification marks is called a master binarized micro image. In the binarized image, the identification mark is black and the periphery is white. A micro-image obtained by automatically binarizing an identification mark is composed of a peninsula, a bay, a small island, a rock, a lake, and a pond. And the land is uniformly black and the water surface is uniformly white.
(2) The center of gravity (the center of gravity of the land area) of each of the black pixels of the master binarized micro image and the checked binarized micro image is obtained and the center of gravity is overlapped.
(3) Enlarging / reducing the total area of the black region of the binarized micro image to be collated to the same area as the entire black region of the master binarized micro image. The area of a region is the number of pixels in the region. This makes the size of the identification mark “almost” identical.
(4) The center of gravity of the two binarized micro images with the center of gravity overlap is used as an axis, and an arbitrary direction is set to an angle of 0 degrees. Or rotate left. The area of the black area of both images that does not overlap is determined as DS, and when the rotation angle is θ (i), it is defined as DS (θ (i)). As described in Example 3 in paragraph 0049, a reference angle mark may be printed to set a reference angle, and the reference angles of the two images may be matched.
(5)△θの刻みで回転を進めて夫々のDS(θ(i))を計算し続け、その最小値を得る角度をθ(min)とする。DS(θ(min))が得られる。これで重ならない面積の最小値が大略求められた。
(6)しかし重心の位置やサイズを微調整することで更に小さいDSが得られないか試みる。被照合二値化ミクロ画像について、その重心位置(X、Y軸)、サイズ(黒色領域の面積のサイズ)、を一定の刻みで小さい範囲で夫々を変動させ、各ケースについて、前記θ(min)の周辺の小さい角度範囲で上記(5)の計算をし、全ケースのDSの中で最小値を「どうしても重ならない最小の面積」としてminDSとする。このminDSを、マスター二値化ミクロ画像の面積で割った値をminRとする。これが「ミクロ輪郭領域の差異即ち相違度」である。
(5) Continue to calculate each DS (θ (i)) in increments of Δθ, and let θ (min) be the angle at which the minimum value is obtained. DS (θ (min)) is obtained. Thus, the minimum value of the non-overlapping areas was roughly determined.
(6) However, if the position and size of the center of gravity are finely adjusted, an even smaller DS can be obtained. About the binarized micro image to be verified, the center of gravity position (X, Y axis) and size (size of the area of the black region) are changed in a small range with a constant increment, and for each case, θ (min ) In the small angle range around), calculate (5) above, and set the minimum value among all DS cases as “the smallest area that does not overlap” as minDS. A value obtained by dividing this minDS by the area of the master binarized micro image is defined as minR. This is the “difference or difference of micro contour regions”.
(7)同一印刷個体間のminR をminR(I)とし、別印刷個体間のそれをminR(D)とする。
前記の段落番号0028で述べたとおり、撮像機器や撮像条件が変化しても、minR(I)の変化は小さい範囲に納まり、minR(D)はminR(I)よりはるかに大きくなる。minR(I)<<minR(D)である。これによって一致不一致の自動判定が容易に出来る。前記段落番号0028に記載したように同一印刷物か別印刷物かの判定の閾値としてのSITとSDTは経験値として得られる。minR(I)<SIT<<SDT<minR(D)であるので得られた相違度minRによってminR(I)かminR(D)かが判定できる。つまり同一印刷固体か別印刷固体かの判定が出来る。
(7) The minR between the same printing individuals is minR (I), and that between different printing individuals is minR (D).
As described in paragraph 0028 above, even if the imaging device and imaging conditions change, the change in minR (I) is within a small range, and minR (D) is much larger than minR (I). minR (I) << minR (D). This facilitates automatic determination of coincidence / non-coincidence. As described in paragraph 0028 above, SIT and SDT as threshold values for determining whether the prints are the same or different are obtained as empirical values. Since minR (I) <SIT << SDT <minR (D), it can be determined whether minR (I) or minR (D) based on the obtained difference minR. That is, it is possible to determine whether the print solid is the same print solid or another print solid.
(8)自動判定の結果に基づき対象物品の真贋を判定して返信する。
以上の方法によって物品に対応する識別マークが正規に印刷されたものかどうかがきわめて高い確率で判定出来る。真贋判定管理センターが受信した画像とマスター画像が二値化ミクロ画像として同一と判定出来れば、「この識別マークが付されている物品は本物です」、若し同一と判定出来なければ「この識別マークが付されている物品は本物でない可能性が非常に高いです」とのメッセージを返信する。一般人はそれを受信して専門的レベルの真贋判定の結果を得る事が出来る。
(8) Based on the result of the automatic determination, the authenticity of the target article is determined and returned.
With the above method, it can be determined with a very high probability whether or not the identification mark corresponding to the article has been properly printed. If the image received by the Authenticity Judgment Management Center and the master image can be determined to be the same as the binarized micro image, “the article with this identification mark is genuine”, or if it cannot be determined to be the same “ It is very likely that the item with the mark is not genuine. " The ordinary person can receive it and obtain the result of the authenticity judgment at the professional level.
以上のシステムを構築することによって一般人でも識別マークの真贋を専門家レベルで判定する事が容易に出来るようになる。これによって本願の識別マークが付してある物品そのものの真贋が極めて高い精度で判定できる。当該識別マークが本物であることが判定されれば、それが世界で唯一無二であることが確認されているので、それが付されている物品も本物であることはほぼ確実である。なぜなら本物の識別マークを手に入れるために本物の物品を多数購入して、購入した本物の証明書を多数の贋物に付けて売る偽物業者はいないからである。それでは決して儲からないからである。
 
なお、上述の説明は、主としてデジタルカメラ付き携帯電話を前提にしているが、その機能は識別マークの撮像、送信受信、表示、のためであるから、デジタルカメラ、顕微鏡、USB顕微鏡等とパソコンを使っても同じ機能を得ることが出来る。
 
By constructing the above system, even ordinary people can easily determine the authenticity of the identification mark at the expert level. As a result, the authenticity of the article with the identification mark of the present application can be determined with extremely high accuracy. If it is determined that the identification mark is genuine, it is confirmed that it is unique in the world, so it is almost certain that the article to which the identification mark is attached is also genuine. This is because there is no fake trader who purchases a large number of genuine articles to obtain a genuine identification mark and sells the purchased genuine certificate with a large number of goods. That's because you never get it.

The above explanation is mainly based on the assumption that a mobile phone with a digital camera is used. However, since its function is to capture, transmit, receive and display identification marks, a digital camera, a microscope, a USB microscope, etc. The same function can be obtained even if used.
正規識別マークの二値化ミクロ画像と被照合識別マークの二値化ミクロ画像をマッチングする方法が前記の実施例1と違うだけで、その他の作業は実施例1と同じである。前記の実施例1以外のコンピュータによる輪郭形状のマッチングの方法は多種の方法が開示・実用化されている。例えば、サイズ、水平垂直移動、回転角度を一定の刻みで変動させて得られる全ての組み合わせにおいて、両輪郭形状の或るx軸の値に対応するy軸の値の差についての絶対値の合計、二乗の合計、相関係数等の統計的処理法によって計算し差異の最小値を差異の指標として得る。或いは、両輪郭形状の端点、尖点、角点、曲り点などの特徴点をコンピュータで求め、それらを比較して不一致点を見出し、その数や差異の特性を数量化した値を差異の指標として得る。得られた差異の指標が一定値以内なら一致と自動判定し、一定値を超えれば不一致と自動判定する。
 
The other operations are the same as those in the first embodiment except that the method for matching the binarized micro image of the regular identification mark and the binarized micro image of the identification mark to be compared is different from that of the first embodiment. Various methods of contour shape matching by a computer other than the first embodiment are disclosed and put into practical use. For example, in all combinations obtained by changing the size, horizontal / vertical movement, and rotation angle in a constant step, the sum of absolute values of the difference in y-axis values corresponding to certain x-axis values of both contour shapes The minimum difference is obtained as an index of the difference by calculating by a statistical processing method such as sum of squares, correlation coefficient, and the like. Alternatively, feature points such as end points, cusps, corner points, and bending points of both contour shapes are calculated by a computer, and they are compared to find inconsistent points, and the values obtained by quantifying the number and characteristics of the differences are used as a difference indicator. Get as. If the obtained difference index is within a certain value, it is automatically determined as a match, and if it exceeds a certain value, it is automatically determined as a mismatch.
真贋判定は次の(1)乃至(15)の一連のステップに従って実施される。
(1)識別マークと基準角度マークの印刷
図24を参照願いたい。実施例1或いは実施例2と同様に、対象物品又はその証明書の上に、任意の形状の微小なマークと、該マークの内部又は近傍の外部に別の任意の微小なマークをそれらの背景色と鮮明に異なる色で印刷する。該マークの内部に設ける場合はインクの空白領域となる。一方のマークを識別マークとし、他のマークを基準角度マークとする。或いは上記のように識別マークの内外に基準角度マークを設けずに、識別マークの縁辺の一部に凹部や凸部といった特徴的形状を持たせてそれを基準角度マークとして印刷しても良い。以降の記述は識別マークとその外側の近傍に基準角度マークを印刷する場合を説明する。識別マークが前記のその他の形状の場合は、基準角度の求め方について後述する段落番号0056に記すが、その他の作業は識別マークとその外側の近傍に基準角度マークを印刷する場合と同じである。
The authenticity determination is performed according to the following series of steps (1) to (15).
(1) Print of identification mark and reference angle mark Please refer to FIG. Similar to the first embodiment or the second embodiment, a minute mark having an arbitrary shape and another arbitrary minute mark inside or near the mark on the target article or its certificate are displayed on the background. Print in a color that is distinctly different from the color. When it is provided inside the mark, it becomes an ink blank area. One mark is an identification mark and the other mark is a reference angle mark. Alternatively, instead of providing the reference angle mark inside and outside the identification mark as described above, a characteristic shape such as a concave portion or a convex portion may be provided on a part of the edge of the identification mark and printed as a reference angle mark. The following description explains the case where the reference angle mark is printed in the vicinity of the identification mark and the outside thereof. When the identification mark has any other shape, the method for obtaining the reference angle is described in paragraph number 0056, which will be described later, but the other operations are the same as when the reference angle mark is printed in the vicinity of the identification mark and the outside thereof. .
(2)識別マークの撮像
図18参照。上記(1)の識別マーク及び基準角度マークを、それらの人の制御できない個別のミクロ的輪郭形状の特徴が認識できるようにレンズで拡大してデジタルカメラで撮像し、或いは電子的に直接読み取って撮像し、識別マーク及び基準角度マークの原始電子画像を得る。
(2) Imaging of identification mark See FIG. The identification mark and the reference angle mark of (1) above are enlarged with a lens so that the features of individual micro-outline shapes that cannot be controlled by those persons can be recognized and imaged with a digital camera, or directly read electronically. An image is taken to obtain a primitive electronic image of the identification mark and the reference angle mark.
(3)閾値の設定と自動二値化
図19参照。識別マーク及び基準角度マークを前記(1)記載のように背景色と鮮明に異なる色で印刷するので、前記の段落番号0014に記載のように、原始電子画像の画素の輝度と画素数のヒストグラムは、必ず二つそして二つだけの山を持っている。これらの二山のピークに対応する輝度値の中央値或いはその付近の輝度値を任意の一般的方法で自動的に算出して閾値とし、前記の段落番号0028に記載のように自動的に閾値を設定して原始画像を自動二値化し原始二値化ミクロ画像を得る。
(3) Threshold setting and automatic binarization See FIG. Since the identification mark and the reference angle mark are printed in a color that is clearly different from the background color as described in the above (1), the histogram of the luminance and the number of pixels of the pixel of the original electronic image as described in paragraph 0014 above. Always have two and only two mountains. The median value of the luminance values corresponding to these two peaks or the luminance value in the vicinity thereof is automatically calculated as a threshold value by any general method, and the threshold value is automatically calculated as described in paragraph 0028 above. To automatically binarize the original image and obtain the original binarized micro image.
(4)原始二値化ミクロ画像から識別マーク二値化ミクロ画像の生成
図20参照。上記(3)で得られた原始二値化ミクロ画像は識別マークと基準角度マークが二値化されたものであるが、黒領域として半島や湾、小島、池が散在している。それらの中で面積最大領域(例としてここでは識別マークとする)と面積二番目領域(例としてここでは基準角度マークとする)のみを抽出し夫々識別マーク二値化ミクロ画像と基準角度マーク二値化ミクロ画像を得る。
(4) Generation of identification mark binarized micro image from primitive binarized micro image See FIG. The primitive binarized micro image obtained in the above (3) is a binarized identification mark and reference angle mark, but a peninsula, a bay, a small island, and a pond are scattered as black areas. Among them, only the maximum area area (for example, the identification mark here) and the second area area (for example, the reference angle mark here) are extracted, and the identification mark binarized micro image and the reference angle mark 2 are extracted. A valued micro image is obtained.
(5) 「塗りつぶし識別マーク二値化ミクロ画像(識別子)」 と「塗りつぶし基準角度マーク二値化ミクロ画像」の生成
図21参照。識別マークの二値化ミクロ画像及び基準角度マークの二値化ミクロ画像の内部には印刷技術上、池のような空白又は色が薄い地帯が存在することは避けられない。従って後に記載する角度距離法による判定の精度に重大な影響を与える。従って識別マークの二値化ミクロ画像及び基準角度マークの二値化ミクロ画像の内部はすべて塗りつぶす。その結果、「塗りつぶし識別マーク二値化ミクロ画像」と「塗りつぶし基準角度マーク二値化ミクロ画像」が得られる。前者が識別子となる。
(5) Generation of “Filling Mark Binarized Micro Image (Identifier)” and “Filling Reference Angle Mark Binarized Micro Image” See FIG. In the printing technique, it is inevitable that a blank or a light-colored zone such as a pond exists inside the binarized micro image of the identification mark and the binarized micro image of the reference angle mark. Therefore, it has a significant influence on the accuracy of determination by the angular distance method described later. Accordingly, the inside of the binarized micro image of the identification mark and the binarized micro image of the reference angle mark are all filled. As a result, a “filled identification mark binarized micro image” and a “fill reference angle mark binarized micro image” are obtained. The former is an identifier.
(6)基準角度の設定
図22参照。上記(5)では識別子(塗りつぶし識別マーク二値化ミクロ画像)と塗りつぶし基準角度マーク二値化ミクロ画像が得られた。一致不一致の自動判定のためには、上記の識別子である塗りつぶし二値化ミクロ画像の特徴を何らかの物理的方法で表象しなければならない。表象方法は角度距離法(極座標法)でも直交座標法でも良い。角度距離法では、角度と原点からの距離の数値列l1~n=l(θ1~n)が識別子となる。直交座標法では(Y1~n、X1~m)の各点が輪郭線上にある場合を1、無い場合を0として付号し、その数値列が識別子となる。いずれの方法にしても座標の原点と基準角度、或いは直交座標軸が定まっていると表象も識別子の照合もし易くなる。
そのために先ず「塗りつぶし基準角度マーク二値化ミクロ画像」だけの面積重心点位置(B)を求める。次に識別子(塗りつぶし識別マーク二値化ミクロ画像)だけの面積重心点位置(A)を求め、AとBを結ぶ直線を識別子の基準角度とする。
(6) Setting of reference angle See FIG. In the above (5), an identifier (filled identification mark binarized micro image) and a filled reference angle mark binarized micro image are obtained. For automatic determination of coincidence / non-coincidence, the characteristics of the above-described filled binary micro image must be represented by some physical method. The representation method may be an angular distance method (polar coordinate method) or an orthogonal coordinate method. In the angular distance method, a numerical sequence l 1 to n = l (θ 1 to n ) of an angle and a distance from the origin is an identifier. In the orthogonal coordinate method, (Y 1 to n , X 1 to m ) points are assigned as 1 when the points are on the outline, and 0 when there are no points, and the numerical sequence becomes an identifier. In any method, if the origin of the coordinates and the reference angle or the orthogonal coordinate axis are determined, the representation and the identifier can be easily verified.
For this purpose, first, the area barycentric position (B) of only the “fill reference angle mark binarized micro image” is obtained. Next, the area centroid position (A) of only the identifier (filled identification mark binarized micro image) is obtained, and the straight line connecting A and B is set as the reference angle of the identifier.
或いは別の方法で基準角度を求めることも出来る。前記の段落番号0049に記載したように、識別マーク領域外でなく内に識別マークと鮮明に異なる色の基準角度マークを印刷し又は印刷インクの空白地帯を設定し、それを上記と同様に撮像して自動二値化し、面積最大領域を抽出して識別マーク二値化ミクロ画像を得る。次に該画像の領域の中で基準角度マークである面積最大の空白領域を抽出し、その重心位置を得る。次に該画像の領域内の空白或いは色が薄い地帯(基準角度マークを含む)をすべて塗りつぶし、塗りつぶし識別マーク二値化ミクロ画像(識別子)を得る。該識別子の重心位置を求め、それと基準角度マークの重心位置を結んで基準角度を得る。 Alternatively, the reference angle can be obtained by another method. As described in paragraph 0049 above, a reference angle mark of a color distinctly different from the identification mark is printed inside or outside the identification mark area, or a blank area of printing ink is set and imaged in the same manner as described above. Then, automatic binarization is performed, and a maximum area area is extracted to obtain an identification mark binarized micro image. Next, a blank area having a maximum area as a reference angle mark is extracted from the image area, and the barycentric position is obtained. Next, all blanks or light-colored zones (including reference angle marks) in the area of the image are filled to obtain a filled identification mark binarized micro image (identifier). The barycentric position of the identifier is obtained, and the barycentric position of the reference angle mark is connected to the barycentric position to obtain the reference angle.
更に、識別マークの縁辺の一部に凹部や凸部といった特徴的形状を設けて印字した場合は、上記の角度距離法による距離が最も短い距離の角度、最も長い距離の角度、或いは距離の変化が大きい角度等に基づいて基準角度を求めても良い。
他にも基準角度を求める方法はあるだろうが、基準角度が求められさえすれば方法は問わない。
In addition, when a characteristic shape such as a concave portion or a convex portion is provided on a part of the edge of the identification mark and printed, the distance by the above-mentioned angular distance method is the shortest distance angle, the longest distance angle, or a change in distance. The reference angle may be obtained based on an angle having a large value.
There may be other methods for obtaining the reference angle, but any method may be used as long as the reference angle is obtained.
(7)照合する物理量の測定と識別子の抽出
以下の方法を角度距離法と呼びその物理量の測定と識別子の抽出方法について説明するが、直交座標についても前記段落番号0054記載の識別子を抽出して、それら直交座標の二つの識別子を照合しそれらの相似性を表す指標を統計的手法で算出して一致不一致を判定すればよい。
図23参照。塗りつぶし識別マーク二値化ミクロ画像(識別子)において、重心点Aを中心として右或いは左へ回転し基準角度から出発して微小角度を増やしながら、夫々の角度(θi)における重心点Aから最初に遭遇する輪郭線までの距離l(エル)(θi)を測定する。
輪郭線形状が複雑な半島や湾からなり、湾が輪郭線に沿って食い込み或いは半島が輪郭線に沿って存在する場合は、重心点Aからの線上に遭遇する輪郭点は複数になるが、最初に遭遇する輪郭線までの距離を計測し他は無視する。記憶する正規の識別子も、照合される識別子も同様な形状なので無視してよいのである。上記の測定を360度又は特定な角度の範囲で計測し、それをl(θi)とする。この数字列は輪郭形状の波形をほぼ連続的に表象するものであり、それが識別子である。
(7) Measurement of physical quantity to be collated and extraction of identifier The following method is called the angular distance method, and the physical quantity measurement and identifier extraction method will be described. For the orthogonal coordinates, the identifier described in the paragraph number 0054 is extracted. The two identifiers of the orthogonal coordinates are collated, and an index representing the similarity between them is calculated by a statistical method to determine coincidence / mismatch.
See FIG. In a solidified identification mark binarized micro image (identifier), rotate from the center of gravity A to the right or left and start from the center of gravity A at each angle (θ i ), starting from the reference angle and increasing the minute angle. Measure the distance l (el) (θ i ) to the contour line encountered.
If the contour shape consists of a complex peninsula or bay, and the bay bites along the contour line or the peninsula exists along the contour line, there will be multiple contour points encountered on the line from the center of gravity A, Measure the distance to the first encountered contour and ignore the others. Since the regular identifier to be stored and the identifier to be collated are similar in shape, they can be ignored. The above measurement is measured in a range of 360 degrees or a specific angle, and is defined as l (θ i ). This number string represents the contour-shaped waveform almost continuously, and is an identifier.
コンピュータが二つのミクロ的輪郭形状の照合が出来るためには、両輪郭形状のサイズが同一でなければならない。しかし元々ミクロ的輪郭形状には厳密な一定のサイズは存在しない。なぜなら印刷された個々のミクロ的識別マークの形状はランダムであり輪郭領域は輝度のグラデーションを持っているので一定のサイズは存在しない。個々の印刷物のサイズの同一化は厳密には無理なのである。更に記憶された正規識別マークは業者が撮像したものであるのに対し、被照合識別マークは一般人がカメラ付携帯電話で適当に画像を拡大して撮像したものなので、両者の撮像画像サイズは元々異なる。同一の印刷物でもその画像のサイズは撮像のショット毎に異なるのである。更に撮像された原始画像を二値化する際の閾値の値によっても二値化した画像のサイズは変化する。
これらの問題を解決する方法としては、このl(θi)をそれらの平均値で除して指数化する。そうすれば識別マークのサイズに拘らず輪郭形状の相似性の程度を計算することにより一致不一致を照合・判定出来る。
In order for a computer to be able to match two micro contour shapes, the size of both contour shapes must be the same. However, there is no strict constant size for the micro contour shape. This is because the shape of each printed micro identification mark is random, and the contour region has a gradation of brightness, so there is no fixed size. Strictly speaking, it is impossible to equalize the size of individual printed matter. Further, the stored regular identification mark was taken by a contractor, whereas the verification identification mark was taken by an ordinary person with a camera-equipped mobile phone with an appropriately enlarged image. Different. Even in the same printed matter, the size of the image is different for each shot. Furthermore, the size of the binarized image also changes depending on the threshold value when binarizing the captured original image.
As a method of solving these problems, this l (θ i ) is divided by the average value and indexed. By doing so, it is possible to collate / determine the coincidence / disagreement by calculating the degree of similarity of the contour shape regardless of the size of the identification mark.
(8)正規識別情報の記憶
図25参照。次に上記(2)の識別マークと基準角度マークの原始電子画像及び上記(7)のl(θi)の数値列からなる識別子の両方、又は後者を該識別マークの正規識別情報として電子記憶装置に記憶・登録する。
(8) Storage of regular identification information See FIG. Next, both the original electronic image of the identification mark of (2) and the reference angle mark and the identifier consisting of the numerical sequence of l (θ i ) of (7), or the latter, are electronically stored as normal identification information of the identification mark. Store / register in the device.
(9)個別物品識別符号の入力
図24及び図25参照。対象物品の個別物品識別符号(シリアル番号、製品番号等)を、上記(8)の電子記憶装置に記憶された正規識別情報と対応させて、電子記憶装置に記憶する。
(9) Input of individual article identification code See FIGS. 24 and 25. The individual article identification code (serial number, product number, etc.) of the target article is stored in the electronic storage device in association with the regular identification information stored in the electronic storage device in (8) above.
(10)被照合識別マークの撮像と被照合個別物品識別符号の入力
図1(自動真贋判定システムの概念図)参照。物品の真贋判定をしたい一般人側は、被照合識別マークと基準角度マーク(両者を総称して微小マークという)について、それらのミクロ的輪郭形状が認識できる端末装置で撮像して夫々の原始電子画像を取得する。更に該被照合識別マークに対応する被照合個別物品識別符号を端末装置に入力する。
(10) Imaging of verification target identification mark and input of individual verification target identification code Refer to FIG. 1 (conceptual diagram of automatic authentication system). The general public who wants to determine the authenticity of an article captures each collated identification mark and reference angle mark (both are collectively referred to as a minute mark) with a terminal device that can recognize the microscopic contour shape of each original electronic image. To get. Further, a collated individual article identification code corresponding to the collation identification mark is input to the terminal device.
(11)送信
図1(自動真贋判定システムの概念図)参照。一般人側は、上記(10)で入力した被照合個別物品識別符号と微小マーク(被照合識別マークと基準角度マーク)の原始電子画像を真贋判定者側にインターネットを通じて送信する。
(11) Transmission See FIG. 1 (conceptual diagram of automatic authentication system). The general person side transmits the original electronic image of the individual article identification code to be collated and the minute mark (the collation identification mark and the reference angle mark) input in (10) to the authenticity judgment person side through the Internet.
(12)受信
真贋判定者側は、上記(11)の被照合個別物品識別符号と微小マーク(被照合識別マークと基準角度マーク)の原始電子画像を受信する。
(12) The reception authenticity determination side receives the original electronic image of the collated individual article identification code and the minute mark (the collation identification mark and the reference angle mark) of (11) above.
(13)被照合識別マークの識別子の自動生成
図1(自動真贋判定システムの概念図)参照。真贋判定者側は、上記(12)で受信した被照合識別マークと基準角度マークの原始電子画像から、上記(3)乃至(7)に記載したコンピュータ処理によって、l(θi)の数値列を得る。この数値列をそれらの平均値で除して指数化する。この数値列が被照合識別マークの識別子である。
(13) Automatic generation of identifier of verification identification mark See FIG. 1 (conceptual diagram of automatic authentication system). The authenticator side uses the computer processing described in (3) to (7) above from the original electronic image of the verification identification mark and the reference angle mark received in (12) above to obtain a numerical sequence of l (θ i ). Get. The numerical sequence is divided by the average value and indexed. This numerical string is an identifier of the identification mark to be verified.
(14)自動照合と判定
上記(13)で得られた被照合識別マークの識別子と、受信した被照合個別物品識別符号に対応する上記(8)に記載した電子記憶装置に記憶されている正規識別マークの識別子とを自動照合し、その一致不一致を判定する。コンピュータによる自動照合方法及び一致不一致の自動判定の方法は以下の通りである。
(14) Automatic verification and determination Regular identifier stored in the electronic storage device described in (8) above corresponding to the identifier of the identification mark to be verified obtained in (13) above and the received individual article identification code to be verified The identifier of the identification mark is automatically collated, and the match / mismatch is determined. The automatic verification method by computer and the automatic determination method of coincidence / non-coincidence are as follows.
被照合識別マークの識別子である上記(13)記載のl(θi)の数値列をXiとし、対応する正規識別マークの識別子である上記(8)記載のl(θi)の数値列をYiとする。Xiの形状と Yiの形状の一致の程度を表象する統計的数値を計算すると、前記(3)に記載したように、撮像機種や撮像条件の変化に拘わらず、また閾値の自動設定方法に拘わらず、識別マークの一致不一致の判定が精度高く可能となる。上記統計的数値はXiとYiの相関係数、両者の差異の二乗平均平方根、或いは両者の差異の絶対値の総和等の差異の程度を表す統計指数なら方法は任意でよい。それらの数値は識別マークが同一の時と異なる時では、前記の段落番号0028で述べた通り、撮像条件の変化に拘わらず、また閾値の自動設定方法に拘わらず、明確に大幅に異なるので一致不一致を判断することは容易である。 Numerical sequence of the identifier of the collation identification mark (13), wherein the l (theta i) was used as a X i, numeric columns corresponding the identifier of the authorized identification mark according to (8) l (theta i) Let Y i be. When calculating the statistical numerical values representing at degree of coincidence in the shape of X i of the shape and Y i, the as described in (3), regardless of changes in the imaging model and imaging conditions, also Threshold Auto Set methods Regardless of this, it is possible to accurately determine whether the identification marks match or not. Any method may be used as long as the statistical value is a statistical index representing the degree of difference such as the correlation coefficient between X i and Y i , the root mean square of the difference between the two, or the sum of absolute values of the difference between the two. When the identification marks are different from those when the identification marks are the same, as described in the paragraph No. 0028 above, they are clearly different regardless of changes in the imaging conditions and regardless of the automatic threshold setting method. It is easy to determine the discrepancy.
このように精度高く一致不一致が判定できる理由は、識別マークと基準角度マークの印字が前記(1)記載のように背景色と鮮明に異なる色で印字され、且つ(3)~(7)のコンピュータ処理をしたからである。更に一致不一致の判定精度を高めたり、コンピュータ処理量を減らすために、前記の統計指標の計算の前に、前記の識別子(l(θi)の数値列)を判定精度が劣化しない範囲でフーリエ変換や移動平均変換によって、細かい凹凸を平滑化する処理を行っても良い。また基準角度が撮像条件やピントの合致度により微小な変化をするのでその調整のために基準角度の微小調整を試行して前記の一致度を表す統計指数を高めることをしても良い。
 
The reason why the coincidence / non-coincidence can be determined with high accuracy in this way is that the identification mark and the reference angle mark are printed in a color that is clearly different from the background color as described in (1) above, and (3) to (7) This is because computer processing was performed. Further, in order to further increase the accuracy of coincidence / non-coincidence determination and reduce the amount of computer processing, before calculating the statistical index, the identifier (numerical string of l (θ i )) is Fourier-transformed within a range where the accuracy of determination does not deteriorate. You may perform the process which smooths a fine unevenness | corrugation by conversion and moving average conversion. In addition, since the reference angle changes minutely depending on the imaging condition and the degree of matching of the focus, a small adjustment of the reference angle may be tried for the adjustment to increase the statistical index representing the degree of matching.
上記のように、一般人側が撮像画像と被照合個別物品識別符号の両者を真贋判定者側に送信するのではなく、上記(10)において入力した被照合個別物品識別符号のみを真贋判定者側に送信し、それに対応する上記(8)の電子記憶装置に記憶されている正規識別マークの識別子l(θi)を受信し、上記(10)で取得した被照合識別マーク及び基準角度マークの原始電子画像からコンピュータによって被照合識別マークの識別子l(θi)を前記(3)乃至(7)記載の方法によって自動作成し、両識別子を自動照合し、その一致不一致を上記の統計的指数によって自動判定してもよい。
つまり、上記の被照合識別マークの識別子の自動生成及びそれらの自動照合と一致不一致の自動判定は、真贋判定センター側で行っても良いし、一般人側で行っても良いと言うことである。
As described above, the general person side does not transmit both the captured image and the individual product identification code to be verified to the authenticator side, but only the individual product identification code input in (10) above is sent to the authenticator side. The identifier (l (θ i )) of the regular identification mark stored in the electronic storage device of (8) is received and the corresponding identification mark and reference angle mark acquired in (10) are received. The identifier l (θ i ) of the identification mark to be verified is automatically created from the electronic image by the method described in the above (3) to (7), both identifiers are automatically verified, and the coincidence mismatch is determined by the above statistical index. Automatic determination may be performed.
That is, the automatic generation of the identifier of the identification mark to be verified and the automatic determination of coincidence and coincidence with the automatic verification may be performed on the authenticity determination center side or on the general public side.
なお、被照合識別マークと対応する正規識別マークを照合した場合、上記の一致不一致を判別する統計指標が完全に一致するならば、被照合識別マークの識別子は新たに撮像された画像に基づく識別子ではなく、過去の撮像画像による識別子が盗まれ、それが真贋判定者に送信されたと考えられる。なぜなら完全に一致する画像は撮像できないからである。その場合、コンピュータは一致とは判断せず警告を発するようにプログラムする。 In addition, when the above-described statistical index for determining the coincidence mismatch is completely matched when the matching identification mark and the corresponding regular identification mark are matched, the identifier of the verification identification mark is an identifier based on a newly captured image. Instead, it is considered that an identifier based on a past captured image was stolen and transmitted to the authenticator. This is because images that completely match cannot be captured. In that case, the computer is programmed to issue a warning instead of a match.
(15)結果の通知
図1(No.12自動真贋判定システムの概念図)参照。上記(14)の一致不一致の判定の結果に基づき識別マーク及び対象物品の真贋を判定して返信或いは表示する。
 
上記(1)乃至(15)のステップによって、「発明が解決しようとする課題」である撮像機種性能の多様性と、撮像条件の変化による画像の質の多様性(画像の明るさ、光質、サイズ、角度、ピント、等の多様性)による判定精度劣化の問題が解決され、非常に高い精度で自動判定が出来るようになった。この多様性問題解決は一般人が一般普及の日常の機器で真贋判定するための必須条件である。
 
(15) Notification of results See FIG. 1 (conceptual diagram of No. 12 automatic authentication system). Based on the result of the determination of coincidence / non-coincidence in (14) above, the authenticity of the identification mark and the target article is determined and returned or displayed.

Through the above steps (1) to (15), the variety of imaging model performance, which is the “problem to be solved by the invention”, and the diversity of image quality due to changes in imaging conditions (image brightness, light quality) , Size, angle, focus, etc.) has been solved, and automatic determination can be performed with very high accuracy. This diversity problem solution is an indispensable condition for ordinary people to authenticate with everyday equipment.
現在、紙幣、薬品、電子部品を初め、バッグ、財布、服、時計、眼鏡、家電製品、等々のブランド雑貨品、パスポート、身分証明書、キャッシュカード、クレジットカード、免許証、車検証、卒業証書、有価証券、宝石の鑑定書、家畜の血統書、ペットの血統書、等々の証明書類の偽造品による被害額は、世界で1兆ドルに達していると言われている。その防止対策には莫大なコストが費やされている。本発明によってそれらの偽造品が存在し得なくなる。
本発明の特徴は真贋判定の識別マークが絶対に複製できないことと、一般人が一般日常機器で容易に判定できるところにある。例えば医薬品において、包装は殆ど本物と同じで、また薬品の形も化学成分もほぼ同じなら、正規の製造業者でも本物と贋物の区別は直ちにはつかない。その場合でも包装箱に本発明による微小識別マークを印刷又は添付しておけば、真贋はたちどころに判別できる。結果、偽造品が存在できなくなるし、その莫大な退治コストが不要となる。
また本発明の特徴は、一般人が日常使っている機器または極めて安価に入手できる機器だけで実行できること、そして真贋判定側の事業者としても全く新しい技術開発は不要だし、設備投資もほとんど不要であるのでコストがほとんど掛からず、直ちに実行できることである。
但し偽造品を偽造品として製造販売している物品については、もともと偽造品であることが分っているのであるから効果がない。
 
Currently, brand goods such as banknotes, medicines, electronic parts, bags, wallets, clothes, watches, glasses, home appliances, passports, identification cards, cash cards, credit cards, licenses, car verifications, diplomas It is said that the damage caused by counterfeit products such as securities, jewelery certificates, livestock pedigrees, pet pedigrees, etc. has reached $ 1 trillion worldwide. Enormous costs are spent on the prevention measures. According to the present invention, these counterfeits cannot exist.
The feature of the present invention is that the identification mark for authenticity determination can never be duplicated, and that an ordinary person can easily determine with an ordinary everyday device. For example, in the case of pharmaceuticals, if the packaging is almost the same as the real product, and if the form and chemical composition of the drug are almost the same, even an authorized manufacturer cannot immediately distinguish between the real product and the bag. Even in that case, if the micro-identification mark according to the present invention is printed or attached to the packaging box, the authenticity can be discriminated quickly. As a result, counterfeit goods cannot exist and the huge cost of extermination is unnecessary.
In addition, the feature of the present invention is that it can be executed only with devices that are used by ordinary people or devices that are available at a very low cost, and as a business operator on the authenticity judgment side, there is no need for completely new technology development and almost no capital investment. Therefore, it is possible to execute immediately with little cost.
However, an article that is manufactured and sold as a counterfeit product is not effective because it is known that the product is a counterfeit product.
11:カメラ付き携帯電話
12:レンズ
13:証明書
14:識別マーク
15:真贋判定センターのサーバー(自動輪郭生成・自動照合・自動判定を実行する)
16:真贋判定センターの記憶装置
17:電子的読取装置
18:個別物品シリアル番号
21:証明書
22:識別マークの目印となる無インキ地帯と外枠
23:識別マーク
31:デジタルカメラ 或いは カメラ付携帯電話
32:レンズ
33:証明書
34:証明書の識別マーク
35:真贋判定センターのサーバー
36:真贋判定センターの記憶装置
37:電子的読取装置
 
11: Mobile phone with camera 12: Lens 13: Certificate 14: Identification mark 15: Server of the authentication center (executes automatic contour generation / automatic verification / automatic determination)
16: Storage device of authenticity judgment center 17: Electronic reader 18: Individual article serial number 21: Certificate 22: Ink-free zone and outer frame 23 as a mark for identification mark 23: Identification mark 31: Digital camera or mobile phone with camera Telephone 32: Lens 33: Certificate 34: Certificate identification mark 35: Authentication judgment center server 36: Authentication judgment center storage device 37: Electronic reader

Claims (4)

  1. 個別物品のコンピュータを使った自動真贋判定方法であって、
    背景色と色の輝度値や色の他の属性値の差異が一定値以上であるような鮮明な色を特定し、任意の形状を備えた微小な形を識別マークとして該色で印刷し、該識別マークの形状制御限界以下のミクロ的輪郭形状を識別子として用いることを特徴とする自動真贋判定方法。
    An automatic authenticity determination method using a computer of individual articles,
    Specify a clear color such that the difference between the background color and the brightness value of the color and other attribute values of the color is a certain value or more, and print a minute shape having an arbitrary shape as the identification mark with the color, An automatic authenticity determination method, wherein a micro contour shape having a shape control limit or less of the identification mark is used as an identifier.
  2. 請求項1記載の自動真贋判定に用いられる識別マークとしての印刷物。 A printed matter as an identification mark used for automatic authenticity determination according to claim 1.
  3. 請求項1記載の印刷された識別マークのデジタル画像において、色の輝度値や色の他の属性値とそれに対応するピクセル数からなるヒストグラムに現れる2頂点に対する輝度値や属性値の中央値付近の値をコンピュータで自動的に導出し、該値を二値化の閾値として自動的に設定し、それに基づいて前記デジタル画像をコンピュータで自動的に二値化して得る形状制御限界以下のミクロ的輪郭形状を識別子として用いることを特徴とする自動真贋判定方法。 The digital image of the printed identification mark according to claim 1, wherein the luminance value of the color and other attribute values of the color and the central value of the luminance value and attribute value for the two vertices appearing in the histogram consisting of the number of pixels corresponding to the color value. The value is automatically derived by a computer, the value is automatically set as a threshold value for binarization, and based on this, the digital image is automatically binarized by the computer, and the micro contour below the shape control limit is obtained. An automatic authentication method characterized by using a shape as an identifier.
  4. 請求項3記載の識別子を導出する二つの印刷物の同一性と相違性を判定するために、二つの該識別子を照合しそれらの一致不一致を判定する方法として各種の数学的手法を用いる場合に、用いられる数学的指標(相関係数、重ならない相違面積等)に、撮像機種、撮像条件、画質の鮮明さに関係なく、印刷物が同一の場合と別の場合では大きな差が出ることを利用することを特徴とする自動真贋判定方法。
     
    In order to determine the identity and dissimilarity of the two printed materials from which the identifiers according to claim 3 are derived, when various mathematical methods are used as a method of comparing the two identifiers and determining whether they match or not, Use the fact that the printed material is the same or different, regardless of the imaging model, imaging conditions, and sharpness of image quality, for the mathematical indicators used (correlation coefficient, non-overlapping areas of difference, etc.) An automatic authentication method characterized by that.
PCT/JP2014/070503 2013-08-11 2014-08-04 Method for automatically determining authenticity of individual article using micro contour shape of printing as identifier WO2015022872A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-167205 2013-08-11
JP2013167205 2013-08-11
JP2013-222837 2013-10-27
JP2013222837 2013-10-27
JP2013-264715 2013-12-21
JP2013264715 2013-12-21

Publications (1)

Publication Number Publication Date
WO2015022872A1 true WO2015022872A1 (en) 2015-02-19

Family

ID=52468259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070503 WO2015022872A1 (en) 2013-08-11 2014-08-04 Method for automatically determining authenticity of individual article using micro contour shape of printing as identifier

Country Status (1)

Country Link
WO (1) WO2015022872A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3852057A4 (en) * 2019-06-21 2022-06-15 Dai Nippon Printing Co., Ltd. Determining device, method for controlling determining device, determining system, method for controlling determining system, and program
JP7095934B1 (en) 2021-12-09 2022-07-05 エレファンテック株式会社 Printing equipment
JP7095933B1 (en) 2021-12-09 2022-07-05 エレファンテック株式会社 Printing system
CN115060665A (en) * 2022-08-16 2022-09-16 君华高科集团有限公司 Automatic inspection system for food safety
WO2024200316A1 (en) * 2023-03-27 2024-10-03 U-Nica Solutions Ag Method and system for registration of watches

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063771A (en) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd Two-dimensional code reader
WO2004093433A1 (en) * 2003-04-15 2004-10-28 Fujitsu Limited Code recognizing method and device
JP2009516259A (en) * 2005-11-11 2009-04-16 株式会社カラージップメディア Video image code, apparatus and method for generating or decoding video image code
WO2012023363A1 (en) * 2010-08-17 2012-02-23 Hirayama Sadahiro Method for authenticity assessment easily performed by ordinary people using printed minute identification mark
JP2013134515A (en) * 2011-12-26 2013-07-08 Nisemono Shikibetsu Gijutsu Kenkyusho:Kk Method for determining authenticity of article by duplication-impossible identification mark and information code

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063771A (en) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd Two-dimensional code reader
WO2004093433A1 (en) * 2003-04-15 2004-10-28 Fujitsu Limited Code recognizing method and device
JP2009516259A (en) * 2005-11-11 2009-04-16 株式会社カラージップメディア Video image code, apparatus and method for generating or decoding video image code
WO2012023363A1 (en) * 2010-08-17 2012-02-23 Hirayama Sadahiro Method for authenticity assessment easily performed by ordinary people using printed minute identification mark
JP2013134515A (en) * 2011-12-26 2013-07-08 Nisemono Shikibetsu Gijutsu Kenkyusho:Kk Method for determining authenticity of article by duplication-impossible identification mark and information code

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3852057A4 (en) * 2019-06-21 2022-06-15 Dai Nippon Printing Co., Ltd. Determining device, method for controlling determining device, determining system, method for controlling determining system, and program
US11928909B2 (en) 2019-06-21 2024-03-12 Dai Nippon Printing Co., Ltd. Determination device, control method for determination device, determination system, control method for determination system, and program
JP7095934B1 (en) 2021-12-09 2022-07-05 エレファンテック株式会社 Printing equipment
JP7095933B1 (en) 2021-12-09 2022-07-05 エレファンテック株式会社 Printing system
JP2023086065A (en) * 2021-12-09 2023-06-21 エレファンテック株式会社 printing system
JP2023086073A (en) * 2021-12-09 2023-06-21 エレファンテック株式会社 Printing device
WO2023162395A1 (en) * 2022-02-22 2023-08-31 エレファンテック株式会社 Printing system
CN115060665A (en) * 2022-08-16 2022-09-16 君华高科集团有限公司 Automatic inspection system for food safety
WO2024200316A1 (en) * 2023-03-27 2024-10-03 U-Nica Solutions Ag Method and system for registration of watches

Similar Documents

Publication Publication Date Title
US11423641B2 (en) Database for detecting counterfeit items using digital fingerprint records
US11302016B2 (en) Determination method, determination system, determination device, and program
US10614302B2 (en) Controlled authentication of physical objects
EP3465637B1 (en) A method for authenticating a document
JP6036805B2 (en) Method and apparatus for appraisal of coins or other manufactured goods
CN110073368B (en) Method for authenticating an illustration
JP5071592B2 (en) Authenticity judgment method that can be easily performed by ordinary people using printed minute identification marks
US8077905B2 (en) Capturing physical feature data
WO2015022872A1 (en) Method for automatically determining authenticity of individual article using micro contour shape of printing as identifier
WO2021179157A1 (en) Method and device for verifying product authenticity
WO2017159384A1 (en) Object management device
KR20150115853A (en) Authentication of security documents and mobile device to carry out the authentication
CH710713B1 (en) Authentication method using surface paper texture.
KR102242678B1 (en) RFID Tag Preventing Forgery and Falsification Comprising Photonic Crystal Materials and Method Using there of
JP7215491B2 (en) Individual identification device
CN114663118B (en) Anti-counterfeiting method based on laser random combination image
DE112021000421T5 (en) MECHANICALLY PRESSED DISTINCTIVE FEATURES FOR AUTHENTICITY AND ORIGIN TRACKING
JP2012212287A (en) Individual identification device, individual identification method, and program
Guo et al. DMF-Net: Dual-Branch Multi-Scale Feature Fusion Network for copy forgery identification of anti-counterfeiting QR code
JP2013134515A (en) Method for determining authenticity of article by duplication-impossible identification mark and information code
DE102021203081A1 (en) Method and device for verifying an authenticity of an object and device for object assessment
CN114783102A (en) Worn coin processing method, device, computer equipment and storage medium
JP2014200998A (en) Method for authenticity determination using printed minute identification mark
CN117334121A (en) Anti-counterfeit label and manufacturing and verifying methods and devices thereof
FR3062509A1 (en) METHOD FOR VERIFYING THE AUTHENTICITY OF A SENSITIVE PRODUCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP