KR102567757B1 - method for manufacturing a surface heating element and surface heating element manufactured by the same - Google Patents

method for manufacturing a surface heating element and surface heating element manufactured by the same Download PDF

Info

Publication number
KR102567757B1
KR102567757B1 KR1020210050247A KR20210050247A KR102567757B1 KR 102567757 B1 KR102567757 B1 KR 102567757B1 KR 1020210050247 A KR1020210050247 A KR 1020210050247A KR 20210050247 A KR20210050247 A KR 20210050247A KR 102567757 B1 KR102567757 B1 KR 102567757B1
Authority
KR
South Korea
Prior art keywords
heating element
graphite
carbon nanotubes
acid
planar heating
Prior art date
Application number
KR1020210050247A
Other languages
Korean (ko)
Other versions
KR20220144053A (en
Inventor
송성호
양준용
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Priority to KR1020210050247A priority Critical patent/KR102567757B1/en
Publication of KR20220144053A publication Critical patent/KR20220144053A/en
Application granted granted Critical
Publication of KR102567757B1 publication Critical patent/KR102567757B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 면상발열체 제조방법 및 이에 의해 제조된 면상발열체에 관한 것으로, 보다 상세하게는 기능기화 한 그라파이트와 탄소나노튜브를 혼합한 복합소재에 고분자 수지를 첨가 혼합하여 제조되는 면상발열체 제조방법 및 이에 의해 제조된 면상발열체에 관한 것이다.
본 발명에 따른 면상발열체 제조방법은 (a) 그라파이트와 용매를 혼합한 그라파이트 용액을 기계적 분산 처리하는 단계; (b) 탄소나노튜브와 용매를 혼합한 탄소나노튜브 용액을 기계적 분산 처리하는 단계; 및 (c) 상기 (a)단계에서 처리된 그라파이트와 상기 (b)단계에서 처리된 탄소나노튜브를 혼합한 복합소재를 고분자 수지에 첨가하여 혼합하는 단계;를 포함하는 것을 특징으로 한다.
The present invention relates to a method for manufacturing a planar heating element and a planar heating element produced thereby, and more particularly, to a method for manufacturing a planar heating element prepared by adding and mixing a polymer resin to a composite material in which functionalized graphite and carbon nanotubes are mixed, and thereby It relates to a planar heating element manufactured by
A method for manufacturing a planar heating element according to the present invention includes the steps of (a) mechanically dispersing a graphite solution obtained by mixing graphite and a solvent; (b) mechanically dispersing the carbon nanotube solution in which the carbon nanotubes and the solvent are mixed; and (c) adding a composite material obtained by mixing the graphite treated in step (a) and the carbon nanotubes treated in step (b) to a polymer resin and mixing them.

Description

면상발열체 제조방법 및 이에 의해 제조된 면상발열체{method for manufacturing a surface heating element and surface heating element manufactured by the same}Method for manufacturing a surface heating element and surface heating element manufactured by the same}

본 발명은 면상발열체 제조방법 및 이에 의해 제조된 면상발열체에 관한 것으로, 보다 상세하게는 기능기화 한 그라파이트와 탄소나노튜브를 혼합한 복합소재에 고분자 수지를 첨가 혼합하여 제조되는 면상발열체 제조방법 및 이에 의해 제조된 면상발열체에 관한 것이다.The present invention relates to a method for manufacturing a planar heating element and a planar heating element produced thereby, and more particularly, to a method for manufacturing a planar heating element prepared by adding and mixing a polymer resin to a composite material in which functionalized graphite and carbon nanotubes are mixed, and thereby It relates to a planar heating element manufactured by

일반적으로 면상발열체는 통상의 니크롬선을 이용한 선상발열체가 아닌 면에서 발열하는 면상발열체로서, 기존 선상발열체와는 달리 전체의 면상에서 고른 발열이 발생하므로 발열 효과가 높고 안전한 발열체이다.In general, the plane heating element is a plane heating element that generates heat on the surface rather than a linear heating element using a normal nichrome wire, and unlike conventional linear heating elements, heat is generated evenly on the entire surface, so the heating effect is high and it is a safe heating element.

면상발열체는 열전도가 높은 구리, 알루미늄, 철, 니켈, 흑연분말 등을 필름형태의 수지 등에 균일하게 분사 또는 인쇄 형성하거나, 또는 도전성이 있는 탄소나노튜브, 흑연, 카본블랙 등을 고분자 수지에 코팅시켜 사용하고 있다. The planar heater is formed by uniformly spraying or printing copper, aluminum, iron, nickel, graphite powder, etc. with high thermal conductivity on a film-type resin, or by coating conductive carbon nanotubes, graphite, carbon black, etc. on a polymer resin. are using

특히, 탄소나노튜브는 열과 내구성이 강하며 열전도가 좋고 열팽창계수가 낮은 특징이 있다. 또한, 흑연은 금속발열체를 에칭하는 것보다 제작이 쉽고, 가격이 저렴하여 많이 이용되고 있다.In particular, carbon nanotubes are characterized by strong heat and durability, good thermal conductivity and a low coefficient of thermal expansion. In addition, graphite is widely used because it is easier to manufacture than etching a metal heating element and is inexpensive.

이러한 기술의 일예가 하기 문헌 1에 개시되어 있다.An example of such a technique is disclosed in Document 1 below.

특허문헌 1에는 흑연 및 탄소나노튜브를 각각 열처리하고, 산처리하고, 아미드화처리하는 단계; 고분자 수지를 포함하는 용매에 처리된 흑연 및 탄소나노튜브를 첨가한 뒤 혼합하는 단계; 및 용매를 제거하고 필름 형태의 면상발열체를 제조하는 단계를 포함하는 면상발열체의 제조방법에 대해 개시되어 있다.Patent Document 1 includes heat treatment, acid treatment, and amidation treatment of graphite and carbon nanotubes, respectively; Adding the treated graphite and carbon nanotubes to a solvent containing a polymer resin and then mixing; And it discloses a method for producing a planar heating element comprising the step of removing the solvent and preparing a planar heating element in the form of a film.

그러나, 상술한 바와 같은 종래의 기술은 고분자 필름과 그라파이트 및 탄소나노튜브의 균일한 혼합이 어렵고, 굴곡 및 원통형의 표면에 면상발열체를 적용하기 어렵기 때문에 용도가 제한되는 문제점이 있었다.However, the conventional technology as described above has problems in that its use is limited because it is difficult to uniformly mix the polymer film with graphite and carbon nanotubes, and it is difficult to apply the planar heating element to curved and cylindrical surfaces.

또한, 면상발열체를 제조하는 과정에서 산처리 및 아미드화 처리로 인해 폐수가 발생하는데, 이를 처리하기 위한 비용이 많이 소요되고, 제조공정이 복잡한 문제점이 있었다.In addition, wastewater is generated due to acid treatment and amidation treatment in the process of manufacturing the planar heating element, which requires a lot of cost for treatment and has a complicated manufacturing process.

대한민국 등록특허공보 제10-1436594호(2014.08.26. 등록)Republic of Korea Patent Registration No. 10-1436594 (2014.08.26. Registration)

본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 그라파이트의 볼 밀링 공정 시 기능기를 첨가하여 양이온 기능기화를 진행하고, 탄소나노튜브의 볼 밀링 공정 시 기능기를 첨가하여 음이온 기능기화를 진행하여 그라파이트 간의 분산 및 탄소나노튜브 간의 분산을 향상시키고, 추후 그라파이트와 탄소나노튜브 간의 상호 결합을 향상시킬 수 있는 면상발열체 제조방법 및 이에 의해 제조된 면상발열체를 제공하는데 목적이 있다.The present invention has been made to solve the above-described problems, and functional groups are added during the ball milling process of graphite to perform functionalization of cations, and functional groups are added during the ball milling process of carbon nanotubes to perform functionalization of anions. It is an object of the present invention to provide a method for manufacturing a planar heating element capable of improving dispersion between graphite and dispersion between carbon nanotubes and improving mutual bonding between graphite and carbon nanotubes, and a planar heating element manufactured thereby.

또한, 발열 성능이 우수할 뿐만 아니라 전자파 차단 및 인체에 유익한 원적외선을 방출시킬 수 있는 면상발열체 제조방법 및 이에 의해 제조된 면상발열체를 제공하는데 목적이 있다.In addition, an object of the present invention is to provide a planar heating element manufacturing method and a planar heating element manufactured thereby, which have excellent heating performance and can block electromagnetic waves and emit far-infrared rays beneficial to the human body.

상기 목적을 달성하기 위해 본 발명에 따른 면상발열체 제조방법은 (a) 그라파이트와 용매를 혼합한 그라파이트 용액에 기능기와 볼(ball)을 함께 넣고, 회전속도 100~300rpm, 반응 온도 50~100℃에서 6~24시간 동안 볼 밀링 공정을 수행하여 그라파이트를 기계적 분산 처리한 후 탈이온화수로 세척하는 단계; (b) 탄소나노튜브와 용매를 혼합한 탄소나노튜브 용액에 기능기와 볼(ball)을 함께 넣고, 회전속도 100~300rpm, 반응 온도 50~100℃에서 6~24시간 동안 볼 밀링 공정을 수행하여 그라파이트를 기계적 분산 처리한 후 탈이온화수로 세척하는 단계; 및 (c) 상기 (a)단계에서 처리된 그라파이트와 상기 (b)단계에서 처리된 탄소나노튜브를 각각 0.5~6시간 동안 초음파 처리한 후 초음파 처리된 그라파이트와 탄소나노튜브를 1:1~1:10의 중량비로 혼합한 복합소재를 고분자 수지에 첨가하여 혼합하는 단계;를 포함하고, 상기 용매는 알칸류 및 시클로알칸류, 알켄류, 치환알칸류, 벤젠류 및 벤젠유도체, 에테르류, 에스테르류, 황화물류, 아민류 및 퀴놀린류, 아미드류, 알코올류, 케톤류, 산류로 이루어진 군으로부터 선택되는 하나 또는 하나 이상인 것을 특징으로 한다.In order to achieve the above object, the method for manufacturing a planar heating element according to the present invention is (a) a functional group and a ball are added to a graphite solution in which graphite and a solvent are mixed, and at a rotational speed of 100 to 300 rpm and a reaction temperature of 50 to 100 ° C. Performing a ball milling process for 6 to 24 hours to mechanically disperse graphite and then washing with deionized water; (b) A ball milling process is performed at a rotational speed of 100 to 300 rpm and a reaction temperature of 50 to 100 ° C for 6 to 24 hours by adding functional groups and balls to a carbon nanotube solution mixed with carbon nanotubes and a solvent. Washing with deionized water after mechanically dispersing graphite; and (c) ultrasonic treatment of the graphite treated in the step (a) and the carbon nanotubes treated in the step (b) for 0.5 to 6 hours, respectively, and then the sonicated graphite and the carbon nanotubes in a ratio of 1:1 to 1 : Adding and mixing the composite material mixed at a weight ratio of 10 to the polymer resin, wherein the solvent is alkanes, cycloalkanes, alkenes, substituted alkanes, benzenes and benzene derivatives, ethers, esters It is characterized in that it is one or more than one selected from the group consisting of compounds, sulfides, amines and quinolines, amides, alcohols, ketones, and acids.

또한, 상기 (a)단계에서 상기 그라파이트와 용매의 혼합 비율은 1:1의 중량비인 것을 특징으로 한다.In addition, the mixing ratio of the graphite and the solvent in the step (a) is characterized in that the weight ratio of 1: 1.

또한, 상기 (b)단계에서 상기 탄소나노튜브와 용매의 혼합 비율은 1:1의 중량비인 것을 특징으로 한다.In addition, in step (b), the mixing ratio of the carbon nanotubes and the solvent is characterized in that a weight ratio of 1:1.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

또한, 상기 고분자 수지는 폴리에스테르, 불포화 폴리에스테르, 폴리카보네이트, 폴리아크릴계, 폴리비닐리덴 플루라이드, 폴리피롤, 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐덴플루오라이드, 폴리에틸렌테레프탈레이트, 합성고무로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 한다.In addition, the polymer resin is polyester, unsaturated polyester, polycarbonate, polyacrylic, polyvinylidene fluoride, polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylonitrile, polyvinylpyrrolidone, polyvinyl It is characterized in that it is one selected from the group consisting of denfluoride, polyethylene terephthalate, and synthetic rubber.

삭제delete

또한, 상기 기능기는 옥타데실아민, 아미노피렌, 1-피렌카르복시산, 1-피렌부틸릭산, 9-안트라센카르복시산, 플루오렌-1-카르복시산, 나프토익산, 1-피렌아세트산, 나프토-2-아미노피리딘-3-카르복시산, 2-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토피렌, 6-머캅토벤조피렌 및 1,4-벤젠디티올로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 한다.In addition, the functional group is octadecylamine, aminopyrene, 1-pyrenecarboxylic acid, 1-pyrenebutylic acid, 9-anthracenecarboxylic acid, fluorene-1-carboxylic acid, naphthoic acid, 1-pyreneacetic acid, naphtho-2-amino Pyridine-3-carboxylic acid, 2-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptopyrene, 6-mercaptobenzopyrene and 1,4-benzeneditiol Characterized in that it is at least one selected from the group consisting of all.

또한, 상기 기능기는 극성 작용기, 멜라민, 폴리스타이렌 설포네이트, 벤조산, 폴피린, 피렌부틸산, 이들의 유도체 및 이들의 중합체로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 한다.In addition, the functional group is characterized in that at least one selected from the group consisting of a polar functional group, melamine, polystyrene sulfonate, benzoic acid, porphyrin, pyrene butyric acid, derivatives thereof, and polymers thereof.

본 발명은 상기 면상발열체 제조방법에 의해 제조된 면상발열체를 제공한다.The present invention provides a planar heating element manufactured by the above planar heating element manufacturing method.

상술한 바와 같이, 본 발명에 따른 면상발열체 제조방법 및 이에 의해 제조된 면상발열체는 그라파이트를 양이온 기능기화 하고, 탄소나노튜브를 음이온 기능기화 하여 그라파이트 간의 분산 및 탄소나노튜브 간의 분산을 향상시키고, 추후 그라파이트와 탄소나노튜브 간의 상호 결합을 향상시키는 효과가 있다.As described above, the planar heating element manufacturing method according to the present invention and the planar heating element prepared thereby improve the dispersion between graphite and the dispersion between carbon nanotubes by cationically functionalizing graphite and anionic functionalization of carbon nanotubes, and later There is an effect of improving mutual bonding between graphite and carbon nanotubes.

또한, 발열 성능이 우수할 뿐만 아니라 전자파 차단 및 인체에 유익한 원적외선을 방출시키는 효과가 있다.In addition, as well as excellent heat generating performance, there is an effect of blocking electromagnetic waves and emitting far-infrared rays beneficial to the human body.

도 1은 본 발명의 볼 밀링 공정 처리된 그라파이트를 나타낸 주사전자현미경 이미지.
도 2는 본 발명의 볼 밀링 공정 처리된 그라파이트의 XRD 및 Raman 분석 결과를 나타낸 그래프.
도 3은 본 발명의 볼 밀링 공정 처리된 탄소나노튜브를 나타낸 주사전자현미경 이미지.
도 4는 본 발명의 볼 밀링 공정 처리된 탄소나노튜브의 XRD 및 Raman 분석 결과를 나타낸 그래프.
도 5는 본 발명에 따른 복합소재를 나타낸 주사전자현미경 이미지.
도 6은 본 발명에 따른 면상발열체의 전기 저항 측정 결과를 나타낸 그래프.
도 7 및 도 8은 본 발명에 따른 면상발열체의 원적외선 방사율 및 방사에너지 시험 결과를 나타낸 시험성적서.
도 9 및 10은 본 발명에 따른 면상발열체의 전자파 차폐 시험 결과를 나타낸 시험성적서.
1 is a scanning electron microscope image showing graphite treated with a ball milling process according to the present invention.
Figure 2 is a graph showing the results of XRD and Raman analysis of graphite treated with the ball milling process of the present invention.
3 is a scanning electron microscope image showing carbon nanotubes treated with the ball milling process of the present invention.
4 is a graph showing XRD and Raman analysis results of carbon nanotubes treated with the ball milling process of the present invention.
5 is a scanning electron microscope image showing a composite material according to the present invention.
Figure 6 is a graph showing the electrical resistance measurement results of the planar heating element according to the present invention.
7 and 8 are test reports showing the far-infrared emissivity and radiant energy test results of the planar heating element according to the present invention.
9 and 10 are test reports showing the electromagnetic wave shielding test results of the planar heating element according to the present invention.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 상세하게 설명한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail in order to explain the present invention in detail to the extent that those skilled in the art can easily practice the present invention.

본 발명에 따른 면상발열체 제조방법은 기능기화 한 그라파이트와 탄소나노튜브를 혼합한 복합소재에 고분자 수지를 첨가 혼합하여 면상발열체를 제조하기 위한 것으로, 그라파이트 기계 분산 처리단계, 탄소나노튜브 기계 분산 처리단계 및 복합소재와 고분자 수지 혼합단계를 포함한다.The planar heating element manufacturing method according to the present invention is for preparing a planar heating element by adding and mixing a polymer resin to a composite material in which functionalized graphite and carbon nanotubes are mixed, graphite mechanical dispersion treatment step, carbon nanotube mechanical dispersion treatment step and mixing the composite material and the polymer resin.

상기 그라파이트 기계 분산 처리단계는 그라파이트와 용매를 혼합한 그라파이트 용액을 기계적 분산 처리하는 단계이다.The graphite mechanical dispersion treatment step is a step of mechanical dispersion treatment of a graphite solution in which graphite and a solvent are mixed.

상기 그라파이트는 흑연 또는 석연으로도 불리며, 얇은 육방형 판상 결정으로 형성되는 명갈회색의 탄소 동소체 중 하나로서, 대략 30~80㎛의 크기를 가지며, 내열성, 내열충격성, 내식성이 강하고 전기 및 열 전도성이 우수한 특징이 있다.The graphite, also called graphite or stone lead, is one of light brown gray carbon allotropes formed into thin hexagonal plate-like crystals, has a size of about 30 to 80 μm, has strong heat resistance, thermal shock resistance, corrosion resistance, and electrical and thermal conductivity. It has excellent features.

상기 용매는 알칸류 및 시클로알칸류, 알켄류, 치환알칸류, 벤젠류 및 벤젠유도체, 에테르류, 에스테르류, 황화물류, 아민류 및 퀴놀린류, 아미드류, 알코올류, 케톤류, 산류로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 이루어진다.The solvent is selected from the group consisting of alkanes and cycloalkanes, alkenes, substituted alkanes, benzenes and benzene derivatives, ethers, esters, sulfides, amines and quinolines, amides, alcohols, ketones, and acids. It consists of one or more than one selected.

상기 그라파이트와 용매의 혼합 비율은 1:1의 중량비인 것이 바람직하다. 상기 그라파이트와 용매의 혼합 시 그라파이트가 과다하게 첨가되는 경우 박리 및 기능기화가 되지 않고, 용매가 과다하게 첨가되는 경우 생산량이 적어 경제성이 저하된다.The mixing ratio of the graphite and the solvent is preferably a weight ratio of 1:1. When the graphite and the solvent are mixed, when the graphite is excessively added, exfoliation and functionalization are not performed, and when the solvent is excessively added, the amount of production is small, resulting in reduced economic feasibility.

상기 기계적 분산 처리는 상기 그라파이트 용액을 다양한 사이즈를 갖는 볼(ball)과 함께 회전속도 100~300rpm에서 6~24시간 동안 볼 밀링 공정을 수행한다.The mechanical dispersion treatment performs a ball milling process for 6 to 24 hours at a rotational speed of 100 to 300 rpm with balls having various sizes of the graphite solution.

이때, 상기 볼 밀링에 의한 반응 시간이 6시간 미만일 경우에는 반응이 일어나지 않고, 24시간을 초과할 경우에는 소재 크기가 작아지고 손상이 심해져 고유한 특성이 발현되지 않는다.At this time, when the reaction time by the ball milling is less than 6 hours, the reaction does not occur, and when it exceeds 24 hours, the size of the material is reduced and the damage is severe, so that unique characteristics are not expressed.

그리고, 상기 기계적 분산 처리의 반응 온도는 50~100℃인 것이 바람직하다. 만약에, 반응 온도가 50℃ 미만일 경우에는 반응이 일어나지 않고, 100℃를 초과할 경우에는 용매의 증발이 발생되는 문제가 있다.And, the reaction temperature of the mechanical dispersion treatment is preferably 50 ~ 100 ℃. If the reaction temperature is less than 50 ° C., the reaction does not occur, and if the reaction temperature exceeds 100 ° C., there is a problem that evaporation of the solvent occurs.

여기서, 볼 밀링(Ball Milling)이란 금속이나 세라믹 등의 분말 입자를 다수의 볼(Ball)과 함께 용기 내에 장입시켜 분말 입자를 혼합함과 동시에 볼들의 접촉 또는 볼들과 용기 사이의 접촉에 의해 상기 분말 입자들을 서로 압착하면서 그 압착된 것들을 다시 분쇄하는 과정을 반복함으로써 높은 기계적 에너지를 가하는 공정을 말한다. Here, ball milling is to charge powder particles such as metal or ceramic into a container together with a plurality of balls to mix the powder particles, and at the same time contact the balls or the contact between the balls and the container to mix the powder. It refers to a process in which high mechanical energy is applied by repeating the process of crushing the compressed particles while compressing the particles to each other.

한편, 상기 그라파이트 기계 분산 처리단계에서 처리된 그라파이트는 반응 과정에서 부착된 이물질을 제거하기 위하여 탈이온화수로 세척한다. Meanwhile, the graphite processed in the graphite mechanical dispersion treatment step is washed with deionized water to remove foreign substances attached during the reaction process.

도 1에 도시된 바와 같이, 그라파이트의 볼 밀링 공정 수행 후 그라파이트의 두께가 얇아지고 크기가 줄어든 것을 확인할 수 있다. As shown in FIG. 1 , it can be confirmed that the thickness of the graphite becomes thinner and the size of the graphite is reduced after the ball milling process of the graphite is performed.

부연하면, 도 2에서와 같이 볼 밀링의 rpm에 따른 실험 결과 rpm이 증가함에 따라 XRD 분석 결과, 그라파이트의 layer 수 감소로 인해 XRD 강도(Intensity)가 감소하며, Raman 분석 결과 D-band의 증가로 결함이 증가하며, 2D-band를 통해 그라파이트의 두께가 감소되는 것을 알 수 있다.In other words, as shown in FIG. 2, as a result of XRD analysis according to the rpm of ball milling, as the rpm increases, the XRD intensity decreases due to the decrease in the number of layers of graphite, and as a result of Raman analysis, the D-band increases It can be seen that defects increase and the thickness of graphite decreases through the 2D-band.

한편, 상기 그라파이트의 기계적 분산 처리 시 기능기를 첨가할 수 있다.Meanwhile, a functional group may be added during the mechanical dispersion treatment of the graphite.

상기 기능기는 옥타데실아민, 아미노피렌, 1-피렌카르복시산, 1-피렌부틸릭산, 9-안트라센카르복시산, 플루오렌-1-카르복시산, 나프토익산, 1-피렌아세트산, 나프토-2-아미노피리딘-3-카르복시산, 2-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토피렌, 6-머캅토벤조피렌 및 1,4-벤젠디티올로 이루어진 군으로부터 선택되는 하나 이상으로 이루어진다.The functional group is octadecylamine, aminopyrene, 1-pyrenecarboxylic acid, 1-pyrenebutylic acid, 9-anthracenecarboxylic acid, fluorene-1-carboxylic acid, naphthoic acid, 1-pyreneacetic acid, naphtho-2-aminopyridine- 3-carboxylic acid, 2-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptopyrene, 6-mercaptobenzopyrene and 1,4-benzenedithiol It consists of one or more selected from the group consisting of.

또한, 상기 기능기는 극성 작용기, 멜라민, 폴리스타이렌 설포네이트, 벤조산, 폴피린, 피렌부틸산, 이들의 유도체 및 이들의 중합체로 이루어진 군으로부터 선택되는 하나 이상인 것일 수도 있다.In addition, the functional group may be one or more selected from the group consisting of a polar functional group, melamine, polystyrene sulfonate, benzoic acid, porphyrin, pyrene butyric acid, derivatives thereof, and polymers thereof.

특히, 상기 극성 작용기는 아황산기(-SO3), 하이드록시기(-OH), 카르복시기(-COOH), 아미노기(-NH2)로 이루어진 군으로부터 선택되는 하나 이상으로 이루어진다.In particular, the polar functional group consists of one or more selected from the group consisting of a sulfurous acid group (-SO 3 ), a hydroxy group (-OH), a carboxy group (-COOH), and an amino group (-NH 2 ).

이처럼, 상기 그라파이트의 기계적 분산 처리 시 기능기를 첨가하여 동시에 기능기화를 진행하여 양이온 기능기화를 진행할 수 있다. 따라서, 그라파이트 간의 분산을 향상시키고, 추후 탄소나노튜브와의 상호 결합(정전기적 결합)을 향상시킬 수 있다.As such, during the mechanical dispersion treatment of the graphite, functional groups may be added and functionalization may be performed at the same time to perform functionalization of cations. Accordingly, it is possible to improve dispersion between graphites and improve mutual coupling (electrostatic coupling) with carbon nanotubes later.

한편, 상기 탄소나노튜브 기계 분산 처리단계는 탄소나노튜브와 용매를 혼합한 탄소나노튜브 용액을 기계적 분산 처리하는 단계이다.Meanwhile, the mechanical dispersion treatment of the carbon nanotubes is a step of mechanically dispersing the carbon nanotube solution in which the carbon nanotubes and the solvent are mixed.

상기 탄소나노튜브는 탄소의 고분자 동소체로서, 흑연과 같이 육각형의 벌집 구조를 이루고 있으며, 각 탄소 원자는 벌집 구조에서 모서리에 위치하며, 이러한 벌집 구조가 원기둥 형태로 말려 있는 모양을 하고 있다.The carbon nanotube is a polymer allotrope of carbon and has a hexagonal honeycomb structure like graphite. Each carbon atom is located at a corner of the honeycomb structure, and the honeycomb structure has a cylindrical shape.

상기 용매는 알칸류 및 시클로알칸류, 알켄류, 치환알칸류, 벤젠류 및 벤젠유도체, 에테르류, 에스테르류, 황화물류, 아민류 및 퀴놀린류, 아미드류, 알코올류, 케톤류, 산류로 이루어진 군으로부터 선택되는 하나 또는 하나 이상으로 이루어진다. The solvent is selected from the group consisting of alkanes and cycloalkanes, alkenes, substituted alkanes, benzenes and benzene derivatives, ethers, esters, sulfides, amines and quinolines, amides, alcohols, ketones, and acids. It consists of one or more than one selected.

상기 탄소나노튜브와 용매의 혼합 비율은 1:1의 중량비인 것이 바람직하다. 상기 탄소나노튜브와 용매의 혼합 시 탄소나노튜브가 과다하게 첨가되는 경우 박리 및 기능기화가 되지 않고, 용매가 과다하게 첨가되는 경우 생산량이 적어 경제성이 저하된다.The mixing ratio of the carbon nanotubes and the solvent is preferably a weight ratio of 1:1. When mixing the carbon nanotubes and the solvent, when the carbon nanotubes are excessively added, exfoliation and functionalization are not performed, and when the solvent is excessively added, the production volume is low and economic feasibility is lowered.

상기 기계적 분산 처리는 상기 탄소나노튜브 용액을 다양한 사이즈를 갖는 볼(ball)과 함께 회전속도 100~300rpm에서 6~24시간 동안 볼 밀링 공정을 수행한다.The mechanical dispersion treatment performs a ball milling process for 6 to 24 hours at a rotational speed of 100 to 300 rpm with balls having various sizes of the carbon nanotube solution.

이때, 상기 볼 밀링에 의한 반응 시간이 6시간 미만일 경우에는 반응이 일어나지 않고, 24시간을 초과할 경우에는 소재 크기가 작아지고 손상이 심해져 고유한 특성이 발현되지 않는다.At this time, when the reaction time by the ball milling is less than 6 hours, the reaction does not occur, and when it exceeds 24 hours, the size of the material is reduced and the damage is severe, so that unique characteristics are not expressed.

그리고, 상기 기계적 분산 처리의 반응 온도는 50~100℃인 것이 바람직하다. 만약에, 반응 온도가 50℃ 미만일 경우에는 반응이 일어나지 않고, 100℃를 초과할 경우에는 용매의 증발이 발생되는 문제가 있다.And, the reaction temperature of the mechanical dispersion treatment is preferably 50 ~ 100 ℃. If the reaction temperature is less than 50 ° C., the reaction does not occur, and if the reaction temperature exceeds 100 ° C., there is a problem that evaporation of the solvent occurs.

한편, 상기 탄소나노튜브 기계 분산 처리단계에서 처리된 탄소나노튜브는 반응 과정에서 부착된 이물질을 제거하기 위하여 탈이온화수로 세척한다. Meanwhile, the carbon nanotubes treated in the carbon nanotube mechanical dispersion treatment step are washed with deionized water to remove foreign substances attached during the reaction process.

도 3에 도시된 바와 같이, 탄소나노튜브의 볼 밀링 공정 수행 후 탄소나노튜브의 길이가 짧아지고, 번들링(bundling)이 감소하는 것을 확인할 수 있다.As shown in FIG. 3 , it can be confirmed that the length of the carbon nanotubes is shortened and bundling is reduced after the ball milling process of the carbon nanotubes is performed.

부연하면, 도 4에서와 같이 볼 밀링 rpm이 증가함에 따라 탄소나노튜브 디번들링(debundling)으로 인해 XRD(002) peak의 강도(Intensity)가 감소하며, rpm의 증가에 따라 Raman의 D-band의 증가로 결함이 증가하는 것을 확인할 수 있다.In other words, as shown in FIG. 4, as the ball milling rpm increases, the intensity of the XRD (002) peak decreases due to carbon nanotube debundling, and as the rpm increases, the Raman's D-band It can be seen that the defect increases with the increase.

한편, 상기 탄소나노튜브의 기계적 분산 처리 시 기능기를 첨가할 수 있다.Meanwhile, a functional group may be added during the mechanical dispersion treatment of the carbon nanotubes.

상기 기능기는 옥타데실아민, 아미노피렌, 1-피렌카르복시산, 1-피렌부틸릭산, 9-안트라센카르복시산, 플루오렌-1-카르복시산, 나프토익산, 1-피렌아세트산, 나프토-2-아미노피리딘-3-카르복시산, 2-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토피렌, 6-머캅토벤조피렌 및 1,4-벤젠디티올로 이루어진 군으로부터 선택되는 하나 이상으로 이루어진다.The functional group is octadecylamine, aminopyrene, 1-pyrenecarboxylic acid, 1-pyrenebutylic acid, 9-anthracenecarboxylic acid, fluorene-1-carboxylic acid, naphthoic acid, 1-pyreneacetic acid, naphtho-2-aminopyridine- 3-carboxylic acid, 2-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptopyrene, 6-mercaptobenzopyrene and 1,4-benzenedithiol It consists of one or more selected from the group consisting of.

또한, 상기 기능기는 극성 작용기, 멜라민, 폴리스타이렌 설포네이트, 벤조산, 폴피린, 피렌부틸산, 이들의 유도체 및 이들의 중합체로 이루어진 군으로부터 선택되는 하나 이상인 것일 수도 있다.In addition, the functional group may be one or more selected from the group consisting of a polar functional group, melamine, polystyrene sulfonate, benzoic acid, porphyrin, pyrene butyric acid, derivatives thereof, and polymers thereof.

특히, 상기 극성 작용기는 아황산기(-SO3), 하이드록시기(-OH), 카르복시기(-COOH), 아미노기(-NH2)로 이루어진 군으로부터 선택되는 하나 이상으로 이루어진다.In particular, the polar functional group consists of one or more selected from the group consisting of a sulfurous acid group (-SO 3 ), a hydroxy group (-OH), a carboxy group (-COOH), and an amino group (-NH 2 ).

이처럼, 상기 탄소나노튜브의 기계적 분산 처리 시 기능기를 첨가하여 동시에 기능기화를 진행하여 음이온 기능기화를 진행할 수 있다. 따라서, 탄소나노튜브 간의 분산을 향상시키고, 추후 그라파이트와의 상호 결합(정전기적 결합)을 향상시킬 수 있다.In this way, during the mechanical dispersion treatment of the carbon nanotubes, functional groups may be added and functionalization may be performed at the same time to perform functionalization of anions. Accordingly, it is possible to improve dispersion between carbon nanotubes and improve mutual bonding (electrostatic bonding) with graphite later.

한편, 상기 복합소재와 고분자 수지 혼합단계는 상기 그라파이트 기계 분산 처리단계에서 처리된 그라파이트와 상기 탄소나노튜브 기계 분산 처리단계에서 처리된 탄소나노튜브를 혼합한 복합소재를 고분자 수지에 첨가하여 혼합하는 단계이다.On the other hand, in the mixing of the composite material and the polymer resin step, a composite material obtained by mixing the graphite treated in the graphite mechanical dispersion treatment step and the carbon nanotubes treated in the carbon nanotube mechanical dispersion treatment step is added to the polymer resin and mixed. am.

특히, 상기 복합소재와 고분자 수지 혼합단계를 수행하기에 앞서, 상기 그라파이트 기계 분산 처리단계 및 탄소나노튜브 기계 분산 처리단계 이후에, 상기 그라파이트 기계 분산 처리단계에서 처리된 그라파이트와 상기 탄소나노튜브 기계 분산 처리단계에서 처리된 탄소나노튜브를 각각 0.5~6시간 동안 초음파 처리하는 것이 바람직하다. 상기 초음파 처리 시간이 0.5시간 미만일 경우에는 분산이 제대로 이루어지지 않고, 6시간을 초과할 경우에는 소재 크기가 작아지고, 결함이 증가되는 문제가 있다.In particular, before performing the composite material and polymer resin mixing step, after the graphite mechanical dispersion treatment step and the carbon nanotube mechanical dispersion treatment step, the graphite processed in the graphite mechanical dispersion treatment step and the carbon nanotube mechanical dispersion It is preferable to sonicate the carbon nanotubes treated in the treatment step for 0.5 to 6 hours, respectively. When the ultrasonic treatment time is less than 0.5 hours, the dispersion is not properly performed, and when it exceeds 6 hours, the size of the material decreases and defects increase.

또한, 상기 초음파 처리된 그라파이트와 탄소나노튜브를 1:1~1:10의 중량비로 혼합한 복합소재를 0.5~6시간 동안 초음파 처리하는 것이 바람직하다. 마찬가지로, 상기 초음파 처리 시간이 0.5시간 미만일 경우에는 분산이 제대로 이루어지지 않고, 6시간을 초과할 경우에는 소재 크기가 작아지고, 결함이 증가되는 문제가 있다.In addition, it is preferable to ultrasonically treat a composite material in which the ultrasonically treated graphite and the carbon nanotubes are mixed in a weight ratio of 1:1 to 1:10 for 0.5 to 6 hours. Similarly, when the ultrasonic treatment time is less than 0.5 hours, the dispersion is not properly performed, and when the ultrasonic treatment time exceeds 6 hours, the size of the material decreases and defects increase.

상기 고분자 수지는 폴리에스테르, 불포화 폴리에스테르, 폴리카보네이트, 폴리아크릴계, 폴리비닐리덴 플루라이드, 폴리피롤, 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐덴플루오라이드, 폴리에틸렌테레프탈레이트, 합성고무로 이루어진 군으로부터 선택되는 하나로 이루어진다.The polymer resin is polyester, unsaturated polyester, polycarbonate, polyacrylic, polyvinylidene fluoride, polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylonitrile, polyvinylpyrrolidone, polyvinylidene fluoride It consists of one selected from the group consisting of ride, polyethylene terephthalate, and synthetic rubber.

특히, 상기 합성고무는 스타이렌 부타디엔 고무, 부타디엔 고무, 아이소프렌 함유 스타이렌 부타디엔 고무, 나이트릴 함유 스타이렌 부타디엔 고무, 네오프렌 고무, 클로로부틸 고무, 브로모부틸 고무로 이루어진 군으로부터 선택되는 하나로 이루어진다.In particular, the synthetic rubber is made of one selected from the group consisting of styrene butadiene rubber, butadiene rubber, isoprene-containing styrene butadiene rubber, nitrile-containing styrene butadiene rubber, neoprene rubber, chlorobutyl rubber, and bromobutyl rubber.

도 5에 도시된 바와 같이, 상기 그라파이트 기계 분산 처리단계에서 처리된 그라파이트와 상기 탄소나노튜브 기계 분산 처리단계에서 처리된 탄소나노튜브를 각각 초음파 처리하고, 이들을 혼합하여 재차 초음파 처리한 복합소재의 SEM 분석한 결과, 그라파이트와 탄소나노튜브의 상호 분산을 통해 분산이 향상됨을 확인할 수 있으며, 함량 비율이 증가함에 따라 고 분산된 그라파이트와 탄소나노튜브의 차이를 확인할 수 있다. As shown in FIG. 5, the graphite processed in the graphite mechanical dispersion processing step and the carbon nanotubes processed in the carbon nanotube mechanical dispersion processing step are ultrasonically treated, respectively, and mixed and ultrasonicated again. SEM of a composite material As a result of the analysis, it can be confirmed that dispersion is improved through mutual dispersion of graphite and carbon nanotubes, and the difference between highly dispersed graphite and carbon nanotubes can be confirmed as the content ratio increases.

이하, 본 발명을 실시예에 의해 더욱 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by examples. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.

[실시예 1][Example 1]

그라파이트 볼 밀링 처리Graphite ball milling treatment

그라파이트와 디메틸포름아미드(DMF)를 1:1의 비율로 혼합한 그라파이트 용액과 기능기인 1-피렌부틸릭산(PBA)을 다수의 볼과 함께 용기에 넣고, 회전속도 300rpm으로 70℃의 온도에서 12시간 동안 볼 밀링 공정을 수행하였다. 이후, 볼 밀링 공정을 거친 그라파이트를 탈이온화수로 세척하였다.A graphite solution, which is a mixture of graphite and dimethylformamide (DMF) at a ratio of 1:1, and 1-pyrenebutyric acid (PBA), a functional group, are placed in a container with a plurality of balls, and heated at a temperature of 70 ° C. at a rotational speed of 300 rpm for 12 The ball milling process was performed for an hour. Thereafter, the graphite subjected to the ball milling process was washed with deionized water.

[실시예 2][Example 2]

탄소나노튜브 볼 밀링 처리Carbon nanotube ball milling treatment

탄소나노튜브와 디메틸포름아미드(DMF)를 1:1의 비율로 혼합한 탄소나노튜브 용액과 기능기인 옥타데실아민(ODA)을 다수의 볼과 함께 용기에 넣고, 회전속도 300rpm으로 70℃의 온도에서 12시간 동안 볼 밀링 공정을 수행하였다. 이후, 볼 밀링 공정을 거친 탄소나노튜브를 탈이온화수로 세척하였다.A carbon nanotube solution in which carbon nanotubes and dimethylformamide (DMF) are mixed at a ratio of 1:1 and octadecylamine (ODA), a functional group, are placed in a container with a plurality of balls, and a temperature of 70°C is maintained at a rotation speed of 300 rpm. The ball milling process was performed for 12 hours. Thereafter, the carbon nanotubes subjected to the ball milling process were washed with deionized water.

[실시예 3][Example 3]

면상발열체 제조Manufacture of planar heating element

실시예 1에서 볼 밀링 처리된 그라파이트와 실시예 2에서 볼 밀링 처리된 탄소나노튜브를 각각 3시간 동안 초음파 처리한 후 혼합한 복합소재를 실리콘 고무에 첨가 혼합하여 면상발열체를 제조하였다.The graphite ball-milled in Example 1 and the carbon nanotubes ball-milled in Example 2 were ultrasonically treated for 3 hours, respectively, and then the mixed composite material was added to silicon rubber and mixed to prepare a planar heating element.

이때, 각종 시험을 수행하기 위하여 제조된 면상발열체를 건조기에서 24시간 동안 건조하여 시편으로 준비하였다.At this time, the planar heating element prepared to perform various tests was dried in a dryer for 24 hours to prepare a specimen.

[시험예 1][Test Example 1]

물성 측정 결과Physical property measurement result

아래 표 1에서와 같이, 면상발열체의 함량이 증가함에 따라 인장강도는 증가하나, 신율은 감소하는 것을 확인할 수 있다.As shown in Table 1 below, as the content of the planar heating element increases, the tensile strength increases, but it can be seen that the elongation decreases.

시편Psalter 면상발열체face heating element 실리콘 고무silicone rubber 인장강도(Mpa)Tensile strength (Mpa) 신율(%)Elongation (%) 1One 88 9292 7.967.96 234.26234.26 22 66 9494 7.137.13 238.68238.68 33 44 9696 6.656.65 249.59249.59 44 22 9898 5.615.61 254.74254.74 55 00 100100 5.885.88 345.96345.96

[시험예 2][Test Example 2]

전기 저항 측정 결과Electrical resistance measurement result

도 6에 도시된 바와 같이, 1번 시편으로 다양한 두께, 전원폭, 길이를 조절하여 선저항을 조절하였다. 제조된 길이가 증가함에 따라 선저항이 증가하여 시간이 증가함에 따라 60℃로 발열이 되지만, 나머지 시편에서는 2분 안에 모두 100℃이상 도달함을 확인할 수 있다.As shown in FIG. 6, the line resistance was adjusted by adjusting various thicknesses, power widths, and lengths with specimen No. 1. As the manufactured length increases, the line resistance increases and heats up to 60 ℃ as time increases, but it can be confirmed that all of the remaining specimens reach 100 ℃ or more within 2 minutes.

[시험예 3][Test Example 3]

원적외선 방사 성능Far-infrared radiation performance

도 7 및 도 8에 도시된 바와 같이, 제조된 면상발열체를 사단법인 한국원적외선협회에 의뢰하여 원적외선 방사율 및 방사에너지 방출량을 측정하였다.As shown in Figures 7 and 8, the far-infrared emissivity and radiant energy emission were measured by requesting the manufactured planar heating element to the Korea Far Infrared Association.

측정 방법은 KFIA-FI-1005에 의거하여 측정하였으며, 시험온도는 각각 40℃와 120℃를 기준으로 측정하였다.The measurement method was measured in accordance with KFIA-FI-1005, and the test temperature was measured based on 40 ℃ and 120 ℃, respectively.

시험온도 40℃이고 5~20㎛ 파장인 경우, 0.904의 원적외선 방사율을 갖는 것을 확인할 수 있고, 3.64×102 W/㎡ㆍ㎛의 원적외선 방사에너지를 방출하는 것을 확인할 수 있다.In the case of a test temperature of 40 ° C and a wavelength of 5 to 20 μm, it can be confirmed that it has a far-infrared emissivity of 0.904, and it can be confirmed that it emits far-infrared radiant energy of 3.64 × 10 2 W / m 2 μm.

또한, 시험온도 120℃이고 5~20㎛ 파장인 경우, 0.892의 원적외선 방사율을 갖는 것을 확인할 수 있고, 9.49×102 W/㎡ㆍ㎛의 원적외선 방사에너지를 방출하는 것을 확인할 수 있다.In addition, when the test temperature is 120 ° C and the wavelength is 5 to 20 μm, it can be confirmed that it has a far-infrared emissivity of 0.892, and it can be confirmed that it emits far-infrared radiant energy of 9.49 × 10 2 W / m 2 μm.

이를 통하여, 본 발명의 면상발열체가 0.8 이상의 우수한 원적외선 방사율을 갖는 것을 확인할 수 있었다.Through this, it was confirmed that the planar heating element of the present invention had an excellent far-infrared emissivity of 0.8 or more.

[시험예 4][Test Example 4]

전자파 차폐 성능Electromagnetic wave shielding performance

도 9 및 도 10에 도시된 바와 같이, 제조된 면상발열체를 구미전자정보기술원에 의뢰하여 전자파 차폐에 대한 실험을 실시하였다.As shown in FIGS. 9 and 10, an experiment on electromagnetic wave shielding was conducted by requesting the manufactured planar heating element to the Gumi Institute of Electronics and Information Technology.

시험 방법은 여러 주파수 별로 전자파 차폐 효과에 대해서 실험을 하였다. As for the test method, the electromagnetic wave shielding effect was tested for each frequency.

이를 통하여, 본 발명의 면상발열체가 35bB 이상의 전자파 차폐 효과가 있는 것을 확인할 수 있다.Through this, it can be confirmed that the planar heating element of the present invention has an electromagnetic shielding effect of 35bB or more.

본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어져야 한다.Although the present invention has been described with reference to the preferred embodiments with reference to the accompanying drawings, it is clear that various modifications are possible to those skilled in the art from this description without departing from the scope of the present invention. Accordingly, the scope of the present invention should be construed by the claims described to include examples of these many variations.

Claims (14)

(a) 그라파이트와 용매를 혼합한 그라파이트 용액에 기능기와 볼(ball)을 함께 넣고, 회전속도 100~300rpm, 반응 온도 50~100℃에서 6~24시간 동안 볼 밀링 공정을 수행하여 그라파이트를 기계적 분산 처리한 후 탈이온화수로 세척하는 단계;
(b) 탄소나노튜브와 용매를 혼합한 탄소나노튜브 용액에 기능기와 볼(ball)을 함께 넣고, 회전속도 100~300rpm, 반응 온도 50~100℃에서 6~24시간 동안 볼 밀링 공정을 수행하여 그라파이트를 기계적 분산 처리한 후 탈이온화수로 세척하는 단계; 및
(c) 상기 (a)단계에서 처리된 그라파이트와 상기 (b)단계에서 처리된 탄소나노튜브를 각각 0.5~6시간 동안 초음파 처리한 후 초음파 처리된 그라파이트와 탄소나노튜브를 1:1~1:10의 중량비로 혼합한 복합소재를 고분자 수지에 첨가하여 혼합하는 단계;를 포함하고,
상기 용매는 알칸류 및 시클로알칸류, 알켄류, 치환알칸류, 벤젠류 및 벤젠유도체, 에테르류, 에스테르류, 황화물류, 아민류 및 퀴놀린류, 아미드류, 알코올류, 케톤류, 산류로 이루어진 군으로부터 선택되는 하나 또는 하나 이상인 것을 특징으로 하는 면상발열체 제조방법.
(a) A functional group and a ball are added to a graphite solution mixed with graphite and a solvent, and a ball milling process is performed at a rotation speed of 100 to 300 rpm and a reaction temperature of 50 to 100 ° C for 6 to 24 hours to mechanically disperse graphite. washing with deionized water after treatment;
(b) A ball milling process is performed at a rotational speed of 100 to 300 rpm and a reaction temperature of 50 to 100 ° C for 6 to 24 hours by adding functional groups and balls to a carbon nanotube solution mixed with carbon nanotubes and a solvent. Washing with deionized water after mechanically dispersing graphite; and
(c) The graphite treated in step (a) and the carbon nanotubes treated in step (b) are sonicated for 0.5 to 6 hours, respectively, and then the sonicated graphite and carbon nanotubes are 1: 1 to 1: Including; adding and mixing the composite material mixed at a weight ratio of 10 to the polymer resin,
The solvent is selected from the group consisting of alkanes and cycloalkanes, alkenes, substituted alkanes, benzenes and benzene derivatives, ethers, esters, sulfides, amines and quinolines, amides, alcohols, ketones, and acids. A planar heating element manufacturing method, characterized in that one or more than one selected.
청구항 1에 있어서,
상기 (a)단계에서 상기 그라파이트와 용매의 혼합 비율은 1:1의 중량비인 것을 특징으로 하는 면상발열체 제조방법.
The method of claim 1,
In step (a), the mixing ratio of the graphite and the solvent is a method for manufacturing a planar heating element, characterized in that the weight ratio of 1: 1.
청구항 1에 있어서,
상기 (b)단계에서 상기 탄소나노튜브와 용매의 혼합 비율은 1:1의 중량비인 것을 특징으로 하는 면상발열체 제조방법.
The method of claim 1,
In step (b), the mixing ratio of the carbon nanotubes and the solvent is a method for producing a planar heating element, characterized in that the weight ratio of 1: 1.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 청구항 1에 있어서,
상기 고분자 수지는 폴리에스테르, 불포화 폴리에스테르, 폴리카보네이트, 폴리아크릴계, 폴리비닐리덴 플루라이드, 폴리피롤, 에폭시, 폴리이미드, 폴리우레탄, 나일론, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐덴플루오라이드, 폴리에틸렌테레프탈레이트, 합성고무로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 하는 면상발열체 제조방법.
The method of claim 1,
The polymer resin is polyester, unsaturated polyester, polycarbonate, polyacrylic, polyvinylidene fluoride, polypyrrole, epoxy, polyimide, polyurethane, nylon, polyacrylonitrile, polyvinylpyrrolidone, polyvinylidene fluoride A surface heating element manufacturing method, characterized in that one selected from the group consisting of ride, polyethylene terephthalate, synthetic rubber.
삭제delete 청구항 1에 있어서,
상기 기능기는 옥타데실아민, 아미노피렌, 1-피렌카르복시산, 1-피렌부틸릭산, 9-안트라센카르복시산, 플루오렌-1-카르복시산, 나프토익산, 1-피렌아세트산, 나프토-2-아미노피리딘-3-카르복시산, 2-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토벤즈이미다졸, 2-나프탈렌티올, 1-머캅토피렌, 6-머캅토벤조피렌 및 1,4-벤젠디티올로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 면상발열체 제조방법.
The method of claim 1,
The functional group is octadecylamine, aminopyrene, 1-pyrenecarboxylic acid, 1-pyrenebutylic acid, 9-anthracenecarboxylic acid, fluorene-1-carboxylic acid, naphthoic acid, 1-pyreneacetic acid, naphtho-2-aminopyridine- 3-carboxylic acid, 2-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptobenzimidazole, 2-naphthalenethiol, 1-mercaptopyrene, 6-mercaptobenzopyrene and 1,4-benzenedithiol A planar heating element manufacturing method, characterized in that at least one selected from the group consisting of.
청구항 1에 있어서,
상기 기능기는 극성 작용기, 멜라민, 폴리스타이렌 설포네이트, 벤조산, 폴피린, 피렌부틸산, 이들의 유도체 및 이들의 중합체로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 면상발열체 제조방법.
The method of claim 1,
The functional group is a surface heating element manufacturing method, characterized in that at least one selected from the group consisting of a polar functional group, melamine, polystyrene sulfonate, benzoic acid, porphyrin, pyrene butyric acid, derivatives thereof, and polymers thereof.
청구항 1 내지 청구항 3, 청구항 10, 청구항 12, 청구항 13 중 어느 한 항에 기재된 제조방법에 의해 제조된 면상발열체.A surface heating element manufactured by the manufacturing method according to any one of claims 1 to 3, 10, 12, and 13.
KR1020210050247A 2021-04-19 2021-04-19 method for manufacturing a surface heating element and surface heating element manufactured by the same KR102567757B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210050247A KR102567757B1 (en) 2021-04-19 2021-04-19 method for manufacturing a surface heating element and surface heating element manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210050247A KR102567757B1 (en) 2021-04-19 2021-04-19 method for manufacturing a surface heating element and surface heating element manufactured by the same

Publications (2)

Publication Number Publication Date
KR20220144053A KR20220144053A (en) 2022-10-26
KR102567757B1 true KR102567757B1 (en) 2023-08-16

Family

ID=83784451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210050247A KR102567757B1 (en) 2021-04-19 2021-04-19 method for manufacturing a surface heating element and surface heating element manufactured by the same

Country Status (1)

Country Link
KR (1) KR102567757B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436594B1 (en) * 2013-08-06 2014-09-01 주식회사 대유신소재 Film heater and manufacturing method of thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325530B1 (en) * 2011-10-06 2013-11-07 주식회사 케이씨씨 Functionalized methods of high quality graphene using conjugated system
KR101392176B1 (en) * 2012-05-25 2014-05-27 한국과학기술원 Method of Manufacturing Graphene
KR20150016852A (en) * 2013-08-05 2015-02-13 제일모직주식회사 Carbon nanotube dispersed solution and method for preparing the same
KR101797737B1 (en) * 2015-11-16 2017-11-14 주식회사 포스코 Functionalized graphene nanoplatelet, method for functionalizing graphene nanoplatelet, and size-selective separation method for graphene nanoplatelet
KR20190036774A (en) * 2017-09-28 2019-04-05 전자부품연구원 Preparing method of graphene oxide functionalized with Fe3O4

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436594B1 (en) * 2013-08-06 2014-09-01 주식회사 대유신소재 Film heater and manufacturing method of thereof

Also Published As

Publication number Publication date
KR20220144053A (en) 2022-10-26

Similar Documents

Publication Publication Date Title
US8501858B2 (en) Expanded graphite and products produced therefrom
Xie et al. “Grafting to” route to PVDF-HFP-GMA/BaTiO 3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications
US9631067B2 (en) Carbon fiber composite coated with silicon carbide and production method for same
US7550529B2 (en) Expanded graphite and products produced therefrom
Qiang et al. Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures
Deka et al. Interfacial resistive heating and mechanical properties of graphene oxide assisted CuO nanoparticles in woven carbon fiber/polyester composite
Chen et al. Fabrication of highly ordered polymer/graphite flake composite with eminent anisotropic electrical property
KR101436594B1 (en) Film heater and manufacturing method of thereof
Lee et al. Effect of fluorination on the mechanical behavior and electromagnetic interference shielding of MWCNT/epoxy composites
KR101850244B1 (en) Nanocomposite with bnnp and fabrication process thereof
KR101451422B1 (en) Method of manufacturing composite material having nano structure grown on carbon fiber and composite material having nano structure manufactured using the same
US20180171160A1 (en) Water-based piezoresistive conductive polymeric paint containing graphene for electromagnetic and sensor applications
KR20180116023A (en) Carbon fiber composite comprising unwoven carbon fabric coated with carbon nanotube, method for manufacturing the same and use thereof
Jin et al. Ultrahigh strength and modulus graphene‐based hybrid carbons with AB‐stacked and turbostratic structures
KR102567757B1 (en) method for manufacturing a surface heating element and surface heating element manufactured by the same
Luo et al. A laser-fabricated nanometer-thick carbon film and its strain-engineering for achieving ultrahigh piezoresistive sensitivity
Sun et al. Bio-inspired robust and highly thermal conductive BNNS/PBO nanofiber composite films with excellent thermal stability, wear resistance, and adjustable photothermal properties
CN106832718A (en) A kind of conducting polymer composite graphite alkene material and preparation method thereof
Sánchez-Romate et al. Smart coatings with carbon nanoparticles
CN108314932A (en) One kind being based on photocuring Graphene conductive ink printing process
Kondrashov et al. Degradation of physicomechanical properties of epoxy nanocomposites with carbon nanotubes upon heat and humidity aging
JP2005350614A (en) Pressure-sensitively electrically conductive elastomer
KR102176737B1 (en) Filament for 3-dimensional printing and methods of fabricating the same
Wu et al. Preparation, structure and properties of carbon nanotube reinforced polymer nanocomposites
KR101733089B1 (en) Film heater with silane functional group and manufacturing method of thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant