WO2015022835A1 - Organic electroluminescent element, lighting device, display device and fluorescent compound - Google Patents

Organic electroluminescent element, lighting device, display device and fluorescent compound Download PDF

Info

Publication number
WO2015022835A1
WO2015022835A1 PCT/JP2014/068870 JP2014068870W WO2015022835A1 WO 2015022835 A1 WO2015022835 A1 WO 2015022835A1 JP 2014068870 W JP2014068870 W JP 2014068870W WO 2015022835 A1 WO2015022835 A1 WO 2015022835A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electron
general formula
structure represented
organic
Prior art date
Application number
PCT/JP2014/068870
Other languages
French (fr)
Japanese (ja)
Inventor
押山 智寛
北 弘志
服部 達哉
倫弘 奥山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015531748A priority Critical patent/JP6627508B2/en
Publication of WO2015022835A1 publication Critical patent/WO2015022835A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic electroluminescence element, an illumination device and a display device provided with the organic electroluminescence element, and a fluorescent compound. More specifically, the present invention relates to an organic electroluminescent element with improved luminous efficiency, an illumination device and a display device provided with the organic electroluminescent element, and a fluorescent compound useful for the organic electroluminescent element.
  • Organic EL elements also referred to as “organic electroluminescent elements” using electroluminescence of organic materials (hereinafter referred to as “EL”) have already been put into practical use as a new light emitting system that enables planar light emission.
  • EL organic electroluminescent elements
  • Organic EL elements are not only applied to electronic displays but also recently applied to lighting equipment, and their development is expected (for example, see Non-Patent Document 1).
  • organic EL emission methods There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state, and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. There is.
  • Patent Document 1 discloses a phenomenon in which singlet excitons are generated by collision of two triplet excitons (hereinafter referred to as “triplet-triplet annihilation”, hereinafter, abbreviated as “TTA” as appropriate.
  • TTA triplet excitons
  • Triplet-triplet fusion Focusing on the case of “TTF”, there is disclosed a technology for efficiently causing the TTA phenomenon to increase the efficiency of the fluorescent element. Although this technology improves the power efficiency of fluorescent materials by 2 to 3 times that of conventional fluorescent materials, the theoretical singlet exciton generation efficiency in TTA is only about 40%. Compared to the above, there is a problem of higher luminous efficiency.
  • the TADF mechanism is a material having a small difference ( ⁇ Est) between the singlet excitation energy level and the triplet excitation energy level ( ⁇ Est (TADF in FIG. 1) compared to a general fluorescent compound. ) Is smaller than ⁇ Est (F).) Is a light emission mechanism that utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs.
  • TADF mechanism for organic EL elements is still far from being put into practical use, since many problems derived from the light emitting material showing TADF and practical problems as organic EL elements remain.
  • a group of molecules in which a donor substituent and an acceptor substituent are simultaneously introduced into the molecule is known as a luminescent material exhibiting TADF (see, for example, Non-Patent Document 2).
  • Molecules in which a carbazole ring group as a donor substituent and a cyano group as an acceptor substituent are introduced into the benzene ring show TADF performance, but they are still not sufficient in terms of blue light emission efficiency and molecular stability. Improvement was desired.
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an organic electroluminescence device having improved luminous efficiency. Moreover, it is providing the illuminating device and display apparatus which comprise the said organic electroluminescent element, and a fluorescent compound. Furthermore, it is to provide an organic luminescence element having excellent stability with little change in light emission characteristics over time, a lighting device and a display device including the organic electroluminescence element, and a fluorescent compound useful for the organic electroluminescence element. .
  • the present inventor has found the cause of the above-mentioned problem from the viewpoint of carrier transport efficiency in the hopping conduction of the thermally activated delayed fluorescent compound (TADF compound).
  • TADF compound thermally activated delayed fluorescent compound
  • the electron density distribution of HOMO (highest occupied orbital) and LUMO (lowest empty orbital) obtained by molecular orbital calculation is substantially separated.
  • the present inventors have found that a stable thin film having strong fluorescence can be realized by improving the carrier transport property of the TADF compound by using the fluorescent compound that is used.
  • An organic electroluminescence device comprising a fluorescent compound having a monocyclic or condensed ring group as a donating group, wherein the fluorescent compound has B3LYP as a functional and 6-31G (d) as a basis function
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EWG represents a 5-membered or 6-membered aromatic heterocyclic ring containing one or two nitrogen atoms.
  • EDG is a monocyclic or condensed ring which is an electron-donating group (M and n represent an integer of 1 to 6)
  • X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but one of X 11 , X 12 , X 13 , X 14 and X 15 or 2 represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and EDG represents an electron-donating property. And represents a monocyclic or condensed ring group, and m and n represent an integer of 1 to 6.
  • X 21 represents NRb, C (Rc) (Rd), an oxygen atom or a sulfur atom.
  • X 22 , X 23 , X 24 , X 25 and X 26 each independently represents a nitrogen atom or CRa. 1 or 2 of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represents a nitrogen atom, and Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent.
  • Ar 0 represents a site for connecting an electron-withdrawing group and an electron-donating group or a direct bond
  • EDG represents a monocyclic or condensed ring group which is an electron-donating group
  • m and n are Represents an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each represents a nitrogen atom
  • Ra represents a hydrogen atom or a substituent
  • Ar 0 represents an electron-withdrawing group
  • an electron-donating group and represents a direct bond or EDG represents a monocyclic or condensed ring group which is an electron donating group
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each represent a nitrogen atom
  • R 1 and Ra represent a hydrogen atom or a substituent
  • Ar 0 represents an electron-withdrawing group and an electron donor And represents a direct bond or a direct bond
  • EDG represents a monocyclic or condensed ring group which is an electron donating group
  • m and n represent an integer of 1 to 6.
  • Item 10 The organic electroluminescence device according to Item 9, wherein the structure represented by the general formula (3-2) is a structure represented by the following general formula (3-3).
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa.
  • X 31 , X 32 , X 33 , X 34 , X 38 One or two of 35 , X 36 and X 38 represent a nitrogen atom, R 2 and Ra represent a hydrogen atom or a substituent, and Ar 0 connects an electron-withdrawing group and an electron-donating group.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • M and n represent an integer of 1 to 6.
  • EDG represents a carbazole ring group, a thiophene ring group, or a pyrrole ring group, according to any one of Items 2 to 10, Organic electroluminescence device.
  • X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but one of X 11 , X 12 , X 13 , X 14 and X 15 or 2 represents a nitrogen atom
  • Ra represents a hydrogen atom or a substituent
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond
  • m and n represent an integer of 1 to 6.
  • X 21 , X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom, NRb, an oxygen atom, a sulfur atom or CRa.
  • X 21 , X 22 , X 23 , One or two of X 24 , X 25 and X 26 represent a nitrogen atom, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently hydrogen.
  • Ra and Rb represent a hydrogen atom or a substituent
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond
  • m and n are 1 Represents an integer of ⁇ 6)
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent one or two nitrogen atoms
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are Each independently represents a hydrogen atom or a substituent
  • Ra represents a hydrogen atom or a substituent
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond
  • Item 10 The organic electroluminescent device according to Item 9, wherein the structure represented by the general formula (3-2) is a structure represented by the following general formula (3-5).
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent one or two nitrogen atoms
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are Each independently represents a hydrogen atom or a substituent
  • R 3 and Ra each represent a hydrogen atom or a substituent
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • M and n represent an integer of 1 to 6)
  • Item 11 The organic electroluminescent device according to Item 10, wherein the structure represented by the general formula (3-3) is a structure represented by the following general formula (3-6).
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa.
  • X 31 , X 32 , X 33 , X 34 , X 38 One or two of 35 , X 36 and X 38 represent a nitrogen atom,
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and
  • m and n are Represents an integer of 1 to 6.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 each independently represents a hydrogen atom or a substituent, wherein R 4 and Ra are Each independently represents a hydrogen atom or a substituent.
  • the structure represented by the general formula (A) is a structure represented by the following general formula (4-1), The organic according to any one of items 2 to 16, Electroluminescence element.
  • Rp, Rq, Rr, Rs, Rt and Ru each independently represent a hydrogen atom or a substituent, at least one represents EWG, at least one represents EDG, and x represents 0 or 1) Represents an integer, and when x is 1, -Y- or -Z- is represented by either a direct bond or -O-, -S- or -N (Rg)-, where Rg represents a substituent.
  • Rp, Rq, Rr, Rs, Rt and Ru may be linked to each other to form a bond.
  • Item 18 The organic electroluminescence device according to Item 17, wherein the structure represented by the general formula (4-1) is a structure represented by the following general formula (4-2).
  • Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 , Ru 1 each independently represents a hydrogen atom or a substituent, at least one represents EWG, and at least one represents EDG.
  • Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 may be linked to each other to form a bond.
  • Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 each independently represent a hydrogen atom or a substituent, at least one represents EWG, and at least one One represents EDG, -X- is represented by any of -O-, -S-, -N (Rg)-or -C (Rh) (Ri)-, wherein Rg, Rh and Ri are Each independently represents a substituent, Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 may be linked together to form a bond.
  • the energy difference ( ⁇ Est) between the lowest excited singlet state and the lowest excited triplet state of the fluorescent compound is 0.5 eV or less, Any one of items 1 to 19
  • the organic electroluminescent element of description is 0.5 eV or less.
  • An illuminating device comprising the organic electroluminescent element according to any one of items 1 to 20.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 20.
  • An organic EL element with improved luminous efficiency can be provided by the above-described means of the present invention.
  • a lighting device, a display device, and a fluorescent compound including the organic EL element can be provided.
  • the substituent used in the conventionally known delayed fluorescence compound is a linear substituent having a small area as a substituent such as a cyano group or a sulfonyl group. For this reason, when a substituent having a large steric hindrance (for example, a carbazole ring, a dibenzofuran ring, etc.) is present when the molecule is substituted, it is shielded inside the molecule and is disadvantageous for carrier transport of hopping conduction.
  • a substituent having a large steric hindrance for example, a carbazole ring, a dibenzofuran ring, etc.
  • the substituent can be extended to the outer shell of the molecule. It is effective from the viewpoint of carrier transportation.
  • Schematic diagram showing energy diagrams of general fluorescent compounds and TADF compounds Schematic diagram showing an example of a display device composed of organic EL elements
  • Schematic diagram of an active matrix display device Schematic showing the pixel circuit
  • Schematic diagram of a passive matrix display device Schematic of lighting device
  • Schematic diagram of lighting device Graph showing an example of M plot with different electron transport layer thickness
  • the organic EL device of the present invention is capable of electron-withdrawing a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton.
  • An organic electroluminescence device comprising a fluorescent compound having a functional group and a monocyclic or condensed ring group as an electron donating group, wherein the fluorescent compound has B3LYP and a basis function as a functional
  • the electron density distributions of HOMO and LUMO obtained by molecular orbital calculation using 6-31G (d) are substantially separated. This feature is a technical feature common to the inventions according to claims 1 to 23.
  • the fluorescent compound has a structure represented by the general formula (A), the carrier transport efficiency, the electron density of HOMO, LUMO. From the viewpoint of distribution, it is preferable from the viewpoint of obtaining an excellent and stable thin film with improved luminous efficiency and little change in luminous characteristics with time.
  • the electron-withdrawing group is a 6 ⁇ electron system. From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, it is possible to obtain an excellent and stable thin film with little improvement in emission efficiency and little change in emission characteristics over time. This is preferable.
  • the electron-withdrawing group is a 10 ⁇ electron system, an excellent and stable thin film with little improvement in emission efficiency and little change in emission characteristics over time can be obtained from the viewpoint of carrier transport efficiency and electron density distribution of HOMO and LUMO. This is preferable.
  • the electron-withdrawing group being a 14 ⁇ electron system can provide an excellent and stable thin film with little improvement in light emission efficiency and little change in light emission characteristics over time from the viewpoint of carrier transport efficiency and electron density distribution of HOMO and LUMO. This is preferable.
  • the structure represented by the general formula (A) is a structure represented by the general formula (1-1), from the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO. It is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (A) is a structure represented by the general formula (2-1).
  • the light emission efficiency is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (A) is a structure represented by the general formula (3-1), so that the light emission efficiency from the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (A) is a structure represented by the general formula (3-2).
  • the light emission efficiency is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (3-2) is a structure represented by the general formula (3-3). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • EDG is represented by a carbazole ring group, a thiophene ring group, or a pyrrole ring group from the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO. This is preferable because an excellent and stable thin film can be obtained in which the luminous efficiency is improved and the change in the luminescent properties with time is small.
  • the structure represented by the general formula (1-1) is a structure represented by the general formula (1-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (2-1) is a structure represented by the general formula (2-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (3-1) is a structure represented by the general formula (3-4). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light is emitted. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (3-2) is a structure represented by the general formula (3-5). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (3-3) is a structure represented by the general formula (3-6). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (A) is a structure represented by the general formula (4-1). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, the light emission efficiency. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (4-1) is a structure represented by the general formula (4-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
  • the structure represented by the general formula (A) is a structure represented by the general formula (4-3).
  • the light emission efficiency is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
  • the energy difference ( ⁇ Est) between the lowest excited singlet state and the lowest excited triplet state of the fluorescent light-emitting compound is 0.5 eV or less, indicating that there is an inverse term from the triplet excited state to the singlet excited state. Since crossing may occur, it is preferable because an effect of obtaining high luminous efficiency can be obtained without using a rare metal such as iridium.
  • the organic EL element of the present invention can be suitably provided in a lighting device. Thereby, the effect of improving luminous efficiency is obtained.
  • the organic EL element of the present invention can be suitably provided in a display device. Thereby, the effect of a clear moving image display with a high brightness
  • the fluorescent compound of the present invention comprises a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton.
  • a fluorescent compound having an electron-withdrawing group and a monocyclic or condensed ring group as an electron-donating group, using B3LYP as a functional and 6-31G (d) as a basis function The electron density distributions of HOMO and LUMO obtained by orbit calculation are substantially separated. Thereby, when used in an organic EL device, a light emitting efficiency is improved, and a fluorescent compound having excellent stability with little change in light emission characteristics over time can be obtained.
  • shown in the present invention is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • Organic EL emission methods There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. is there.
  • TTA triplet-triplet annhilation
  • Is a forbidden transition Is a forbidden transition, and similarly, an inter-term crossing from a singlet excited state to a triplet excited state is also a forbidden transition, so that its rate constant is usually small. That is, since the transition is difficult to occur, the exciton lifetime is increased from millisecond to second order, and it is difficult to obtain desired light emission.
  • a rare metal such as iridium, palladium, or platinum, which is a rare metal.
  • the price of the metal itself is a major industrial issue.
  • the fluorescent material is a heavy metal complex like a phosphorescent material, and so-called organic compounds composed of combinations of common elements such as carbon, oxygen, nitrogen, and hydrogen can be applied. Furthermore, other non-metallic elements such as phosphorus, sulfur and silicon can be used, and complexes of typical metals such as aluminum and zinc can also be used.
  • TTA triplet-triplet annihilation
  • Thermal activation type delayed fluorescence (TADF) material is a method that can solve the problems of TTA.
  • Fluorescent materials have the advantage of infinite molecular design as described above. That is, among the molecularly designed compounds, there is a compound in which the energy level difference between the triplet excited state and the singlet excited state (hereinafter referred to as ⁇ Est) is extremely close (see FIG. 1). .
  • HOMO is distributed in electron donating sites and LUMO is distributed in electron withdrawing sites in the electron orbit of the molecule.
  • LUMO is distributed in electron withdrawing sites in the electron orbit of the molecule.
  • Non-Patent Document 2 by introducing an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or triazine and an electron-donating skeleton such as a carbazole or diphenylamino group, LUMO and HOMO Are localized.
  • an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or triazine
  • an electron-donating skeleton such as a carbazole or diphenylamino group
  • TADF materials have various problems in terms of their light emission mechanism and molecular structure.
  • the electronic state of the molecule is a donor / acceptor type molecule in which the HOMO and LUMO sites are separated. It becomes a state close to the inner CT (intramolecular charge transfer state).
  • stabilization is achieved by bringing the donor part of one molecule and the acceptor part of the other molecule close to each other.
  • Such a stabilization state is not limited to the formation between two molecules, but can also be formed between a plurality of molecules, such as between three or five molecules, resulting in various stable distributions with a wide distribution. Therefore, the shape of the absorption spectrum and the emission spectrum is broad.
  • various existence states can be taken depending on the direction and angle of interaction between the two molecules. The shape of the emission spectrum becomes broad.
  • the broad emission spectrum causes two major problems.
  • fluorescence zero-zero band the rising wavelength (referred to as “fluorescence zero-zero band”) on the short wavelength side of the emission spectrum becomes shorter, that is, higher S 1 (higher excitation singlet energy). It is.
  • the fluorescence zero-zero band is shortened, the phosphorescence zero-zero band derived from T 1 having lower energy than S 1 is also shortened (higher T 1 ). Therefore, the compound used in the host compound in order not to cause reverse energy transfer from the dopant, arises the need to 1 reduction and high T 1 of high S.
  • a host compound consisting essentially of an organic compound takes a plurality of active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • the transition that is deactivated from the triplet excited state to the ground state is a forbidden transition, so the existence time (exciton lifetime) in the triplet excited state is from several hundred microseconds. It is extremely long on the order of milliseconds. Therefore, even if the T 1 energy of the host compound is higher than that of the light emitting material, reverse energy transfer occurs from the triplet excited state of the light emitting material to the host compound due to the length of the existence time. Probability increases.
  • the present invention includes the light emitting material in which the structural change in the excited state is suppressed as described above and the light emitting material in which the triplet excited state exists for a short time.
  • the fluorescent compound of the present invention comprises a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron.
  • Molecular orbital calculation using a fluorescent compound having an attractive group and a monocyclic or condensed ring as an electron-donating group and using B3LYP as a functional and 6-31G (d) as a basis function The electron density distributions of HOMO and LUMO obtained by the above are substantially separated.
  • the fluorescent compound of the present invention is preferably a delayed fluorescent compound.
  • the electron density distribution in the present invention is obtained when the structure of a molecule is optimized.
  • the electron-withdrawing group of the fluorescent compound in the present invention is preferably a 6 ⁇ electron system, a 10 ⁇ electron system, or a 14 ⁇ electron system.
  • the 6 ⁇ electron-withdrawing group is a 5- or 6-membered heterocyclic group containing a nitrogen atom.
  • examples thereof include a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, a pyrazole ring, and a furazane ring.
  • Preferable examples include a pyridine ring, a pyrimidine ring, a pyridazine ring, and a pyrazine ring.
  • the electron-withdrawing group of 10 ⁇ electron system is a condensed ring compound consisting of 5 or 6 members containing a nitrogen atom.
  • Examples include indole ring, indazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, isoindole ring, naphthyridine ring, phthalazine ring and the like.
  • a benzothiazole ring, a benzoxazole ring, and a benzimidazole ring are mentioned.
  • the electron-withdrawing group of 14 ⁇ electron system is a 5- or 6-membered condensed ring compound containing a nitrogen atom.
  • a carboline ring, a diazacarbazole ring (in which one of the carbon atoms constituting the carboline ring is replaced by a nitrogen atom), an acridine ring, a phenanthridine ring, a phenanthroline ring, a phenazine ring, an azadibenzofuran ring, an aza A dibenzothiophene ring etc. are mentioned.
  • a carboline ring, a diazacarbazole ring, an azadibenzofuran ring, and an azadibenzothiophene ring are mentioned.
  • the 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms of the present invention or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron-withdrawing group is preferably a compound represented by the following general formula (A).
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • the linking site represented by Ar 0 may be anything as long as it does not inhibit the function of the compound of the general formula (A), and is preferably an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a combination thereof. It is.
  • EWG represents a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms, or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton. Represents an electron-withdrawing group.
  • Examples of the electron-withdrawing group include those raised with the 6 ⁇ -electron withdrawing group, the 10 ⁇ -electron withdrawing group, and the 14 ⁇ -electron withdrawing group.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • carbazole ring, thiophene ring, pyrrole ring, mesityl group, xylyl group and the like can be mentioned.
  • m and n represent an integer of 1 to 6.
  • X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but X 11 , X 12 , X 13 , X 14 and X 15 One or two of them represent a nitrogen atom.
  • Ra represents a hydrogen atom or a substituent.
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc.
  • alkyl group for example, a methyl group, an ethyl
  • substituents may be further substituted with the above substituents. Further, these substituents may be bonded together to form a ring.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • n and n represent an integer of 1 to 6.
  • X 21 represents NRb, C (Rc) (Rd), an oxygen atom or a sulfur atom.
  • X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom or CRa.
  • X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represent a nitrogen atom.
  • Ra, Rb, Rc and Rd each independently represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n each represents an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • Ra represents a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • R 1 and Ra represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n each represents an integer of 1 to 6.
  • R 1 and Ra represent a substituent
  • the substituent has the same meaning as Ra in the general formula (1-1).
  • substitution position of Ar 0 , X 35 or X 37 is preferable.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represent a nitrogen atom.
  • R 2 and Ra represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n each represents an integer of 1 to 6.
  • X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but X 11 , X 12 , X 13 , X 14 and X 15 One or two of them represent a nitrogen atom.
  • Ra represents a hydrogen atom or a substituent.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 and Ra represent a substituent
  • the substituent may be represented by the general formula (1 It is synonymous with Ra in -1).
  • X 21 , X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom, NRb, an oxygen atom, a sulfur atom or CRa.
  • One or two of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represent a nitrogen atom.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently a hydrogen atom or a substituent.
  • Ra and Rb represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 in the general formula (3-4) each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • Ra represents a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 and X 34 represent a nitrogen atom.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • R 3 and Ra represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n each represents an integer of m1-6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represented by the general formula (3-6) each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represent a nitrogen atom.
  • One or two of X 35 , X 36 and X 38 represent a nitrogen atom.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • R 4 and Ra each independently represent a hydrogen atom or a substituent.
  • Rp, Rq, Rr, Rs, Rt and Ru each independently represent a hydrogen atom or a substituent, at least one represents EWG, and at least one represents EDG.
  • x represents an integer of 0 or 1.
  • —Y— and —Z— are each independently represented by a direct bond or —O—, —S— or —N (Rg) —.
  • Rg represents a substituent.
  • Rp, Rq, Rr, Rs, Rt and Ru may be connected to each other to form a bond.
  • Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 represented by the general formula (4-2) each independently represent a hydrogen atom or a substituent, and at least one represents EWG, One represents EDG.
  • Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 may be connected to each other to form a bond.
  • Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 represented by the general formula (4-3) each independently represent a hydrogen atom or a substituent, and at least one One represents EWG and at least one represents EDG.
  • —X— is represented by any of —O—, —S—, —N (Rg) — or —C (Rh) (Ri) —.
  • Rg, Rh and Ri represent a substituent.
  • Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 may be linked together to form a bond.
  • the general formulas of the present invention are NR 1 , N—R 2 , N—R 3 , N It is also preferable when —R 4 is represented by an oxygen atom or a sulfur atom.
  • the said fluorescent compound can be synthesize
  • the electron density distributions of HOMO and LUMO are substantially separated in the molecule.
  • the electron density distribution state of these HOMO and LUMO can be obtained from the electron density distribution when the structure is optimized obtained by molecular orbital calculation.
  • the structure optimization and the calculation of the electron density distribution by molecular orbital calculation of the fluorescent compound are carried out by using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function.
  • molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function.
  • B3LYP molecular orbital calculation software
  • 6-31G 6-31G
  • the electron density distribution of HOMO and LUMO is substantially separated means that the central part of the HOMO orbital distribution and the LUMO orbital distribution calculated by the above molecular calculation are separated, and more preferably, the HOMO orbital This means that the electron density distribution and the LUMO orbital electron density distribution do not substantially overlap.
  • the lowest excited singlet energy S 1 of the fluorescent compound in the present invention is defined in the present invention as calculated in the same manner as in a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
  • the fluorescent compound used in the present invention has a relatively high aggregation property of the molecule itself, an error due to aggregation may occur in the measurement of the thin film.
  • the fluorescent compound in the present invention has a relatively small Stokes shift and that the structural change between the excited state and the ground state is small, the lowest excited singlet energy in the present invention is light emission at room temperature (about 25 ° C.). The peak value of the emission wavelength in the solution state of the material was used as an approximate value.
  • a solvent that does not affect the aggregation state of the light emitting material that is, a solvent having a small influence of the solvent effect, for example, a nonpolar solvent such as cyclohexane or toluene can be used.
  • the lowest excited triplet energy T 1 of the fluorescent compound in the present invention was calculated from the photoluminescence (PL) characteristics of the solution or thin film.
  • PL photoluminescence
  • the transient PL characteristics are measured using a streak camera to separate the fluorescent component and the phosphorescent component, and the energy difference ⁇ Est can be used to determine the lowest excited triplet energy from the lowest excited singlet energy.
  • an absolute PL quantum yield measurement apparatus C9920-02 manufactured by Hamamatsu Photonics
  • the light emission lifetime was measured using a streak camera C4334 (manufactured by Hamamatsu Photonics) while exciting the sample with laser light.
  • Organic EL device of the present invention is capable of electron-withdrawing a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton.
  • An organic electroluminescence device comprising a fluorescent compound having a functional group and a monocyclic or condensed ring group as an electron donating group, wherein the fluorescent compound has B3LYP and a basis function as a functional
  • the electron density distributions of HOMO and LUMO obtained by molecular orbital calculation using 6-31G (d) are substantially separated.
  • the structure of the organic EL element of the present invention will be described in order.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
  • the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • first light emitting unit is all the same, May be different.
  • Two light emitting units may be the same, and the remaining one may be different.
  • a plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • a known material structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic material layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphy
  • Preferred examples of the structure within the light emitting unit include those obtained by removing the anode and the cathode from the structures (1) to (7) mentioned in the above representative element structures, but the present invention is not limited to these. Not.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Japanese Patent No. 6337492, International Publication No. 2005/009087, Japanese Unexamined Patent Application Publication No. 2006-228712, Japanese Unexamined Patent Application Publication No. 2006-24791, Japanese Unexamined Patent Application Publication No. 2006-49393, Japanese Unexamined Patent Application Publication No. 2006-49394, Japanese Unexamined Patent Application Publication No. 2006.
  • the light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the homogeneity of the layer to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From the viewpoint, it is preferably adjusted to a range of 2 nm to 5 ⁇ m, more preferably adjusted to a range of 2 to 500 nm, and further preferably adjusted to a range of 5 to 200 nm.
  • each light emitting layer of the present invention is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm.
  • the light-emitting layer of the present invention contains the above-described fluorescent compound as a light-emitting dopant (a light-emitting dopant, also simply referred to as a dopant), and further, the above-described host compound (a matrix material, a light-emitting host compound, or simply a host). ).
  • a light-emitting dopant also simply referred to as a dopant
  • the above-described host compound a matrix material, a light-emitting host compound, or simply a host.
  • a fluorescent luminescent dopant also referred to as a fluorescent dopant or a fluorescent luminescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant or a phosphorescent luminescent compound
  • the concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.
  • the light emitting dopant according to the present invention may be used in combination of two or more kinds, a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant. Thereby, arbitrary luminescent colors can be obtained.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • one or a plurality of light-emitting layers contain a plurality of light-emitting dopants having different emission colors and emit white light.
  • Fluorescent luminescent dopant fluorescent luminescent compound
  • fluorescent light-emitting dopant As the fluorescent light-emitting dopant according to the present invention (hereinafter also referred to as “fluorescent light-emitting dopant”), the above-described fluorescent light-emitting compound is used.
  • Phosphorescent dopant (1.2) Phosphorescent dopant (phosphorescent compound)
  • the phosphorescent dopant according to the present invention (hereinafter also referred to as “phosphorescent dopant” or “phosphorescent compound”) will be described.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield.
  • the phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
  • a preferable phosphorescent dopant is an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light-emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • the host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer.
  • the host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound used together with the fluorescent compound in the present invention is not particularly limited, but from the viewpoint of reverse energy transfer, those having an excitation energy larger than the excitation singlet energy of the fluorescent compound of the present invention are preferable. Those having an excitation triplet energy larger than the excitation triplet energy of the fluorescent compound of the present invention are more preferable.
  • the host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. Preferably does not move at the angstrom level.
  • the light-emitting dopant in particular in combination to indicate TADF emission, since long dwell time of the triplet excited state of the TADF luminescent material, the T 1 energy of the host compound itself is high, further host compound with each other in association Molecules that do not make the host compound low T 1 , such as not forming a low T 1 state in the state, TADF light emitting material and the host compound do not form an exciplex, or the host compound does not form an electromer due to an electric field. Appropriate design of the structure is required.
  • the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. is necessary.
  • Representative examples of host compounds that satisfy these requirements include high ⁇ -energy conjugated skeletons with high T 1 energy, such as carbazole skeleton, azacarbazole skeleton, dibenzofuran skeleton, dibenzothiophene skeleton, or azadibenzofuran skeleton. What has as a partial structure is mentioned preferably.
  • representative examples include compounds in which these rings have a biaryl and / or multiaryl structure.
  • aryl includes not only an aromatic hydrocarbon ring but also an aromatic heterocyclic ring.
  • it is a compound in which a carbazole skeleton and a 14 ⁇ -electron aromatic heterocyclic compound having a molecular structure different from that of the carbazole skeleton are directly bonded, and further a 14 ⁇ -electron aromatic heterocyclic compound is incorporated in the molecule.
  • a carbazole derivative having at least one is preferred.
  • the compound which has a structure represented with the following general formula (I) is also preferable. This is because a compound having a structure represented by the following formula (I) has a condensed ring structure, and therefore a ⁇ electron cloud spreads, the carrier transportability is high, and the glass transition temperature (Tg) is high. . Furthermore, in general, condensed aromatic rings tend to have a small triplet energy (T 1 ), but a compound having a structure represented by the general formula (I) has a high T 1 and has a short emission wavelength ( That is, it can be suitably used for a light emitting material having a large T 1 and S 1 .
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 .
  • y 1 to y 8 each represents CR 104 or a nitrogen atom.
  • R 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
  • Ar 101 and Ar 102 each represent an aromatic ring and may be the same or different.
  • n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents an integer of 1-4.
  • R 101 to R 104 represent hydrogen or a substituent, and the substituent here refers to what may be contained within the range not inhibiting the function of the host compound of the present invention.
  • the compound having the effect of the present invention is defined as being included in the present invention.
  • Examples of the substituents represented by R 101 to R 104 include, for example, Linear or branched alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), An alkenyl group (for example, vinyl group, allyl group, etc.), Alkynyl group (for example, ethynyl group, propargyl group, etc.), Aromatic hydrocarbon ring group (also referred to as aromatic carbocyclic group, aryl group, etc.
  • Linear or branched alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group
  • benzene ring biphenyl, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, indene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, Groups derived from pyrene ring, pyranthrene ring, anthraanthrene ring, tetralin, etc.), Aromatic heterocyclic group (eg, furan ring, dibenzofuran ring, thiophene ring,
  • Non-aromatic hydrocarbon ring group for example, cyclopentyl group, cyclohexyl group, etc.
  • Non-aromatic heterocyclic groups for example, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.
  • An alkoxy group for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.
  • a cycloalkoxy group for example, cyclopentyloxy group, cyclohexyloxy group, etc.
  • an aryloxy group for example, phenoxy group, naphthyloxy group, etc.
  • An alkylthio group for example, methylthio group
  • An acyloxy group for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.
  • Amido groups for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group
  • Carbamoyl group for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, etc.
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • y 1 to y 8 in the general formula (I) preferably at least three of y 1 to y 4 or at least three of y 5 to y 8 are represented by CR 102 , more preferably y 1 to y 8 are all CR 102 .
  • Such a skeleton is excellent in hole transport property or electron transport property, and can efficiently recombine and emit holes / electrons injected from the anode / cathode in the light emitting layer.
  • a compound in which X 101 is NR ′, an oxygen atom, or a sulfur atom in general formula (I) is preferable as a structure having a low LUMO energy level and excellent electron transport properties. More preferably, the condensed ring formed with X 101 and y 1 to y 8 is a carbazole ring, an azacarbazole ring, a dibenzofuran ring or an azadibenzofuran ring.
  • R 101 is an aromatic hydrocarbon ring which is a ⁇ -conjugated skeleton among the substituents mentioned above. It is preferably a group or an aromatic heterocyclic group. Further, these R 101 may be further substituted with the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic ring represented by Ar 101 and Ar 102 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent similar to the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic hydrocarbon ring represented by Ar 101 and Ar 102 include the aromatic hydrocarbon rings exemplified as the substituents represented by R 101 to R 104 described above. Examples include the same ring as the group.
  • examples of the aromatic heterocycle represented by Ar 101 and Ar 102 include the substituents represented by R 101 to R 104 described above. The same ring as an aromatic heterocyclic group is mentioned.
  • the aromatic ring itself represented by Ar 101 and Ar 102 preferably has a high T 1
  • the benzene ring Including polyphenylene skeletons with multiple benzene rings (including biphenyl, terphenyl, quarterphenyl, etc.), fluorene rings, triphenylene rings, carbazole rings, azacarbazole rings, dibenzofuran rings, azadibenzofuran rings, dibenzothiophene rings, dibenzothiophene rings, A pyridine ring, pyrazine ring, indoloindole ring, indole ring, benzofuran ring, benzothiophene ring, imidazole ring or triazine ring is preferred. More preferred are a benzene ring, a carbazole ring, an azacarbazole ring and a dibenz
  • Ar 101 and Ar 102 are a carbazole ring or an azacarbazole ring, it is more preferable that they are bonded at the N-position (or 9-position) or the 3-position.
  • Ar 101 and Ar 102 are dibenzofuran rings, they are more preferably bonded at the 2-position or 4-position.
  • the aromatic rings represented by Ar 1 and Ar 2 are each preferably a condensed ring of 3 or more rings.
  • aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzod
  • n101 and n102 are each preferably 0 to 2, more preferably n101 + n102 is 1 to 3. Furthermore, since the R 101 is the n101 and n102 when the hydrogen atom is 0 at the same time, the general formula (I) only a low Tg small molecular weight of the host compounds represented by not achievable, when R 101 is a hydrogen atom N101 represents 1 to 4.
  • a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
  • the compound having the structure represented by the general formula (I) is preferably a compound having a structure represented by the following general formula (II). This is because such a compound tends to have particularly excellent carrier transportability.
  • X 101, Ar 101, Ar 102, n102 have the same meanings as X 101, Ar 101, Ar 102 , n102 in the formula (I).
  • N102 is preferably 0 to 2, more preferably 0 or 1.
  • the condensed ring formed containing X 101 may further have a substituent other than Ar 101 and Ar 102 as long as the function of the host compound of the present invention is not inhibited.
  • the compound having a structure represented by the general formula (II) is preferably a compound having a structure represented by the following general formula (III-1), (III-2) or (III-3).
  • the condensed ring, carbazole ring and benzene ring formed containing X 101 further have a substituent as long as the function of the host compound of the present invention is not inhibited. You may do it.
  • the preferred host compound used in the present invention may be a low molecular compound having a molecular weight capable of sublimation purification or a polymer having a repeating unit.
  • the molecular weight is not particularly limited as long as sublimation purification is possible, but the preferred molecular weight is 3000 or less, more preferably 2000 or less.
  • the polymer used as the host compound of the present invention is not particularly limited as long as the desired device performance can be achieved, but preferably the general formulas (I), (II), (III-1) to (III-3) Those having the following structure in the main chain or side chain are preferred. Although there is no restriction
  • the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the driving of the element.
  • Tg glass transition temperature
  • Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer of the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.)
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include aromatic heterocyclic compounds containing at least one nitrogen atom.
  • aromatic heterocyclic compounds containing at least one nitrogen atom For example, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, azadibenzofurans. Derivatives, azadibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, benzimidazole derivatives, and the like.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer As the material used for the hole blocking layer, the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin layer, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material. Moreover, the nonuniform layer in which a constituent material exists intermittently may be sufficient.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives and polyvinyl carbazole, polymeric materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilanes, conductivity Examples thereof include polymers or oligomers (for example, PEDOT: PSS, aniline copolymers, polyaniline, polythiophene, etc.).
  • triarylamine derivative examples include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the above-described configuration of the hole transport layer can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the layer thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer is preferably used, and the material used for the host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. 2 and Chapter 2 “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization” (published by NTT Corporation on November 30, 1998).
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • materials used for the hole injection layer For example, the material etc. which are used for the above-mentioned hole transport layer are mentioned.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432 and JP-A-2006-135145, etc.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • Organic layer in the present invention described above may further contain other additives.
  • additives include halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca, and Na, transition metal compounds, complexes, and salts.
  • the content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. .
  • the formation method of the organic layer of the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
  • organic solvents such as DMF and DMSO
  • a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is 50 to 450 ° C., the vacuum is 10 ⁇ 6 to 10 ⁇ 2 Pa, and the vapor deposition rate is 0.01. It is desirable to select appropriately within the range of ⁇ 50 nm / second, substrate temperature ⁇ 50 to 300 ° C., layer thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the formation of the organic layer of the present invention is preferably made from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different layer formation methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used.
  • an electrode material include metals such as Au, and conductive transparent materials such as CuI, ITO (indium tin oxide), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. And a relative humidity of 90 ⁇ 2% RH) of 0.01 g / (m 2 ⁇ 24 h) or less is preferable. Further, oxygen permeability measured by a method according to JIS K 7126-1987 However, it is preferably a high-barrier film having 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992.
  • the measured water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention can be processed to provide a structure on a microlens array, for example, on the light extraction side of a support substrate (substrate) or combined with a so-called condensing sheet, for example, in a specific direction
  • a support substrate substrate
  • condensing sheet for example, in a specific direction
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention comprises the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet or printing.
  • the method is not limited, but a vapor deposition method, an ink jet method, a spin coating method, and a printing method are preferable.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, or various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • the display device or display may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
  • the control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 3 is a schematic diagram of a display device using an active matrix method.
  • the display unit A has a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • FIG. 3 shows a case where the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 4 is a schematic diagram showing a pixel circuit.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even if the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 5 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • a display device with improved luminous efficiency was obtained by using the organic EL element of the present invention.
  • the lighting device of the present invention will be described.
  • the illuminating device of this invention has the said organic EL element.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the drive method when used as a display device for moving image reproduction may be either a passive matrix method or an active matrix method.
  • the TADF compound of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • White light emission can be obtained by simultaneously emitting a plurality of light emission colors with a plurality of light emitting materials and mixing the colors.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • the organic EL device forming method of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
  • the elements themselves are luminescent white.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 7 shows a schematic diagram of a cross section of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Impedance spectroscopy is a technique that can analyze subtle changes in physical properties of organic ELs by converting them into electrical signals or amplifying them. Highly sensitive resistance (R) and capacitance (C) without destroying organic EL It is a feature that can be measured.
  • R highly sensitive resistance
  • C capacitance
  • FIG. 8 is an example of an M plot of the layer thickness difference of the electron transport layer. An example in which the layer thickness is 30, 45 and 60 nm, respectively, is shown.
  • the M plot is obtained by plotting a transfer function modulus represented by the following equation on a complex plane.
  • M ′ is the real part of M
  • M ′′ is the imaginary part Im (M) of M.
  • the evaluation target An evaluation method for determining that the organic EL element is good is disclosed.
  • a voltage equal to or lower than the emission start voltage is applied to the reference organic EL element, and the shape of the M plot measured by the IS method is compared with the shape of the M plot of the organic EL element to be inspected within ⁇ 5%.
  • An evaluation method for determining that there is a good condition is disclosed (reference patent document: International Publication No. 2013/111459).
  • the resistance value (R) obtained from this plot is plotted against the ETL layer thickness in FIG. 9, and the resistance value at each layer thickness can be determined because it is on a substantially straight line.
  • FIG. 9 is an example showing the relationship between the ETL layer thickness and the resistance value. From the relationship between the ETL layer thickness and the resistance value (Resistance) in FIG. 9, the resistance value at each layer thickness can be determined because it is on a substantially straight line.
  • FIG. 11 shows the result of analyzing each layer using an organic EL element having an element configuration “ITO / HIL / ETL / HTL / EML / Al” as an equivalent circuit model (FIG. 10).
  • FIG. 11 is an example showing the resistance-voltage relationship of each layer.
  • FIG. 10 shows an equivalent circuit model of an organic EL element having an element configuration “ITO / HIL / ETL / HTL / EML / Al”.
  • FIG. 11 is an example of an analysis result of an organic EL element having an element configuration “ITO / HIL / ETL / HTL / EML / Al”.
  • FIG. 12 shows the respective values at a voltage of 1V.
  • FIG. 12 is an example showing the analysis result of the organic EL element after deterioration.
  • the resistance change before and after the energization described in the embodiment of the present invention can be measured by using the above method.
  • Example 1 ⁇ Preparation of organic EL element 1-1> A transparent substrate with an ITO (Indium Tin Oxide) film having a thickness of 150 nm formed on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm, patterned, and this ITO transparent electrode was attached After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • ITO Indium Tin Oxide
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • the energization crucible containing ⁇ -NPD shown below was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A 30 nm hole injecting and transporting layer was formed.
  • the deposition crucible containing H-46 was energized and heated, and deposited on the hole injecting and transporting layer at a deposition rate of 0.1 nm / second to form an intermediate layer having a layer thickness of 10 nm.
  • H-46 as a host compound and comparative compound 1 as a fluorescent compound were co-deposited at a deposition rate of 0.1 nm / second so as to be 95% and 5% by volume, respectively. Formed.
  • the TPBi was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 50 nm. Furthermore, after forming lithium fluoride with a layer thickness of 0.8 nm, 100 nm of aluminum was vapor-deposited to form a cathode.
  • the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 1-1.
  • Organic EL devices 1-2 to 1-31 were produced by replacing the fluorescent EL compound 1-1 of the organic EL device 1-1 with compounds having the same mass as shown in Table 2.
  • the initial drive voltage of the organic EL element 1-1 is set to 100, and the initial drive voltage of the organic EL elements 1-2 to 1-31 is shown as a relative value. In the table, the smaller the numerical value, the lower the initial drive voltage.
  • the organic EL device of the present invention was able to obtain an organic EL device excellent in external quantum efficiency, initial drive voltage, and half-life compared to the organic EL device of the comparative example.
  • Example 2 ⁇ Preparation of organic EL element 2-1> Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a substrate NH45 manufactured by NH Techno Glass Co., Ltd.
  • ITO indium tin oxide
  • this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • PEDOT / PSS poly(3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • a thin layer was formed by spin coating under conditions of 30 seconds and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) is attached to a resistance heating boat made of molybdenum.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the vacuum chamber is then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing ⁇ -NPD, and deposited on the first hole transport layer at a deposition rate of 0.1 nm / second. Then, a second hole transport layer having a thickness of 30 nm was provided.
  • the heating boat containing H-154 which is a luminescent host compound
  • the heating boat containing comparative compound 1, which is a fluorescent compound are energized and heated, and the deposition rates are 0.1 nm / second and 0.010 nm, respectively.
  • a 40 nm light-emitting layer was provided by co-evaporation on the second hole transport layer.
  • the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 30 nm electron transport layer.
  • lithium fluoride 0.5 nm was vapor-deposited as a cathode buffer layer, and aluminum 110 nm was vapor-deposited to form a cathode, whereby an organic EL device 1-1 was produced.
  • Organic EL devices 2-2 to 2-31 were prepared in the same manner except that H-154 and Comparative Compound 1 were changed to the compounds shown in Table 3 in the production of the organic EL device 2-1.
  • FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • an epoxy photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the glass cover side where the glass cover and the glass substrate on which the organic EL element is manufactured contact, This was stacked on the cathode side and brought into close contact with the transparent support substrate, and the portion excluding the organic EL element from the glass substrate side was irradiated with UV light and cured.
  • FIG. 7 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Rate of change of resistance value before and after organic EL element driving Refer to the measurement method described in “Thin Film Evaluation Handbook” published by Techno System, pages 423 to 425, Solartron 1260 type impedance analyzer and 1296 type dielectric Using the interface, the resistance value at a bias voltage of 1 V of the light emitting layer of the produced organic EL element was measured.
  • the organic EL element was measured for the resistance value of the light emitting layer before and after driving for 1000 hours under room temperature (about 23 to 25 ° C.) and constant current conditions of 2.5 mA / cm 2 , and the measurement results are shown below.
  • the change rate of the resistance value was calculated by the following formula. Table 3 shows the relative ratio when the rate of change of the resistance value of the organic EL element 2-1 is 100.
  • the organic EL device of the present invention had a smaller change rate of the resistance value of the light emitting layer than the organic EL device of the comparative example, and thus the change in the physical properties of the thin layer of the light emitting layer It can be seen that a small and stable organic EL element could be obtained.
  • Tables 4 and 5 show HOMO, LUMO, and ⁇ Est of the compounds of the present invention used in the above examples, together with comparative compounds.
  • the fluorescent compounds of the present invention often have a shallow orbital energy of HOMO and LUMO without increasing ⁇ Est as compared with the comparative compound, and this is particularly remarkable in LUMO.
  • This is an effect of a weak electron-withdrawing group such as a heteroaromatic ring, and the range of selection of a host compound to be combined can be expanded.
  • the 6 ⁇ electron system, 10 ⁇ electron system, and 14 ⁇ electron system electron-withdrawing group allows the substituent to extend to the outer shell of the molecule, which is effective in terms of carrier transport.
  • the organic EL device produced using the fluorescent compound of the present invention is an excellent and stable thin film with improved luminous efficiency and little change in luminous characteristics over time compared to the comparative example. It turns out that it is excellent.
  • Example 4 The red (organic EL element 2-22), green (organic EL element 2-25), and blue (organic EL element 2-10) light-emitting organic EL elements prepared in Example 1 were juxtaposed on the same substrate, as shown in FIG.
  • the active matrix type full-color display device shown in FIG. FIG. 3 shows only a schematic diagram of the display portion A of the produced full-color display device. That is, a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of juxtaposed pixels 3 (a light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) on the same substrate.
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at orthogonal positions ( Details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, full-color display is possible by appropriately juxtaposing the red, green, and blue pixels. By driving the full-color display device, a clear full-color moving image display with high luminance was obtained.
  • FIG. 13 shows electron density distributions of HOMO and LUMO of Comparative Compound 6, Comparative Compound 8, and Compound 2-8 of the present invention.
  • the electron density of HOMO (FIG. 13c) and LUMO (FIG. 13d) of the comparative compound 8 are distributed at almost the same position in the molecule, and they overlap each other.
  • ⁇ Est also has a high value of 1.47.
  • HOMO (Fig. 13a) and LUMO (Fig. 13b) of Comparative Compound 6 and HOMO (Fig. 13e) and LUMO (f of Fig. 13) of Compound 2-8 of the present invention are Since the electron density is distributed at different positions and both are substantially separated, it is advantageous as a thermally activated delayed fluorescent compound.
  • the LUMO of Comparative Compound 6 extends to the central benzene ring and cyano group, but is shielded within the molecule due to its small area, which is disadvantageous for carrier hopping conduction.
  • the LUMO (f in FIG. 13) of the compound 2-8 of the present invention extends to the central benzene ring and pyridazine ring, and can be projected to the outer shell of the molecule compared with the comparative compound 6, and its area is also Since it is wide, it can be seen that it is advantageous for carrier hopping conduction.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emitting light sources.
  • the light emitting light source include a lighting device (home lighting, interior lighting), a clock and a liquid crystal backlight, a billboard advertisement, and a traffic light. It can be used as a light source for an optical storage medium, a light source for an electrophotographic copying machine, a light source for an optical communication processor, a light source for an optical sensor, and the like.
  • the fluorescent compound of the present invention can be used in the organic EL device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

An objective of the present invention is to provide an organic electroluminescent element which has improved luminous efficiency, and which is suppressed in changes in the emission characteristics over time, thereby achieving excellent stability. Another objective of the present invention is to provide a lighting device and a display device, each of which is provided with the organic electroluminescent element, and a fluorescent compound. An organic electroluminescent element according to the present invention contains a fluorescent compound which has, as an electron-withdrawing group, a five- or six-membered aromatic heterocyclic ring containing one or two nitrogen atoms or a fused aromatic heterocyclic ring that contains the five- or six-membered aromatic heterocyclic ring in the skeleton, and which has, as an electron-donating group, a monocyclic or fused ring group. This organic electroluminescent element is characterized in that the electron density distribution of the HOMO and the electron density distribution of the LUMO of the fluorescent compound as determined by molecular orbital calculation are substantially separated from each other.

Description

有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, AND FLUORESCENT EMITTING COMPOUND
 本発明は、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子が具備された照明装置及び表示装置並びに蛍光発光性化合物に関する。より詳しくは、発光効率を改良した有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子が具備された照明装置及び表示装置並びに有機エレクトロルミネッセンス素子に有用な蛍光発光性化合物に関する。 The present invention relates to an organic electroluminescence element, an illumination device and a display device provided with the organic electroluminescence element, and a fluorescent compound. More specifically, the present invention relates to an organic electroluminescent element with improved luminous efficiency, an illumination device and a display device provided with the organic electroluminescent element, and a fluorescent compound useful for the organic electroluminescent element.
 有機材料のエレクトロルミネッセンス(Electro-Luminescence:以下「EL」と記す。)を利用した有機EL素子(「有機電界発光素子」ともいう。)は、平面発光を可能とする新しい発光システムとして既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、最近では照明機器にも適用され、その発展が期待されている(例えば非特許文献1参照。)。 Organic EL elements (also referred to as “organic electroluminescent elements”) using electroluminescence of organic materials (hereinafter referred to as “EL”) have already been put into practical use as a new light emitting system that enables planar light emission. Technology. Organic EL elements are not only applied to electronic displays but also recently applied to lighting equipment, and their development is expected (for example, see Non-Patent Document 1).
 有機ELの発光方式としては、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の2通りがある。 There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state, and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. There is.
 有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層において再結合し励起子を生じる。このとき一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。 When an electric field is applied to the organic EL element, holes and electrons are injected from the anode and the cathode, respectively, and recombine in the light emitting layer to generate excitons. At this time, since singlet excitons and triplet excitons are generated at a ratio of 25%: 75%, phosphorescence using triplet excitons is theoretically higher in internal quantum than fluorescence. It is known that efficiency can be obtained.
 しかしながら、リン光発光方式において実際に高い量子効率を得るためには、中心金属にイリジウムや白金などの希少金属を用いた錯体を用いる必要があり、将来的に希少金属の埋蔵量や金属自体の値段が産業上大きな問題となることが懸念される。 However, in order to actually obtain high quantum efficiency in the phosphorescence emission method, it is necessary to use a complex using a rare metal such as iridium or platinum as a central metal. There is concern that price will be a major industrial issue.
 一方で、蛍光発光型においても発光効率を向上させるために様々な開発がなされており、近年新しい動きが出てきた。 On the other hand, various developments have been made in order to improve the luminous efficiency in the fluorescent light emitting type, and a new movement has recently appeared.
 例えば、特許文献1には、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet-Triplet Annihilation:以下、適宜「TTA」と略記する。また、Triplet-Triplet Fusion:「TTF」と呼ぶ場合もある。)に着目し、TTA現象を効率的に起こして蛍光素子の高効率図る技術が開示されている。この技術により蛍光発光材料の電力効率は従来の蛍光発光材料の2~3倍まで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べ高発光効率化の課題を有している。 For example, Patent Document 1 discloses a phenomenon in which singlet excitons are generated by collision of two triplet excitons (hereinafter referred to as “triplet-triplet annihilation”, hereinafter, abbreviated as “TTA” as appropriate. Triplet-triplet fusion: Focusing on the case of “TTF”, there is disclosed a technology for efficiently causing the TTA phenomenon to increase the efficiency of the fluorescent element. Although this technology improves the power efficiency of fluorescent materials by 2 to 3 times that of conventional fluorescent materials, the theoretical singlet exciton generation efficiency in TTA is only about 40%. Compared to the above, there is a problem of higher luminous efficiency.
 さらに近年では、安達らにより、熱活性化型遅延蛍光(「熱励起型遅延蛍光」ともいう。以下、Thermally Activated Dlayed Fluorescence:以下、適宜「TADF」と略記する。)機構を利用した蛍光発光材料と、有機EL素子への利用の可能性が報告されている(例えば、非特許文献2~7及び特許文献2参照。)。 Furthermore, in recent years, Adachi et al. Have adopted a fluorescent material that uses a thermally activated delayed fluorescence (also referred to as “thermally excited delayed fluorescence”, hereinafter referred to as “TADF” as appropriate). The possibility of use in organic EL elements has been reported (see, for example, Non-Patent Documents 2 to 7 and Patent Document 2).
 TADF機構は、図1に示すように、一般的な蛍光発光性化合物に比べ、一重項励起エネルギー準位と三重項励起エネルギー準位の差(ΔEst)が小さい材料(図1では、ΔEst(TADF)がΔEst(F)よりも小さい。)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構である。すなわち、ΔEstが小さいことによって、電界励起により75%の確率で発生する三重項励起子が、本来なら発光に寄与できないところ、有機EL素子駆動時の熱エネルギーなどで一重項励起状態に遷移し、その状態から基底状態へ輻射失活(「輻射遷移」又は「放射失活」ともいう。)し蛍光発光を起こすものである。このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。 As shown in FIG. 1, the TADF mechanism is a material having a small difference (ΔEst) between the singlet excitation energy level and the triplet excitation energy level (ΔEst (TADF in FIG. 1) compared to a general fluorescent compound. ) Is smaller than ΔEst (F).) Is a light emission mechanism that utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs. That is, since ΔEst is small, triplet excitons generated with a probability of 75% due to electric field excitation cannot contribute to light emission originally, but transition to a singlet excited state by thermal energy at the time of driving an organic EL element, From this state to the ground state, radiation is deactivated (also referred to as “radiation transition” or “radiation deactivation”) to cause fluorescence emission. If delayed fluorescence due to the TADF mechanism is used, it is considered that 100% internal quantum efficiency is theoretically possible even in fluorescence emission.
 しかしながら、有機EL素子へのTADF機構の利用は、TADFを示す発光材料に由来する課題や、有機EL素子としての実用上の課題が多く残されており、いまだ実用化には遠い状況である。分子内にドナー性置換基とアクセプター性置換基を同時に導入した分子群がTADFを示す発光材料として知られている(例えば、非特許文献2参照。)。ベンゼン環にドナー性置換基としてカルバゾール環基、アクセプター性置換基としてシアノ基が導入された分子がTADF性能を示しているが、青色の発光効率や分子の安定性においていまだ十分でなく、更なる向上が望まれていた。 However, the use of the TADF mechanism for organic EL elements is still far from being put into practical use, since many problems derived from the light emitting material showing TADF and practical problems as organic EL elements remain. A group of molecules in which a donor substituent and an acceptor substituent are simultaneously introduced into the molecule is known as a luminescent material exhibiting TADF (see, for example, Non-Patent Document 2). Molecules in which a carbazole ring group as a donor substituent and a cyano group as an acceptor substituent are introduced into the benzene ring show TADF performance, but they are still not sufficient in terms of blue light emission efficiency and molecular stability. Improvement was desired.
国際公開第2012/133188号International Publication No. 2012/133188 特開2011-213643号公報JP 2011-213643 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光効率が向上した有機エレクトロルミネッセンス素子を提供することである。また、当該有機エレクトロルミネッセンス素子を具備する照明装置及び表示装置並びに蛍光発光性化合物を提供することである。さらに、経時による発光特性の変化が少ない安定性の優れた有機ルミネッセンス素子、当該有機エレクトロルミネッセンス素子を具備した照明装置及び表示装置並びに有機エレクトロルミネッセンス素子に有用な蛍光発光性化合物を提供することである。 The present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an organic electroluminescence device having improved luminous efficiency. Moreover, it is providing the illuminating device and display apparatus which comprise the said organic electroluminescent element, and a fluorescent compound. Furthermore, it is to provide an organic luminescence element having excellent stability with little change in light emission characteristics over time, a lighting device and a display device including the organic electroluminescence element, and a fluorescent compound useful for the organic electroluminescence element. .
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、熱活性化型遅延蛍光発光性化合物(TADF化合物)のホッピング伝導におけるキャリア輸送効率の観点から、上記問題の原因等について検討したところ、電子吸引性基と電子供与性基とを有し、分子軌道計算により得られるHOMO(最高被占軌道)とLUMO(最低空軌道)の電子密度分布が実質的に分離している蛍光発光性化合物を用いることにより、当該TADF化合物のキャリア輸送性向上により、強い蛍光発光を有し、安定な薄膜を実現できることを見いだし本発明に至った。 As a result of examining the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventor has found the cause of the above-mentioned problem from the viewpoint of carrier transport efficiency in the hopping conduction of the thermally activated delayed fluorescent compound (TADF compound). As a result, the electron density distribution of HOMO (highest occupied orbital) and LUMO (lowest empty orbital) obtained by molecular orbital calculation is substantially separated. The present inventors have found that a stable thin film having strong fluorescence can be realized by improving the carrier transport property of the TADF compound by using the fluorescent compound that is used.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子であって、該蛍光発光性化合物は、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴とする有機エレクトロルミネッセンス素子。 1. A 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron-withdrawing group, and an electron An organic electroluminescence device comprising a fluorescent compound having a monocyclic or condensed ring group as a donating group, wherein the fluorescent compound has B3LYP as a functional and 6-31G (d) as a basis function An organic electroluminescence device characterized in that electron density distributions of HOMO and LUMO obtained by molecular orbital calculation used are substantially separated.
 2.前記蛍光発光性化合物が、下記一般式(A)で表される構造を有することを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to item 1, wherein the fluorescent compound has a structure represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (式中、Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EWGは、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環である電子吸引性基、又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環である電子吸引性基を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。) (In the formula, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EWG represents a 5-membered or 6-membered aromatic heterocyclic ring containing one or two nitrogen atoms. Or an electron-withdrawing group which is a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton, EDG is a monocyclic or condensed ring which is an electron-donating group (M and n represent an integer of 1 to 6)
 3.前記電子吸引性基が、6π電子系であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device according to item 1 or 2, wherein the electron-withdrawing group is a 6π electron system.
 4.前記電子吸引性基が、10π電子系であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescent element according to item 1 or 2, wherein the electron-withdrawing group is a 10π electron system.
 5.前記電子吸引性基が、14π電子系であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 5. 3. The organic electroluminescence device according to item 1 or 2, wherein the electron-withdrawing group is a 14π electron system.
 6.前記一般式(A)で表される構造が、下記一般式(1-1)で表される構造であることを特徴とする第2項又は第3項に記載の有機エレクトロルミネッセンス素子。 6. 4. The organic electroluminescence device according to item 2 or 3, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (1-1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (式中、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。) (In the formula, X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but one of X 11 , X 12 , X 13 , X 14 and X 15 or 2 represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and EDG represents an electron-donating property. And represents a monocyclic or condensed ring group, and m and n represent an integer of 1 to 6.)
 7.前記一般式(A)で表される構造が、下記一般式(2-1)で表される構造であることを特徴とする第2項又は第4項に記載の有機エレクトロルミネッセンス素子。 7. 5. The organic electroluminescence device according to item 2 or 4, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (2-1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (式中、X21は、NRb、C(Rc)(Rd)、酸素原子又は硫黄原子を表す。X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子又はCRaを表す。X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。) (Wherein X 21 represents NRb, C (Rc) (Rd), an oxygen atom or a sulfur atom. X 22 , X 23 , X 24 , X 25 and X 26 each independently represents a nitrogen atom or CRa. 1 or 2 of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represents a nitrogen atom, and Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent. Ar 0 represents a site for connecting an electron-withdrawing group and an electron-donating group or a direct bond, EDG represents a monocyclic or condensed ring group which is an electron-donating group, and m and n are Represents an integer of 1 to 6.)
 8.前記一般式(A)で表される構造が、下記一般式(3-1)で表される構造であることを特徴とする第2項又は第5項に記載の有機エレクトロルミネッセンス素子。 8. 6. The organic electroluminescence device according to item 2 or 5, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (3-1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。) (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, Ar 0 represents an electron-withdrawing group, and an electron-donating group. And represents a direct bond or EDG represents a monocyclic or condensed ring group which is an electron donating group, and m and n represent an integer of 1 to 6.)
 9.前記一般式(A)で表される構造が、下記一般式(3-2)で表される構造であることを特徴とする第2項又は第5項に記載の有機エレクトロルミネッセンス素子。 9. 6. The organic electroluminescence device according to item 2 or 5, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (3-2).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R及びRaは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。) (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each represent a nitrogen atom, R 1 and Ra represent a hydrogen atom or a substituent, Ar 0 represents an electron-withdrawing group and an electron donor And represents a direct bond or a direct bond, and EDG represents a monocyclic or condensed ring group which is an electron donating group, and m and n represent an integer of 1 to 6.)
 10.前記一般式(3-2)で表される構造が下記一般式(3-3)で表される構造であることを特徴とする第9項に記載の有機エレクトロルミネッセンス素子。 10. Item 10. The organic electroluminescence device according to Item 9, wherein the structure represented by the general formula (3-2) is a structure represented by the following general formula (3-3).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 (式中、X31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。R及びRaは水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。) (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 38 One or two of 35 , X 36 and X 38 represent a nitrogen atom, R 2 and Ra represent a hydrogen atom or a substituent, and Ar 0 connects an electron-withdrawing group and an electron-donating group. (EDG represents a monocyclic or condensed ring group which is an electron donating group. M and n represent an integer of 1 to 6.)
 11.前記一般式(A)で表される構造において、EDGが、カルバゾール環基、チオフェン環基又はピロール環基を表すことを特徴とする第2項から第10項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 11. The structure represented by the general formula (A), wherein EDG represents a carbazole ring group, a thiophene ring group, or a pyrrole ring group, according to any one of Items 2 to 10, Organic electroluminescence device.
 12.前記一般式(1-1)で表される構造が下記一般式(1-2)で表される構造であることを特徴とする第6項に記載の有機エレクトロルミネッセンス素子。 12. 7. The organic electroluminescence device according to item 6, wherein the structure represented by the general formula (1-1) is a structure represented by the following general formula (1-2).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 (式中、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。Raは水素原子又は置換基を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。) (In the formula, X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but one of X 11 , X 12 , X 13 , X 14 and X 15 or 2 represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond, and m and n represent an integer of 1 to 6.)
 13.前記一般式(2-1)で表される構造が下記一般式(2-2)で表される構造であることを特徴とする第7項に記載の有機エレクトロルミネッセンス素子。 13. 8. The organic electroluminescence device according to item 7, wherein the structure represented by the general formula (2-1) is a structure represented by the following general formula (2-2).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 (式中、X21、X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子、NRb、酸素原子、硫黄原子又はCRaを表す。X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Ra及びRbは水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。) (In the formula, X 21 , X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom, NRb, an oxygen atom, a sulfur atom or CRa. X 21 , X 22 , X 23 , One or two of X 24 , X 25 and X 26 represent a nitrogen atom, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently hydrogen. Represents an atom or a substituent, Ra and Rb represent a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and m and n are 1 Represents an integer of ~ 6)
 14.前記一般式(3-1)で表される構造が下記一般式(3-4)で表される構造であることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。 14. 9. The organic electroluminescence device according to item 8, wherein the structure represented by the general formula (3-1) is a structure represented by the following general formula (3-4).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Raは水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。) (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent one or two nitrogen atoms, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are Each independently represents a hydrogen atom or a substituent, Ra represents a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, m and n Represents an integer of 1 to 6.)
 15.前記一般式(3-2)で表される構造が下記一般式(3-5)で表される構造であることを特徴とする第9項に記載の有機エレクトロルミネッセンス素子。 15. Item 10. The organic electroluminescent device according to Item 9, wherein the structure represented by the general formula (3-2) is a structure represented by the following general formula (3-5).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。) (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent one or two nitrogen atoms, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are Each independently represents a hydrogen atom or a substituent, R 3 and Ra each represent a hydrogen atom or a substituent, and Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. M and n represent an integer of 1 to 6)
 16.前記一般式(3-3)で表される構造が下記一般式(3-6)で表される構造であることを特徴とする第10項に記載の有機エレクトロルミネッセンス素子。 16. Item 11. The organic electroluminescent device according to Item 10, wherein the structure represented by the general formula (3-3) is a structure represented by the following general formula (3-6).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 (式中、X31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。R41、R42、R43、R44、R45、R46、R47、R48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、それぞれ独立に水素原子又は置換基を表す。) (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 38 One or two of 35 , X 36 and X 38 represent a nitrogen atom, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and m and n are Represents an integer of 1 to 6. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 each independently represents a hydrogen atom or a substituent, wherein R 4 and Ra are Each independently represents a hydrogen atom or a substituent.)
 17.前記一般式(A)で表される構造が、下記一般式(4-1)で表される構造であることを特徴とする第2項から第16項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 17. The structure represented by the general formula (A) is a structure represented by the following general formula (4-1), The organic according to any one of items 2 to 16, Electroluminescence element.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 (式中、Rp、Rq、Rr、Rs、Rt及びRuは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。xは0又は1の整数を表す。xが1の場合、-Y-若しくは-Z-は、直接結合又は-O-、-S-若しくは-N(Rg)-のいずれかで表される。Rgは置換基を表す。Rp、Rq、Rr、Rs、Rt及びRuは互いに連結して結合を形成しても良い。) (Wherein Rp, Rq, Rr, Rs, Rt and Ru each independently represent a hydrogen atom or a substituent, at least one represents EWG, at least one represents EDG, and x represents 0 or 1) Represents an integer, and when x is 1, -Y- or -Z- is represented by either a direct bond or -O-, -S- or -N (Rg)-, where Rg represents a substituent. Rp, Rq, Rr, Rs, Rt and Ru may be linked to each other to form a bond.)
 18.前記一般式(4-1)で表される構造が下記一般式(4-2)で表される構造であることを特徴とする第17項に記載の有機エレクトロルミネッセンス素子。 18. Item 18. The organic electroluminescence device according to Item 17, wherein the structure represented by the general formula (4-1) is a structure represented by the following general formula (4-2).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、Rp、Rq、Rr、Rs、Rt、Ruは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。Rp、Rq、Rr、Rs、Rt及びRuは、互いに連結して結合を形成しても良い。) (Wherein Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 , Ru 1 each independently represents a hydrogen atom or a substituent, at least one represents EWG, and at least one represents EDG. Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 may be linked to each other to form a bond.)
 19.前記一般式(A)で表される構造が、下記一般式(4-3)で表される構造であることを特徴とする第2項から第16項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 19. The organic structure according to any one of items 2 to 16, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (4-3): Electroluminescence element.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (式中、Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。-X-は、-O-、-S-、-N(Rg)-又は-C(Rh)(Ri)-のいずれかで表される。Rg、Rh及びRiは、それぞれ独立に置換基を表す。Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは互いに連結して結合を形成しても良い。) (Wherein Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 each independently represent a hydrogen atom or a substituent, at least one represents EWG, and at least one One represents EDG, -X- is represented by any of -O-, -S-, -N (Rg)-or -C (Rh) (Ri)-, wherein Rg, Rh and Ri are Each independently represents a substituent, Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 may be linked together to form a bond.)
 20.前記蛍光発光性化合物の、最低励起一重項状態と最低励起三重項状態のエネルギー差(ΔEst)が0.5eV以下であることを特徴とする第1項から第19項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 20. The energy difference (ΔEst) between the lowest excited singlet state and the lowest excited triplet state of the fluorescent compound is 0.5 eV or less, Any one of items 1 to 19 The organic electroluminescent element of description.
 21.第1項から第20項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。 21. 21. An illuminating device comprising the organic electroluminescent element according to any one of items 1 to 20.
 22.第1項から第20項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。 22. 21. A display device comprising the organic electroluminescence element according to any one of items 1 to 20.
 23.窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物であって、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴とする蛍光発光性化合物。 23. A 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron-withdrawing group, and an electron HOMO and LUMO electron densities obtained by molecular orbital calculation using B3LYP as a functional and 6-31G (d) as a functional, which is a fluorescent compound having a monocyclic or condensed ring as a donating group A fluorescent compound having a substantially separated distribution.
 本発明の上記手段により発光効率が向上した有機EL素子を提供することができる。また、当該有機EL素子を具備する照明装置及び表示装置並びに蛍光発光性化合物を提供することができる。さらに、経時による発光特性の変化が少ない安定性の優れた有機ルミネッセンス素子、当該有機EL素子を具備した照明装置及び表示装置並びに有機EL素子に有用な蛍光発光性化合物を提供することができる。 An organic EL element with improved luminous efficiency can be provided by the above-described means of the present invention. In addition, a lighting device, a display device, and a fluorescent compound including the organic EL element can be provided. Furthermore, it is possible to provide an organic luminescence element having excellent stability with little change in light emission characteristics over time, a lighting device and a display device including the organic EL element, and a fluorescent compound useful for the organic EL element.
 本発明の効果の発現機構ないし作用機構については、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is presumed as follows.
 従来知られている遅延蛍光発光性化合物に用いられている置換基は、シアノ基やスルホニル基のような置換基としての面積が小さい線状の置換基である。そのため、分子に置換させた時に、他に立体障害の大きな置換基(例えば、カルバゾール環、ジベンゾフラン環等)が存在すると分子全体の内側に遮蔽されホッピング伝導のキャリア輸送に不利であった。一方、遅延蛍光発光材料に用いられる電子吸引性基をπ電子系の広がりのある6π電子系、10π電子系、14π電子系に置き換えることで、置換基を分子の外殻に張り出すことができ、キャリア輸送の観点で有効である。 The substituent used in the conventionally known delayed fluorescence compound is a linear substituent having a small area as a substituent such as a cyano group or a sulfonyl group. For this reason, when a substituent having a large steric hindrance (for example, a carbazole ring, a dibenzofuran ring, etc.) is present when the molecule is substituted, it is shielded inside the molecule and is disadvantageous for carrier transport of hopping conduction. On the other hand, by substituting the electron-withdrawing group used in the delayed fluorescence light-emitting material with a 6π-electron system, a 10π-electron system, or a 14π-electron system with a π-electron system, the substituent can be extended to the outer shell of the molecule. It is effective from the viewpoint of carrier transportation.
 一方、シアノ基やスルホニル基のような強い電子吸引性基が分子内に置換される場合、その影響でHOMOやLUMOは深い準位となる。そのため、有機EL素子の発光層に本発明の遅延蛍光発光材料を含有する場合、ホスト化合物として適当な組み合わせがない。ヘテロ芳香族環のような弱い電子吸引性基に変更することにより、HOMOやLUMOが浅くなりホスト化合物の組み合わせの幅を大きくすることができる。 On the other hand, when a strong electron-withdrawing group such as a cyano group or a sulfonyl group is substituted in the molecule, HOMO and LUMO become deep levels due to the influence. Therefore, when the delayed fluorescent light emitting material of the present invention is contained in the light emitting layer of the organic EL element, there is no suitable combination as a host compound. By changing to a weak electron-withdrawing group such as a heteroaromatic ring, HOMO and LUMO become shallow, and the range of combinations of host compounds can be increased.
一般的な蛍光発光性化合物及びTADF化合物のエネルギーダイヤグラムを示した模式図Schematic diagram showing energy diagrams of general fluorescent compounds and TADF compounds 有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements アクティブマトリクス方式による表示装置の模式図Schematic diagram of an active matrix display device 画素の回路を示した概略図Schematic showing the pixel circuit パッシブマトリクス方式による表示装置の模式図Schematic diagram of a passive matrix display device 照明装置の概略図Schematic of lighting device 照明装置の模式図Schematic diagram of lighting device 電子輸送層の層厚違いのM plotの一例を示したグラフGraph showing an example of M plot with different electron transport layer thickness ETL層厚と抵抗値の関係の一例を示したグラフGraph showing an example of the relationship between ETL layer thickness and resistance 素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子を等価回路モデルの模式図Schematic diagram of an equivalent circuit model of an organic EL element having an element configuration of “ITO / HIL / HTL / EML / ETL / EIL / Al” 素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子の解析結果の一例Example of analysis result of organic EL element with element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al” 劣化後の有機EL素子の解析結果の一例を説明するグラフThe graph explaining an example of the analysis result of the organic EL element after deterioration HOMOとLUMOの電子密度分布を示した模式図Schematic showing electron density distribution of HOMO and LUMO
 本発明の有機EL素子は、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子であって、該蛍光発光性化合物は、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴とする。この特徴は、請求項1から請求項23までの請求項に係る発明に共通の技術的特徴である。 The organic EL device of the present invention is capable of electron-withdrawing a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton. An organic electroluminescence device comprising a fluorescent compound having a functional group and a monocyclic or condensed ring group as an electron donating group, wherein the fluorescent compound has B3LYP and a basis function as a functional As described above, the electron density distributions of HOMO and LUMO obtained by molecular orbital calculation using 6-31G (d) are substantially separated. This feature is a technical feature common to the inventions according to claims 1 to 23.
 本発明の実施態様として、本発明の効果発現の観点から、前記蛍光発光性化合物が、前記一般式(A)で表される構造を有することが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られることから好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, it is preferable that the fluorescent compound has a structure represented by the general formula (A), the carrier transport efficiency, the electron density of HOMO, LUMO. From the viewpoint of distribution, it is preferable from the viewpoint of obtaining an excellent and stable thin film with improved luminous efficiency and little change in luminous characteristics with time.
 さらに、前記電子吸引性基が6π電子系であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られることから好ましい。 Furthermore, the electron-withdrawing group is a 6π electron system. From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, it is possible to obtain an excellent and stable thin film with little improvement in emission efficiency and little change in emission characteristics over time. This is preferable.
 また、前記電子吸引性基が10π電子系であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られることから好ましい。 In addition, if the electron-withdrawing group is a 10π electron system, an excellent and stable thin film with little improvement in emission efficiency and little change in emission characteristics over time can be obtained from the viewpoint of carrier transport efficiency and electron density distribution of HOMO and LUMO. This is preferable.
 さらに、前記電子吸引性基が14π電子系であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られることから好ましい。 Further, the electron-withdrawing group being a 14π electron system can provide an excellent and stable thin film with little improvement in light emission efficiency and little change in light emission characteristics over time from the viewpoint of carrier transport efficiency and electron density distribution of HOMO and LUMO. This is preferable.
 また、前記一般式(A)で表される構造が、前記一般式(1-1)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られることから好ましい。 In addition, the structure represented by the general formula (A) is a structure represented by the general formula (1-1), from the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO. It is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
 また、前記一般式(A)で表される構造が、前記一般式(2-1)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (A) is a structure represented by the general formula (2-1). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, the light emission efficiency. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
 さらに、前記一般式(A)で表される構造が、前記一般式(3-1)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 Further, the structure represented by the general formula (A) is a structure represented by the general formula (3-1), so that the light emission efficiency from the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
 また、前記一般式(A)で表される構造が、前記一般式(3-2)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (A) is a structure represented by the general formula (3-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, the light emission efficiency. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
 また、前記一般式(3-2)で表される構造が前記一般式(3-3)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (3-2) is a structure represented by the general formula (3-3). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(A)で表される構造において、EDGがカルバゾール環基、チオフェン環基又はピロール環基で表されることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In the structure represented by the general formula (A), EDG is represented by a carbazole ring group, a thiophene ring group, or a pyrrole ring group from the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO. This is preferable because an excellent and stable thin film can be obtained in which the luminous efficiency is improved and the change in the luminescent properties with time is small.
 また、前記一般式(1-1)で表される構造が前記一般式(1-2)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (1-1) is a structure represented by the general formula (1-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(2-1)で表される構造が前記一般式(2-2)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (2-1) is a structure represented by the general formula (2-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(3-1)で表される構造が前記一般式(3-4)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (3-1) is a structure represented by the general formula (3-4). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light is emitted. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(3-2)で表される構造が前記一般式(3-5)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (3-2) is a structure represented by the general formula (3-5). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(3-3)で表される構造が前記一般式(3-6)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (3-3) is a structure represented by the general formula (3-6). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(A)で表される構造が、前記一般式(4-1)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (A) is a structure represented by the general formula (4-1). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, the light emission efficiency. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
 また、前記一般式(4-1)で表される構造が前記一般式(4-2)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (4-1) is a structure represented by the general formula (4-2). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, light emission is achieved. This is preferable because an excellent and stable thin film with improved efficiency and little change in light emission characteristics over time can be obtained.
 また、前記一般式(A)で表される構造が、前記一般式(4-3)で表される構造であることが、前記キャリア輸送効率やHOMO、LUMOの電子密度分布の観点から発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜が得られるので好ましい。 In addition, the structure represented by the general formula (A) is a structure represented by the general formula (4-3). From the viewpoint of the carrier transport efficiency and the electron density distribution of HOMO and LUMO, the light emission efficiency. This is preferable because an excellent and stable thin film with little improvement in light emission characteristics over time can be obtained.
 さらに、前記蛍光発光性化合物の、最低励起一重項状態と最低励起三重項状態のエネルギー差(ΔEst)が0.5eV以下であることが、三重項励起状態から一重項励起状態への逆項間交差が起こりうるため、イリジウム等のレアメタルを使用せずに高い発光効率を得る効果が得られるので好ましい。 Further, the energy difference (ΔEst) between the lowest excited singlet state and the lowest excited triplet state of the fluorescent light-emitting compound is 0.5 eV or less, indicating that there is an inverse term from the triplet excited state to the singlet excited state. Since crossing may occur, it is preferable because an effect of obtaining high luminous efficiency can be obtained without using a rare metal such as iridium.
 本発明の有機EL素子は照明装置に好適に具備され得る。これにより、発光効率向上の効果が得られる。 The organic EL element of the present invention can be suitably provided in a lighting device. Thereby, the effect of improving luminous efficiency is obtained.
 また、本発明の有機EL素子は表示装置に好適に具備され得る。これにより、輝度の高い鮮明な動画表示の効果が得られる。 Moreover, the organic EL element of the present invention can be suitably provided in a display device. Thereby, the effect of a clear moving image display with a high brightness | luminance is acquired.
 また、本発明の蛍光発光性化合物は、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物であって、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴としている。これにより、有機EL素子に用いた時に、発光効率が向上し、経時による発光特性の変化が少ない安定性の優れた蛍光発光性化合物が得られる。 In addition, the fluorescent compound of the present invention comprises a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton. , A fluorescent compound having an electron-withdrawing group and a monocyclic or condensed ring group as an electron-donating group, using B3LYP as a functional and 6-31G (d) as a basis function The electron density distributions of HOMO and LUMO obtained by orbit calculation are substantially separated. Thereby, when used in an organic EL device, a light emitting efficiency is improved, and a fluorescent compound having excellent stability with little change in light emission characteristics over time can be obtained.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail.
 なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 It should be noted that “˜” shown in the present invention is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 本論に入る前に、本発明の技術思想と関連する、有機ELの発光方式及び発光材料について述べる。 Before going into this discussion, the organic EL light-emitting method and light-emitting material related to the technical idea of the present invention will be described.
 <有機ELの発光方式>
 有機ELの発光方式としては三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の2通りがある。
<Light emitting method of organic EL>
There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. is there.
 有機ELのような電界で励起する場合には、三重項励起子が75%の確率で、一重項励起子が25%の確率で生成するため、リン光発光の方が蛍光発光に比べ発光効率を高くすることが可能で、低消費電力化を実現するには優れた方式である。 When excited by an electric field such as an organic EL, triplet excitons are generated with a probability of 75% and singlet excitons are generated with a probability of 25%. Therefore, phosphorescence is more efficient than fluorescence. This is an excellent method for realizing low power consumption.
 一方、蛍光発光においても、75%の確率で生成してしまう、通常では励起子のエネルギーが、無輻射失活により、熱にしかならない三重項励起子を、高密度で存在させることによって、二つの三重項励起子から一つの一重項励起子を発生させて発光効率を向上させるTTA(Triplet-Triplet Annihilation、また、Triplet-Triplet Fusion:「TTF」と呼ぶ場合もある。)機構を利用した方式が見つかっている。 On the other hand, in the case of fluorescent emission, the triplet excitons that are generated with a probability of 75% and normally become heat only due to non-radiation deactivation are present at high density. A system using a TTA (triplet-triplet annhilation, sometimes referred to as “TTF”) mechanism that generates singlet excitons from two triplet excitons to improve luminous efficiency. Has been found.
 さらに近年では安達らの発見により一重項励起状態と三重項励起状態のエネルギーギャップを小さくすることで、発光中のジュール熱及び/又は発光素子が置かれる環境温度によりエネルギー準位の低い三重項励起状態から一重項励起状態に逆項間交差がおこり、結果としてほぼ100%に近い蛍光発光を可能とする現象(熱励起型遅延蛍光、又は熱励起型遅延蛍光ともいう:「TADF」)とそれを可能にする蛍光物質が見いだされている(例えば、前述の非特許文献1参照。)。 Furthermore, in recent years, the energy gap between singlet excited state and triplet excited state is reduced by the discovery of Adachi et al., So that triplet excitation with a low energy level is caused by Joule heat during light emission and / or ambient temperature where the light emitting element is placed. A phenomenon in which reverse crossing occurs from a single state to a singlet excited state, and as a result, fluorescence emission close to 100% is possible (also referred to as thermally excited delayed fluorescence or thermally excited delayed fluorescence: “TADF”), and A fluorescent substance that makes it possible has been found (for example, see Non-Patent Document 1 described above).
 <リン光発光性材料>
 前記のように、リン光発光は発光効率的には蛍光発光よりも理論的には3倍有利であるが、三重項励起状態から一重項である基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることは困難である。
<Phosphorescent material>
As described above, phosphorescence emission is theoretically three times more advantageous than fluorescence emission in terms of light emission efficiency, but energy deactivation (= phosphorescence emission) from a triplet excited state to a singlet ground state. ) Is a forbidden transition, and similarly, an inter-term crossing from a singlet excited state to a triplet excited state is also a forbidden transition, so that its rate constant is usually small. That is, since the transition is difficult to occur, the exciton lifetime is increased from millisecond to second order, and it is difficult to obtain desired light emission.
 ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。 However, when a complex using a heavy metal such as iridium or platinum emits light, the rate constant of the forbidden transition increases by 3 digits or more due to the heavy atom effect of the central metal. % Phosphorescence quantum yield can be obtained.
 しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになるとその埋蔵量や金属自体の値段が産業上大きな問題となってくる。 However, in order to obtain such ideal light emission, it is necessary to use a rare metal called a white metal such as iridium, palladium, or platinum, which is a rare metal. The price of the metal itself is a major industrial issue.
 <蛍光発光性材料>
 蛍光発光性材料は、リン光発光性材料のような重金属錯体である必要性は特になく、炭素、酸素、窒素、水素などの一般的な元素の組合せから構成される、いわゆる有機化合物が適用でき、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用できるなど、その多様性はほぼ無限と言える。
<Fluorescent material>
There is no particular need for the fluorescent material to be a heavy metal complex like a phosphorescent material, and so-called organic compounds composed of combinations of common elements such as carbon, oxygen, nitrogen, and hydrogen can be applied. Furthermore, other non-metallic elements such as phosphorus, sulfur and silicon can be used, and complexes of typical metals such as aluminum and zinc can also be used.
 ただし、従来の蛍光発光性材料では前記のように励起子の25%しか発光に適用できないために、リン光発光のような高効率発光は望めない。 However, since only 25% of excitons can be applied to light emission in the conventional fluorescent material as described above, high efficiency light emission such as phosphorescence emission cannot be expected.
 <遅延蛍光発光性材料>
 <励起三重項-三重項消滅(TTA)遅延蛍光発光性材料>
 蛍光発光性材料の問題点を解決すべく登場したのが遅延蛍光発光を利用した発光方式である。三重項励起子同士の衝突を起源とするTTA方式は、下記のような一般式で記述できる。すなわち、従来、励起子のエネルギーが、無輻射失活により、熱にしか変換されなかった三重項励起子の一部が、発光に寄与しうる三重項励起子に逆項間交差できるメリットがあり、実際の有機EL素子においても従来の蛍光発光素子の約2倍の外部取りだし量子効率を得ることができている。
<Delayed fluorescent material>
<Excited triplet-triplet annihilation (TTA) delayed fluorescent material>
In order to solve the problems of fluorescent materials, a light emitting method using delayed fluorescent light emission has appeared. The TTA method that originates from collisions between triplet excitons can be described by the following general formula. That is, there is a merit that a part of triplet excitons, in which the energy of excitons has been converted only to heat due to non-radiation deactivation, can cross back with the triplet excitons that can contribute to light emission. Even in an actual organic EL device, it is possible to obtain an external extraction quantum efficiency that is about twice that of a conventional fluorescent light emitting device.
 一般式:T + T → S + S
(式中、T は三重項励起子、Sは一重項励起子、S は基底状態分子 を表す)
 しかしながら、上式からもわかるように、二つの三重項励起子から発光に利用できる一重項励起子は一つしか生成しないため、この方式で100%の内部量子効率を得ることは原理上できない。
General formula: T * + T * → S * + S
(Wherein T * is a triplet exciton, S * is a singlet exciton, and S is a ground state molecule)
However, as can be seen from the above equation, since only one singlet exciton that can be used for light emission is generated from two triplet excitons, it is impossible in principle to obtain 100% internal quantum efficiency.
 <熱活性型遅延蛍光(TADF)材料>
 もう一つの高効率蛍光発光であるTADF方式は、TTAの問題点を解決できる方式である。
<Thermal activation type delayed fluorescence (TADF) material>
The TADF method, which is another highly efficient fluorescent emission, is a method that can solve the problems of TTA.
 蛍光発光性材料は前記のごとく無限に分子設計できる利点を持っている。すなわち、分子設計された化合物の中で、特異的に三重項励起状態と一重項励起状態のエネルギー準位差(以降、ΔEstと記載する。)が極めて近接する化合物が存在する(図1参照)。 Fluorescent materials have the advantage of infinite molecular design as described above. That is, among the molecularly designed compounds, there is a compound in which the energy level difference between the triplet excited state and the singlet excited state (hereinafter referred to as ΔEst) is extremely close (see FIG. 1). .
 このような化合物は、分子内に重原子を持っていないにもかかわらず、ΔEstが小さいために通常では起こりえない三重項励起状態から一重項励起状態への逆項間交差が起こる。さらに、一重項励起状態から基底状態への失活(=蛍光発光)の速度定数が極めて大きいことから、三重項励起子はそれ自体が基底状態に熱的に失活(無輻射失活)するよりも、一重項励起状態経由で蛍光を発しながら基底状態に戻る方が速度論的に有利である。そのため、TADFでは理想的には100%の蛍光発光が可能となる。 Such a compound has a reverse intersystem crossing from a triplet excited state to a singlet excited state, which cannot normally occur because ΔEst is small, even though it does not have a heavy atom in the molecule. Furthermore, since the rate constant of deactivation from singlet excited state to ground state (= fluorescence emission) is extremely large, triplet excitons themselves are thermally deactivated to ground state (non-radiative deactivation). It is more kinetically advantageous to return to the ground state while emitting fluorescence via the singlet excited state. Therefore, TADF can ideally emit 100% fluorescence.
 <ΔEstに関する分子設計思想>
 上記ΔEstを小さくするための分子設計について説明する。
<Molecular design concept for ΔEst>
The molecular design for reducing the ΔEst will be described.
 ΔEstを小さくするためには、原理上分子内の最高被占軌道(Highest Occupied Molecular Orbital;HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の空間的な重なりを小さくすることが最も効果的である。 In order to reduce ΔEst, in principle, it is most effective to reduce the spatial overlap between the highest occupied orbital (Highest Occupied Molecular Orbital; HOMO) and the lowest empty orbital (Lowest Unoccupied Molecular Orbital: LUMO) in the molecule. It is.
 一般に分子の電子軌道において、HOMOは電子供与性部位に、LUMOは電子吸引性部位に分布することが知られており、分子内に電子供与性と電子吸引性の骨格を導入することによって、HOMOとLUMOが存在する位置を遠ざけることが可能である。 In general, it is known that HOMO is distributed in electron donating sites and LUMO is distributed in electron withdrawing sites in the electron orbit of the molecule. By introducing an electron donating and electron withdrawing skeleton into the molecule, HOMO is distributed. It is possible to move away the position where LUMO exists.
 例えば、前述の非特許文献2においては、シアノ基やスルホニル基、トリアジンなどの電子吸引性の骨格と、カルバゾールやジフェニルアミノ基等の電子供与性の骨格とを導入することで、LUMOとHOMOとをそれぞれ局在化させている。 For example, in Non-Patent Document 2 described above, by introducing an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or triazine and an electron-donating skeleton such as a carbazole or diphenylamino group, LUMO and HOMO Are localized.
 また、化合物の基底状態と三重項励起状態との分子構造変化を小さくすることも効果的である。構造変化を小さくするための方法としては、例えば、化合物を剛直にすることなどが効果的である。ここで述べる剛直とは、例えば分子内の環と環との結合における自由回転を抑制したり、またπ共役面の大きい縮合環を導入するなど、分子内において自由に動ける部位が少ないことを意味する。特に、発光に関与する部位を剛直にすることによって、励起状態における構造変化を小さくすることが可能である。 It is also effective to reduce the molecular structure change between the ground state and triplet excited state of the compound. As a method for reducing the structural change, for example, making the compound rigid is effective. Stiffness mentioned here means that there are few sites that can move freely in the molecule, for example, by suppressing free rotation in the bond between rings in the molecule or by introducing a condensed ring with a large π conjugate plane. To do. In particular, it is possible to reduce the structural change in the excited state by making the portion involved in light emission rigid.
 <TADF材料が抱える一般的な問題>
 TADF材料は、その発光機構及び分子構造の面から種々の問題を抱えている。
<General problems with TADF materials>
TADF materials have various problems in terms of their light emission mechanism and molecular structure.
 以下に、一般的にTADF材料が抱える課題の一部について記載する。 The following describes some of the issues that TADF materials generally have.
 TADF材料においては、ΔEstを小さくするためにHOMOとLUMOの存在する部位をできるだけ離すことが必要であるが、このため、分子の電子状態はHOMO部位とLUMO部位が分離したドナー/アクセプター型の分子内CT(分子内電荷移動状態)に近い状態となってしまう。 In the TADF material, it is necessary to separate the HOMO and LUMO sites as much as possible in order to reduce ΔEst. Therefore, the electronic state of the molecule is a donor / acceptor type molecule in which the HOMO and LUMO sites are separated. It becomes a state close to the inner CT (intramolecular charge transfer state).
 このような分子は、複数存在すると一方の分子のドナー部分と他方の分子のアクセプター部分とを近接させると安定化が図られる。そのような安定化状態は2分子間での形成に限らず、3分子間若しくは5分子間であったりと、複数の分子間でも形成が可能であり、結果、広い分布を持った種々の安定化状態が存在することになり、吸収スペクトル及び発光スペクトルの形状はブロードとなる。また、2分子を超える多分子集合体を形成しない場合であっても、二つの分子の相互作用する方向や角度などの違いによって様々な存在状態を取り得るため、基本的にはやはり吸収スペクトル及び発光スペクトルの形状はブロードになる。 When there are a plurality of such molecules, stabilization is achieved by bringing the donor part of one molecule and the acceptor part of the other molecule close to each other. Such a stabilization state is not limited to the formation between two molecules, but can also be formed between a plurality of molecules, such as between three or five molecules, resulting in various stable distributions with a wide distribution. Therefore, the shape of the absorption spectrum and the emission spectrum is broad. In addition, even when a multimolecular assembly exceeding two molecules is not formed, various existence states can be taken depending on the direction and angle of interaction between the two molecules. The shape of the emission spectrum becomes broad.
 発光スペクトルがブロードになることは二つの大きな問題を発生する。 The broad emission spectrum causes two major problems.
 一つは、発光色の色純度が低くなってしまう問題である。照明用途に適用する場合にはそれほど大きな問題にはならないが、電子ディスプレイ用途に用いる場合には色再現域が小さくなり、また、純色の色再現性が低くなることから、実際に商品として適用するのは困難になる。 One problem is that the color purity of the emitted color is lowered. This is not a big problem when applied to lighting applications, but when used for electronic displays, the color gamut is small and the color reproducibility of pure colors is low. It becomes difficult.
 もう一つの問題は、発光スペクトルの短波長側の立ち上がり波長(「蛍光ゼロ-ゼロバンド」と呼ぶ)が短波長化、すなわち高S化(励起一重項エネルギーの高エネルギー化)してしまうことである。 Another problem is that the rising wavelength (referred to as “fluorescence zero-zero band”) on the short wavelength side of the emission spectrum becomes shorter, that is, higher S 1 (higher excitation singlet energy). It is.
 当然、蛍光ゼロ-ゼロバンドが短波長化すると、Sよりもエネルギーの低いTに由来するリン光ゼロ-ゼロバンドも短波長化(高T化)してしまう。そのため、ホスト化合物に用いる化合物はドーパントからの逆エネルギー移動を起こさないようにするために、高S化かつ高T化する必要が生じてくる。 Naturally, when the fluorescence zero-zero band is shortened, the phosphorescence zero-zero band derived from T 1 having lower energy than S 1 is also shortened (higher T 1 ). Therefore, the compound used in the host compound in order not to cause reverse energy transfer from the dopant, arises the need to 1 reduction and high T 1 of high S.
 これは非常に大きな課題である。基本的に有機化合物からなるホスト化合物は、有機EL素子中で、カチオンラジカル状態、アニオンラジカル状態及び励起状態という、複数の活性かつ不安定な化学種の状態を取るが、それら化学種は分子内のπ共役系を拡大することで比較的安定に存在させることができる。しかしながら、高S化かつ高T化を達成するには、分子内のπ共役系を縮小するか若しくは断ち切ることが必要となり、安定性と両立させることが困難になって、結果的には発光素子の寿命を短くしてしまうことになる。 This is a very big challenge. A host compound consisting essentially of an organic compound takes a plurality of active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device. By expanding the π-conjugated system, it can exist relatively stably. However, in order to achieve high S 1 and high T 1 , it is necessary to reduce or cut off the π-conjugated system in the molecule, which makes it difficult to achieve both stability and as a result. The life of the light emitting element is shortened.
 また、重金属を含まないTADF発光材料においては、三重項励起状態から基底状態に失活する遷移は禁制遷移であるため、三重項励起状態での存在時間(励起子寿命)は数百μ秒からミリ秒オーダーと極めて長い。そのため、仮にホスト化合物のTエネルギーが、発光材料のそれよりも高いエネルギーレベルであったとしても、その存在時間の長さから発光材料の三重項励起状態からホスト化合物へと逆エネルギー移動を起こす確率が増大してしまう。その結果、本来意図するTADF発光材料の三重項励起状態から一重項励起状態への逆項間交差が十分に起こらずに、ホスト化合物への好ましくない逆エネルギー移動が主流となって、十分な発光効率が得られないという不具合が生じてしまう。 In addition, in the TADF light emitting material that does not contain heavy metals, the transition that is deactivated from the triplet excited state to the ground state is a forbidden transition, so the existence time (exciton lifetime) in the triplet excited state is from several hundred microseconds. It is extremely long on the order of milliseconds. Therefore, even if the T 1 energy of the host compound is higher than that of the light emitting material, reverse energy transfer occurs from the triplet excited state of the light emitting material to the host compound due to the length of the existence time. Probability increases. As a result, the reverse reverse energy transfer from the triplet excited state to the singlet excited state of the originally intended TADF light emitting material does not occur sufficiently, and unfavorable reverse energy transfer to the host compound becomes the mainstream, resulting in sufficient light emission. The malfunction that efficiency cannot be obtained will arise.
 上記のような問題を解決するためには、TADF材料の発光スペクトル形状をシャープ化し、発光極大波長と発光スペクトルの立ち上がり波長の差を小さくすることが必要となる。そのためには、基本的には一重項励起状態及び三重項励起状態の分子構造の変化を小さくすることにより達成することが可能である。 In order to solve the above problems, it is necessary to sharpen the emission spectrum shape of the TADF material and reduce the difference between the emission maximum wavelength and the rising wavelength of the emission spectrum. This can be basically achieved by reducing the change in the molecular structure of the singlet excited state and the triplet excited state.
 また、ホスト化合物への逆エネルギー移動を抑制するためには、TADF発光材料の三重項励起状態の存在時間(励起子寿命)を短くすることが効果的である。それを実現するには、基底状態と三重項励起状態との分子構造変化を小さくすること、及び禁制遷移をほどくのに好適な置換基や元素を導入することなどの対策を講じることで、問題点を解決することが可能である。 In order to suppress reverse energy transfer to the host compound, it is effective to shorten the existence time (exciton lifetime) of the triplet excited state of the TADF light-emitting material. To achieve this, it is necessary to take measures such as reducing the molecular structure change between the ground state and the triplet excited state and introducing suitable substituents and elements to undo the forbidden transition. It is possible to solve the point.
 本発明は、上記のように励起状態の構造変化を抑えた発光材料、及び三重項励起状態の存在時間が短い発光材料も設計思想として含むものである。 The present invention includes the light emitting material in which the structural change in the excited state is suppressed as described above and the light emitting material in which the triplet excited state exists for a short time.
 ≪本発明の蛍光発光性化合物≫
 本発明の蛍光発光性化合物は、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物であって、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴としている。また、本発明の蛍光発光性化合物は、遅延蛍光発光性化合物であることが好ましい。本発明における電子密度分布は、分子を構造最適化した際に得られるものである。
<< Fluorescent compound of the present invention >>
The fluorescent compound of the present invention comprises a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron. Molecular orbital calculation using a fluorescent compound having an attractive group and a monocyclic or condensed ring as an electron-donating group and using B3LYP as a functional and 6-31G (d) as a basis function The electron density distributions of HOMO and LUMO obtained by the above are substantially separated. The fluorescent compound of the present invention is preferably a delayed fluorescent compound. The electron density distribution in the present invention is obtained when the structure of a molecule is optimized.
 本発明における蛍光発光性化合物の電子吸引性基は、6π電子系、10π電子系又は14π電子系であることが好ましい。 The electron-withdrawing group of the fluorescent compound in the present invention is preferably a 6π electron system, a 10π electron system, or a 14π electron system.
 6π電子系の電子吸引性基は、窒素原子を含む5員又は6員の複素環基である。例えば、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環等が挙げられる。好ましくは、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環が挙げられる。 The 6π electron-withdrawing group is a 5- or 6-membered heterocyclic group containing a nitrogen atom. Examples thereof include a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, a pyrazole ring, and a furazane ring. Preferable examples include a pyridine ring, a pyrimidine ring, a pyridazine ring, and a pyrazine ring.
 10π電子系の電子吸引性基は、窒素原子を含む5員又は6員からなる縮合環化合物である。 The electron-withdrawing group of 10π electron system is a condensed ring compound consisting of 5 or 6 members containing a nitrogen atom.
 例えば、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、イソインドール環、ナフチリジン環、フタラジン環等が挙げられる。好ましくは、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、が挙げられる。 Examples include indole ring, indazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, isoindole ring, naphthyridine ring, phthalazine ring and the like. Preferably, a benzothiazole ring, a benzoxazole ring, and a benzimidazole ring are mentioned.
 14π電子系の電子吸引性基は、窒素原子を含む5員又は6員からなる縮合環化合物である。 The electron-withdrawing group of 14π electron system is a 5- or 6-membered condensed ring compound containing a nitrogen atom.
 例えば、カルボリン環、ジアザカルバゾール環(前記カルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、アザジベンゾフラン環、アザジベンゾチオフェン環等が挙げられる。好ましくは、カルボリン環、ジアザカルバゾール環、アザジベンゾフラン環、アザジベンゾチオフェン環が挙げられる。 For example, a carboline ring, a diazacarbazole ring (in which one of the carbon atoms constituting the carboline ring is replaced by a nitrogen atom), an acridine ring, a phenanthridine ring, a phenanthroline ring, a phenazine ring, an azadibenzofuran ring, an aza A dibenzothiophene ring etc. are mentioned. Preferably, a carboline ring, a diazacarbazole ring, an azadibenzofuran ring, and an azadibenzothiophene ring are mentioned.
 [一般式(A)で表される化合物]
 本発明の窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物は、下記一般式(A)で表される化合物であることが好ましい。
[Compound represented by formula (A)]
The 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms of the present invention or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron-withdrawing group The fluorescent compound having a monocyclic or condensed ring group as the electron donating group is preferably a compound represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 一般式(A)において、Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。Arで表される連結部位としては、特に一般式(A)の化合物の機能を阻害しない範囲であればなんであっても良く、好ましくは芳香族炭化水素環、芳香族複素環又はこれらの組み合わせである。 In the general formula (A), Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. The linking site represented by Ar 0 may be anything as long as it does not inhibit the function of the compound of the general formula (A), and is preferably an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a combination thereof. It is.
 一般式(A)において、EWGは、窒素原子を1個又は若しくは2個含む5員若しくは6員芳香族複素環、又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環である電子吸引性基を表す。 In the general formula (A), EWG represents a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms, or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton. Represents an electron-withdrawing group.
 電子吸引性基としては、前記6π電子系の電子吸引性基、10π電子系の電子吸引性基及び14π電子系の電子吸引性基で上げたものが挙げられる。 Examples of the electron-withdrawing group include those raised with the 6π-electron withdrawing group, the 10π-electron withdrawing group, and the 14π-electron withdrawing group.
 一般式(A)において、EDGは、電子供与性基である単環又は縮環の基を表す。例えば、カルバゾール環、チオフェン環、ピロール環、メシチル基、キシリル基等が挙げられる。 In the general formula (A), EDG represents a monocyclic or condensed ring group which is an electron donating group. For example, carbazole ring, thiophene ring, pyrrole ring, mesityl group, xylyl group and the like can be mentioned.
 一般式(A)において、m及びnは、1~6の整数を表す。 In the general formula (A), m and n represent an integer of 1 to 6.
 [一般式(1-1)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(1-1)で表される構造であることが好ましい。
[Compound represented by formula (1-1)]
The structure represented by the general formula (A) is preferably a structure represented by the following general formula (1-1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 一般式(1-1)において、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。 In the general formula (1-1), X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but X 11 , X 12 , X 13 , X 14 and X 15 One or two of them represent a nitrogen atom.
 一般式(1-1)において、Raは、水素原子又は置換基を表す。一般式(1-1)において、Raが置換基を表す場合、その置換基としてはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、シアノ基が挙げられる。 In the general formula (1-1), Ra represents a hydrogen atom or a substituent. In the general formula (1-1), when Ra represents a substituent, examples of the substituent include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group , Naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, Denyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1, 2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, A quinolyl group, a benzofuryl group, a dibenzofuryl group, a benzothienyl group, a dibenzothienyl group, an indolyl group, a carbazolyl group, a carbolinyl group, a diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is a nitrogen atom) Quinoxalinyl group) Pyridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyl) Oxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (Eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group ( For example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, Phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group) , Dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, Til, ethylcarbonyl, propylcarbonyl, pentylcarbonyl, cyclohexylcarbonyl, octylcarbonyl, 2-ethylhexylcarbonyl, dodecylcarbonyl, phenylcarbonyl, naphthylcarbonyl, pyridylcarbonyl, etc.), acyloxy groups ( For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonyl) Amino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylca Bonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexyl) Aminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido) Group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, Diylaminoureido group, etc.), sulfinyl groups (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group) Group), alkylsulfonyl group (eg methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group etc.), arylsulfonyl group or heteroarylsulfonyl group (eg phenyl Sulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, diphenyl) Mino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom) , Fluorinated hydrocarbon group (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, Triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like. Preferably, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkoxy group, an amino group, and a cyano group are exemplified.
 また、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は、複数が互いに結合して環を形成していてもよい。 Further, these substituents may be further substituted with the above substituents. Further, these substituents may be bonded together to form a ring.
 Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。 Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EDG represents a monocyclic or condensed ring group which is an electron donating group.
 一般式(1-1)において、m及びnは、1~6の整数を表す。 In the general formula (1-1), m and n represent an integer of 1 to 6.
 [一般式(2-1)で表される化合物]
 また、前記一般式(A)で表される構造が、下記一般式(2-1)で表される構造であることが好ましい。
[Compound represented by formula (2-1)]
The structure represented by the general formula (A) is preferably a structure represented by the following general formula (2-1).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 一般式(2-1)において、X21は、NRb、C(Rc)(Rd)、酸素原子又は硫黄原子を表す。X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子又はCRaを表す。 In the general formula (2-1), X 21 represents NRb, C (Rc) (Rd), an oxygen atom or a sulfur atom. X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom or CRa.
 X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。 One or two of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represent a nitrogen atom. Ra, Rb, Rc and Rd each independently represent a hydrogen atom or a substituent.
 Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。 Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EDG represents a monocyclic or condensed ring group which is an electron donating group. m and n each represents an integer of 1 to 6.
 一般式(2-1)において、Ra、Rb、Rc及びRdが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (2-1), when Ra, Rb, Rc and Rd represent a substituent, the substituent has the same meaning as Ra in the general formula (1-1).
 [一般式(3-1)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(3-1)で表される構造であることが好ましい。
[Compound represented by formula (3-1)]
The structure represented by the general formula (A) is preferably a structure represented by the following general formula (3-1).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 一般式(3-1)におけるX31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。 In the general formula (3-1), X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom. Ra represents a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EDG represents a monocyclic or condensed ring group which is an electron donating group. m and n represent an integer of 1 to 6.
 一般式(3-1)において、Raが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (3-1), when Ra represents a substituent, the substituent has the same meaning as Ra in the general formula (1-1).
 [一般式(3-2)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(3-2)で表される構造であることが好ましい。
[Compound represented by formula (3-2)]
The structure represented by the general formula (A) is preferably a structure represented by the following general formula (3-2).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 一般式(3-2)において、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R及びRaは水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。 In the general formula (3-2), X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom. R 1 and Ra represent a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EDG represents a monocyclic or condensed ring group which is an electron donating group. m and n each represents an integer of 1 to 6.
 一般式(3-2)において、R及びRaが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。Arの置換位置としては、X35若しくはX37が好ましい。 In the general formula (3-2), when R 1 and Ra represent a substituent, the substituent has the same meaning as Ra in the general formula (1-1). As the substitution position of Ar 0 , X 35 or X 37 is preferable.
 [一般式(3-3)で表される化合物]
 前記一般式(3-2)が下記一般式(3-3)で表されることが好ましい。
[Compound represented by formula (3-3)]
The general formula (3-2) is preferably represented by the following general formula (3-3).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 一般式(3-3)において、X31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。R及びRaは水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。 In the general formula (3-3), X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa. One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represent a nitrogen atom. R 2 and Ra represent a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EDG represents a monocyclic or condensed ring group which is an electron donating group. m and n each represents an integer of 1 to 6.
 一般式(3-3)において、R及びRaが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (3-3), when R 2 and Ra represent a substituent, the substituent has the same meaning as Ra in the general formula (1-1).
 [一般式(1-2)で表される化合物]
 前記一般式(1-1)で表される構造が下記一般式(1-2)で表される構造であることが好ましい。
[Compound represented by formula (1-2)]
The structure represented by the general formula (1-1) is preferably a structure represented by the following general formula (1-2).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 一般式(1-2)において、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。Raは水素原子又は置換基を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。 In the general formula (1-2), X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but X 11 , X 12 , X 13 , X 14 and X 15 One or two of them represent a nitrogen atom. Ra represents a hydrogen atom or a substituent. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. m and n represent an integer of 1 to 6.
 一般式(1-2)において、R41、R42、R43、R44、R45、R46,R47、R48及びRaが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (1-2), when R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 and Ra represent a substituent, the substituent may be represented by the general formula (1 It is synonymous with Ra in -1).
 [一般式(2-2)で表される化合物]
 前記一般式(2-1)で表される構造が下記一般式(2-2)で表される構造であることが好ましい。
[Compound represented by formula (2-2)]
The structure represented by the general formula (2-1) is preferably a structure represented by the following general formula (2-2).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(2-2)において、X21、X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子、NRb、酸素原子、硫黄原子又はCRaを表す。X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基である。Ra及びRbは、水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。 In the general formula (2-2), X 21 , X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom, NRb, an oxygen atom, a sulfur atom or CRa. One or two of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represent a nitrogen atom. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently a hydrogen atom or a substituent. Ra and Rb represent a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. m and n represent an integer of 1 to 6.
 一般式(2-2)において、Ra、Rb、R41、R42、R43、R44、R45、R46、R47、R48及びRbが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (2-2), when Ra, Rb, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 and Rb represent a substituent, It is synonymous with Ra in the general formula (1-1).
 [一般式(3-4)で表される化合物]
 前記一般式(3-1)で表される構造が下記一般式(3-4)で表される構造であることが好ましい。
[Compound represented by formula (3-4)]
The structure represented by the general formula (3-1) is preferably a structure represented by the following general formula (3-4).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 一般式(3-4)におけるX31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。 X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 in the general formula (3-4) each independently represent a nitrogen atom or CRa. One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent. Ra represents a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. m and n represent an integer of 1 to 6.
 一般式(3-4)において、Ra、R41、R42、R43、R44、R45、R46、R47及びR48が置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (3-4), when Ra, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 represent a substituent, the substituent may be represented by the general formula (1 It is synonymous with Ra in -1).
 [一般式(3-5)で表される化合物]
 前記一般式(3-2)で表される構造が下記一般式(3-5)で表される構造であることが好ましい。
[Compound represented by formula (3-5)]
The structure represented by the general formula (3-2) is preferably a structure represented by the following general formula (3-5).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一般式(3-5)において、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33及びX34のうち1個又は2個は窒素原子を表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnはm1~6の整数を表す。 In the general formula (3-5), X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. One or two of X 31 , X 32 , X 33 and X 34 represent a nitrogen atom. One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent. R 3 and Ra represent a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. m and n each represents an integer of m1-6.
 一般式(3-5)において、R、Ra、R41、R42、R43、R44、R45、R46、R47及びR48が置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (3-5), when R 3 , Ra, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 represent a substituent, It is synonymous with Ra in formula (1-1).
 [一般式(3-6)で表される化合物]
 前記一般式(3-3)で表される構造が下記一般式(3-6)で表される構造であることが好ましい。
[Compound represented by formula (3-6)]
The structure represented by the general formula (3-3) is preferably a structure represented by the following general formula (3-6).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 一般式(3-6)で表されるX31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。X35、X36及びX38のうち1個又は2個は窒素原子を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、それぞれ独立に水素原子又は置換基を表す。 X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represented by the general formula (3-6) each independently represent a nitrogen atom or CRa. One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represent a nitrogen atom. One or two of X 35 , X 36 and X 38 represent a nitrogen atom. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. m and n represent an integer of 1 to 6. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent. R 4 and Ra each independently represent a hydrogen atom or a substituent.
 一般式(3-6)において、R、Ra、R41、R42、R43、R44、R45、R46、R47及びR48が置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (3-6), when R 4 , Ra, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 represent a substituent, It is synonymous with Ra in formula (1-1).
 [一般式(4-1)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(4-1)で表される構造であることが好ましい。
[Compound represented by formula (4-1)]
The structure represented by the general formula (A) is preferably a structure represented by the following general formula (4-1).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 一般式(4-1)において、Rp、Rq、Rr、Rs、Rt及びRuは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。xは0又は1の整数を表す。xが1の場合、-Y-及び-Z-は、それぞれ独立に直接結合又は-O-、-S-若しくは-N(Rg)-のいずれかで表される。Rgは置換基を表す。Rp、Rq、Rr、Rs、Rt及びRuは互いに連結して結合を形成しても良い。 In the general formula (4-1), Rp, Rq, Rr, Rs, Rt and Ru each independently represent a hydrogen atom or a substituent, at least one represents EWG, and at least one represents EDG. x represents an integer of 0 or 1. When x is 1, —Y— and —Z— are each independently represented by a direct bond or —O—, —S— or —N (Rg) —. Rg represents a substituent. Rp, Rq, Rr, Rs, Rt and Ru may be connected to each other to form a bond.
 一般式(4-1)において、Rp、Rq、Rr、Rs、Rt、Ru及びRgが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (4-1), when Rp, Rq, Rr, Rs, Rt, Ru and Rg represent a substituent, the substituent has the same meaning as Ra in the general formula (1-1).
 [一般式(4-2)で表される化合物]
 前記一般式(4-1)で表される構造が下記一般式(4-2)で表される構造であることが好ましい。
[Compound represented by formula (4-2)]
The structure represented by the general formula (4-1) is preferably a structure represented by the following general formula (4-2).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(4-2)で表されるRp、Rq、Rr、Rs、Rt及びRuは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。Rp、Rq、Rr、Rs、Rt及びRuは互いに連結して結合を形成しても良い。 Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 represented by the general formula (4-2) each independently represent a hydrogen atom or a substituent, and at least one represents EWG, One represents EDG. Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 may be connected to each other to form a bond.
 一般式(4-2)において、Rp、Rq、Rr、Rs、Rt及びRuが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (4-2), when Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 represent a substituent, the substituent has the same meaning as Ra in the general formula (1-1). is there.
 [一般式(4-3)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(4-3)で表される構造であることが好ましい。
[Compound represented by formula (4-3)]
The structure represented by the general formula (A) is preferably a structure represented by the following general formula (4-3).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 一般式(4-3)で表される、Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。-X-は、-O-、-S-、-N(Rg)-又は-C(Rh)(Ri)-のいずれかで表される。Rg、Rh及びRiは置換基を表す。Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは互いに連結して結合を形成しても良い。 Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 represented by the general formula (4-3) each independently represent a hydrogen atom or a substituent, and at least one One represents EWG and at least one represents EDG. —X— is represented by any of —O—, —S—, —N (Rg) — or —C (Rh) (Ri) —. Rg, Rh and Ri represent a substituent. Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 may be linked together to form a bond.
 一般式(4-3)において、Rg、Rh、Ri、Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。 In the general formula (4-3), when Rg, Rh, Ri, Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 represent a substituent, It is synonymous with Ra in the general formula (1-1).
 本発明の一般式として、一般式(3-2)、(3-3)、(3-5)及び(3-6)において、N-R、N-R、N-R、N-Rが酸素原子、若しくは、硫黄原子で表される場合も好ましい。 In general formulas (3-2), (3-3), (3-5) and (3-6), the general formulas of the present invention are NR 1 , N—R 2 , N—R 3 , N It is also preferable when —R 4 is represented by an oxygen atom or a sulfur atom.
 以下に、本発明の蛍光発光性化合物の具体例を挙げるが、これらに限られるものではない。具体的な化合物例は下記に挙げられる。 Specific examples of the fluorescent compound of the present invention will be given below, but are not limited thereto. Specific compound examples are listed below.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 <合成方法>
 上記蛍光発光性化合物は、例えば以下の文献、又は、その文献に記載の参照文献に記載の方法を参照することにより合成することができる。
・S. Riedmuller and Boris J. Nachtsheim.,Beilstein J.Org.Chem.2013,9,1202-1209
・Wako Organic Square No.27(2009)
・N.M.Moazzam et al.,Appl.Organomet.Chem.,2012,26,7,330-334
・H.Kawai,et al.,Chemical Communication,2008,12,1464-1466
・S.Oi,et al.,Tetrahedron,2008,64,26,6051-6059
・S.Oi,et al.,Organic Letters,2008,10,9,1832-1826
・H.Uoyama,et al.,Nature,2012,492,234-238(前述の非特許文献2)
<Synthesis method>
The said fluorescent compound can be synthesize | combined, for example by referring to the following literature or the method as described in the reference literature described in the literature.
・ S. Riedmuller and Boris J. et al. Nachtsheim. , Beilstein J .; Org. Chem. 2013, 9, 1202-1209
・ Wako Organic Square No. 27 (2009)
・ N. M.M. Moazzam et al. , Appl. Organomet. Chem. 2012, 26, 7, 330-334
・ H. Kawai, et al. , Chemical Communication, 2008, 12, 1464-1466.
・ S. Oi, et al. , Tetrahedron, 2008, 64, 26, 6051-6059
・ S. Oi, et al. , Organic Letters, 2008, 10, 9, 1832-1826.
・ H. Uoyama, et al. , Nature, 2012, 492, 234-238 (non-patent document 2 mentioned above).
 <合成例>
 本発明の蛍光発光性化合物の合成例を以下に示す。
 (合成例1)
Figure JPOXMLDOC01-appb-C000061
<Synthesis example>
Synthesis examples of the fluorescent compound of the present invention are shown below.
(Synthesis Example 1)
Figure JPOXMLDOC01-appb-C000061
 60%水素化ナトリウム300mgを、窒素置換したフラスコに入れ、N,N-ジメチルホルムアミドを加えて撹拌した。この混合物へ9H-カルバゾール1gを加え、窒素気流下、室温で30分撹拌した。撹拌後、この混合物へ化合物1を300mgを加え、この混合物を窒素雰囲気下、120℃で48時間加熱撹拌した。その後、この混合物へ、水を加えて撹拌後、N,N-ジメチルホルムアミドを除去した。その後、カラムクロマトグラフィーで精製した後、蛍光発光性化合物(2-3)を80mg得た。
 NMRスペクトル及びマススペクトルにより蛍光発光性化合物(2-3)であることを確認した。
300 mg of 60% sodium hydride was placed in a flask purged with nitrogen, and N, N-dimethylformamide was added and stirred. To this mixture was added 1 g of 9H-carbazole, and the mixture was stirred at room temperature for 30 minutes under a nitrogen stream. After stirring, 300 mg of Compound 1 was added to the mixture, and the mixture was heated and stirred at 120 ° C. for 48 hours under a nitrogen atmosphere. Thereafter, water was added to the mixture and stirred, and then N, N-dimethylformamide was removed. Thereafter, after purification by column chromatography, 80 mg of a fluorescent compound (2-3) was obtained.
It was confirmed that the compound was a fluorescent compound (2-3) by NMR spectrum and mass spectrum.
 (合成例2)
Figure JPOXMLDOC01-appb-C000062
(Synthesis Example 2)
Figure JPOXMLDOC01-appb-C000062
 化合物2を3gと2,2′-ジブロモビフェニル10gをビスジベンジリデンアセトンパラジウム錯体とトリ-tert-ブチルホスフィンを触媒として、トルエン溶媒中で、塩基としてナトリウム-tert-ブトキシドを使用して7時間加熱撹拌した。反応終了後、酢酸エチルとテトラヒドロフランと水を加えて有機層を抽出した。硫酸マグネシウムで乾燥後、溶媒を減圧留去してからカラムクロマトグラフィーで精製した後、酢酸エチルで再結晶し、蛍光発光性化合物(3-8)を1.5g得た。
 NMRスペクトル及びマススペクトルにより蛍光発光性化合物(3-8)であることを確認した。
 以下に、本発明の蛍光発光性化合物、特にΔEstの小さい材料に関する種々の測定方法について記載する。
3 g of compound 2 and 10 g of 2,2′-dibromobiphenyl were heated for 7 hours using bisdibenzylideneacetone palladium complex and tri-tert-butylphosphine as catalysts in sodium-tert-butoxide as a base. Stir. After completion of the reaction, ethyl acetate, tetrahydrofuran and water were added to extract the organic layer. After drying over magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography and recrystallized from ethyl acetate to obtain 1.5 g of a fluorescent compound (3-8).
It was confirmed that the compound was a fluorescent compound (3-8) by NMR spectrum and mass spectrum.
Hereinafter, various measurement methods relating to the fluorescent compound of the present invention, in particular, a material having a small ΔEst will be described.
 [電子密度分布]
 本発明の蛍光発光性化合物は、ΔEstを小さくするという観点から、分子内においてHOMOとLUMOの電子密度分布が実質的に分離していることが好ましい。これらHOMO及びLUMOの電子密度分布状態については、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。
[Electron density distribution]
In the fluorescent compound of the present invention, from the viewpoint of reducing ΔEst, it is preferable that the electron density distributions of HOMO and LUMO are substantially separated in the molecule. The electron density distribution state of these HOMO and LUMO can be obtained from the electron density distribution when the structure is optimized obtained by molecular orbital calculation.
 本発明における蛍光発光性化合物の分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。
In the present invention, the structure optimization and the calculation of the electron density distribution by molecular orbital calculation of the fluorescent compound are carried out by using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function. There is no particular limitation on the software, and any of them can be similarly calculated.
In the present invention, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software.
 また、「HOMOとLUMOの電子密度分布が実質的に分離している」とは、上記分子計算により算出されたHOMO軌道分布及びLUMO軌道分布の中心部位が離れており、より好ましくはHOMO軌道の電子密度分布とLUMO軌道の電子密度分布がほぼ重なっていないことを意味する。 In addition, “the electron density distribution of HOMO and LUMO is substantially separated” means that the central part of the HOMO orbital distribution and the LUMO orbital distribution calculated by the above molecular calculation are separated, and more preferably, the HOMO orbital This means that the electron density distribution and the LUMO orbital electron density distribution do not substantially overlap.
 また、HOMOとLUMOの電子密度分離状態については、前述の汎関数としてB3LYP、基底関数として6-31G(d)を用いた構造最適化計算から、さらに時間依存密度汎関数法(Time-Dependent DFT)による励起状態計算を実施してS、Tのエネルギー(それぞれE(S)、E(T))を求めて、ΔEst=E(S)-E(T)として算出することも可能である。算出されたΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。本発明においては、ΔEstが、0.8eV以下である場合には、実質的に分離していると判断できる。本発明においては、前述と同様の計算手法を用いて算出されたΔEstが、0.5eV以下であることが好ましく、より好ましくは0.2eV以下であり、さらに好ましくは0.1eV以下である。 As for the electron density separation state of HOMO and LUMO, the time-dependent density functional method (Time-Dependent DFT) is further calculated from the structure optimization calculation using B3LYP as the above-mentioned functional and 6-31G (d) as the basis function. ) To obtain the energy of S 1 and T 1 (E (S 1 ) and E (T 1 ), respectively), and calculate ΔEst = E (S 1 ) −E (T 1 ). It is also possible. As the calculated ΔEst is smaller, HOMO and LUMO are more separated. In the present invention, when ΔEst is 0.8 eV or less, it can be determined that the separation is substantially achieved. In the present invention, ΔEst calculated using the same calculation method as described above is preferably 0.5 eV or less, more preferably 0.2 eV or less, and further preferably 0.1 eV or less.
 [最低励起一重項エネルギーS
 本発明における蛍光発光性化合物の最低励起一重項エネルギーSについては、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
[Minimum excitation singlet energy S 1 ]
The lowest excited singlet energy S 1 of the fluorescent compound in the present invention is defined in the present invention as calculated in the same manner as in a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
 ただし、本発明において使用する蛍光発光性化合物の、分子自体の凝集性が比較的高い場合においては、薄膜の測定においては凝集による誤差を生じる可能性がある。本発明における蛍光発光性化合物はストークスシフトが比較的小さいこと、さらに励起状態と基底状態の構造変化が小さいことを考慮し、本発明における最低励起一重項エネルギーは、室温(約25℃)における発光材料の溶液状態の発光波長のピーク値を近似値として用いた。ここで、使用する溶媒は、発光材料の凝集状態に影響を与えない、すなわち溶媒効果の影響が小さい溶媒、例えばシクロヘキサンやトルエン等の非極性溶媒等を用いることができる。 However, when the fluorescent compound used in the present invention has a relatively high aggregation property of the molecule itself, an error due to aggregation may occur in the measurement of the thin film. Considering that the fluorescent compound in the present invention has a relatively small Stokes shift and that the structural change between the excited state and the ground state is small, the lowest excited singlet energy in the present invention is light emission at room temperature (about 25 ° C.). The peak value of the emission wavelength in the solution state of the material was used as an approximate value. Here, as the solvent to be used, a solvent that does not affect the aggregation state of the light emitting material, that is, a solvent having a small influence of the solvent effect, for example, a nonpolar solvent such as cyclohexane or toluene can be used.
 [最低励起三重項エネルギーT
 本発明における蛍光発光性化合物の最低励起三重項エネルギーTについては、溶液若しくは薄膜のフォトルミネッセンス(PL)特性により算出した。例えば薄膜における算出方法としては、希薄状態の発光材料の分散物を薄膜にした後に、ストリークカメラを用い、過渡PL特性を測定することで、蛍光成分とリン光成分の分離を行い、そのエネルギー差をΔEstとして最低励起一重項エネルギーから最低励起三重項エネルギーを求めることができる。
[Minimum excitation triplet energy T 1 ]
The lowest excited triplet energy T 1 of the fluorescent compound in the present invention was calculated from the photoluminescence (PL) characteristics of the solution or thin film. For example, as a calculation method for thin films, after making a thin luminescent material dispersion into a thin film, the transient PL characteristics are measured using a streak camera to separate the fluorescent component and the phosphorescent component, and the energy difference ΔEst can be used to determine the lowest excited triplet energy from the lowest excited singlet energy.
 測定・評価にあたって、絶対PL量子収率の測定については、絶対PL量子収率測定装置C9920-02(浜松ホトニクス社製)を用いた。発光寿命は、ストリークカメラC4334(浜松ホトニクス社製)を用いて、サンプルをレーザー光で励起させながら測定した。 In measurement and evaluation, an absolute PL quantum yield measurement apparatus C9920-02 (manufactured by Hamamatsu Photonics) was used for measurement of the absolute PL quantum yield. The light emission lifetime was measured using a streak camera C4334 (manufactured by Hamamatsu Photonics) while exciting the sample with laser light.
 ≪本発明の有機EL素子≫
 本発明の有機EL素子は、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子であって、該蛍光発光性化合物は、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴としている。以下、本発明の有機EL素子の構成について順を追って説明する。
<< Organic EL device of the present invention >>
The organic EL device of the present invention is capable of electron-withdrawing a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton. An organic electroluminescence device comprising a fluorescent compound having a functional group and a monocyclic or condensed ring group as an electron donating group, wherein the fluorescent compound has B3LYP and a basis function as a functional As described above, the electron density distributions of HOMO and LUMO obtained by molecular orbital calculation using 6-31G (d) are substantially separated. Hereinafter, the structure of the organic EL element of the present invention will be described in order.
 《有機EL素子の構成層》
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を上げることができるが、これらに限定されるものではない。
(1)陽極/発光層//陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
<< Constitutional layer of organic EL element >>
As typical element structures in the organic EL element of the present invention, the following structures can be raised, but are not limited thereto.
(1) Anode / light emitting layer // cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / Electron transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (7) is Although used preferably, it is not limited to this.
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
The light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided therebetween.
The electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。 The hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
 上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。 In the above-described typical element configuration, the layer excluding the anode and the cathode is also referred to as “organic layer”.
 (タンデム構造)
 また、本発明に係る有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
(Tandem structure)
Further, the organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked.
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。 As typical element configurations of the tandem structure, for example, the following configurations can be given.
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode Here, the first light emitting unit, the second light emitting unit and the third light emitting unit are all the same, May be different. Two light emitting units may be the same, and the remaining one may be different.
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。 A plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer. A known material structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic material layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, and metal-free porphyrins. The present invention is not limited thereto.
 発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。 Preferred examples of the structure within the light emitting unit include those obtained by removing the anode and the cathode from the structures (1) to (7) mentioned in the above representative element structures, but the present invention is not limited to these. Not.
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号、米国特許第7420203号、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Japanese Patent No. 6337492, International Publication No. 2005/009087, Japanese Unexamined Patent Application Publication No. 2006-228712, Japanese Unexamined Patent Application Publication No. 2006-24791, Japanese Unexamined Patent Application Publication No. 2006-49393, Japanese Unexamined Patent Application Publication No. 2006-49394, Japanese Unexamined Patent Application Publication No. 2006. -49396, JP2011-96679, JP2005-340187, JP47111424, JP3496961, JP3884564, JP4213169, JP2010-192719 No. 2009, JP 2009- 76929, JP 2008-078414, JP 2007-059848, JP 2003-272860, JP 2003-045676, WO 2005/094130, etc. Examples include constituent materials, but the present invention is not limited to these.
 以下、本発明の有機EL素子を構成する各層について説明する。 Hereinafter, each layer constituting the organic EL element of the present invention will be described.
 《発光層》
 本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer. The structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
 発光層の層厚の総和は、特に制限はないが、形成する層の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2~500nmの範囲に調整され、更に好ましくは5~200nmの範囲に調整される。 The total thickness of the light emitting layer is not particularly limited, but it prevents the homogeneity of the layer to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From the viewpoint, it is preferably adjusted to a range of 2 nm to 5 μm, more preferably adjusted to a range of 2 to 500 nm, and further preferably adjusted to a range of 5 to 200 nm.
 また、本発明の個々の発光層の層厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2~200nmの範囲に調整され、更に好ましくは3~150nmの範囲に調整される。 The thickness of each light emitting layer of the present invention is preferably adjusted to a range of 2 nm to 1 μm, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm. The
 本発明の発光層には、前述の蛍光発光性化合物を発光ドーパント(発光性ドーパント、単にドーパントともいう。)として含有し、さらに前述のホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)とを含有することが好ましい。 The light-emitting layer of the present invention contains the above-described fluorescent compound as a light-emitting dopant (a light-emitting dopant, also simply referred to as a dopant), and further, the above-described host compound (a matrix material, a light-emitting host compound, or simply a host). ).
 (1)発光ドーパント
 本発明に係る発光ドーパントについて説明する。
(1) Luminescent dopant The luminescent dopant which concerns on this invention is demonstrated.
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光発光性化合物ともいう。)と、リン光発光性ドーパント(リン光ドーパント、リン光発光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層が前述の蛍光発光性化合物を含有することが好ましい。 As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent luminescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent luminescent compound) are preferably used. In the present invention, it is preferable that at least one light emitting layer contains the aforementioned fluorescent compound.
 発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。 The concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.
 また、本発明に係る発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。 Moreover, the light emitting dopant according to the present invention may be used in combination of two or more kinds, a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant. Thereby, arbitrary luminescent colors can be obtained.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。 In the present invention, it is also preferable that one or a plurality of light-emitting layers contain a plurality of light-emitting dopants having different emission colors and emit white light.
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。 There are no particular limitations on the combination of the light-emitting dopants that exhibit white, and examples include blue and orange, and a combination of blue, green, and red.
 本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 The white color in the organic EL device of the present invention means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is x = 0.39 ± 0.09 when the 2 ° viewing angle front luminance is measured by the method described above. Y = 0.38 ± 0.08.
 (1.1)蛍光発光性ドーパント(蛍光発光性化合物)
 本発明に係る蛍光発光性ドーパント(以下、「蛍光発光ドーパント」ともいう。)としては、前述の蛍光発光性化合物が用いられる。
(1.1) Fluorescent luminescent dopant (fluorescent luminescent compound)
As the fluorescent light-emitting dopant according to the present invention (hereinafter also referred to as “fluorescent light-emitting dopant”), the above-described fluorescent light-emitting compound is used.
 (1.2)リン光発光性ドーパント(リン光発光性化合物)
 本発明に係るリン光発光性ドーパント(以下、「リン光ドーパント」又は「リン光発光性化合物」ともいう。)について説明する。
(1.2) Phosphorescent dopant (phosphorescent compound)
The phosphorescent dopant according to the present invention (hereinafter also referred to as “phosphorescent dopant” or “phosphorescent compound”) will be described.
 本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield. The phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitting dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
 リン光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光発光性ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
 Nature 395,151 (1998)、Appl.Phys.Lett.78,1622 (2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書明細書、特開2012-069737号公報、特願2011-181303号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. No. 7396598 , U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , US special Published Patent Application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583, USA Japanese Patent Application No. 2012/212126, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application No. 2011-181303, Japanese Patent Application Laid-Open No. 2009-114086, Japanese Patent Application Laid-Open No. 2003-81988, Japanese Patent Application Laid-Open No. 2002-302671. And JP-A-2002-363552.
 中でも、好ましいリン光発光性ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 Among them, a preferable phosphorescent dopant is an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
 (2)ホスト化合物
 本発明に係るホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
(2) Host compound The host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light-emitting layer, and its own light emission is not substantially observed in the organic EL device.
 ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。 The host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer.
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 The host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
 以下に、本発明において好ましく用いられるホスト化合物について述べる。 Hereinafter, host compounds preferably used in the present invention will be described.
 本発明における蛍光発光性化合物とともに用いられるホスト化合物としては特に制限はないが、逆エネルギー移動の観点から、本発明の蛍光発光性化合物の励起一重項エネルギーより大きな励起エネルギーをもつものが好ましく、さらに本発明の蛍光発光性化合物の励起三重項エネルギーより大きな励起三重項エネルギーをもつものがより好ましい。 The host compound used together with the fluorescent compound in the present invention is not particularly limited, but from the viewpoint of reverse energy transfer, those having an excitation energy larger than the excitation singlet energy of the fluorescent compound of the present invention are preferable. Those having an excitation triplet energy larger than the excitation triplet energy of the fluorescent compound of the present invention are more preferable.
 ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト化合物分子がオングストロームレベルで移動しないことが好ましい。 The host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. Preferably does not move at the angstrom level.
 また、特に併用する発光ドーパントがTADF発光を示す場合には、TADF発光材料の三重項励起状態の存在時間が長いことから、ホスト化合物自体のTエネルギーが高いこと、さらにホスト化合物同士が会合した状態で低T状態を作らないこと、TADF発光材料とホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T化しないような分子構造の適切な設計が必要となる。 Further, the light-emitting dopant in particular in combination to indicate TADF emission, since long dwell time of the triplet excited state of the TADF luminescent material, the T 1 energy of the host compound itself is high, further host compound with each other in association Molecules that do not make the host compound low T 1 , such as not forming a low T 1 state in the state, TADF light emitting material and the host compound do not form an exciplex, or the host compound does not form an electromer due to an electric field. Appropriate design of the structure is required.
 このような用件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としてカルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格などの、高Tエネルギーを有し、かつ14π電子系の拡張π共役骨格を部分構造として有するものが好ましく挙げられる。さらに、これらの環がビアリール及び/又はマルチアリール構造を取った化合物などが代表例として挙げられる。ここでいう「アリール」とは、芳香族炭化水素環だけでなく芳香族複素環も含む。 In order to satisfy such requirements, the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. is necessary. Representative examples of host compounds that satisfy these requirements include high π-energy conjugated skeletons with high T 1 energy, such as carbazole skeleton, azacarbazole skeleton, dibenzofuran skeleton, dibenzothiophene skeleton, or azadibenzofuran skeleton. What has as a partial structure is mentioned preferably. Further, representative examples include compounds in which these rings have a biaryl and / or multiaryl structure. As used herein, “aryl” includes not only an aromatic hydrocarbon ring but also an aromatic heterocyclic ring.
 より好ましくは、カルバゾール骨格と、カルバゾール骨格とは異なる分子構造を持つ14π電子系の芳香族複素環化合物とが直接結合した化合物であり、さらに14π電子系の芳香族複素環化合物を分子内に二つ以上持つカルバゾール誘導体が好ましい。 More preferably, it is a compound in which a carbazole skeleton and a 14π-electron aromatic heterocyclic compound having a molecular structure different from that of the carbazole skeleton are directly bonded, and further a 14π-electron aromatic heterocyclic compound is incorporated in the molecule. A carbazole derivative having at least one is preferred.
 また、本発明に係るホスト化合物としては、下記一般式(I)で表される構造を有する化合物も好ましい。これは、下記式(I)で表される構造を有する化合物は、縮環構造を有するためにπ電子雲が広がっておりキャリア輸送性が高く、高いガラス転移温度(Tg)を有するためである。さらに、一般に縮合芳香族環は三重項エネルギー(T)が小さい傾向があるが、一般式(I)で表される構造を有する化合物は高いTを有しており、発光波長の短い(すなわちT及びSの大きい)発光材料に対しても好適に用いることができる。 Moreover, as a host compound which concerns on this invention, the compound which has a structure represented with the following general formula (I) is also preferable. This is because a compound having a structure represented by the following formula (I) has a condensed ring structure, and therefore a π electron cloud spreads, the carrier transportability is high, and the glass transition temperature (Tg) is high. . Furthermore, in general, condensed aromatic rings tend to have a small triplet energy (T 1 ), but a compound having a structure represented by the general formula (I) has a high T 1 and has a short emission wavelength ( That is, it can be suitably used for a light emitting material having a large T 1 and S 1 .
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 上記一般式(I)において、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。 In the general formula (I), X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 . y 1 to y 8 each represents CR 104 or a nitrogen atom.
 R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。 R 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
 Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。 Ar 101 and Ar 102 each represent an aromatic ring and may be the same or different.
 n101及びn102は各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。 n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents an integer of 1-4.
 一般式(I)におけるR101~R104は、水素又は置換基を表し、ここでいう置換基は本発明のホスト化合物の機能を阻害しない範囲で有しても良いものを指し、例えば合成スキーム上置換基が導入されてしまう場合で、本発明の効果を奏する化合物は本発明に包含される旨を規定するものである。 In the general formula (I), R 101 to R 104 represent hydrogen or a substituent, and the substituent here refers to what may be contained within the range not inhibiting the function of the host compound of the present invention. In the case where the above substituent is introduced, the compound having the effect of the present invention is defined as being included in the present invention.
 R101~R104で各々表される置換基としては、例えば、
 直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、
 アルケニル基(例えば、ビニル基、アリル基等)、
 アルキニル基(例えば、エチニル基、プロパルギル基等)、
 芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいう。例えば、ベンゼン環、ビフェニル、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-ターフェニル環、m-ターフェニル環、p-ターフェニル環、アセナフテン環、コロネン環、インデン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、テトラリン等から導出される基)、
 芳香族複素環基(例えば、フラン環、ジベンゾフラン環、チオフェン環、ジベンゾチオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環等から導出される基。また、カルボリン環とジアザカルバゾール環を合わせて「アザカルバゾール環」と呼ぶ場合もある。)、
 非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、
 非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、
 アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、
 シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、
 アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、
 シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、 アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、
 アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、
 アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、
 スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、
 アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、
 アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、
 アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、
 カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、
 ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、
 スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、
 アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、
 アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、
 ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、
 フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、重水素原子等が挙げられる。
Examples of the substituents represented by R 101 to R 104 include, for example,
Linear or branched alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.),
An alkenyl group (for example, vinyl group, allyl group, etc.),
Alkynyl group (for example, ethynyl group, propargyl group, etc.),
Aromatic hydrocarbon ring group (also referred to as aromatic carbocyclic group, aryl group, etc. For example, benzene ring, biphenyl, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, indene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, Groups derived from pyrene ring, pyranthrene ring, anthraanthrene ring, tetralin, etc.),
Aromatic heterocyclic group (eg, furan ring, dibenzofuran ring, thiophene ring, dibenzothiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring , Triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine Rings, carbazole rings, carboline rings, diazacarbazole rings (groups derived from a ring in which one of the carbon atoms of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom, etc. In addition, carboline ring and diazacarbazo The combined Le ring is sometimes referred to as "azacarbazole ring".)
Non-aromatic hydrocarbon ring group (for example, cyclopentyl group, cyclohexyl group, etc.),
Non-aromatic heterocyclic groups (for example, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.),
An alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.),
A cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), an aryloxy group (for example, phenoxy group, naphthyloxy group, etc.),
An alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.),
A cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), an arylthio group (eg, phenylthio group, naphthylthio group, etc.),
An alkoxycarbonyl group (for example, a methyloxycarbonyl group, an ethyloxycarbonyl group, a butyloxycarbonyl group, an octyloxycarbonyl group, a dodecyloxycarbonyl group, etc.),
An aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.),
Sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthyl) Aminosulfonyl group, 2-pyridylaminosulfonyl group, etc.),
Acyl groups (eg, acetyl, ethylcarbonyl, propylcarbonyl, pentylcarbonyl, cyclohexylcarbonyl, octylcarbonyl, 2-ethylhexylcarbonyl, dodecylcarbonyl, phenylcarbonyl, naphthylcarbonyl, pyridylcarbonyl, etc. ),
An acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.),
Amido groups (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group) Group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.),
Carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group) Phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.),
Ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.),
Sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.),
Alkylsulfonyl groups (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.),
Arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group) 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.)
A halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.),
Fluorinated hydrocarbon group (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, thiol group, silyl group (for example, trimethylsilyl group, trimethyl group) Isopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), deuterium atom and the like.
 これらの置換基は上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。 These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
 一般式(I)におけるy~yとしては、好ましくは、y~yの内の少なくとも三つ、又はy~yの内の少なくとも三つがCR102で表され、より好ましくはy~yが全てCR102である。このような骨格は、正孔輸送性又は電子輸送性に優れ、陽極・陰極から注入された正孔・電子を効率よく発光層内で再結合・発光させることができる。 As y 1 to y 8 in the general formula (I), preferably at least three of y 1 to y 4 or at least three of y 5 to y 8 are represented by CR 102 , more preferably y 1 to y 8 are all CR 102 . Such a skeleton is excellent in hole transport property or electron transport property, and can efficiently recombine and emit holes / electrons injected from the anode / cathode in the light emitting layer.
 中でも、LUMOのエネルギー準位が浅く、電子輸送性に優れる構造として、一般式(I)中でX101が、NR′、酸素原子又は硫黄原子である化合物が好ましい。より好ましくは、X101及びy~yとともに形成される縮合環が、カルバゾール環、アザカルバゾール環、ジベンゾフラン環又はアザジベンゾフラン環である。 Among them, a compound in which X 101 is NR ′, an oxygen atom, or a sulfur atom in general formula (I) is preferable as a structure having a low LUMO energy level and excellent electron transport properties. More preferably, the condensed ring formed with X 101 and y 1 to y 8 is a carbazole ring, an azacarbazole ring, a dibenzofuran ring or an azadibenzofuran ring.
 さらに、ホスト化合物を剛直にすることが好ましいという目的から考え、X101がNR101の場合においては、R101は前述で挙げられた置換基の内、π共役系骨格である芳香族炭化水素環基又は芳香族複素環基であることが好ましい。また、これらのR101は更に前述のR101~R104で表される置換基で置換されていてもよい。 Further, considering that it is preferable to make the host compound rigid, when X 101 is NR 101 , R 101 is an aromatic hydrocarbon ring which is a π-conjugated skeleton among the substituents mentioned above. It is preferably a group or an aromatic heterocyclic group. Further, these R 101 may be further substituted with the substituents represented by R 101 to R 104 described above.
 一般式(I)において、Ar101及びAr102により表される芳香環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。該芳香環は単環でも縮合環でもよく、更に未置換でも、前述のR101~R104で表される置換基と同様の置換基を有してもよい。 In the general formula (I), examples of the aromatic ring represented by Ar 101 and Ar 102 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent similar to the substituents represented by R 101 to R 104 described above.
 一般式(I)において、Ar101及びAr102により表される芳香族炭化水素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族炭化水素環基と同様の環が挙げられる。 In the general formula (I), examples of the aromatic hydrocarbon ring represented by Ar 101 and Ar 102 include the aromatic hydrocarbon rings exemplified as the substituents represented by R 101 to R 104 described above. Examples include the same ring as the group.
 一般式(I)で表される部分構造において、Ar101及びAr102により表される芳香族複素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族複素環基と同様の環が挙げられる。 In the partial structure represented by the general formula (I), examples of the aromatic heterocycle represented by Ar 101 and Ar 102 include the substituents represented by R 101 to R 104 described above. The same ring as an aromatic heterocyclic group is mentioned.
 一般式(I)で表されるホスト化合物が大きなTを有するという目的を考えた場合には、Ar101及びAr102で表される芳香環自身のTが高いことが好ましく、ベンゼン環(ベンゼン環が複数連結したポリフェニレン骨格(ビフェニル、テルフェニル、クォーターフェニル等)も含む)、フルオレン環、トリフェニレン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、ジベンゾチオフェン環、ピリジン環、ピラジン環、インドロインドール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イミダゾール環又はトリアジン環等が好ましい。より好ましくはベンゼン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環である。 In view of the purpose that the host compound represented by the general formula (I) has a large T 1 , the aromatic ring itself represented by Ar 101 and Ar 102 preferably has a high T 1 , and the benzene ring ( Including polyphenylene skeletons with multiple benzene rings (including biphenyl, terphenyl, quarterphenyl, etc.), fluorene rings, triphenylene rings, carbazole rings, azacarbazole rings, dibenzofuran rings, azadibenzofuran rings, dibenzothiophene rings, dibenzothiophene rings, A pyridine ring, pyrazine ring, indoloindole ring, indole ring, benzofuran ring, benzothiophene ring, imidazole ring or triazine ring is preferred. More preferred are a benzene ring, a carbazole ring, an azacarbazole ring and a dibenzofuran ring.
 Ar101及びAr102がカルバゾール環又はアザカルバゾール環の場合は、N位(又は9位ともいう)又は3位で結合していることがより好ましい。 When Ar 101 and Ar 102 are a carbazole ring or an azacarbazole ring, it is more preferable that they are bonded at the N-position (or 9-position) or the 3-position.
 Ar101及びAr102がジベンゾフラン環の場合は、2位又は4位で結合していることがより好ましい。 When Ar 101 and Ar 102 are dibenzofuran rings, they are more preferably bonded at the 2-position or 4-position.
 また、上記の目的とは別に、有機EL素子を車内に積載して使用する用途などを考えた場合においては、車内の環境温度が高くなることが想定されるため、ホスト化合物のTgが高いことも好ましい。そこで、一般式(I)で表されるホスト化合物を高Tg化するという目的から、Ar及びArにより表される芳香環としては、各々3環以上の縮合環が好ましい一態様である。 In addition to the above purpose, when considering the use of an organic EL element mounted in a vehicle, the environment temperature in the vehicle is assumed to be high, so the Tg of the host compound is high. Is also preferable. Therefore, for the purpose of increasing the Tg of the host compound represented by the general formula (I), the aromatic rings represented by Ar 1 and Ar 2 are each preferably a condensed ring of 3 or more rings.
 3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。 Specific examples of the aromatic hydrocarbon condensed ring in which three or more rings are condensed include naphthacene ring, anthracene ring, tetracene ring, pentacene ring, hexacene ring, phenanthrene ring, pyrene ring, benzopyrene ring, benzoazulene ring, chrysene ring , Benzochrysene ring, acenaphthene ring, acenaphthylene ring, triphenylene ring, coronene ring, benzocoronene ring, hexabenzocoronene ring, fluorene ring, benzofluorene ring, fluoranthene ring, perylene ring, naphthoperylene ring, pentabenzoperylene ring, benzoperylene ring, pentaphen A ring, a picene ring, a pyranthrene ring, a coronene ring, a naphtho- coronene ring, an ovalen ring, an anthraanthrene ring, and the like. In addition, these rings may further have the above substituent.
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。 Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, Emissions tiger thiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring, such as thio fan train ring (naphthothiophene ring). In addition, these rings may further have a substituent.
 一般式(I)において、n101及びn102は各々0~2であることが好ましく、より好ましくはn101+n102が1~3である。また、R101が水素原子の場合にn101及びn102が同時に0であると、一般式(I)で表されるホスト化合物の分子量が小さく低いTgしか達成できないため、R101が水素原子の場合にはn101は1~4を表す。 In the general formula (I), n101 and n102 are each preferably 0 to 2, more preferably n101 + n102 is 1 to 3. Furthermore, since the R 101 is the n101 and n102 when the hydrogen atom is 0 at the same time, the general formula (I) only a low Tg small molecular weight of the host compounds represented by not achievable, when R 101 is a hydrogen atom N101 represents 1 to 4.
 本発明においては、特に、ジベンゾフラン環とカルバゾール環をともに有するホスト化合物が好ましい。 In the present invention, a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
 本発明に係るホスト化合物として、前記一般式(I)で表される構造を有する化合物が、下記一般式(II)で表される構造を有する化合物であることが好ましい。このような化合物は、特にキャリア輸送性に優れる傾向があるためである。 As the host compound according to the present invention, the compound having the structure represented by the general formula (I) is preferably a compound having a structure represented by the following general formula (II). This is because such a compound tends to have particularly excellent carrier transportability.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 一般式(II)において、X101、Ar101、Ar102、n102は、前記一般式(I)におけるX101、Ar101、Ar102、n102と同義である。 In formula (II), X 101, Ar 101, Ar 102, n102 have the same meanings as X 101, Ar 101, Ar 102 , n102 in the formula (I).
 n102は好ましくは0~2であり、より好ましくは0又は1である。 N102 is preferably 0 to 2, more preferably 0 or 1.
 一般式(II)において、X101を含んで形成される縮合環は、Ar101及びAr102以外にも本発明のホスト化合物の機能を阻害しない範囲でさらに置換基を有しても良い。 In general formula (II), the condensed ring formed containing X 101 may further have a substituent other than Ar 101 and Ar 102 as long as the function of the host compound of the present invention is not inhibited.
 さらに、一般式(II)で表される構造を有する化合物が下記一般式(III-1)、(III-2)又は(III-3)で表される構造を有する化合物であることが好ましい。 Furthermore, the compound having a structure represented by the general formula (II) is preferably a compound having a structure represented by the following general formula (III-1), (III-2) or (III-3).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 一般式(III-1)~(III-3)において、X101、Ar102、n102は、前記一般式(II)におけるX101、Ar102、n102と同義である。 In the general formula (III-1) ~ (III -3), X 101, Ar 102, n102 have the same meanings as X 101, Ar 102, n102 in the general formula (II).
 一般式(III-1)~(III-3)において、X101を含んで形成される縮合環、カルバゾール環及びベンゼン環は、本発明のホスト化合物の機能を阻害しない範囲でさらに置換基を有しても良い。 In the general formulas (III-1) to (III-3), the condensed ring, carbazole ring and benzene ring formed containing X 101 further have a substituent as long as the function of the host compound of the present invention is not inhibited. You may do it.
 以下に、本発明に係るホスト化合物として、一般式(I)、(II)、(III-1)、(III-2)及び(III-3)で表される構造を有する化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。 In the following, as the host compound according to the present invention, compounds having the structures represented by the general formulas (I), (II), (III-1), (III-2) and (III-3) and other structures Although the example of a compound which consists of is shown, it is not limited to these.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 本発明に用いられる好ましいホスト化合物は、昇華精製が可能な程度の分子量をもった低分子化合物であっても、繰り返し単位を有するポリマーであってもよい。 The preferred host compound used in the present invention may be a low molecular compound having a molecular weight capable of sublimation purification or a polymer having a repeating unit.
 低分子化合物の場合、昇華精製が可能であるため精製が容易で、高純度の材料を得やすいという利点がある。分子量としては、昇華精製が可能な程度であれば特に制限はないが、好ましい分子量としては3000以下、より好ましくは2000以下である。 In the case of a low-molecular compound, sublimation purification is possible, so that there is an advantage that purification is easy and it is easy to obtain a high-purity material. The molecular weight is not particularly limited as long as sublimation purification is possible, but the preferred molecular weight is 3000 or less, more preferably 2000 or less.
 繰り返し単位を有するポリマー又はオリゴマーの場合は、ウェットプロセスで成膜しやすいという利点があり、また一般にポリマーはTgが高いため耐熱性の点でも好ましい。本発明のホスト化合物として用いられるポリマーは、所望の素子性能が達成可能であれば特に制限はないが、好ましくは一般式(I)、(II)、(III-1)~(III-3)の構造を主鎖若しくは側鎖に有するものが好ましい。分子量としては特に制限はないが、分子量5000以上が好ましく、若しくは繰り返し単位数が10以上のものが好ましい。 In the case of a polymer or oligomer having a repeating unit, there is an advantage that it is easy to form a film by a wet process, and since a polymer generally has a high Tg, it is preferable from the viewpoint of heat resistance. The polymer used as the host compound of the present invention is not particularly limited as long as the desired device performance can be achieved, but preferably the general formulas (I), (II), (III-1) to (III-3) Those having the following structure in the main chain or side chain are preferred. Although there is no restriction | limiting in particular as molecular weight, Molecular weight 5000 or more is preferable or a thing with 10 or more repeating units is preferable.
 また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。 In addition, the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the driving of the element. From the viewpoint of operation, it is preferable to have a high glass transition temperature (Tg). Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 《電子輸送層》
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
《Electron transport layer》
In the present invention, the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
 本発明の電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。 The total thickness of the electron transport layer of the present invention is not particularly limited, but is usually in the range of 2 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。 Further, in the organic EL element, when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between several nanometers and several micrometers.
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。 On the other hand, when the layer thickness of the electron transport layer is increased, the voltage is likely to increase. Therefore, particularly when the layer thickness is large, the electron mobility of the electron transport layer is preferably 10 −5 cm 2 / Vs or more. .
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 The material used for the electron transport layer (hereinafter referred to as an electron transport material) may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.)
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 In addition, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and their metal complexes A metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer Can also be used as an electron transporting material.
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Also, a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。 In the electron transport layer according to the present invention, the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich). Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。 Specific examples of known preferable electron transport materials used in the organic EL device of the present invention include compounds described in the following documents, but the present invention is not limited thereto.
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。 US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316 U.S. Patent Application Publication No. 2009/0101870, U.S. Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/120855, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387. , International Publication No. 2006/067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. Japanese Patent Publication No. 2011-086935, International Publication No. 2010/150593, International Publication No. 2010/047707, European Patent No. 2311826, Japanese Unexamined Patent Publication No. 2010-251675, Japanese Unexamined Patent Publication No. 2009-209133, Japanese Unexamined Patent Publication No. 2009. -1241 No. 4, JP 2008-277810 A, JP 2006-156445 A, JP 2005-340122 A, JP 2003-45662 A, JP 2003-31367 A, JP 2003-282270 A. Gazette, International Publication No. 2012/115034, and the like.
 本発明におけるよりより好ましい電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物が挙げられ、例えばピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体などが挙げられる。 More preferable electron transport materials in the present invention include aromatic heterocyclic compounds containing at least one nitrogen atom. For example, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, azadibenzofurans. Derivatives, azadibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, benzimidazole derivatives, and the like.
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The electron transport material may be used alone or in combination of two or more.
 《正孔阻止層》
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。 Moreover, the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
 本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。 The hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
 本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。 The layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。 As the material used for the hole blocking layer, the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
 《電子注入層》
 本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
《Electron injection layer》
The electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
 本発明において電子注入層は必要に応じて設け、上記のように陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。 In the present invention, the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
 電子注入層はごく薄い層であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な層であってもよい。 The electron injection layer is preferably a very thin layer, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material. Moreover, the nonuniform layer in which a constituent material exists intermittently may be sufficient.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。 Moreover, the materials used for the electron injection layer may be used alone or in combination of two or more.
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
《Hole transport layer》
In the present invention, the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
 本発明の正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。 The total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 μm, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 As a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives and polyvinyl carbazole, polymeric materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilanes, conductivity Examples thereof include polymers or oligomers (for example, PEDOT: PSS, aniline copolymers, polyaniline, polythiophene, etc.).
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include a benzidine type typified by α-NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Further, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。 Although the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain. The polymer materials or oligomers used are preferably used.
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。 Specific examples of known preferred hole transport materials used in the organic EL device of the present invention include the compounds described in the following documents in addition to the documents listed above, but the present invention is not limited thereto. Not.
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願公開第2013/49576号明細書等である。 For example, Appl. Phys. Lett. 69, 2160 (1996), J. MoI. Lumin. 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chem. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. 15, 3148 (2003), U.S. Patent Application Publication No. 2003/0162053, U.S. Patent Application Publication No. 2002/0158242, U.S. Patent Application Publication No. 2006/0240279, U.S. Patent Application Publication No. 2008/2008. No. 0220265, US Pat. No. 5,061,569, WO 2007/002683, WO 2009/018009, EP 650955, US Patent Application Publication No. 2008/0124572, US Japanese Patent Application Publication No. 2007/0278938, US Patent Application Publication No. 2008/0106190, US Patent Application Publication No. 2008/0018221, International Publication No. 2012/115034, and Japanese Translation of PCT International Publication No. 2003-519432. , JP 2006- 35145 JP is US Patent Application Publication No. 2013/49576 Pat like.
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The hole transport material may be used alone or in combination of two or more.
 《電子阻止層》
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
《Electron blocking layer》
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
 また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。 Moreover, the above-described configuration of the hole transport layer can be used as an electron blocking layer according to the present invention, if necessary.
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。 The electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
 本発明に係る電子阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。 The layer thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。 As the material used for the electron blocking layer, the material used for the hole transport layer is preferably used, and the material used for the host compound is also preferably used for the electron blocking layer.
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
《Hole injection layer》
The hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. 2 and Chapter 2 “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization” (published by NTT Corporation on November 30, 1998).
 本発明において正孔注入層は必要に応じて設け、上記のように陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。 In the present invention, the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
 正孔注入層は、特開平9-45479号公報公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As materials used for the hole injection layer, For example, the material etc. which are used for the above-mentioned hole transport layer are mentioned.
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。 Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432 and JP-A-2006-135145, etc. Preferred are conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。 The materials used for the hole injection layer described above may be used alone or in combination of two or more.
 《添加物》
 前述した本発明における有機層は、さらに他の添加物が含まれていてもよい。
"Additive"
The organic layer in the present invention described above may further contain other additives.
 添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。 Examples of additives include halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca, and Na, transition metal compounds, complexes, and salts.
 添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。 The content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. .
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。 However, it is not within this range depending on the purpose of improving the transportability of electrons and holes and the purpose of favoring the exciton energy transfer.
 《有機層の形成方法》
 本発明の有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
<Method for forming organic layer>
A method for forming the organic layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) of the present invention will be described.
 本発明の有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。 The formation method of the organic layer of the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロールtoロール方式適性の高い方法が好ましい。 Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable.
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Further, as a dispersion method, it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
 更に層毎に異なる層形成法を適用してもよい。層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。 Further, different layer forming methods may be applied for each layer. When a vapor deposition method is employed for forming the layer, the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is 50 to 450 ° C., the vacuum is 10 −6 to 10 −2 Pa, and the vapor deposition rate is 0.01. It is desirable to select appropriately within the range of ˜50 nm / second, substrate temperature −50 to 300 ° C., layer thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
 本発明の有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる層形成法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 The formation of the organic layer of the present invention is preferably made from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different layer formation methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO(インジウム・スズ酸化物)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used. Specific examples of such an electrode material include metals such as Au, and conductive transparent materials such as CuI, ITO (indium tin oxide), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。 Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
 陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。 The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。 In addition, in order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is improved, which is convenient.
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm. By applying the above, it is possible to manufacture a device in which both the anode and the cathode are transparent.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名 JSR社製)又はアペル(商品名 三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 The surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. And a relative humidity of 90 ± 2% RH) of 0.01 g / (m 2 · 24 h) or less is preferable. Further, oxygen permeability measured by a method according to JIS K 7126-1987 However, it is preferably a high-barrier film having 1 × 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 h) or less.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, and the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。 The external extraction quantum efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。 Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
 《封止》
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
<Sealing>
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10-3g/(m・24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. The measured water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2%) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。 In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
 さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 In order to further improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し向上技術》
 有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
《Light extraction enhancement technology》
An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。 As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No. 62-172691), lower refractive index than the substrate between the substrate and the light emitter A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer, and the light emitting layer (including between the substrate and the outside) ( JP 1 No. -283751 Publication), and the like.
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。 When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. Become.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む層厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
 回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。 The position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向の輝度を高めることができる。
<Condenser sheet>
The organic EL element of the present invention can be processed to provide a structure on a microlens array, for example, on the light extraction side of a support substrate (substrate) or combined with a so-called condensing sheet, for example, in a specific direction By condensing in the front direction with respect to the light emitting surface, the luminance in a specific direction can be increased.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 As an example of the microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。 As the condensing sheet, it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, a substrate may be formed with a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。 Further, in order to control the light emission angle from the organic EL element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 ≪用途≫
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
≪Usage≫
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
 <表示装置>
 本発明の表示装置は、本発明の有機EL素子を具備したものである。本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
<Display device>
The display device of the present invention comprises the organic EL element of the present invention. Although the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等で膜を形成できる。 In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet or printing.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法及び印刷法である。 In the case of patterning only the light emitting layer, the method is not limited, but a vapor deposition method, an ink jet method, a spin coating method, and a printing method are preferable.
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。 Moreover, the manufacturing method of an organic EL element is as having shown in the one aspect | mode of manufacture of the organic EL element of said this invention.
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青、赤及び緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。 The multicolor display device can be used as a display device, a display, or various light emission sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
 表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. However, the present invention is not limited to these.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
 図2は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。 The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
 制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
 図3はアクティブマトリクス方式による表示装置の模式図である。 FIG. 3 is a schematic diagram of a display device using an active matrix method.
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。 The display unit A has a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
 図3においては、画素3の発光した光Lが白矢印方向(下方向)へ取り出される場合を示している。 FIG. 3 shows a case where the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。 The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 A full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。図4は画素の回路を示した概略図である。 Next, the light emission process of the pixel will be described. FIG. 4 is a schematic diagram showing a pixel circuit.
 画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図4において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。 4, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even if the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 That is, the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
 図5は、パッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。 FIG. 5 is a schematic view of a passive matrix display device. In FIG. 5, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。 When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。 In the passive matrix method, there is no active element in the pixel 3, and the manufacturing cost can be reduced.
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。 A display device with improved luminous efficiency was obtained by using the organic EL element of the present invention.
 <照明装置>
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
<Lighting device>
The lighting device of the present invention will be described. The illuminating device of this invention has the said organic EL element.
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。 The organic EL element of the present invention may be used as an organic EL element having a resonator structure. Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a passive matrix method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
 また、本発明のTADF化合物は、照明装置として、実質的に白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 Further, the TADF compound of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. White light emission can be obtained by simultaneously emitting a plurality of light emission colors with a plurality of light emitting materials and mixing the colors. The combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。 In addition, the organic EL device forming method of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
 [本発明の照明装置の一態様]
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
[One Embodiment of Lighting Device of the Present Invention]
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図6及び図7に示すような照明装置を形成することができる。 The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. A device can be formed.
 図6は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。 FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
 図7は、照明装置の断面の模式図を示し、図7において、105は陰極、106は有機層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 7 shows a schematic diagram of a cross section of the lighting device. In FIG. 7, 105 denotes a cathode, 106 denotes an organic layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。 By using the organic EL element of the present invention, an illumination device with improved luminous efficiency was obtained.
 <インピーダンス分光測定よる薄膜抵抗値の測定例>
 インピーダンス分光法は、有機ELの微妙な物性変化を電気信号に変換したり増幅して解析できる手法であり、有機ELを破壊することなく高感度の抵抗値(R)及び静電容量(C)を計測できることが特徴である。インピーダンス分光解析にはZ plot、M plot、ε plotを使って電気特性を計測するのが一般的であり、その解析方法は(「薄膜の評価ハンドブック」テクノシステム社刊423ページ~425ページ)等に詳細に掲載されている。
<Measurement example of thin film resistance by impedance spectroscopy>
Impedance spectroscopy is a technique that can analyze subtle changes in physical properties of organic ELs by converting them into electrical signals or amplifying them. Highly sensitive resistance (R) and capacitance (C) without destroying organic EL It is a feature that can be measured. For impedance spectroscopy analysis, it is common to measure electrical characteristics using Z plot, M plot, and ε plot, and the analysis method (“Thin Film Evaluation Handbook” published by Techno System, Inc., pages 423 to 425) etc. It is published in detail.
 有機EL素子(素子構成「ITO/HIL(正孔注入層)/HTL(正孔輸送層)/EML(発光層)/ETL(電子輸送層)/EIL(電子注入層)/Al」)に対してインピーダンス分光法を適用し、特定の層の抵抗値を求める手法を説明する。例えば、電子輸送層(ETL)の抵抗値を計測する場合、ETLの厚さだけを変更した素子を作製し、それぞれのM plotを比較することで、該プロットにより描き出される曲線のどの部分がETLに相当するかを確定することができる。 For organic EL elements (element configuration “ITO / HIL (hole injection layer) / HTL (hole transport layer) / EML (light emitting layer) / ETL (electron transport layer) / EIL (electron injection layer) / Al”) A method for obtaining the resistance value of a specific layer by applying impedance spectroscopy will be described. For example, when measuring the resistance value of the electron transport layer (ETL), a device in which only the thickness of the ETL is changed is manufactured, and each part of the curve drawn by the plot is determined by comparing each M plot. Can be determined.
 図8は電子輸送層の層厚違いのMプロットの一例である。層厚が各々30、45及び60nmの場合の例を示す。
 Mプロットとは、下記式で表される伝達関数モジュラスを複素平面上にプロットしたものである。
 式:M=jωZ
(式中、jは虚数単位、ω=2πf(fは周波数)を表している。)
 図8において、M′はMの実数部、Re(M)であり、M″はMの虚数部Im(M)になる。
 例えば、有機EL素子に発光開始電圧以下の電圧を印加し、IS法により測定したMプロットにおける円弧部の数をm、有機層の層数をnとし、n>mを満たす場合には評価対象の有機EL素子が良好であると判定する評価方法が開示されている。
 また、基準の有機EL素子に発光開始電圧以下の電圧を印加し、IS法により測定したMプロットの形状と、検査対象の有機EL素子のMプロットの形状とを比較し、±5%以内であれば良好であると判定する評価方法が開示されている(参考特許文献:国際公開第2013/111459号)。
FIG. 8 is an example of an M plot of the layer thickness difference of the electron transport layer. An example in which the layer thickness is 30, 45 and 60 nm, respectively, is shown.
The M plot is obtained by plotting a transfer function modulus represented by the following equation on a complex plane.
Formula: M = jωZ
(In the formula, j represents an imaginary unit and ω = 2πf (f is a frequency).)
In FIG. 8, M ′ is the real part of M, Re (M), and M ″ is the imaginary part Im (M) of M.
For example, when a voltage equal to or lower than the emission start voltage is applied to the organic EL element and the number of arcs in the M plot measured by the IS method is m, the number of organic layers is n, and n> m is satisfied, the evaluation target An evaluation method for determining that the organic EL element is good is disclosed.
In addition, a voltage equal to or lower than the emission start voltage is applied to the reference organic EL element, and the shape of the M plot measured by the IS method is compared with the shape of the M plot of the organic EL element to be inspected within ± 5%. An evaluation method for determining that there is a good condition is disclosed (reference patent document: International Publication No. 2013/111459).
 このプロットから求めた抵抗値(R)をETLの層厚に対してプロットしたのが図9であり、ほぼ直線上に乗ることから、各層厚での抵抗値を決定することができる。 The resistance value (R) obtained from this plot is plotted against the ETL layer thickness in FIG. 9, and the resistance value at each layer thickness can be determined because it is on a substantially straight line.
 図9はETL層厚と抵抗値の関係を示す一例である。図9のETL層厚と抵抗値(Resistannce)との関係より、ほぼ直線上に乗ることから、各層厚での抵抗値を決定することができる。 FIG. 9 is an example showing the relationship between the ETL layer thickness and the resistance value. From the relationship between the ETL layer thickness and the resistance value (Resistance) in FIG. 9, the resistance value at each layer thickness can be determined because it is on a substantially straight line.
 素子構成「ITO/HIL/ETL/HTL/EML/Al」の有機EL素子を等価回路モデル(図10)として各層を解析した結果が図11である。図11は各層の抵抗-電圧の関係を示す一例である。 FIG. 11 shows the result of analyzing each layer using an organic EL element having an element configuration “ITO / HIL / ETL / HTL / EML / Al” as an equivalent circuit model (FIG. 10). FIG. 11 is an example showing the resistance-voltage relationship of each layer.
 図10は素子構成「ITO/HIL/ETL/HTL/EML/Al」の有機EL素子の等価回路モデルを示している。 FIG. 10 shows an equivalent circuit model of an organic EL element having an element configuration “ITO / HIL / ETL / HTL / EML / Al”.
 図11は素子構成「ITO/HIL/ETL/HTL/EML/Al」の有機EL素子の解析結果の一例である。 FIG. 11 is an example of an analysis result of an organic EL element having an element configuration “ITO / HIL / ETL / HTL / EML / Al”.
 これに対し、同じ有機EL素子を長時間発光させて劣化させた後に、同じ条件で測定し、それらを重ね合わせたのが図12であり、電圧1Vにおけるそれぞれの値を表1にまとめた。図12は劣化後の有機EL素子の解析結果を示す一例である。 On the other hand, after the same organic EL element was deteriorated by emitting light for a long time, it was measured under the same conditions, and they were superimposed. FIG. 12 shows the respective values at a voltage of 1V. FIG. 12 is an example showing the analysis result of the organic EL element after deterioration.
Figure JPOXMLDOC01-appb-T000105
 劣化後の有機EL素子においては、ETLのみが劣化により抵抗値が大きく上昇し、DC電圧1Vにおいて、約30倍の抵抗値になっていることがわかる。
Figure JPOXMLDOC01-appb-T000105
In the organic EL element after deterioration, it can be seen that only the ETL has a resistance value greatly increased due to the deterioration, and has a resistance value of about 30 times at a DC voltage of 1V.
 以上の手法を用いて、本発明の実施例に記載した通電前後での抵抗変化の計測が可能となる。 The resistance change before and after the energization described in the embodiment of the present invention can be measured by using the above method.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 [実施例1]
 <有機EL素子1-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 1]
<Preparation of organic EL element 1-1>
A transparent substrate with an ITO (Indium Tin Oxide) film having a thickness of 150 nm formed on a glass substrate of 50 mm × 50 mm and a thickness of 0.7 mm, patterned, and this ITO transparent electrode was attached After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。 Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 真空度1×10-4Paまで減圧した後、下記に示すα-NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚30nmの正孔注入輸送層を形成した。 After reducing the vacuum to 1 × 10 −4 Pa, the energization crucible containing α-NPD shown below was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A 30 nm hole injecting and transporting layer was formed.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 次いで、H-46の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入輸送層上に蒸着し、層厚10nmの中間層を形成した。 Next, the deposition crucible containing H-46 was energized and heated, and deposited on the hole injecting and transporting layer at a deposition rate of 0.1 nm / second to form an intermediate layer having a layer thickness of 10 nm.
 次いで、ホスト化合物としてH-46、蛍光発光性化合物として比較化合物1を、それぞれ95%、5%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。 Next, H-46 as a host compound and comparative compound 1 as a fluorescent compound were co-deposited at a deposition rate of 0.1 nm / second so as to be 95% and 5% by volume, respectively. Formed.
 その後、上記TPBiを蒸着速度0.1nm/秒で蒸着し、層厚50nmの電子輸送層を形成した。さらに、フッ化リチウムを層厚0.8nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。 Thereafter, the TPBi was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 50 nm. Furthermore, after forming lithium fluoride with a layer thickness of 0.8 nm, 100 nm of aluminum was vapor-deposited to form a cathode.
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1-1を作製した。 The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 1-1.
 <有機EL素子1-2~1-31の作製>
 有機EL素子1-1の蛍光発光性の比較化合物1の代わりに、表2に示すようにそれぞれ同質量の化合物に置き換えて、有機EL素子1-2~1-31を作製した。
<Preparation of organic EL elements 1-2 to 1-31>
Organic EL devices 1-2 to 1-31 were produced by replacing the fluorescent EL compound 1-1 of the organic EL device 1-1 with compounds having the same mass as shown in Table 2.
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 <評価>
 作製した有機EL素子の評価は以下のように行った。
<Evaluation>
Evaluation of the produced organic EL element was performed as follows.
 (発光輝度の測定)
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ(株)製)を用いて測定した。
(Measurement of emission luminance)
Each of the produced organic EL elements was allowed to emit light at room temperature (about 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the emission luminance immediately after the start of emission was measured using a spectral radiance meter CS-2000 (Konica Minolta). (Manufactured by Co., Ltd.).
 次いで、有機EL素子1-1の発光輝度を100とした相対発光輝度を求め、これを発光効率(外部量子効率)の尺度とした。数値が大きいほど、発光効率に優れていることを表す。 Next, a relative light emission luminance was obtained with the light emission luminance of the organic EL element 1-1 as 100, and this was used as a measure of the light emission efficiency (external quantum efficiency). It represents that it is excellent in luminous efficiency, so that a numerical value is large.
 (初期駆動電圧の測定)
 各サンプルに対し、室温(約25℃)で、分光放射輝度計CS-2000(コニカミノルタ(株)製)を用いて、各サンプルの発光輝度を測定し、発光輝度1000cd/mにおける初期駆動電圧を求めた。求めた結果を表に示す。
(Measurement of initial drive voltage)
For each sample, the emission luminance of each sample is measured at room temperature (about 25 ° C.) using a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.), and the initial driving at an emission luminance of 1000 cd / m 2 is performed. The voltage was determined. The results obtained are shown in the table.
 なお、表2では、有機EL素子1-1の初期駆動電圧を100として、有機EL素子1-2~1-31の初期駆動電圧を相対値で示している。表中、数値が小さいほど、初期駆動電圧が低いことを表す。 In Table 2, the initial drive voltage of the organic EL element 1-1 is set to 100, and the initial drive voltage of the organic EL elements 1-2 to 1-31 is shown as a relative value. In the table, the smaller the numerical value, the lower the initial drive voltage.
 (連続駆動安定性(半減寿命)の評価)
 各サンプルを半径5cmの円柱に巻きつけ、その後各サンプルを折り曲げた状態で連続駆動させ、上記分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を求めた。駆動条件は、連続駆動開始時に4000cd/mとなる電流値とした。
(Evaluation of continuous drive stability (half life))
Each sample is wound around a cylinder with a radius of 5 cm, and then continuously driven in a state where each sample is bent, and the luminance is measured using the spectral radiance meter CS-2000. Asked. The driving condition was set to a current value of 4000 cd / m 2 at the start of continuous driving.
 有機EL素子1-1のLT50を100とした相対値を求め、これを連続駆動安定性の尺度とした。その評価結果を表2に示す。表中、数値が大きいほど、連続駆動安定性に優れている(長寿命である)ことを表す。 The relative value with the LT50 of the organic EL element 1-1 as 100 was determined, and this was used as a measure of continuous drive stability. The evaluation results are shown in Table 2. In the table, the larger the value, the better the continuous drive stability (long life).
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000108
 表2から、本発明の有機EL素子は、比較例の有機EL素子に対して、外部量子効率、初期駆動電圧、半減寿命の優れた有機EL素子を得ることができたことがわかる。 From Table 2, it can be seen that the organic EL device of the present invention was able to obtain an organic EL device excellent in external quantum efficiency, initial drive voltage, and half-life compared to the organic EL device of the comparative example.
 [実施例2]
 <有機EL素子2-1の作製>
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
[Example 2]
<Preparation of organic EL element 2-1>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウム・スズ酸化物)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。 After patterning on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm × 100 mm × 1.1 mm glass substrate was formed as an anode on a 100 nm ITO (indium tin oxide) film, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄層を形成した後、200℃にて1時間乾燥し、層厚20nmの第1正孔輸送層を設けた。 On this transparent support substrate, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) diluted to 70% with pure water at 3000 rpm, A thin layer was formed by spin coating under conditions of 30 seconds and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートにα-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を200mg入れ、別のモリブデン製抵抗加熱ボートにH-154を200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物1を200mg入れ、別のモリブデン製抵抗加熱ボートにBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を200mg入れ真空蒸着装置に取り付けた。 This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) is attached to a resistance heating boat made of molybdenum. 200 mg of H-154 was put in another molybdenum resistance heating boat, 200 mg of Comparative Compound 1 was put in another molybdenum resistance heating boat, and BCP (2,9-dimethyl- 200 mg of 4,7-diphenyl-1,10-phenanthroline) was placed and attached to a vacuum deposition apparatus.
 次いで真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記第1正孔輸送層上に蒸着し30nmの第2正孔輸送層を設けた。 The vacuum chamber is then depressurized to 4 × 10 −4 Pa, heated by energizing the heating boat containing α-NPD, and deposited on the first hole transport layer at a deposition rate of 0.1 nm / second. Then, a second hole transport layer having a thickness of 30 nm was provided.
 更に発光ホスト化合物であるH-154の入った前記加熱ボートと蛍光発光性化合物である比較化合物1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、前記第2正孔輸送層上に共蒸着し40nmの発光層を設けた。 Further, the heating boat containing H-154, which is a luminescent host compound, and the heating boat containing comparative compound 1, which is a fluorescent compound, are energized and heated, and the deposition rates are 0.1 nm / second and 0.010 nm, respectively. Per second, a 40 nm light-emitting layer was provided by co-evaporation on the second hole transport layer.
 更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し30nmの電子輸送層を設けた。 Further, the heating boat containing BCP was energized and heated, and was deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 30 nm electron transport layer.
 引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1-1を作製した。 Subsequently, lithium fluoride 0.5 nm was vapor-deposited as a cathode buffer layer, and aluminum 110 nm was vapor-deposited to form a cathode, whereby an organic EL device 1-1 was produced.
 <有機EL素子2-2~2-31の作製>
 有機EL素子2-1の作製において、H-154及び比較化合物1を表3に記載の化合物に変えた以外は同様にして有機EL素子2-2~2-31を作製した。
<Production of organic EL elements 2-2 to 2-31>
Organic EL devices 2-2 to 2-31 were prepared in the same manner except that H-154 and Comparative Compound 1 were changed to the compounds shown in Table 3 in the production of the organic EL device 2-1.
 ≪有機EL素子2-1~2-31の評価≫
 得られた有機EL素子を評価するに際しては、図6及び7に示すような照明装置を形成して、インピーダンス分光測定装置よる発光層の抵抗値の測定を実施した。
<< Evaluation of organic EL elements 2-1 to 2-31 >>
When evaluating the obtained organic EL element, an illuminating device as shown in FIGS. 6 and 7 was formed, and the resistance value of the light emitting layer was measured by an impedance spectrometer.
 図6は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。具体的には、ガラスカバーと有機EL素子が作製されたガラス基板とが接触するガラスカバー側の周囲にシール剤としてエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)を適用し、これを上記陰極側に重ねて前記透明支持基板と密着させ、ガラス基板側から有機EL素子を除いた部分にUV光を照射して硬化させた。 FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more). Specifically, an epoxy photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the glass cover side where the glass cover and the glass substrate on which the organic EL element is manufactured contact, This was stacked on the cathode side and brought into close contact with the transparent support substrate, and the portion excluding the organic EL element from the glass substrate side was irradiated with UV light and cured.
 図7は、照明装置の断面図を示し、図7において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 7 shows a cross-sectional view of the lighting device. In FIG. 7, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 <評価>
 (1)有機EL素子駆動前後の抵抗値の変化率
 「薄膜の評価ハンドブック」テクノシステム社刊423ページ~425ページに記載の測定方法を参考に、Solartron社製1260型インピーダンスアナライザ及び1296型誘電体インターフェイスを使って、作製した有機EL素子の発光層のバイアス電圧1Vにおける抵抗値の測定を行った。
<Evaluation>
(1) Rate of change of resistance value before and after organic EL element driving Refer to the measurement method described in “Thin Film Evaluation Handbook” published by Techno System, pages 423 to 425, Solartron 1260 type impedance analyzer and 1296 type dielectric Using the interface, the resistance value at a bias voltage of 1 V of the light emitting layer of the produced organic EL element was measured.
 有機EL素子を室温(約23~25℃)、2.5mA/cmの定電流条件下により1000時間駆動した後の駆動前後の発光層の抵抗値を各々測定し、測定結果を下記に示した計算式により計算し抵抗値の変化率を求めた。表3には有機EL素子2-1の抵抗値の変化率を100としたときの相対比率を記載した。 The organic EL element was measured for the resistance value of the light emitting layer before and after driving for 1000 hours under room temperature (about 23 to 25 ° C.) and constant current conditions of 2.5 mA / cm 2 , and the measurement results are shown below. The change rate of the resistance value was calculated by the following formula. Table 3 shows the relative ratio when the rate of change of the resistance value of the organic EL element 2-1 is 100.
 駆動前後の抵抗値の変化率=|(駆動後の抵抗値/駆動前の抵抗値)-1|×100
 値が0に近い方が駆動前後の変化率が小さいことを示す。
Change rate of resistance value before and after driving = | (resistance value after driving / resistance value before driving) −1 | × 100
A value closer to 0 indicates a smaller rate of change before and after driving.
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
 表3から、本発明の有機EL素子は、比較例の有機EL素子に対して、発光層の抵抗値の変化率が小さいことが示されたことにより、発光層の薄層の物性の変化が小さく、安定した有機EL素子を得ることができたことがわかる。 From Table 3, it was shown that the organic EL device of the present invention had a smaller change rate of the resistance value of the light emitting layer than the organic EL device of the comparative example, and thus the change in the physical properties of the thin layer of the light emitting layer It can be seen that a small and stable organic EL element could be obtained.
 [実施例3]
 上記実施例で使用された本発明の化合物のHOMO、LUMO及びΔEstを比較化合物とともに表4及び表5に示す。
[Example 3]
Tables 4 and 5 show HOMO, LUMO, and ΔEst of the compounds of the present invention used in the above examples, together with comparative compounds.
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
 表4及び表5の結果から、本発明の蛍光発光性化合物は、比較化合物に比べてΔEstを大きくすることなく、HOMO、LUMOの軌道エネルギーが浅くなる場合が多く、特にLUMOで顕著である。
 これはヘテロ芳香族環のような弱い電子吸引性基の効果であり、組み合わせるホスト化合物の選択の幅を広げることができる。さらに、6π電子系、10π電子系、14π電子系の電子吸引性基により、置換基が分子の外殻に張り出すことでき、キャリア輸送の観点で有効である。実施例1及び2にみられるように本発明の蛍光発光性化合物を用いて作製した有機EL素子は比較例に比べて発光効率向上や経時による発光特性の変化が少ない優れた安定な薄膜の点で優れていることがわかる。
From the results shown in Tables 4 and 5, the fluorescent compounds of the present invention often have a shallow orbital energy of HOMO and LUMO without increasing ΔEst as compared with the comparative compound, and this is particularly remarkable in LUMO.
This is an effect of a weak electron-withdrawing group such as a heteroaromatic ring, and the range of selection of a host compound to be combined can be expanded. Furthermore, the 6π electron system, 10π electron system, and 14π electron system electron-withdrawing group allows the substituent to extend to the outer shell of the molecule, which is effective in terms of carrier transport. As seen in Examples 1 and 2, the organic EL device produced using the fluorescent compound of the present invention is an excellent and stable thin film with improved luminous efficiency and little change in luminous characteristics over time compared to the comparative example. It turns out that it is excellent.
 [実施例4]
 実施例1で作製したそれぞれ赤色(有機EL素子2-22)、緑色(有機EL素子2-25)、青色(有機EL素子2-10)発光有機EL素子を同一基板上に並置し、図3に示すアクティブマトリクス方式フルカラー表示装置を作製した。図3には作製したフルカラー表示装置の表示部Aの模式図のみを示した。すなわち同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6は、それぞれ導電材料からなり、走査線5とデータ線6を格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適宜、並置することによって、フルカラー表示が可能となる。該フルカラー表示装置を駆動することにより、輝度の高い鮮明なフルカラー動画表示が得られた。
[Example 4]
The red (organic EL element 2-22), green (organic EL element 2-25), and blue (organic EL element 2-10) light-emitting organic EL elements prepared in Example 1 were juxtaposed on the same substrate, as shown in FIG. The active matrix type full-color display device shown in FIG. FIG. 3 shows only a schematic diagram of the display portion A of the produced full-color display device. That is, a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of juxtaposed pixels 3 (a light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) on the same substrate. The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at orthogonal positions ( Details are not shown). The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, full-color display is possible by appropriately juxtaposing the red, green, and blue pixels. By driving the full-color display device, a clear full-color moving image display with high luminance was obtained.
 <電子密度分布の分離状態の説明>
 比較化合物6、比較化合物8及び本発明の化合物2-8のHOMO、LUMOの電子密度分布を図13に示した。
 比較化合物8のHOMO(図13のc)とLUMO(図13のd)は、分子内のほぼ同じ位置にその電子密度が分布し、両者は重なっている。ΔEstも1.47と高い値を示している。一方、比較化合物6のHOMO(図13のa)とLUMO(図13のb)及び本発明の化合物2-8のHOMO(図13のe)とLUMO(図13のf)は、分子内の異なる位置にその電子密度が分布しており、両者は実質的に分離しているため、熱活性化型遅延蛍光発光性化合物として有利である。
<Description of separation state of electron density distribution>
FIG. 13 shows electron density distributions of HOMO and LUMO of Comparative Compound 6, Comparative Compound 8, and Compound 2-8 of the present invention.
The electron density of HOMO (FIG. 13c) and LUMO (FIG. 13d) of the comparative compound 8 are distributed at almost the same position in the molecule, and they overlap each other. ΔEst also has a high value of 1.47. On the other hand, HOMO (Fig. 13a) and LUMO (Fig. 13b) of Comparative Compound 6 and HOMO (Fig. 13e) and LUMO (f of Fig. 13) of Compound 2-8 of the present invention are Since the electron density is distributed at different positions and both are substantially separated, it is advantageous as a thermally activated delayed fluorescent compound.
 しかし、比較化合物6のLUMO(図13のb)は、中心のベンゼン環及びシアノ基に広がっているが、その面積が小さいため分子内に遮蔽されており、キャリアのホッピング伝導には不利である。一方、本発明の化合物2-8のLUMO(図13のf)は中心のベンゼン環とピリダジン環に広がっており、比較化合物6に比べると分子の外殻に張り出すことができ、その面積も広いため、キャリアのホッピング伝導に有利であることが分かる。 However, the LUMO of Comparative Compound 6 (b in FIG. 13) extends to the central benzene ring and cyano group, but is shielded within the molecule due to its small area, which is disadvantageous for carrier hopping conduction. . On the other hand, the LUMO (f in FIG. 13) of the compound 2-8 of the present invention extends to the central benzene ring and pyridazine ring, and can be projected to the outer shell of the molecule compared with the comparative compound 6, and its area is also Since it is wide, it can be seen that it is advantageous for carrier hopping conduction.
 本発明の有機EL素子は、表示デバイス、ディスプレイ及び各種発光光源として用いることができ、発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等に用いることができる。また、本発明の蛍光発光性化合物は、上記有機EL素子に用いることができる。 The organic EL element of the present invention can be used as a display device, a display, and various light emitting light sources. Examples of the light emitting light source include a lighting device (home lighting, interior lighting), a clock and a liquid crystal backlight, a billboard advertisement, and a traffic light. It can be used as a light source for an optical storage medium, a light source for an electrophotographic copying machine, a light source for an optical communication processor, a light source for an optical sensor, and the like. Moreover, the fluorescent compound of the present invention can be used in the organic EL device.
 1 ディスプレイ
 3 画素
 L 光
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスタ
 12 駆動トランジスタ
 13 コンデンサー
 101 照明装置内の有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 A 表示部
 B 制御部
 C 配線部
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel L Light 5 Scanning line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element in a lighting device 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with transparent electrode 108 Nitrogen gas 109 Water trapping agent A Display unit B Control unit C Wiring unit

Claims (23)

  1.  窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物を含有する有機エレクトロルミネッセンス素子であって、該蛍光発光性化合物は、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴とする有機エレクトロルミネッセンス素子。 A 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron-withdrawing group, and an electron An organic electroluminescence device comprising a fluorescent compound having a monocyclic or condensed ring group as a donating group, wherein the fluorescent compound has B3LYP as a functional and 6-31G (d) as a basis function An organic electroluminescence device characterized in that electron density distributions of HOMO and LUMO obtained by molecular orbital calculation used are substantially separated.
  2.  前記蛍光発光性化合物が、下記一般式(A)で表される構造を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EWGは、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環である電子吸引性基、又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環である電子吸引性基を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。)
    The organic electroluminescence device according to claim 1, wherein the fluorescent compound has a structure represented by the following general formula (A).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. EWG represents a 5-membered or 6-membered aromatic heterocyclic ring containing one or two nitrogen atoms. Or an electron-withdrawing group which is a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton, EDG is a monocyclic or condensed ring which is an electron-donating group (M and n represent an integer of 1 to 6)
  3.  前記電子吸引性基が、6π電子系であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the electron withdrawing group is a 6π electron system.
  4.  前記電子吸引性基が、10π電子系であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the electron withdrawing group is a 10π electron system.
  5.  前記電子吸引性基が、14π電子系であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the electron withdrawing group is a 14π electron system.
  6.  前記一般式(A)で表される構造が、下記一般式(1-1)で表される構造であることを特徴とする請求項2又は請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。)
    4. The organic electroluminescence device according to claim 2, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (1-1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but one of X 11 , X 12 , X 13 , X 14 and X 15 or 2 represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and EDG represents an electron-donating property. And represents a monocyclic or condensed ring group, and m and n represent an integer of 1 to 6.)
  7.  前記一般式(A)で表される構造が、下記一般式(2-1)で表される構造であることを特徴とする請求項2又は請求項4に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    (式中、X21は、NRb、C(Rc)(Rd)、酸素原子又は硫黄原子を表す。X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子又はCRaを表す。X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。)
    5. The organic electroluminescence device according to claim 2, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (2-1).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X 21 represents NRb, C (Rc) (Rd), an oxygen atom or a sulfur atom. X 22 , X 23 , X 24 , X 25 and X 26 each independently represents a nitrogen atom or CRa. 1 or 2 of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represents a nitrogen atom, and Ra, Rb, Rc and Rd each independently represents a hydrogen atom or a substituent. Ar 0 represents a site for connecting an electron-withdrawing group and an electron-donating group or a direct bond, EDG represents a monocyclic or condensed ring group which is an electron-donating group, and m and n are Represents an integer of 1 to 6.)
  8.  前記一般式(A)で表される構造が、下記一般式(3-1)で表される構造であることを特徴とする請求項2又は請求項5に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。)
    6. The organic electroluminescence device according to claim 2, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (3-1).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, Ar 0 represents an electron-withdrawing group, and an electron-donating group. And represents a direct bond or EDG represents a monocyclic or condensed ring group which is an electron donating group, and m and n represent an integer of 1 to 6.)
  9.  前記一般式(A)で表される構造が、下記一般式(3-2)で表される構造であることを特徴とする請求項2又は請求項5に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R及びRaは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。)
    6. The organic electroluminescence device according to claim 2, wherein the structure represented by the general formula (A) is a structure represented by the following general formula (3-2).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each represent a nitrogen atom, R 1 and Ra represent a hydrogen atom or a substituent, Ar 0 represents an electron-withdrawing group and an electron donor And represents a direct bond or a direct bond, and EDG represents a monocyclic or condensed ring group which is an electron donating group, and m and n represent an integer of 1 to 6.)
  10.  前記一般式(3-2)で表される構造が下記一般式(3-3)で表される構造であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    (式中、X31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。R及びRaは水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。)
    The organic electroluminescent device according to claim 9, wherein the structure represented by the general formula (3-2) is a structure represented by the following general formula (3-3).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 38 One or two of 35 , X 36 and X 38 represent a nitrogen atom, R 2 and Ra represent a hydrogen atom or a substituent, and Ar 0 connects an electron-withdrawing group and an electron-donating group. (EDG represents a monocyclic or condensed ring group which is an electron donating group, and m and n represent an integer of 1 to 6.)
  11.  前記一般式(A)で表される構造において、EDGが、カルバゾール環基、チオフェン環基又はピロール環基を表すことを特徴とする請求項2から請求項10までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 11. The structure represented by the general formula (A), wherein EDG represents a carbazole ring group, a thiophene ring group, or a pyrrole ring group. Organic electroluminescence device.
  12.  前記一般式(1-1)で表される構造が下記一般式(1-2)で表される構造であることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
    (式中、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。Raは水素原子又は置換基を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。)
    The organic electroluminescence device according to claim 6, wherein the structure represented by the general formula (1-1) is a structure represented by the following general formula (1-2).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but one of X 11 , X 12 , X 13 , X 14 and X 15 or 2 represents a nitrogen atom, Ra represents a hydrogen atom or a substituent, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently a hydrogen atom or a substituent. Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond, and m and n represent an integer of 1 to 6.)
  13.  前記一般式(2-1)で表される構造が下記一般式(2-2)で表される構造であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008
    (式中、X21、X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子、NRb、酸素原子、硫黄原子又はCRaを表す。X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Ra及びRbは水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。)
    8. The organic electroluminescent device according to claim 7, wherein the structure represented by the general formula (2-1) is a structure represented by the following general formula (2-2).
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, X 21 , X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom, NRb, an oxygen atom, a sulfur atom or CRa. X 21 , X 22 , X 23 , One or two of X 24 , X 25 and X 26 represent a nitrogen atom, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently hydrogen. Represents an atom or a substituent, Ra and Rb represent a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and m and n are 1 Represents an integer of ~ 6)
  14.  前記一般式(3-1)で表される構造が下記一般式(3-4)で表される構造であることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009
    (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Raは水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。)
    9. The organic electroluminescence device according to claim 8, wherein the structure represented by the general formula (3-1) is a structure represented by the following general formula (3-4).
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent one or two nitrogen atoms, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are Each independently represents a hydrogen atom or a substituent, Ra represents a hydrogen atom or a substituent, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, m and n Represents an integer of 1 to 6.)
  15.  前記一般式(3-2)で表される構造が下記一般式(3-5)で表される構造であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000010
    (式中、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。)
    The organic electroluminescent device according to claim 9, wherein the structure represented by the general formula (3-2) is a structure represented by the following general formula (3-5).
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent one or two nitrogen atoms, R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are Each independently represents a hydrogen atom or a substituent, R 3 and Ra each represent a hydrogen atom or a substituent, and Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond. M and n represent an integer of 1 to 6)
  16.  前記一般式(3-3)で表される構造が下記一般式(3-6)で表される構造であることを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000011
    (式中、X31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。R41、R42、R43、R44、R45、R46、R47、R48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、それぞれ独立に水素原子又は置換基を表す。)
    11. The organic electroluminescence device according to claim 10, wherein the structure represented by the general formula (3-3) is a structure represented by the following general formula (3-6).
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 each independently represent a nitrogen atom or CRa. X 31 , X 32 , X 33 , X 34 , X 38 One or two of 35 , X 36 and X 38 represent a nitrogen atom, Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group, or a direct bond, and m and n are Represents an integer of 1 to 6. R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 each independently represents a hydrogen atom or a substituent, wherein R 4 and Ra are Each independently represents a hydrogen atom or a substituent.)
  17.  前記一般式(A)で表される構造が、下記一般式(4-1)で表される構造であることを特徴とする請求項2から請求項16までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rp、Rq、Rr、Rs、Rt及びRuは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。xは0又は1の整数を表す。xが1の場合、-Y-若しくは-Z-は、直接結合又は-O-、-S-若しくは-N(Rg)-のいずれかで表される。Rgは置換基を表す。Rp、Rq、Rr、Rs、Rt及びRuは互いに連結して結合を形成しても良い。)
    The structure represented by the general formula (A) is a structure represented by the following general formula (4-1), The organic according to any one of claims 2 to 16, Electroluminescence element.
    Figure JPOXMLDOC01-appb-C000012
    (Wherein Rp, Rq, Rr, Rs, Rt and Ru each independently represent a hydrogen atom or a substituent, at least one represents EWG, at least one represents EDG, and x represents 0 or 1) Represents an integer, and when x is 1, -Y- or -Z- is represented by either a direct bond or -O-, -S- or -N (Rg)-, where Rg represents a substituent. Rp, Rq, Rr, Rs, Rt and Ru may be linked to each other to form a bond.)
  18.  前記一般式(4-1)で表される構造が下記一般式(4-2)で表される構造であることを特徴とする請求項17に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rp、Rq、Rr、Rs、Rt、Ruは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。Rp、Rq、Rr、Rs、Rt及びRuは、互いに連結して結合を形成しても良い。)
    18. The organic electroluminescence device according to claim 17, wherein the structure represented by the general formula (4-1) is a structure represented by the following general formula (4-2).
    Figure JPOXMLDOC01-appb-C000013
    (Wherein Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 , Ru 1 each independently represents a hydrogen atom or a substituent, at least one represents EWG, and at least one represents EDG. Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 may be linked to each other to form a bond.)
  19.  前記一般式(A)で表される構造が、下記一般式(4-3)で表される構造であることを特徴とする請求項2から請求項16までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014
    (式中、Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。-X-は、-O-、-S-、-N(Rg)-又は-C(Rh)(Ri)-のいずれかで表される。Rg、Rh及びRiは、それぞれ独立に置換基を表す。Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは互いに連結して結合を形成しても良い。)
    The structure represented by the general formula (A) is a structure represented by the following general formula (4-3), The organic according to any one of claims 2 to 16, Electroluminescence element.
    Figure JPOXMLDOC01-appb-C000014
    (Wherein Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 each independently represent a hydrogen atom or a substituent, at least one represents EWG, and at least one One represents EDG, -X- is represented by any of -O-, -S-, -N (Rg)-or -C (Rh) (Ri)-, wherein Rg, Rh and Ri are Each independently represents a substituent, Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 may be linked together to form a bond.)
  20.  前記蛍光発光性化合物の、最低励起一重項状態と最低励起三重項状態のエネルギー差(ΔEst)が0.5eV以下であることを特徴とする請求項1から請求項19までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 20. The energy difference (ΔEst) between the lowest excited singlet state and the lowest excited triplet state of the fluorescent compound is 0.5 eV or less, according to any one of claims 1 to 19. The organic electroluminescent element of description.
  21.  請求項1から請求項20までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。 An illuminating device comprising the organic electroluminescence element according to any one of claims 1 to 20.
  22.  請求項1から請求項20までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。 21. A display device comprising the organic electroluminescence element according to any one of claims 1 to 20.
  23.  窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する蛍光発光性化合物であって、汎関数としてB3LYP及び基底関数として6-31G(d)を用いた分子軌道計算により得られるHOMOとLUMOの電子密度分布が実質的に分離していることを特徴とする蛍光発光性化合物。 A 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton as an electron-withdrawing group, and an electron HOMO and LUMO electron densities obtained by molecular orbital calculation using B3LYP as a functional and 6-31G (d) as a functional, which is a fluorescent compound having a monocyclic or condensed ring as a donating group A fluorescent compound having a substantially separated distribution.
PCT/JP2014/068870 2013-08-14 2014-07-16 Organic electroluminescent element, lighting device, display device and fluorescent compound WO2015022835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015531748A JP6627508B2 (en) 2013-08-14 2014-07-16 Organic electroluminescent element, lighting device, display device, and fluorescent compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013168663 2013-08-14
JP2013-168663 2013-08-14

Publications (1)

Publication Number Publication Date
WO2015022835A1 true WO2015022835A1 (en) 2015-02-19

Family

ID=52468224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068870 WO2015022835A1 (en) 2013-08-14 2014-07-16 Organic electroluminescent element, lighting device, display device and fluorescent compound

Country Status (2)

Country Link
JP (1) JP6627508B2 (en)
WO (1) WO2015022835A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294670A (en) * 2015-11-20 2016-02-03 上海天马有机发光显示技术有限公司 Organic electroluminescent compound and organic photoelectric apparatus thereof
WO2016129687A1 (en) * 2015-02-13 2016-08-18 出光興産株式会社 Compound, composition, organic electroluminescent element, and electronic device
WO2016143508A1 (en) * 2015-03-06 2016-09-15 コニカミノルタ株式会社 Organic electroluminescent element and organic electroluminescent element material
WO2016158540A1 (en) * 2015-03-27 2016-10-06 出光興産株式会社 Organic electroluminescent element, electronic device and compound
WO2016181846A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Π-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
WO2016181844A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Π-conjugated compound, delayed fluorescent body, light-emitting thin film, organic electroluminescence element, display device, and illumination device
JP2017054972A (en) * 2015-09-10 2017-03-16 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, π-CONJUGATED COMPOUND, AND LIGHT-EMITTING THIN FILM
JP2017075121A (en) * 2015-10-15 2017-04-20 コニカミノルタ株式会社 π-CONJUGATED COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, LUMINESCENT MATERIAL, LUMINESCENT THIN FILM, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LUMINAIRE
JP2017126598A (en) * 2016-01-12 2017-07-20 凸版印刷株式会社 Organic electroluminescent element
CN107325035A (en) * 2017-07-12 2017-11-07 赵东敏 A kind of biphenyl compound, organic electroluminescence device and display device
DE102016115853A1 (en) * 2016-08-25 2018-03-01 Cynora Gmbh Organic molecules, in particular for use in organic optoelectronic devices
KR20180022653A (en) * 2015-04-29 2018-03-06 유니버시티 코트 오브 더 유니버시티 오브 세인트 앤드류스 Light-emitting devices and compounds
CN108503628A (en) * 2017-02-27 2018-09-07 上海和辉光电有限公司 A kind of organic electroluminescent compounds
JPWO2017115608A1 (en) * 2015-12-28 2018-10-18 コニカミノルタ株式会社 π-conjugated compound, organic electroluminescence element material, light emitting material, charge transport material, light emitting thin film, organic electroluminescence element, display device and lighting device
JP2019501986A (en) * 2015-12-18 2019-01-24 昆山国顕光電有限公司Kunshan Go−Visionox Opto−Electronics Co., Ltd. Thermally activated delayed fluorescent material and its application in organic electroluminescent devices
KR20190018397A (en) * 2017-08-14 2019-02-22 주식회사 엘지화학 Compound containing nitrogen and organic light emitting device comprising the same
CN109400585A (en) * 2017-08-18 2019-03-01 北京鼎材科技有限公司 Bis- pyridine benzene analog derivative of 1,4- and organic electroluminescence device
EP3575377A1 (en) * 2018-05-31 2019-12-04 Cynora Gmbh Organic molecules for optoelectronic devices
WO2020059520A1 (en) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 Benzonitrile derivative and manufacturing method therefor, ink composition, organic electroluminescent element material, light-emitting material, charge transport material, light-emitting thin film, and organic electroluminescent element
WO2020111081A1 (en) * 2018-11-29 2020-06-04 保土谷化学工業株式会社 Compound having azabenzoxazole ring structure and organic electroluminescent element
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
CN111303168A (en) * 2018-12-12 2020-06-19 环球展览公司 Host materials for electroluminescent devices
JPWO2020189236A1 (en) * 2019-03-18 2020-09-24
JPWO2020189330A1 (en) * 2019-03-19 2020-09-24
WO2020189283A1 (en) * 2019-03-18 2020-09-24 コニカミノルタ株式会社 Charge-transporting compound and manufacturing method thereof, ink composition, organic electroluminescence element material, etc.
US20210024509A1 (en) * 2019-07-23 2021-01-28 Lg Display Co., Ltd. Organic compound, and organic light emitting diode and organic light emitting display device including the same
KR20210044590A (en) * 2019-10-15 2021-04-23 삼성에스디아이 주식회사 Hardmask composition, hardmask layer and method of forming patterns
CN113735793A (en) * 2021-09-24 2021-12-03 长春海谱润斯科技股份有限公司 Compound containing benzo five-membered heterocycle and organic electroluminescent device thereof
US11271169B2 (en) 2017-08-24 2022-03-08 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
US20220195082A1 (en) * 2020-12-22 2022-06-23 Samsung Sdi Co., Ltd. Hardmask composition and method of forming patterns
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
WO2023077294A1 (en) * 2021-11-02 2023-05-11 青岛科技大学 Compound, and preparation method therefor and application thereof
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
WO2023140374A1 (en) * 2022-01-24 2023-07-27 株式会社Kyulux Compound, light-emitting material and light-emitting element
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11957043B2 (en) 2020-05-06 2024-04-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus comprising same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076901A (en) * 2004-09-08 2006-03-23 Canon Inc Organic compound and organic light emitting device
US20100163857A1 (en) * 2007-09-05 2010-07-01 Nam-Soo Kim Material for organic photoelectric device, and organic photoelectric device including the same
JP2012049518A (en) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc Material for organic electroluminescent element, compound, organic electroluminescent element, display device, and luminaire
JP2012505829A (en) * 2008-10-14 2012-03-08 チェイル インダストリーズ インコーポレイテッド Benzimidazole compound and organic photoelectric device including the same
JP2013510141A (en) * 2009-11-03 2013-03-21 チェイル インダストリーズ インコーポレイテッド Compound for organic photoelectric device and organic photoelectric device including the same
WO2013081088A1 (en) * 2011-12-02 2013-06-06 国立大学法人九州大学 Organic light emitting device and delayed fluorescent material and compound used therein
WO2014013936A1 (en) * 2012-07-19 2014-01-23 新日鉄住金化学株式会社 Organic electroluminescent element
JP2014105209A (en) * 2012-11-26 2014-06-09 Universal Display Corp Organic luminescent compound with delayed fluorescence

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236442A (en) * 2012-05-08 2013-11-21 Toyota Motor Corp Electric vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076901A (en) * 2004-09-08 2006-03-23 Canon Inc Organic compound and organic light emitting device
US20100163857A1 (en) * 2007-09-05 2010-07-01 Nam-Soo Kim Material for organic photoelectric device, and organic photoelectric device including the same
JP2012505829A (en) * 2008-10-14 2012-03-08 チェイル インダストリーズ インコーポレイテッド Benzimidazole compound and organic photoelectric device including the same
JP2013510141A (en) * 2009-11-03 2013-03-21 チェイル インダストリーズ インコーポレイテッド Compound for organic photoelectric device and organic photoelectric device including the same
JP2012049518A (en) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc Material for organic electroluminescent element, compound, organic electroluminescent element, display device, and luminaire
WO2013081088A1 (en) * 2011-12-02 2013-06-06 国立大学法人九州大学 Organic light emitting device and delayed fluorescent material and compound used therein
WO2014013936A1 (en) * 2012-07-19 2014-01-23 新日鉄住金化学株式会社 Organic electroluminescent element
JP2014105209A (en) * 2012-11-26 2014-06-09 Universal Display Corp Organic luminescent compound with delayed fluorescence

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEORGI VALCHANOV ET AL.: "Tuning the optical absorption of potential blue emitters", ORGANIC ELECTRONICS, vol. 14, pages 2727 - 2736, XP028736295, DOI: doi:10.1016/j.orgel.2013.07.023 *
KUN-YAN WANG ET AL.: "Novel multifunctional organic semiconductor materials based on 4,8- substituted 1,5-naphthyridine: synthesis, single crystal structures, opto-electrical properties and quantum chemistry calculation", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 10, pages 6693 - 6704 *

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016129687A1 (en) * 2015-02-13 2017-11-30 出光興産株式会社 COMPOUND, COMPOSITION, ORGANIC ELECTROLUMINESCENT DEVICE, AND ELECTRONIC DEVICE
WO2016129687A1 (en) * 2015-02-13 2016-08-18 出光興産株式会社 Compound, composition, organic electroluminescent element, and electronic device
WO2016143508A1 (en) * 2015-03-06 2016-09-15 コニカミノルタ株式会社 Organic electroluminescent element and organic electroluminescent element material
JPWO2016143508A1 (en) * 2015-03-06 2017-12-14 コニカミノルタ株式会社 Organic electroluminescence device and organic electroluminescence device material
WO2016158540A1 (en) * 2015-03-27 2016-10-06 出光興産株式会社 Organic electroluminescent element, electronic device and compound
CN107431136B (en) * 2015-03-27 2020-06-05 出光兴产株式会社 Organic electroluminescent element, electronic device, and compound
US10547009B2 (en) 2015-03-27 2020-01-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device and compound
KR20230130152A (en) 2015-03-27 2023-09-11 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element, electronic device and compound
JPWO2016158540A1 (en) * 2015-03-27 2018-02-08 出光興産株式会社 Organic electroluminescence device, electronic device, and compound
CN107431136A (en) * 2015-03-27 2017-12-01 出光兴产株式会社 Organic electroluminescent element, electronic device, and compound
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20180123052A1 (en) * 2015-04-29 2018-05-03 University Court Of The University Of St Andrews Light emitting devices and compounds
EP3288956B1 (en) * 2015-04-29 2020-12-23 University Court of The University of St Andrews Light emitting devices and compounds
US10593893B2 (en) 2015-04-29 2020-03-17 University Court Of The University Of St Andrews Light emitting devices and compouds
KR102502081B1 (en) * 2015-04-29 2023-02-20 유니버시티 코트 오브 더 유니버시티 오브 세인트 앤드류스 light-emitting devices and compounds
JP2018522815A (en) * 2015-04-29 2018-08-16 ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ セント アンドリューズ Light emitting device and compound
KR20180022653A (en) * 2015-04-29 2018-03-06 유니버시티 코트 오브 더 유니버시티 오브 세인트 앤드류스 Light-emitting devices and compounds
CN107810184A (en) * 2015-04-29 2018-03-16 圣安德鲁斯大学董事会 Light-emitting device and compound
WO2016181844A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Π-conjugated compound, delayed fluorescent body, light-emitting thin film, organic electroluminescence element, display device, and illumination device
WO2016181846A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Π-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
JPWO2016181846A1 (en) * 2015-05-08 2018-02-22 コニカミノルタ株式会社 π-conjugated compound, organic electroluminescence element material, luminescent material, luminescent thin film, organic electroluminescence element, display device and illumination device
KR102146446B1 (en) * 2015-05-08 2020-08-20 코니카 미놀타 가부시키가이샤 π conjugated compounds, organic electroluminescent device materials, luminescent materials, luminescent thin films, organic electroluminescent devices, display devices and lighting devices
US11358951B2 (en) 2015-05-08 2022-06-14 Merck Patent Gmbh Π(PI)-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
KR20170128517A (en) * 2015-05-08 2017-11-22 코니카 미놀타 가부시키가이샤 π conjugated compound, organic electroluminescent device material, luminescent material, luminescent thin film, organic electroluminescent device, display device and lighting device
CN107531628A (en) * 2015-05-08 2018-01-02 柯尼卡美能达株式会社 Pi-conjugated class compound, organic electroluminescent device material, luminescent material, photism film, organic electroluminescent device, display device and lighting device
JP2017054972A (en) * 2015-09-10 2017-03-16 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, π-CONJUGATED COMPOUND, AND LIGHT-EMITTING THIN FILM
JP2017075121A (en) * 2015-10-15 2017-04-20 コニカミノルタ株式会社 π-CONJUGATED COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, LUMINESCENT MATERIAL, LUMINESCENT THIN FILM, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LUMINAIRE
US10069082B2 (en) 2015-11-20 2018-09-04 Shanghai Tianma AM-OLED Co., Ltd. Organic electroluminescent compounds and organic optoelectronic devices comprising the same
CN105294670A (en) * 2015-11-20 2016-02-03 上海天马有机发光显示技术有限公司 Organic electroluminescent compound and organic photoelectric apparatus thereof
JP2019501986A (en) * 2015-12-18 2019-01-24 昆山国顕光電有限公司Kunshan Go−Visionox Opto−Electronics Co., Ltd. Thermally activated delayed fluorescent material and its application in organic electroluminescent devices
US10770661B2 (en) 2015-12-18 2020-09-08 Kunshan Gp-Visionox Opto-Electronics Co., Ltd. Thermally activated delayed fluorescence material and application thereof in organic electroluminescence device
JP2021064802A (en) * 2015-12-28 2021-04-22 コニカミノルタ株式会社 Assist dopant material, luminescent thin film, organic electroluminescence element, display device, and illumination device
JP7060670B2 (en) 2015-12-28 2022-04-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Assist dopant material, luminescent thin film, organic electroluminescence device, display device and lighting device
JPWO2017115608A1 (en) * 2015-12-28 2018-10-18 コニカミノルタ株式会社 π-conjugated compound, organic electroluminescence element material, light emitting material, charge transport material, light emitting thin film, organic electroluminescence element, display device and lighting device
JP2017126598A (en) * 2016-01-12 2017-07-20 凸版印刷株式会社 Organic electroluminescent element
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
DE102016115853A1 (en) * 2016-08-25 2018-03-01 Cynora Gmbh Organic molecules, in particular for use in organic optoelectronic devices
DE102016115853B4 (en) * 2016-08-25 2020-10-15 Cynora Gmbh Organic molecules, in particular for use in organic optoelectronic devices
CN108503628A (en) * 2017-02-27 2018-09-07 上海和辉光电有限公司 A kind of organic electroluminescent compounds
CN107325035A (en) * 2017-07-12 2017-11-07 赵东敏 A kind of biphenyl compound, organic electroluminescence device and display device
KR102102042B1 (en) * 2017-08-14 2020-04-17 주식회사 엘지화학 Compound containing nitrogen and organic light emitting device comprising the same
KR20190018397A (en) * 2017-08-14 2019-02-22 주식회사 엘지화학 Compound containing nitrogen and organic light emitting device comprising the same
CN109400585A (en) * 2017-08-18 2019-03-01 北京鼎材科技有限公司 Bis- pyridine benzene analog derivative of 1,4- and organic electroluminescence device
US11271169B2 (en) 2017-08-24 2022-03-08 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
EP3575377A1 (en) * 2018-05-31 2019-12-04 Cynora Gmbh Organic molecules for optoelectronic devices
WO2020059520A1 (en) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 Benzonitrile derivative and manufacturing method therefor, ink composition, organic electroluminescent element material, light-emitting material, charge transport material, light-emitting thin film, and organic electroluminescent element
JP7369714B2 (en) 2018-11-29 2023-10-26 保土谷化学工業株式会社 Compounds with azabenzoxazole ring structure and organic electroluminescent devices
US12024527B2 (en) 2018-11-29 2024-07-02 Hodogaya Chemical Co., Ltd. Compound having azabenzoxazole ring structure and organic electroluminescent element
CN112805845A (en) * 2018-11-29 2021-05-14 保土谷化学工业株式会社 Compound having azabenzoxazole ring structure and organic electroluminescent element
JPWO2020111081A1 (en) * 2018-11-29 2021-10-21 保土谷化学工業株式会社 Compounds with azabenzoxazole ring structure and organic electroluminescence devices
WO2020111081A1 (en) * 2018-11-29 2020-06-04 保土谷化学工業株式会社 Compound having azabenzoxazole ring structure and organic electroluminescent element
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
CN111303168A (en) * 2018-12-12 2020-06-19 环球展览公司 Host materials for electroluminescent devices
WO2020189283A1 (en) * 2019-03-18 2020-09-24 コニカミノルタ株式会社 Charge-transporting compound and manufacturing method thereof, ink composition, organic electroluminescence element material, etc.
JPWO2020189236A1 (en) * 2019-03-18 2020-09-24
JPWO2020189283A1 (en) * 2019-03-18 2020-09-24
WO2020189236A1 (en) * 2019-03-18 2020-09-24 コニカミノルタ株式会社 Organic film and organic electroluminescent element
JPWO2020189330A1 (en) * 2019-03-19 2020-09-24
JP7405135B2 (en) 2019-03-19 2023-12-26 コニカミノルタ株式会社 Functional film, its formation method, and organic electroluminescent device
WO2020189330A1 (en) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 Functional film, method for forming same, and organic electroluminescent element
US20210024509A1 (en) * 2019-07-23 2021-01-28 Lg Display Co., Ltd. Organic compound, and organic light emitting diode and organic light emitting display device including the same
US11814374B2 (en) * 2019-07-23 2023-11-14 Lg Display Co., Ltd. Organic compound, and organic light emitting diode and organic light emitting display device including the same
KR102407218B1 (en) 2019-10-15 2022-06-08 삼성에스디아이 주식회사 Hardmask composition, hardmask layer and method of forming patterns
KR20210044590A (en) * 2019-10-15 2021-04-23 삼성에스디아이 주식회사 Hardmask composition, hardmask layer and method of forming patterns
US11957043B2 (en) 2020-05-06 2024-04-09 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus comprising same
US20220195082A1 (en) * 2020-12-22 2022-06-23 Samsung Sdi Co., Ltd. Hardmask composition and method of forming patterns
US11932715B2 (en) * 2020-12-22 2024-03-19 Samsung Sdi Co., Ltd. Hardmask composition and method of forming patterns
CN113735793B (en) * 2021-09-24 2022-12-13 长春海谱润斯科技股份有限公司 Compound containing benzo five-membered heterocycle and organic electroluminescent device thereof
CN113735793A (en) * 2021-09-24 2021-12-03 长春海谱润斯科技股份有限公司 Compound containing benzo five-membered heterocycle and organic electroluminescent device thereof
WO2023077294A1 (en) * 2021-11-02 2023-05-11 青岛科技大学 Compound, and preparation method therefor and application thereof
WO2023140374A1 (en) * 2022-01-24 2023-07-27 株式会社Kyulux Compound, light-emitting material and light-emitting element

Also Published As

Publication number Publication date
JPWO2015022835A1 (en) 2017-03-02
JP6627508B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6627508B2 (en) Organic electroluminescent element, lighting device, display device, and fluorescent compound
JP6304255B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ELECTRONIC DEVICE, LIGHT EMITTING DEVICE AND LIGHT EMITTING MATERIAL
JP6288092B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHT EMITTING DEVICE, LIGHTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP6314974B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, LIGHT EMITTING THIN FILM AND COMPOSITION AND LIGHT EMITTING METHOD
JP6344382B2 (en) Luminescent layer forming coating liquid, organic electroluminescence element, method for producing the same, and illumination / display device
KR102137347B1 (en) Organic electroluminescent device, light-emitting thin film, display unit, and illumination unit
JP6705148B2 (en) π-conjugated compound, organic electroluminescent element material, light emitting material, light emitting thin film, organic electroluminescent element, display device and lighting device
JP6439791B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND LIGHT EMITTING COMPOSITION
JP2016036025A (en) ORGANIC ELECTROLUMINESCENT DEVICE AND π CONJUGATED COMPOUND
JP6264001B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHT-EMITTING THIN FILM, DISPLAY DEVICE AND LIGHTING DEVICE
JP6673203B2 (en) Organic electroluminescence device
WO2016017514A1 (en) Organic electroluminescent element, light-emitting thin film, display device, and lighting device
WO2016017741A1 (en) Organic electroluminescence element, display device, illumination device, fluorescent light-emitting compound, and light-emitting thin film
WO2018207776A1 (en) Organic electroluminescent element, display device and lighting device
JP2016092280A (en) Luminescent thin film, organic electroluminescent element, illuminating device and display device
WO2015029964A1 (en) Organic electroluminescence element, light-emitting material, light-emitting thin film, display device, and lighting device
JP2016092320A (en) Organic electroluminescent element and lighting device
JP6115395B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METAL COMPLEX FOR ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP6648434B2 (en) Organic electroluminescence element, lighting device, and π-conjugated compound
JP6493202B2 (en) Organic electroluminescence element, lighting device and display device
JP5994753B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, FLUORESCENT EMITTING COMPOUND USED FOR THE SAME, LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH THE ORGANIC ELECTROLUMINESCENT ELEMENT
JP6264603B2 (en) Copper complex and organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836136

Country of ref document: EP

Kind code of ref document: A1