WO2017164701A1 - Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same - Google Patents

Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same Download PDF

Info

Publication number
WO2017164701A1
WO2017164701A1 PCT/KR2017/003219 KR2017003219W WO2017164701A1 WO 2017164701 A1 WO2017164701 A1 WO 2017164701A1 KR 2017003219 W KR2017003219 W KR 2017003219W WO 2017164701 A1 WO2017164701 A1 WO 2017164701A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
composition
positive electrode
forming
secondary battery
Prior art date
Application number
PCT/KR2017/003219
Other languages
French (fr)
Korean (ko)
Inventor
안병훈
최상훈
유흥식
성기원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170036956A external-priority patent/KR102143953B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018515444A priority Critical patent/JP6636141B2/en
Priority to CN201780002924.7A priority patent/CN107949940B/en
Priority to EP17770671.0A priority patent/EP3331072B1/en
Priority to PL17770671T priority patent/PL3331072T3/en
Priority to US15/751,067 priority patent/US10741829B2/en
Publication of WO2017164701A1 publication Critical patent/WO2017164701A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for forming a cathode of a secondary battery capable of improving battery performance by increasing dispersibility of a conductive material, and a cathode and a secondary battery for a secondary battery manufactured using the same.
  • Fine carbon materials such as carbon black, ketjen black, fullerene, graphene or carbon nanotubes are widely used in the fields of energy, aerospace and the like due to their excellent electrical properties and thermal conductivity.
  • the uniform dispersion should be preceded, but it has not been easy to prepare a high concentration of fine carbon material dispersion by methods such as conventional mechanical dispersion, dispersion using a dispersant, and surface functionalization.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • the electrodes of the positive electrode and the negative electrode are manufactured by applying an electrode forming composition prepared by mixing an electrode active material and a binder with a solvent to a current collector and then drying them.
  • the conductive material of the fine carbon material is included in the composition for forming an electrode, and among these, the active material filling rate can be increased, and even a small amount can suppress an increase in battery internal resistance.
  • Carbon black is widely used in that it can be.
  • the conductive material is used as fine particles of several tens of nm level, the cohesive force is strong, and aggregation between the conductive material fine particles is likely to occur when dispersed in a solvent.
  • Such non-uniform dispersion of the conductive material in the electrode active material layer leads to a decrease in conductivity and a decrease in output characteristics of the battery.
  • the aggregate of the simply aggregated conductive material has a low structure holding force, the conductivity between the active materials can be degraded.
  • the binder since the conductive material has a large specific surface area, the binder may be adsorbed, resulting in non-uniform distribution of the binder in the active material layer and consequent decrease in adhesive strength.
  • a conductive material was previously dispersed together with a binder and a solvent to make a paste, and an electrode active material was added thereto, and stirred and mixed to solve the problem related to dispersion of the conductive material.
  • resin binders such as a fluororesin and a cellulose resin
  • dispersion stability of electroconductive material particle was bad and sufficient effect was not acquired, for example, a conductive material particle reaggregated.
  • the addition of the vinyl pyrrolidone type polymer as a dispersing agent to an electrically conductive material and a solvent has made the attempt to improve the dispersibility of an electrically conductive material, and to maintain favorable battery load characteristics and cycling characteristics through this.
  • the added vinyl pyrrolidone-based polymer has a problem of impairing battery characteristics, such as insulation coating of the electrode active material or deterioration and deterioration of discharge characteristics when stored for a long time in a charged state.
  • the first problem to be solved by the present invention is to provide a composition for forming a positive electrode of a secondary battery that can improve the battery performance by increasing the dispersibility of the conductive material and a method of manufacturing the same.
  • the second problem to be solved by the present invention is to provide a positive electrode and a secondary battery for a secondary battery is prepared using the composition for forming the positive electrode, the conductive material is uniformly dispersed.
  • the conductive material has a specific surface area of 130 m 2 / g or more, oil absorption amount 220 ml / 100 g or more carbon 0.1 wt% to 2 wt% of the base material based on the total weight of the composition for forming an anode, wherein the dispersant is introduced into the conductive material to form a conductive material-dispersant composite, and the conductive material-dispersant composite has a particle size distribution. It provides a composition for forming a positive electrode of a secondary battery having a D 50 of 0.8 ⁇ m to 1.2 ⁇ m.
  • a conductive material dispersion by milling a mixture of the conductive material and the dispersant in a solvent; And adding a positive electrode active material to the conductive material dispersion and mixing the conductive material, wherein the conductive material has a specific surface area of 130 m 2 / g or more and an oil absorption amount of 220 ml / 100g or more.
  • 0.1 wt% to 2 wt% of the conductive material dispersion wherein the conductive material dispersion includes a conductive material-dispersant composite in which the dispersant is introduced into the conductive material, and the conductive material-dispersant composite has a D 50 of a particle size distribution of 0.8 ⁇ m. It provides a method for producing a composition for forming a cathode of a secondary battery that is to 1.2 ⁇ m.
  • a cathode for a secondary battery manufactured using the composition for forming a cathode of the secondary battery, and a lithium secondary battery including the same.
  • the composition for forming a cathode of a secondary battery according to the present invention can greatly improve the performance, such as resistance characteristics, life characteristics, capacity characteristics and rate characteristics of the battery by uniformly dispersing the dispersibility conductive material in the composition.
  • the conductive material in the electrode When the dispersion of the conductive material in the electrode is insufficient, the conductive material may not be properly distributed on the surface of the active material, thereby degrading the performance of the battery cell and increasing the performance variation between the cells. In addition, when the conductive material is excessively dispersed, the dispersed conductive material may be advantageously distributed on the surface of the active material, but the network formation between the conductive materials is not easy, and thus the resistance in the cell is increased.
  • the conductive material is contained in the form of a conductive material-dispersant composite in which the dispersant is introduced through a physical or chemical bond to the surface of the conductive material when mixed with the dispersant.
  • the particle size distribution of the conductive material-dispersant composite formed at this time indicates the dispersibility of the conductive material in the composition.
  • the physical properties of the conductive material and the dispersant are controlled by combining the conductive materials and the dispersant in order to exhibit the optimum degree of dispersion in the electrode.
  • the dispersion of the hardly dispersible conductive material can be uniformly dispersed in the composition, and as a result, the performances such as resistance characteristics, life characteristics, capacity characteristics and rate characteristics of the battery can be greatly improved.
  • the composition for forming a cathode of a secondary battery includes a cathode active material, a conductive material and a dispersant, the conductive material has a specific surface area of 130 m 2 / g or more, oil absorption amount 220 ml / A carbon-based material of 100g or more is contained in an amount of 0.1% to 2% by weight based on the total weight of the composition for forming an anode, wherein the dispersant is introduced into the conductive material to form a conductive material-dispersant composite, and the conductive material-dispersant composite is D 50 of the particle size distribution is 0.8 ⁇ m to 1.2 ⁇ m.
  • the content of the carbonaceous material is a value based on the total weight of solids in the composition for forming an anode, unless otherwise specified.
  • the dispersibility of the conductive material is greatly improved. As a result, it is possible to improve battery performance by reducing the resistance characteristics within the electrode during electrode formation. If the D 50 of the particle size distribution of the conductive material-dispersant composite is less than 0.8 ⁇ m, the conductive material may be over-dispersed, so that the conductive material network may not be easily formed between the active materials in the electrode during the formation of the anode, and as a result, the cell resistance may increase. .
  • the conductive material-dispersant composite included in the anode-forming composition has a particle size distribution of D 50 of 0.8 ⁇ m to 1.2 ⁇ m and D 90 of 2.0 ⁇ m to It may be 5.0 ⁇ m or less.
  • the particle size distribution condition of the conductive material-dispersant composite is influenced by the physical properties and content of the conductive material and the dispersant, and in particular, the physical properties and content of the conductive material are greatly affected.
  • the amount of the conductive material included in the positive electrode forming composition is large, the dispersion may not be easy, so the difference according to the dispersion particle size may be insignificant.
  • the amount of the conductive material is less than a predetermined level, the optimum dispersion particle size according to the physical properties of the conductive material May exist.
  • the conductive material has a specific surface area (SSA) of 130 m 2 / g or more, and an oil absorption amount (OAN) of 220 ml / 100g or more of carbon
  • SSA specific surface area
  • OAN oil absorption amount
  • the base material is included in an amount of 0.1% by weight to 2% by weight based on the total weight of the composition for forming an anode.
  • SSA specific surface are
  • OAN Oil Absorption number
  • SSA specific surface are
  • OAN oil Absorption number
  • the specific surface area and the oil absorption number may be used as a numerical value indicating the structural characteristics of the carbonaceous material or the degree of structural development.
  • the carbon-based material having a secondary particle structure usually formed by granulation of primary particles, it means that the smaller the size of the primary particles, the larger the specific surface area and the oil absorption of the secondary particles, the more developed the structure. In this case, while exhibiting excellent conductivity, dispersibility may be lowered. Accordingly, considering the conductivity and dispersibility in the electrode, the developmental structure in the carbon-based material should be optimized.
  • the conductive material includes a carbonaceous material of secondary particles made by assembling primary particles, and the carbonaceous material has a specific surface area.
  • the 130 m 2 / g or more, the oil absorption may be 220 ml / 100g or more.
  • the carbonaceous material has an average particle diameter (D 50 ) of the primary particles of 15 nm to 35 nm, and the specific surface area of the secondary particles formed by assembling the primary particles is 130 m 2 / g to 270 m 2 / g, having a highly developed structure with an oil absorption amount of 220 ml / 100g to 400 ml / 100g, thereby exhibiting better conductivity and dispersibility, and in particular, three phases of the positive electrode active material and the electrolyte when applied in the positive electrode Reactivity can be improved by improving the electron supply property in an interface.
  • D 50 average particle diameter of the primary particles of 15 nm to 35 nm
  • the specific surface area of the secondary particles formed by assembling the primary particles is 130 m 2 / g to 270 m 2 / g, having a highly developed structure with an oil absorption amount of 220 ml / 100g to 400 ml / 100g, thereby exhibiting better conductivity and dispersibility, and in particular
  • the average particle diameter of the primary particles of the carbonaceous material is less than 15 nm, or if the specific surface area and oil absorption of the secondary particles exceed 270 m 2 / g and 400 ml / 100g, respectively, aggregation of the carbonaceous material may occur. In this case, dispersibility may decrease. In addition, if the average particle diameter exceeds 35 nm or the specific surface area and oil absorption of the secondary particles are less than 130 m 2 / g and less than 220 ml / 100g, respectively, the primary particles are too large in size and dispersed due to the lack of structural development of the conductive material.
  • the volume of the conductive material per weight is not small enough to cover the surface of the active material, and as a result there is a concern that the cell performance degradation and inter-cell performance deviations increase.
  • the average particle diameter of the primary particles of the carbonaceous material considering the remarkable effects of the specific surface area and oil absorption of the secondary particles on the conductivity and dispersibility, D 50), and a 20nm to 35nm, and the specific surface area of the secondary particles 130 m 2 / g to 270 m 2 / g, oil absorption may be one of 220 ml / 100g to 400 ml / 100g.
  • the average particle diameter (D 50 ) of the primary particles in the carbonaceous material may be defined as the particle size based on 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the carbonaceous material can be measured using, for example, a laser diffraction method. More specifically, the carbonaceous material is dispersed in a solvent and then sold. Introduced into a laser diffraction particle size measuring device (e.g., Microtrac MT 3000) and irradiating an ultrasonic wave of about 28 kHz with an output of 60 W, and then calculating the average particle diameter (D 50 ) based on 50% of the particle size distribution in the measuring device. Can be.
  • a laser diffraction particle size measuring device e.g., Microtrac MT 3000
  • the carbon-based material may be graphite such as natural graphite or artificial graphite; Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black or thermal black; Or carbonaceous materials such as carbon fibers. More specifically, the carbonaceous material may be carbon black.
  • carbon black may be classified in various ways depending on the production method and the raw materials used.
  • Carbon black usable in the present invention may be acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, or denka black and the like, any one or a mixture of two or more may be used.
  • the carbon black is prepared using acetylene gas, specifically, is prepared by thermal decomposition of the acetylene gas under an oxygen-free atmosphere,
  • the average particle diameter (D 50 ) may be 20 nm to 30 nm.
  • the carbon black may control the content of metal impurities in the carbon black through an impurity control during the manufacturing process or a purification process after manufacture, specifically, the purity may be 99.5% or more.
  • a lithium secondary battery degrades its life characteristics as components deteriorate due to various causes.
  • One of the main causes is due to incorporation of metal impurities in a battery into a battery.
  • metal impurities such as iron (Fe) contained in the conductive material are dissolved in the electrolyte by reacting at an operating voltage range of about 3.0V to 4.5V of the lithium secondary battery, and the dissolved metal impurities are in the form of metal at the negative electrode. Is reprecipitated. The precipitated metal penetrates the separator and shorts with the positive electrode, causing a low voltage failure, and deteriorating the capacity characteristics and life characteristics of the secondary battery, thereby preventing its function as a battery.
  • the carbon black usable in the present invention may be carbon black having high purity in the above range in which the content of metal impurities is removed to the maximum.
  • the content of impurities in the carbon black may be determined by using magnetic, X-ray diffraction (XRD), differential thermal analysis (DTA), differential scanning Differential Scanning Calorimetry (DSC), Modulated Differential Scanning Calorimetry (MDSC), Thermogravimetric Analysis (TGA), Thermogravimetric-infrared (TG-IR) Analysis and Melting Point It can be analyzed or confirmed by a method that includes one or more thermal assays, including measurements. Specifically, the content of metal impurities in carbon black can be measured through the main peak intensity of the metal impurities obtained by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the carbon black may be surface treated to increase the dispersibility in the dispersion.
  • the carbon black imparts hydrophilicity by introducing an oxygen-containing functional group on the surface of the carbon black by oxidation treatment;
  • hydrophobicity may be imparted by fluorination treatment or siliconization treatment on carbon black.
  • the carbon black may be coated with a phenol resin or subjected to a mechanical chemical treatment.
  • the carbon black when it is oxidized, it may be performed by heat treating the carbon black at about 500 ° C. to 700 ° C. for about 1 to 2 hours in air or under an oxygen atmosphere.
  • the surface treatment for the carbon black is excessive, since the electrical conductivity and strength characteristics of the carbon black itself may be greatly deteriorated, it may be desirable to control properly.
  • the carbon black may be iodine number (iodine number) measured according to ASTM D-1510 (200 mg / g to 400 mg / g), if the iodine number of the carbon black is 200 mg / If it is less than g it may be difficult to sufficiently disperse the carbon black, if it exceeds 400 mg / g may cause a problem that the conductivity is lowered.
  • iodine number measured according to ASTM D-1510 (200 mg / g to 400 mg / g)
  • the term "iodine number" is absorbed in 100 g of a sample by converting the amount of halogen absorbed into iodine when halogen is applied to a fat or fatty acid using a reaction in which a halogen is added to a double bond.
  • the amount of iodine is expressed in g, which is used as a numerical value indicating the number of double bonds of unsaturated fatty acids in a sample. The higher the iodine number, the higher the number of double bonds.
  • the carbonaceous material may be included in an amount of 0.1 wt% to 2 wt% based on the total weight of solids in the composition for forming an anode. If the content of the carbon-based material is less than 0.1% by weight, the conductivity improvement effect by using the carbon-based material is insignificant, and when the content of the carbon-based material is more than 2% by weight, the dispersibility is lowered and there is a fear of lowering the cell capacity. In consideration of the remarkable improvement effect of using the carbonaceous material, the carbonaceous material may be included in an amount of 0.5% by weight to 1.5% by weight based on the total weight of solids in the composition for forming an anode.
  • the conductive material may further include a conventional conductive material together with the carbon-based material to improve conductivity.
  • the conductive material may further include a fibrous conductive material that is easier to form a conductive network when used in combination with the carbon-based material, and easily forms a three-phase interface with the active material when the battery is applied.
  • the fibrous conductive material may be a fibrous conductive material having an aspect ratio (a ratio of the length of the long axis passing through the center of the fibrous conductive material and the diameter perpendicular to the long axis) such as carbon nanorods or carbon nanofibers.
  • the length of the fibrous conductive material affects the electrical conductivity, strength, and dispersibility of the dispersion. Specifically, the longer the length of the fibrous conductive material, the higher the electrical conductivity and the strength characteristics may be, but if the length is too long, there is a fear that the dispersibility is lowered. Accordingly, the aspect ratio of the fibrous conductive material usable in the present invention may be 5 to 50,000, more specifically 10 to 15,000.
  • the fibrous conductive material as described above may be used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the carbonaceous material. If the content of the fibrous conductive material is too low compared to the content of the carbonaceous material, the effect of improving conductivity due to the mixed use is insignificant, and if it exceeds 10 parts by weight, the dispersibility of the fibrous conductive material may be reduced.
  • the conductive material is dispersed in the dispersion medium in the form of a composite physically or chemically bonded to the dispersant.
  • the content of the repeating unit region of the structure capable of interacting with the conductive material and the repeating unit region of the structure capable of interacting with the dispersion medium when the composition for forming the anode using the conductive material is controlled is controlled.
  • the conductive material is uniformly dispersed in the dispersion medium, and further, low viscosity can be exhibited even at the time of dispersing a high concentration of the conductive material.
  • the dispersing agent is a repeating unit having an ⁇ , ⁇ -unsaturated nitrile-derived structure as a repeating unit region (A) of a structure capable of interacting with a carbon-based material;
  • the repeating unit region (B) of the structure capable of interacting with the dispersion medium may include a partially hydrogenated nitrile rubber comprising a repeating unit of a conjugated diene derived structure and a repeating unit of a hydrogenated conjugated diene derived structure.
  • the partially hydrogenated nitrile rubber may optionally further comprise additional comonomers copolymerizable under conditions such that the conductive material-dispersant composite has the above particle size distribution.
  • the polymerization reaction process and the hydrogenation process may be performed according to a conventional method.
  • ⁇ , ⁇ -unsaturated nitrile that can be used in the preparation of the partially hydrogenated nitrile rubber include acrylonitrile or methacrylonitrile, and one or more of these may be used.
  • conjugated diene which can be used at the time of manufacture of the said partially hydrogenated nitrile rubber can specifically mention conjugated diene of 4 to 6 carbon atoms, such as 1, 3- butadiene, isoprene, and 2, 3- methyl butadiene, Any one of these Or mixtures of two or more may be used.
  • copolymerizable comonomers which may optionally be used include, for example, aromatic vinyl monomers (for example, styrene, ⁇ -methylstyrene, vinylpyridine, fluoroethyl vinyl ether, etc.), ⁇ , ⁇ -unsaturated carboxylic acids.
  • esters or amides of ⁇ , ⁇ -unsaturated carboxylic acids eg methyl (meth) acrylate, ethyl (meth) acrylate, n-dodecyl (meth) acrylate, methoxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, or polyethylene glycol (meth) acrylate
  • anhydrides of ⁇ , ⁇ -unsaturated dicarboxylic acids (For example, maleic anhydride, itaconic anhydride, citraconic anhydride, etc.), but is not limited thereto.
  • the partially hydrogenated nitrile rubber further comprises esters of ⁇ , ⁇ -unsaturated carboxylic acids as comonomers, such as (meth) acrylate based monomers.
  • esters of ⁇ , ⁇ -unsaturated carboxylic acids as comonomers
  • examples of the (meth) acrylate monomers include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, iso amyl acrylate, n-ethylhexyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, 2-hydroxyethyl methacrylate, or hydroxy Propyl methacrylate and the like.
  • the content ratio of repeating units of other copolymerizable comonomer-derived structures may vary within a wide range, in each case the total sum of repeating units of the structure is 100% by weight.
  • the content of the repeating unit of the ⁇ , ⁇ -unsaturated nitrile-derived structure is 20% based on the total weight of the partially hydrogenated nitrile rubber. It may be 50% to 50% by weight, more specifically 20% to 30% by weight.
  • the repeating unit having an ⁇ , ⁇ -unsaturated nitrile-derived structure is included in the above content range, the dispersibility of the conductive material can be increased, and even if the amount of the conductive material added is small, high conductivity can be given.
  • the content of the repeating unit of the ⁇ , ⁇ -unsaturated nitrile-derived structure in the partially hydrogenated nitrile rubber is the weight ratio of the entire rubber of the repeating unit of the structure derived from the ⁇ , ⁇ -unsaturated nitrile.
  • the measurement of is the median of the value which measures the amount of nitrogen which generate
  • the partially hydrogenated nitrile rubber is 20% to 70% by weight, more specifically 20% to 50% by weight, and more specifically, the repeating unit of the hydrogenated conjugated diene-derived structure As may be included in 30% by weight to 50% by weight.
  • the repeating unit of the hydrogenated conjugated diene-derived structure in the content range as described above, the miscibility to the dispersion medium can be increased to increase the dispersibility of the carbon-based material.
  • the content ratio may vary depending on the type and nature of the comonomer, but specifically, the content of the repeating unit of the comonomer-derived structure may be partially hydrogenated. It may be 30% by weight or less, more specifically 10% to 30% by weight relative to the total weight of the nitrile rubber.
  • the partially hydrogenated nitrile rubber includes repeating units of the structure of Formula 1, repeating units of the structure of Formula 2, and repeating units of the structure of Formula 3, and optionally, ⁇ , ⁇ -unsaturated carbon It may be an acrylonitrile-butadiene rubber (H-NBR) further comprising a repeating unit of the ester-derived structure of the acid.
  • H-NBR acrylonitrile-butadiene rubber
  • the content of the repeating unit of the acrylonitrile-derived structure of Formula 1 may be 20% to 50% by weight relative to the total weight of the rubber.
  • the content of the repeating unit of the hydrogenated butadiene-derived structure of Formula 3 may be 20% to 50% by weight relative to the total weight of the rubber.
  • the content of the repeating unit of the ⁇ , ⁇ - unsaturated carboxylic acid ester of the structure is derived rubber
  • the total weight may be 30% by weight or less, more specifically 10% by weight to 30% by weight.
  • the partially hydrogenated nitrile rubber may have a weight average molecular weight of 10,000 g / mol to 700,000 g / mol, more specifically 10,000 g / mol to 200,000 g / mol.
  • the partially hydrogenated nitrile rubber may have a polydispersity index PDI (ratio of Mw / Mn, Mw is weight average molecular weight and Mn is number average molecular weight) in the range of 2.0 to 6.0, specifically, 2.0 to 4.0. have.
  • the conductive material can be uniformly dispersed in the dispersion medium by satisfying the average particle size condition of the conductive material-dispersant composite.
  • the weight average molecular weight and the number average molecular weight are polystyrene reduced molecular weights analyzed by gel permeation chromatography (GPC).
  • the partially hydrogenated nitrile rubber may have a Mooney viscosity (ML 1 + 4 at 100 ° C.) of 10 to 120, more specifically 10 to 100.
  • the Mooney viscosity of the partially hydrogenated nitrile rubber in the present invention can be measured according to ASTM standard D 1646.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound), specifically Is a material having a hexagonal layered rock salt structure (specifically, LiCoO 2 , LiCo 1/3 Mn 1/3 Ni 1/3 O 2 , or LiNiO 2 ), a material having an olivine structure (specifically, LiFePO 4 ), A spinel material having a cubic structure (specifically, LiMn 2 O 4 ), and other vanadium oxides such as V 2 O 5 , and a chalcone compound such as TiS or MoS.
  • lithium lithiumated intercalation compound
  • the cathode active material may be a lithium composite metal oxide including a metal such as cobalt, manganese, nickel or aluminum and lithium.
  • the lithium composite metal oxide is specifically, a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ z ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y Co Y O 2 (where, 0 ⁇ Y ⁇ 1) and the like), lithium-manganese-cobalt oxide (e.g., LiCo 1-Y M
  • the cathode active material may be a lithium composite metal oxide having a layered structure, and more specifically, may be a lithium cobalt oxide having a layered structure.
  • the metal elements except lithium is selected from the group consisting of Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W, and Mo. It may be doped by any one or two or more elements selected. As described above, when the above metal element is further doped into the lithium composite metal oxide of the lithium defect, the structural stability of the cathode active material may be improved, and as a result, the output characteristics of the battery may be improved. In this case, the content of the doping element included in the lithium composite metal oxide may be appropriately adjusted within a range that does not lower the characteristics of the positive electrode active material, specifically, may be 0.02 atomic% or less.
  • the lithium composite metal oxide may include a compound of Formula 4 below:
  • M is one containing one or two or more elements selected from the group consisting of Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W and Mo
  • a, x, y, z and w are each independently atomic fractions of the corresponding elements, -0.5 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 1 and 0 ⁇ x + y + z ⁇ 1.
  • the positive electrode active material is 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1 in Formula 4, It may include a compound of y + z ⁇ x, more specifically, the positive electrode active material is LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , LiNi 0.7 Mn 0.15 Co 0.15 O 2 or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2 and the like, any one or a mixture of two or more thereof may be used.
  • composition for forming an anode according to an embodiment of the present invention may optionally further include a binder.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber Or various copolymers thereof, and the like may be used alone or in a mixture of two or more thereof.
  • the binder may be included in an amount of 1% to 30% by weight based on the total weight of solids in the composition for forming an
  • composition for forming a cathode according to an embodiment of the present invention having the above composition may be prepared by dissolving and dispersing a cathode active material, a conductive material, a dispersant and optionally a binder in a solvent by mixing. Accordingly, the positive electrode forming composition may further include a solvent.
  • the solvent may be used without particular limitation as long as it is usually used in the preparation of the composition for forming an anode.
  • the solvent is an amide polar organic solvent such as dimethylformamide (DMF), diethyl formamide, dimethyl acetamide (DMAc) or N-methyl pyrrolidone (NMP); Methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl Alcohols such as 2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; Glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentaned
  • the content of the positive electrode active material, the conductive material, the dispersant, the solvent, and optionally the binder may improve the processability and positive electrode characteristics at the time of manufacturing the positive electrode. It may be appropriately determined depending on the like.
  • the conductive material including the carbonaceous material for uniform dispersion of the conductive material in the positive electrode forming composition may be included in an amount of 0.1% to 10% by weight relative to the total weight of solids in the positive electrode forming composition.
  • the conductive material can exhibit a good balance of electronic conductivity and dispersibility. If the content of the conductive material is less than 0.1% by weight out of the above range, for example, when forming the electrode of a lithium secondary battery, the composition for forming an electrode includes a large amount of organic solvent, and as a result, the voids in the electrode increase, and the active material filling rate is increased. The battery capacity can be lowered by being lowered.
  • the drying time for removing the organic solvent may be long.
  • content of an electrically conductive material exceeds 10 weight%, there exists a possibility that a dispersibility may fall.
  • the conductive material including the carbonaceous material may be included in an amount of 0.1% by weight to 2% by weight based on the total weight of solids in the composition for forming an anode.
  • the dispersant may be included in 10 parts by weight to 50 parts by weight with respect to 100 parts by weight of the conductive material. If the content of the dispersant is less than 10 parts by weight, it is difficult to uniformly disperse the conductive material in the dispersion. If the content of the dispersant is more than 50 parts by weight, the viscosity of the composition may increase, leading to a decrease in processability.
  • the dispersant may be included in an amount of 0.1% to 10% by weight based on the total weight of solids in the composition for forming the positive electrode. If the content of the dispersant is less than 0.1% by weight, the effect of improving the dispersibility of the conductive material according to the use of the dispersant may be insignificant. If the content of the dispersant is more than 10% by weight, there is a concern that the capacity characteristics of the battery may be deteriorated due to the increase in the anode resistance and the decrease of the relative active material. There may be.
  • the cathode active material may be included in an amount of 80% by weight to 98% by weight based on the total weight of solids in the composition for forming an anode. If the content of the positive electrode active material is less than 80% by weight, the capacity characteristics may be lowered. If the content of the positive electrode active material is more than 98% by weight, the battery characteristics may be deteriorated due to the relative decrease of the content of the conductive material and the dispersant.
  • the solvent may be included in an amount such that the composition for forming the positive electrode has an appropriate viscosity to enable easy application and uniform coating during application of the composition for forming the positive electrode.
  • the positive electrode forming composition according to an embodiment of the present invention may further include a dispersion stabilizer for increasing the dispersion stability of the conductive material.
  • the dispersion stabilizer may prevent the agglomeration of carbon black by adsorbing the surface of the conductive material to exhibit a lapping effect surrounding the conductive material. Accordingly, the dispersion stabilizer may be excellent in affinity for the conductive material and at the same time excellent in miscibility with the dispersant and the solvent. Specifically, the dispersion stabilizer may be polyvinylpyrrolidone or the like.
  • the dispersion stabilizer may be a weight average molecular weight of 20,000g / mol to 5,000,000g / mol. If the molecular weight of the dispersion stabilizer is too small, less than 20,000 g / mol, it is difficult to exhibit a sufficient lapping effect for carbon black, and if the molecular weight is too large, exceeding 5,000,000 g / mol, the molecular motion of the dispersion stabilizer in the dispersion medium may be reduced. It is hard to wrap carbon black enough. More specifically, the dispersion stabilizer may have a weight average molecular weight of 70,000 g / mol to 2,000,000 g / mol.
  • the dispersion stabilizer may be used in 1 to 10 parts by weight with respect to 100 parts by weight of the conductive material. If the content of the dispersion stabilizer is too low compared to the content of the conductive material, it is difficult to obtain a sufficient lapping effect, and as a result, there is a fear that aggregation between the conductive materials occurs.
  • the composition for forming a positive electrode according to an embodiment of the present invention having the above composition comprises the steps of preparing a conductive material dispersion by milling a mixture of the conductive material and the dispersant in a solvent (step 1); And adding and mixing a cathode active material, and optionally a binder and other additives to the conductive material dispersion (step 2).
  • the conductive material comprises a carbon-based material having a specific surface area of 130 m 2 / g or more, oil absorption of 220 ml / 100 g or more of 0.1% by weight to 2% by weight relative to the total weight of solids in the composition for forming an anode
  • the conductive material dispersion includes a conductive material-dispersant composite in which the dispersant is introduced into the conductive material, and the conductive material-dispersant composite has a D 50 of a particle size distribution of 0.8 ⁇ m to 1.2 ⁇ m.
  • a first step for preparing a composition for forming an anode according to an embodiment of the present invention is preparing a conductive material dispersion.
  • the conductive material dispersion may be prepared by specifically preparing a mixture by mixing the conductive material and the dispersant in a solvent and then milling it.
  • the mixing process may be performed by a conventional mixing or dispersing method, and specifically, may be performed by a homogenizer, a bead mill, a ball mill, a basket mill, an attention mill, a universal stirrer, a clear mixer, or a TK mixer. have.
  • the milling process may be performed using a conventional milling method such as a ball mill, a bead mill, a basket mill, and more specifically, a bead mill.
  • a conventional milling method such as a ball mill, a bead mill, a basket mill, and more specifically, a bead mill.
  • the dispersibility of the conductive material and the dispersion particle size of the conductive material-dispersant composite may vary depending on the conditions such as the diameter and filling rate of the bead mill, the rotational speed of the rotor, the discharge speed of the conductive material dispersion during the milling process, It is preferable to carry out at the milling conditions optimized according to the kind and content of the electrically conductive material and dispersing agent used.
  • the milling process according to the use of the conductive material and the dispersant as described above may be a diameter of the bead mill 0.5mm to 2mm, More specifically, it may be 0.7mm to 1.5mm.
  • the filling rate of the bead mill may be 50% to 90% by weight, and more specifically 80% to 90% by weight relative to the total weight of the conductive material dispersion.
  • the circumferential speed during the bead mill process may be 6 m / s to 12 m / s, more specifically 7 m / s to 12 m / s.
  • the discharge rate of the mixture may be 0.5 kg / min to 1.5 kg / min, more specifically 0.5 kg / min to 1 kg / min under the conditions that meet all the bead mill process conditions.
  • the discharge rate of the conductive material dispersion is out of the above range, the conductive material-dispersant composite particle size distribution conditions in the composition for forming an anode may not be satisfied, and as a result, the effect of the present invention may be insignificant due to the decrease in the dispersibility of the conductive material.
  • the second step for producing a composition for forming a positive electrode according to an embodiment of the present invention is a positive electrode active material, and optionally a binder and other additives to the conductive material dispersion prepared in step 1 to add and mix the positive electrode It is a step of preparing a composition for forming.
  • the mixing process may be carried out by a conventional mixing or dispersing method, specifically, homogenizer, bead mill, ball mill, basket mill, attrition mill, universal stirrer, clear mixer or TK mixer Can be performed by
  • a positive electrode forming composition in which a positive electrode active material, a conductive material, and a dispersant is uniformly dispersed in a solvent is prepared.
  • the conductive material and the dispersant may be included in a dispersant is dispersed in the form of a conductive material-dispersant composite introduced into the surface of the conductive material through a physical or chemical bond.
  • the conductive material-dispersant composite may have a distribution in which D 50 of the particle size distribution is 0.8 ⁇ m to 1.2 ⁇ m and D 90 is 2.0 ⁇ m to 5.0 ⁇ m or less.
  • the particle size distributions D 50 and D 90 of the conductive material-dispersant composite may be defined as particle diameters based on 50% and 90% of the particle size distribution, respectively.
  • the particle size distribution D 50 of the complex can be measured using, for example, a laser diffraction method, and more specifically, a commercially available laser diffraction particle size measuring apparatus after dispersing the complex in a solvent. after examining the ultrasound of about 28kHz is introduced (for example Microtrac MT 3000) to the output 60 W, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • the composition for forming an anode according to the exemplary embodiment of the present invention is a uniform dispersion of a conductive material having excellent conductivity, and thus may exhibit excellent conductivity throughout the electrode when manufacturing the electrode. In addition, performance such as capacity characteristics and rate characteristics can be greatly improved.
  • a positive electrode manufactured using the positive electrode forming composition is provided.
  • that the positive electrode is manufactured using the positive electrode forming composition described above means that the positive electrode forming composition, a dried material thereof, or a cured product thereof is included.
  • the positive electrode according to an embodiment of the present invention may be manufactured according to a conventional method except for forming a positive electrode active material layer using the positive electrode forming composition. Specifically, the positive electrode is applied to the positive electrode current collector and the composition for forming the positive electrode and dried; Alternatively, the composition for forming the cathode may be cast on a separate support, and then the film obtained by peeling from the support may be manufactured by laminating on a cathode current collector.
  • the positive electrode manufactured according to the above-described manufacturing method includes a positive electrode current collector and a positive electrode active material layer on the positive electrode current collector, in which a composite of a conductive material-dispersant is uniformly dispersed.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel Surface treated with nickel, titanium, silver, or the like may be used.
  • the current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode active material layer may include at least one of a negative electrode active material and optionally a binder, a conductive material, and other additives.
  • the negative electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, including carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or an anode active material such as a composite including the metallic compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, P
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material are the same as described above for the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC) and the like.
  • DMC dimethylcarbonate
  • DEC diethylcarbonate
  • MEC methylethylcarbonate
  • EMC ethylmethylcarbonate
  • EC ethylene carbonate
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the lithium salt is preferably included at a concentration of approximately 0.6 mol% to 2 mol% in the electrolyte.
  • the electrolyte includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • -Glyme hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2
  • One or more additives such as -methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery having the above configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case.
  • the electrode assembly may be stacked, and then impregnated in the electrolyte, and the resultant may be manufactured by sealing it in a battery case.
  • the lithium secondary battery including the cathode manufactured by using the composition for forming a cathode according to an embodiment of the present invention may stably exhibit excellent discharge capacity, output characteristics, and capacity retention rate due to uniform dispersion of the conductive material in the cathode. have.
  • portable devices such as a mobile telephone, a notebook computer, a digital camera, and the electric vehicle field
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • NMP N-methylpyrrolidone
  • carbon black 135m 2 / g
  • OAN 220ml / 100g
  • dispersant partially hydrogenated nitrile rubber
  • Bead filling rate 80% by weight
  • Example 2 In the same manner as in Example 1, except that each component is used in the formulations described in Tables 1 to 3, and the discharge rate is 0.5 kg / min during the bead milling process for preparing the conductive material dispersion. It carried out to manufacture the composition for positive electrode formation.
  • Example 2 In the same manner as in Example 1, except that each component is used in the formulations described in Tables 1 to 3, and the discharge rate is 1.2 kg / min in the bead milling process for preparing the conductive material dispersion. It carried out to manufacture the composition for positive electrode formation.
  • Example 2 In the same manner as in Example 1 except that each component is used in the formulations described in Tables 1 to 3 below, and the discharge rate is 2 kg / min during the bead milling process for preparing the conductive material dispersion. To prepare a composition for forming an anode.
  • Example 2 In the same manner as in Example 1, except that each component is used in the formulations described in Tables 1 to 3, and the discharge rate is 0.3 kg / min during the bead milling process for preparing the conductive material dispersion. It carried out to manufacture the composition for positive electrode formation.
  • Example 1 Except for using each of the components in the formulation described in Tables 1 to 3, was carried out in the same manner as in Example 1 to prepare a composition for forming a positive electrode.
  • each component was used in the formulations described in Tables 1 to 3, except that polyvinyl alcohol (PVA) was used as the dispersant, and the composition for forming the anode was prepared in the same manner as in Example 1. .
  • PVA polyvinyl alcohol
  • Carbon black 30 135 220 Example 2 Carbon black 22 230 362 Example 3 Carbon black 26 170 272 Comparative Example 1 Carbon black 30 135 220 Comparative Example 2 Carbon black 30 135 220 Comparative Example 3 Carbon black 36 63 190 Comparative Example 4 Carbon black 30 135 220
  • AN is a repeating unit of acrylonitrile-derived structure in partially hydrogenated nitrile rubber
  • BD is a repeating unit of butadiene-derived structure
  • HBD is a repeating unit of hydrogenated butadiene-derived structure
  • BA is n-butylacryl It means the repeat unit of the rate-derived structure, the weight percent content of the repeat unit of each structure is a value based on the total weight of the partially hydrogenated nitrile rubber.
  • the positive electrode forming compositions prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were respectively coated on one surface of an aluminum foil, dried and rolled, and then punched to a predetermined size to prepare a positive electrode.
  • a negative electrode slurry was prepared by adding carbon powder as a negative electrode active material, carboxymethyl cellulose as a thickener, styrene-butadiene rubber as a binder, and carbon black as a conductive material, respectively, in a weight ratio of 96: 1: 2: 1.
  • the negative electrode slurry was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried, followed by roll press to prepare a negative electrode.
  • Cu thin copper
  • a battery assembly was manufactured through a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) between the positive electrode and the negative electrode.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the particle size distribution of the conductive material was measured for the compositions for positive electrode formation prepared in Examples 1 to 3 and Comparative Examples 1 to 4 above.
  • Particle size The prepared positive electrode composition was diluted 500-fold using NMP solvent, and the D 50 and D 90 values of the particle size distribution of the carbon black-dispersant composite dispersed in the dispersion were measured using Malvern's Mastersizer 3000 equipment. It was. The results are shown in Table 4 below.
  • the carbon black-dispersant composite in the positive electrode composition of Examples 1 to 3 showed a more uniform particle size distribution than Comparative Example 1, and showed a larger particle size distribution than Comparative Example 2.
  • the particle size distribution was similar to that of Examples 1 to 3. This is because, in Comparative Examples 3 and 4, the milling was performed under the same conditions as in Example 1, and it was confirmed that the particle size distribution could be adjusted according to the milling conditions.
  • the resistance characteristics of the batteries prepared according to the above production examples were evaluated using the compositions for positive electrode formation prepared in Examples 1 to 3 and Comparative Examples 1 to 4 above.
  • the prepared lithium secondary battery was charged and discharged 1.0C / 1.0C three times at 25 ° C., and SOC (charge depth) was set based on the final discharge capacity.
  • SOC discharge depth
  • the 10 second resistance was measured by applying a discharge pulse at 6.5C at SOC15, SOC30 and SOC50, respectively. The results are shown in Table 5 below.
  • the rate characteristic was evaluated about the battery manufactured using the composition for positive electrode formation manufactured in the said Examples 1-3 and Comparative Examples 1-4.
  • two unit cells were prepared in the same manner as in Preparation Example using the compositions for forming anodes prepared in Example 1 and Comparative Examples 1 to 4, respectively, and the prepared unit cells were 0.1C at 25 ° C.
  • the battery was charged until the constant current (CC) of 4.25V, then charged with a constant voltage (CV) of 4.25V, and the first charge was performed until the charging current became 0.05mAh.
  • the battery was discharged to a constant current of 0.1C until 3.0V, and the discharge capacity of the first cycle was measured. Thereafter, the capacity characteristics for each rate were evaluated by varying the discharge conditions at 2.0C.
  • Rate capacity represents the ratio of the capacity
  • the specific surface area and the oil absorption amount is less than 130 m 2 / g and less than 220 ml / 100g, since the structure of the conductive material is less developed, the volume of the conductive material per weight is not small enough to cover the active material surface As a result, the cell performance was deteriorated.
  • Comparative Example 4 it was considered that by using PVA as a dispersant, the PVA was insulated or denatured from the positive electrode active material to deteriorate discharge characteristics, thereby degrading cell performance.
  • the prepared lithium secondary battery was charged at 1C to 4.25V under constant current / constant voltage (CC / CV) conditions at 45 ° C., and then discharged at 1C to 3.0V under constant current (CC) conditions. This cycle was repeated for 490 cycles, and the capacity retention rate at the 490th cycle was measured.
  • Table 7 The results are shown in Table 7 below.
  • Example 1 First cell 90.1 90.0 2nd cell 89.7
  • Example 2 First cell 89.8 89.7 2nd cell 89.5
  • Example 3 First cell 90.1 90.1 2nd cell 90.1 Comparative Example 1 First cell 83.5 86.0 2nd cell 88.4 Comparative Example 2 First cell 90.0 89.4 2nd cell 88.7 Comparative Example 3 First cell 84.1 84.5 2nd cell 84.8 Comparative Example 4 First cell 87.1 87.3 2nd cell 87.4
  • the battery containing the positive electrode produced by the composition for forming the positive electrode of Examples 1 to 3 exhibited a better high temperature capacity retention rate and the smallest cell variation. It is considered that the conductive materials included in Examples 1 to 3 form a dispersant and a conductive material-dispersant composite to stably exhibit excellent capacity retention by uniformly dispersing the conductive material in the positive electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a composition for forming a secondary battery cathode, and a secondary battery cathode and a secondary battery, which are manufactured using the same, the composition comprising a cathode active material, a conductive material, and a dispersant, wherein the conductive material contains, on the basis of the total weight of the composition for forming a cathode, 0.1-2 wt% of a carbon-based material having a specific surface area of 130 m2/g or more and an oil absorption amount of 220 mL/100 g or more, the dispersant is introduced into the conductive material so as to form a conductive material-dispersant composite, and the D50 of the particle size distribution of the conductive material-dispersant composite is 0.8-1.2 μm.

Description

이차전지의 양극 형성용 조성물 및 이를 이용하여 제조한 이차전지용 양극 및 이차전지A composition for forming a cathode of a secondary battery, and a cathode and secondary battery for a secondary battery manufactured using the same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 3월 24일자 한국특허출원 제2016-0035562호 및 2017년 3월 23일자 한국특허출원 제2017-0036956호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 2016-0035562 dated March 24, 2016 and Korean Patent Application No. 2017-0036956 dated March 23, 2017. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 도전재 분산성을 높여 전지 성능을 개선시킬 수 있는 이차전지의 양극 형성용 조성물 및 이를 이용하여 제조한 이차전지용 양극 및 이차전지에 관한 것이다.The present invention relates to a composition for forming a cathode of a secondary battery capable of improving battery performance by increasing dispersibility of a conductive material, and a cathode and a secondary battery for a secondary battery manufactured using the same.
카본블랙, 케첸블랙, 풀러렌, 그래핀 또는 카본 나노튜브 등의 미세 탄소 재료는 우수한 전기적 특성 및 열전도성으로 인해, 에너지 분야, 항공 우주 분야 등의 분야에서 폭넓게 이용되고 있다. 그러나 이들 미세 탄소재료를 적용하기 위해서는 균일 분산이 선행되어야 하지만, 종래 기계적 분산, 분산제를 이용한 분산, 표면기능화를 통한 분산 등의 방법으로는 고농도의 미세 탄소 재료 분산액 제조가 용이하지 않았다. Fine carbon materials such as carbon black, ketjen black, fullerene, graphene or carbon nanotubes are widely used in the fields of energy, aerospace and the like due to their excellent electrical properties and thermal conductivity. However, in order to apply these fine carbon materials, the uniform dispersion should be preceded, but it has not been easy to prepare a high concentration of fine carbon material dispersion by methods such as conventional mechanical dispersion, dispersion using a dispersant, and surface functionalization.
최근 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중에서도 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. Recently, with the development of technology and demand for mobile devices, the demand for secondary batteries as a source of energy is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
리튬 이차전지에 있어서, 양극 및 음극의 전극은 전극 활물질 및 바인더를 용매와 일괄적으로 혼합하여 제조한 전극 형성용 조성물을 집전체에 도포 후 건조하여 제조된다. 이때, 활물질과 집전체 사이의 전도성 확보를 위해 전극 형성용 조성물 중에 상기한 미세 탄소 재료의 도전재를 포함시키고 있으며, 그 중에서도 활물질 충전율을 높일 수 있고, 소량으로도 전지 내부 저항의 상승을 억제할 수 있다는 점에서 카본블랙이 널리 사용되고 있다.In the lithium secondary battery, the electrodes of the positive electrode and the negative electrode are manufactured by applying an electrode forming composition prepared by mixing an electrode active material and a binder with a solvent to a current collector and then drying them. At this time, in order to secure the conductivity between the active material and the current collector, the conductive material of the fine carbon material is included in the composition for forming an electrode, and among these, the active material filling rate can be increased, and even a small amount can suppress an increase in battery internal resistance. Carbon black is widely used in that it can be.
그러나, 도전재의 경우 수십 nm 수준의 미립자로 사용되기 때문에, 응집력이 강하여 용매에 분산시 도전재 미립자 간의 응집이 일어나기 쉽다. 이와 같은 전극 활물질층내 도전재의 불균일한 분산은 전도성 저하 및 전지의 출력특성 저하를 초래하고, 또 이렇게 단순 응집된 도전재의 응집체는 구조 유지력이 낮기 때문에 활물질간 전도성을 열화시킬 수 있다. 또, 도전재는 비표면적이 넓어 바인더를 흡착함으로써 활물질층내 바인더의 불균일 분포 및 그에 따른 접착력 감소를 초래할 수 있다. However, since the conductive material is used as fine particles of several tens of nm level, the cohesive force is strong, and aggregation between the conductive material fine particles is likely to occur when dispersed in a solvent. Such non-uniform dispersion of the conductive material in the electrode active material layer leads to a decrease in conductivity and a decrease in output characteristics of the battery. Further, since the aggregate of the simply aggregated conductive material has a low structure holding force, the conductivity between the active materials can be degraded. In addition, since the conductive material has a large specific surface area, the binder may be adsorbed, resulting in non-uniform distribution of the binder in the active material layer and consequent decrease in adhesive strength.
이에 대해 도전재를 바인더 및 용제와 함께 미리 분산시켜 페이스트를 만들고, 여기에 전극 활물질을 첨가하여 교반, 혼합하는 방식으로, 상기 도전재의 분산과 관련된 문제를 해결하고자 하였다. 그러나, 불소 수지, 셀룰로오스 수지 등의 수지계 바인더를 포함하는 분산액에서는, 도전재 입자의 분산 안정성이 나쁘고, 도전재 입자가 재응집해 버리는 등, 충분한 효과가 얻을 수 없었다.On the other hand, a conductive material was previously dispersed together with a binder and a solvent to make a paste, and an electrode active material was added thereto, and stirred and mixed to solve the problem related to dispersion of the conductive material. However, in the dispersion liquid containing resin binders, such as a fluororesin and a cellulose resin, dispersion stability of electroconductive material particle was bad and sufficient effect was not acquired, for example, a conductive material particle reaggregated.
또, 도전재와 용제에 분산제로서의 비닐 피롤리돈계 폴리머를 첨가함으로써, 도전재의 분산성을 높이고, 이를 통해 전지 부하 특성이나 사이클 특성을 양호하게 유지하고자 하는 시도가 있었다. 그러나, 이 경우 첨가한 비닐 피롤리돈계 폴리머가 전극 활물질을 절연 피복해 버리거나, 충전 상태에서 장기 저장했을 때에 변성되어 방전 특성을 열화 시켜 버리는 등, 전지 특성을 손상시키는 문제가 있었다.Moreover, the addition of the vinyl pyrrolidone type polymer as a dispersing agent to an electrically conductive material and a solvent has made the attempt to improve the dispersibility of an electrically conductive material, and to maintain favorable battery load characteristics and cycling characteristics through this. In this case, however, the added vinyl pyrrolidone-based polymer has a problem of impairing battery characteristics, such as insulation coating of the electrode active material or deterioration and deterioration of discharge characteristics when stored for a long time in a charged state.
이와 같은 리튬 이차전지를 비롯하여 다양한 분야에의 미세 탄소 입자의 용도 확대를 위해서는, 미세 탄소 입자를 균일하게 분산시킬 수 있는 방법의 개발이 필요하다.In order to expand the use of the fine carbon particles in various fields including such lithium secondary batteries, it is necessary to develop a method capable of uniformly dispersing the fine carbon particles.
본 발명이 해결하고자 하는 제1과제는, 도전재 분산성을 높여 전지 성능을 개선시킬 수 있는 이차전지의 양극 형성용 조성물 및 그 제조방법을 제공하는 것이다.The first problem to be solved by the present invention is to provide a composition for forming a positive electrode of a secondary battery that can improve the battery performance by increasing the dispersibility of the conductive material and a method of manufacturing the same.
본 발명이 해결하고자 하는 제2과제는 상기 양극 형성용 조성물을 이용하여 제조되어, 도전재가 균일 분산된 이차전지용 양극 및 이차전지를 제공하는 것이다.The second problem to be solved by the present invention is to provide a positive electrode and a secondary battery for a secondary battery is prepared using the composition for forming the positive electrode, the conductive material is uniformly dispersed.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 양극활물질, 도전재, 및 분산제를 포함하고, 상기 도전재는 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물 총 중량에 대하여 0.1중량% 내지 2중량%로 포함하며, 상기 분산제는 상기 도전재에 도입되어 도전재-분산제 복합체를 형성하고, 상기 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛인 것인 이차전지의 양극 형성용 조성물을 제공한다.According to an embodiment of the present invention to solve the above problems, comprising a cathode active material, a conductive material, and a dispersant, the conductive material has a specific surface area of 130 m 2 / g or more, oil absorption amount 220 ml / 100 g or more carbon 0.1 wt% to 2 wt% of the base material based on the total weight of the composition for forming an anode, wherein the dispersant is introduced into the conductive material to form a conductive material-dispersant composite, and the conductive material-dispersant composite has a particle size distribution. It provides a composition for forming a positive electrode of a secondary battery having a D 50 of 0.8 μm to 1.2 μm.
또, 본 발명의 다른 일 실시예에 따르면, 용매 중에서 도전재 및 분산제를 혼합한 혼합물을 밀링하여 도전재 분산액을 준비하는 단계; 및 상기 도전재 분산액에 양극활물을 첨가하고 혼합하는 단계를 포함하며, 상기 도전재는 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물 총 중량에 대하여 0.1중량% 내지 2중량%로 포함하고, 상기 도전재 분산액은 상기 분산제가 도전재에 도입된 도전재-분산제 복합체를 포함하며, 상기 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛인 것인 이차전지의 양극형성용 조성물의 제조방법을 제공한다.In addition, according to another embodiment of the present invention, by preparing a conductive material dispersion by milling a mixture of the conductive material and the dispersant in a solvent; And adding a positive electrode active material to the conductive material dispersion and mixing the conductive material, wherein the conductive material has a specific surface area of 130 m 2 / g or more and an oil absorption amount of 220 ml / 100g or more. 0.1 wt% to 2 wt% of the conductive material dispersion, wherein the conductive material dispersion includes a conductive material-dispersant composite in which the dispersant is introduced into the conductive material, and the conductive material-dispersant composite has a D 50 of a particle size distribution of 0.8 μm. It provides a method for producing a composition for forming a cathode of a secondary battery that is to 1.2㎛.
본 발명의 또 다른 일 실시예에 따르면, 상기 이차전지의 양극 형성용 조성물을 이용하여 제조한 이차전지용 양극 및 이를 포함하는 리튬 이차전지를 제공한다.According to another embodiment of the present invention, there is provided a cathode for a secondary battery manufactured using the composition for forming a cathode of the secondary battery, and a lithium secondary battery including the same.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of the embodiments of the present invention are included in the following detailed description.
본 발명에 따른 이차전지의 양극 형성용 조성물은 난분산성의 도전재를 조성물내 균일 분산시킴으로써, 전지의 저항 특성, 수명 특성, 용량 특성 및 율 특성 등의 성능을 크게 향상시킬 수 있다.The composition for forming a cathode of a secondary battery according to the present invention can greatly improve the performance, such as resistance characteristics, life characteristics, capacity characteristics and rate characteristics of the battery by uniformly dispersing the dispersibility conductive material in the composition.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
이차 전지에 대한 고용량 및 고출력 특성이 요구됨에 따라 비표면적이 크고 2차 입자의 구조가 발달된 고전도성 도전재의 적용이 요구되고 있다. 고전도성 도전재는 기존의 상용화된 도전재에 비하여 입자간 응집력이 강하기 때문에 난분산성을 가지고 있어 종래 슬러리 혼합 공정에서의 혼합 방법으로는 균일 분산이 어려웠다. 일례로, 단위입자로서 1차 입자가 응집되어 이루어진 카본블랙의 경우, 1차 입자의 결합 구조를 발달시킴으로써 전도성을 향상시키고 있다. 그러나, 이와 같이 전도성을 향상시킨 카본블랙의 경우, 1차 입자의 크기가 작고 표면적이 커서 응집체를 형성하기 쉽고, 또 흡유량이 높아 분산이 용이하지 않다. 전극내 도전재의 분산이 부족할 경우 도전재가 활물질 표면에 적절히 분포되지 못하여 전지 셀의 성능이 저하되고, 셀간 성능 편차가 증가하게 된다. 또 도전재의 분산이 과할 경우 분산된 도전재가 활물질 표면에 유리하게 분포할 수 있지만, 도전재간 네크워크 형성이 용이하지 않아 오히려 셀 내 저항이 증가하게 된다. As high capacity and high output characteristics of secondary batteries are required, application of a highly conductive conductive material having a large specific surface area and a structure of secondary particles is required. Highly conductive conductive material is difficult to disperse uniformly by the mixing method in the conventional slurry mixing process because the cohesive force between the particles is stronger than the conventional commercially available conductive material. For example, in the case of carbon black in which primary particles are agglomerated as unit particles, conductivity is improved by developing a bonding structure of primary particles. However, in the case of carbon black having improved conductivity, the size of the primary particles is small and the surface area is large to easily form aggregates, and the oil absorption amount is high, so that dispersion is not easy. When the dispersion of the conductive material in the electrode is insufficient, the conductive material may not be properly distributed on the surface of the active material, thereby degrading the performance of the battery cell and increasing the performance variation between the cells. In addition, when the conductive material is excessively dispersed, the dispersed conductive material may be advantageously distributed on the surface of the active material, but the network formation between the conductive materials is not easy, and thus the resistance in the cell is increased.
또, 도전재는 분산제와 혼합 사용시, 분산제가 도전재의 표면에 물리적 또는 화학적 결합을 통해 도입된 도전재-분산제 복합체의 형태로 분산되어 포함된다. 이때 형성된 도전재-분산제 복합체의 입도 분포는 조성물내 도전재의 분산성을 나타낸다.In addition, the conductive material is contained in the form of a conductive material-dispersant composite in which the dispersant is introduced through a physical or chemical bond to the surface of the conductive material when mixed with the dispersant. The particle size distribution of the conductive material-dispersant composite formed at this time indicates the dispersibility of the conductive material in the composition.
이에 따라, 본 발명에서는 전극내 최적의 분산도를 나타낼 수 있도록 도전재와 분산제의 물성적 특징을 함께 조합하여 제어하고, 또 상기 도전재와 분산제의 분산시 밀링 조건을 최적화하여, 조성물내 생성되는 도전재-분산제 복합체의 입도 분포를 제어함으로써 난분산성의 도전재를 조성물내 균일 분산시키고, 그 결과로서 전지의 저항 특성, 수명 특성, 용량 특성 및 율 특성 등의 성능을 크게 향상시킬 수 있다.Accordingly, in the present invention, the physical properties of the conductive material and the dispersant are controlled by combining the conductive materials and the dispersant in order to exhibit the optimum degree of dispersion in the electrode. By controlling the particle size distribution of the conductive material-dispersant composite, the dispersion of the hardly dispersible conductive material can be uniformly dispersed in the composition, and as a result, the performances such as resistance characteristics, life characteristics, capacity characteristics and rate characteristics of the battery can be greatly improved.
구체적으로, 본 발명의 일 실시예에 따른 이차전지의 양극 형성용 조성물은 양극활물질, 도전재 및 분산제를 포함하고, 상기 도전재는 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물 총 중량에 대하여 0.1중량% 내지 2중량%로 포함하며, 상기 분산제는 상기 도전재에 도입되어 도전재-분산제 복합체를 형성하고, 상기 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛이다. 본 발명에 있어서, 상기 탄소계 물질의 함량은 특별히 언급하지 않는 한, 양극 형성용 조성물 내 고형분의 총 중량을 기준으로 한 값이다. Specifically, the composition for forming a cathode of a secondary battery according to an embodiment of the present invention includes a cathode active material, a conductive material and a dispersant, the conductive material has a specific surface area of 130 m 2 / g or more, oil absorption amount 220 ml / A carbon-based material of 100g or more is contained in an amount of 0.1% to 2% by weight based on the total weight of the composition for forming an anode, wherein the dispersant is introduced into the conductive material to form a conductive material-dispersant composite, and the conductive material-dispersant composite is D 50 of the particle size distribution is 0.8 μm to 1.2 μm. In the present invention, the content of the carbonaceous material is a value based on the total weight of solids in the composition for forming an anode, unless otherwise specified.
상기한 바와 같이, 본 발명의 일 실시예에 따른 이차전지의 양극 형성용 조성물에 있어서, 도전재-분산제 복합체의 입도 분포의 D50이 상기한 범위를 충족할 경우, 도전재의 분산성이 크게 향상되고, 그 결과 전극 형성시 전극내 저항 특성 감소로 전지 성능을 향상시킬 수 있다. 만약 도전재-분산제 복합체의 입도 분포의 D50이 0.8㎛ 미만일 경우 도전재가 과분산됨으로써 양극 형성시 전극내 활물질 사이에서 도전재 네트워크 형성이 용이하지 않고, 그 결과 셀 저항이 증가하게 될 우려가 있다. 또, 도전재-분산제 복합체의 입도 분포의 D50이 1.2㎛를 초과할 경우 도전재의 분산이 충분하지 못해, 도전재가 활물질 표면에 적절히 분포하지 못하여 셀 성능 저하 및 셀간 성능 편차가 증가하게 된다. 도전재의 최적 분산성 및 그에 따른 개선 효과의 현저함을 고려할 때, 상기 양극 형성용 조성물내 포함되는 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛이고, D90이 2.0㎛ 내지 5.0㎛ 이하인 것일 수 있다.As described above, in the composition for forming a positive electrode of a secondary battery according to an embodiment of the present invention, when D 50 of the particle size distribution of the conductive material-dispersant composite satisfies the above range, the dispersibility of the conductive material is greatly improved. As a result, it is possible to improve battery performance by reducing the resistance characteristics within the electrode during electrode formation. If the D 50 of the particle size distribution of the conductive material-dispersant composite is less than 0.8 μm, the conductive material may be over-dispersed, so that the conductive material network may not be easily formed between the active materials in the electrode during the formation of the anode, and as a result, the cell resistance may increase. . In addition, when the D 50 of the particle size distribution of the conductive material-dispersant composite exceeds 1.2 μm, the dispersion of the conductive material is not sufficient, and the conductive material is not properly distributed on the surface of the active material, resulting in increased cell performance and inter-cell performance variation. In consideration of the optimum dispersibility of the conductive material and the remarkable improvement effect thereof, the conductive material-dispersant composite included in the anode-forming composition has a particle size distribution of D 50 of 0.8 μm to 1.2 μm and D 90 of 2.0 μm to It may be 5.0 μm or less.
상기한 도전재-분산제 복합체의 입도 분포 조건은 도전재 및 분산제의 물성과 함량에 영향을 받으며, 이중에서도 특히 도전재의 물성 및 함량에 크게 영향을 받는다. 또, 양극 형성용 조성물내 포함되는 도전재의 양이 많을 경우에는 분산이 용이하지 않기 때문에 분산 입도에 따른 차이는 미미할 수 있으나, 도전재의 양이 일정 수준 이하인 경우 도전재의 물성에 따른 최적의 분산 입도가 존재할 수 있다. The particle size distribution condition of the conductive material-dispersant composite is influenced by the physical properties and content of the conductive material and the dispersant, and in particular, the physical properties and content of the conductive material are greatly affected. In addition, when the amount of the conductive material included in the positive electrode forming composition is large, the dispersion may not be easy, so the difference according to the dispersion particle size may be insignificant. However, when the amount of the conductive material is less than a predetermined level, the optimum dispersion particle size according to the physical properties of the conductive material May exist.
구체적으로, 본 발명의 일 실시예에 따른 이차전지의 양극 형성용 조성물에 있어서, 상기 도전재는 비표면적(SSA)이 130 m2/g 이상이고, 오일흡수량(OAN)이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물 총 중량에 대하여 0.1중량% 내지 2중량%로 포함한다. Specifically, in the composition for forming a positive electrode of a secondary battery according to an embodiment of the present invention, the conductive material has a specific surface area (SSA) of 130 m 2 / g or more, and an oil absorption amount (OAN) of 220 ml / 100g or more of carbon The base material is included in an amount of 0.1% by weight to 2% by weight based on the total weight of the composition for forming an anode.
본 발명에 있어서, 탄소계 물질의 "비표면적(specific surface are: SSA) "은 질소 흡착법에 의해 측정된 값으로 정의될 수 있으며, "오일 흡수 수(Oil Absorption number, OAN)"는 액체(오일)를 흡수하는 특성에 대한 측정 값으로, 상기 비표면적 및 오일 흡수 수는 탄소계 물질의 구조적 특징 또는 구조 발달 정도를 나타내는 수치로 사용될 수 있다. 통상 1차 입자의 조립에 의해 이루어진 2차 입자상의 구조를 갖는 탄소계 물질에 있어서, 1차 입자의 크기가 작고, 2차 입자의 비표면적 및 오일흡수량이 클수록 발달된 구조를 가짐을 의미한다. 이 경우 우수한 전도성을 나타내는 반면, 분산성은 낮아질 수 있다. 이에 따라 전극내 전도성 및 분산성을 고려할 때, 탄소계 물질내 발달 구조는 최적화되어야 한다.In the present invention, "specific surface are" (SSA) of the carbonaceous material may be defined as a value measured by nitrogen adsorption method, and "Oil Absorption number (OAN)" is a liquid (oil The specific surface area and the oil absorption number may be used as a numerical value indicating the structural characteristics of the carbonaceous material or the degree of structural development. In the carbon-based material having a secondary particle structure usually formed by granulation of primary particles, it means that the smaller the size of the primary particles, the larger the specific surface area and the oil absorption of the secondary particles, the more developed the structure. In this case, while exhibiting excellent conductivity, dispersibility may be lowered. Accordingly, considering the conductivity and dispersibility in the electrode, the developmental structure in the carbon-based material should be optimized.
구체적으로, 본 발명의 일 실시예에 따른 이차전지의 양극 형성용 조성물에 있어서, 상기 도전재는 1차 입자의 조립에 의해 이루어진 2차 입자상의 탄소계 물질을 포함하며, 상기 탄소계 물질은 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 것일 수 있다. 이와 같이 발달된 구조를 가짐으로써 보다 더 우수한 전도성과 함께 분산성을 나타낼 수 있다. Specifically, in the composition for forming a cathode of a secondary battery according to an embodiment of the present invention, the conductive material includes a carbonaceous material of secondary particles made by assembling primary particles, and the carbonaceous material has a specific surface area. The 130 m 2 / g or more, the oil absorption may be 220 ml / 100g or more. By having such a developed structure, it can exhibit dispersibility with better conductivity.
보다 구체적으로는 상기 탄소계 물질은 1차 입자의 평균입경(D50)이 15nm 내지 35nm이고, 상기 1차 입자가 조립되어 이루어진 2차 입자의 비표면적이 130 m2/g 내지 270 m2/g이며, 오일흡수량이 220 ml/100g 내지 400 ml/100g인 고도로 발달된 구조를 가짐으로써, 보다 더 우수한 전도성과 함께 분산성을 나타낼 수 있으며, 특히, 양극내 적용시 양극활물질과 전해질과의 삼상 계면에 있어서의 전자 공급성을 높여 반응성을 향상시킬 수 있다. 만약 탄소계 물질의 1차 입자의 평균입경이 15nm 미만이거나, 2차 입자의 비표면적 및 오일흡수량이 각각 270 m2/g 및 400 ml/100g을 초과할 경우, 탄소계 물질의 응집이 일어날 우려가 있으며, 이 경우 분산성이 저하될 수 있다. 또 평균입경이 35nm를 초과하거나 또는 2차 입자의 비표면적 및 오일흡수량이 각각 130 m2/g 미만 및 220 ml/100g 미만이면 1차 입자의 크기가 지나치게 크고, 도전재의 구조 발달이 적기 때문에 분산은 용이할 수 있으나 동일 무게당 도전재의 부피가 작아 활물질 표면을 충분히 감싸지 못하며, 그 결과 셀 성능 저하 및 셀간 성능 편차가 증가하게 될 우려가 있다. 보다 구체적으로, 탄소계 물질의 1차 입자의 평균 입경 및 2차 입자의 비표면적과 오일흡수량이 전도성 및 분산성에 미치는 영향의 현저함을 고려할 때, 상기 탄소계 물질의 1차 입자의 평균 입경(D50)이 20nm 내지 35nm이고, 2차 입자의 비표면적이 130 m2/g 내지 270 m2/g이며, 오일흡수량이 220 ml/100g 내지 400 ml/100g인 것일 수 있다.More specifically, the carbonaceous material has an average particle diameter (D 50 ) of the primary particles of 15 nm to 35 nm, and the specific surface area of the secondary particles formed by assembling the primary particles is 130 m 2 / g to 270 m 2 / g, having a highly developed structure with an oil absorption amount of 220 ml / 100g to 400 ml / 100g, thereby exhibiting better conductivity and dispersibility, and in particular, three phases of the positive electrode active material and the electrolyte when applied in the positive electrode Reactivity can be improved by improving the electron supply property in an interface. If the average particle diameter of the primary particles of the carbonaceous material is less than 15 nm, or if the specific surface area and oil absorption of the secondary particles exceed 270 m 2 / g and 400 ml / 100g, respectively, aggregation of the carbonaceous material may occur. In this case, dispersibility may decrease. In addition, if the average particle diameter exceeds 35 nm or the specific surface area and oil absorption of the secondary particles are less than 130 m 2 / g and less than 220 ml / 100g, respectively, the primary particles are too large in size and dispersed due to the lack of structural development of the conductive material. Although it may be easy, the volume of the conductive material per weight is not small enough to cover the surface of the active material, and as a result there is a concern that the cell performance degradation and inter-cell performance deviations increase. More specifically, the average particle diameter of the primary particles of the carbonaceous material, considering the remarkable effects of the specific surface area and oil absorption of the secondary particles on the conductivity and dispersibility, D 50), and a 20nm to 35nm, and the specific surface area of the secondary particles 130 m 2 / g to 270 m 2 / g, oil absorption may be one of 220 ml / 100g to 400 ml / 100g.
한편, 본 발명에 있어서 상기 탄소계 물질에서의 1차 입자의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 또 상기 탄소계 물질의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 보다 구체적으로는, 상기 탄소계 물질을 용매에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.Meanwhile, in the present invention, the average particle diameter (D 50 ) of the primary particles in the carbonaceous material may be defined as the particle size based on 50% of the particle size distribution. In addition, the average particle diameter (D 50 ) of the carbonaceous material can be measured using, for example, a laser diffraction method. More specifically, the carbonaceous material is dispersed in a solvent and then sold. Introduced into a laser diffraction particle size measuring device (e.g., Microtrac MT 3000) and irradiating an ultrasonic wave of about 28 kHz with an output of 60 W, and then calculating the average particle diameter (D 50 ) based on 50% of the particle size distribution in the measuring device. Can be.
상기 탄소계 물질은 구체적으로 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 또는 서멀 블랙 등의 카본 블랙; 또는 탄소 섬유 등의 탄소질 물질일 수도 있다. 이중에서도 보다 구체적으로는 상기 탄소계 물질은 카본블랙일 수 있다.Specifically, the carbon-based material may be graphite such as natural graphite or artificial graphite; Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black or thermal black; Or carbonaceous materials such as carbon fibers. More specifically, the carbonaceous material may be carbon black.
또, 상기 카본블랙은 그 제조방법 및 사용원료에 따라 다양하게 분류될 수 있다. 본 발명에서 사용가능한 카본블랙은 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 또는 덴카 블랙 등일 수 있으며, 이중에서 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.In addition, the carbon black may be classified in various ways depending on the production method and the raw materials used. Carbon black usable in the present invention may be acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, or denka black and the like, any one or a mixture of two or more may be used.
보다 구체적으로, 상기 양극 형성용 조성물의 제조시 우수한 전도성 및 분산성을 고려할 때 상기 카본블랙은 아세틸렌 가스를 이용하여 제조되며, 구체적으로는 아세틸렌 가스를 무산소 분위기 하에서 열분해 하여 제조되며, 1차 입자의 평균입경(D50)이 20nm 내지 30nm인 것일 수 있다. More specifically, in consideration of excellent conductivity and dispersibility in the preparation of the composition for forming the anode, the carbon black is prepared using acetylene gas, specifically, is prepared by thermal decomposition of the acetylene gas under an oxygen-free atmosphere, The average particle diameter (D 50 ) may be 20 nm to 30 nm.
또, 상기 카본블랙은 제조 과정에서의 불순물 제어 또는 제조 후 정제 공정을 통해 카본블랙 내 금속 불순물의 함량이 제어된, 구체적으로 순도가 99.5% 이상인 것일 수 있다. In addition, the carbon black may control the content of metal impurities in the carbon black through an impurity control during the manufacturing process or a purification process after manufacture, specifically, the purity may be 99.5% or more.
일례로 리튬 이차전지는 다양한 원인에 의해 구성요소들이 열화되면서 수명 특성이 저하되는데, 주요 원인들 중의 하나는 도전재 내에 포함되는 금속 불순물의 전지내 혼입에 의한 것이다. 구체적으로, 도전재 내에 포함된 철(Fe) 등의 금속불순물은 리튬 이차전지의 작동 전압 범위인 약 3.0V 내지 4.5V에서 반응하여 전해액에 용해되고, 용해된 금속불순물은 음극에서 금속의 형태로 재석출된다. 이렇게 석출된 금속은 세퍼레이터를 뚫고 양극과 단락되어 저전압 불량을 야기하며, 이차전지의 용량 특성 및 수명 특성의 저하를 초래하여 전지로서의 역할을 다하지 못하게 한다. 따라서, 도전재의 이차전지의 적용시 불순물, 특히 금속 불순물의 혼입이 발생하지 않도록 하는 것이 중요하다. 이에 따라 본 발명에서 사용가능한 카본블랙은 금속 불순물의 함량이 최대한 제거된 상기 범위의 고순도를 갖는 카본블랙일 수 있다.As an example, a lithium secondary battery degrades its life characteristics as components deteriorate due to various causes. One of the main causes is due to incorporation of metal impurities in a battery into a battery. Specifically, metal impurities such as iron (Fe) contained in the conductive material are dissolved in the electrolyte by reacting at an operating voltage range of about 3.0V to 4.5V of the lithium secondary battery, and the dissolved metal impurities are in the form of metal at the negative electrode. Is reprecipitated. The precipitated metal penetrates the separator and shorts with the positive electrode, causing a low voltage failure, and deteriorating the capacity characteristics and life characteristics of the secondary battery, thereby preventing its function as a battery. Therefore, it is important to prevent the incorporation of impurities, particularly metal impurities, in the application of the secondary battery of the conductive material. Accordingly, the carbon black usable in the present invention may be carbon black having high purity in the above range in which the content of metal impurities is removed to the maximum.
본 발명에 있어서, 상기 카본블랙 내 불순물, 특히 금속불순물의 함량은 자성을 이용하여 하거나, X-선 회절법(X-ray Diffraction, XRD), 시차 열분석(Differential Thermal Analysis, DTA), 시차 주사 열량법(Differential Scanning Calorimetry, DSC), 변조 시차 주사 열량법(Modulated Differential Scanning Calorimetry, MDSC), 열중량 분석법(Thermogravimetric Analysis, TGA), 열중량-적외선(Thermogravimetric-infrared, TG-IR) 분석 및 용융점 측정을 비롯한 1가지 이상의 열 분석법을 포함하는 방법으로 분석하거나 확인할 수 있다. 구체적으로, 카본블랙내 금속 불순물의 함량은 X-선 회절법(XRD)에 의해 얻어진 금속불순물의 주요 피크 강도를 통해 측정할 수 있다.In the present invention, the content of impurities in the carbon black, particularly metal impurities, may be determined by using magnetic, X-ray diffraction (XRD), differential thermal analysis (DTA), differential scanning Differential Scanning Calorimetry (DSC), Modulated Differential Scanning Calorimetry (MDSC), Thermogravimetric Analysis (TGA), Thermogravimetric-infrared (TG-IR) Analysis and Melting Point It can be analyzed or confirmed by a method that includes one or more thermal assays, including measurements. Specifically, the content of metal impurities in carbon black can be measured through the main peak intensity of the metal impurities obtained by X-ray diffraction (XRD).
또, 본 발명의 일 실시예에 따른 도전재 분산액에 있어서, 상기 카본블랙은 분산액 중의 분산성을 높이기 위하여 표면처리된 것일 수 있다. In addition, in the conductive material dispersion according to an embodiment of the present invention, the carbon black may be surface treated to increase the dispersibility in the dispersion.
구체적으로, 상기 카본블랙은 산화처리에 의해 산소 함유 기능기를 카본블랙 표면에 도입하여 친수성을 부여하거나; 또는 카본블랙에 대한 불화 처리 또는 실리콘 처리로 소수성을 부여할 수도 있다. 또 상기 카본블랙에 대해 페놀수지를 도포하거나 또는 기계화학적 처리를 실시할 수도 있다. 일례로, 카본블랙을 산화처리 하는 경우, 공기중 또는 산소분위기 하에서 약 500℃ 내지 700℃에서 약 1시간 내지 2시간 동안 카본블랙을 열처리함으로써 수행될 수 있다. 다만, 카본블랙에 대한 표면처리가 지나치면, 카본블랙 자체의 전기전도성 및 강도 특성이 크게 열화될 수 있으므로, 적절하게 제어하는 것이 바람직할 수 있다.Specifically, the carbon black imparts hydrophilicity by introducing an oxygen-containing functional group on the surface of the carbon black by oxidation treatment; Alternatively, hydrophobicity may be imparted by fluorination treatment or siliconization treatment on carbon black. The carbon black may be coated with a phenol resin or subjected to a mechanical chemical treatment. For example, when the carbon black is oxidized, it may be performed by heat treating the carbon black at about 500 ° C. to 700 ° C. for about 1 to 2 hours in air or under an oxygen atmosphere. However, if the surface treatment for the carbon black is excessive, since the electrical conductivity and strength characteristics of the carbon black itself may be greatly deteriorated, it may be desirable to control properly.
보다 구체적으로, 상기 카본블랙은 ASTM D-1510에 의거하여 측정된 요오드가(iodine number)가 200 mg/g 내지 400 mg/g인 것일 수 있으며, 만약, 상기 카본블랙의 요오드가가 200 mg/g 미만일 경우에는 카본블랙이 충분히 분산되기 어려울 수 있으며, 400 mg/g을 초과할 경우에는 도전성이 저하되는 문제가 발생할 수 있다.More specifically, the carbon black may be iodine number (iodine number) measured according to ASTM D-1510 (200 mg / g to 400 mg / g), if the iodine number of the carbon black is 200 mg / If it is less than g it may be difficult to sufficiently disperse the carbon black, if it exceeds 400 mg / g may cause a problem that the conductivity is lowered.
본 발명에서 사용되는 용어 "요오드가(Iodine Number)"는 이중 결합에 할로겐이 부가하는 반응을 이용하여 유지 또는 지방산에 할로겐을 작용시킨 경우 흡수되는 할로겐의 양을 요오드로 환산하여 시료 100g에 흡수되는 요오드의 양을 g으로 표시한 것으로, 시료 중의 불포화 지방산의 이중 결합 수를 나타내는 수치로 사용되며 요오드가의 수치가 높을수록 이중 결합 수가 많음을 나타낸다.As used herein, the term "iodine number" is absorbed in 100 g of a sample by converting the amount of halogen absorbed into iodine when halogen is applied to a fat or fatty acid using a reaction in which a halogen is added to a double bond. The amount of iodine is expressed in g, which is used as a numerical value indicating the number of double bonds of unsaturated fatty acids in a sample. The higher the iodine number, the higher the number of double bonds.
상기와 같은 탄소계 물질은 양극 형성용 조성물 내 고형분 총 중량에 대하여 0.1중량% 내지 2중량%로 포함될 수 있다. 탄소계 물질의 함량이 0.1중량% 미만이면 탄소계 물질 사용에 따른 전도성 개선 효과가 미미하고, 또 2중량%를 초과할 경우, 분산성이 저하되며, 셀 용량 저하의 우려가 있다. 상기한 탄소계 물질의 사용에 따른 개선 효과의 현저함을 고려할 때 상기 탄소계 물질은 양극 형성용 조성물내 고형분 총 중량에 대하여 0.5중량% 내지 1.5중량%로 포함될 수 있다. The carbonaceous material may be included in an amount of 0.1 wt% to 2 wt% based on the total weight of solids in the composition for forming an anode. If the content of the carbon-based material is less than 0.1% by weight, the conductivity improvement effect by using the carbon-based material is insignificant, and when the content of the carbon-based material is more than 2% by weight, the dispersibility is lowered and there is a fear of lowering the cell capacity. In consideration of the remarkable improvement effect of using the carbonaceous material, the carbonaceous material may be included in an amount of 0.5% by weight to 1.5% by weight based on the total weight of solids in the composition for forming an anode.
또, 본 발명의 일 실시예에 따른 양극 형성용 조성물에 있어서, 상기 도전재는 전도성 향상을 위해 상기한 탄소계 물질과 함께, 통상의 도전재를 더 포함할 수 있다.In addition, in the composition for forming a cathode according to an embodiment of the present invention, the conductive material may further include a conventional conductive material together with the carbon-based material to improve conductivity.
구체적으로, 상기 도전재는 상기 탄소계 물질과 혼합 사용시 전도성 네트워크 형성이 보다 용이하고, 또 전지 적용시 활물질과의 삼상 계면 형성이 용이한 섬유상 도전재를 더 포함할 수 있다. 상기 섬유상 도전재는 탄소 나노로드, 또는 탄소나노파이버 등과 같이 종횡비(섬유상 도전재의 중심을 지나는 장축의 길이와 장축에 수직하는 직경의 비)가 1 초과인 섬유상 도전재일 수 있다.Specifically, the conductive material may further include a fibrous conductive material that is easier to form a conductive network when used in combination with the carbon-based material, and easily forms a three-phase interface with the active material when the battery is applied. The fibrous conductive material may be a fibrous conductive material having an aspect ratio (a ratio of the length of the long axis passing through the center of the fibrous conductive material and the diameter perpendicular to the long axis) such as carbon nanorods or carbon nanofibers.
또, 상기 섬유상 도전재의 길이는 분산액의 전기전도성, 강도 및 분산성에 영향을 미친다. 구체적으로, 섬유상 도전재의 길이가 길수록, 전기전도성 및 강도 특성이 증가될 수 있지만, 길이가 지나치게 길면, 분산성이 저하될 우려가 있다. 이에 따라 본 발명에서 사용가능한 섬유상 도전재의 종횡비가 5 내지 50,000, 보다 구체적으로는 10 내지 15,000일 수 있다.In addition, the length of the fibrous conductive material affects the electrical conductivity, strength, and dispersibility of the dispersion. Specifically, the longer the length of the fibrous conductive material, the higher the electrical conductivity and the strength characteristics may be, but if the length is too long, there is a fear that the dispersibility is lowered. Accordingly, the aspect ratio of the fibrous conductive material usable in the present invention may be 5 to 50,000, more specifically 10 to 15,000.
상기와 같은 섬유상 도전재는 상기 탄소계 물질 100중량부에 대하여 0.1중량부 내지 10중량부로 사용될 수 있다. 탄소계 물질의 함량에 비해 섬유상 도전재의 함량이 지나치게 낮으면, 혼합 사용에 따른 전도성 개선 효과가 미미하고, 또 10중량부를 초과하면 섬유상 도전재의 분산성 저하의 우려가 있다.The fibrous conductive material as described above may be used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the carbonaceous material. If the content of the fibrous conductive material is too low compared to the content of the carbonaceous material, the effect of improving conductivity due to the mixed use is insignificant, and if it exceeds 10 parts by weight, the dispersibility of the fibrous conductive material may be reduced.
또, 통상 분산제를 이용한 전극 형성용 조성물의 제조시 도전재는 분산제와 물리적 또는 화학적으로 결합된 복합체의 형태로 분산매 중에 분산되게 된다. In addition, during the preparation of the electrode-forming composition using a dispersant, the conductive material is dispersed in the dispersion medium in the form of a composite physically or chemically bonded to the dispersant.
이에 따라 본 발명에서는 상기한 도전재를 이용한 양극 형성용 조성물의 제조시, 도전재와 상호작용이 가능한 구조의 반복단위 영역과, 분산매와의 상호작용이 가능한 구조의 반복단위 영역의 함량을 제어한 부분 수소화 니트릴 고무를 분산제로 사용함으로써, 분산매 중 도전재가 균일 분산되고, 더 나아가 고농도의 도전재 분산시에도 저점도를 나타낼 수 있다.Accordingly, in the present invention, the content of the repeating unit region of the structure capable of interacting with the conductive material and the repeating unit region of the structure capable of interacting with the dispersion medium when the composition for forming the anode using the conductive material is controlled is controlled. By using partially hydrogenated nitrile rubber as the dispersant, the conductive material is uniformly dispersed in the dispersion medium, and further, low viscosity can be exhibited even at the time of dispersing a high concentration of the conductive material.
구체적으로, 본 발명의 일 실시예에 따른 양극 형성용 조성물에 있어서, 상기 분산제는 탄소계 물질과 상호작용 가능한 구조의 반복단위 영역(A)으로서 α,β-불포화 니트릴 유래 구조의 반복단위와; 분산매와의 상호작용 가능한 구조의 반복단위 영역(B)으로서 공액 디엔 유래 구조의 반복단위 및 수소화된 공액 디엔 유래 구조의 반복단위를 포함하는 부분 수소화 니트릴 고무를 포함할 수 있다. 이때 상기 부분 수소화 니트릴 고무는 도전재-분산제 복합체가 상기한 입도 분포를 갖도록 하는 조건 하에서 공중합 가능한 추가의 공단량체를 선택적으로 더 포함할 수 있다.Specifically, in the composition for forming a positive electrode according to an embodiment of the present invention, the dispersing agent is a repeating unit having an α, β-unsaturated nitrile-derived structure as a repeating unit region (A) of a structure capable of interacting with a carbon-based material; The repeating unit region (B) of the structure capable of interacting with the dispersion medium may include a partially hydrogenated nitrile rubber comprising a repeating unit of a conjugated diene derived structure and a repeating unit of a hydrogenated conjugated diene derived structure. The partially hydrogenated nitrile rubber may optionally further comprise additional comonomers copolymerizable under conditions such that the conductive material-dispersant composite has the above particle size distribution.
상기 부분 수소화 니트릴 고무는 구체적으로 α,β-불포화 니트릴, 공액 디엔 및 선택적으로 기타 공중합 가능한 공단량체를 공중합시킨 후, 공중합체 내 C=C 이중결합을 수소화시킴으로써 제조될 수 있다. 이때 상기 중합 반응 공정 및 수소화 공정은 통상의 방법에 따라 수행될 수 있다.The partially hydrogenated nitrile rubber may be prepared by specifically copolymerizing α, β-unsaturated nitrile, conjugated diene and optionally other copolymerizable comonomers, followed by hydrogenation of the C = C double bond in the copolymer. In this case, the polymerization reaction process and the hydrogenation process may be performed according to a conventional method.
상기 부분 수소화 니트릴 고무의 제조시 사용가능한 α,β-불포화 니트릴로는 구체적으로 아크릴로니트릴 또는 메타크릴로니트릴 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.Specific examples of the α, β-unsaturated nitrile that can be used in the preparation of the partially hydrogenated nitrile rubber include acrylonitrile or methacrylonitrile, and one or more of these may be used.
또, 상기 부분 수소화 니트릴 고무의 제조시 사용가능한 공액 디엔으로는 구체적으로 1,3-부타디엔, 이소프렌, 2,3-메틸부타디엔 등의 탄소수 4 내지 6의 공액 디엔을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Moreover, the conjugated diene which can be used at the time of manufacture of the said partially hydrogenated nitrile rubber can specifically mention conjugated diene of 4 to 6 carbon atoms, such as 1, 3- butadiene, isoprene, and 2, 3- methyl butadiene, Any one of these Or mixtures of two or more may be used.
또, 상기 선택적으로 사용가능한 기타 공중합가능한 공단량체로는 구체적으로 방향족 비닐 단량체(예를 들면, 스티렌, α-메틸스티렌, 비닐피리딘, 플루오로에틸 비닐 에테르 등), α,β-불포화 카르복실산(예를 들면, 아크릴산, 메타크릴산, 말레산, 푸마르산, 등), α,β-불포화 카르복실산의 에스테르 또는 아미드(예를 들면, 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, n-도데실 (메트)아크릴레이트, 메톡시메틸 (메트)아크릴레이트, 히드록시에틸 (메트)아크릴레이트, 또는 폴리에틸렌 글리콜 (메트)아크릴레이트 등), α,β-불포화 디카르복실산의 무수물(예를 들면, 말레산 무수물, 이타콘산 무수물, 시트라콘산 무수물 등)을 들 수 있으나, 이에 한정되는 것은 아니다.Other copolymerizable comonomers which may optionally be used include, for example, aromatic vinyl monomers (for example, styrene, α-methylstyrene, vinylpyridine, fluoroethyl vinyl ether, etc.), α, β-unsaturated carboxylic acids. (Eg, acrylic acid, methacrylic acid, maleic acid, fumaric acid, etc.), esters or amides of α, β-unsaturated carboxylic acids (eg methyl (meth) acrylate, ethyl (meth) acrylate, n-dodecyl (meth) acrylate, methoxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, or polyethylene glycol (meth) acrylate), and anhydrides of α, β-unsaturated dicarboxylic acids (For example, maleic anhydride, itaconic anhydride, citraconic anhydride, etc.), but is not limited thereto.
보다 구체적으로, 상기 부분 수소화 니트릴 고무는 공단량체로서 α,β-불포화 카르복실산의 에스테르, 예컨대 (메트)아크릴레이트계 단량체를 더 포함한다. 상기 (메트)아크릴레이트계 단량체의 예로는 메틸아크릴레이트, 에틸아크릴레이트, 프로필아크릴레이트, 이소프로필아크릴레이트, n-부틸아크릴레이트, 이소부틸아크릴레이트, n-아밀아크릴레이트, 이소아밀아크릴레이트, n-에틸헥실아크릴레이트, 2-에틸헥실라크릴레이트, 2-히드록시에틸아크릴레이트, 메틸메타크릴레이트, 에틸메타크릴레이트, 프로필메타크릴레이트,2-히드록시에틸메타크릴레이트, 또는 히드록시프로필메타크릴레이트 등이 있다. More specifically, the partially hydrogenated nitrile rubber further comprises esters of α, β-unsaturated carboxylic acids as comonomers, such as (meth) acrylate based monomers. Examples of the (meth) acrylate monomers include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, iso amyl acrylate, n-ethylhexyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, 2-hydroxyethyl methacrylate, or hydroxy Propyl methacrylate and the like.
상기와 같은 방법에 따라 제조된 부분 수소화된 니트릴부타디엔계 고무에 있어서, α,β-불포화 니트릴 유래 구조의 반복단위, 공액디엔 유래 구조의 반복단위, 수소화된 공액디엔 유래 구조의 반복단위 및 선택적으로 기타 공중합 가능한 공단량체 유래 구조의 반복단위의 함량비는 넓은 범위 내에서 다양할 수 있으며, 각 경우에 있어서 상기 구조의 반복단위들의 총 합은 100중량%가 된다.In the partially hydrogenated nitrile butadiene rubber prepared according to the above method, a repeating unit of α, β-unsaturated nitrile derived structure, a repeating unit of conjugated diene derived structure, a repeating unit of hydrogenated conjugated diene derived structure and optionally The content ratio of repeating units of other copolymerizable comonomer-derived structures may vary within a wide range, in each case the total sum of repeating units of the structure is 100% by weight.
구체적으로 탄소계 물질에 대한 분산성 향상 및 분산매와의 혼화성을 고려할 때, 상기 부분 수소화 니트릴 고무는 α,β-불포화 니트릴 유래 구조의 반복단위의 함량은 부분 수소화된 니트릴 고무 총 중량에 대하여 20중량% 내지 50중량%, 보다 구체적으로는 20중량% 내지 30중량%일 수 있다. 상기한 함량 범위로 α,β-불포화 니트릴 유래 구조의 반복단위를 포함할 경우, 도전재의 분산성을 높일 수 있어, 도전재 첨가량이 적더라도 높은 도전성을 부여할 수 있다. Specifically, in consideration of the improved dispersibility of the carbon-based material and the miscibility with the dispersion medium, the content of the repeating unit of the α, β-unsaturated nitrile-derived structure is 20% based on the total weight of the partially hydrogenated nitrile rubber. It may be 50% to 50% by weight, more specifically 20% to 30% by weight. When the repeating unit having an α, β-unsaturated nitrile-derived structure is included in the above content range, the dispersibility of the conductive material can be increased, and even if the amount of the conductive material added is small, high conductivity can be given.
본 발명에 있어서, 부분 수소화된 니트릴 고무내 α,β-불포화 니트릴 유래 구조의 반복단위의 함량은, α,β-불포화 니트릴에서 유래하는 구조의 반복단위의 고무 전체에 대한 중량 비율로, 당해 함량의 측정은, JIS K 6364의 밀 오븐법에 따라서, 발생한 질소량을 측정하고 아크릴로니트릴 분자량으로부터 그의 결합량을 환산하여, 정량되는 값의 중앙값이다.In the present invention, the content of the repeating unit of the α, β-unsaturated nitrile-derived structure in the partially hydrogenated nitrile rubber is the weight ratio of the entire rubber of the repeating unit of the structure derived from the α, β-unsaturated nitrile. The measurement of is the median of the value which measures the amount of nitrogen which generate | occur | produced according to the mill oven method of JISK6364, converts the amount of its binding from the acrylonitrile molecular weight, and quantifies.
또, 상기 부분 수소화 니트릴 고무는 상기 수소화된 공액디엔 유래 구조의 반복단위를 부분 수소화 니트릴 고무 총 중량에 대하여 20중량% 내지 70중량%, 보다 구체적으로는 20중량% 내지 50중량%, 보다 더 구체적으로는 30중량% 내지 50중량%로 포함하는 것일 수 있다. 상기와 같은 함량 범위로 상기 수소화된 공액디엔 유래 구조의 반복단위를 포함함으로써 분산매에 대한 혼화성이 증가되어 탄소계 물질의 분산성을 높일 수 있다.In addition, the partially hydrogenated nitrile rubber is 20% to 70% by weight, more specifically 20% to 50% by weight, and more specifically, the repeating unit of the hydrogenated conjugated diene-derived structure As may be included in 30% by weight to 50% by weight. By including the repeating unit of the hydrogenated conjugated diene-derived structure in the content range as described above, the miscibility to the dispersion medium can be increased to increase the dispersibility of the carbon-based material.
또, 상기 부분 수소화 니트릴 고무가 추가의 기타 공중합 가능한 공단량체를 더 포함할 경우, 공단량체의 종류 및 성질에 따라 함량 비가 달라질 수 있지만, 구체적으로 상기 공단량체 유래 구조의 반복단위의 함량은 부분 수소화 니트릴 고무 총 중량에 대하여 30중량% 이하, 보다 구체적으로는 10중량% 내지 30중량%일 수 있다.In addition, when the partially hydrogenated nitrile rubber further includes additional copolymerizable comonomers, the content ratio may vary depending on the type and nature of the comonomer, but specifically, the content of the repeating unit of the comonomer-derived structure may be partially hydrogenated. It may be 30% by weight or less, more specifically 10% to 30% by weight relative to the total weight of the nitrile rubber.
보다 더 구체적으로, 상기 부분 수소화된 니트릴 고무는 하기 화학식 1의 구조의 반복단위, 하기 화학식 2의 구조의 반복단위 및 하기 화학식 3의 구조의 반복단위를 포함하고, 선택적으로 α,β-불포화 카르복실산의 에스테르 유래 구조의 반복단위를 더 포함하는 아크릴로니트릴-부타디엔 고무(H-NBR)일 수 있다. 이때, 하기 화학식 1의 아크릴로니트릴 유래 구조의 반복단위의 함량은 고무 총 중량에 대하여 20중량% 내지 50중량%일 수 있다. 또, 하기 화학식 3의 수소화된 부타디엔 유래 구조의 반복단위의 함량은 고무 총 중량에 대하여 20중량% 내지 50중량%일 수 있다. 또, 상기 부분 수소화된 니트릴 고무가 α,β-불포화 카르복실산의 에스테르 유래 구조의 반복단위를 더 포함하는 경우, 상기 α,β-불포화 카르복실산의 에스테르 유래 구조의 반복단위의 함량은 고무 총 중량에 대하여 30중량% 이하, 보다 구체적으로는 10중량% 내지 30중량%일 수 있다.More specifically, the partially hydrogenated nitrile rubber includes repeating units of the structure of Formula 1, repeating units of the structure of Formula 2, and repeating units of the structure of Formula 3, and optionally, α, β-unsaturated carbon It may be an acrylonitrile-butadiene rubber (H-NBR) further comprising a repeating unit of the ester-derived structure of the acid. At this time, the content of the repeating unit of the acrylonitrile-derived structure of Formula 1 may be 20% to 50% by weight relative to the total weight of the rubber. In addition, the content of the repeating unit of the hydrogenated butadiene-derived structure of Formula 3 may be 20% to 50% by weight relative to the total weight of the rubber. In the case in which the partially hydrogenated nitrile rubber further comprises a repeating unit of α, β- unsaturated carboxylic acid ester derived from the structure, the content of the repeating unit of the α, β- unsaturated carboxylic acid ester of the structure is derived rubber The total weight may be 30% by weight or less, more specifically 10% by weight to 30% by weight.
[화학식 1][Formula 1]
Figure PCTKR2017003219-appb-I000001
Figure PCTKR2017003219-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2017003219-appb-I000002
Figure PCTKR2017003219-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2017003219-appb-I000003
Figure PCTKR2017003219-appb-I000003
또, 상기 부분 수소화 니트릴 고무는 중량평균 분자량이 10,000g/mol 내지 700,000g/mol, 보다 구체적으로는 10,000g/mol 내지 200,000g/mol인 것일 수 있다. 또, 상기 부분 수소화 니트릴 고무는 2.0 내지 6.0의 범위, 구체적으로는 2.0 내지 4.0 범위의 다분산지수 PDI(Mw/Mn의 비, Mw는 중량평균 분자량이고 Mn은 수평균 분자량임)을 갖는 것일 수 있다. 상기 부분 수소화 니트릴 고무가 상기한 범위의 중량평균 분자량 및 다분산 지수를 가질 때, 도전재-분산제 복합체의 평균 입도 조건을 충족함으로써 도전재를 분산매 중에 균일하게 분산시킬 수 있다. In addition, the partially hydrogenated nitrile rubber may have a weight average molecular weight of 10,000 g / mol to 700,000 g / mol, more specifically 10,000 g / mol to 200,000 g / mol. In addition, the partially hydrogenated nitrile rubber may have a polydispersity index PDI (ratio of Mw / Mn, Mw is weight average molecular weight and Mn is number average molecular weight) in the range of 2.0 to 6.0, specifically, 2.0 to 4.0. have. When the partially hydrogenated nitrile rubber has a weight average molecular weight and a polydispersity index in the above range, the conductive material can be uniformly dispersed in the dispersion medium by satisfying the average particle size condition of the conductive material-dispersant composite.
본 발명에 있어서, 상기 중량평균 분자량 및 수평균 분자량은 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이다. In the present invention, the weight average molecular weight and the number average molecular weight are polystyrene reduced molecular weights analyzed by gel permeation chromatography (GPC).
또, 상기 부분 수소화 니트릴 고무는 10 내지 120, 보다 구체적으로는 10 내지 100의 무니 점도 (100℃에서의 ML 1+4)를 갖는 것일 수 있다. 본 발명에 있어서 부분 수소화 니트릴 고무의 무니 점도는 ASTM 표준 D 1646에 따라 측정할 수 있다.Again, The partially hydrogenated nitrile rubber may have a Mooney viscosity (ML 1 + 4 at 100 ° C.) of 10 to 120, more specifically 10 to 100. The Mooney viscosity of the partially hydrogenated nitrile rubber in the present invention can be measured according to ASTM standard D 1646.
한편, 본 발명의 일 실시예에 따른 상기 양극 형성용 조성물에 있어서, 상기 양극활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서, 구체적으로는 육방정계 층상 암염 구조를 갖는 물질 (구체적인 예로서, LiCoO2, LiCo 1/3Mn 1/3Ni 1/3O2, 또는 LiNiO2), 올리빈 구조를 갖는 물질 (구체적인 예로서, LiFePO4), 큐빅 구조를 갖는 스피넬 물질 (구체적인 예로서, LiMn2O4), 그 외에 V2O5, 등의 바나듐 산화물, TiS 또는 MoS 등의 칼코켄 화합물 일 수 있다.On the other hand, in the positive electrode formation composition according to an embodiment of the present invention, the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound), specifically Is a material having a hexagonal layered rock salt structure (specifically, LiCoO 2 , LiCo 1/3 Mn 1/3 Ni 1/3 O 2 , or LiNiO 2 ), a material having an olivine structure (specifically, LiFePO 4 ), A spinel material having a cubic structure (specifically, LiMn 2 O 4 ), and other vanadium oxides such as V 2 O 5 , and a chalcone compound such as TiS or MoS.
보다 구체적으로, 상기 양극활물질은 코발트, 망간, 니켈 또는 알루미늄과 같은 금속과 리튬을 포함하는 리튬 복합금속 산화물일 수 있다. 상기 리튬 복합금속 산화물은 구체적으로, 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - YCoYO2(여기에서, 0<Y<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zCozO4(여기에서, 0<Z<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NiPCoQMnR)O2(여기에서, 0<P<1, 0<Q<1, 0<R<1, P+Q+R=1) 또는 Li(NiPCoQMnR)O4(여기에서, 0<P<2, 0<Q<2, 0<R<2, P+Q+R=2) 등), 또는 리튬-니켈-코발트-망간-금속(M) 산화물(예를 들면, Li(NiPCoQMnRMS)O2(여기에서, M은 Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W 및 Mo로 이루어지는 군으로부터 선택되고, P, Q, R 및 S는 각각 독립적인 원소들의 원자분율로서, 0<P<1, 0<Q<1, 0<R<1, 0<S<1, P+Q+R+S=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 본 발명에 따른 양극활물질의 수명 평가 방법이 고온 및 고전압의 가혹한 조건에서 수행되는 것을 고려할 때, 양극활물질 자체의 퇴화에 대한 우려없이 보다 정확하고 신뢰도 높은 수명 특성 평가 결과를 얻을 수 있다는 점에서 상기 양극활물질은 층상 구조의 리튬 복합금속 산화물 일 수 있으며, 보다 구체적으로는 층상 구조의 리튬 코발트 산화물 일 수 있다.More specifically, the cathode active material may be a lithium composite metal oxide including a metal such as cobalt, manganese, nickel or aluminum and lithium. The lithium composite metal oxide is specifically, a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 <Y <1), LiMn 2-z Ni z O 4 (where, 0 <z <2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y Co Y O 2 (where, 0 <Y <1) and the like), lithium-manganese-cobalt oxide (e.g., LiCo 1-Y Mn Y O 2 (where, 0 <Y <1), LiMn 2 - z Co z O 4 (here, 0 <Z <2) and the like, lithium-nickel-manganese-cobalt-based oxides (eg, Li (Ni P Co Q Mn R ) O 2 (here, 0 <P <1, 0 <Q <1, 0 <R <1, P + Q + R = 1) or Li (Ni P Co Q Mn R ) O 4 (where 0 <P <2, 0 <Q <2, 0 <R <2, P + Q + R = 2) or the like, or lithium-nickel-cobalt-manganese-metal (M) oxide (for example, Li (Ni P Co Q Mn R M S ) O 2 , where M is selected from the group consisting of Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W and Mo, and P, Q, R and S are Each independent As an atomic fraction of phosphorus elements, 0 <P <1, 0 <Q <1, 0 <R <1, 0 <S <1, P + Q + R + S = 1) etc.) etc. are mentioned, Any one or two or more of these may be included. In particular, considering that the method for evaluating the life of the cathode active material according to the present invention is performed under severe conditions of high temperature and high voltage, it is possible to obtain a more accurate and reliable life characteristics evaluation result without fear of deterioration of the cathode active material itself. The cathode active material may be a lithium composite metal oxide having a layered structure, and more specifically, may be a lithium cobalt oxide having a layered structure.
또, 상기 리튬 복합금속 산화물에 있어서 리튬을 제외한 금속원소들 중 적어도 하나는 Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W 및 Mo로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 원소에 의해 도핑될 수도 있다. 이와 같이 리튬 결함의 리튬 복합금속 산화물에 상기한 금속원소가 더 도핑될 경우, 양극활물질의 구조안정성이 개선되고, 그 결과 전지의 출력 특성이 향상될 수 있다. 이때, 리튬 복합금속 산화물 내 포함되는 도핑 원소의 함량은 양극활물질의 특성을 저하시키지 않는 범위 내에서 적절히 조절될 수 있으며, 구체적으로는 0.02원자% 이하일 수 있다.In the lithium composite metal oxide, at least one of the metal elements except lithium is selected from the group consisting of Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W, and Mo. It may be doped by any one or two or more elements selected. As described above, when the above metal element is further doped into the lithium composite metal oxide of the lithium defect, the structural stability of the cathode active material may be improved, and as a result, the output characteristics of the battery may be improved. In this case, the content of the doping element included in the lithium composite metal oxide may be appropriately adjusted within a range that does not lower the characteristics of the positive electrode active material, specifically, may be 0.02 atomic% or less.
보다 구체적으로, 상기 리튬 복합금속 산화물은 하기 화학식 4의 화합물을 포함하는 것일 수 있다:More specifically, the lithium composite metal oxide may include a compound of Formula 4 below:
[화학식 4][Formula 4]
Li1+aNixCoyMnzMwO2 Li 1 + a Ni x Co y Mn z M w O 2
상기 화학식 4에서, M은 Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W 및 Mo로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하는 것일 수 있고, a, x, y, z 및 w는 각각 독립적으로 해당 원소들의 원자 분율로서, -0.5≤a≤0.5, 0≤x≤1, 0<y≤1, 0≤z≤1, 0≤w≤1 및 0<x+y+z≤1일 수 있다.In Formula 4, M is one containing one or two or more elements selected from the group consisting of Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W and Mo And a, x, y, z and w are each independently atomic fractions of the corresponding elements, -0.5≤a≤0.5, 0≤x≤1, 0 <y≤1, 0≤z≤1, 0≤ w ≦ 1 and 0 <x + y + z ≦ 1.
또, 상기 최적화된 도전재 및 분산제의 조합 사용에 따른 개선효과의 현저함을 고려할 때, 상기 양극활물질은 상기 화학식 4에서 0<x<1, 0<y<1, 0<z<1이고, y+z≤x인 화합물을 포함할 수 있으며, 보다 구체적으로, 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 양극활물질은 LiNi0 . 6Mn0 . 2Co0 . 2O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, LiNi0.7Mn0.15Co0.15O2 또는 LiNi0 . 8Mn0 . 1Co0 . 1O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.In addition, in view of the remarkable effect of the improved use of the combination of the optimized conductive material and dispersant, the positive electrode active material is 0 <x <1, 0 <y <1, 0 <z <1 in Formula 4, It may include a compound of y + z ≤ x, more specifically, the positive electrode active material is LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , LiNi 0.7 Mn 0.15 Co 0.15 O 2 or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2 and the like, any one or a mixture of two or more thereof may be used.
또, 본 발명의 일 실시예에 따른 상기 양극 형성용 조성물은 선택적으로 바인더를 더 포함할 수 있다.In addition, the composition for forming an anode according to an embodiment of the present invention may optionally further include a binder.
상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 형성용 조성물내 고형분 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.The binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber Or various copolymers thereof, and the like may be used alone or in a mixture of two or more thereof. The binder may be included in an amount of 1% to 30% by weight based on the total weight of solids in the composition for forming an anode.
상기한 조성을 갖는 본 발명의 일 실시예에 따른 양극 형성용 조성물은, 양극활물질, 도전재, 분산제 및 선택적으로 바인더를 용매 중에 첨가하여 혼합을 통해 용해 및 분산시킴으로써 제조될 수 있다. 이에 따라, 상기 양극 형성용 조성물은 용매를 더 포함할 수 있다. The composition for forming a cathode according to an embodiment of the present invention having the above composition may be prepared by dissolving and dispersing a cathode active material, a conductive material, a dispersant and optionally a binder in a solvent by mixing. Accordingly, the positive electrode forming composition may further include a solvent.
상기 용매는 통상 양극 형성용 조성물의 제조에 사용되는 것이라면 특별한 제한 없이 사용가능하다. 구체적으로는 상기 용매는 디메틸포름아미드(DMF), 디에틸 포름아미드, 디메틸 아세트아미드(DMAc), N-메틸 피롤리돈(NMP) 등의 아미드계 극성 유기 용매; 메탄올, 에탄올, 1-프로판올, 2-프로판올(이소프로필 알코올), 1-부탄올(n-부탄올), 2-메틸-1-프로판올(이소부탄올), 2-부탄올(sec-부탄올), 1-메틸-2-프로판올(tert-부탄올), 펜탄올, 헥사놀, 헵탄올 또는 옥탄올 등의 알코올류; 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,3-부탄디올, 1,5-펜탄디올, 또는 헥실렌글리콜 등의 글리콜류; 글리세린, 트리메티롤프로판, 펜타에리트리톨, 또는 소르비톨 등의 다가 알코올류; 에틸렌글리콜모노 메틸에테르, 디에틸렌글리콜모노 메틸에테르, 트리에틸렌글리콜 모노 메틸에테르, 테트라 에틸렌글리콜모노 메틸에테르, 에틸렌글리콜모노 에틸에테르, 디에틸렌글리콜모노 에틸에테르, 트리에틸렌글리콜 모노 에틸에테르, 테트라 에틸렌글리콜모노 에틸에테르, 에틸렌글리콜모노 부틸 에테르, 디에틸렌글리콜모노 부틸 에테르, 트리에틸렌글리콜 모노 부틸 에테르, 또는 테트라 에틸렌글리콜모노 부틸 에테르 등의 글리콜 에테르류; 아세톤, 메틸 에틸 케톤, 메틸프로필 케톤, 또는 사이클로펜타논 등의 케톤류; 초산에틸, γ-부틸 락톤, 및 ε-프로피오락톤 등의 에스테르류 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로, 상기 카본블랙 및 분산제에 대한 분산성 향상 효과를 고려할 때 상기 용매는 아미드계 극성 유기용매일 수 있다. The solvent may be used without particular limitation as long as it is usually used in the preparation of the composition for forming an anode. Specifically, the solvent is an amide polar organic solvent such as dimethylformamide (DMF), diethyl formamide, dimethyl acetamide (DMAc) or N-methyl pyrrolidone (NMP); Methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl Alcohols such as 2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; Glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, or hexylene glycol; Polyhydric alcohols such as glycerin, trimetholpropane, pentaerythritol, or sorbitol; Ethylene glycol mono methyl ether, diethylene glycol mono methyl ether, triethylene glycol mono methyl ether, tetra ethylene glycol mono methyl ether, ethylene glycol mono ethyl ether, diethylene glycol mono ethyl ether, triethylene glycol mono ethyl ether, tetra ethylene glycol Glycol ethers such as mono ethyl ether, ethylene glycol mono butyl ether, diethylene glycol mono butyl ether, triethylene glycol mono butyl ether, or tetra ethylene glycol mono butyl ether; Ketones such as acetone, methyl ethyl ketone, methylpropyl ketone, or cyclopentanone; Ester, such as ethyl acetate, (gamma) -butyl lactone, (epsilon) -propiolactone, etc. are mentioned, Any one or a mixture of two or more of these may be used. More specifically, the solvent may be an amide polar organic solvent when considering the effect of improving dispersibility for the carbon black and the dispersant.
상기와 같은 구성을 갖는 본 발명의 일 실시예에 따른 상기 양극 형성용 조성물에 있어서, 상기한 양극활물질, 도전재, 분산제, 용매 및 선택적으로 바인더의 함량은 양극 제조시의 공정성 및 양극 특성 개선 효과 등에 따라 적절히 결정될 수 있다. In the composition for forming a positive electrode according to an embodiment of the present invention having the configuration as described above, the content of the positive electrode active material, the conductive material, the dispersant, the solvent, and optionally the binder may improve the processability and positive electrode characteristics at the time of manufacturing the positive electrode. It may be appropriately determined depending on the like.
구체적으로, 양극 형성용 조성물 중 도전재의 균일 분산을 위해 상기한 탄소계 물질을 포함하는 도전재는 양극 형성용 조성물내 고형분 총 중량에 대하여 0.1중량% 내지 10중량%로 포함될 수 있다. 도전재의 상기 범위의 함량으로 포함될 때 전자 전도성과 분산성을 발란스 좋게 나타낼 수 있다. 만약 도전재의 함량이 상기 범위를 벗어나 0.1중량% 미만일 경우, 일례로 리튬 이차전지의 전극 제조시 전극 형성용 조성물이 다량의 유기용제를 포함하게 되고, 그 결과 전극내 공극이 증가하고, 활물질 충전율이 저하됨으로써 전지 용량이 저하될 수 있다. 또, 유기용제 제거를 위한 건조시간이 길어질 수 있다. 또, 도전재의 함량이 10중량%를 초과할 경우, 분산성이 저하될 우려가 있다. 보다 구체적으로는 상기한 탄소계 물질을 포함하는 도전재는 양극 형성용 조성물내 고형분 총 중량에 대하여 0.1중량% 내지 2중량%로 포함될 수 있다. Specifically, the conductive material including the carbonaceous material for uniform dispersion of the conductive material in the positive electrode forming composition may be included in an amount of 0.1% to 10% by weight relative to the total weight of solids in the positive electrode forming composition. When included in the content of the above range of the conductive material can exhibit a good balance of electronic conductivity and dispersibility. If the content of the conductive material is less than 0.1% by weight out of the above range, for example, when forming the electrode of a lithium secondary battery, the composition for forming an electrode includes a large amount of organic solvent, and as a result, the voids in the electrode increase, and the active material filling rate is increased. The battery capacity can be lowered by being lowered. In addition, the drying time for removing the organic solvent may be long. Moreover, when content of an electrically conductive material exceeds 10 weight%, there exists a possibility that a dispersibility may fall. More specifically, the conductive material including the carbonaceous material may be included in an amount of 0.1% by weight to 2% by weight based on the total weight of solids in the composition for forming an anode.
또, 상기 분산제는 도전재 100중량부에 대하여 10중량부 내지 50중량부로 포함될 수 있다. 분산제의 함량이 10중량부 미만이면 분산액 중 도전재의 균일 분산이 어렵고, 50중량부를 초과하면 조성물의 점도 증가로 가공성 저하 등의 우려가 있다.In addition, the dispersant may be included in 10 parts by weight to 50 parts by weight with respect to 100 parts by weight of the conductive material. If the content of the dispersant is less than 10 parts by weight, it is difficult to uniformly disperse the conductive material in the dispersion. If the content of the dispersant is more than 50 parts by weight, the viscosity of the composition may increase, leading to a decrease in processability.
보다 구체적으로 상기 분산제는 양극 형성용 조성물 내 고형분 총 중량에 대하여 0.1중량% 내지 10중량%로 포함될 수 있다. 분산제의 함량이 0.1중량% 미만이면 분산제 사용에 따른 도전재의 분산성 개선 효과가 미미할 수 있고, 또 10중량%를 초과하면 양극내 저항 증가, 그리고 상대적인 활물질 감소로 인해 전지의 용량 특성 저하의 우려가 있을 수 있다.More specifically, the dispersant may be included in an amount of 0.1% to 10% by weight based on the total weight of solids in the composition for forming the positive electrode. If the content of the dispersant is less than 0.1% by weight, the effect of improving the dispersibility of the conductive material according to the use of the dispersant may be insignificant. If the content of the dispersant is more than 10% by weight, there is a concern that the capacity characteristics of the battery may be deteriorated due to the increase in the anode resistance and the decrease of the relative active material. There may be.
또, 상기 양극활물질은 양극 형성용 조성물내 고형분 총 중량에 대하여 80중량% 내지 98중량%의 함량으로 포함될 수 있다. 양극활물질의 함량이 80중량% 미만이면 용량 특성이 저하될 우려가 있고, 또 98중량%를 초과할 경우, 도전재 및 분산제의 상대적인 함량 감소로 전지 특성이 저하될 우려가 있다.In addition, the cathode active material may be included in an amount of 80% by weight to 98% by weight based on the total weight of solids in the composition for forming an anode. If the content of the positive electrode active material is less than 80% by weight, the capacity characteristics may be lowered. If the content of the positive electrode active material is more than 98% by weight, the battery characteristics may be deteriorated due to the relative decrease of the content of the conductive material and the dispersant.
또, 상기 용매는 양극 형성용 조성물의 도포시 도포의 용이성 및 균일 도포가 가능하도록 상기 양극 형성용 조성물이 적절한 점도를 갖도록 하는 양으로 포함될 수 있다.In addition, the solvent may be included in an amount such that the composition for forming the positive electrode has an appropriate viscosity to enable easy application and uniform coating during application of the composition for forming the positive electrode.
또, 본 발명의 일 실시예에 따른 상기 양극 형성용 조성물은 도전재의 분산 안정성을 높이기 위한 분산 안정화제를 더 포함할 수 있다. In addition, the positive electrode forming composition according to an embodiment of the present invention may further include a dispersion stabilizer for increasing the dispersion stability of the conductive material.
상기 분산 안정화제는 도전재의 표면에 흡착해 도전재를 둘러싸는 랩핑 효과를 나타냄으로써 카본블랙의 응집을 방지할 수 있다. 이에 따라 상기 분산 안정화제로는 도전재에 대한 친화성이 우수한 동시에, 분산제 및 용매에 대한 혼화성이 우수한 것이 바람직할 수 있다. 구체적으로, 상기 분산 안정화제는 폴리비닐피롤리돈 등일 수 있다.The dispersion stabilizer may prevent the agglomeration of carbon black by adsorbing the surface of the conductive material to exhibit a lapping effect surrounding the conductive material. Accordingly, the dispersion stabilizer may be excellent in affinity for the conductive material and at the same time excellent in miscibility with the dispersant and the solvent. Specifically, the dispersion stabilizer may be polyvinylpyrrolidone or the like.
또, 상기 분산 안정화제는 중량평균 분자량이 20,000g/mol 내지 5,000,000g/mol인 것일 수 있다. 분산 안정화제의 분자량이 20,000g/mol 미만으로 지나치게 작으면, 카본블랙에 대해 충분한 랩핑 효과를 나타내기 어렵고, 또 분자량이 5,000,000g/mol를 초과하여 지나치게 크면 분산매 중 분산 안정화제의 분자 운동 저하로, 카본블랙을 충분히 랩핑하기 어렵다. 보다 구체적으로 상기 분산 안정화제는 중량평균 분자량이 70,000g/mol 내지 2,000,000g/mol인 것일 수 있다.In addition, the dispersion stabilizer may be a weight average molecular weight of 20,000g / mol to 5,000,000g / mol. If the molecular weight of the dispersion stabilizer is too small, less than 20,000 g / mol, it is difficult to exhibit a sufficient lapping effect for carbon black, and if the molecular weight is too large, exceeding 5,000,000 g / mol, the molecular motion of the dispersion stabilizer in the dispersion medium may be reduced. It is hard to wrap carbon black enough. More specifically, the dispersion stabilizer may have a weight average molecular weight of 70,000 g / mol to 2,000,000 g / mol.
또, 상기 분산 안정화제는 도전재 100중량부에 대하여 1중량부 내지 10중량부로 사용될 수 있다. 도전재의 함량에 비해 분산 안정화제의 함량이 지나치게 낮으면, 충분한 랩핑 효과를 얻기 어렵고, 그 결과 도전재 끼리의 응집이 발생할 우려가 있다.In addition, the dispersion stabilizer may be used in 1 to 10 parts by weight with respect to 100 parts by weight of the conductive material. If the content of the dispersion stabilizer is too low compared to the content of the conductive material, it is difficult to obtain a sufficient lapping effect, and as a result, there is a fear that aggregation between the conductive materials occurs.
상기한 조성을 갖는 본 발명의 일 실시예에 따른 양극 형성용 조성물은, 용매 중에서 상기 도전재 및 분산제를 혼합한 혼합물을 밀링하여 도전재 분산액을 준비하는 단계(단계 1); 및 상기 도전재 분산액에 양극활물질, 그리고 선택적으로 바인더 및 기타 첨가제를 첨가하고 혼합하는 단계(단계 2)를 포함하는 제조방법에 의해 제조될 수 있다. 이때, 상기 도전재는 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물내 고형분 총 중량에 대하여 0.1중량% 내지 2중량%로 포함하고, 또 상기 도전재 분산액은 상기 분산제가 도전재에 도입된 도전재-분산제 복합체를 포함하며, 상기 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛이다. The composition for forming a positive electrode according to an embodiment of the present invention having the above composition comprises the steps of preparing a conductive material dispersion by milling a mixture of the conductive material and the dispersant in a solvent (step 1); And adding and mixing a cathode active material, and optionally a binder and other additives to the conductive material dispersion (step 2). At this time, the conductive material comprises a carbon-based material having a specific surface area of 130 m 2 / g or more, oil absorption of 220 ml / 100 g or more of 0.1% by weight to 2% by weight relative to the total weight of solids in the composition for forming an anode, and The conductive material dispersion includes a conductive material-dispersant composite in which the dispersant is introduced into the conductive material, and the conductive material-dispersant composite has a D 50 of a particle size distribution of 0.8 μm to 1.2 μm.
이하 각 단계별로 보다 상세히 설명하면, 본 발명의 일 실시예에 따른 양극 형성용 조성물의 제조를 위한 제1단계는 도전재 분산액을 준비하는 단계이다.Hereinafter, each step will be described in more detail. A first step for preparing a composition for forming an anode according to an embodiment of the present invention is preparing a conductive material dispersion.
상기 도전재 분산액은 구체적으로 용매 중에 상기한 도전재 및 분산제를 혼합하여 혼합물을 준비한 후 이를 밀링함으로써 제조될 수 있다.The conductive material dispersion may be prepared by specifically preparing a mixture by mixing the conductive material and the dispersant in a solvent and then milling it.
상기 혼합 공정은 통상의 혼합 또는 분산 방법에 의해 수행될 수 있으며, 구체적으로는, 호모게나이져, 비즈밀, 볼밀, 바스켓밀, 어트리션밀, 만능 교반기, 클리어 믹서 또는 TK믹서 에 의해 수행될 수 있다. The mixing process may be performed by a conventional mixing or dispersing method, and specifically, may be performed by a homogenizer, a bead mill, a ball mill, a basket mill, an attention mill, a universal stirrer, a clear mixer, or a TK mixer. have.
또, 상기 밀링 공정은 볼 밀(ball mill), 비드 밀(bead mill), 바스켓 밀(basket mill) 등의 통상의 밀링(milling) 방법을 이용하여 수행될 수 있으며, 보다 구체적으로는 비드 밀에 의해 수행될 수 있다. In addition, the milling process may be performed using a conventional milling method such as a ball mill, a bead mill, a basket mill, and more specifically, a bead mill. Can be performed by
또, 상기 밀링 공정시 비드 밀의 직경과 충진율, 로터의 회전속도, 밀링 공정 동안의 도전재 분산액의 토출 속도 등의 조건에 따라 도전재의 분산성 및 도전재-분산제 복합체의 분산입도가 달라질 수 있으므로, 사용되는 도전재 및 분산제의 종류 및 함량에 따라 최적화된 밀링 조건에서 수행하는 것이 바람직하다.In addition, since the dispersibility of the conductive material and the dispersion particle size of the conductive material-dispersant composite may vary depending on the conditions such as the diameter and filling rate of the bead mill, the rotational speed of the rotor, the discharge speed of the conductive material dispersion during the milling process, It is preferable to carry out at the milling conditions optimized according to the kind and content of the electrically conductive material and dispersing agent used.
구체적으로, 본 발명의 일 실시예에 따른 이차전지용 양극활물질의 제조에 있어서, 상기에서 설명한 바와 같은 도전재 및 분산제의 사용에 따라 상기 밀링 공정은 비드 밀의 직경은 0.5mm 내지 2mm인 것일 수 있으며, 보다 구체적으로는 0.7mm 내지 1.5mm인 것일 수 있다.Specifically, in the production of a cathode active material for a secondary battery according to an embodiment of the present invention, the milling process according to the use of the conductive material and the dispersant as described above may be a diameter of the bead mill 0.5mm to 2mm, More specifically, it may be 0.7mm to 1.5mm.
또, 비드 밀의 충진율은 도전재 분산액 총 중량에 대하여 50중량% 내지 90중량%일 수 있으며, 보다 구체적으로는 80중량% 내지 90중량%일 수 있다. In addition, the filling rate of the bead mill may be 50% to 90% by weight, and more specifically 80% to 90% by weight relative to the total weight of the conductive material dispersion.
또, 비드 밀 공정 동안의 주속은 6m/s 내지 12m/s, 보다 구체적으로는 7m/s 내지 12m/s일 수 있다.In addition, the circumferential speed during the bead mill process may be 6 m / s to 12 m / s, more specifically 7 m / s to 12 m / s.
또, 상기한 비드 밀 공정 조건을 모두 충족하는 조건 하에서 상기 혼합물의 토출 속도는 0.5 kg/min 내지 1.5 kg/min일 수 있으며, 보다 구체적으로는 0.5 kg/min 내지 1 kg/min일 수 있다. 도전재 분산액의 토출 속도가 상기한 범위를 벗어날 경우, 양극 형성용 조성물내 도전재-분산제 복합체 입도 분포 조건을 충족하지 못하며, 그 결과 도전재의 분산성 저하로 본 발명에 따른 효과가 미미할 수 있다.In addition, the discharge rate of the mixture may be 0.5 kg / min to 1.5 kg / min, more specifically 0.5 kg / min to 1 kg / min under the conditions that meet all the bead mill process conditions. When the discharge rate of the conductive material dispersion is out of the above range, the conductive material-dispersant composite particle size distribution conditions in the composition for forming an anode may not be satisfied, and as a result, the effect of the present invention may be insignificant due to the decrease in the dispersibility of the conductive material.
다음으로, 본 발명의 일 실시예에 따른 양극 형성용 조성물의 제조를 위한 제2단계는 상기 단계 1에서 제조한 도전재 분산액에 대해 양극활물질, 그리고 선택적으로 바인더 및 기타 첨가제를 첨가하여 혼합하여 양극 형성용 조성물을 제조하는 단계이다.Next, the second step for producing a composition for forming a positive electrode according to an embodiment of the present invention is a positive electrode active material, and optionally a binder and other additives to the conductive material dispersion prepared in step 1 to add and mix the positive electrode It is a step of preparing a composition for forming.
상기 혼합 공정은 통상의 혼합 또는 분산 방법에 의해 수행될 수 있으며, 구체적으로는, 구체적으로는, 호모게나이져, 비즈밀, 볼밀, 바스켓밀, 어트리션밀, 만능 교반기, 클리어 믹서 또는 TK믹서에 의해 수행될 수 있다.The mixing process may be carried out by a conventional mixing or dispersing method, specifically, homogenizer, bead mill, ball mill, basket mill, attrition mill, universal stirrer, clear mixer or TK mixer Can be performed by
상기한 제조방법에 의해 용매 중에 양극활물질, 도전재 및 분산제가 균일 분산된 양극 형성용 조성물이 제조되게 된다.By the above-described manufacturing method, a positive electrode forming composition in which a positive electrode active material, a conductive material, and a dispersant is uniformly dispersed in a solvent is prepared.
이때 상기 도전재와 분산제는 분산제가 도전재의 표면에 물리적 또는 화학적 결합을 통해 도입된 도전재-분산제 복합체의 형태로 분산되어 포함될 수 있다. 구체적으로, 상기 도전재-분산제 복합체는 입도분포의 D50이 0.8㎛ 내지 1.2㎛이고, D90이 2.0㎛ 내지 5.0㎛ 이하인 분포를 나타낼 수 있다. In this case, the conductive material and the dispersant may be included in a dispersant is dispersed in the form of a conductive material-dispersant composite introduced into the surface of the conductive material through a physical or chemical bond. Specifically, the conductive material-dispersant composite may have a distribution in which D 50 of the particle size distribution is 0.8 μm to 1.2 μm and D 90 is 2.0 μm to 5.0 μm or less.
상기 도전재-분산제 복합체의 입도 분포 D50 및 D90은 각각 입경 분포의 50% 및 90% 기준에서의 입경으로 정의할 수 있다. 또 상기 복합체의 입도분포 D50은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 보다 구체적으로는, 상기 복합체를 용매에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.The particle size distributions D 50 and D 90 of the conductive material-dispersant composite may be defined as particle diameters based on 50% and 90% of the particle size distribution, respectively. In addition, the particle size distribution D 50 of the complex can be measured using, for example, a laser diffraction method, and more specifically, a commercially available laser diffraction particle size measuring apparatus after dispersing the complex in a solvent. after examining the ultrasound of about 28kHz is introduced (for example Microtrac MT 3000) to the output 60 W, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
이와 같이 본 발명의 일 실시예에 따른 양극 형성용 조성물은 우수한 전도성을 갖는 도전재의 균일 분산으로, 전극 제조시 전극 전체에 걸쳐 우수한 전도성을 나타낼 수 있으며, 그 결과 전지의 전지의 저항 특성, 수명 특성, 용량 특성 및 율 특성 등의 성능을 크게 향상시킬 수 있다. As described above, the composition for forming an anode according to the exemplary embodiment of the present invention is a uniform dispersion of a conductive material having excellent conductivity, and thus may exhibit excellent conductivity throughout the electrode when manufacturing the electrode. In addition, performance such as capacity characteristics and rate characteristics can be greatly improved.
이에 따라 본 발명의 또 다른 일 실시예에 따르면, 상기한 양극 형성용 조성물을 이용하여 제조된 양극을 제공한다. 본 발명에 있어서 양극이 상기한 양극 형성용 조성물을 이용하여 제조되었다는 것은 상기 양극 형성용 조성물, 이의 건조물 또는 이의 경화물을 포함하는 것을 의미한다. Accordingly, according to another embodiment of the present invention, a positive electrode manufactured using the positive electrode forming composition is provided. In the present invention, that the positive electrode is manufactured using the positive electrode forming composition described above means that the positive electrode forming composition, a dried material thereof, or a cured product thereof is included.
본 발명의 일 실시예에 따른 상기 양극은 상기한 양극 형성용 조성물을 이용하여 양극활물질층을 형성하는 것을 제외하고는 통상의 방법에 따라 제조될 수 있다. 구체적으로, 상기 양극은 상기한 양극 형성용 조성물을 양극집전체에 도포하고 건조하거나; 또는 상기 양극 형성용 조성물을 별도의 지지체 상에 캐스팅한 후, 이 지지체로부터 박리하여 얻은 필름을 양극집전체 상에 라미네이션함으로써 제조될 수 있다.The positive electrode according to an embodiment of the present invention may be manufactured according to a conventional method except for forming a positive electrode active material layer using the positive electrode forming composition. Specifically, the positive electrode is applied to the positive electrode current collector and the composition for forming the positive electrode and dried; Alternatively, the composition for forming the cathode may be cast on a separate support, and then the film obtained by peeling from the support may be manufactured by laminating on a cathode current collector.
구체적으로 상기한 제조방법에 따라 제조된 양극은, 양극 집전체 및 상기 양극 집전체 상에 위치하며, 도전재-분산제의 복합체가 균일 분산된 양극활물질층을 포함한다.Specifically, the positive electrode manufactured according to the above-described manufacturing method includes a positive electrode current collector and a positive electrode active material layer on the positive electrode current collector, in which a composite of a conductive material-dispersant is uniformly dispersed.
또, 상기 양극집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In addition, the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel Surface treated with nickel, titanium, silver, or the like may be used. In addition, the current collector may have a thickness of typically 3 μm to 500 μm, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.According to another embodiment of the present invention, an electrochemical device including the anode is provided. The electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.The lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above. The lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질층을 포함한다. 상기 음극활물질층은 음극활물질 및 선택적으로 바인더, 도전재 및 기타 첨가제중 적어도 1종을 포함할 수 있다.The negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector. The negative electrode active material layer may include at least one of a negative electrode active material and optionally a binder, a conductive material, and other additives.
상기 음극활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등의 음극활물질일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.The negative electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, including carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium such as SiO x (0 <x <2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or an anode active material such as a composite including the metallic compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the anode active material. As the carbon material, both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일하다.In addition, the binder and the conductive material are the same as described above for the positive electrode.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.On the other hand, in the lithium secondary battery, the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. In addition, examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매 등이 사용될 수 있다.The organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, γ-butyrolactone or ε-caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC) and the like.
이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. Of these, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
또, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염은 상기 전해질 내에 대략 0.6mol% 내지 2mol%의 농도로 포함되는 것이 바람직하다.In addition, the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 . LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used. The lithium salt is preferably included at a concentration of approximately 0.6 mol% to 2 mol% in the electrolyte.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5 중량%로 포함될 수 있다.In addition to the electrolyte components, the electrolyte includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity. -Glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2 One or more additives such as -methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% to 5% by weight based on the total weight of the electrolyte.
상기와 같은 구성을 갖는 리튬 이차전지는, 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입함으로써 제조될 수 있다. 또는 상기 전극 조립체를 적층한 다음, 이를 전해액에 함침시키고, 얻어진 결과물을 전지 케이스에 넣어 밀봉함으로써 제조될 수도 있다.The lithium secondary battery having the above configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case. Alternatively, the electrode assembly may be stacked, and then impregnated in the electrolyte, and the resultant may be manufactured by sealing it in a battery case.
상기와 같이 본 발명의 일 실시예에 따른 양극 형성용 조성물을 이용하여 제조된 양극을 포함하는 리튬 이차전지는 양극내 도전재의 균일 분산으로 인해 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타낼 수 있다. 그 결과, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.As described above, the lithium secondary battery including the cathode manufactured by using the composition for forming a cathode according to an embodiment of the present invention may stably exhibit excellent discharge capacity, output characteristics, and capacity retention rate due to uniform dispersion of the conductive material in the cathode. have. As a result, it is useful for portable devices, such as a mobile telephone, a notebook computer, a digital camera, and the electric vehicle field | area, such as a hybrid electric vehicle (HEV).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예Example 1 One
N-메틸피롤리돈(NMP) 용매 중에 도전재로서 하기 표 1에 기재된 카본블랙(SSA=135m2/g, OAN=220ml/100g), 및 분산제로서 하기 표 2에 기재된 부분 수소화 니트릴 고무를 첨가하여 하기 표 3에 기재된 조성비로 혼합한 후, 하기와 같은 조건으로 비드 밀링 공정을 수행하여 도전재 분산액을 제조하였다.In the N-methylpyrrolidone (NMP) solvent, carbon black (SSA = 135m 2 / g, OAN = 220ml / 100g) shown in Table 1 below as a conductive material, and partially hydrogenated nitrile rubber shown in Table 2 below as a dispersant were added. After mixing to the composition ratio shown in Table 3, the bead milling process was performed under the following conditions to prepare a conductive material dispersion.
이후 제조한 도전재 분산액에 대해 LiNi0 . 7Co0 . 15Mn0 . 15O2 (평균입경(D50)=10㎛) 및 폴리비닐리덴플로라이드(PVdF)을 첨가하고, 균질혼합기(homo mixer)를 이용하여 1시간 동안 혼합하여 양극 형성용 조성물을 제조하였다. Since the conductive material dispersion prepared LiNi 0 . 7 Co 0 . 15 Mn 0 . 15 O 2 (average particle diameter (D 50 ) = 10 μm) and polyvinylidene fluoride (PVdF) were added, and mixed for 1 hour using a homo mixer to prepare a composition for forming an anode.
<밀링 공정 조건><Milling process conditions>
로터 지름: 150mmRotor diameter: 150 mm
로터 속도 1000rpmRotor speed 1000rpm
로터 주속: 7.9m/sRotor speed: 7.9 m / s
비드 직경: 1.25mmBead diameter: 1.25mm
비드 충진율: 80중량%Bead filling rate: 80% by weight
토출 속도: 1kg/min Discharge Rate: 1kg / min
실시예Example 2  2
하기 표 1 내지 3에 기재된 배합으로 각 구성성분들을 사용하고, 또 도전재 분산액 제조를 위한 비드 밀링 공정시 토출 속도를 0.5kg/min으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 양극 형성용 조성물을 제조하였다.In the same manner as in Example 1, except that each component is used in the formulations described in Tables 1 to 3, and the discharge rate is 0.5 kg / min during the bead milling process for preparing the conductive material dispersion. It carried out to manufacture the composition for positive electrode formation.
실시예Example 3 3
하기 표 1 내지 3에 기재된 배합으로 각 구성성분들을 사용하고, 또 도전재 분산액 제조를 위한 비드 밀링 공정시 토출 속도를 1.2kg/min으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 양극 형성용 조성물을 제조하였다.In the same manner as in Example 1, except that each component is used in the formulations described in Tables 1 to 3, and the discharge rate is 1.2 kg / min in the bead milling process for preparing the conductive material dispersion. It carried out to manufacture the composition for positive electrode formation.
비교예Comparative example 1 One
하기 표 1 내지 3에 기재된 배합으로 각 구성성분들을 사용하고, 또 도전재 분산액 제조를 위한 비드 밀링 공정시 토출 속도를 2kg/min으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 양극 형성용 조성물을 제조하였다.In the same manner as in Example 1 except that each component is used in the formulations described in Tables 1 to 3 below, and the discharge rate is 2 kg / min during the bead milling process for preparing the conductive material dispersion. To prepare a composition for forming an anode.
비교예Comparative example 2 2
하기 표 1 내지 3에 기재된 배합으로 각 구성성분들을 사용하고, 또 도전재 분산액 제조를 위한 비드 밀링 공정시 토출 속도를 0.3kg/min으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 양극 형성용 조성물을 제조하였다.In the same manner as in Example 1, except that each component is used in the formulations described in Tables 1 to 3, and the discharge rate is 0.3 kg / min during the bead milling process for preparing the conductive material dispersion. It carried out to manufacture the composition for positive electrode formation.
비교예Comparative example 3 3
하기 표 1 내지 3에 기재된 배합으로 각 구성성분들을 사용하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 양극 형성용 조성물을 제조하였다.Except for using each of the components in the formulation described in Tables 1 to 3, was carried out in the same manner as in Example 1 to prepare a composition for forming a positive electrode.
비교예Comparative example 4  4
하기 표 1 내지 3에 기재된 배합으로 각 구성성분들을 사용하되, 분산제로서 폴리비닐알코올(PVA)을 사용하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 양극 형성용 조성물을 제조하였다.Each component was used in the formulations described in Tables 1 to 3, except that polyvinyl alcohol (PVA) was used as the dispersant, and the composition for forming the anode was prepared in the same manner as in Example 1. .
도전재Conductive material
종류Kinds 1차입자평균입경(nm)Primary particle average particle diameter (nm) 2차입자SSA(m2/g)Secondary Particle SSA (m 2 / g) OAN(ml/100g)OAN (ml / 100g)
실시예 1Example 1 카본블랙Carbon black 3030 135135 220220
실시예 2Example 2 카본블랙Carbon black 2222 230230 362362
실시예 3Example 3 카본블랙Carbon black 2626 170170 272272
비교예 1Comparative Example 1 카본블랙Carbon black 3030 135135 220220
비교예 2Comparative Example 2 카본블랙Carbon black 3030 135135 220220
비교예 3Comparative Example 3 카본블랙Carbon black 3636 6363 190190
비교예 4Comparative Example 4 카본블랙Carbon black 3030 135135 220220
부분 수소화 니트릴 고무 분산제Partially Hydrogenated Nitrile Rubber Dispersant
AN(중량%)AN (% by weight) BD(중량%)BD (% by weight) HBD(중량%)HBD (% by weight) BA(중량%)BA (% by weight) Mw(x1000g/mol)Mw (x 1000 g / mol) PDIPDI
실시예 1Example 1 2121 1One 5050 2828 300300 3.13.1
실시예 2Example 2
실시예 3Example 3
비교예 1Comparative Example 1
비교예 2Comparative Example 2
비교예 3Comparative Example 3
상기 표 2에서 AN은 부분 수소화 니트릴 고무 내 아크릴로니크릴 유래 구조의 반복단위를, BD는 부타디엔 유래 구조의 반복단위를, HBD는 수소화된 부타디엔 유래 구조의 반복단위를, 그리고 BA는 n-부틸아크릴레이트 유래 구조의 반복단위를 의미하며, 각 구조의 반복단위의 함량인 중량%는 부분 수소화 니트릴 고무의 총 중량을 기준으로 한 값이다.In Table 2, AN is a repeating unit of acrylonitrile-derived structure in partially hydrogenated nitrile rubber, BD is a repeating unit of butadiene-derived structure, HBD is a repeating unit of hydrogenated butadiene-derived structure, and BA is n-butylacryl It means the repeat unit of the rate-derived structure, the weight percent content of the repeat unit of each structure is a value based on the total weight of the partially hydrogenated nitrile rubber.
양극 형성용 조성물 조성(중량부)Composition for Anode Formation (parts by weight)
양극활물질Cathode active material 도전재Conductive material 분산제Dispersant 바인더bookbinder
실시예 1Example 1 96.6796.67 2.02.0 0.20.2 1.131.13
실시예 2Example 2 97.3497.34 1.31.3 0.230.23 1.131.13
실시예 3Example 3 97.0597.05 1.61.6 0.220.22 1.131.13
비교예 1Comparative Example 1 96.6796.67 2.02.0 0.20.2 1.131.13
비교예 2Comparative Example 2 96.6796.67 2.02.0 0.20.2 1.131.13
비교예 3Comparative Example 3 96.6796.67 2.02.0 0.20.2 1.131.13
비교예 4Comparative Example 4 96.6796.67 2.02.0 0.20.2 1.131.13
제조예Production Example : 양극 및 리튬 이차전지의 제조 : Fabrication of positive electrode and lithium secondary battery
상기 실시예 1~3 및 비교예 1~4에서 제조한 양극 형성용 조성물을 각각 알루미늄 호일의 일면에 코팅하고, 건조 및 압연한 후 일정크기로 펀칭하여 양극을 제조하였다.The positive electrode forming compositions prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were respectively coated on one surface of an aluminum foil, dried and rolled, and then punched to a predetermined size to prepare a positive electrode.
또, 음극 활물질로 탄소 분말, 증점제로서 카르복시메틸셀룰로오스, 바인더로 스티렌-부타디엔 고무, 도전재로 카본블랙(carbon black)을 각각 96:1:2:1의 중량비로 용매인 물에 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.In addition, a negative electrode slurry was prepared by adding carbon powder as a negative electrode active material, carboxymethyl cellulose as a thickener, styrene-butadiene rubber as a binder, and carbon black as a conductive material, respectively, in a weight ratio of 96: 1: 2: 1. Was prepared. The negative electrode slurry was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, and dried, followed by roll press to prepare a negative electrode.
이와 같이 제조된 양극과 음극을 대면시킨 후, 상기 양극과 음극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP) 3층으로 이루어진 세퍼레이터를 개재하여 전지 조립체를 제조하였다. 상기 전지 조립체를 전지 케이스내에 수납한 후, 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC) =3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매 및 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 1mol/l 첨가한 비수성 전해액을 주액하여 리튬 이차 전지를 제조하였다.After the positive electrode and the negative electrode thus prepared were faced to each other, a battery assembly was manufactured through a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) between the positive electrode and the negative electrode. After storing the battery assembly in a battery case, the non-aqueous organic solvent having a composition of ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) = 3: 3: 4 (volume ratio) and non-aqueous as lithium salt LiPF 6 based on total aqueous electrolyte To A non-aqueous electrolyte solution added with 1 mol / l was poured into a lithium secondary battery.
실험예Experimental Example 1 One
상기 실시예 1~3 및 비교예 1~4에서 제조한 양극 형성용 조성물에 대해 도전재의 입도 분포를 측정하였다. The particle size distribution of the conductive material was measured for the compositions for positive electrode formation prepared in Examples 1 to 3 and Comparative Examples 1 to 4 above.
입도: 제조된 양극 형성용 조성물을 NMP 용매를 사용하여, 500배 희석하고, Malvern사의 Mastersizer 3000 장비를 사용하여, 분산액 중에 분산된 카본블랙-분산제 복합체의 입도 분포의 D50 및 D90값을 측정하였다. 그 결과를 하기 표 4에 나타내었다.Particle size: The prepared positive electrode composition was diluted 500-fold using NMP solvent, and the D 50 and D 90 values of the particle size distribution of the carbon black-dispersant composite dispersed in the dispersion were measured using Malvern's Mastersizer 3000 equipment. It was. The results are shown in Table 4 below.
입도(㎛)Particle size (㎛)
D50 D 50 D90 D 90
실시예 1Example 1 1.01.0 2.92.9
실시예 2Example 2 0.850.85 2.12.1
실시예 3Example 3 1.11.1 3.23.2
비교예 1Comparative Example 1 1.81.8 7.57.5
비교예 2Comparative Example 2 0.70.7 1.61.6
비교예 3Comparative Example 3 1.131.13 3.03.0
비교예 4Comparative Example 4 0.970.97 2.052.05
실험결과, 실시예 1 내지 3의 양극형성용 조성물내 카본블랙-분산제 복합체가 비교예 1에 비해 보다 균일한 입도 분포를 나타내었으며, 비교예 2보다는 큰 입도분포를 나타내었다. 비교예 3 및 4의 경우, 실시예 1 내지 3과 비슷한 수준의 입도 분포를 나타내었다. 이는, 비교예 3 및 4의 경우 실시예 1과 동일 조건에서 밀링을 수행하였기 때문이며, 밀링 조건에 따라 입도 분포를 조절할 수 있음을 확인할 수 있었다. As a result, the carbon black-dispersant composite in the positive electrode composition of Examples 1 to 3 showed a more uniform particle size distribution than Comparative Example 1, and showed a larger particle size distribution than Comparative Example 2. For Comparative Examples 3 and 4, the particle size distribution was similar to that of Examples 1 to 3. This is because, in Comparative Examples 3 and 4, the milling was performed under the same conditions as in Example 1, and it was confirmed that the particle size distribution could be adjusted according to the milling conditions.
실험예Experimental Example 2 2
상기 실시예 1~3 및 비교예 1~4에서 제조한 양극 형성용 조성물을 이용하여 상기 제조예에 따라 제조한 전지에 대해 저항 특성을 평가하였다.The resistance characteristics of the batteries prepared according to the above production examples were evaluated using the compositions for positive electrode formation prepared in Examples 1 to 3 and Comparative Examples 1 to 4 above.
상세하게는, 제조한 리튬 이차전지를 25℃에서 1.0C/1.0C 충방전을 3회 수행하고, 마지막 방전 용량 기준으로 SOC(충전 심도)를 설정하였다. SOC15, SOC30 및 SOC50에서 각각 6.5C로 방전 펄스를 가하여 10초 저항을 측정하였다. 그 결과를 하기 표 5에 나타내었다.Specifically, the prepared lithium secondary battery was charged and discharged 1.0C / 1.0C three times at 25 ° C., and SOC (charge depth) was set based on the final discharge capacity. The 10 second resistance was measured by applying a discharge pulse at 6.5C at SOC15, SOC30 and SOC50, respectively. The results are shown in Table 5 below.
저항(mOhm)Resistance (mOhm)
SOC15SOC15 SOC30SOC30 SOC50SOC50
실시예 1Example 1 1.33201.3320 1.17211.1721 1.11251.1125
실시예 2Example 2 1.34111.3411 1.18541.1854 1.12051.1205
실시예 3Example 3 1.33651.3365 1.18031.1803 1.11791.1179
비교예 1Comparative Example 1 1.44591.4459 1.27551.2755 1.22221.2222
비교예 2Comparative Example 2 1.38951.3895 1.22851.2285 1.16461.1646
비교예 3Comparative Example 3 1.49241.4924 1.32511.3251 1.28731.2873
비교예 4Comparative Example 4 1.37021.3702 1.20911.2091 1.15951.1595
실험결과, 비교예 1과 같이 카본블랙-분산제 복합체의 입도가 클 경우와, 비교예 2와 같이 카본블랙-분산제 복합체의 입도가 과하게 작을 경우 저항이 크게 나타났다. 이에 반해 실시예 1 내지 3의 경우 고율 방전시 셀 저항이 비교예 1 및 2에 비해 감소하는 것을 확인할 수 있다. 이로부터 도전재-분산제 복합체의 최적 분산 입도가 존재함을 알 수 있다. 또한, 비교예 3과 같이 카본블랙의 비표면적이 130m2/g 미만인 경우, 도전재의 부피가 작아짐에 따라 전극의 전도성이 감소하여 저항이 증가한 것을 확인할 수 있으며, 비교예 4와 같이 분산제로서 PVA를 사용할 경우, 상기 PVA가 양극활물질을 절연 피복하여 H-NBR 분산제를 사용한 본원 실시예에 비해 저항이 증가한 것을 확인할 수 있었다. As a result, when the particle size of the carbon black-dispersant composite is large as in Comparative Example 1 and when the particle size of the carbon black-dispersant composite is too small as in Comparative Example 2, the resistance was large. On the contrary, in the case of Examples 1 to 3, it can be seen that the cell resistance during high rate discharge is reduced compared to Comparative Examples 1 and 2. It can be seen from this that there is an optimum dispersion particle size of the conductive material-dispersant composite. In addition, when the specific surface area of the carbon black is less than 130m 2 / g as in Comparative Example 3, it can be seen that the conductivity of the electrode decreases as the volume of the conductive material decreases, thereby increasing the resistance, and PVA as a dispersant as in Comparative Example 4 When used, it was confirmed that the PVA increased the resistance compared to the present example using the H-NBR dispersant by insulating coating the positive electrode active material.
실험예Experimental Example 3 3
상기 실시예 1~3 및 비교예 1~4에서 제조한 양극 형성용 조성물을 이용하여 제조한 전지에 대해 율 특성을 평가하였다.The rate characteristic was evaluated about the battery manufactured using the composition for positive electrode formation manufactured in the said Examples 1-3 and Comparative Examples 1-4.
상세하게는, 상기 실시예 1 및 비교예 1~4에서 제조한 양극 형성용 조성물을 각각 이용하여 제조예에서와 동일한 방법으로 2개의 단위 셀을 제조하고, 제조한 단위 셀을 25℃에서 0.1C의 정전류(CC) 4.25V가 될 때까지 충전하고, 이후 4.25V의 정전압(CV)으로 충전하여 충전 전류가 0.05mAh가 될 때까지 1회째 충전을 행하였다. 이후 20분간 방치한 다음 0.1C의 정전류로 3.0V가 될 때까지 방전하여 1사이클째의 방전 용량을 측정하였다. 이후 2.0C로 방전 조건을 달리하여 율별 용량 특성을 각각 평가하였다. Specifically, two unit cells were prepared in the same manner as in Preparation Example using the compositions for forming anodes prepared in Example 1 and Comparative Examples 1 to 4, respectively, and the prepared unit cells were 0.1C at 25 ° C. The battery was charged until the constant current (CC) of 4.25V, then charged with a constant voltage (CV) of 4.25V, and the first charge was performed until the charging current became 0.05mAh. After standing for 20 minutes, the battery was discharged to a constant current of 0.1C until 3.0V, and the discharge capacity of the first cycle was measured. Thereafter, the capacity characteristics for each rate were evaluated by varying the discharge conditions at 2.0C.
율 용량(rate capacity)은 0.1C로 충전된 전지를 0.1C로 방전했을 때의 용량에 대한 2.0C로 방전했을 때의 용량의 비를 백분율로 나타낸 것이다. 그 결과를 하기 표 6에 나타내었다.Rate capacity represents the ratio of the capacity | capacitance when it discharges at 2.0C with respect to the capacity | capacitance when it discharged the battery charged at 0.1C at 0.1C as a percentage. The results are shown in Table 6 below.
율별 용량(%)Capacity by Rate (%)
0.1C0.1C 2.0C2.0C
실시예 1Example 1 제1셀First cell 100100 91.691.6
제2셀2nd cell 100100 91.791.7
실시예 2Example 2 제1셀First cell 100100 91.491.4
제2셀2nd cell 100100 91.591.5
실시예 3Example 3 제1셀First cell 100100 91.391.3
제2셀2nd cell 100100 91.591.5
비교예 1Comparative Example 1 제1셀First cell 100100 91.691.6
제2셀2nd cell 100100 90.790.7
비교예 2Comparative Example 2 제1셀First cell 100100 90.690.6
제2셀2nd cell 100100 90.990.9
비교예 3Comparative Example 3 제1셀First cell 100100 88.888.8
제2셀2nd cell 100100 88.288.2
비교예 4Comparative Example 4 제1셀First cell 100100 91.091.0
제2셀2nd cell 100100 90.990.9
실험결과 분산 입도가 큰 비교예 1 및 2의 경우 셀 간 편차가 증가하였으며, 분산 입도가 보다 큰 비교예 1의 경우 셀 간 편차는 더 컸다. 또한, 비표면적이 작은 카본블랙을 사용한 비교예 3과, 분산제로서 PVA를 사용한 비교예 4의 경우, 셀간 편차는 적었으나, 상기 실시예 1 내지 3에 비해 율 특성이 저하된 것을 할 수 있었다. 반면, 실시예 1 내지 3의 경우 셀 간 편차가 거의 없어 우수한 율 특성을 나타냄을 알 수 있다. 구체적으로, 비교예 3의 경우, 비표면적 및 오일흡수량이 130 m2/g 미만 및 220 ml/100g 미만으로 도전재의 구조 발달이 적기 때문에, 동일 무게당 도전재의 부피가 작아 활물질 표면을 충분히 감싸지 못해, 그 결과 셀 성능이 저하된 것으로 사료되었다. 비교예 4의 경우, 분산제로서 PVA를 사용함으로써 상기 PVA가 양극활물질을 절연 피복하거나 또는 변성되어 방전 특성을 열화시킴으로써 셀 성능이 저하된 것으로 사료되었다.As a result, the variation between cells increased in Comparative Examples 1 and 2 with a large dispersion particle size, and the variation between cells was larger in Comparative Example 1 with a larger dispersion particle size. In addition, in Comparative Example 3 using carbon black having a small specific surface area and Comparative Example 4 using PVA as the dispersant, the variation between the cells was small, but the rate characteristics were lowered as compared with Examples 1 to 3. On the other hand, in the case of Examples 1 to 3 it can be seen that there is almost no variation between cells exhibits excellent rate characteristics. Specifically, in the case of Comparative Example 3, the specific surface area and the oil absorption amount is less than 130 m 2 / g and less than 220 ml / 100g, since the structure of the conductive material is less developed, the volume of the conductive material per weight is not small enough to cover the active material surface As a result, the cell performance was deteriorated. In the case of Comparative Example 4, it was considered that by using PVA as a dispersant, the PVA was insulated or denatured from the positive electrode active material to deteriorate discharge characteristics, thereby degrading cell performance.
실험예Experimental Example 4 4
상기 실시예 1 내지 3, 및 비교예 1~4에서 제조한 양극 형성용 조성물을 이용하여 제조한 전지에 대해 고온에서의 용량 유지율을 평가하였다.Capacity retention at high temperatures was evaluated for the batteries prepared using the compositions for forming a positive electrode prepared in Examples 1 to 3 and Comparative Examples 1 to 4 above.
상세하게는, 제조한 리튬 이차전지를 45℃에서 정전류/정전압(CC/CV) 조건에서 4.25V까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.0V까지 1C로 방전하였다. 이를 1사이클로 하여 490사이클 반복 실시하고, 490사이클째의 용량유지율을 각각 측정하였다. 그 결과를 하기 표 7에 나타내었다.Specifically, the prepared lithium secondary battery was charged at 1C to 4.25V under constant current / constant voltage (CC / CV) conditions at 45 ° C., and then discharged at 1C to 3.0V under constant current (CC) conditions. This cycle was repeated for 490 cycles, and the capacity retention rate at the 490th cycle was measured. The results are shown in Table 7 below.
490 사이클째의 용량 유지율 (@45℃)Capacity retention at 490 cycles (@ 45 ° C)
용량유지율 (%)Capacity maintenance rate (%) 평균Average
실시예 1Example 1 제1셀First cell 90.190.1 90.090.0
제2셀2nd cell 89.789.7
실시예 2Example 2 제1셀First cell 89.889.8 89.789.7
제2셀2nd cell 89.589.5
실시예 3Example 3 제1셀First cell 90.190.1 90.190.1
제2셀2nd cell 90.190.1
비교예 1Comparative Example 1 제1셀First cell 83.583.5 86.086.0
제2셀2nd cell 88.488.4
비교예 2Comparative Example 2 제1셀First cell 90.090.0 89.489.4
제2셀2nd cell 88.788.7
비교예 3Comparative Example 3 제1셀First cell 84.184.1 84.584.5
제2셀2nd cell 84.884.8
비교예 4Comparative Example 4 제1셀First cell 87.187.1 87.387.3
제2셀2nd cell 87.487.4
실험결과, 실시예 1 내지 3의 양극 형성용 조성물에 의해 각각 제조된 양극을 포함하는 전지가 보다 더 우수한 고온 용량 유지율을 나타내었으며, 셀간 편차도 가장 작았다. 이는, 상기 실시예 1 내지 3에 포함되는 도전재가 분산제와 도전재-분산제 복합체를 형성함으로써 양극 내 도전재가 균일하게 분산함으로써 우수한 용량 유지율을 안정적으로 나타내는 것으로 사료되었다.As a result, the battery containing the positive electrode produced by the composition for forming the positive electrode of Examples 1 to 3 exhibited a better high temperature capacity retention rate and the smallest cell variation. It is considered that the conductive materials included in Examples 1 to 3 form a dispersant and a conductive material-dispersant composite to stably exhibit excellent capacity retention by uniformly dispersing the conductive material in the positive electrode.

Claims (15)

  1. 양극활물질, 도전재, 및 분산제를 포함하고, A cathode active material, a conductive material, and a dispersant,
    상기 도전재는 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물 총 중량에 대하여 0.1중량% 내지 2중량%로 포함하며, The conductive material includes a carbon-based material having a specific surface area of 130 m 2 / g or more and an oil absorption amount of 220 ml / 100 g or more, based on the total weight of the composition for forming an anode, in an amount of 0.1 wt% to 2 wt%,
    상기 분산제는 상기 도전재에 도입되어 도전재-분산제 복합체를 형성하고, 상기 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛인 것인 이차전지의 양극 형성용 조성물.The dispersant is introduced into the conductive material to form a conductive material-dispersant composite, wherein the conductive material-dispersant composite has a D 50 of a particle size distribution of 0.8 μm to 1.2 μm.
  2. 제1항에 있어서, The method of claim 1,
    상기 도전재-분산제 복합체는 입도 분포의 D90이 2.0㎛ 내지 5.0㎛인 것인 이차전지의 양극 형성용 조성물.The conductive material-dispersant composite is a composition for forming a positive electrode of a secondary battery that D 90 of the particle size distribution is 2.0㎛ to 5.0㎛.
  3. 제1항에 있어서, The method of claim 1,
    상기 탄소계 물질은 1차 입자가 조립되어 이루어진 2차 입자인 것인 이차전지의 양극 형성용 조성물.The carbon-based material is a composition for forming a positive electrode of a secondary battery that is a secondary particle formed by assembling the primary particles.
  4. 제1항에 있어서, The method of claim 1,
    상기 탄소계 물질은 카본 블랙인 것인 이차전지의 양극 형성용 조성물.The carbon-based material is carbon black composition for forming a positive electrode of a secondary battery.
  5. 제1항에 있어서,The method of claim 1,
    상기 분산제는 고무 총 중량에 대하여 수소화된 공액 디엔 유래 구조의 반복단위를 20중량% 내지 50중량%로 포함하는 부분 수소화 니트릴 고무를 포함하는 것인 이차전지의 양극 형성용 조성물.The dispersant is a composition for forming a positive electrode of a secondary battery comprising a partially hydrogenated nitrile rubber containing 20 to 50% by weight of the repeating unit of the hydrogenated conjugated diene structure relative to the total weight of the rubber.
  6. 제5항에 있어서,The method of claim 5,
    상기 부분 수소화 니트릴 고무는 α,β-불포화 니트릴 유래 구조의 반복단위를 고무 총 중량에 대하여 20중량% 내지 50중량%로 포함하는 것인 이차전지의 양극 형성용 조성물.The partially hydrogenated nitrile rubber is a composition for forming a positive electrode of a secondary battery comprising a repeating unit of the α, β-unsaturated nitrile-derived structure in 20% to 50% by weight relative to the total weight of the rubber.
  7. 제5항에 있어서,The method of claim 5,
    상기 부분 수소화 니트릴 고무는 하기 화학식 1의 구조의 반복단위, 하기 화학식 2의 구조의 반복단위, 하기 화학식 3의 구조의 반복단위 및 α,β-불포화카르복실산의 에스테르 유래 구조단위를 포함하는 아크릴로니트릴-부타디엔 고무이며, The partially hydrogenated nitrile rubber is an acryl including a repeating unit of the structure of Formula 1, a repeating unit of the structure of Formula 2, a repeating unit of the structure of Formula 3, and an ester derived structural unit of α, β-unsaturated carboxylic acid. Ronitrile-butadiene rubber,
    상기 아크릴로니트릴-부타디엔 고무는 하기 화학식 3의 구조의 반복단위를 고무 총 중량에 대하여 20중량% 내지 50중량%로 포함하는 것인 이차전지의 양극 형성용 조성물.The acrylonitrile-butadiene rubber is a composition for forming a positive electrode of a secondary battery containing 20 to 50% by weight of the repeating unit of the structure of formula (3) based on the total weight of the rubber.
    [화학식 1][Formula 1]
    Figure PCTKR2017003219-appb-I000004
    Figure PCTKR2017003219-appb-I000004
    [화학식 2][Formula 2]
    Figure PCTKR2017003219-appb-I000005
    Figure PCTKR2017003219-appb-I000005
    [화학식 3][Formula 3]
    Figure PCTKR2017003219-appb-I000006
    Figure PCTKR2017003219-appb-I000006
  8. 제5항에 있어서,The method of claim 5,
    상기 부분 수소화 니트릴 고무는 중량평균 분자량이 10,000g/mol 내지 700,000g/mol인 것인 이차전지의 양극 형성용 조성물.The partially hydrogenated nitrile rubber has a weight average molecular weight of 10,000 g / mol to 700,000 g / mol composition for forming a positive electrode of a secondary battery.
  9. 제1항에 있어서, The method of claim 1,
    상기 분산제는 도전재 100중량부에 대하여 10중량부 내지 50중량부로 포함되는 것인 이차전지의 양극 형성용 조성물.The dispersant is a composition for forming a positive electrode of a secondary battery that is contained in 10 parts by weight to 50 parts by weight with respect to 100 parts by weight of the conductive material.
  10. 용매 중에서 도전재 및 분산제를 혼합한 혼합물을 밀링하여 도전재 분산액을 준비하는 단계; 및Preparing a conductive material dispersion by milling a mixture of the conductive material and the dispersant in a solvent; And
    상기 도전재 분산액에 양극활물질을 첨가하고 혼합하는 단계를 포함하며,Adding and mixing a positive electrode active material to the conductive material dispersion,
    상기 도전재는 비표면적이 130 m2/g 이상이고, 오일흡수량이 220 ml/100g 이상인 탄소계 물질을 양극 형성용 조성물 총 중량에 대하여 0.1중량% 내지 2중량%로 포함하고, The conductive material has a specific surface area of 130 m 2 / g or more, and contains a carbon-based material having an oil absorption of 220 ml / 100g or more of 0.1% by weight to 2% by weight relative to the total weight of the composition for forming an anode,
    상기 도전재 분산액은 상기 분산제가 도전재에 도입된 도전재-분산제 복합체를 포함하며, 상기 도전재-분산제 복합체는 입도 분포의 D50이 0.8㎛ 내지 1.2㎛인 것인 제1항의 이차전지의 양극 형성용 조성물의 제조방법.The conductive material dispersion includes a conductive material-dispersant composite in which the dispersant is introduced into the conductive material, wherein the conductive material-dispersant composite has a D 50 of a particle size distribution of 0.8 μm to 1.2 μm. Method for producing a composition for forming.
  11. 제10항에 있어서, The method of claim 10,
    상기 밀링은 직경이 0.5mm 내지 2mm인 비드 밀을 도전재 분산액 총 중량에 대하여 50중량% 내지 90중량%의 충진율로 충진하여 수행되는 것인 이차전지의 양극 형성용 조성물의 제조방법.The milling is a method of manufacturing a composition for forming a positive electrode of a secondary battery that is performed by filling a bead mill having a diameter of 0.5mm to 2mm at a filling rate of 50% by weight to 90% by weight relative to the total weight of the conductive material dispersion.
  12. 제10항에 있어서, The method of claim 10,
    상기 밀링은 상기 혼합물을 6m/s 내지 12m/s의 주속으로 회전시키며 수행되는 것인 이차전지의 양극 형성용 조성물의 제조방법.The milling method of manufacturing a composition for forming a positive electrode of a secondary battery that is performed while rotating the mixture at a circumferential speed of 6m / s to 12m / s.
  13. 제10항에 있어서, The method of claim 10,
    상기 밀링은 상기 혼합물을 0.5kg/min 내지 1.5kg/min의 토출 속도로 토출시키며 수행되는 것인 이차전지의 양극 형성용 조성물의 제조방법.The milling method of producing a composition for forming a positive electrode of a secondary battery that is performed by discharging the mixture at a discharge rate of 0.5kg / min to 1.5kg / min.
  14. 제1항에 따른 양극 형성용 조성물을 이용하여 제조된 이차전지용 양극. A secondary battery positive electrode manufactured using the positive electrode forming composition according to claim 1.
  15. 제14항에 따른 양극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the positive electrode according to claim 14.
PCT/KR2017/003219 2016-03-24 2017-03-24 Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same WO2017164701A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018515444A JP6636141B2 (en) 2016-03-24 2017-03-24 Composition for forming positive electrode of secondary battery, positive electrode for secondary battery manufactured using the same, and secondary battery
CN201780002924.7A CN107949940B (en) 2016-03-24 2017-03-24 Composition for forming positive electrode of secondary battery, positive electrode and secondary battery
EP17770671.0A EP3331072B1 (en) 2016-03-24 2017-03-24 Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same
PL17770671T PL3331072T3 (en) 2016-03-24 2017-03-24 Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same
US15/751,067 US10741829B2 (en) 2016-03-24 2017-03-24 Composition for forming positive electrode of secondary battery, positive electrode for secondary battery and secondary battery manufactured using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0035562 2016-03-24
KR20160035562 2016-03-24
KR10-2017-0036956 2017-03-23
KR1020170036956A KR102143953B1 (en) 2016-03-24 2017-03-23 Composition for preparing positive electrode of secondary battery, and positive electrode of secondary battery and secondary battery prepared using the same

Publications (1)

Publication Number Publication Date
WO2017164701A1 true WO2017164701A1 (en) 2017-09-28

Family

ID=59900496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003219 WO2017164701A1 (en) 2016-03-24 2017-03-24 Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same

Country Status (1)

Country Link
WO (1) WO2017164701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121361B2 (en) 2017-03-23 2021-09-14 Lg Chem, Ltd. Method of preparing slurry for secondary battery positive electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120028860A (en) * 2009-04-24 2012-03-23 라이온 가부시키가이샤 Polar dispersion composition of carbon black
JP5533057B2 (en) * 2010-03-11 2014-06-25 東洋インキScホールディングス株式会社 Carbon black dispersion
KR20150016852A (en) * 2013-08-05 2015-02-13 제일모직주식회사 Carbon nanotube dispersed solution and method for preparing the same
KR20150067049A (en) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20160029714A (en) * 2014-09-05 2016-03-15 주식회사 엘지화학 Carbon black dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120028860A (en) * 2009-04-24 2012-03-23 라이온 가부시키가이샤 Polar dispersion composition of carbon black
JP5533057B2 (en) * 2010-03-11 2014-06-25 東洋インキScホールディングス株式会社 Carbon black dispersion
KR20150016852A (en) * 2013-08-05 2015-02-13 제일모직주식회사 Carbon nanotube dispersed solution and method for preparing the same
KR20150067049A (en) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20160029714A (en) * 2014-09-05 2016-03-15 주식회사 엘지화학 Carbon black dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121361B2 (en) 2017-03-23 2021-09-14 Lg Chem, Ltd. Method of preparing slurry for secondary battery positive electrode

Similar Documents

Publication Publication Date Title
WO2021066560A1 (en) Positive electrode and secondary battery including same
WO2017111542A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery including same
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2016200223A1 (en) Positive electrode mixture and secondary battery including same
WO2022124774A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2019194554A1 (en) Negative electrode active material for lithium secondary battery, manufacturing method therefor, lithium secondary battery negative electrode comprising same, and lithium secondary battery
WO2021049918A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2021107684A1 (en) Method for preparing positive electrode active material for lithium secondary battery, and positive electrode active material prepared thereby for lithium secondary battery
WO2022103105A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2020111898A1 (en) Method for producing positive electrode active material precursor for lithium secondary battery
WO2021066494A1 (en) Electrode and secondary battery comprising same
WO2017095151A1 (en) Cathode for secondary battery and secondary battery comprising same
WO2022197125A1 (en) Cathode slurry composition for secondary battery, cathode manufactured using same, and secondary battery comprising said cathode
WO2021118144A1 (en) Anode active material, preparation method therefor, and anode and secondary battery each comprising same
WO2022114872A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2020149683A1 (en) Anode active material for secondary battery, method for preparing same, anode for secondary battery comprising same, and lithium secondary battery
WO2019147093A1 (en) Conductive material, electrode-forming slurry including same, electrode, and lithium secondary battery manufactured using same
WO2021066495A1 (en) Electrode and secondary battery comprising same
WO2020141953A1 (en) Anode active material for secondary battery, electrode comprising same, and method for manufacturing same
WO2023059015A1 (en) Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2017164701A1 (en) Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same
WO2022060104A1 (en) Negative electrode active material, and negative electrode and secondary battery comprising same
WO2022235047A1 (en) Positive electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery comprising same
WO2023121284A1 (en) Negative electrode active material, and negative electrode and secondary battery comprising same
WO2024049200A1 (en) Cathode active material precursor, preparation method therefor, method for preparing cathode active material by using same, and cathode active material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15751067

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515444

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE