WO2015020280A1 - Carbon nanotube dispersion and production method for same - Google Patents

Carbon nanotube dispersion and production method for same Download PDF

Info

Publication number
WO2015020280A1
WO2015020280A1 PCT/KR2013/011533 KR2013011533W WO2015020280A1 WO 2015020280 A1 WO2015020280 A1 WO 2015020280A1 KR 2013011533 W KR2013011533 W KR 2013011533W WO 2015020280 A1 WO2015020280 A1 WO 2015020280A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
nitrile rubber
weight
carbon
carbon nanotubes
Prior art date
Application number
PCT/KR2013/011533
Other languages
French (fr)
Korean (ko)
Inventor
김용태
김병열
안성희
김중인
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2015020280A1 publication Critical patent/WO2015020280A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0033Manufacture or treatment of substrate-free structures, i.e. not connected to any support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents

Definitions

  • the present invention relates to a carbon nanotube dispersion and a preparation method thereof. More specifically, the present invention relates to a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent by applying carbon nanorubber and nitrile rubber of a specific size, and a method of manufacturing the same.
  • Carbon nanotubes have a graphite sheet having a nano-size diameter in the form of a cylinder, and have a sp 2 bond structure.
  • the graphite surface exhibits characteristics of a conductor or a semiconductor depending on the angle and structure of the graphite surface.
  • single-walled carbon nanotubes SWCNTs
  • DWCNTs double-walled carbon nanotubes
  • MWCNTs multi-walled carbon nanotubes
  • single-walled carbon nanotubes have a variety of metallic and semiconducting properties and thus exhibit a variety of electrical, chemical, physical and optical properties. These characteristics can be used to implement more detailed and integrated devices.
  • Applications of carbon nanotubes currently under investigation include transparent electrodes, electrostatic dispersion films, field emission devices, surface heating elements, optoelectronics devices, various sensors, and transistors.
  • Non-covalent functional vaporization of carbon nanotubes means hydrogen bonds, van der Waals bonds, charge transfer, dipole one dipole interaction, ⁇ -electron interaction ( ⁇ - Non-covalent bonds, such as ⁇ stacking interaction, to bond the material to be modified on the surface of the carbon nanotubes How to give W.
  • Non-covalent functionalization has the advantage that it is not necessary to induce defects in the structure of the carbon nanotubes, so that the functional group can be given while maintaining the inherent properties of the tube.
  • Non-covalent functionalization is usually done using surfactants, aromatic hydrocarbons, biomaterials, etc., and most of them disperse carbon nanotubes stably in aqueous solution.
  • the method using such an aromatic hydrocarbon dispersant is one of the most studied among the non-covalent functionalization of the carbon nanotubes.
  • the carbon nanotube wall has a hexagonal graphite structure and can interact with electrons with molecules (dispersants) made of aromatic hydrocarbons such as conjugated polymers.
  • the conjugated polymer having an aromatic ring in the polymer chain interacts with ⁇ electrons with the nanotube wall and undergoes functionalization by wrapping the nanotube.
  • Such conjugated polymers include PmPV (poly (metaphenyIene vinylene)), PAE (poly (aryleneethynylene)), PPvPV (poly ⁇ (2,6-pyridinylenevinylene) -co-[(2,5-dioctyloxy-p-phenylene) vinylene] ⁇ ), Poly (methyl methacrylate) (PMMA), Poly (5-alkoxym-phenylenevinylene) (PAmPV), Poly (p-phenylenevinylene) (PPV), cisoidal PPA (Polyphenylacetylene), and transoidal PPA are known.
  • An object of the present invention is to provide a carbon nanotube dispersion and a method for producing the same that can be uniformly dispersed in a carbon nanotube solvent.
  • Another object of the present invention is to provide a carbon nanotube dispersion and a method for producing the same, which can economically disperse carbon nanotubes.
  • Still another object of the present invention is to provide an electronic material manufactured using the carbon nano-leuubric dispersion.
  • the carbon nanotube dispersion may include carbon nanotubes having a D99 value of about 0.5 to about 50 in a particle size distribution; Nitrile rubber; And a solvent; characterized in that it comprises a.
  • the content of the total solute including the carbon nano-rubber and the nitrile rubber is about 1 to about 15% by weight
  • the content of the solvent is about 85 to about 99% by weight
  • the content of the nanotubes may be about 50 to about 90% by weight
  • the content of the nitrile rubber may be about 10 to about 50% by weight.
  • the carbon nanotubes may include one or more of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and bundled carbon nanotubes.
  • the nitrile rubber may include at least one of a nitrile rubber including a repeating unit represented by Formula 1, and a hydrogenated nitrile rubber (HNBR) including a repeating unit represented by Formula 2 below. :
  • m and n are each independently 50 to 250.
  • the nitrile rubber may have an increased average molecular weight of about 5,000 to about 50,000 g / mol.
  • the solvent may include one or more of an organic solvent containing a nitrogen atom (N) having an unshared electron pair, and an alcohol having 1 to 4 carbon atoms.
  • the carbon nanotube dispersion may further comprise a stabilizer comprising at least one of polyvinylidene fluoride (PVDF), polyvinylpyridone (PVP), and diisopropylamine (DIPA).
  • PVDF polyvinylidene fluoride
  • PVP polyvinylpyridone
  • DIPA diisopropylamine
  • Another aspect of the present invention relates to a method for producing a carbon nano-leuco dispersion.
  • the production method is a carbon nanotube slurry by mixing and adjusting the carbon nanotubes and the solvent so that the D99 value of the particle size distribution of the carbon nano-rubber is about 0.5 to about 50; And mixing nitrile rubber in the carbon nano-leuub slurry; Steps.
  • the total solute content including the carbon nanotubes and the nitrile rubber is about 1 to about 15% by weight, and the content of the solvent is about 85 to about 99 W wt%, the total solute, the carbon nanotube content is about 50 to about 90% by weight, the content of the nitrile rubber may be about 10 to about 50% by weight.
  • the mixing and particle size control may be performed by a dispersion method including one or more ultrasonic treatment and milling.
  • stabilizers comprising at least one of polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), and diisopropylamine (DIPA) together with the nitrile rubber may be more mixed.
  • PVDF polyvinylidene fluoride
  • PVP polyvinylpyrrolidone
  • DIPA diisopropylamine
  • Another aspect of the invention relates to an electronic material.
  • the electronic material is prepared using the carbon nanotube dispersion.
  • the electronic material may be a positive electrode or a negative electrode of a secondary battery.
  • the present invention provides a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent and a manufacturing method thereof, and has an effect of providing an electronic material manufactured using the carbon nanotube dispersion.
  • Figure 2 is a carbon nano dispersion dispersion prepared according to Comparative Examples 1 to 3 of the present invention
  • the carbon nanotube dispersion according to the present invention is characterized by comprising (A) carbon nanotubes having a D99 value of about 0.5 to about 50 in particle size distribution, (B) nitrile rubber, and (C) solvent.
  • Carbon nanotubes (CNT) used in the present invention are, for example, single-walled carbon nanotube (SWCNT), double-walled carbon nanotube (DWCNT), multi-wall Carbon Nanotubes (MWCNT; multi— walled carbon nanotubes, rope carbon nanotubes, and combinations thereof, characterized in that the D99 value of the particle size distribution is about 0.5 to about 50 urn, for example, about 5 to about 30 mm 3. .
  • the excitation value of D99 means a value corresponding to about 99% when the particle size is converted from a small size to a cumulative percentage.
  • the electrical conductivity and structural reinforcing effect of the carbon nanotubes may be reduced or a large cost may be required to control the particle size.
  • the particle size exceeds 50 m, the carbon nanotubes may be It may not be uniformly dispersed, and there is a fear that curling and precipitation occur.
  • the content of the carbon nanotubes (A) may be about 50 to about 90% by weight, for example about 65 to about 90% by weight of the total solutes (carbon nanotubes (A) and nitrile rubber (B)). Carbon nanotubes can be uniformly dispersed in the solvent in the above range.
  • Nitrile butadiene rubber (NBR) used in the present invention serves to stabilize the carbon nanotubes to be uniformly dispersed and maintained in a solvent.
  • the nitrile rubber is a conventional nitrile rubber including a repeating unit represented by the following formula (1), hydrogenated nitrile rubber (HNBR) containing a repeating unit represented by the following formula (2), these Mixtures and the like.
  • n and n may each independently be an integer of 50 to 250, and m: n may be about 2: about 8 to about 8: about 2, for example about 4: to about 6 to about 6: It may be about 4, but is not limited thereto.
  • the nitrile rubber may be hydrogenated nitrile rubber (HNBR).
  • HNBR hydrogenated nitrile rubber
  • the nitrile rubber may have a weight average molecular weight of about 5,000 to about 50,000 g / mol, for example about 10,000 to about 30,000 g / mol.
  • Carbon nanotubes can be uniformly dispersed in the solvent in the above range.
  • the content of the nitrile rubber (B) may be about 10 to about 50% by weight, for example about 10 to about 35% by weight of the total solutes (carbon nanotubes (A) and nitrile rubber (B)). Carbon nanotubes can be uniformly dispersed in the solvent in the above range.
  • C solvent
  • an organic solvent used in dispersing carbon nanotubes can be used without limitation, for example, N-methylpyrrolidone (NMP), pyridine, morpholine, dimethylaminobenzene, diethylamino Organic solvents containing a nitrogen atom (N) having a lone pair of electrons such as benzene and n ⁇ butylamine, alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, butanol, and the like, and the like, and the like, may be used. It is not limited. Specifically, N-methylpyridone (NMP) can be used.
  • the content of total solutes is about 1 to about 15% by weight, for example about 3 to about 7% by weight, and the content of the solvent (C) Silver may be from about 85 to about 99 weight percent, for example from about 93 to about 97 weight percent.
  • Carbon nanotube dispersions uniformly dispersed in the above range can be obtained.
  • Carbon nanotube dispersions according to the present invention if necessary, stabilizers comprising polyvinylidene fluoride (PVDF), polyvinylpyridone (PVP), and diisopropylamine (DIPA), a mixture thereof, and the like. It may further include.
  • the method for preparing a carbon nanotube dispersion according to the present invention may include a carbon nanotube (A) and a solvent (C) having a D99 value of about 0.5 to about 50 in a particle size distribution of the carbon nanotube (A). This may include preparing a carbon nanotube slurry by adjusting the mixing and the particle size so as to mix the nitrile rubber (B) with the carbon nano-rubber slurry.
  • the mixing and particle size control may be performed by a conventional dispersion method, for example, may be performed by a dispersion method such as ultrasonic treatment, milling. Specifically, it may be performed using a conventional milling equipment, such as a ball mill, a bead mill, a basket mill, and more specifically, a milling apparatus using a bead mill. .
  • the mixing and particle size adjustment time is about 50 nanoparticles D99 value of the particle size distribution
  • the time that can be adjusted and dispersed below! M is not particularly limited, but may be, for example, about 10 minutes to about 3 hours.
  • the carbon nanotube slurry When using the carbon nanotube slurry, it is possible to shorten the process time (particularly, the particle size control time) than the conventional carbon nanotube dispersion production method of mixing all the carbon nanotubes, the dispersing agent and milling them to adjust the particle size.
  • the nitrile rubber (B) is formed of a mixed nitrile rubber solution such that the nitrile rubber (B) is contained in the solvent (C) in an amount of about 1 to about 15 wt%, for example about 5 to about 8 wt%. It may be added in the form, but is not limited thereto.
  • the total solute (A + B) containing the carbon nanotubes (A) and the nitrile rubber (B) in the carbon nanotube dispersion in which the carbon nanotube slurry and the nitrile rubber are mixed with each other is about 1 To about 15% by weight, the content of the solvent (C) is about 85 to about 99% by weight, and the content of the carbon nano-leuze (A) in the total solute (A + B) is about 50 to about 90% by weight And the content of nitrile rubber (B) should be about 10 to about 50% by weight.
  • Mixing with the carbon nano-rubber slurry and the nitrile rubber (B) can be used without limitation the usual mixing method such as the dispersion method, stirring.
  • the preparation method mixes the carbon nanotubes (A), nitrile rubber (B) and solvent (C) such that the D99 value of the particle size distribution of the carbon nanotubes (A) is about 0.5 to about 50. And adjusting the particle size.
  • the mixing and particle size control may be performed by a conventional dispersion method, for example, may be performed by a dispersion method such as ultrasonic treatment, milling and the like. Specifically, it can be carried out using a conventional milling equipment, such as a ball mill, bead mill, basket mill, for example, milling apparatus using a bead mill. .
  • the mixing and the particle size adjusting time is not particularly limited as long as the carbon nanotubes can be controlled and dispersed at a D99 value of the particle size distribution of about 50 or less, for example, about 1 to about 20 hours.
  • the nitrile rubber (B) is formed of a mixed nitrile rubber solution such that the nitrile rubber (B) is contained in the solvent (C) in an amount of about 1 to about 15 wt%, for example about 5 to about 8 wt%. It may be added in the form, but is not limited thereto.
  • the total solute (A + B) including the carbon nanotubes (A) and the nitrile rubber (B) in the carbon nanotube dispersion is about 1 to about 15% by weight, and the content of the solvent (C) is about 85 To about 99% by weight, of the total solute (A + B), the content of the carbon nanotubes (A) is about 50 to about 90% by weight, the content of the nitrile rubber (B) is about 10 to about 50% by weight Should be%.
  • the carbon nanotube dispersion production method of the present invention may further include the step of adding the stabilizer, in order to further improve the dispersion stability. For example, it can be added together with the nitrile rubber.
  • Another aspect of the invention relates to electronic materials such as electrodes.
  • the electronic material is characterized in that it is prepared using the carbon nanotube dispersion.
  • the electronic material may be a positive electrode or a negative electrode of a secondary battery.
  • the carbon nanotube dispersion may be used as a conductive additive for a secondary battery positive electrode active material or as a carbon black replacement for a negative electrode. Preparation of such a secondary battery positive electrode or negative electrode can be easily performed by those skilled in the art.
  • NMP N—methylpyrrolidone
  • NMP N-methylpyridone
  • Example 6 7.5% by weight of carbon nanotubes (manufacturer: Nynocyl, NC7000) and 43/75% by weight of the nitrile rubber solution of Example 1 were added to 48.75% by weight of N-methylpyridone (NMP) solvent and milled. Using a milling equipment (manufacturer: Buhler, device name: K8), the carbon nanotube dispersion was prepared by adjusting the D99 value of the particle size distribution to be 22.2.
  • NMP N-methylpyridone
  • NMP N-methylpyridone
  • carbon nanoleube manufactured by a 59.25 weight% N-methylpyridone (NMP) solvent
  • 31.25 weight ⁇ 3 ⁇ 4 of the nitrile rubber solution of Example 1 were added and milled milling equipment (manufacturer: Buhler, apparatus: K8) was used to adjust the D99 value of the particle size distribution to 34.6.
  • diisopropylamine diisopropylamine: DIPA, manufacturer: large purified gold, product name: diisopropylamine, EP grade
  • DIPA diisopropylamine
  • NMP N-methylpyrrolidone
  • NMP N-methylpyrrolidone
  • Particle size analysis The prepared carbon nanotube dispersion was diluted 2,000-fold using NMP solvent, and the D99 value of the carbon nanotube particle size distribution was measured using Malvern's Mastersizer 3000 equipment.
  • the carbon nanotube dispersions of the present invention (Examples 1 to 6) have stable dispersibility even after standing for 24 hours, and have a high degree of dispersion due to low UV-visible permeability even after centrifugation at 3,000 rpm. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The carbon nanotube dispersion of the present invention comprises: carbon nanotubes of which the D99 value of the particle size distribution is between about 0.5 and about 50 μm; nitrile rubber; and a solvent. In the carbon nanotube dispersion, the carbon nanotubes are uniformly dispersed in the solvent in an economic fashion.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
탄소나노튜브 분산액 및 이의 제조방법 【기술분야】  Carbon nanotube dispersion and its manufacturing method [technical field]
본 발명은 탄소나노튜브 분산액 및 이의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 특정 크기의 탄소나노류브 및 니트릴 고무를 적용하여 탄소나노튜브를 용매에 균일하게 분산시킨 탄소나노튜브 분산액 및 이의 제조방법에 관한 것이다.  The present invention relates to a carbon nanotube dispersion and a preparation method thereof. More specifically, the present invention relates to a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent by applying carbon nanorubber and nitrile rubber of a specific size, and a method of manufacturing the same.
【배경기술】 Background Art
탄소나노튜브는 혹연면 (graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 보인다. 또한, 벽을 이루고 있는 결합수에 따라서 단일벽 탄 소나노튜브 (SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브 (DWCNT, double-walled carbon nanotube), 다중벽 탄소나노류브 (MWCNT, multi- walled carbon nanotube), 및 다발형 탄소나노튜브 (rope carbon nanotube)로 분류 될 수 있다. 특히, 단일벽 탄소나노튜브는 금속적인 특성과 반도체적인 특성을 가지 고 있어 다양한 전기적, 화학적, 물리적 및 광학적 특성을 나타내며 이러한 특성들 을 이용하여 더욱 세밀하고 집적된 소자들을 구현할 수 있다. 현재 연구되고 있는 탄소나노튜브의 응용분야는 투명 전극, 정전 분산 필름, 전계 방출 소자 (field emission device), 면발열체, 광전자 소자 (optoelectronics device) 및 각종 센서 (sensor), 트랜지스터 등이 있다. Carbon nanotubes have a graphite sheet having a nano-size diameter in the form of a cylinder, and have a sp 2 bond structure. The graphite surface exhibits characteristics of a conductor or a semiconductor depending on the angle and structure of the graphite surface. In addition, depending on the number of bonds in the wall, single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotubes (MWCNTs) carbon nanotubes, and rope carbon nanotubes. In particular, single-walled carbon nanotubes have a variety of metallic and semiconducting properties and thus exhibit a variety of electrical, chemical, physical and optical properties. These characteristics can be used to implement more detailed and integrated devices. Applications of carbon nanotubes currently under investigation include transparent electrodes, electrostatic dispersion films, field emission devices, surface heating elements, optoelectronics devices, various sensors, and transistors.
그러나, 이와 같은 탄소나노튜브의 유용성에도 불구하고, 탄소나노류브는 낮은 용해성과 낮은 분산성으로 인해 그 사용에 한계가 있다. 즉, 탄소나노튜브는 서로 간의 강한 반데르발스 인력에 의해 수용액 상에서 안정적인 분산 상태를 이루지 못하고 응집 현상이 일어나는 문제가 있다.  However, in spite of the usefulness of such carbon nanotubes, the use of carbon nanotubes is limited due to low solubility and low dispersibility. That is, the carbon nanotubes do not form a stable dispersion state in the aqueous solution due to the strong van der Waals attraction between each other, there is a problem that agglomeration phenomenon occurs.
이러한 문제점을 해결하기 위하여, 탄소나노튜브의 표면을 개질하고 기능성을 부여하는 기능기화에 관한 연구가 이루어지고 있으며, 그 중의 한 예가 탄소나노류브의 비공유 기능기화 (noncovalent functionalization)이다. 탄소나노튜브의 비공유 기능기화란 수소결합 (hydrogen bond), 반데르발스 결합 (van der Waals bond), 전하 이동 (charge transfer), 쌍극자 상호작용 (dipole一 dipole interaction), π 전자 상호작용 (π-π stacking interaction) 등과 같은 비공유 결합을 이용하여 탄소나노튜브 표면에 개질하고자 하는 물질을 결합시켜 원하는 기능을 W 부여하는 방법이다. 비공유 기능기화는 탄소나노튜브 구조에 결함을 유도할 필요가 없어 튜브 고유의 성질을 그대로 유지하면서 기능기를 부여할 수 있다는 장점이 있다. 비공유 기능기화는 보통 계면활성제, 방향족 탄화수소, 바이오 물질 등을 이용하여 이루어지며, 대부분 수용액 상에서 안정적으로 탄소나노튜브를 분산시킨다. 이러한 방향족 탄화수소 분산제를 이용한 방법은 상기 탄소나노튜브의 비공유 기능기화 방법들 중에서 가장 많이 연구된 방법 중 하나이다. 탄소나노튜브의 벽면은 육각의 흑연구조로 이루어져 있어, 공액 고분자 (conjugated polymer) 등과 같이 방향족 탄화수소로 이루어진 분자 (분산제)들과 π 전자 상호작용을 할 수 있다. In order to solve this problem, researches on functional vaporization to modify the surface of the carbon nanotubes and impart functionalities have been made, and one example thereof is noncovalent functionalization of carbon nanoleubs. Non-covalent functional vaporization of carbon nanotubes means hydrogen bonds, van der Waals bonds, charge transfer, dipole one dipole interaction, π-electron interaction (π- Non-covalent bonds, such as π stacking interaction, to bond the material to be modified on the surface of the carbon nanotubes How to give W. Non-covalent functionalization has the advantage that it is not necessary to induce defects in the structure of the carbon nanotubes, so that the functional group can be given while maintaining the inherent properties of the tube. Non-covalent functionalization is usually done using surfactants, aromatic hydrocarbons, biomaterials, etc., and most of them disperse carbon nanotubes stably in aqueous solution. The method using such an aromatic hydrocarbon dispersant is one of the most studied among the non-covalent functionalization of the carbon nanotubes. The carbon nanotube wall has a hexagonal graphite structure and can interact with electrons with molecules (dispersants) made of aromatic hydrocarbons such as conjugated polymers.
고분자 사슬 내에 방향족 고리를 가지고 있는 공액 고분자는 나노튜브 벽면과 π 전자 상호작용을 하며 나노튜브를 감싸는 모양 (wrapping)으로 기능기화가 일어난다. 이러한 공액 고분자로는 PmPV(poly(metaphenyIene vinylene)), PAE(poly(aryleneethynylene)), PPvPV(poly{(2,6-pyridinylenevinylene)-co- [(2,5-dioctyloxy-p-phenylene)vinylene] }), PMMA(Poly(methyl methacrylate)), PAmPV(Poly(5-alkoxym-phenylenevinylene)), PPV(Poly(p-phenylenevinylene)), cisoidal PPA(Polyphenylacetylene), transoidal PPA 알려져 있다.  The conjugated polymer having an aromatic ring in the polymer chain interacts with π electrons with the nanotube wall and undergoes functionalization by wrapping the nanotube. Such conjugated polymers include PmPV (poly (metaphenyIene vinylene)), PAE (poly (aryleneethynylene)), PPvPV (poly {(2,6-pyridinylenevinylene) -co-[(2,5-dioctyloxy-p-phenylene) vinylene] }), Poly (methyl methacrylate) (PMMA), Poly (5-alkoxym-phenylenevinylene) (PAmPV), Poly (p-phenylenevinylene) (PPV), cisoidal PPA (Polyphenylacetylene), and transoidal PPA are known.
그러나, 통상적으로 탄소나노튜브의 분산 방법 (비공유 기능기화 방법)에 사용되는 공액 고분자 분산제는 고가이므로, 염가의 화합물 (안정화제)를 사용한 탄소나노튜브의 분산 방법이 요구되고 있다.  However, since the conjugated polymer dispersing agent usually used in the dispersion method (non-covalent functionalization method) of carbon nanotubes is expensive, the dispersion method of carbon nanotubes using an inexpensive compound (stabilizer) is required.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 탄소나노튜브를 용매에 균일하게 분산시킬 수 있는 탄소나노튜브 분산액 및 이의 제조방법을 제공하기 위한 것이다.  An object of the present invention is to provide a carbon nanotube dispersion and a method for producing the same that can be uniformly dispersed in a carbon nanotube solvent.
본 발명의 다른 목적은 경제적으로 탄소나노튜브를 분산시킬 수 있는 탄소나노튜브 분산액 및 이의 제조방법을 제공하기 위한 것이다.  Another object of the present invention is to provide a carbon nanotube dispersion and a method for producing the same, which can economically disperse carbon nanotubes.
본 발명의 또 다른 목적은 상기 탄소나노류브 분산액을 사용하여 제조되는 전자재료를 제공하기 위한 것이다.  Still another object of the present invention is to provide an electronic material manufactured using the carbon nano-leuubric dispersion.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.  The above and other objects of the present invention can be achieved by the present invention described below.
【기술적 해결방법】 본 발명의 하나의 관점은 탄소나노튜브 분산액에 관한 것이다. 상기 탄소나노튜브 분산액은 입도 분포의 D99값이 약 0.5 내지 약 50 인 탄소나노튜브; 니트릴 고무; 및 용매;를 포함하는 것을 특징으로 한다. Technical Solution One aspect of the invention relates to a carbon nanotube dispersion. The carbon nanotube dispersion may include carbon nanotubes having a D99 value of about 0.5 to about 50 in a particle size distribution; Nitrile rubber; And a solvent; characterized in that it comprises a.
구체예에서, 상기 탄소나노류브 및 상기 니트릴 고무를 포함하는 전체 용질의 함량은 약 1 내지 약 15 중량%이고, 상기 용매의 함량은 약 85 내지 약 99 중량%이며, 상기 전체 용질 중, 상기 탄소나노튜브의 함량은 약 50 내지 약 90 중량%이고, 상기 니트릴 고무의 함량은 약 10 내지 약 50 중량 %일 수 있다.  In embodiments, the content of the total solute including the carbon nano-rubber and the nitrile rubber is about 1 to about 15% by weight, the content of the solvent is about 85 to about 99% by weight, and in the total solute, the carbon The content of the nanotubes may be about 50 to about 90% by weight, and the content of the nitrile rubber may be about 10 to about 50% by weight.
구체예에서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 다중벽 탄소나노튜브, 및 다발형 탄소나노튜브 중 1종 이상을 포함할 수 있다.  In embodiments, the carbon nanotubes may include one or more of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and bundled carbon nanotubes.
구체예에서, 상기 니트릴 고무는 하기 화학식 1로 표시되는 반복단위를 포함하는 니트릴 고무, 및 하기 화학식 2로 표시되는 반복단위를 포함하는 수소화된 니트릴 고무 (HNBR) 중 1종 이상을 포함할 수 있다:  In embodiments, the nitrile rubber may include at least one of a nitrile rubber including a repeating unit represented by Formula 1, and a hydrogenated nitrile rubber (HNBR) including a repeating unit represented by Formula 2 below. :
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1 및 2에서, m 및 n은 각각 독립적으로 50 내지 250이다.  In Chemical Formulas 1 and 2, m and n are each independently 50 to 250.
구체예에서, 상기 니트릴 고무는 증량평균분자량이 약 5,000 내지 약 50,000 g/mol일 수 있다.  In embodiments, the nitrile rubber may have an increased average molecular weight of about 5,000 to about 50,000 g / mol.
구체예에서, 상기 용매는 비공유 전자쌍을 가지는 질소 원자 (N)를 포함하는 유기용매, 및 탄소수 1 내지 4의 알코올 중 1종 이상을 포함할 수 있다.  In embodiments, the solvent may include one or more of an organic solvent containing a nitrogen atom (N) having an unshared electron pair, and an alcohol having 1 to 4 carbon atoms.
구체예에서, 상기 탄소나노튜브 분산액은 폴리비닐리덴플로라이드 (PVDF), 폴리비닐피를리돈 (PVP), 및 디이소프로필아민 (DIPA) 중 1종 이상을 포함하는 안정제를 더욱 포함할 수 있다.  In embodiments, the carbon nanotube dispersion may further comprise a stabilizer comprising at least one of polyvinylidene fluoride (PVDF), polyvinylpyridone (PVP), and diisopropylamine (DIPA). .
본 발명의 다른 관점은 탄소나노류브 분산액의 제조방법에 관한 것이다. 상기 제조방법은 탄소나노튜브와 용매를 상기 탄소나노 류브의 입도 분포의 D99값이 약 0.5 내지 약 50 이 되도록 흔합 및 입도 조절하여 탄소나노튜브 슬러리를 제조하고; 그리고 상기 탄소나노류브 슬러리에 니트릴 고무를 흔합하는; 단계를 포함한다.  Another aspect of the present invention relates to a method for producing a carbon nano-leuco dispersion. The production method is a carbon nanotube slurry by mixing and adjusting the carbon nanotubes and the solvent so that the D99 value of the particle size distribution of the carbon nano-rubber is about 0.5 to about 50; And mixing nitrile rubber in the carbon nano-leuub slurry; Steps.
구체예에서, 상기 탄소나노튜브 및 상기 니트릴 고무를 포함하는 전체 용질의 함량은 약 1 내지 약 15 중량%이고, 상기 용매의 함량은 약 85 내지 약 99 W 중량%이며, 상기 전체 용질 중, 상기 탄소나노튜브의 함량은 약 50 내지 약 90 중량 %이고, 상기 니트릴 고무의 함량은 약 10 내지 약 50 중량 %일 수 있다. In embodiments, the total solute content including the carbon nanotubes and the nitrile rubber is about 1 to about 15% by weight, and the content of the solvent is about 85 to about 99 W wt%, the total solute, the carbon nanotube content is about 50 to about 90% by weight, the content of the nitrile rubber may be about 10 to about 50% by weight.
구체예에서, 상기 탄소나노튜브 슬러리 제조 시, 상기 흔합 및 입도 조절은 초음파 처리 및 밀링을 하나 이상 포함하는 분산 방법에 의해 수행될 수 있다.  In an embodiment, in the preparation of the carbon nanotube slurry, the mixing and particle size control may be performed by a dispersion method including one or more ultrasonic treatment and milling.
구체예에서, 상기 니트릴 고무와 함께 폴리비닐리덴플로라이드 (PVDF), 폴리비닐피롤리돈 (PVP), 및 디이소프로필아민 (DIPA) 중 1종 이상을 포함하는 안정제를 더욱 흔합할 수 있다.  In embodiments, stabilizers comprising at least one of polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), and diisopropylamine (DIPA) together with the nitrile rubber may be more mixed.
본 발명의 또 다른 관점은 전자 재료에 관한 것이다. 상기 전자 재료는 상기 탄소나노튜브 분산액을 사용하여 제조되는 것이다.  Another aspect of the invention relates to an electronic material. The electronic material is prepared using the carbon nanotube dispersion.
구체예에서, 상기 전자 재료는 이차전지의 양극 또는 음극일 수 있다.  In an embodiment, the electronic material may be a positive electrode or a negative electrode of a secondary battery.
[유리한 효과】 Advantageous Effects
본 발명은 경제적으로 탄소나노튜브를 용매에 균일하게 분산시킨 탄소나노튜브 분산액 및 이의 제조방법을 제공하며, 상기 탄소나노튜브 분산액을 사용하여 제조되는 전자재료를 제공하는 발명의 효과를 갖는다.  The present invention provides a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent and a manufacturing method thereof, and has an effect of providing an electronic material manufactured using the carbon nanotube dispersion.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명의 실시예 1 내지 6에 따라 제조된 탄소나노튜브 분산액을 1 is a carbon nanotube dispersion prepared according to Examples 1 to 6 of the present invention
NMP 용매를 사용하여 2,000배 희석하고, 3,000 rpm 에서 30분간 원심분리한 후, 상등액을 분취하여 24시간 방치한 후의 사진이다. After diluting 2,000 times with NMP solvent, centrifuging at 3,000 rpm for 30 minutes, the supernatant was aliquoted and left for 24 hours.
도 2는 본 발명의 비교예 1 내지 3에 따라 제조된 탄소나노류브 분산액을 Figure 2 is a carbon nano dispersion dispersion prepared according to Comparative Examples 1 to 3 of the present invention
NMP 용매를 사용하여 2,000배 희석하고, 3,000 rpm 에서 30분간 원심분리한 후, 상등액을 분취하여 24시간 방치한 후의 사진이다. 【발명의 실시를 위한 최선의 형태】 After diluting 2,000 times with NMP solvent, centrifuging at 3,000 rpm for 30 minutes, the supernatant was aliquoted and left for 24 hours. [Best form for implementation of the invention]
이하, 본 발명을 상세히 설명하면, 다음과 같다.  Hereinafter, the present invention will be described in detail.
본 발명에 따른 탄소나노튜브 분산액은 (A) 입도 분포의 D99값이 약 0.5 내지 약 50 인 탄소나노튜브, (B) 니트릴 고무, 및 (C) 용매를 포함하는 것을 특징으로 한다.  The carbon nanotube dispersion according to the present invention is characterized by comprising (A) carbon nanotubes having a D99 value of about 0.5 to about 50 in particle size distribution, (B) nitrile rubber, and (C) solvent.
(A) 탄소나노튜브 (A) Carbon Nanotubes
본 발명에 사용되는 탄소나노튜브 (carbon nanotube: CNT)는 예를 들면, 단 일벽 탄소나노류브 (SWCNT; single-walled carbon nanotube), 이중벽 탄소나노튜브 (DWCNT; double-walled carbon nanotube), 다중벽 탄소나노튜브 (MWCNT; multi— walled carbon nanotube), 다발형 탄소나노튜브 (rope carbon nanotube), 이들의 조 합일 수 있으며, 입도 분포의 D99값이 약 0.5 내지 약 50 urn, 예를 들면 약 5 내지 약 30 卿인 것을 특징으로 한다. 여기세 D99값은 입경을 작은 크기에서부터 누적 백분율로 환산할 경우 약 99%에 해당하는 값을 의미한다. 상기 입도 분포의 D99값 이 약 0.5 미만일 경우, 탄소나노튜브의 전기전도성 및 구조적 보강 효과가 떨어 지거나 입도를 제어하기 위하여 많은 비용이 소요될 우려가 있고, 약 50 m를 초과 할 경우, 탄소나노튜브가 균일하게 분산되지 못하고, 웅집 및 침전이 발생할 우려가 있다. Carbon nanotubes (CNT) used in the present invention are, for example, single-walled carbon nanotube (SWCNT), double-walled carbon nanotube (DWCNT), multi-wall Carbon Nanotubes (MWCNT; multi— walled carbon nanotubes, rope carbon nanotubes, and combinations thereof, characterized in that the D99 value of the particle size distribution is about 0.5 to about 50 urn, for example, about 5 to about 30 mm 3. . The excitation value of D99 means a value corresponding to about 99% when the particle size is converted from a small size to a cumulative percentage. When the D99 value of the particle size distribution is less than about 0.5, the electrical conductivity and structural reinforcing effect of the carbon nanotubes may be reduced or a large cost may be required to control the particle size. When the particle size exceeds 50 m, the carbon nanotubes may be It may not be uniformly dispersed, and there is a fear that curling and precipitation occur.
상기 탄소나노튜브 (A)의 함량은 전체 용질 (탄소나노튜브 (A) 및 니트릴 고무 (B)) 중 약 50 내지 약 90 중량 %, 예를 들면 약 65 내지 약 90 중량%일 수 있다. 상기 범위에서 탄소나노튜브를 용매에 균일하게 분산시킬 수 있다.  The content of the carbon nanotubes (A) may be about 50 to about 90% by weight, for example about 65 to about 90% by weight of the total solutes (carbon nanotubes (A) and nitrile rubber (B)). Carbon nanotubes can be uniformly dispersed in the solvent in the above range.
(B) 니트릴 고무 (B) nitrile rubber
본 발명에 사용되는 니트릴 고무 (nitrile butadiene rubber: NBR)는 상기 탄소나노튜브가 용매에 균일하게 분산 및 유지되도톡 하는 안정화제 역할을 하는 것이다. 예를 들면, 상기 니트릴 고무는 하기 화학식 1로 표시되는 반복단위를 포함하는 통상의 니트릴 고무, 하기 화학식 2로 표시되는 반복단위를 포함하는 수소화된 니트릴 고무 (hydrogenated nitrile butadiene rubber: HNBR), 이들의 흔합물 등일 수 있다.  Nitrile butadiene rubber (NBR) used in the present invention serves to stabilize the carbon nanotubes to be uniformly dispersed and maintained in a solvent. For example, the nitrile rubber is a conventional nitrile rubber including a repeating unit represented by the following formula (1), hydrogenated nitrile rubber (HNBR) containing a repeating unit represented by the following formula (2), these Mixtures and the like.
Figure imgf000007_0001
Figure imgf000007_0001
상기 화학식 1 및 2에서, m 및 n은 각각 독립적으로 50 내지 250의 정수일 수 있고, m:n은 약 2 : 약 8 내지 약 8 : 약 2, 예를 들면 약 4 : 약 6 내지 약 6 : 약 4일 수 있으나, 이에 제한되지 않는다.  In Formulas 1 and 2, m and n may each independently be an integer of 50 to 250, and m: n may be about 2: about 8 to about 8: about 2, for example about 4: to about 6 to about 6: It may be about 4, but is not limited thereto.
구체적으로, 상기 니트릴 고무는 수소화된 니트릴 고무 (HNBR)일 수 있다. 구체예에서, 상기 니트릴 고무는 중량평균분자량이 약 5,000 내지 약 50,000 g/mol, 예를 들면 약 10,000 내지 약 30,000 g/mol 일 수 있다. 상기 범위에서 탄소나노튜브를 용매에 균일하게 분산시킬 수 있다. 상기 니트릴 고무 (B)의 함량은 전체 용질 (탄소나노튜브 (A) 및 니트릴 고무 (B)) 중 약 10 내지 약 50 중량 %, '예를 들면 약 10 내지 약 35 중량%일 수 있다. 상기 범위에서 탄소나노튜브를 용매에 균일하게 분산시킬 수 있다. (C) 용매 Specifically, the nitrile rubber may be hydrogenated nitrile rubber (HNBR). In embodiments, the nitrile rubber may have a weight average molecular weight of about 5,000 to about 50,000 g / mol, for example about 10,000 to about 30,000 g / mol. Carbon nanotubes can be uniformly dispersed in the solvent in the above range. The content of the nitrile rubber (B) may be about 10 to about 50% by weight, for example about 10 to about 35% by weight of the total solutes (carbon nanotubes (A) and nitrile rubber (B)). Carbon nanotubes can be uniformly dispersed in the solvent in the above range. (C) solvent
본 발명에 사용되는 용매로는 탄소나노튜브 분산 시 사용되는 유기용매를 제한 없이 사용할 수 있으며, 예를 들면, N-메틸피롤리돈 (NMP), 피리딘, 모폴린, 디메틸아미노벤젠, 디에틸아미노벤젠, nᅳ부틸아민 등의 비공유 전자쌍을 가지는 질소 원자 (N)를 포함하는 유기용매, 메탄올, 에탄올, 프로판올, 부탄올 등의 탄소수 1 내지 4의 알코올, 이들의 흔합물 등을 사용할 수 있으나, 이에 제한되지 않는다. 구체적으로는 N-메틸피를리돈 (NMP)를 사용할 수 있다.  As the solvent used in the present invention, an organic solvent used in dispersing carbon nanotubes can be used without limitation, for example, N-methylpyrrolidone (NMP), pyridine, morpholine, dimethylaminobenzene, diethylamino Organic solvents containing a nitrogen atom (N) having a lone pair of electrons such as benzene and n ᅳ butylamine, alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, butanol, and the like, and the like, may be used. It is not limited. Specifically, N-methylpyridone (NMP) can be used.
구체예에서, 전체 용질 (탄소나노튜브 (A) 및 니트릴 고무 (B))의 함량은 약 1 내지 약 15 중량 %, 예를 들면 약 3 내지 약 7 중량%이고, 상기 용매 (C)의 함량은 약 85 내지 약 99 중량 %, 예를 들면 약 93 내지 약 97 중량 %일 수 있다. 상기 범위에서 균일하게 분산된 탄소나노튜브 분산액을 얻을 수 있다. 본 발명에 따른 탄소나노튜브 분산액은 필요에 따라, 폴리비닐리덴플로라이 드 (PVDF), 폴리비닐피를리돈 (PVP), 및 디이소프로필아민 (DIPA), 이들의 흔합물 등 을 포함하는 안정제를 더욱 포함할 수 있다. 상기 안정제 사용 시, 상기 탄소나노튜 브 분산액 (A+ B+ C) 약 100 중량부에 대하여, 약 0.1 내지 약 5 중량부, 예를 들면, 약 0.2 내지 약 1.5 중량부가 포함될 수 있으나, 이에 제한되지 않는다. 상기 범위 에서 분산 안정성이 더욱 우수할 수 있다. 본 발명에 따른 탄소나노튜브 분산액의 제조방법은 일 구체예에서, 상기 탄소나노튜브 (A)와 상기 용매 (C)를 상기 탄소나노 튜브 (A)의 입도 분포의 D99값이 약 0.5 내지 약 50 이 되도록 흔합 및 입도 조절하여 탄소나노튜브 슬러리를 제조하고, 그리고 상기 탄소나노류브 슬러리에 니트릴 고무 (B)를 흔합하는 단계를 포함할 수 있다.  In an embodiment, the content of total solutes (carbon nanotubes (A) and nitrile rubber (B)) is about 1 to about 15% by weight, for example about 3 to about 7% by weight, and the content of the solvent (C) Silver may be from about 85 to about 99 weight percent, for example from about 93 to about 97 weight percent. Carbon nanotube dispersions uniformly dispersed in the above range can be obtained. Carbon nanotube dispersions according to the present invention, if necessary, stabilizers comprising polyvinylidene fluoride (PVDF), polyvinylpyridone (PVP), and diisopropylamine (DIPA), a mixture thereof, and the like. It may further include. When using the stabilizer, about 0.1 parts by weight to about 5 parts by weight, for example, about 0.2 parts by weight to about 1.5 parts by weight based on about 100 parts by weight of the carbon nanotube dispersion (A + B + C), is not limited thereto. . Dispersion stability may be more excellent in the above range. In one embodiment, the method for preparing a carbon nanotube dispersion according to the present invention may include a carbon nanotube (A) and a solvent (C) having a D99 value of about 0.5 to about 50 in a particle size distribution of the carbon nanotube (A). This may include preparing a carbon nanotube slurry by adjusting the mixing and the particle size so as to mix the nitrile rubber (B) with the carbon nano-rubber slurry.
상기 탄소나노류브 슬러리 제조 시, 상기 흔합 및 입도 조절 (분산)은 통상의 분산 방법에 의해 수행될 수 있으며, 예를 들면, 초음파 처리, 밀링 등의 분산 방법에 의해 수행될 수 있다. 구체적으로, 볼 밀 (ball mill), 비드 밀 (bead mill), 바스켓 밀 (basket mill) 등의 통상의 밀링 (milling) 장비, 더욱 구체적으로, 비드 밀을 이용한 밀링 장치를 사용하여 수행할 수 있다. 상기 흔합 및 입도 조절 시간은 탄소나노튜브가 입도 분포의 D99값이 약 50In the preparation of the carbon nano-lough slurry, the mixing and particle size control (dispersion) may be performed by a conventional dispersion method, for example, may be performed by a dispersion method such as ultrasonic treatment, milling. Specifically, it may be performed using a conventional milling equipment, such as a ball mill, a bead mill, a basket mill, and more specifically, a milling apparatus using a bead mill. . The mixing and particle size adjustment time is about 50 nanoparticles D99 value of the particle size distribution
!M 이하로 조절되고 분산될 수 있는 시간이면 크게 제한되지는 않으나, 예를 들면, 약 10분 내지 약 3시간일 수 있다. The time that can be adjusted and dispersed below! M is not particularly limited, but may be, for example, about 10 minutes to about 3 hours.
상기 탄소나노튜브 슬러리 사용 시, 탄소나노튜브, 분산제 둥을 전부 흔합하고 이를 밀링하여 입도를 조절하는 통상적인 탄소나노튜브 분산액 제조방법보다 공정 시간 (특히, 입도 조절 시간)을 단축할 수 있다.  When using the carbon nanotube slurry, it is possible to shorten the process time (particularly, the particle size control time) than the conventional carbon nanotube dispersion production method of mixing all the carbon nanotubes, the dispersing agent and milling them to adjust the particle size.
구체예에서, 상기 니트릴 고무 (B)는 상기 니트릴 고무 (B)를 상기 용매 (C)에 약 1 내지 약 15 중량 %, 예를 들면 약 5 내지 약 8 중량 % 포함되도록 흔합한 니트릴 고무 용액의 형태로 첨가될 수 있으나, 이에 제한되지 않는다. 단, 상기 탄소나노튜브 슬러리 및 상기 니트릴 고무를 용액을 흔합한 전체 탄소나노튜브 분산액 중 상기 탄소나노튜브 (A) 및 상기 니트릴 고무 (B)를 포함하는 전체 용질 (A+ B)의 함량은 약 1 내지 약 15 중량%이고, 상기 용매 (C)의 함량은 약 85 내지 약 99 중량 %이며, 상기 전체 용질 (A+ B) 중, 상기 탄소나노류브 (A)의 함량은 약 50 내지 약 90 중량%이고, 상기 니트릴 고무 (B)의 함량은 약 10 내지 약 50 중량%가 되도록 하여야 한다.  In an embodiment, the nitrile rubber (B) is formed of a mixed nitrile rubber solution such that the nitrile rubber (B) is contained in the solvent (C) in an amount of about 1 to about 15 wt%, for example about 5 to about 8 wt%. It may be added in the form, but is not limited thereto. However, the total solute (A + B) containing the carbon nanotubes (A) and the nitrile rubber (B) in the carbon nanotube dispersion in which the carbon nanotube slurry and the nitrile rubber are mixed with each other is about 1 To about 15% by weight, the content of the solvent (C) is about 85 to about 99% by weight, and the content of the carbon nano-leuze (A) in the total solute (A + B) is about 50 to about 90% by weight And the content of nitrile rubber (B) should be about 10 to about 50% by weight.
상기 탄소나노류브 슬러리 및 니트릴 고무 (B)와 흔합은 상기 분산 방법, 교반 등 통상의 흔합 방법 등을 제한 없이 사용할 수 있다. 예를 들어, 상기 니트릴 고무 (B)를 니트릴 고무 용액의 형태로 흔합할 경우, 니트릴 고무의 용해 및 점성에 따른 취급 용이성을 확보할 수 있다. 다른 구체예에서, 상기 제조방법은 상기 탄소나노튜브 (A), 니트릴 고무 (B) 및 용매 (C)을 상기 탄소나노 튜브 (A)의 입도 분포의 D99값이 약 0.5 내지 약 50 이 되도록 흔합 및 입도 조절하는 단계를 포함할 수 있다.  Mixing with the carbon nano-rubber slurry and the nitrile rubber (B) can be used without limitation the usual mixing method such as the dispersion method, stirring. For example, when the nitrile rubber (B) is mixed in the form of a nitrile rubber solution, ease of handling due to dissolution and viscosity of the nitrile rubber can be ensured. In another embodiment, the preparation method mixes the carbon nanotubes (A), nitrile rubber (B) and solvent (C) such that the D99 value of the particle size distribution of the carbon nanotubes (A) is about 0.5 to about 50. And adjusting the particle size.
상기 흔합 및 입도 조절 (분산)은 통상의 분산 방법에 의해 수행될 수 있으며, 예를 들면, 초음파 처리, 밀링 등의 분산 방법에 의해 수행될 수 있다. 구체적으로, 볼 밀 (ball mill), 비드 밀 (bead mill), 바스켓 밀 (basket mill) 등의 통상의 밀링 (milling) 장비, 예를 들면, 비드 밀을 이용한 밀링 장치를 사용하여 수행할 수 있다.  The mixing and particle size control (dispersion) may be performed by a conventional dispersion method, for example, may be performed by a dispersion method such as ultrasonic treatment, milling and the like. Specifically, it can be carried out using a conventional milling equipment, such as a ball mill, bead mill, basket mill, for example, milling apparatus using a bead mill. .
상기 흔합 및 입도 조절 시간은 탄소나노튜브가 입도 분포의 D99값이 약 50 이하로 조절되고 분산될 수 있는 시간이면 크게 제한되지는 않으나, 예를 들면, 약 1 내지 약 20시간일 수 있다.  The mixing and the particle size adjusting time is not particularly limited as long as the carbon nanotubes can be controlled and dispersed at a D99 value of the particle size distribution of about 50 or less, for example, about 1 to about 20 hours.
구체예에서, 상기 니트릴 고무 (B)는 상기 니트릴 고무 (B)를 상기 용매 (C)에 약 1 내지 약 15 중량 %, 예를 들면 약 5 내지 약 8 중량 % 포함되도록 흔합한 니트릴 고무 용액의 형태로 첨가될 수 있으나, 이에 제한되지 않는다. 단, 전체 탄소나노튜브 분산액 중 상기 탄소나노튜브 (A) 및 상기 니트릴 고무 (B)를 포함하는 전체 용질 (A+ B)의 함량은 약 1 내지 약 15 중량%이고, 상기 용매 (C)의 함량은 약 85 내지 약 99 중량 %이며, 상기 전체 용질 (A+ B) 중, 상기 탄소나노튜브 (A)의 함량은 약 50 내지 약 90 중량 %이고, 상기 니트릴 고무 (B)의 함량은 약 10 내지 약 50 중량 %가 되도록 하여야 한다. 본 발명의 탄소나노튜브 분산액 제조방법은 분산 안정성을 더욱 향상시키기 위하여, 상기 안정제를 투입하는 단계를 더욱 포함할 수 있다. 예를 들면, 상기 니트릴 고무와 함께 투입할 수 있다. 본 발명의 또 다른 관점은 전극 등의 전자 재료에 관한 것이다. 상기 전자 재료는 상기 탄소나노튜브 분산액을 사용하여 제조되는 것을 특징으로 한다. In an embodiment, the nitrile rubber (B) is formed of a mixed nitrile rubber solution such that the nitrile rubber (B) is contained in the solvent (C) in an amount of about 1 to about 15 wt%, for example about 5 to about 8 wt%. It may be added in the form, but is not limited thereto. However, all The total solute (A + B) including the carbon nanotubes (A) and the nitrile rubber (B) in the carbon nanotube dispersion is about 1 to about 15% by weight, and the content of the solvent (C) is about 85 To about 99% by weight, of the total solute (A + B), the content of the carbon nanotubes (A) is about 50 to about 90% by weight, the content of the nitrile rubber (B) is about 10 to about 50% by weight Should be%. The carbon nanotube dispersion production method of the present invention may further include the step of adding the stabilizer, in order to further improve the dispersion stability. For example, it can be added together with the nitrile rubber. Another aspect of the invention relates to electronic materials such as electrodes. The electronic material is characterized in that it is prepared using the carbon nanotube dispersion.
구체예에서, 상기 전자 재료는 이차전지의 양극 또는 음극일 수 있다. 구체적으로, 상기 탄소나노튜브 분산액을 이차전지 양극 활물질의 도전성 첨가제 용도로 사용하거나, 음극의 카본블랙 대체 용도로 사용할 수 있다. 이러한 이차전지 양극 또는 음극의 제조는 당업자에 의해 용이하게 수행될 수 있다.  In an embodiment, the electronic material may be a positive electrode or a negative electrode of a secondary battery. Specifically, the carbon nanotube dispersion may be used as a conductive additive for a secondary battery positive electrode active material or as a carbon black replacement for a negative electrode. Preparation of such a secondary battery positive electrode or negative electrode can be easily performed by those skilled in the art.
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용올 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.  Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다. 실시예  Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically. Example
실시예 1  Example 1
77.75 중량 %의 N—메틸피롤리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)를 첨가하고, 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8, 비드 밀)를 사용하여 입도 분포의 D99값이 24.3 가 되도록 조절하였다. 입도 크기가 조절된 탄소나노튜브 슬러리 (CNT slurry)에 18.75 중량 %의 니트릴 고무 용액 (8 중량 %의 하기 화학식 2로 표시되는 반복단위를 포함하는 수소화된 니트릴 고무 (중량평균분자량: 16,200 g/mol, m:n=4:6)를 포함하는 N—메틸피롤리돈 (NMP) 용액)을 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액을 제조하였다. [화학식 2 ]
Figure imgf000011_0001
실시예 2
To a 77.75 weight% N—methylpyrrolidone (NMP) solvent, add 3.5 weight% carbon nanotubes (manufacturer: Nynocyl, product name: NC7000), and milling equipment (manufacturer: Buhler, device name: K8, beads). Wheat) to adjust the D99 value of the particle size distribution to 24.3. Hydrogenated nitrile rubber containing 18.75% by weight of nitrile rubber solution (8% by weight of repeating unit represented by the following Chemical Formula 2) in a carbon nanotube slurry (CNT slurry) having a particle size adjusted (weight average molecular weight: 16,200 g / mol N-methylpyrrolidone (NMP) solution containing m: n = 4: 6)) was added, and stirred and stabilized for 5 hours to prepare a carbon nanotube dispersion. [Formula 2]
Figure imgf000011_0001
Example 2
77.25 중량 %의 N-메틸피를리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)를 첨가하고, 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8)를 사용하여 입도 분포의 D99값이 18.8 가 되도록 조절하였다. 입도 크기가 조절된 탄소나노튜브 슬러리 (CNT slurry)에 18.75 중량 %의 상기 실시예 1의 니트릴 고무 용액과 0.5 중량%의 폴리비닐피롤리돈 (polyvinylpyrrolidone: PVP, 제조사: 시그마알드리치, 제품명: PVP10)를 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액을 제조하였다. 실시예 3  To a 77.25 weight% N-methylpyridone (NMP) solvent, add 3.5 weight% carbon nanotubes (manufacturer: Nynocyl, product name: NC7000), and add a milling equipment (manufacturer: Buhler, device name: K8). It was used to adjust the D99 value of the particle size distribution to 18.8. 18.75% by weight of the nitrile rubber solution of Example 1 and 0.5% by weight of polyvinylpyrrolidone (PVP, manufacturer: Sigma Aldrich, product name: PVP10) in a particle size-controlled carbon nanotube slurry (CNT slurry) To this was added, stirring and stabilization for 5 hours to prepare a carbon nanotube dispersion. Example 3
77.25 중량 %의 N-메틸피를리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)를 첨가하고, 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8)를 사용하여 입도 분포의 D99값이 20.4 卿가 되도록 조절하였다. 입도 크기가 조절된 탄소나노튜브 슬러리 (CNT slurry)에 18.75 중량 %의 상기 실시예 1의 니트릴 고무 용액과 0.5 중량 %의 폴리비닐리덴플로라이드 (polyvinylidinefluoride: PVDF, 제조사: 솔베이 (Solvay), 제품명: SOLEF 6020)를 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액을 제조하였다. 실시예 4  To a 77.25 weight% N-methylpyridone (NMP) solvent, add 3.5 weight% carbon nanotubes (manufacturer: Nynocyl, product name: NC7000), and add a milling equipment (manufacturer: Buhler, device name: K8). It was adjusted so that the D99 value of the particle size distribution was 20.4 mm 3. 18.75% by weight of the nitrile rubber solution of Example 1 and 0.5% by weight of polyvinylidinefluoride (PVDF, manufactured by Solvay) SOLEF 6020) was added, and stirred and stabilized for 5 hours to prepare a carbon nanotube dispersion. Example 4
83 중량 %의 N_메틸피를리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)를 첨가하고, 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8)를 사용하여 입도 분포의 D99값이 15.4 가 되도록 조절하였다. 입도 크기가 조절된 탄소나노튜브 슬러리 (CNT slurry)에 12.5 중량 %의 상기 실시예 1의 니트릴 고무 용액과 1 중량 %의 디이소프로필아민 (diisopropylamine: DIPA, 제조사: 대정화금, 제품명: diisopropylamine, EP급)을 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액을 제조하였다. 실시예 5 Add 83% by weight of carbon nanotubes (manufacturer: Nynocyl, product name: NC7000) to 83% by weight of N_methylpyrrolidone (NMP) solvent and milling equipment (manufacturer: Buhler, device name: K8). It adjusted so that D99 value of particle size distribution might be 15.4. 12.5% by weight of the nitrile rubber solution of Example 1 and 1% by weight of diisopropylamine (diisopropylamine: DIPA, manufactured by Daejin Co., Ltd., product name: diisopropylamine, EP) was added, and stirred and stabilized for 5 hours to prepare a carbon nanotube dispersion. Example 5
48.75 중량 %의 N-메틸피를리돈 (NMP) 용매에 7.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)와 43/75 중량 %의 상기 실시예 1의 니트릴 고무 용액을 첨가하고 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8)를 사용하여 입도 분포의 D99값이 22.2 가 되도록 조절하여 탄소나노튜브 분산액을 제조하였다. 실시예 6  7.5% by weight of carbon nanotubes (manufacturer: Nynocyl, NC7000) and 43/75% by weight of the nitrile rubber solution of Example 1 were added to 48.75% by weight of N-methylpyridone (NMP) solvent and milled. Using a milling equipment (manufacturer: Buhler, device name: K8), the carbon nanotube dispersion was prepared by adjusting the D99 value of the particle size distribution to be 22.2. Example 6
59.25 중량 %의 N-메틸피를리돈 (NMP) 용매에 7.5 중량 %의 탄소나노류브 (제조사: Nynocyl, 제품명: NC7000)와 31.25 중량 <¾의 상기 실시예 1의 니트릴 고무 용액을 첨가하고 밀링 (milling) 장비 (제조사: Buhler, 장치 : K8)를 사용하여 입도 분포의 D99값이 34.6 가 되도록 조절하였다. 다음으로 디이소프로필아민 (diisopropylamine: DIPA, 제조사: 대정화금, 제품명: diisopropylamine, EP급)을 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액을 제조하였다. 비교예 1 To a 59.25 weight% N-methylpyridone (NMP) solvent, 7.5 weight% of carbon nanoleube (manufacturer: Nynocyl, product name: NC7000) and 31.25 weight < ¾ of the nitrile rubber solution of Example 1 were added and milled milling equipment (manufacturer: Buhler, apparatus: K8) was used to adjust the D99 value of the particle size distribution to 34.6. Next, diisopropylamine (diisopropylamine: DIPA, manufacturer: large purified gold, product name: diisopropylamine, EP grade) was added, and stirred and stabilized for 5 hours to prepare a carbon nanotube dispersion. Comparative Example 1
95 중량 %의 N-메틸피롤리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)를 첨가하고, 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8)를 사용하여 입도 분포의 D99값이 38.8 皿가 되도록 조절하였다. 입도 크기가 조절된 탄소나노튜브 슬러리 (CNT slurry)에 1.5 중량 %의 폴리비닐피롤리돈 (polyvinylpyrrolidone: PVP, 제조사: 시그마알드리치, 제품명: PVP10)를 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노류브 분산액을 제조하였다. 비교예 2  Add 95 weight% N-methylpyrrolidone (NMP) solvent to 3.5 weight% carbon nanotube (manufacturer: Nynocyl, product name: NC7000), and milling equipment (manufacturer: Buhler, device name: K8). It was used to adjust the D99 value of the particle size distribution to 38.8 mm 3. 1.5 wt% polyvinylpyrrolidone (PVP, manufacturer: Sigma-Aldrich, product name: PVP10) was added to the carbon nanotube slurry (CNT slurry) with particle size adjustment, and stirred and stabilized for 5 hours. Lube dispersions were prepared. Comparative Example 2
95 중량 ¾의 N_메틸피를리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)를 첨가하고, 밀링 (milling) 장비 (제조사: Buhler, 장치명: K8)를 사용하여 입도 분포의 D99값이 40.3 가 되도록 조절하였다. 입도 크기가 조절된 탄소나노튜브 슬러리 (CNT slurry)에 1.5 중량 %의 폴리비닐리덴플로라이드 (polyvinylidinefluoride: PVDF, 제조사: 솔베이 (Solvay), 제품명: S^^EF 6020)를 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액을 제조하였다. 비교예 3 To a 95 weight ¾ N_methylpyridone (NMP) solvent, add 3.5 weight% carbon nanotubes (manufacturer: Nynocyl, product name: NC7000), and add a milling equipment (manufacturer: Buhler, device name: K8). It adjusted so that D99 value of particle size distribution might be 40.3. 1.5 wt% polyvinylidinefluoride (PVDF, manufacturer: Solvay, product name: S ^^ EF 6020) was added to the particle size-sized carbon nanotube slurry (CNT slurry) for 5 hours. Stirring and stabilization to prepare a carbon nanotube dispersion. Comparative Example 3
77.75 중량 %의 N-메틸피롤리돈 (NMP) 용매에 3.5 중량 %의 탄소나노튜브 (제조사: Nynocyl, 제품명: NC7000)와 18.75 중량 %의 상기 실시예 1의 니트릴 고무 용액을 첨가하고, 5시간 동안 교반 및 안정화하여 탄소나노튜브 분산액 (탄소나노튜브 입도 분포의 D99값: 380 )을 제조하였다.  To a 77.75 weight% N-methylpyrrolidone (NMP) solvent, 3.5 weight% carbon nanotubes (manufacturer: Nynocyl, product name: NC7000) and 18.75 weight% of the nitrile rubber solution of Example 1 were added, and 5 hours After stirring and stabilization, a carbon nanotube dispersion (D99 value of carbon nanotube particle size distribution: 380) was prepared.
물성 평가 방법  Property evaluation method
1. 분산성 평가: 제조된 탄소나노튜브 분산액의 NMP 용매를 사용하여 2,000배 희석하고, 3,000 rpm 에서 30분간 원심분리한 후, 상등액을 분취하였다. 상기 상등액을 실온에서 24시간 방치한 후, 육안으로 바닥과 기벽을 관찰하였다. 도 1 및 2에 각각의 사진을 나타내었다. 침전이 생성되지 않으면 O, 미세 침전이 생성되면 X로 평가하였다. ᅳ  1. Dispersibility Evaluation: After diluting 2,000 times using NMP solvent of the prepared carbon nanotube dispersion, centrifugation at 3,000 rpm for 30 minutes, the supernatant was aliquoted. After leaving the supernatant at room temperature for 24 hours, the bottom and the wall were visually observed. 1 and 2 show the respective photographs. It was evaluated as O if no precipitate was formed and X as fine precipitate was formed. ᅳ
2. 투과도 (%): 제조된 탄소나노튜브 분산액을 NMP 용매를 사용하여 2,000배 회석하고, 3,000 rpm 에서 30분간 원심분리한 후, 상등액을 분취하여 550 nm 파장에서 UV-visible 스펙트럼을 찍어서 투과율을 관찰하였다. 탄소나노튜브의 분산 정도가 높을수록 투과도는 낮은 수치를 갖는다.  2. Permeability (%): The prepared carbon nanotube dispersion was diluted 2,000-fold using NMP solvent, centrifuged at 3,000 rpm for 30 minutes, the supernatant was collected and UV-visible spectrum was taken at 550 nm to measure the transmittance. Observed. The higher the degree of dispersion of carbon nanotubes, the lower the permeability.
3. 입도 분석: 제조된 탄소나노튜브 분산액을 NMP 용매를 사용하여, 2,000배 희석하고, Malvern사의 Mastersizer 3000 장비를 사용하여, 탄소나노튜브 입도 분포의 D99값올 측정하였다.  3. Particle size analysis: The prepared carbon nanotube dispersion was diluted 2,000-fold using NMP solvent, and the D99 value of the carbon nanotube particle size distribution was measured using Malvern's Mastersizer 3000 equipment.
【표 1】  Table 1
Figure imgf000013_0001
Figure imgf000013_0001
함량 단위: 중량 % 상기 결과로부터, 본 발명의 탄소나노튜브 분산액 (실시예 1~6)은 24시간 방치 후에도 안정적인 분산성을 가지며, 3,000 rpm 에서 원심분리 시에도 UV- visible 투과도가 낮아 분산 정도가 높음을 알 수 있다. Content Unit: Weight% From the above results, it can be seen that the carbon nanotube dispersions of the present invention (Examples 1 to 6) have stable dispersibility even after standing for 24 hours, and have a high degree of dispersion due to low UV-visible permeability even after centrifugation at 3,000 rpm. .
반면, 니트릴 고무를 사용하지 않거나 (비교예 1~2), 탄소나노튜브의 입도 분포의 D99값이 50 를 초과할 경우 (비교예 3), 탄소나노튜브의 침전이 발생하며, UV-visible 투과도가 높은 값을 가지므로 본 발명의 분산액에 비해 분산성이 현저히 저하됨을 알 수 있다. 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.  On the other hand, when nitrile rubber is not used (Comparative Examples 1 to 2) or when the D99 value of the carbon nanotube particle size distribution exceeds 50 (Comparative Example 3), precipitation of carbon nanotubes occurs and UV-visible permeability is generated. Since it has a high value it can be seen that the dispersibility is significantly lower than the dispersion of the present invention. Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
입도 분포의 D99값이 약 0.5 내지 약 50 인 탄소나노튜브;  Carbon nanotubes having a D99 value of about 0.5 to about 50 in a particle size distribution;
니트릴 고무; 및  Nitrile rubber; And
용매;를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.  Carbon nanotube dispersion liquid comprising a; solvent.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 탄소나노튜브 및 상기 니트릴 고무를 포함하는 전체 용질의 함량은 약 1 내지 약 15 중량 %이고, 상기 용매의 함량은 약 85 내지 약 99 중량 %이며, 상기 전체 용질 중, 상기 탄소나노튜브의 함량은 약 50 내지 약 90 중량%이고, 상기 니트릴 고무의 함량은 약 10 내지 약 50 중량%인 것을 특징으로 하는 탄소나노튜브 분산액. According to claim 1, wherein the content of the total solute including the carbon nanotubes and the nitrile rubber is about 1 to about 15% by weight, the content of the solvent is about 85 to about 99 % by weight, of the total solute, The carbon nanotube content is about 50 to about 90% by weight, the content of the nitrile rubber is about 10 to about 50% by weight carbon nanotube dispersion.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브, 및 다발형 탄소나노튜브 중 1종 이상을 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.  The carbon nanotube dispersion of claim 1, wherein the carbon nanotubes include at least one of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and bundle-type carbon nanotubes.
【청구항 4】 [Claim 4]
제 1항에 있어서, 상기 니트릴 고무는 하기 화학식 1로 표시되는 반복단위를 포함하는 니트릴 고무, 및 하기 화학식 2로 표시되는 반복단위를 포함하는 수소화된 니트릴 고무 (HNBR) 중 1종 이상을 포함하는 것을 특징으로 하는 탄소나노튜브 분산액:  The nitrile rubber according to claim 1, wherein the nitrile rubber comprises at least one of a nitrile rubber including a repeating unit represented by the following Chemical Formula 1, and a hydrogenated nitrile rubber (HNBR) comprising a repeating unit represented by the following Chemical Formula 2. Carbon nanotube dispersions characterized in that:
[화학식 1 ]  [Formula 1]
Figure imgf000015_0001
Figure imgf000015_0001
상기 화학식 1 및 2에서, m 및 n은 각각 독립적으로 50 내지 250이다.  In Chemical Formulas 1 and 2, m and n are each independently 50 to 250.
【청구항 5】 제 1항에 있어서, 상기 니트릴 고무는 중량평균분자량이 약 5,000 내지 약 50,000 g/mol인 것을 특징으로 하는 탄소나노튜브 분산액. [Claim 5] The carbon nanotube dispersion of claim 1, wherein the nitrile rubber has a weight average molecular weight of about 5,000 to about 50,000 g / mol.
【청구항 6】 [Claim 6]
게 1항에 있어서, 상기 용매는 비공유 전자쌍을 가지는 질소 원자 (N)를 포함하는 유기용매, 및 탄소수 1 내지 4의 알코올 중 1종 이상을 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.  The carbon nanotube dispersion liquid according to claim 1, wherein the solvent comprises at least one of an organic solvent containing a nitrogen atom (N) having an unshared electron pair, and an alcohol having 1 to 4 carbon atoms.
【청구항 7】 [Claim 7]
게 1항에 있어서, 상기 탄소나노튜브 분산액은 폴리비닐리덴플로라이드 (PVDF), 폴리비닐피를리돈 (PVP), 및 디이소프로필아민 (DIPA) 중 1종 이상을 포함하는 안정제를 더욱 포함하는 것을 특징으로 하는 탄소나노류브 분산액.  The method of claim 1, wherein the carbon nanotube dispersion further comprises a stabilizer comprising at least one of polyvinylidene fluoride (PVDF), polyvinylpyridone (PVP), and diisopropylamine (DIPA) Carbon nano leuubric dispersion, characterized in that.
【청구항 8】 [Claim 8]
탄소나노튜브와 용매를 상기 탄소나노 튜브의 입도 분포의 D99값이 약 0.5 내지 약 50 이 되도록 흔합 및 입도 조절하여 탄소나노튜브 슬러리를 제조하고; 그리고  Preparing a carbon nanotube slurry by mixing and adjusting the carbon nanotube and the solvent so that the D99 value of the particle size distribution of the carbon nanotube is about 0.5 to about 50; And
상기 탄소나노튜브 슬러리에 니트릴 고무를 흔합하는;  Mixing nitrile rubber in the carbon nanotube slurry;
단계를 포함하는 탄소나노튜브 분산액 제조방법.  Carbon nanotube dispersion manufacturing method comprising the step.
【청구항 9】 [Claim 9]
제 8항에 있어서, 상기 탄소나노튜브 및 상기 니트릴 고무를 포함하는 전체 용질의 함량은 약 1 내지 약 15 중량 %이고, 상기 용매의 함량은 약 85 내지 약 99 중량%이며, 상기 전체 용질 중, 상기 탄소나노튜브의 함량은 약 50 내지 약 90 중량 <¾이고, 상기 니트릴 고무의 함량은 약 10 내지 약 50 중량 %인 것을 특징으로 하는 탄소나노튜브 분산액 제조방법. The method of claim 8, wherein the content of the total solute including the carbon nanotubes and the nitrile rubber is about 1 to about 15% by weight, the content of the solvent is about 85 to about 99% by weight, of the total solute, The content of the carbon nanotubes is about 50 to about 90 weight < ¾, and the content of the nitrile rubber is about 10 to about 50 weight percent carbon nanotube dispersion production method.
【청구항 10】 [Claim 10]
제 8항에 있어서, 상기 탄소나노류브 슬러리 제조 시, 상기 흔합 및 입도 조절은 초음파 처리 및 밀링을 하나 이상 포함하는 분산 방법에 의해 수행되는 것을 특징으로 하는 탄소나노튜브 분산액 제조방법.  The method of claim 8, wherein in the preparation of the carbon nano-leuze slurry, the mixing and particle size control are performed by a dispersion method including at least one of ultrasonic treatment and milling.
【청구항 11] 거 18항에 있어서, 상기 니트릴 고무와 함께 폴리비닐리덴플로라이드 (PVDF), 폴리비닐피를리돈 (PVP), 및 디이소프로필아민 (DIPA) 중 1종 이상을 포함하는 안정제를 더욱 흔합하는 것을 특징으로 하는 탄소나노튜브 분산액 제조방법. [Claim 11] 19. The method according to claim 18, further comprising a combination of the nitrile rubber with a stabilizer comprising at least one of polyvinylidene fluoride (PVDF), polyvinylpyridone (PVP), and diisopropylamine (DIPA). Carbon nanotube dispersion production method characterized in that.
【청구항 12】 [Claim 12]
제 1항 내지 게 7항 중 어느 한 항에 따른 탄소나노류브 분산액을 사용하여 제조된 전자 재료.  An electronic material produced using the carbon nano-leuv dispersion according to any one of claims 1 to 7.
【청구항 13】 [Claim 13]
제 12항에 있어서ᅳ 상기 전자 재료는 이차 전지의 양극 또는 음극인 것을 특징으로 하는 전자 재료.  The electronic material according to claim 12, wherein the electronic material is a positive electrode or a negative electrode of a secondary battery.
PCT/KR2013/011533 2013-08-05 2013-12-12 Carbon nanotube dispersion and production method for same WO2015020280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130092828A KR20150016852A (en) 2013-08-05 2013-08-05 Carbon nanotube dispersed solution and method for preparing the same
KR10-2013-0092828 2013-08-05

Publications (1)

Publication Number Publication Date
WO2015020280A1 true WO2015020280A1 (en) 2015-02-12

Family

ID=52461581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011533 WO2015020280A1 (en) 2013-08-05 2013-12-12 Carbon nanotube dispersion and production method for same

Country Status (2)

Country Link
KR (1) KR20150016852A (en)
WO (1) WO2015020280A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851800A (en) * 2015-12-10 2018-03-27 株式会社Lg化学 Conductive material dispersion liquid and the lithium secondary battery using its manufacture
EP3301745A4 (en) * 2015-10-28 2018-05-30 LG Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using same
CN108140841A (en) * 2016-03-24 2018-06-08 株式会社Lg化学 Conductive material dispersion liquid and the secondary cell using its manufacture
CN108370037A (en) * 2015-09-25 2018-08-03 Lg化学株式会社 Carbon nano tube dispersion liquid and its manufacturing method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022399B1 (en) * 2015-09-09 2019-09-18 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
JP6537215B2 (en) * 2015-09-25 2019-07-03 エルジー・ケム・リミテッド Carbon black dispersion liquid and method for producing the same
WO2017074124A1 (en) * 2015-10-28 2017-05-04 주식회사 엘지화학 Conductive material dispersed liquid and lithium secondary battery manufactured using same
KR102101006B1 (en) * 2015-12-10 2020-04-14 주식회사 엘지화학 Positive electrode for secondary battery and secondary battery comprising the same
WO2017099358A1 (en) * 2015-12-10 2017-06-15 주식회사 엘지화학 Conductive dispersion and lithium secondary battery manufactured using same
KR102143953B1 (en) * 2016-03-24 2020-08-12 주식회사 엘지화학 Composition for preparing positive electrode of secondary battery, and positive electrode of secondary battery and secondary battery prepared using the same
WO2017164701A1 (en) * 2016-03-24 2017-09-28 주식회사 엘지화학 Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same
KR102142549B1 (en) * 2016-03-29 2020-08-07 주식회사 엘지화학 Composition for preparing positive electrode of secondary battery, and positive electrode for secondary battery and secondary battery prepared using the same
KR102125963B1 (en) * 2016-11-15 2020-06-23 주식회사 엘지화학 Carbonnanotube dispersion and method of preparing the same
US11038175B2 (en) 2017-03-22 2021-06-15 Lg Chem, Ltd. Positive electrode active material pre-dispersion composition including hydrogenated nitrile butadiene rubber as dispersant, positive electrode for secondary battery, and lithium secondary battery including the positive electrode
WO2018174616A1 (en) * 2017-03-22 2018-09-27 주식회사 엘지화학 Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2018174619A1 (en) * 2017-03-22 2018-09-27 주식회사 엘지화학 Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery produced using same, and lithium secondary battery comprising same
CN110431697B (en) * 2017-03-22 2022-07-19 株式会社Lg化学 Method for preparing slurry composition for secondary battery positive electrode, positive electrode prepared by the method, and lithium secondary battery comprising the positive electrode
KR102242254B1 (en) * 2017-03-23 2021-04-21 주식회사 엘지화학 Method for preparing positive electrode slurry for secondary battery
WO2018174538A1 (en) * 2017-03-23 2018-09-27 주식회사 엘지화학 Method for producing slurry for cathode for secondary battery
KR101831562B1 (en) * 2017-09-29 2018-02-22 주식회사 나노신소재 Carbon nanotube slurry composition
KR102264737B1 (en) * 2017-11-24 2021-06-15 주식회사 엘지에너지솔루션 Positive electrode slurry for secondary battery, positive electrode prepared by using the same, and secondary battery comprising the positive electrode
KR20200045368A (en) 2018-10-22 2020-05-04 주식회사 엘지화학 Method for producing a slurry composition for forming an electrode active material layer, Electrode for a lithium secondary battery including an active material layer formed of the slurry composition, and Lithium secondary battery including the electrode
PL3944381T3 (en) * 2019-05-17 2023-05-08 Lg Energy Solution, Ltd. Conductive material dispersion, and electrode and lithium secondary battery manufactured using the same
EP3978564A4 (en) * 2020-01-07 2022-09-14 LG Chem, Ltd. Pre-dispersing agent composition, and electrode and secondary battery comprising same
WO2022197125A1 (en) * 2021-03-19 2022-09-22 주식회사 엘지에너지솔루션 Cathode slurry composition for secondary battery, cathode manufactured using same, and secondary battery comprising said cathode
KR102567757B1 (en) * 2021-04-19 2023-08-16 공주대학교 산학협력단 method for manufacturing a surface heating element and surface heating element manufactured by the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040090976A (en) * 2002-01-15 2004-10-27 나노다이나믹스 인코퍼레이티드 Compositions of suspended carbon nanotubes, methods of making the same, and uses thereof
US20060036018A1 (en) * 2003-10-30 2006-02-16 Winey Karen I Dispersion method
KR100851983B1 (en) * 2007-05-14 2008-08-12 삼성전자주식회사 Carbon nanotube dispersion
KR20090133093A (en) * 2008-06-23 2009-12-31 란세스 도이치란트 게엠베하 Carbon nanotube containing rubber compositions
WO2012080159A1 (en) * 2010-12-14 2012-06-21 Styron Europe Gmbh Improved elastomer formulations
WO2012084764A1 (en) * 2010-12-21 2012-06-28 Bayer Materialscience Ag Method for producing powdery polymer/carbon nanotube mixtures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040090976A (en) * 2002-01-15 2004-10-27 나노다이나믹스 인코퍼레이티드 Compositions of suspended carbon nanotubes, methods of making the same, and uses thereof
US20060036018A1 (en) * 2003-10-30 2006-02-16 Winey Karen I Dispersion method
KR100851983B1 (en) * 2007-05-14 2008-08-12 삼성전자주식회사 Carbon nanotube dispersion
KR20090133093A (en) * 2008-06-23 2009-12-31 란세스 도이치란트 게엠베하 Carbon nanotube containing rubber compositions
WO2012080159A1 (en) * 2010-12-14 2012-06-21 Styron Europe Gmbh Improved elastomer formulations
WO2012084764A1 (en) * 2010-12-21 2012-06-28 Bayer Materialscience Ag Method for producing powdery polymer/carbon nanotube mixtures

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370037A (en) * 2015-09-25 2018-08-03 Lg化学株式会社 Carbon nano tube dispersion liquid and its manufacturing method
EP3355392A4 (en) * 2015-09-25 2018-10-24 LG Chem, Ltd. Carbon nanotube dispersion liquid and manufacturing method thereof
CN108370037B (en) * 2015-09-25 2021-02-23 Lg化学株式会社 Carbon nanotube dispersion and method for producing same
EP3301745A4 (en) * 2015-10-28 2018-05-30 LG Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using same
US11050061B2 (en) 2015-10-28 2021-06-29 Lg Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using the same
CN107851800A (en) * 2015-12-10 2018-03-27 株式会社Lg化学 Conductive material dispersion liquid and the lithium secondary battery using its manufacture
US10727477B2 (en) 2015-12-10 2020-07-28 Lg Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using same
CN107851800B (en) * 2015-12-10 2021-02-09 株式会社Lg化学 Conductive material dispersion liquid and lithium secondary battery manufactured using the same
CN108140841A (en) * 2016-03-24 2018-06-08 株式会社Lg化学 Conductive material dispersion liquid and the secondary cell using its manufacture
EP3333946A4 (en) * 2016-03-24 2019-01-23 LG Chem, Ltd. Conductor dispersion and secondary battery manufactured using same
US11108050B2 (en) 2016-03-24 2021-08-31 Lg Chem, Ltd. Conductive material dispersed liquid and secondary battery manufactured using the same

Also Published As

Publication number Publication date
KR20150016852A (en) 2015-02-13

Similar Documents

Publication Publication Date Title
WO2015020280A1 (en) Carbon nanotube dispersion and production method for same
US11961630B2 (en) Utilizing nanoscale materials and dispersants, surfactants or stabilizing molecules, methods of making the same, and the products produced therefrom
Tkalya et al. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites
Wu et al. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites
Sharma et al. MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process
Imran et al. Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization
Wu et al. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties
Ansari et al. Thermal stability and electrical properties of dodecyl-benzene-sulfonic-acid doped nanocomposites of polyaniline and multi-walled carbon nanotubes
Xin et al. Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites
Saito et al. Chemical treatment and modification of multi-walled carbon nanotubes
Wu et al. Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes
Tayfun et al. Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: Effect of surface modification of fullerene
Etika et al. Tailored dispersion of carbon nanotubes in water with pH-responsive polymers
Deetuam et al. Synthesis of well dispersed graphene in conjugated poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate via click chemistry
Tunckol et al. Effect of the synthetic strategy on the non-covalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids
Vivekchand et al. Electrical properties of inorganic nanowire–polymer composites
Aldalbahi et al. Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan
Wu et al. Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology
Cui et al. PVK/MWNT electrodeposited conjugated polymer network nanocomposite films
Kepić et al. Preparation of PEDOT: PSS thin films doped with graphene and graphene quantum dots
Tunckol et al. Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites
Zhang et al. Conducting and magnetic behaviors of polyaniline coated multi-walled carbon nanotube composites containing monodispersed magnetite nanoparticles
Jin et al. Electrical and rheological properties of polycarbonate/multiwalled carbon nanotube nanocomposites
Dong et al. Controlling formation of silver/carbon nanotube networks for highly conductive film surface
Tan et al. Conductive properties and mechanism of various polymers doped with carbon nanotube/polyaniline hybrid nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890890

Country of ref document: EP

Kind code of ref document: A1