WO2015021617A1 - 单层电容触控单元及电容式触摸屏 - Google Patents

单层电容触控单元及电容式触摸屏 Download PDF

Info

Publication number
WO2015021617A1
WO2015021617A1 PCT/CN2013/081462 CN2013081462W WO2015021617A1 WO 2015021617 A1 WO2015021617 A1 WO 2015021617A1 CN 2013081462 W CN2013081462 W CN 2013081462W WO 2015021617 A1 WO2015021617 A1 WO 2015021617A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sensing electrode
capacitive touch
unit
scanning
Prior art date
Application number
PCT/CN2013/081462
Other languages
English (en)
French (fr)
Inventor
邱杰
林永伦
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/111,175 priority Critical patent/US9285624B2/en
Publication of WO2015021617A1 publication Critical patent/WO2015021617A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a single-layer capacitive touch unit and a capacitive touch screen including the single-layer capacitive touch unit.
  • the background touch screen display is the simplest and convenient human-computer interaction mode, so the touch screen display is increasingly applied to various electronic products.
  • touch screen products can be divided into four types: infrared touch screen, capacitive touch screen, resistive touch screen and surface acoustic wave touch screen; among them, capacitive touch screen has long life, high light transmittance and can support many Point touch and other advantages have become the mainstream touch screen technology.
  • the capacitive touch screen includes a surface capacitive type and a projected capacitive type, and the projected capacitive type can be further divided into a self-capacitance type and a mutual capacitance type.
  • the self-capacitance type is made of indium tin oxide (IT0, a transparent conductive material) on the surface of the glass to form an array of sensing electrodes and scanning electrodes. These sensing electrodes and scanning electrodes respectively form a capacitance with the ground. This capacitance is usually The self-capacitance, that is, the capacitance of the electrode to the ground.
  • the self-capacitance screen sequentially detects the sensing electrode and the scanning electrode array, and determines the coordinates of the sensing electrode and the scanning electrode array according to the change of the capacitance before and after the touch, and then combines the coordinates into a plane.
  • the self-capacitance scanning method is equivalent to projecting the touch points on the touch screen to the X-axis and the x-axis directions, respectively, and then calculating the coordinates in the X-axis and the x-axis directions, respectively, and finally combining the coordinates of the touch points.
  • the principle of mutual capacitance touch screen is shown in Figure 1.
  • the mutual capacitance screen is also used to make the sensing electrode Rx and the scanning electrode ⁇ on the glass surface.
  • the coupling capacitor C will be formed where the two sets of electrodes intersect. M , that is, the two sets of electrodes respectively constitute the two poles of the coupling capacitor C M .
  • M that is, the two sets of electrodes respectively constitute the two poles of the coupling capacitor C M .
  • the sensing electrode emits an excitation signal, and the scanning electrodes receive the signals one by one, so that the capacitance value of all the intersections of the sensing electrodes and the scanning electrodes, that is, the capacitance of the two-dimensional plane of the entire touch screen can be obtained.
  • the touch screen two-dimensional capacitance change The amount of data can be calculated, and the coordinates of each touch point can be calculated. Therefore, even if there are multiple touch points on the screen, the true coordinates of each touch point can be calculated.
  • One of the existing mutual-capacitive touch screens is that the sensing electrode Rx and the scanning electrode Tx are respectively made of two layers of bismuth conductive material, and are disposed on two parallel surfaces that are not coplanar, which is called a double-layer ⁇ mutual capacitive touch screen.
  • a double-layer ⁇ mutual capacitive touch screen that is, Doubie Layer lTO touch screen, referred to as DITO
  • the touch screen production process is complex, the production yield is restricted by the production process; and the other is a single layer ⁇ mutual capacitance type in which the sensing electrode Rx and the scanning electrode Tx are arranged on the same plane.
  • the present invention provides a single-layer capacitive touch unit that reduces the influence of a noise signal on a touch signal and improves a touch signal-to-noise ratio (SNR).
  • a single-layer capacitive touch unit includes: a sensing electrode connected to the control unit through a sensing electrode lead; and a plurality of electrodes arranged on both sides of the sensing electrode a scan electrode; the scan electrode is connected to the control unit through the scan electrode lead; and the scan electrode is located in the same plane as the sense electrode; wherein, one end of the scan electrode lead is connected to the second of the scan electrode And extending to a vicinity of the next scan electrode to form an extension lead; the other end of the scan electrode lead is connected to the control unit.
  • a filler metal is further disposed on both sides of the sensing electrode.
  • the filler metal is a transparent conductive material
  • the transparent conductive material is IT0.
  • the sensing electrode includes a plurality of identical sensing electrode units, the plurality of sensing electrode units are regularly arranged in the same direction, and the plurality of sensing electrode units are electrically connected to each other; each scanning electrode includes multiple identical scans.
  • the electrode unit, the plurality of scan electrode units are regularly arranged in the same direction, and are arranged in the same direction as the arrangement direction of the sensing electrode unit, and the plurality of scan electrode units are electrically connected to each other.
  • the spacing between two adjacent sensing electrode units is less than 129 ⁇ , the spacing between two adjacent scanning electrode units is less than 129 ⁇ , and the spacing between adjacent sensing electrode units and scanning electrode units is less than 129 ⁇ m.
  • the sensing electrode unit and the scanning electrode unit are both linear or wavy or square mesh elongated structures.
  • the first end of the scan electrode is embedded in the sensing electrode, and a gap is formed between the scan electrode and the sensing electrode.
  • the end of the first end of the scan electrode extends along both sides.
  • the sensing electrode unit and the scanning electrode unit are both transparent conductive materials; and the transparent conductive material is ⁇ .
  • a capacitive touch panel including a pixel array substrate, a touch screen substrate disposed opposite the pixel array substrate, and a pixel array substrate and the touch screen substrate disposed between the pixel array substrate and the touch panel substrate.
  • the touch panel substrate includes a touch structure layer, and the touch structure layer includes a plurality of single-layer capacitive touch units as described above.
  • the present invention extends one end of the scan electrode lead and the scan electrode to the vicinity of the next scan electrode to form an extension lead for shielding a signal between the next scan electrode lead and the sense electrode, and the present invention is still inductive.
  • a filling metal is disposed between the electrode and the scan electrode lead to further shield the interference of the signal in the scan electrode lead to the sensing electrode, thereby improving the signal-to-noise ratio (SNR) of the touch signal; meanwhile, the scan electrode of the present invention is embedded in In the sensing electrode, the scanning electrode is surrounded by the sensing electrode, which increases the capacitance of the mutual capacitance between the two electrodes and improves the signal-to-noise ratio (SNR) of the touch signal.
  • FIG. 1 is a schematic diagram of the principle of a mutual capacitance type touch screen.
  • FIG. 2 is a schematic structural diagram of a capacitive touch screen according to an embodiment of the present invention.
  • 3 is a schematic structural view of a touch structure layer in the capacitive touch screen shown in FIG. 2.
  • FIG. 4 is a schematic structural diagram of a capacitive touch unit according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram showing the relationship between the distance d between the electrode units and the distance L between the human eye and the touch interface.
  • the object of the present invention is to provide a single-layer capacitive touch unit capable of reducing the influence of a noise signal on a touch signal, improving a touch signal-to-noise ratio (SNR), and including the single-layer capacitive touch.
  • SNR touch signal-to-noise ratio
  • the single-layer capacitive touch unit includes: a sensing electrode connected to the control unit through the sensing electrode lead; and a plurality of scanning electrodes arranged on both sides of the sensing electrode; the scanning electrode passing through the scanning electrode lead and controlling And connecting the scan electrode and the sensing electrode in a same plane; wherein, one end of the scan electrode lead is connected to the second end of the scan electrode, and extends to the vicinity of the next scan electrode to form an extended lead The other end of the scan electrode lead is connected to the control unit.
  • the capacitive touch screen provided in this embodiment includes a pixel array substrate 3 , a touch screen substrate 1 disposed opposite to the pixel array substrate 3 , and the pixel array substrate 3 and the touch screen substrate 1 .
  • the touch panel substrate 1 includes a touch structure layer 1a, and the touch structure layer 1a includes a plurality of single-layer capacitive touch units 10 arranged in parallel (as shown in FIG. 3). Show).
  • the single-layer capacitive touch unit 10 has the following structure. Referring to FIG.
  • the single-layer capacitive touch unit 10 includes: a sensing electrode 200 connected to the control unit through the sensing electrode lead 2003; and, a plurality of arrangements a scan electrode 300 on both sides of the sensing electrode 200; the scan electrode 300 is connected to the control unit through the scan electrode lead 3003; and the scan electrode 300 and the sensing electrode 200 are in the same plane;
  • the scan electrode lead 3003 is connected to the second end 300b of the scan electrode 300 and extends to the vicinity of the next scan electrode to form an extension lead 3003a; the other end of the scan electrode lead 3003 is connected to the control unit.
  • the sensing electrode unit 2001 and the scanning electrode unit 3001 are both transparent conductive materials; the transparent conductive material is IT0.
  • a filler metal 100 is further disposed on both sides of the sensing electrode 200 for filling Filling a gap region between the sensing electrode 200 and the scan electrode lead 3003, and can serve as a shielding protective layer of the sensing electrode 200; the filler metal 100 is a transparent conductive material, and the transparent conductive material is IT0.
  • the first end 300a of the scan electrode 300 is embedded in the sensing electrode 200, and the scanning electrode 300 has a gap between the sensing electrode 200; further, the scanning electrode 300 The ends of the first end 300a extend along both sides.
  • one end of the scan electrode lead and the scan electrode is extended to the vicinity of the next scan electrode to form an extension lead, and the next scan can be shielded during the process of receiving the signal one by one by the scan electrode.
  • a signal between the electrode lead and the sensing electrode; and the invention further provides a filling metal between the sensing electrode and the scanning electrode lead, further shielding the interference of the signal in the scanning electrode lead to the sensing electrode, and improving the touch signal.
  • the scanning electrode 200 includes a plurality of identical sensing electrode units 2001, the plurality of sensing electrode units 2001 are regularly arranged in the same direction, and the plurality of sensing electrode units 2001 are electrically connected to each other through the first lead 2002.
  • Each of the scan electrodes 300 includes a plurality of identical scan electrode units 3001.
  • the plurality of scan electrode units 3001 are regularly arranged in the same direction and are arranged in the same direction as the sense electrode unit 2001.
  • the plurality of scan electrode units 3001 is electrically connected to each other through the second lead 3002; wherein the sensing electrode unit 2001 and the scanning electrode unit 3001 are linear elongated structures; of course, in other embodiments, the sensing electrode unit 2001 and the scanning electrode unit 3001 may also be a wavy or square mesh elongated structure.
  • the spacing between two adjacent sensing electrode units 2001 is less than 129 ⁇
  • the spacing between two adjacent scanning electrode units 3001 is less than 129 ⁇ , between the adjacent sensing electrode unit 2001 and the scanning electrode unit 3001.
  • the fill metal 100 comprises a plurality of unit linear filler metal elongated structure, between two adjacent filler metal element, adjacent to the sensing electrode unit 2001
  • the spacing between the filler metal cells and between the scan electrode leads 3003 and the fill metal cells is less than 129 ⁇ m.
  • the resolution limit angle of the human eye is ⁇ , but the Retina retina that appears on the market currently shows that the resolution limit angle of the human eye is 0. 59 ', which means that the display should be Develop towards higher resolution. As shown in FIG.
  • L is the distance between the human eye and the touch interface
  • is the resolution limit angle of the human eye
  • d is the spacing of adjacent electrode units, where d ⁇ LX ⁇ ; in this embodiment, the human eye and the touch interface
  • the distance between the human eye and the touch interface can be estimated according to the application object of the touch screen, thereby determining the spacing d of different electrode units.
  • the sensing electrode 200 and the scanning electrode 300 are respectively divided into a plurality of sensing electrode units 2001 and scanning electrode units 3001 having a linear elongated structure, and the sensing electrode units 2001 and the scanning electrode units
  • the 3001 has the same alignment direction on the same plane, and at the same time, by controlling the spacing d between the electrode units, the purpose of reducing the human eye is achieved, and the problem of visual difference between the sensing electrode and the scanning electrode array is solved.
  • the present invention extends one end of the scan electrode lead and the scan electrode to the vicinity of the next scan electrode to form an extension lead for shielding the signal between the next scan electrode lead and the sense electrode, and the present invention still A filler metal is disposed between the sensing electrode and the scan electrode lead, further shielding the interference of the signal in the scan electrode lead to the sensing electrode, and improving the signal-to-noise ratio (SNR) of the touch signal; and simultaneously, the scan electrode inlay of the present invention
  • the scanning electrode is surrounded by the sensing electrode, which increases the capacitance of the mutual capacitance between the two electrodes and improves the signal-to-noise ratio (SNR) of the touch signal.
  • the invention separates the sensing electrode and the scanning electrode into two a plurality of sensing electrode units and scanning electrode units having the same shape, and the sensing electrode unit and the scanning electrode unit have the same alignment direction on the same plane, thereby achieving the purpose of reducing human perception, and solving the problem between the sensing electrode and the scanning electrode array There is a problem of poor vision.
  • relational terms such as first and second are used merely to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these entities or operations. There is any such actual relationship or order between them.
  • the terms “including”, “comprising” or “comprising” or “comprising” or “comprising” are intended to encompass a non-exclusive inclusion, such that a process, method, article, or device that includes a plurality of elements includes not only those elements but also Other elements, or elements that are inherent to such a process, method, item, or device.
  • An element defined by the phrase “comprising a " does not exclude the presence of additional elements in the process, method, item, or device that comprises the element.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种单层电容触控单元,包括:一感应电极,通过感应电极引线与控制单元连接;以及,多个排列于所述感应电极两侧的扫描电极;所述扫描电极通过扫描电极引线与控制单元连接;并且,所述扫描电极与所述感应电极位于同一平面内;其中,所述扫描电极引线一端连接于所述扫描电极的第二端,并延伸至下一个扫描电极的附近形成延伸引线;所述扫描电极引线的另一端与控制单元连接;本发明还提供了一种包括前述电容触控单元的电容式触摸屏。本发明能够降低噪声信号对触控信号的影响,提高触控信噪比(SNR)。

Description

单层电容触控单元及电容式触摸屏 术领域 本发明涉及触控技术领域,尤其涉及一种单层电容触控单元以及包括该单 层电容触控单元的电容式触摸屏。 背景 术 触摸显示屏作为一种输入媒介,是目前最简单、 方便的一种人机交互方式, 因此触摸显示屏越来越多地应用到各种电子产品中。 基于不同的工作原理以及 传输信息的介质, 触摸屏产品可以分为四种: 红外线触摸屏、 电容式触摸屏、 电阻触摸屏和表面声波触摸屏; 其中电容式触摸屏由于具有寿命长、 透光率高、 可以支持多点触控等优点成为目前主流的触摸屏技术。 电容式触摸屏包括表面电容式和投射电容式, 其中投射电容式又可以分为 自电容式和互电容式。 自电容式是在玻璃表面用氧化铟锡(Indium tin oxide, IT0,一种透明的导电材料)制作成感应电极与扫描电极阵列, 这些感应电 极和扫描电极分别与地构成电容, 这个电容就是通常所说的自电容, 也就是电 极对地的电容。 当手指触摸到电容屏时, 手指的电容将会叠加到屏体电容上, 使屏体电容量增加。 在触摸检测时, 自电容屏依次分别检测感应电极与扫描电 极阵列, 根据触摸前后电容的变化, 分别确定感应电极与扫描电极阵列的坐标, 然后组合成平面的触摸坐标。 自电容的扫描方式, 相当于把触摸屏上的触摸点 分别投影到 X轴和 Υ轴方向, 然后分别在 X轴和 Υ轴方向计算出坐标, 最后组 合成触摸点的坐标。 互电容式触摸屏的原理如图 1所示, 互电容屏也是在玻璃 表面用制作感应电极 Rx与扫描电极 Τχ, 它与自电容屏的区别在于, 两组电极交 叉的地方将会形成耦合电容 CM, 即这两组电极分别构成了耦合电容 CM的两极。 当手指触摸到电容屏时, 影响了触摸点附近两个电极之间的耦合, 从而改变了 这两个电极之间的耦合电容 CM的大小。 检测互电容大小时, 感应电极发出激励 信号, 扫描电极逐一接收信号, 这样可以得到所有感应电极与扫描电极交汇点 的电容值大小, 即整个触摸屏的二维平面的电容大小。 根据触摸屏二维电容变 化量数据, 可以计算出每一个触摸点的坐标, 因此, 屏上即使有多个触摸点, 也能计算出每个触摸点的真实坐标。
现有的互容式触摸屏中, 一种是将感应电极 Rx和扫描电极 Tx分别用两层 ΙΤΟ导电材料层制作, 设置在不共面的两平行面上, 称为双层 ΙΤΟ互容式触摸屏, 即 Doubie Layer lTO触摸屏, 简称 DITO, 这种触摸屏生产工艺复杂, 生产良率受 到生产工艺的制约; 还有一种是将感应电极 Rx和扫描电极 Tx设置在同一平面上 的单层 ΙΤΟ互容式触摸屏, BP Single Layer ΙΤΟ触摸屏, 简称 SITO, 由于感应电极 Rx、 扫描电极 Tx及其相应的连接线都设置在同一平面上, 因此怎样降低噪声信 号对触控信号的影响, 提高触控信噪比 (SNR) 是一个急需解决的问题。 发明内容 鉴于现有技术存在的不足, 本发明提供了一种降低噪声信号对触控信号的 影响, 提高触控信噪比 (SNR) 的单层电容触控单元。 为了实现上述目的, 本发明采用了如下的技术方案: 一种单层电容触控单元, 包括: 一感应电极, 通过感应电极引线与控制单元连接; 以及, 多个排列于所述 感应电极两侧的扫描电极; 所述扫描电极通过扫描电极引线与控制单元连接; 并且, 所述扫描电极与所述感应电极位于同一平面内; 其中, 所述扫描电极引线一端连接于所述扫描电极的第二端,并延伸至下一 个扫描电极的附近形成延伸引线; 所述扫描电极引线的另一端与控制单元连接。 其中, 在所述感应电极的两侧还设置有填充金属。 其中, 所述填充金属为透明导电材料, 所述透明导电材料为 IT0。 其中, 所述感应电极包括多个相同的感应电极单元, 所述多个感应电极单 元沿同一方向规则排列, 所述多个感应电极单元相互电性连通; 每一扫描电极 包括多个相同的扫描电极单元, 所述多个扫描电极单元沿同一方向规则排列, 并且与感应电极单元的排列方向相同, 所述多个扫描电极单元相互电性连通。 其中, 两个相邻感应电极单元的间距小于 129 μ πι, 两个相邻扫描电极单元 的间距小于 129 μ πι, 相邻的感应电极单元与扫描电极单元之间的间距小于 129 μ m。 其中, 所述感应电极单元和所述扫描电极单元均为直线状或波浪状或方格 网状长条形结构。 其中, 所述扫描电极的第一端镶嵌在所述感应电极中, 所述扫描电极与所 述感应电极之间具有间隙。 其中, 所述扫描电极的第一端的端部沿两侧边延伸。 其中, 所述感应电极单元和所述扫描电极单元均为透明导电材料; 所述透 明导电材料为 ιτο。 本发明的另一方面是提供一种电容式触摸屏, 该触摸屏包括像素阵列基板、 与像素阵列基板相对设置的触控屏基板以及设置于所述像素阵列基板和所述触 控屏基板之间的液晶层, 其中, 所述触控屏基板包括一触控结构层, 所述触控 结构层中包括多个如上所述的单层电容触控单元。 相比于现有技术, 本发明具有如下的优势:
( 1 )、 本发明将扫描电极引线与扫描电极连接的一端延伸至下一个扫描电极 的附近形成延伸引线, 用于屏蔽下一扫描电极引线与感应电极之间的信号, 并 且本发明还在感应电极与扫描电极引线之间设置填充金属, 进一步屏蔽了扫描 电极引线中的信号对所述感应电极的干扰, 提高了触控信号的信噪比 (SNR) ; 同时, 本发明的扫描电极镶嵌在感应电极中, 使得扫描电极被感应电极包围, 增加了两电极间互电容的容量, 提高了触控信号的信噪比 (SNR)。
( 2 )、 本发明将感应电极和扫描电极分别分成多个具有相同形状的感应电 极单元和扫描电极单元, 并且感应电极单元和扫描电极单元在同一平面上具有 相同的排列方向, 达到降低人眼察觉的目的, 解决了感应电极和扫描电极阵列 之间存在视觉差的问题。 附图说明 图 1是互电容式触摸屏的原理的示意图。 图 2是本发明一实施例提供的电容式触摸屏的结构示意图。 图 3是如图 2所示的电容式触摸屏中的触摸结构层的结构示意图。 图 4是本发明一实施例提供的电容触控单元的结构示意图。 图 5是电极单元之间的间距 d与人眼和触控界面距离 L的关系示意图。 驢^ 如前所述, 本发明的目的是提供一种能够降低噪声信号对触控信号的影响, 提高触控信噪比 (SNR) 的单层电容触控单元以及包含该单层电容触控单元的 电容式触摸屏。 该单层电容触控单元包括: 包括: 一感应电极, 通过感应电极 引线与控制单元连接; 以及, 多个排列于所述感应电极两侧的扫描电极; 所述 扫描电极通过扫描电极引线与控制单元连接; 并且, 所述扫描电极与所述感应 电极位于同一平面内; 其中, 所述扫描电极引线一端连接于所述扫描电极的第 二端,并延伸至下一个扫描电极的附近形成延伸引线; 所述扫描电极引线的另一 端与控制单元连接。 在如上所述的电容触控单元中, 扫描电极引线与扫描电极连接的一端延伸 至下一个扫描电极的附近形成延伸引线, 可以屏蔽下一扫描电极引线与感应电 极之间的信号, 降低了下一扫描电极引线中的信号对所述感应电极的干扰, 提 高了触控信号的信噪比 (SNR)。 下面将对结合附图用实施例对本发明做进一步说明。 如图 2所示, 本实施例提供的电容式触摸屏包括像素阵列基板 3、与像素阵 列基板 3相对设置的触控屏基板 1以及设置于所述像素阵列基板 3和所述触控 屏基板 1之间的液晶层 2, 其中, 所述触控屏基板 1包括一触控结构层 la, 所 述触控结构层 la中包括多个并行排列的单层电容触控单元 10 (如图 3所示)。 其中, 所述单层电容触控单元 10具有如下的结构, 参阅图 4, 该单层电容 触控单元 10包括: 一感应电极 200, 通过感应电极引线 2003与控制单元连接; 以及, 多个排列于所述感应电极 200两侧的扫描电极 300; 所述扫描电极 300通 过扫描电极引线 3003与控制单元连接; 并且, 所述扫描电极 300与所述感应电 极 200位于同一平面内; 其中,所述扫描电极引线 3003—端连接于所述扫描电极 300的第二端 300b, 并延伸至下一个扫描电极的附近形成延伸引线 3003a; 所述扫描电极引线 3003 的另一端与控制单元连接。 在本实施例中, 所述感应电极单元 2001和所述扫描电极单元 3001均为透 明导电材料; 所述透明导电材料为 IT0。 在本实施例中, 在所述感应电极 200的两侧还设置有填充金属 100, 用于填 充所述所述感应电极 200与所述扫描电极引线 3003之间的空隙区域,并且能够 作为所述感应电极 200的屏蔽保护层; 所述填充金属 100为透明导电材料, 所 述透明导电材料为 IT0。 在本实施例中, 所述扫描电极 300的第一端 300a镶嵌在所述感应电极 200 中, 所述扫描电极 300与所述感应电极 200之间具有间隙; 进一步的, 所述扫 描电极 300的第一端 300a的端部沿两侧边延伸。 在如上所述的单层电容触控单元中, 将扫描电极引线与扫描电极连接的一 端延伸至下一个扫描电极的附近形成延伸引线, 在扫描电极逐一接收信号的过 程中,可以屏蔽下一扫描电极引线与感应电极之间的信号; 并且本发明还在感应 电极与扫描电极引线之间设置填充金属, 进一步屏蔽了扫描电极引线中的信号 对所述感应电极的干扰, 提高了触控信号的信噪比 (SNR) ; 同时, 还将扫描电 极镶嵌在感应电极中, 使得扫描电极被感应电极包围, 增加了两电极间互电容 的容量, 提高了触控信号的信噪比 (SNR)。 在本实施例中, 所述感应电极 200包括多个相同的感应电极单元 2001, 所 述多个感应电极单元 2001沿同一方向规则排列, 所述多个感应电极单元 2001 通过第一引线 2002相互电性连通; 每一扫描电极 300包括多个相同的扫描电极 单元 3001, 所述多个扫描电极单元 3001沿同一方向规则排列, 并且与感应电极 单元 2001的排列方向相同, 所述多个扫描电极单元 3001通过第二引线 3002相 互电性连通; 其中, 所述感应电极单元 2001和所述扫描电极单元 3001均为直 线状长条形结构; 当然, 在另外的一些实施例中, 所述感应电极单元 2001和所 述扫描电极单元 3001也可以是波浪状或方格网状长条形结构。 在本实施例中, 两个相邻感应电极单元 2001的间距小于 129 μ πι, 两个相邻 扫描电极单元 3001的间距小于 129 μ πι, 相邻的感应电极单元 2001与扫描电极 单元 3001之间的间距小于 129 μ m0 在本实施例中, 所述填充金属 100包括多个直线状长条形结构的填充金属 单元, 两个相邻填充金属单元之间、 相邻的感应电极单元 2001与填充金属单元 之间以及所述扫描电极引线 3003与填充金属单元之间的间距均小于 129 μ πι。 对于电极单元之间的间距的选择, 需要综合考虑人眼分辨率极限角以及人 眼的观察距离。显示技术领域认为人眼分辨率极限角为 Γ , 但是目前市面上出 现的 Retina视网膜显示, 认为人眼分辨率极限角为 0. 59 ' ,这意味着显示屏应 朝更高分辨率方向发展。 如图 5所示, L为人眼与触控界面距离, Θ为人眼分 辨率极限角, d为相邻电极单元的间距, 其中 d ^L X Θ; 在本实施例中, 人眼 与触控界面距离为 75cm (按照成人之一般手臂长度估算), Θ =0. 59, =0. 000172 弧度, 则: d ^L X Θ =75cm X 10000 X 0. 000172=129 μ mD 需要说明的是, 本实施例选择 d=129 m仅仅是举例说明, 在另外的一些实 施例中, 可以根据触摸屏的应用对象, 估算人眼与触控界面距离, 从而确定不 同的电极单元的间距 d。 在如上所述的电容触控单元中, 感应电极 200和扫描电极 300分别被分成 多个具有直线状长条形结构的感应电极单元 2001和扫描电极单元 3001,并且感 应电极单元 2001和扫描电极单元 3001在同一平面上具有相同的排列方向, 同 时通过控制电极单元之间的间距 d,达到降低人眼察觉的目的, 解决了感应电极 和扫描电极阵列之间存在视觉差的问题。 综上所述, 本发明将扫描电极引线与扫描电极连接的一端延伸至下一个扫描 电极的附近形成延伸引线, 用于屏蔽下一扫描电极引线与感应电极之间的信号, 并且本发明还在感应电极与扫描电极引线之间设置填充金属, 进一步屏蔽了扫 描电极引线中的信号对所述感应电极的干扰, 提高了触控信号的信噪比 (SNR ) ; 同时, 本发明的扫描电极镶嵌在感应电极中, 使得扫描电极被感应电极包围, 增加了两电极间互电容的容量, 提高了触控信号的信噪比 (SNR) ; 另一方面, 本发明将感应电极和扫描电极分别分成多个具有相同形状的感应电极单元和扫 描电极单元, 并且感应电极单元和扫描电极单元在同一平面上具有相同的排列 方向, 达到降低人眼察觉的目的, 解决了感应电极和扫描电极阵列之间存在视 觉差的问题。 需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括"、 "包 含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个…… " 限定的要素, 并不排除在包 括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。 以上所述仅是本申请的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本申请的保护范围。

Claims

权 利 要 求 书
1、 一种单层电容触控单元, 其中, 包括: 一感应电极, 通过感应电极引线与控制单元连接; 以及, 多个排列于所述 感应电极两侧的扫描电极; 所述扫描电极通过扫描电极引线与控制单元连接; 并且, 所述扫描电极与所述感应电极位于同一平面内; 其中, 所述扫描电极引线一端连接于所述扫描电极的第二端,并延伸至下一 个扫描电极的附近形成延伸引线; 所述扫描电极引线的另一端与控制单元连接。
2、 根据权利要求 1所述的单层电容触控单元, 其中, 在所述感应电极的两 侧还设置有填充金属。
3、 根据权利要求 2所述的单层电容触控单元, 其中, 所述填充金属为透明 导电材料, 所述透明导电材料为 ιτο。
4、 根据权利要求 2所述的单层电容触控单元, 其中, 所述感应电极包括多 个相同的感应电极单元, 所述多个感应电极单元沿同一方向规则排列, 所述多 个感应电极单元相互电性连通; 每一扫描电极包括多个相同的扫描电极单元, 所述多个扫描电极单元沿同一方向规则排列, 并且与感应电极单元的排列方向 相同, 所述多个扫描电极单元相互电性连通。
5、 根据权利要求 4所述的单层电容触控单元, 其中, 两个相邻感应电极单 元的间距小于 129 μ πι, 两个相邻扫描电极单元的间距小于 129 μ πι, 相邻的感应 电极单元与扫描电极单元之间的间距小于 129 μ πι。
6、 根据权利要求 4所述的单层电容触控单元, 其中, 所述感应电极单元和 所述扫描电极单元均为直线状或波浪状或方格网状长条形结构。
7、 根据权利要求 1所述的单层电容触控单元, 其中, 所述扫描电极的第一 端镶嵌在所述感应电极中, 所述扫描电极与所述感应电极之间具有间隙。
8、 根据权利要求 7所述的单层电容触控单元, 其中, 所述扫描电极的第一 端的端部沿两侧边延伸。
9、 根据权利要求 1所述的单层电容触控单元, 其中, 所述感应电极单元和 所述扫描电极单元均为透明导电材料; 所述透明导电材料为 ιτο。
10、 根据权利要求 4所述的单层电容触控单元, 其中, 所述感应电极单元 和所述扫描电极单元均为透明导电材料; 所述透明导电材料为 ιτο。
11、 一种电容式触摸屏, 包括像素阵列基板、 与像素阵列基板相对设置的 触控屏基板以及设置于所述像素阵列基板和所述触控屏基板之间的液晶层, 其 特征在于, 所述触控屏基板包括一触控结构层, 所述触控结构层中包括多个单 层电容触控单元, 所述单层电容触控单元包括: 一感应电极, 通过感应电极引线与控制单元连接; 以及, 多个排列于所述 感应电极两侧的扫描电极; 所述扫描电极通过扫描电极引线与控制单元连接; 并且, 所述扫描电极与所述感应电极位于同一平面内; 其中, 所述扫描电极引线一端连接于所述扫描电极的第二端,并延伸至下一 个扫描电极的附近形成延伸引线; 所述扫描电极引线的另一端与控制单元连接。
12、 根据权利要求 11所述的电容式触摸屏, 其中, 在所述感应电极的两侧 还设置有填充金属。
13、 根据权利要求 12所述的电容式触摸屏, 其中, 所述填充金属为透明导 电材料, 所述透明导电材料为 ιτο。
14、 根据权利要求 12所述的电容式触摸屏, 其中, 所述感应电极包括多个 相同的感应电极单元, 所述多个感应电极单元沿同一方向规则排列, 所述多个 感应电极单元相互电性连通; 每一扫描电极包括多个相同的扫描电极单元, 所 述多个扫描电极单元沿同一方向规则排列, 并且与感应电极单元的排列方向相 同, 所述多个扫描电极单元相互电性连通。
15、 根据权利要求 14所述的电容式触摸屏, 其中, 两个相邻感应电极单元 的间距小于 129 μ πι, 两个相邻扫描电极单元的间距小于 129 μ πι, 相邻的感应电 极单元与扫描电极单元之间的间距小于 129 μ πι。
16、 根据权利要求 14所述的电容式触摸屏, 其中, 所述感应电极单元和所 述扫描电极单元均为直线状或波浪状或方格网状长条形结构。
17、 根据权利要求 11所述的电容式触摸屏, 其中, 所述扫描电极的第一端 镶嵌在所述感应电极中, 所述扫描电极与所述感应电极之间具有间隙。
18、 根据权利要求 17所述的电容式触摸屏, 其中, 所述扫描电极的第一端 的端部沿两侧边延伸。
19、 根据权利要求 11所述的电容式触摸屏, 其中, 所述感应电极单元和所 述扫描电极单元均为透明导电材料; 所述透明导电材料为 IT0。
20、 根据权利要求 14所述的电容式触摸屏, 其中, 所述感应电极单元和所 述扫描电极单元均为透明导电材料; 所述透明导电材料为 IT0。
PCT/CN2013/081462 2013-08-13 2013-08-14 单层电容触控单元及电容式触摸屏 WO2015021617A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/111,175 US9285624B2 (en) 2013-08-13 2013-08-14 Single-layer capacitive touch unit and capacitive touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310351127.3 2013-08-13
CN201310351127.3A CN103399681B (zh) 2013-08-13 2013-08-13 单层电容触控单元及电容式触摸屏

Publications (1)

Publication Number Publication Date
WO2015021617A1 true WO2015021617A1 (zh) 2015-02-19

Family

ID=49563319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081462 WO2015021617A1 (zh) 2013-08-13 2013-08-14 单层电容触控单元及电容式触摸屏

Country Status (2)

Country Link
CN (1) CN103399681B (zh)
WO (1) WO2015021617A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399679B (zh) * 2013-08-13 2016-12-28 深圳市华星光电技术有限公司 电容触控单元及电容式触摸屏
KR101748568B1 (ko) * 2014-07-16 2017-06-21 (주)멜파스 단층 감지 패턴을 이용한 터치 패널 및 상기 터치 패널을 포함하는 터치 감지 장치
CN104156133B (zh) * 2014-09-01 2017-04-19 深圳市华星光电技术有限公司 一种单层互容式触摸面板及电容式触摸屏
US11112919B2 (en) 2017-08-14 2021-09-07 Boe Technology Group Co., Ltd. Mutual capacitive touch substrate, display apparatus, touch panel, method of driving mutual capacitive touch substrate, and driver circuit
CN111504521B (zh) * 2020-05-07 2021-09-03 腾讯科技(深圳)有限公司 柔性电容阵列及其制备方法、和电容阵列检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053743A (zh) * 2009-11-11 2011-05-11 矽创电子股份有限公司 单层触控感测装置
CN102364414A (zh) * 2011-10-26 2012-02-29 苏州瀚瑞微电子有限公司 单层ito的布线结构
CN102855046A (zh) * 2012-10-08 2013-01-02 江西联创电子有限公司 一种单层多点电容屏传感器的图案结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735297B1 (ko) * 2010-03-30 2017-05-16 (주)멜파스 접촉 감지 패널 및 접촉 감지 장치
CN102541334B (zh) * 2010-12-30 2016-09-28 上海天马微电子有限公司 触摸显示装置及其制造方法
CN202711219U (zh) * 2012-07-04 2013-01-30 深圳市爱协生科技有限公司 改良的单层ito互电容触摸屏

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053743A (zh) * 2009-11-11 2011-05-11 矽创电子股份有限公司 单层触控感测装置
CN102364414A (zh) * 2011-10-26 2012-02-29 苏州瀚瑞微电子有限公司 单层ito的布线结构
CN102855046A (zh) * 2012-10-08 2013-01-02 江西联创电子有限公司 一种单层多点电容屏传感器的图案结构

Also Published As

Publication number Publication date
CN103399681B (zh) 2016-08-10
CN103399681A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
US10473964B2 (en) Touch display panel and method for manufacturing the same
US9632641B2 (en) Touch panel for determining real coordinates of the multiple touch points and method thereof
US9285624B2 (en) Single-layer capacitive touch unit and capacitive touch screen
US10108063B2 (en) In-cell touch liquid crystal panel and array substrate thereof
WO2015021619A1 (zh) 电容触控单元及电容式触摸屏
WO2017045382A1 (zh) 触摸屏及其压力触控检测方法
JP6408010B2 (ja) タッチスクリーンパネル
WO2016106840A1 (zh) 单层电容式触摸屏以及触摸显示装置
TWI541712B (zh) 觸控螢幕、觸控板及其驅動方法
WO2014032376A1 (zh) 触控式液晶显示装置
WO2015135225A1 (zh) 一种触摸显示装置及其制作方法
TWI514228B (zh) 觸控式顯示裝置與其製造方法
WO2015021617A1 (zh) 单层电容触控单元及电容式触摸屏
CN103294293A (zh) 内嵌式电容触控屏的触控图形结构
CN104571678A (zh) 触控面板
US11099696B2 (en) Touch substrate, touch control display panel, touch control display apparatus, and method of fabricating touch substrate
TW201320600A (zh) 具有共同驅動器之觸控感測
WO2015180345A1 (zh) 一种阵列基板及其制备方法、电容式内嵌触摸屏
WO2020168890A1 (zh) 一种触控基板及其驱动方法和显示装置
EP3796137A1 (en) Touch panel, touch display panel, and touch display device
US10048812B2 (en) Monolayer mutual-capacitive touch panel and capacitive touchscreen
WO2015100774A1 (zh) 互容式触控面板及液晶显示装置
TWI439908B (zh) 觸控輸入裝置
JP2012230471A (ja) タッチパネル
KR101421706B1 (ko) 터치 스크린 패널 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14111175

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891533

Country of ref document: EP

Kind code of ref document: A1