WO2015020159A1 - タンパク質及びその製造方法、並びにタンパク質活性評価方法 - Google Patents
タンパク質及びその製造方法、並びにタンパク質活性評価方法 Download PDFInfo
- Publication number
- WO2015020159A1 WO2015020159A1 PCT/JP2014/070917 JP2014070917W WO2015020159A1 WO 2015020159 A1 WO2015020159 A1 WO 2015020159A1 JP 2014070917 W JP2014070917 W JP 2014070917W WO 2015020159 A1 WO2015020159 A1 WO 2015020159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorption band
- index value
- lipase
- infrared absorption
- value
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 133
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 115
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 112
- 230000004952 protein activity Effects 0.000 title claims description 21
- 238000010521 absorption reaction Methods 0.000 claims abstract description 570
- 238000009826 distribution Methods 0.000 claims abstract description 281
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 48
- 230000002950 deficient Effects 0.000 claims abstract description 35
- 108090001060 Lipase Proteins 0.000 claims description 334
- 102000004882 Lipase Human genes 0.000 claims description 334
- 239000004367 Lipase Substances 0.000 claims description 334
- 235000019421 lipase Nutrition 0.000 claims description 334
- 230000000694 effects Effects 0.000 claims description 121
- 102000003992 Peroxidases Human genes 0.000 claims description 117
- 108040007629 peroxidase activity proteins Proteins 0.000 claims description 115
- 238000005809 transesterification reaction Methods 0.000 claims description 49
- 238000000926 separation method Methods 0.000 claims description 48
- 235000019626 lipase activity Nutrition 0.000 claims description 44
- 238000011156 evaluation Methods 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 39
- 229920005989 resin Polymers 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- 230000002829 reductive effect Effects 0.000 claims description 12
- 230000001172 regenerating effect Effects 0.000 claims description 11
- 238000005102 attenuated total reflection Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 230000003100 immobilizing effect Effects 0.000 claims description 6
- 241000589513 Burkholderia cepacia Species 0.000 claims description 5
- 241001661345 Moesziomyces antarcticus Species 0.000 claims description 5
- 238000010931 ester hydrolysis Methods 0.000 claims description 5
- 238000007689 inspection Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 14
- 238000012360 testing method Methods 0.000 description 170
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 67
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 57
- 230000003197 catalytic effect Effects 0.000 description 44
- 239000000243 solution Substances 0.000 description 43
- 238000005259 measurement Methods 0.000 description 42
- 239000000047 product Substances 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 35
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 31
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 29
- 239000003054 catalyst Substances 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 23
- 238000003786 synthesis reaction Methods 0.000 description 23
- 230000036425 denaturation Effects 0.000 description 21
- 238000004925 denaturation Methods 0.000 description 21
- 230000002441 reversible effect Effects 0.000 description 21
- 238000001179 sorption measurement Methods 0.000 description 21
- 238000004364 calculation method Methods 0.000 description 20
- 239000004793 Polystyrene Substances 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000008213 purified water Substances 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 12
- 102000004190 Enzymes Human genes 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- 230000002427 irreversible effect Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000000427 antigen Substances 0.000 description 9
- 108091007433 antigens Proteins 0.000 description 9
- 102000036639 antigens Human genes 0.000 description 9
- 238000012937 correction Methods 0.000 description 9
- 238000006555 catalytic reaction Methods 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 7
- 230000027455 binding Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000001291 vacuum drying Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 108010084311 Novozyme 435 Proteins 0.000 description 6
- -1 acrylate compound Chemical class 0.000 description 6
- 230000016784 immunoglobulin production Effects 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 241000233866 Fungi Species 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- 229920002415 Pluronic P-123 Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 241000235403 Rhizomucor miehei Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 235000020244 animal milk Nutrition 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 238000002983 circular dichroism Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000003334 potential effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 101100313763 Arabidopsis thaliana TIM22-2 gene Proteins 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- 108060006006 Cytochrome-c peroxidase Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 102000006587 Glutathione peroxidase Human genes 0.000 description 1
- 108700016172 Glutathione peroxidases Proteins 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 241000223258 Thermomyces lanuginosus Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229940096384 chicken egg white lysozyme Drugs 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000010701 ester synthesis reaction Methods 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000003696 structure analysis method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/082—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/082—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C12N11/087—Acrylic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/14—Enzymes or microbial cells immobilised on or in an inorganic carrier
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0065—Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
Definitions
- the present invention relates to a protein, a production method thereof, and a protein activity evaluation method.
- the present invention also relates to an immobilized lipase and a regenerated immobilized lipase, methods for producing them, and a lipase activity evaluation method.
- the present invention further relates to an immobilized peroxidase, a method for producing the same, and a method for evaluating peroxidase activity.
- the present invention further relates to an antibody, a production method thereof, and an antibody activity evaluation method.
- Lipase see, for example, Patent Document 1
- Lipase may not have sufficient catalytic activity depending on its preparation conditions, use in the reaction, etc., but the evaluation of the catalytic activity of the immobilized lipase actually involves transesterification and the like. And the activity is measured.
- Non-Patent Document 1 discloses a structure analysis method for lipase immobilized on solid particles by circular dichroism (CD) method, diffuse reflection Fourier transform infrared spectroscopy (DRIFT) method, and tryptophan residue fluorescence method. Is described.
- Non-Patent Document 2 describes the catalytic, enzymatic and physical stability of Novozym® 435 in terms of raw materials, the presence or absence of moisture, and contact with biodiesel in biodiesel production using enzymes. It has been described that the effect on the environment was analyzed.
- Non-Patent Document 3 describes that the influence of pretreatment with an organic solvent on the initial activity and secondary structure of immobilized lipase derived from Pseudomonas cepacia is analyzed.
- proteins are widely used as catalysts for industrial processes and as pharmaceuticals. Decreasing the activity of a protein leads to a decrease in the efficiency of the entire process, a decrease in therapeutic effect, etc., so it is extremely important to evaluate the activity and provide a protein with sufficient activity.
- Non-Patent Documents 1 to 3 describe the relationship between the higher-order structure of the lipase of the immobilized lipase and the catalytic activity.
- Novozym registered trademark
- 435 manufactured by Novozyme
- Non-patent document 2 describes that although it is not quantitative data, lipase whose activity is reduced by use in the reaction has decreased ⁇ -helix and increased ⁇ -sheet.
- Non-Patent Document 3 describes that the structure of ⁇ -helix and ⁇ -sheet is changed by treatment with an organic solvent. However, contrary to Non-Patent Document 2, the activity is increased with the structural change. It is described that it has improved.
- Non-Patent Documents 1 to 3 describes or suggests technical means for distinguishing reversible denaturation from irreversible denaturation.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a protein production method capable of obtaining a protein having sufficient activity and a protein obtained by the production method. Another object of the present invention is to provide a protein activity evaluation method that can evaluate the activity of a protein without actually measuring the activity.
- the present inventors approximated an infrared absorption band of a specific wave number in the infrared absorption spectrum of a protein with a normal distribution, and an index value indicating the degree of spread of the infrared absorption band calculated based on the normal distribution, It was found to reflect the activity of the protein or the potential activity of the protein. That is, it has been found that a protein having sufficient activity can be obtained by selecting a protein based on the index value.
- the present invention is based on this novel finding.
- the present invention is, in the infrared absorption spectrum of the protein, (also referred to herein as "absorption band II".) 1500 ⁇ 1600 cm-infrared absorption band derived proteins appearing in the vicinity of -1 or 1600 ⁇ 1700 cm -1 A step of approximating a protein-derived infrared absorption band (also referred to herein as “absorption band I”) appearing in the vicinity to one or more normal distributions, and the infrared absorption band based on the normal distribution A step of calculating an index value indicating a degree of spread of the sample, a step of comparing the index value with a preset threshold value, and selecting a protein having a degree of spread of the infrared absorption band smaller than the threshold value as a non-defective product; It is related with the manufacturing method of the said protein provided with the test process containing these.
- an active protein can be produced because it comprises the above-described inspection step. Moreover, since reversible denaturation and irreversible denaturation of protein activity can be distinguished, a protein capable of regenerating activity can be obtained.
- the index value may be a half width of the normal distribution when the infrared absorption band is approximated by a single normal distribution. Since the half-value width correlates with the degree of spread of the infrared absorption band, it is possible to select an active protein or a protein that can regenerate the activity using the half-value width as an index value.
- the index value is obtained by waveform-separating the infrared absorption band into a plurality of normal distributions, and summing the areas of one or more normal distributions near the peak top position of the infrared absorption band as the end of the infrared absorption band. It may be a value (also referred to as “absorption band area ratio” in this specification) divided by the sum of the areas of one or more normal distributions in the vicinity. Since the absorption band area ratio correlates with the degree of spread of the infrared absorption band, it is possible to select an active protein or a protein capable of regenerating activity using the absorption band area ratio as an index value.
- the absorption band area ratio is obtained by separating the waveform of the infrared absorption band into two normal distributions each having a vertex near the peak top position of the infrared absorption band and having different half-value widths. It may be a value obtained by dividing the area of the normal distribution having the smaller half-value width among the two normal distributions by the area of the normal distribution having the larger half-value width.
- the infrared absorption spectrum is preferably measured by an attenuated total reflection method. Thereby, protein selection by the said index value can be performed more accurately.
- the present invention also provides a protein obtained by the above protein production method. Since the protein of the present invention is obtained by the above production method, it has activity or can regenerate sufficient activity.
- the present invention relates to a method for producing an immobilized lipase in which a lipase is immobilized on a resin carrier, and an infrared absorption band derived from lipase that appears in the vicinity of 1500 to 1600 cm ⁇ 1 in the infrared absorption spectrum of the immobilized lipase (A step of approximating an absorption band II) or a lipase-derived infrared absorption band (absorption band I) appearing in the vicinity of 1600-1700 cm ⁇ 1 to one or more normal distributions, and the infrared absorption band based on the normal distribution A step of calculating an index value indicating a degree of spread of the light, and comparing the index value with a preset threshold value, and selecting an immobilized lipase having a degree of spread of the infrared absorption band smaller than the threshold value as a non-defective product And a manufacturing method comprising an inspection process including steps.
- the method includes a step of comparing the calculated index value with a threshold and selecting an immobilized lipase having a degree of spread of the infrared absorption band smaller than the threshold. Therefore, an immobilized lipase having catalytic activity or capable of regenerating the catalytic activity can be obtained.
- the index value is a half width of the normal distribution when the absorption band I is approximated by a single normal distribution (also referred to as “index value 1” in the present specification).
- an immobilized lipase having the index value of 70 cm ⁇ 1 or less may be selected as a non-defective product.
- the index value is such that the absolute value of the difference between the absorption band I and the difference between the area of the absorption band I and the area of two normal distributions is minimized. 1 (peak position 1656 cm -1, the half width 47cm -1), a 2 (peak position 1656 cm -1, the half width 82cm -1) and waveform separation into two normal distribution, the area a 1 in the area of a 2
- an immobilized lipase having an index value of 0.27 or more may be selected as a non-defective product, which is a divided value (also referred to as “index value 2” in the present specification).
- the index value is such that the absolute value of the difference between the absorption band I, the difference between the area of the absorption band I and the area of the three normal distributions is minimized.
- 1 three normal (peak position 1680 cm -1, the half width 50cm -1), a 2 (peak position 1656 cm -1, the half width 50 cm -1) and a 3 (peak position 1631cm -1, the half width 50 cm -1) This is a value obtained by separating the waveform into a distribution and dividing the area of A 2 by the sum of the areas of A 1 and A 3 (also referred to as “index value 3” in the present specification).
- An immobilized lipase having a value of 0.9 or more may be selected as a good product.
- the index value is such that the absolute value of the difference between the absorption band I, the area of the absorption band I, and the sum of the areas of the five normal distributions is minimized.
- 1 peak position 1685 cm -1, the half width 30cm -1
- a 2 peak position 1670 cm -1, the half width 30cm -1
- a 3 peak position 1656 cm -1, the half width 30cm -1
- a 4 peak position 1641cm -1, the half width 30 cm -1) and a 5 (peak position 1626cm -1, and waveform separation into five normal distribution half width 30 cm -1
- the index value is such that the absolute value of the difference between the absorption band I, the area of the absorption band I, and the sum of the areas of the eight normal distributions is minimized.
- 1 peak position 1692cm -1, the half width 19cm -1
- a 2 peak position 1682 cm -1, the half width 19cm -1
- a 3 peak position 1670 cm -1, the half width 19cm -1
- a 4 peak position 1658 cm -1, the half width 19cm -1
- a 5 peak position 1648 cm -1, the half width 19cm -1
- a 6 peak position 1638 cm -1, the half width 19cm -1
- a 7 peak position 1629cm -1, the half width 19cm -1) and a 8 (peak position 1619cm -1, and waveform separation into eight normal distribution half width 19cm -1
- the index value is such that the absolute value of the difference between the absorption band I, the area of the absorption band I, and the sum of the areas of the eight normal distributions is minimized.
- 1 peak position 1692cm -1, the half width 19cm -1
- a 2 peak position 1682 cm -1, the half width 19cm -1
- a 3 peak position 1670 cm -1, the half width 19cm -1
- a 4 peak position 1658 cm -1, the half width 19cm -1
- a 5 peak position 1648 cm -1, the half width 19cm -1
- a 6 peak position 1638 cm -1, the half width 19cm -1
- a 7 peak position 1629cm -1, the half width 19cm -1) and a 8 (peak position 1619cm -1, and waveform separation into eight normal distribution half width 19cm -1
- a 4 ⁇ Fine A A 2 the sum of the areas of 5, A 3 and divided by
- the above-mentioned index value is also referred to as the half width of the normal distribution when the absorption band II is approximated by a single normal distribution (also referred to as “index value 7” in the present specification).
- an immobilized lipase having an index value of 44 cm ⁇ 1 or less may be selected as a non-defective product.
- the index value is such that the absolute value of the difference between the absorption band II and the difference between the area of the absorption band II and the sum of the areas of the three normal distributions is minimized.
- 1 peak position 1570 cm -1, the half width 31cm -1
- B 2 peak position 1545 cm -1, the half width 31cm -1) 3 single regular
- B 3 peak position 1518cm -1, the half width 31cm -1)
- This is a value obtained by separating the waveform into a distribution and dividing the area of B 2 by the sum of the areas of B 1 and B 3 (also referred to as “index value 8” in the present specification).
- An immobilized lipase having a value of 1.2 or more may be selected as a good product.
- the above immobilized lipase may have transesterification activity or ester hydrolysis activity.
- the infrared absorption spectrum is preferably measured by an attenuated total reflection method. Thereby, selection of the immobilized lipase by the said index value can be performed more accurately.
- the lipase may be a lipase derived from Burkholderia cepacia or Candida antarctica.
- the present invention also provides an immobilized lipase obtained by the above-described method for producing an immobilized lipase. Since the immobilized lipase of the present invention is obtained by the above production method, it has catalytic activity or can regenerate sufficient catalytic activity.
- the present invention relates to a method for producing an immobilized peroxidase in which peroxidase is immobilized on a silica carrier, and an infrared absorption band derived from peroxidase appearing in the vicinity of 1500-1600 cm ⁇ 1 in the infrared absorption spectrum of the immobilized peroxidase (A step of approximating an absorption band II) or a peroxidase-derived infrared absorption band (absorption band I) appearing in the vicinity of 1600-1700 cm ⁇ 1 to one or more normal distributions, and the infrared absorption band based on the normal distribution A step of calculating an index value indicating the degree of spread of the light, and comparing the index value with a preset threshold value, and selecting an immobilized peroxidase having a degree of spread of the infrared absorption band smaller than the threshold value as a non-defective product
- a manufacturing method comprising an inspection process including steps
- an immobilized peroxidase of the present invention there is a step of comparing the calculated index value with a threshold and selecting an immobilized peroxidase having a degree of spread of the infrared absorption band smaller than the threshold. Therefore, an immobilized lipase having catalytic activity or capable of regenerating the catalytic activity can be obtained.
- the index value is an index value of 7, and in the selecting step, an immobilized peroxidase having the index value of 75 cm ⁇ 1 or less may be selected as a good product.
- the index value is the index value 8
- the immobilized peroxidase having the index value of 0.45 or more may be selected as a good product.
- the infrared absorption spectrum is preferably measured by an attenuated total reflection method. Thereby, the selection of the immobilized peroxidase based on the index value can be performed with higher accuracy.
- the present invention also provides an immobilized peroxidase obtained by the method for producing an immobilized peroxidase. Since the immobilized peroxidase of the present invention is obtained by the above production method, it has a catalytic activity or can regenerate a sufficient catalytic activity.
- the present invention in the infrared absorption spectrum of the antibody, 1500 ⁇ 1600 cm -1 for the antibody from appearing in the vicinity of the infrared absorption band (absorption band II) or 1600 ⁇ 1700 cm antibodies from appearing in the vicinity of -1 infrared absorption bands (absorption Band I) is approximated to one or a plurality of normal distributions, an index value indicating a degree of spread of the infrared absorption band based on the normal distribution, and the index value is preset. And a step of selecting, as a non-defective product, an antibody having a degree of spread of the infrared absorption band smaller than the threshold value.
- the method for producing an antibody of the present invention there is a step of comparing the calculated index value with a threshold value and selecting an antibody whose degree of spread of the infrared absorption band is smaller than the threshold value. A titered antibody can be obtained.
- the index value is index value 1
- an antibody having the index value of 65 cm ⁇ 1 or less may be selected as a good product.
- the index value is the index value 6, and in the selecting step, an antibody having the index value of 0.98 or more may be selected as a good product.
- the index value is the index value 8
- an antibody having the index value of 0.85 or more may be selected as a good product.
- the infrared absorption spectrum is preferably measured by an attenuated total reflection method. As a result, it is possible to more accurately select antibodies based on the index values.
- the present invention also provides an antibody obtained by the above antibody production method. Since the antibody of the present invention is obtained by the above production method, it has a sufficient titer.
- the present invention is also a production method for producing a regenerated immobilized lipase in which a part or all of the lipase activity is regenerated from an immobilized lipase with reduced lipase activity, wherein the immobilized lipase is immobilized on a resin carrier.
- the lipase-derived infrared absorption band (absorption band II) appearing in the vicinity of 1500 to 1600 cm ⁇ 1 or the vicinity of 1600 to 1700 cm ⁇ 1 The infrared absorption band (absorption band I) derived from lipase appearing in 1 is approximated to one or a plurality of normal distributions, and an index value indicating the degree of spread of the infrared absorption band is calculated based on the normal distribution. Step and comparing the index value with a preset threshold value, and the degree of spread of the infrared absorption band above the threshold value.
- the method comprises a step of comparing the calculated index value with a threshold and selecting an immobilized lipase having a degree of spread of the infrared absorption band smaller than the threshold. Therefore, among the immobilized lipases having reduced lipase activity, those having reversible denaturation can be selected. That is, an immobilized lipase that can regenerate sufficient catalytic activity can be obtained.
- the index value is index value 1
- the lipase activity may regenerate the immobilized lipase having the index value of 70 cm ⁇ 1 or less. You may select as something.
- the index value is index value 2
- the lipase activity regenerates the immobilized lipase having the index value of 0.27 or more. You may select as something.
- the index value is index value 3, and in the selection step, there is a possibility that the lipase activity regenerates the immobilized lipase having the index value of 0.9 or more. You may select as something.
- the index value is index value 4, and in the selection step, there is a possibility that the lipase activity regenerates the immobilized lipase having the index value of 0.35 or more. You may select as something.
- the index value is an index value of 5
- the lipase activity regenerates the immobilized lipase having the index value of 0.6 or more. You may select as something.
- the index value is the index value 6, and in the selection step, the lipase activity may regenerate the immobilized lipase having the index value of 1.2 or more. You may select as something.
- the index value is index value 7
- the lipase activity regenerates the immobilized lipase having the index value of 44 cm ⁇ 1 or less. You may select as something.
- the index value is index value 8
- the lipase activity regenerates the immobilized lipase having the index value of 1.2 or more. You may select as something.
- the production method of the regenerated immobilized lipase may include a regenerating step of treating the immobilized lipase selected in the selecting step with water or a water-containing organic solvent.
- the immobilized lipase selected in the selection step can regenerate lipase activity through the regeneration step.
- the above immobilized lipase may have transesterification activity or ester hydrolysis activity.
- the infrared absorption spectrum is preferably measured by an attenuated total reflection method. Thereby, selection of the immobilized lipase by the said index value can be performed more accurately.
- the lipase may be a lipase derived from Burkholderia cepacia or Candida antarctica.
- the present invention also provides a regeneratively immobilized lipase obtained by the method for producing a regeneratively immobilized lipase. Since the regenerated and immobilized lipase of the present invention is obtained by the above production method, it has a sufficient catalytic activity or can regenerate a sufficient catalytic activity.
- the present invention in the infrared absorption spectrum of a protein, 1500 ⁇ 1600 cm -1 infrared absorption bands derived proteins appearing in the vicinity (absorption band II) or 1600 ⁇ 1700 cm-derived protein appearing in the vicinity of -1 infrared absorption bands (absorption Band I) is approximated to one or a plurality of normal distributions, an index value indicating a degree of spread of the infrared absorption band based on the normal distribution, and the index value is preset. It can also be referred to as a protein activity evaluation method comprising an evaluation step including a step of evaluating a protein having a degree of spread of the infrared absorption band smaller than the threshold value as compared with the threshold value as an active protein.
- the present invention also relates to a method for evaluating the lipase activity of an immobilized lipase obtained by immobilizing a lipase on a resin carrier, the infrared from the lipase appearing in the vicinity of 1500-1600 cm ⁇ 1 in the infrared absorption spectrum of the immobilized lipase.
- An absorption band (absorption band II) or a lipase-derived infrared absorption band (absorption band I) appearing in the vicinity of 1600-1700 cm ⁇ 1 is approximated to one or a plurality of normal distributions, and the red based on the normal distribution
- the present invention further relates to a method for evaluating the peroxidase activity of an immobilized peroxidase obtained by immobilizing a peroxidase on a silica carrier, and the infrared spectrum derived from peroxidase that appears in the vicinity of 1500-1600 cm ⁇ 1 in the infrared absorption spectrum of the immobilized peroxidase.
- An absorption band (absorption band II) or an infrared absorption band (absorption band I) derived from peroxidase appearing in the vicinity of 1600-1700 cm ⁇ 1 is approximated to one or a plurality of normal distributions, and the red color is based on the normal distribution.
- a step of calculating an index value indicating the degree of spread of the outer absorption band, and comparing the index value with a preset threshold value, an immobilized peroxidase having a degree of spread of the infrared absorption band smaller than the threshold value, Immobilized peroxidase with peroxidase activity Comprising an evaluation step including the steps of assessing a, it can be said that peroxidase activity evaluation method.
- the present invention further provides an antibody-derived infrared absorption band (absorption band II) appearing in the vicinity of 1500-1600 cm ⁇ 1 or an antibody-derived infrared absorption band appearing near 1600-1700 cm ⁇ 1 in the infrared absorption spectrum of the antibody.
- (Absorption band I) is approximated to one or a plurality of normal distributions, an index value indicating the degree of spread of the infrared absorption band based on the normal distribution, and the index values are preset. It can also be referred to as an antibody activity evaluation method comprising an evaluation step including a step of evaluating an antibody having a degree of spread of the infrared absorption band smaller than the threshold value as an active antibody.
- the present invention also relates to a method for producing a compound produced through a catalytic reaction with lipase using the immobilized lipase of the present invention or the regenerated immobilized lipase. Since the above-mentioned immobilized lipase or regenerated immobilized lipase has sufficient catalytic activity or can regenerate sufficient catalytic activity, the production efficiency of the compound is improved.
- the above compound may be produced through a transesterification reaction or an ester hydrolysis reaction. Further, the compound may be a polycarbonate diol (meth) acrylate compound.
- the present invention it is possible to provide a protein production method capable of obtaining a protein having sufficient activity and a protein obtained by the production method.
- a protein activity evaluation method capable of evaluating protein activity without actually performing activity measurement.
- an immobilized lipase having sufficient catalytic activity, and to obtain the immobilized lipase by the production method.
- An immobilized lipase can be provided.
- a method for producing a regenerative immobilized lipase that can distinguish reversible and irreversible denaturation of catalytic activity and can obtain a regenerated immobilized lipase having sufficient catalytic activity, and the production thereof.
- a regenerated immobilized lipase obtained by the method can be provided.
- lipase activity that can identify an immobilized lipase having lipase activity, or an immobilized lipase that may regenerate part or all of the lipase activity, without actually measuring the activity.
- An evaluation method can be provided.
- the immobilized lipase or the regenerated immobilized lipase of the present invention has a sufficient catalytic activity or can regenerate a sufficient catalytic activity, and thus is suitably used for the production of a compound produced through a catalytic reaction with a lipase. It is done.
- a method for evaluating peroxidase activity that can identify immobilized peroxidase having peroxidase activity, or immobilized peroxidase that may be able to regenerate part or all of peroxidase activity, without actually measuring activity. Can provide.
- an antibody production method capable of obtaining an antibody having a sufficient titer and an antibody obtained by the production method can be provided.
- an antibody activity evaluation method capable of evaluating antibody titer without actually performing activity measurement.
- the method for producing a protein according to this embodiment includes at least an inspection process.
- the inspection step includes an infrared absorption band (absorption band II) derived from a protein appearing in the vicinity of 1500 to 1600 cm ⁇ 1 or an infrared absorption band derived from a protein appearing in the vicinity of 1600 to 1700 cm ⁇ 1 ( A step of approximating the absorption band I) to one or a plurality of normal distributions, a step of calculating an index value indicating the degree of spread of the infrared absorption band based on the normal distribution, and a threshold value for which the index value is set in advance And a step of selecting, as a non-defective product, a protein having a degree of spread of an infrared absorption band smaller than a threshold value.
- the protein produced by the protein production method according to the present embodiment is not particularly limited, and may be any protein.
- a protein that is active in the inspection process or a protein that can regenerate the activity can be selected. Therefore, the produced protein is a functional protein.
- the functional protein means a protein having activity when it has not undergone denaturation or the like.
- “activity” includes catalytic activity, binding activity with a receptor, etc., antibody titer, and the like.
- active proteins include enzymes that are catalytically active proteins such as lipase, peroxidase, and protease, proteins that have binding activity with receptors such as interferons, erythropoietin, and insulin, and antibodies. be able to.
- the protein to be produced may be a protein supported on a carrier.
- carrier refers to a resin carrier (for example, an ion exchange resin) and an inorganic carrier (for example, a silica carrier) capable of holding proteins by adsorption, a bulking agent mixed with protein, Includes solvents and solutes in protein solutions.
- the index value according to the present embodiment indicates the degree of spread of the absorption band I or the absorption band II.
- FIG. 1 is an explanatory diagram for explaining a method of calculating an index value (here, an absorption band area ratio). The index value calculation method will be described below with reference to FIG. The following calculation method is merely an example, and various modifications are possible.
- the infrared absorption spectrum of the protein is measured.
- an infrared absorption spectrum is also measured for the carrier itself.
- the infrared absorption spectrum of the carrier itself may be measured in advance.
- the infrared absorption spectrum measurement method is preferably a transmission method, a diffuse reflection method, or an attenuated total reflection method (ATR method).
- the ATR method is more preferable from the viewpoint of measuring an absorption spectrum derived from a trace amount of protein with high sensitivity.
- FIG. 1 (A) shows an infrared absorption spectrum in the case of using immobilized lipase (Novozym (registered trademark) 435 in which CalB is supported on Lewatit (registered trademark) VP OC 1600) as a protein supported on a carrier, and The infrared absorption spectrum of the resin carrier (Lewatit (registered trademark) VP OC 1600) itself is shown.
- the difference spectrum between the two becomes an infrared absorption spectrum derived from protein (lipase).
- an infrared absorption spectrum derived from the carrier is simulated. That is, the carrier-derived infrared absorption spectrum is approximated by a normal distribution so that it can be used as the background spectrum of the infrared absorption spectrum of the protein supported on the carrier measured individually. Specifically, in the infrared absorption spectrum of the protein carried on the carrier measured individually by changing the intensity, the infrared absorption spectrum derived from the carrier is fitted.
- FIG. 1B shows an example of simulation of an infrared absorption spectrum derived from a carrier.
- FIG. 1C shows an example of calculation of the difference spectrum.
- the difference spectrum can be calculated using, for example, a Gaussian function and spreadsheet software (for example, Microsoft Excel; manufactured by Microsoft).
- the absorption band I or II is approximated by one or more normal distributions.
- Approximation of the difference spectrum with a single normal distribution can be performed by, for example, a nonlinear least square method.
- the nonlinear least square method can be performed using, for example, a peak position, a half width, and an intensity as variables using a Solver function of spreadsheet software (for example, Microsoft Excel; manufactured by Microsoft Corporation).
- the index value when approximated by a single normal distribution can be, for example, the half-value width (unit: cm ⁇ 1 ) of the normal distribution. In this case, as the index value (half-value width) decreases, the degree of spread of the infrared absorption band decreases.
- the approximation of the difference spectrum with a plurality of normal distributions can be performed, for example, by separating waveforms into a plurality of normal distributions.
- Waveform separation can be performed using, for example, a Gaussian function and spreadsheet software (for example, Microsoft Excel; manufactured by Microsoft).
- Waveform separation can be performed by calculating so that the residual sum of squares of the sum of the areas of A 1 to An and the area of the absorption band of the difference spectrum is minimized by the non-linear least square method.
- Band position of the wave number of the A 1 ⁇ A n may be specified at regular intervals, it may be specified at different intervals. It is also possible to specify the band positions of the same wave number in at least two of A 1 ⁇ A n.
- n is not particularly limited, and may be set as appropriate according to the purpose.
- n is preferably 2 to 20, and more preferably 2, 3, 5 or 8.
- the infrared spectrum derived from a protein (lipase) appearing in the vicinity of 1600-1700 cm ⁇ 1 using the difference spectrum is represented by A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7.
- a 8 (collectively referred to as A 1 to A 8 collectively) are separated into eight normal distributions.
- a 1 to A 8 are eight normal distributions having peak positions adjacent to each other at intervals of about 10 cm ⁇ 1 and having a half width of about 19 cm ⁇ 1 .
- waveform separation is performed so that the sum of the areas A 1 to A 8 (the sum of the waveform separation components) becomes as equal as possible to the area of the absorption band of the difference spectrum.
- FIG. 1D shows an example of waveform separation.
- a 1 to A 8 are wave number band positions of 1692 cm ⁇ 1 (A 1 ), 1682 cm ⁇ 1 (A 2 ), 1670 cm ⁇ 1 (A 3 ) as initial values of Gaussian functions used for fitting. ), 1658 cm ⁇ 1 (A 4 ), 1648 cm ⁇ 1 (A 5 ), 1638 cm ⁇ 1 (A 6 ), 1629 cm ⁇ 1 (A 7 ) and 1619 cm ⁇ 1 (A 8 ), and half of each The value range is 19 cm ⁇ 1 .
- the index value when the infrared absorption band is separated into two normal distributions is, for example, an infrared absorption band, each having an apex near the peak top position of the infrared absorption band, and different half-value widths. Can be divided into two normal distributions having the half-width, and the area of the normal distribution with the smaller half-value width of the two normal distributions divided by the area of the normal distribution with the larger half-value width.
- the band positions of the wave numbers of the two normal distributions may be the same. In this case, the greater the index value, the smaller the extent of the infrared absorption band.
- the index value when approximated by a plurality of (three or more) normal distributions is, for example, the sum of the areas of one or a plurality of normal distributions near the peak top position of the infrared absorption band, and 1 near the end of the infrared absorption band. Or it can be set to a value (absorption band area ratio) divided by the sum of the areas of a plurality of normal distributions. In this case, the greater the index value, the smaller the extent of the infrared absorption band.
- n is an integer of 3 or more
- an index value as follows.
- n is an even number
- the sum of the areas of at least one or both of A n / 2 and A n / 2 + 1 is selected from the group consisting of A 1 to A n / 2-1 and A n / 2 + 2 to A n
- the index value is a value obtained by dividing the sum of at least one area.
- n is an odd number
- the value divided by the sum of the two areas is taken as the index value.
- the index value can be A 2 / (A 1 + A 3 ).
- the index value may be A 3 / (A 1 + A 2 + A 3 + A 4 ), A 3 / (A 1 + A 4 ), or A 3 / (A 1 + A 3 + A 4 ) or A 3 / (A 1 + A 2 + A 4 ).
- the index value calculated in (ii) above is, for example, at least selected from the group consisting of A (n + 1) / 2-1 to A (n-1) / 2 + 2 also one of the sum of the areas is a value obtained by dividing the sum of the a 1 ⁇ a (n + 1 ) / 2-2 , and a (n-1) / 2 + 3 ⁇ at least one area selected from the group consisting of a n Good.
- the index value may be (A 4 + A 5 ) / (A 2 + A 3 + A 8 ), or (A 4 + A 5 ) / (A 1 + A 2 + A 3 + A 6 + A 7 + A). 8 ).
- the index value calculated in (i) above is, for example, the sum of at least one area selected from the group consisting of A n / 2-1 to A n / 2 + 2.
- a 1 ⁇ a n / 2-2 and a n / 2 + 3 ⁇ is selected from the group consisting of a n may be a value obtained by dividing the sum of at least one area.
- the threshold for selecting whether or not a protein is a good product may be appropriately set according to the type of protein to be produced, the level of activity required for the protein to be produced, and the like. Since the index value calculated as described above has a correlation that can be linearly approximated with the activity of the protein or the potential activity of the protein, the threshold value is set according to the level of activity required for the protein to be produced. Can be set. In order to determine the threshold value, it is preferable to analyze the correlation between the index value and the activity in advance for the protein to be produced.
- the threshold will be described.
- the index value is (A 4 + A 5 ) / (A 2 + A 3 + A 8 )
- the index value is 1.2 (threshold) or more.
- An immobilized lipase can be evaluated as an immobilized lipase having lipase activity, or an immobilized lipase that may be able to regenerate part or all of the lipase activity.
- the threshold value may be 1.3, 1.4, or 1.5.
- the index value is usually about 5.0 at most.
- the index value calculation method described above does not depend on the type of protein. That is, even if the protein is, for example, lipase, peroxidase, antibody or the like, the index value can be calculated in the same manner.
- the protein production method according to the present embodiment may include a protein synthesis step in addition to the above-described inspection step.
- a known technique can be used for protein synthesis. For example, proteins expressed by culturing or rearing yeast, filamentous fungi, animal cells, animals, etc. that are recombinant so that the DNA encoding the protein can be expressed, and expressed from cell disruptions, culture media, animal milk, etc. By recovering (purifying) the protein, the protein can be synthesized.
- the protein obtained by the method for producing a protein according to the present embodiment has undergone the above-described inspection process, it has sufficient activity or can regenerate sufficient activity, and is suitable for industrial use, pharmaceutical use, etc. Can be used for
- the protein activity evaluation method includes a step of approximating absorption band I or absorption band II to one or more normal distributions in an infrared absorption spectrum of a protein, and an infrared absorption band based on the normal distribution.
- an evaluation process including:
- index value and the threshold value in the protein activity evaluation method according to this embodiment are the same as those described in the method for producing an immobilized lipase.
- the immobilized lipase means a lipase supported on a resin carrier by adsorption or the like.
- the lipase may be an enzyme that catalyzes a hydrolysis reaction of an ester bond. Moreover, it is preferable that it is an enzyme which catalyzes ester synthesis reaction.
- a cutinase derived from Cryptococcus sp a lipase derived from Burkholderia cepacia (for example, Amano PS (manufactured by Amano Enzyme)), Candida antarctica (Candida) lipase from Antarctica (for example, Novozym 435 (manufactured by Novozyme)), lipase from Rhizomucor Miehei (for example, Thermomyces lanuginosus Lance from the company, Thermomyces lanpense Lancese) ), A lipase derived from Mucor Miehei.
- the above-mentioned lipase may be obtained from a gene recombinant culture obtained by obtaining a gene encoding lipase from the microorganism, transforming a suitable host such as yeast or filamentous fungus, and the like.
- a suitable host such as yeast or filamentous fungus, and the like.
- Recombinant DNA techniques used for recombinant expression of lipases are known in the art.
- the lipase may be a mutant of the above microorganism-derived lipase.
- it may be a lipase in which one or several amino acids are deleted, substituted or added in the amino acid sequence of the above-mentioned lipase derived from microorganisms and have at least an ester bond hydrolysis activity.
- the lipase has a sequence identity of 90% or more, preferably 95% or more, more preferably 97% or more with respect to the lipase derived from the microorganism, and has at least an ester bond hydrolysis activity. Good.
- the resin carrier is preferably a porous porous resin carrier from the viewpoint that the adsorption amount of lipase can be increased by having a large surface area.
- the resin carrier include ion exchange resins, hydrophobic adsorption resins, chelate resins, and organic polymers such as synthetic adsorption resins.
- a hydrophobic adsorption resin is preferable from the viewpoint of particularly high enzyme adsorptive power.
- a resin carrier widely used for immobilizing enzymes can be used.
- resin carrier a resin carrier widely used for immobilizing enzymes.
- Specific examples include polystyrene, polyacrylic acid ester, polypropylene, polyethylene, and polyamide. These may be copolymers or may be cross-linked.
- polystyrene-copolymers poly- (meth) acrylic acid esters (for example, polymethyl methacrylate crosslinked with divinylbenzene) are preferable.
- These resin carriers are macroporous and typically have a most frequent pore size of about 5 to 20 nm and a total surface area of 50 to 1000 m 2 / g (by nitrogen adsorption method).
- hydrophobic adsorption resins may be used. Specifically, for example, Rewatit (Lewatit (registered trademark)) VP OC 1600 (manufactured by LANXESS, Germany), Amberlite (Amberlite (registered trademark)) XAD-7HP (manufactured by Organo, Japan), Diaion HP20 ( Mitsubishi Chemical, Japan).
- the lipase can be immobilized on the resin carrier by, for example, a carrier binding method by covalent bond, ionic bond, physical adsorption or the like, a comprehensive method in which the lipase is immobilized on a resin lattice having a network structure.
- a carrier binding method by covalent bond, ionic bond, physical adsorption or the like a comprehensive method in which the lipase is immobilized on a resin lattice having a network structure.
- the carrier binding method by physical adsorption is preferable because it is simple.
- Immobilization by physical adsorption can be performed, for example, by bringing an aqueous solution of lipase into contact with a resin carrier.
- the immobilized lipase formed by adsorbing the lipase to the resin carrier may be separated from the aqueous phase, and then the separated immobilized lipase may be washed and further dried to an appropriate moisture content.
- the temperature and pH at the time of immobilization by physical adsorption may be appropriately set according to the type of lipase to be immobilized.
- Many lipases can be immobilized, for example, at room temperature and near neutral pH.
- the contact time between the resin carrier and the lipase is usually chosen such that it is required for essentially complete adsorption. This is typically 1-2 hours to 24 hours.
- the immobilized lipase When the immobilized lipase is used for continuous transesterification in a fixed bed column, the immobilized lipase is preferably spherical and has a uniform particle size.
- the particle diameter is preferably 100 to 5000 ⁇ m, more preferably 300 to 1000 ⁇ m.
- the method for producing an immobilized lipase includes a step of approximating the absorption band I or the absorption band II to one or more normal distributions in the infrared absorption spectrum of the immobilized lipase, and based on the normal distribution.
- an inspection process including the steps of:
- the immobilized lipase having an index value of 70 cm ⁇ 1 (threshold) or less is preferably selected as a good product. More preferably, the threshold value is 65 cm ⁇ 1 .
- the index value is usually about 55 cm ⁇ 1 even if it is small.
- the immobilized lipase having an index value of 0.27 (threshold) or more is preferably selected as a non-defective product.
- the threshold is more preferably 0.49.
- the index value is usually about 1.00 at most.
- the immobilized lipase having an index value of 0.9 (threshold) or more is preferably selected as a non-defective product.
- the threshold is more preferably 1.5.
- the index value is usually about 1.9 at most.
- the immobilized lipase having an index value of 0.35 (threshold) or more is preferably selected as a non-defective product.
- the threshold is more preferably 0.40.
- the index value is usually about 0.49 at most.
- the index value is an index value 5
- the threshold is more preferably 0.65.
- the index value is usually about 0.70 at most.
- the index value is an index value 6
- the threshold is more preferably 1.3.
- the index value is usually about 1.4 at most.
- the immobilized lipase having an index value of 44 cm ⁇ 1 (threshold) or less is preferably selected as a good product. More preferably, the threshold is 40 cm ⁇ 1 .
- the index value is usually about 35 cm ⁇ 1 even if it is small.
- the immobilized lipase having an index value of 1.2 (threshold) or more is preferably selected as a non-defective product.
- the threshold is more preferably 1.5.
- the index value is usually about 1.7 at most.
- the method for producing an immobilized lipase may include a step of obtaining an immobilized lipase in which a lipase is supported on a resin carrier according to a conventional method.
- the immobilized lipases obtained by this step those having low catalytic activity due to irreversible or reversible denaturation may be included, but irreversible denaturation and reversible denaturation can be distinguished through the above-described inspection step. It becomes possible.
- the catalyst activity is apparently low, but the catalyst activity can be regenerated by adjusting the water content, for example.
- the method for producing a regeneratively immobilized lipase is a method for producing a regeneratively immobilized lipase in which a part or all of the lipase activity is regenerated from an immobilized lipase with reduced lipase activity.
- the production method includes a step of approximating the absorption band I or the absorption band II to one or more normal distributions, and the infrared spectrum based on the normal distribution.
- index value and the threshold value in the method for producing a regenerated immobilized lipase according to the present embodiment are the same as those described in the method for producing an immobilized lipase.
- the immobilized lipase selected in the selection step can regenerate the catalytic activity by adjusting the water content.
- the production method of the above-mentioned regenerated and immobilized lipase may include a regeneration step of treating the immobilized lipase selected in the selection step and having reduced lipase activity with water or a water-containing organic solvent.
- the immobilized lipase can be adjusted to an appropriate moisture content, and the lipase activity is regenerated.
- the reason why the lipase activity can be regenerated is that a substance having a degree of spreading of the infrared absorption band smaller than the threshold value is selected in the selection process.
- the water ultrapure water, distilled water, ion exchange water, tap water, industrial water, or the like can be used. Among these, ion exchange water and distilled water are preferably used from the viewpoint of avoiding contamination with inorganic salts.
- the water-containing organic solvent an organic solvent such as acetone, ethanol, acetonitrile, 1-butanol or the like containing the above water can be used.
- the water content of the water-containing organic solvent varies depending on the type of the organic solvent. For example, when acetone is used as the organic solvent, it can be 1.0% or more.
- the regeneration step can be performed, for example, by bringing the immobilized lipase selected in the selection step into contact with water or a water-containing organic solvent.
- the contact can be performed, for example, within a temperature range of ⁇ 10 to 50 ° C. and within a range of 0.5 to 48 hours by appropriately setting the water content of the immobilized lipase as an index.
- the moisture content of the immobilized lipase serving as an index varies depending on the type and amount of lipase, the type of resin carrier, etc. For example, when the immobilized lipase is 3.4 wt% Amano PS / Lewatit, the moisture content is 5% or more. In the case of Novozym (registered trademark) 435, the water content is 0.05% or more.
- the method for evaluating the lipase activity of immobilized lipase includes a step of approximating absorption band I or absorption band II to one or a plurality of normal distributions in the infrared absorption spectrum of the immobilized lipase; A step of calculating an index value indicating a degree of spread of the infrared absorption band based on the reference value, comparing the index value with a preset threshold value, and fixing the degree of spread of the infrared absorption band smaller than the threshold value; Evaluating the immobilized lipase as an immobilized lipase having lipase activity, or evaluating it as an immobilized lipase capable of regenerating part or all of the lipase activity.
- index value and the threshold value in the lipase activity evaluation method for immobilized lipase according to this embodiment are the same as those described in the method for producing immobilized lipase.
- the method for producing a compound according to this embodiment is characterized by using an immobilized lipase obtained by the method for producing an immobilized lipase, or a regenerated immobilized lipase obtained by the method for producing the regenerated immobilized lipase.
- the said compound is a compound manufactured through the catalytic reaction by lipase.
- the compound is preferably produced through an ester exchange reaction or an ester hydrolysis reaction, and examples thereof include a fuel diesel fuel and a polycarbonate diol (meth) acrylate compound obtained by an ester exchange reaction of fats and alcohols. .
- a fuel diesel fuel and a polycarbonate diol (meth) acrylate compound obtained by an ester exchange reaction of fats and alcohols.
- polycarbonate diol (meth) acrylate compounds are more preferable.
- the immobilized peroxidase refers to a material in which a peroxidase is supported on a silica carrier by adsorption or the like.
- the peroxidase may be an enzyme that catalyzes a reaction in which peroxide (—O—O—) is cleaved oxidatively and decomposed into two hydroxyl groups.
- peroxidase derived from horseradish peroxidase for example, HRP (manufactured by Wako Pure Chemical Industries, Ltd.)
- cytochrome c peroxidase for example, cytochrome c peroxidase
- glutathione peroxidase for example, horseradish-derived peroxidase is preferable.
- the peroxidase described above may be obtained from a culture of a genetic recombinant obtained by obtaining a gene encoding peroxidase and transforming an appropriate host such as yeast or filamentous fungus. Recombinant DNA techniques used for recombinant expression of peroxidase are known in the art.
- the peroxidase may be a mutant of the peroxidase.
- the amino acid sequence of the peroxidase has a sequence identity of 90% or more, preferably 95% or more, more preferably 97% or more, and an activity of oxidatively cleaving the peroxide into two hydroxyl groups. It may be a peroxidase having
- the silica support is preferably a porous porous silica support from the viewpoint that the adsorption amount of peroxidase can be increased by having a large surface area.
- the silica carrier include mesoporous silica such as MCFs, FSM-16, MCM-41, MCM-48, SBA-15 and the like. Among these, MCFs is preferable from the viewpoint that the amount of adsorbed enzyme is particularly large.
- the immobilization of peroxidase on the silica support can be performed, for example, by a carrier binding method such as covalent bond, ionic bond, physical adsorption, or the like.
- a carrier binding method such as covalent bond, ionic bond, physical adsorption, or the like.
- the carrier binding method by physical adsorption is preferable because it is simple.
- Immobilization by physical adsorption can be performed, for example, by bringing an aqueous solution of peroxidase into contact with a silica carrier. Further, the method may include separating the immobilized peroxidase formed by adsorbing the peroxidase on the silica carrier from the aqueous phase, then washing the separated immobilized peroxidase, and further drying to an appropriate water content.
- the temperature and pH at the time of immobilization by physical adsorption may be appropriately set according to the type of peroxidase to be immobilized. Many peroxidases can be immobilized, for example, at room temperature and near neutral pH.
- the contact time between the silica support and the peroxidase is usually chosen such that it is required for essentially complete adsorption. This is typically 1-2 hours to 24 hours.
- the method for producing an immobilized peroxidase includes a step of approximating an absorption band I or an absorption band II to one or a plurality of normal distributions in an infrared absorption spectrum of the immobilized peroxidase, and based on the normal distribution.
- an inspection process including the steps of:
- the immobilized peroxidase having an index value of 75 cm ⁇ 1 (threshold) or less is preferably selected as a good product. More preferably, the threshold value is 70 cm ⁇ 1 .
- the index value is usually about 65 cm ⁇ 1 even if it is small.
- the immobilized peroxidase having an index value of 0.45 (threshold) or more is preferably selected as a good product.
- the threshold is more preferably 0.50.
- the index value is usually about 0.70 at most.
- the method for producing an immobilized peroxidase according to the present embodiment may include a step of obtaining an immobilized peroxidase in which a peroxidase is supported on a silica carrier according to a conventional method.
- the immobilized peroxidases obtained by this step those having low catalytic activity due to irreversible or reversible denaturation may be included, but the irreversible denaturation and reversible denaturation can be distinguished through the above-described inspection step. It becomes possible.
- the catalyst activity is apparently low, but the catalyst activity can be regenerated by adjusting the water content, for example.
- the method for evaluating the peroxidase activity of the immobilized peroxidase includes a step of approximating the absorption band I or the absorption band II to one or a plurality of normal distributions in the infrared absorption spectrum of the immobilized peroxidase; A step of calculating an index value indicating a degree of spread of the infrared absorption band based on the reference value, comparing the index value with a preset threshold value, and fixing the degree of spread of the infrared absorption band smaller than the threshold value; And a step of evaluating the peroxidase as an immobilized peroxidase having peroxidase activity.
- index value and the threshold value in the method for evaluating the peroxidase activity of the immobilized peroxidase according to the present embodiment are the same as those described in the method for producing the immobilized peroxidase.
- the antibody may be IgG, IgM, IgA, IgD, or IgE.
- it may be an antibody fragment (for example, scFV, F (ab), F (ab ′) 2, etc.) that retains antigen-binding ability.
- the antibody may also be a human antibody, humanized antibody, chimeric antibody, mouse antibody, rabbit antibody, chicken antibody.
- the method for producing an antibody includes a step of approximating an absorption band I or an absorption band II to one or more normal distributions in the infrared absorption spectrum of the antibody, and the infrared absorption based on the normal distribution.
- a step of calculating an index value indicating a degree of spread of the band a step of comparing the index value with a preset threshold value, and selecting an antibody whose degree of spread of the infrared absorption band is smaller than the threshold value as a non-defective product
- an inspection process including:
- the index value when the index value is index value 1, it is preferable to select an antibody having an index value of 65 cm ⁇ 1 (threshold) or less as a non-defective product. More preferably, the threshold value is 60 cm ⁇ 1 . The index value is usually about 57 cm ⁇ 1 even if it is small.
- the antibody having an index value of 0.98 (threshold) or higher is preferably selected as a non-defective product.
- the threshold is more preferably 1.00.
- the index value is usually about 1.09 at most.
- the antibody having an index value of 0.85 (threshold) or more is preferably selected as a non-defective product.
- the threshold is more preferably 0.90.
- the index value is usually about 0.97 at most.
- the method for producing an antibody according to this embodiment may include a step of obtaining an antibody according to a conventional method.
- the step includes, for example, expressing an antibody by culturing or breeding yeast, filamentous fungus, animal cell, animal or the like that is capable of expressing DNA encoding the antibody, and from cell disrupted material, medium, animal milk, etc. It can be performed by recovering (purifying) the expressed antibody.
- An antibody having a sufficient titer can be produced by passing through the above-described test step in the method for producing an antibody according to this embodiment.
- the antibody activity evaluation method includes a step of approximating an absorption band I or absorption band II to one or more normal distributions in an infrared absorption spectrum of an antibody, and the infrared absorption based on the normal distribution.
- the antibody activity here is, for example, antibody titer.
- index values and threshold values in the antibody activity evaluation method according to the present embodiment are the same as those described in the antibody production method.
- FT-IR spectrum of each immobilized lipase was measured using a Fourier transform infrared spectrophotometer (FTS7000e micro UMA600; manufactured by Agilent Technologies).
- an absorption band derived from lipase appearing in the vicinity of 1660 cm ⁇ 1 was approximated by a single normal distribution by a non-linear least square method, and a half width was calculated as an index value.
- the peak position, the half width, and the intensity are variables.
- the wave number band position is set to one point of 1656 cm ⁇ 1 (A 1 and A 2 ), and the half widths are 47 cm ⁇ 1 (A 1 ) and 82 cm ⁇ 1 (A 2 ). did.
- Each absorption band was separated by the non-linear least square method, and the area of each absorption band obtained was used to calculate the absorption band area ratio as index value 2 according to the following formula.
- Absorption band area ratio (index value 2) A 1 / A 2
- a 1 and A 2 are the areas of the respective absorption bands.
- the wave number band position is set to three points of 1680 cm ⁇ 1 (A 1 ), 1656 cm ⁇ 1 (A 2 ), 1631 cm ⁇ 1 (A 3 ), and the respective half-value widths are set to 50 cm. It was set to -1 .
- Each absorption band was separated by the non-linear least square method, and the area of each absorption band obtained was used to calculate the absorption band area ratio as index value 3 according to the following formula.
- Absorption band area ratio (index value 3) A 2 / (A 1 + A 3 )
- a 1 , A 2 and A 3 are the areas of the respective absorption bands.
- wave number band positions are set to 1685 cm ⁇ 1 (A 1 ), 1670 cm ⁇ 1 (A 2 ), 1656 cm ⁇ 1 (A 3 ), 1641 cm ⁇ 1 (A 4 ), and 1626 cm ⁇ 1.
- the five points of (A 5 ) were used, and the half-value width of each was 30 cm ⁇ 1 .
- Each absorption band was separated by the non-linear least square method, and the area of each absorption band obtained was used to calculate the absorption band area ratio as index value 4 according to the following formula.
- Absorption band area ratio (index value 4) A 3 / (A 1 + A 2 + A 4 + A 5 )
- a 1 , A 2 , A 3 , A 4 and A 5 are the areas of the respective absorption bands.
- index value 5 and index value 6 Absorption band area ratio when the waveform is separated into 8 normal distributions
- the obtained FT-IR spectrum was subjected to waveform separation using a spreadsheet software (Microsoft Excel; manufactured by Microsoft), and the absorption band area ratio was determined.
- baseline correction was performed so that the infrared absorption intensities of 1800 and 1575 cm ⁇ 1 would be zero.
- an absorption band derived from the porous resin carrier appeared in the vicinity of 1720 cm -1, and separated using a Gaussian function, then, was waveform separation of the absorption bands from lipase appeared in the vicinity of 1660 cm -1.
- wave number band positions are 1692 cm ⁇ 1 (A 1 ), 1682 cm ⁇ 1 (A 2 ), 1670 cm ⁇ 1 (A 3 ), 1658 cm ⁇ 1 (A 4 ), 1648 cm ⁇ 1.
- Eight points of (A 5 ), 1638 cm ⁇ 1 (A 6 ), 1629 cm ⁇ 1 (A 7 ), and 1619 cm ⁇ 1 (A 8 ) were used, and the respective half widths were 19 cm ⁇ 1 .
- Each absorption band was separated by the non-linear least square method, and the absorption band area ratio was calculated as index value 5 and index value 6 according to the following formula using the area of each absorption band obtained.
- Absorption band area ratio (index value 5) (A 4 + A 5 ) / (A 1 + A 2 + A 3 + A 6 + A 7 + A 8 )
- a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and A 8 are the areas of the respective absorption bands.
- Absorption band area ratio (index value 6) (A 4 + A 5 ) / (A 2 + A 3 + A 8 )
- a 2 , A 3 , A 4 , A 5 and A 8 are the areas of the respective absorption bands.
- Index values 7 to 8 were calculated from the lipase-derived absorption band II appearing in the vicinity of 1500 to 1600 cm ⁇ 1 of the FT-IR spectrum by the following procedure.
- an absorption band derived from lipase appearing in the vicinity of 1500 to 1570 cm ⁇ 1 was approximated by a single normal distribution by a nonlinear least square method, and a half width was calculated as an index value.
- the peak position, the half width, and the intensity are variables.
- the wave number band position is set to three points of 1570 cm ⁇ 1 (B 1 ), 1545 cm ⁇ 1 (B 2 ), and 1518 cm ⁇ 1 (B 3 ), and the respective half widths are set to 31 cm. It was set to -1 .
- Each absorption band was separated by the non-linear least square method, and the absorption band area ratio was calculated as an index value 8 according to the following formula using the area of each obtained absorption band.
- Absorption band area ratio (index value 8) B 2 / (B 1 + B 3 )
- B 1 , B 2 and B 3 are the areas of the respective absorption bands.
- FIGS. 2 to 8 show examples of approximating a lipase-derived infrared absorption band with a single normal distribution and examples of waveform separation.
- FIG. 2 shows an example in which the FT-IR spectrum of the immobilized lipase (Novozym 435) used as a catalyst in Test Example 17 and the absorption band I derived from lipase are approximated by a single normal distribution.
- FIG. 3 shows an example in which the FT-IR spectrum of the immobilized lipase (Novozym 435) used as a catalyst in Test Example 17 and the absorption band I derived from lipase are separated into two normal distributions.
- FIG. 2 shows an example in which the FT-IR spectrum of the immobilized lipase (Novozym 435) used as a catalyst in Test Example 17 and the absorption band I derived from lipase are separated into two normal distributions.
- FIG. 4 shows an example in which the FT-IR spectrum of the immobilized lipase (Novozym 435) used as a catalyst in Test Example 17 and the absorption band I derived from lipase are separated into three normal distributions.
- FIG. 5 shows the FT-IR spectrum of the immobilized lipase (3.4 wt% Amano PS / Lewatit) used as a catalyst in Test Example 3, and each band obtained by separating the lipase-derived absorption band I into eight normal distributions. It is the shown graph.
- FIG. 5 shows the FT-IR spectrum of the immobilized lipase (3.4 wt% Amano PS / Lewatit) used as a catalyst in Test Example 3, and each band obtained by separating the lipase-derived absorption band I into eight normal distributions. It is the shown graph.
- FIG. 6 shows the FT-IR spectrum of the immobilized lipase (3.4 wt% Amano PS / Lewatit) used as a catalyst in Test Example 11 and each band obtained by separating the lipase-derived absorption band I into eight normal distributions. It is the shown graph.
- FIG. 7 is a graph showing the FT-IR spectrum of the immobilized lipase (Novozym 435) used as a catalyst in Test Example 14 and each band obtained by separating the lipase-derived absorption band I into eight normal distributions.
- FIG. 8 is a graph showing the FT-IR spectrum of the immobilized lipase (Novozym 435) used as a catalyst in Test Example 15 and each band obtained by separating the lipase-derived absorption band I into eight normal distributions.
- immobilized lipase PS lipase immobilization amount 3.4 wt%.
- immobilized lipase PS 3.4 wt% Amano PS / Lewatit.
- the amount of lipase immobilized was determined by measuring the protein concentration in the supernatant after immobilization using the BCA method with the BSA standard, and the decrease in protein concentration before and after immobilization as the amount immobilized on the carrier. The amount of immobilized protein was calculated.
- Test Example 4 Synthesis of hexyl acrylate
- the reaction was carried out in the same manner as in Test Example 3 except that immobilized lipase PS having a water content of 1.0% was used as the catalyst.
- the specific activity of the transesterification reaction was 16.5 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 54.1 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.73. Met.
- Test Example 5 Synthesis of hexyl acrylate
- the reaction was performed in the same manner as in Test Example 3 except that the immobilized lipase PS was used that was immersed in methanol at 25 ° C. for 2 hours and then washed with purified water to adjust the water content to 71.0%. .
- the specific activity of the transesterification reaction was 89.8 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 61.1 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio—eight normal distributions) is 1.46. Met.
- Test Example 8 Synthesis of hexyl acrylate
- the reaction was conducted in the same manner as in Test Example 3 except that the immobilized lipase PS was used that was immersed in acetonitrile at 25 ° C. for 2 hours and then washed with purified water to adjust the water content to 58.6%.
- the specific activity of the transesterification reaction was 127.4 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above method is 63.5 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.33. Met.
- Test Example 12 Synthesis of hexyl acrylate
- the reaction was carried out in the same manner as in Test Example 3, except that the immobilized lipase PS washed with toluene was used for 3 months in a fixed bed flow type transesterification reaction as a catalyst.
- the specific activity of the transesterification reaction was 13.6 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above method is 61.1 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio—eight normal distributions) is 1.28. Met.
- Test Example 14 Synthesis of hexyl acrylate
- the immobilized lipase PS was used that was immersed in an acetic acid aqueous solution (pH 2) at 25 ° C. for 2 hours and then washed with purified water to adjust the water content to 25.0%.
- the reaction was performed.
- the specific activity of the transesterification reaction was 209.6 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 56.4 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.55. Met.
- Test Example 15 Synthesis of hexyl acrylate
- the reaction was performed.
- the specific activity of the transesterification reaction was 220.5 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 61.1 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.51.
- Test Example 16 Synthesis of hexyl acrylate
- the reaction was performed.
- the specific activity of the transesterification reaction was 56.1 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 65.8 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.21. Met.
- Test Example 17 Synthesis of hexyl acrylate
- the reaction was performed in the same manner as in Test Example 3 except that Novozym (registered trademark) 435 (manufactured by Novozymes) having a water content of 1.0% was used as the catalyst.
- the specific activity of the transesterification reaction was 346.4 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 57.6 cm ⁇ 1
- the index value 2 (absorption band I, absorption band area ratio—two normal distributions) is 0.72.
- the index value 3 (absorption band I, absorption band area ratio-3 normal distribution) is 1.87, and the index value 4 (absorption band I, absorption band area ratio-5 normal distribution) is 0.49.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.70, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.42.
- the index value 7 (absorption band II, half width) was 37.6 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 1.75.
- Novozym (registered trademark) 435 is an immobilized lipase in which lipase CalB is immobilized on a porous resin carrier.
- Test Example 18 Synthesis of hexyl acrylate
- the reaction was conducted in the same manner as in Test Example 3 except that Novozym (registered trademark) 435, which was immersed in methanol at 25 ° C. for 3 hours and adjusted to a moisture content of 1.0% by vacuum drying, was used. .
- the specific activity of the transesterification reaction was 98.6 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above method is 70.5 cm ⁇ 1
- the index value 2 (absorption band I, absorption band area ratio ⁇ normal distribution) is 0.26.
- the index value 3 (absorption band I, absorption band area ratio-3 normal distribution) is 0.88, and the index value 4 (absorption band I, absorption band area ratio-5 normal distribution) is 0.31.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.58, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.06.
- the index value 7 (absorption band II, half-value width) was 44.7 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 1.13.
- the index value 3 (absorption band I, absorption band area ratio-three normal distributions) is 2.10, and the index value 4 (absorption band I, absorption band area ratio-five normal distributions) is 0.50.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.69, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.48. Met.
- Test Example 20 Synthesis of hexyl acrylate
- the reaction was conducted in the same manner as in Test Example 3 except that Novozym (registered trademark) 435 having a water content adjusted to 1.0% by vacuum drying was used after being immersed in acetone at 25 ° C. for 3 hours.
- the specific activity of the transesterification reaction was 384.4 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 56.4 cm ⁇ 1
- the index value 2 (absorption band I, absorption band area ratio—two normal distributions) is 1.05.
- the index value 3 (absorption band I, absorption band area ratio-three normal distributions) is 2.50, and the index value 4 (absorption band I, absorption band area ratio-five normal distributions) is 0.53.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.73, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.58. Met.
- Test Example 21 Synthesis of hexyl acrylate
- the reaction was performed in the same manner as in Test Example 3 except that Novozym (registered trademark) 435, which was immersed in acetonitrile at 25 ° C. for 3 hours as a catalyst and the water content was adjusted to 1.0% by vacuum drying, was used. .
- the specific activity of the transesterification reaction was 375.9 mmol ⁇ h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 56.4 cm ⁇ 1
- the index value 2 (absorption band I, absorption band area ratio ⁇ normal distribution) is 0.88.
- the index value 3 (absorption band I, absorption band area ratio-three normal distributions) is 2.20, and the index value 4 (absorption band I, absorption band area ratio-five normal distributions) is 0.48.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.74, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.55. Met.
- the index value 3 (absorption band I, absorption band area ratio-3 normal distributions) is 0.47, and the index value 4 (absorption band I, absorption band area ratio-5 normal distributions) is 0.25.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.45, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 0.85.
- the index value 7 (absorption band II, half width) was 47.0 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.58.
- the index value 3 (absorption band I, absorption band area ratio-three normal distributions) is 1.63, and the index value 4 (absorption band I, absorption band area ratio-five normal distributions) is 0.45.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.66, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.39. Met.
- the index value 3 (absorption band I, absorption band area ratio-three normal distributions) is 1.97, and the index value 4 (absorption band I, absorption band area ratio-five normal distributions) is 0.50.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 070, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.42. It was.
- the index value 3 (absorption band I, absorption band area ratio-three normal distributions) is 1.38, and the index value 4 (absorption band I, absorption band area ratio-five normal distributions) is 0.37.
- the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) is 0.63, and the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) is 1.31.
- the index value 7 (absorption band II, half-value width) was 40.0 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 1.67.
- FIG. 9 is a graph plotting the specific activity of the transesterification reaction of lipase against the index value 1 (absorption band I, half-value width) of Test Examples 17 to 25. Negative correlation that can be linearly approximated is observed.
- FIG. 10 is a graph in which the index value 7 (absorption band II, half-value width) is plotted against the index value 1 (absorption band I, half-value width) of Test Examples 17, 18, 22, and 25. A positive correlation that can be linearly approximated is observed.
- FIG. 11 is a graph plotting the specific activity of the transesterification reaction of lipase against the index value 1 (absorption band I, full width at half maximum) of Test Examples 3 to 16. Negative correlation that can be linearly approximated is observed.
- the results of Test Example 4 and Test Example 12 (numbers corresponding to each test example in the figure are attached to the plot) will be described later.
- FIG. 12 is a graph plotting the index value 2 (absorption band I, absorption band area ratio—two normal distributions) of Test Examples 17 to 25 and the specific activity of the lipase transesterification reaction. A positive correlation that can be linearly approximated is observed.
- FIG. 13 is a graph plotting the index value 3 (absorption band I, absorption band area ratio—three normal distributions) of Test Examples 17 to 25 and the specific activity of the transesterification reaction of lipase. A positive correlation that can be linearly approximated is observed.
- FIG. 14 is a graph plotting the index value 4 (absorption band I, absorption band area ratio—five normal distribution) of Test Examples 17 to 25 and the specific activity of the lipase transesterification reaction. A positive correlation that can be linearly approximated is observed.
- FIG. 15 is a graph in which the index value 5 (absorption band I, absorption band area ratio—eight normal distribution) of Test Examples 17 to 25 and the specific activity of the transesterification reaction of lipase are plotted. A positive correlation that can be linearly approximated is observed.
- FIG. 16 is a graph plotting the index value 6 (absorption band I, absorption band area ratio—eight normal distribution) of Test Examples 3 to 25 and the specific activity of the lipase transesterification reaction. A positive correlation that can be linearly approximated is observed.
- the immobilized lipase having sufficient water content is an index value (half-width or absorption band area ratio) and catalytic activity ( There is a correlation that can be linearly approximated with the specific activity of the transesterification reaction. From this correlation, an immobilized lipase having a half width of not more than a predetermined value or an absorption band area ratio of not less than a predetermined value (for example, 1.2 or more in the case of an index value of 6) has catalytic activity or potential catalytic activity. It can be evaluated that it is sufficient.
- the catalytic activity corresponding to the absorption band area ratio can be regenerated by eliminating the reversible modification by treatment with a water-containing organic solvent. That is, the immobilized lipase of Test Example 13 is obtained by treating the immobilized lipase of Test Example 12 with acetone having a water content of 5%. As is apparent from the results in Table 1, the catalyst activity was regenerated by this treatment, and entered into a 3.4 wt% Amano PS / Lewatit linear approximation curve (not shown), for example, as shown in FIG.
- the immobilized lipases of Test Example 13 and Test Example 12 have almost the same index value (for example, the half width of index value 1 is 61.1 cm ⁇ 1 , and the absorption band area ratio of index value 6 is 1 respectively. .33 and 1.28.).
- the immobilized lipases of Test Example 3 and Test Example 4 differ only in the moisture content (the immobilized lipase of Test Example 4 having a low moisture content is considered to have undergone reversible denaturation) and have equivalent index values. ing.
- the immobilized lipase of Test Example 12 and Test Example 4 can regenerate the catalytic activity. Nevertheless, it is repelled as a defective product.
- the immobilized lipases of Test Example 12 and Test Example 4 have a half-value width equal to or less than a predetermined value or an absorption band area ratio equal to or greater than a predetermined value. Can be selected as a lipase.
- oxidase weight is the weight of peroxidase determined on the basis of BSA by the BCA method.
- an aqueous ammonium fluoride solution (0.38 g / 40 g-H 2 O) was added and aged at 100 ° C. for 24 hours. Thereafter, the mixture was washed with 500 mL of purified water-ethanol mixture, filtered, and dried overnight in an oven at 100 ° C. The obtained white powder was heated to 500 ° C. over 5 hours in an air atmosphere and held at that temperature for 5 hours.
- the resulting white powder (Siliceous Mesocellular Foams, MCFs) is referred to as “silica support” or “MCFs”.
- the specific surface area and average pore diameter of the silica support determined by nitrogen adsorption / desorption measurement were 597 m 2 ⁇ g ⁇ 1 and 24.4 nm, respectively.
- Test Example 29 Oxidation reaction of o-phenylenediamine
- the reaction was performed in the same manner as in Test Example 28 except that an immobilized peroxidase was used which was immersed in methanol at 25 ° C. for 3 hours and then washed with purified water to adjust the water content to 22.7%.
- the specific activity of the oxidation reaction was 1016.0 h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 7 (absorption band II, half-value width) obtained by the above method is 75.1 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) is 0.40. Met.
- Test Example 30 O-phenylenediamine oxidation reaction
- the reaction was carried out in the same manner as in Test Example 28, except that an immobilized peroxidase which was immersed in toluene at 110 ° C. for 3 hours and then washed with purified water to adjust the water content to 28.5% was used.
- the specific activity of the oxidation reaction was 2841.5 h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 7 (absorption band II, half-value width) obtained by the above-described method is 71.1 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) is 0.62. Met.
- Test Example 31 O-phenylenediamine oxidation reaction
- an immobilized peroxidase was used that was immersed in an aqueous HCl solution (pH 3.5) at 60 ° C. for 3 hours and then washed with purified water to adjust the water content to 25.3%.
- the reaction was performed.
- the specific activity of the oxidation reaction was 2374.8 h ⁇ 1 ⁇ g ⁇ 1 .
- the index value 7 (absorption band II, half-value width) obtained by the above-described method is 70.5 cm ⁇ 1
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) is 0.58. Met.
- FIGS. 17 to 18 show an example in which an infrared absorption band derived from peroxidase is approximated by a single normal distribution and an example in which waveforms are separated.
- 19 to 20 show graphs plotting each index value (half-width or absorption band area ratio) and specific activity of peroxidase oxidation reaction.
- FIG. 17 shows an example in which the FT-IR spectrum of the immobilized peroxidase used as a catalyst in Test Example 28 and the absorption band II derived from peroxidase are approximated by a single normal distribution.
- FIG. 18 shows an example in which the FT-IR spectrum of the immobilized peroxidase used as a catalyst in Test Example 28 and the absorption band II derived from peroxidase are separated into three normal distributions.
- FIG. 19 is a graph plotting the specific activity of the oxidation reaction of peroxidase against the index value 7 (absorption band II, half width) of Test Examples 28 to 31. Negative correlation that can be linearly approximated is observed.
- FIG. 20 is a graph plotting the specific activity of the oxidation reaction of peroxidase against the index value 8 (absorption band II, absorption band area ratio—three normal distributions) of Test Examples 28 to 31. A positive correlation that can be linearly approximated is observed.
- the immobilized peroxidase having sufficient water content is determined by the index value (half width or absorption band area ratio) and catalytic activity ( There is a correlation that can be linearly approximated with the specific activity of the oxidation reaction. From this correlation, it can be evaluated that the immobilized peroxidase having a half width of not more than a predetermined value or an absorption band area ratio of not less than a predetermined value has sufficient catalytic activity or potential catalytic activity.
- PBS Phosphate Buffered Saline: 10 mM phosphate (pH 7.4), 0.14 M NaCl, 0.0027 M KCl
- antigen chicken IgG
- an antigen solution of 1000, 500, 250, 125, 63, 31, 16 ng / mL was prepared by 2-fold dilution with PBS.
- 50 ⁇ L of each antigen solution was added to each well of a 96-well plate, allowed to stand for 5 minutes, and adsorbed to each well. Each well was washed twice with PBS to obtain a 96-well plate with adsorbed antigen.
- the antibody to be titered was dissolved and diluted with 0.05% Tween 20-containing PBS to obtain a 1 ⁇ g / mL antibody solution (referred to as a primary antibody solution). 50 ⁇ L of the primary antibody solution was added to each well of the 96-well plate on which the antigen was adsorbed, and allowed to stand for 5 minutes to bind to the antigen. Each well was washed twice with PBS containing 0.05% Tween20.
- Horseradish peroxidase (HRP) -labeled goat anti-rabbit antibody 50 ⁇ g was dissolved and diluted with PBS containing 0.05% Tween 20 to obtain a 1 ⁇ g / mL antibody solution (referred to as secondary antibody solution). 50 ⁇ L of the secondary antibody solution was added to each well of the 96-well plate to which the primary antibody was bound, and allowed to stand for 5 minutes to bind to the primary antibody. Each well was washed twice with PBS containing 0.05% Tween20.
- Test Example 33 corresponds to a plot of “ ⁇ 20 ° C.”).
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 57.0 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.09.
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.97.
- Test Example 34 Measurement of antibody titer Measurement was carried out in the same manner as in Test Example 33, except that 0.5 mL of the antibody solution was dispensed into a test tube, allowed to stand at 4 ° C. for 24 hours, and then freeze-dried at ⁇ 20 ° C. The results of measuring the antibody titer are shown in Table 3 and FIG. 23 (in FIG. 23, Test Example 34 corresponds to a plot of “4 ° C.”).
- the index value 1 (absorption band I, half-value width) obtained by the above method is 57.6 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.03.
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.92.
- Test Example 35 Measurement of antibody titer Measurement was performed in the same manner as in Test Example 33, except that 0.5 mL of the antibody solution was dispensed into a test tube, allowed to stand at 25 ° C. for 24 hours, and then lyophilized at ⁇ 20 ° C. The results of measuring the antibody titer are shown in Table 3 and FIG. 23 (in FIG. 23, Test Example 35 corresponds to a plot of “25 ° C.”).
- the index value 1 (absorption band I, half width) obtained by the above-described method is 57.7 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.00.
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.94.
- Test Example 36 Measurement of antibody titer Measurement was carried out in the same manner as in Test Example 33, except that 0.5 mL of the antibody solution was dispensed into a test tube, allowed to stand at 50 ° C. for 24 hours, and then lyophilized at ⁇ 20 ° C. The results of measuring the antibody titer are shown in Table 3 and FIG. 23 (in FIG. 23, Test Example 36 corresponds to a plot of “50 ° C.”).
- the index value 1 (absorption band I, half-value width) obtained by the above-described method is 58.4 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 1.02.
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.93.
- Test Example 37 Measurement of antibody titer Measurement was carried out in the same manner as in Test Example 33, except that 0.5 mL of the antibody solution was dispensed into a test tube, allowed to stand at 75 ° C. for 24 hours, and then lyophilized at ⁇ 20 ° C.
- the results of measuring the titer of the antibody are shown in Table 3 and FIG. 23 (in FIG. 23, Test Example 37 corresponds to a plot of “75 ° C.”).
- the index value 1 (absorption band I, half-value width) obtained by the above method is 66.0 cm ⁇ 1
- the index value 6 absorption band I, absorption band area ratio ⁇ eight normal distribution
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.80.
- Test Example 38 Measurement of antibody titer Measurement was performed in the same manner as in Test Example 33, except that 0.5 mL of the antibody solution was dispensed into a test tube, allowed to stand at 90 ° C. for 24 hours, and then lyophilized at ⁇ 20 ° C. The results of measuring the antibody titer are shown in Table 3 and FIG. 23 (in FIG. 23, Test Example 38 corresponds to a plot of “90 ° C.”).
- the index value 1 (absorption band I, half-value width) obtained by the above method is 70.6 cm ⁇ 1
- the index value 6 (absorption band I, absorption band area ratio ⁇ eight normal distribution) is 0.92.
- the index value 8 (absorption band II, absorption band area ratio—three normal distributions) was 0.79.
- FIGS. 21 to 22 show an example in which an infrared absorption band derived from an antibody is approximated by a single normal distribution and an example in which waveforms are separated.
- 24 to 25 show graphs in which each index value (half-width or absorption band area ratio) and antibody titer are plotted.
- FIG. 21 shows an example in which the FT-IR spectrum of the antibody freeze-dried in Test Example 33 and the antibody-derived absorption band I and absorption band II are approximated by a single normal distribution.
- 22 shows an example of FT-IR spectrum of the antibody freeze-dried in Test Example 33, an example in which the absorption band I derived from the antibody is waveform-separated into eight normal distributions, and an example in which the absorption band II is waveform-separated into three normal distributions. Indicates.
- FIG. 24 is a graph plotting antibody titers against index value 1 (absorption band I, half-value width) of Test Examples 33 to 42. Negative correlation that can be linearly approximated is observed.
- FIG. 25 shows the index value 6 (absorption band I, absorption band area ratio—eight normal distributions) and index value 8 (absorption band II, absorption band area ratio—three normal distributions) of Test Examples 33 to 42.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Inorganic Chemistry (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
本実施形態に係るタンパク質の製造方法は、少なくとも検査工程を備えるものである。当該検査工程は、タンパク質の赤外吸収スペクトルにおいて、1500~1600cm-1付近に現れるタンパク質由来の赤外吸収バンド(吸収バンドII)又は1600~1700cm-1付近に現れるタンパク質由来の赤外吸収バンド(吸収バンドI)を、1又は複数の正規分布に近似するステップと、当該正規分布に基づいて赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、指標値を予め設定された閾値と比較し、閾値よりも赤外吸収バンドの広がりの度合いが小さいタンパク質を良品として選抜するステップと、を含む。
(i)nが偶数のとき、An/2及びAn/2+1の少なくとも一方又は両方の面積の総和をA1~An/2-1及びAn/2+2~Anからなる群より選択される少なくとも一つの面積の総和で割った値を指標値とする。
(ii)nが奇数のとき、A(n+1)/2の面積をA1~A(n+1)/2-1及びA(n-1)/2+2~Anからなる群より選択される少なくとも一つの面積の総和で割った値を指標値とする。
本実施形態に係るタンパク質活性評価方法は、タンパク質の赤外吸収スペクトルにおいて、吸収バンドI又は吸収バンドIIを、1又は複数の正規分布に近似するステップと、当該正規分布に基づいて赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、当該指標値を予め設定された閾値と比較し、閾値よりも赤外吸収バンドの広がりの度合いが小さいタンパク質を活性のあるタンパク質と評価するステップと、を含む評価工程を備える。
本明細書において、固定化リパーゼとは、樹脂担体にリパーゼを吸着等により担持させたものをいう。
本実施形態に係る再生固定化リパーゼの製造方法は、リパーゼ活性が減少した固定化リパーゼから、リパーゼ活性の一部又は全部が再生された再生固定化リパーゼを製造するものである。当該製造方法は、リパーゼ活性が減少した固定化リパーゼの赤外吸収スペクトルにおいて、吸収バンドI又は吸収バンドIIを、1又は複数の正規分布に近似するステップと、上記正規分布に基づいて上記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、上記指標値を予め設定された閾値と比較し、上記閾値よりも上記赤外吸収バンドの広がりの度合いが小さい上記リパーゼ活性が減少した固定化リパーゼをリパーゼ活性が再生する可能性のあるものとして選抜するステップと、を含む選抜工程を備えるものである。
本実施形態に係る固定化リパーゼのリパーゼ活性評価方法は、固定化リパーゼの赤外吸収スペクトルにおいて、吸収バンドI又は吸収バンドIIを、1又は複数の正規分布に近似するステップと、上記正規分布に基づいて上記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、上記指標値を予め設定された閾値と比較し、上記閾値よりも上記赤外吸収バンドの広がりの度合いが小さい固定化リパーゼを、リパーゼ活性のある固定化リパーゼと評価する、又はリパーゼ活性の一部若しくは全部を再生できる可能性のある固定化リパーゼと評価するステップと、を含む評価工程を備える。
本実施形態に係る化合物の製造方法は、上記固定化リパーゼの製造方法により得られた固定化リパーゼ、又は上記再生固定化リパーゼの製造方法により得られた再生固定化リパーゼを用いることを特徴とする。当該化合物は、リパーゼによる触媒反応を経て製造される化合物である。
本明細書において、固定化ペルオキシダーゼとは、シリカ担体にペルオキシダーゼを吸着等により担持させたものをいう。
本実施形態に係る固定化ペルオキシダーゼのペルオキシダーゼ活性評価方法は、固定化ペルオキシダーゼの赤外吸収スペクトルにおいて、吸収バンドI又は吸収バンドIIを、1又は複数の正規分布に近似するステップと、上記正規分布に基づいて上記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、上記指標値を予め設定された閾値と比較し、上記閾値よりも上記赤外吸収バンドの広がりの度合いが小さい固定化ペルオキシダーゼを、ペルオキシダーゼ活性のある固定化ペルオキシダーゼと評価するステップと、を含む評価工程を備える。
本明細書において、抗体とは、IgG、IgM、IgA、IgD、IgEのいずれであってもよい。また、抗原結合能を保持した抗体のフラグメント(例えば、scFV、F(ab)、F(ab’)2等)であってもよい。抗体はまた、ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体、ウサギ抗体、ニワトリ抗体であってもよい。
本実施形態に係る抗体活性評価方法は、抗体の赤外吸収スペクトルにおいて、吸収バンドI又は吸収バンドIIを、1又は複数の正規分布に近似するステップと、上記正規分布に基づいて上記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、上記指標値を予め設定された閾値と比較し、上記閾値よりも上記赤外吸収バンドの広がりの度合いが小さい抗体を活性のある抗体と評価するステップと、を含む評価工程を備える。ここでいう抗体活性とは、例えば、抗体力価である。
<ヘキシルアクリレートの定量方法>
ヘキシルアクリレートは、ガスクロマトグラフィー(内部標準法)により定量した。ガスクロマトグラフィーによる測定条件は以下のとおりである。
・ガスクロマトグラフ装置(GC2014,株式会社島津製作所製)
・分析カラム:DB-5(30m×0.53mm ID 1.0μm,株式会社島津製作所製)
・カラム温度:60℃→2分間保持→10℃/分→200℃→2分間保持
・注入口温度:200℃
・検出口温度(FID):250℃
・キャリアーガス:ヘリウム
・線速度:29.4cm/秒
・スプリット比:1:50
・注入量:1.0μL
・保持時間
ヘキシルアクリレート:9.31分
テトラエチレングリコールジメチルエーテル(内部標準物質):15.6分
上記の方法で定量した生成ヘキシルアクリレートの量を用いて、下記式に従い、各多孔性樹脂担体にリパーゼが固定化されてなる固定化リパーゼのエステル交換反応の比活性を算出した。
水分計(MOC63u,乾燥重量法,株式会社島津製作所製)を用いて、測定条件:標準乾燥自動停止モード(120℃:水分変化率0.05%)にて、試料約1.0gを用いて、2反復測定後平均値を算出した。
各固定化リパーゼのFT-IRスペクトルは、フーリエ変換赤外分光光度計(FTS7000e顕微UMA600;Agilent Technologies社製)を用いて測定した。
<吸収バンドI>
FT-IRスペクトルの1600~1700cm-1付近に現れるリパーゼ由来の吸収バンドIから以下の手順により指標値1~6を算出した。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて単一の正規分布で近似した。FT-IRスペクトルを単一の正規分布で近似する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1720cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離した。その後、1660cm-1付近に出現するリパーゼに由来する吸収バンドを、非線形最小二乗法によって単一の正規分布で近似し、指標値として半値幅を算出した。なお、非線形最小二乗法では、ピーク位置、半値幅及び強度を変数とした。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて波形分離し、吸収バンド面積比を求めた。FT-IRスペクトルを波形分離する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1720cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離し、その後、1660cm-1付近に出現するリパーゼに由来する吸収バンドの波形分離を行った。フィッティングに用いるガウス関数の初期値として、波数のバンド位置を1656cm-1(A1及びA2)の1点とし、また半値幅を47cm-1(A1)、82cm-1(A2)とした。非線形最小二乗法によって各吸収バンドを分離し、得られた各吸収バンドの面積を用いて、下記式に従い指標値2として吸収バンド面積比を算出した。
吸収バンド面積比(指標値2)=A1/A2
式中、A1及びA2は、各吸収バンドの面積である。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて波形分離し、吸収バンド面積比を求めた。FT-IRスペクトルを波形分離する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1720cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離し、その後、1660cm-1付近に出現するリパーゼに由来する吸収バンドの波形分離を行った。フィッティングに用いるガウス関数の初期値として、波数のバンド位置を1680cm-1(A1)、1656cm-1(A2)、1631cm-1(A3)の3点とし、またそれぞれの半値幅を50cm-1とした。非線形最小二乗法によって各吸収バンドを分離し、得られた各吸収バンドの面積を用いて、下記式に従い指標値3として吸収バンド面積比を算出した。
吸収バンド面積比(指標値3)=A2/(A1+A3)
式中、A1、A2及びA3は、各吸収バンドの面積である。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて波形分離し、吸収バンド面積比を求めた。FT-IRスペクトルを波形分離する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1720cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離し、その後、1660cm-1付近に出現するリパーゼに由来する吸収バンドの波形分離を行った。フィッティングに用いるガウス関数の初期値として、波数のバンド位置を1685cm-1(A1)、1670cm-1(A2)、1656cm-1(A3)、1641cm-1(A4)及び1626cm-1(A5)の5点とし、またそれぞれの半値幅を30cm-1とした。非線形最小二乗法によって各吸収バンドを分離し、得られた各吸収バンドの面積を用いて、下記式に従い指標値4として吸収バンド面積比を算出した。
吸収バンド面積比(指標値4)=A3/(A1+A2+A4+A5)
式中、A1、A2、A3、A4及びA5は、各吸収バンドの面積である。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて波形分離し、吸収バンド面積比を求めた。FT-IRスペクトルを波形分離する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1720cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離し、その後、1660cm-1付近に出現するリパーゼに由来する吸収バンドの波形分離を行った。フィッティングに用いるガウス関数の初期値として、波数のバンド位置を1692cm-1(A1)、1682cm-1(A2)、1670cm-1(A3)、1658cm-1(A4)、1648cm-1(A5)、1638cm-1(A6)、1629cm-1(A7)及び1619cm-1(A8)の8点とし、またそれぞれの半値幅を19cm-1とした。非線形最小二乗法によって各吸収バンドを分離し、得られた各吸収バンドの面積を用いて、下記式に従い指標値5及び指標値6として吸収バンド面積比を算出した。
吸収バンド面積比(指標値5)=(A4+A5)/(A1+A2+A3+A6+A7+A8)
式中、A1、A2、A3、A4、A5、A6、A7及びA8は、各吸収バンドの面積である。
吸収バンド面積比(指標値6)=(A4+A5)/(A2+A3+A8)
式中、A2、A3、A4、A5及びA8は、各吸収バンドの面積である。
FT-IRスペクトルの1500~1600cm-1付近に現れるリパーゼ由来の吸収バンドIIから以下の手順により指標値7~8を算出した。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて単一の正規分布で近似した。FT-IRスペクトルを単一の正規分布で近似する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1400~1500cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離した。その後、1500~1570cm-1付近に出現するリパーゼに由来する吸収バンドを、非線形最小二乗法によって単一の正規分布で近似し、指標値として半値幅を算出した。なお、非線形最小二乗法では、ピーク位置、半値幅及び強度を変数とした。
各固定化リパーゼについて、得られたFT-IRスペクトルを表計算ソフト(Microsoft Excel;Microsoft社製)を用いて波形分離し、吸収バンド面積比を求めた。FT-IRスペクトルを波形分離する際、まず、1800及び1575cm-1の赤外吸収強度が0になるようにベースライン補正を行った。次いで、1400~1500cm-1付近に出現する多孔性樹脂担体に由来する吸収バンドを、ガウス関数を用いて分離し、その後、1500~1570cm-1付近に出現するリパーゼに由来する吸収バンドの波形分離を行った。フィッティングに用いるガウス関数の初期値として、波数のバンド位置を1570cm-1(B1)、1545cm-1(B2)、1518cm-1(B3)の3点とし、またそれぞれの半値幅を31cm-1とした。非線形最小二乗法によって各吸収バンドを分離し、得られた各吸収バンドの面積を用いて、下記式に従い指標値8として吸収バンド面積比を算出した。
吸収バンド面積比(指標値8)=B2/(B1+B3)
式中、B1、B2及びB3は、各吸収バンドの面積である。
リパーゼPS「アマノ」SDH(アマノエンザイム社製)150gに100mMリン酸緩衝液(pH7.0)0.6Lと純水を加え溶解後、3Lに定容し、固定化液を調製した。そこに多孔性樹脂担体(LEWATIT VPOC 1600、LANXESS社製)600gを加え、6℃にて12時間攪拌した。その後、デカンテーションにて担体を回収し、純水で洗浄後、減圧乾燥し、固定化リパーゼ(リパーゼ固定化量3.4wt%)352gを得た。この固定化リパーゼを「固定化リパーゼPS」又は「3.4wt% Amano PS/Lewatit」と呼ぶ。
攪拌装置及び温度調節装置を備えた内容積20mLのガラス製試験管に、1-ヘキサノール0.2g(2.0mmol)、アクリル酸メチル1.6g(18.6mmol)、テトラエチレングリコールジメチルエーテル0.04g(0.2mmol)、及び触媒として、含水率が7.1%の固定化リパーゼPSを加えて、撹拌しながら40℃で反応させた。1時間後、反応液を取り出し、上述の方法によりエステル交換反応の比活性を算出した。エステル交換反応の比活性は259.3mmol・h-1・g-1だった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は54.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は、1.75であった。
触媒として、含水率が1.0%の固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は16.5mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は54.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.73であった。
触媒として、25℃のメタノールに2時間浸し、その後精製水で洗浄して含水率を71.0%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は89.8mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は61.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.46であった。
触媒として、25℃のトルエンに2時間浸し、その後精製水で洗浄して含水率を50.0%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は216.1mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は54.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.68であった。
触媒として、25℃のアセトンに2時間浸し、その後精製水で洗浄して含水率を52.4%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は169.7mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は61.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.44であった。
触媒として、25℃のアセトニトリルに2時間浸し、その後精製水で洗浄して含水率を58.6%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は127.4mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は63.5cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.33であった。
触媒として、25℃の1-ブタノールに2時間浸し、その後精製水で洗浄して含水率を65.5%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は79.7mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は65.8cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.38であった。
触媒として、25℃のエタノールに2時間浸し、その後精製水で洗浄して含水率を60.2%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は87.0mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は65.8cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.24であった。
触媒として、大気中230℃で1時間保持し、その後精製水で洗浄して含水率を40.0%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。生成物であるヘキシルアクリレートは観測されなかった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は70.5cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.95であった。
触媒として、固定床流通式エステル交換反応に3ヶ月使用し、トルエンで洗浄した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は13.6mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は61.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.28であった。
触媒として、実施例12と同じ固定床流通式エステル交換反応に3ヶ月使用し、トルエンで洗浄した後、含水率5%のアセトンに6℃で一晩浸し、含水率を46.1%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は88.2mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は61.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.33であった。
触媒として、25℃の酢酸水溶液(pH2)に2時間浸した後、精製水で洗浄して含水率を25.0%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は209.6mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は56.4cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.55であった。
触媒として、25℃の塩酸水溶液(pH4)に16時間浸した後、精製水で洗浄して含水率を12.0%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は220.5mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は61.1cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.51であった。
触媒として、70℃の塩酸水溶液(pH4)に16時間浸した後、精製水で洗浄して含水率を33.0%に調整した固定化リパーゼPSを使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は56.1mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は65.8cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.21であった。
触媒として、含水率が1.0%のNovozym(登録商標)435(novozymes社製)を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は346.4mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.6cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.72であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は1.87であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.49であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.70であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.42であり、指標値7(吸収バンドII、半値幅)は37.6cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は1.75であった。なお、Novozym(登録商標)435は、多孔性樹脂担体にリパーゼCalBを固定化した固定化リパーゼである。
触媒として、25℃のメタノールに3時間浸した後、真空乾燥により含水率を1.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は98.6mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は70.5cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.26であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は0.88であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.31であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.58であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.06であり、指標値7(吸収バンドII、半値幅)は44.7cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は1.13であった。
触媒として、25℃のトルエンに3時間浸した後、真空乾燥により含水率を1.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は392.6mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は56.4cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.92であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は2.10であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.50であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.69であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.48であった。
触媒として、25℃のアセトンに3時間浸した後、真空乾燥により含水率を1.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は384.4mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は56.4cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は1.05であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は2.50であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.53であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.73であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.58であった。
触媒として、25℃のアセトニトリルに3時間浸した後、真空乾燥により含水率を1.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は375.9mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は56.4cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.88であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は2.20であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.48であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.74であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.55であった。
触媒として、大気中230℃で1時間保持し、含水率を0.1%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。生成物であるヘキシルアクリレートは観測されなかった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は82.3cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は0.47であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.25であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.45であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.85であり、指標値7(吸収バンドII、半値幅)は47.0cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.58であった。
触媒として、25℃の酢酸水溶液(pH=2)に2時間浸した後、真空乾燥により含水率を9.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は224.2mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は58.8cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.59であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は1.63であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.45であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.66であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.39であった。
触媒として、25℃の塩酸水溶液(pH=4)に16時間浸した後、真空乾燥により含水率を3.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は351.6mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は58.8cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.55であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は1.97であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.50であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は070であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.42であった。
触媒として、70℃の塩酸水溶液(pH=4)に16時間浸した後、真空乾燥により含水率を5.0%に調整したNovozym(登録商標)435を使用したこと以外は、試験例3と同様に反応を行った。エステル交換反応の比活性は187.8mmol・h-1・g-1であった。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は61.1cm-1であり、指標値2(吸収バンドI、吸収バンド面積比-2つの正規分布)は0.49であり、指標値3(吸収バンドI、吸収バンド面積比-3つの正規分布)は1.38であり、指標値4(吸収バンドI、吸収バンド面積比-5つの正規分布)は0.37であり、指標値5(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.63であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.31であり、指標値7(吸収バンドII、半値幅)は40.0cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は1.67であった。
<o-フェニレンジアミンの酸化物の定量方法>
o-フェニレンジアミンの酸化物は、紫外可視分光光度計でUV-visスペクトルを測定することにより定量した。紫外可視分光光度計による測定条件は以下のとおりである。
・紫外可視分光光度計(UV2450、株式会社島津製作所製)
・ピーク波長:420nm
上記の方法で測定したo-フェニレンジアミンの酸化物に由来するUV-visスペクトルのピーク強度(420nmにおける吸収強度)を用いて、下記式に従い、固定化ペルオキシダーゼの酸化反応の比活性を算出した。なお、オキシダーゼ重量は、BCA法によりBSA基準にて求めたペルオキシダーゼの重量である。
固定化リパーゼの場合と同様の方法で含水率を測定した。
1800及び1545cm-1の赤外吸収強度が0になるようにベースライン補正を行ったこと以外は、試験例1と同様にして指標値を算出した。
33.2gのPluronic P-123に、20%%HCl水溶液及び精製水をそれぞれ400g及び200gずつ加え、次いで、メシチレンを23.5g加えた。その後、40℃に加熱したウォーターバスに浸し、Pluronic P-123を十分に溶解させた。その後、テトラエトキシシランを70.0g加え、5分間撹拌した後、30℃で20時間静置させた。得られた白色スラリーに、フッ化アンモニウム水溶液(0.38g/40g-H2O)を加え、100℃で24時間熟成させた。その後、500mLの精製水-エタノール混合液で洗浄、濾過した後、100℃のオーブンで一晩乾燥させた。得られた白色粉体を大気雰囲気下、500℃まで5時間かけて昇温し、そのままの温度で5時間保持した。得られた白色粉末(Siliceous Mesocellular Foams,MCFs)を、「シリカ担体」又は「MCFs」と呼ぶ。窒素吸脱着測定によって求めたシリカ担体の比表面積及び平均細孔径は、それぞれ597m2・g-1及び24.4nmだった。
攪拌装置及び温度調節装置を備えた内容積20mLのガラス製試験管に、0.1M o-フェニレンジアミンのトルエン溶液2.5mL、1.1M t-ブチルヒドロペルオキシドのデカン溶液0.6mL、及び触媒として、含水率が34.9%の固定化ペルオキシダーゼを加えて、攪拌しながら35℃で反応させた。1時間後、反応液を取り出し、上述の方法により酸化反応の比活性を算出した。酸化反応の比活性は、3899.9h-1・g-1だった。また、上述の方法により求めた指標値7(吸収バンドII、半値幅)は65.7cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.70であった。
触媒として、25℃のメタノールに3時間浸し、その後精製水で洗浄して含水率を22.7%に調整した固定化ペルオキシダーゼを使用したこと以外は、試験例28と同様に反応を行った。酸化反応の比活性は1016.0h-1・g-1であった。また、上述の方法により求めた指標値7(吸収バンドII、半値幅)は75.1cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.40であった。
触媒として、110℃のトルエンに3時間浸し、その後精製水で洗浄して含水率を28.5%に調整した固定化ペルオキシダーゼを使用したこと以外は、試験例28と同様に反応を行った。酸化反応の比活性は2841.5h-1・g-1であった。また、上述の方法により求めた指標値7(吸収バンドII、半値幅)は71.1cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.62であった。
触媒として、60℃のHCl水溶液(pH3.5)に3時間浸し、その後精製水で洗浄して含水率を25.3%に調整した固定化ペルオキシダーゼを使用したこと以外は、試験例28と同様に反応を行った。酸化反応の比活性は2374.8h-1・g-1であった。また、上述の方法により求めた指標値7(吸収バンドII、半値幅)は70.5cm-1であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.58であった。
<抗体の力価測定方法>
抗体(IgG)の力価は、直接吸着法ELISA(Enzyme-Linked Immunosorbent Assay)により測定した。
1720及び1490cm-1の赤外吸収強度が0になるようにベースライン補正を行ったこと以外は、試験例1と同様にして指標値を算出した。
抗ニワトリIgGウサギ抗体(Rockland inc製)溶液(10.0mg/mL)0.5mLにポリエチレングリコール(PEG:平均分子量20,000)45mgを加え、10mMリン酸緩衝液(pH7.0)5mLに溶解し、抗体溶液とした。抗体溶液0.5mLを試験管に分取し、直ちに-20℃で凍結乾燥させた。凍結乾燥後の抗体を力価測定、及び顕微ATR法によるFT-IRスペクトル測定に用いた。抗体の力価を測定した結果を表3及び図23に示す(図23中、試験例33は、「-20℃」のプロットに対応する)。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.0cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.09であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.97であった。
抗体溶液0.5mLを試験管に分取した後、4℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3及び図23に示す(図23中、試験例34は、「4℃」のプロットに対応する)。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.6cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.03であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.92であった。
抗体溶液0.5mLを試験管に分取した後、25℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3及び図23に示す(図23中、試験例35は、「25℃」のプロットに対応する)。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.7cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.00であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.94であった。
抗体溶液0.5mLを試験管に分取した後、50℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3及び図23に示す(図23中、試験例36は、「50℃」のプロットに対応する)。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は58.4cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.02であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.93であった。
抗体溶液0.5mLを試験管に分取した後、75℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3及び図23に示す(図23中、試験例37は、「75℃」のプロットに対応する)。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は66.0cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.96であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.80であった。
抗体溶液0.5mLを試験管に分取した後、90℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3及び図23に示す(図23中、試験例38は、「90℃」のプロットに対応する)。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は70.6cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.92であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.79であった。
抗体溶液0.5mLを試験管に分取した後、10%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3に示す。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は56.9cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は0.98であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.95であった。
抗体溶液0.5mLを試験管に分取した後、20%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3に示す。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は56.7cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.01であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.97であった。
抗体溶液0.5mLを試験管に分取した後、40%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3に示す。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.0cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.00であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.96であった。
抗体溶液0.5mLを試験管に分取した後、50%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例33と同様に測定を行った。抗体の力価を測定した結果を表3に示す。また、上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.8cm-1であり、指標値6(吸収バンドI、吸収バンド面積比-8つの正規分布)は1.00であり、指標値8(吸収バンドII、吸収バンド面積比-3つの正規分布)は0.93であった。
抗ニワトリ卵白リゾチーム抗体(Anti White Lysozyme、コスモバイオ株式会社製)溶液(10.0mg/mL)0.5mLにポリエチレングリコール(PEG:平均分子量20,000)45mgを加え、10mMリン酸緩衝液(pH7.0)5mLに溶解し、抗体溶液とした。抗体溶液0.5mLを試験管に分取し、直ちに-20℃で凍結乾燥させた。凍結乾燥後の抗体を顕微ATR法によるFT-IRスペクトル測定に用いた。上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.1cm-1であった。
抗体溶液0.5mLを試験管に分取した後、4℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は57.4cm-1であった。
抗体溶液0.5mLを試験管に分取した後、25℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は58.6cm-1であった。
抗体溶液0.5mLを試験管に分取した後、50℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は62.5cm-1であった。
抗体溶液0.5mLを試験管に分取した後、75℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は72.5cm-1であった。
抗体溶液0.5mLを試験管に分取した後、90℃で24時間静置してから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は94.0cm-1であった。
抗体溶液0.5mLを試験管に分取した後、10%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は58.4cm-1であった。
抗体溶液0.5mLを試験管に分取した後、20%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は59.0cm-1であった。
抗体溶液0.5mLを試験管に分取した後、40%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は59.9cm-1であった。
抗体溶液0.5mLを試験管に分取した後、50%v/vとなるようアセトンを加え、25℃で24時間静置し、10分間窒素パージしてアセトンを揮散させてから-20℃で凍結乾燥させたこと以外は試験例43と同様に測定を行った。上述の方法により求めた指標値1(吸収バンドI、半値幅)は62.0cm-1であった。
Claims (33)
- タンパク質の赤外吸収スペクトルにおいて、1500~1600cm-1付近又は1600~1700cm-1付近に現れるタンパク質由来の赤外吸収バンドを、1又は複数の正規分布に近似するステップと、
前記正規分布に基づいて前記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、
前記指標値を予め設定された閾値と比較し、前記閾値よりも前記赤外吸収バンドの広がりの度合いが小さいタンパク質を良品として選抜するステップと、を含む検査工程を備える、タンパク質の製造方法。 - 前記指標値が、前記赤外吸収バンドを単一の正規分布で近似したときの当該正規分布の半値幅である、請求項1に記載の製造方法。
- 前記指標値が、前記赤外吸収バンドを複数の正規分布に波形分離し、前記赤外吸収バンドのピークトップ位置付近の1又は複数の正規分布の面積の総和を、前記赤外吸収バンドの端付近の1又は複数の正規分布の面積の総和で割った値である、請求項1に記載の製造方法。
- 前記指標値が、前記赤外吸収バンドを、いずれも前記赤外吸収バンドのピークトップ位置付近に頂点を有し、かつ、互いに異なる半値幅を有する2つの正規分布に波形分離し、前記2つの正規分布のうち半値幅が小さい方の正規分布の面積を、半値幅が大きい方の正規分布の面積で割った値である、請求項1に記載の製造方法。
- 前記指標値が、前記赤外吸収バンドをA1~Anのn個(nは3以上の整数)の正規分布に波形分離し、
前記nが偶数のとき、An/2及びAn/2+1の少なくとも一方又は両方の面積の総和をA1~An/2-1及びAn/2+2~Anからなる群より選択される少なくとも一つの面積の総和で割った値であり、
前記nが奇数のとき、A(n+1)/2の面積をA1~A(n+1)/2-1及びA(n-1)/2+2~Anからなる群より選択される少なくとも一つの面積の総和で割った値である、請求項1に記載の製造方法。 - 前記タンパク質が、樹脂担体にリパーゼが固定化されてなる固定化リパーゼである、請求項1に記載の製造方法。
- 前記指標値が、1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、単一の正規分布で近似したときの当該正規分布の半値幅であり、
前記選抜するステップにおいて、前記指標値が70cm-1以下となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、A1及びA2の2つの正規分布に波形分離し、A1の面積をA2の面積で割った値であり、
前記波形分離は、前記リパーゼ由来の赤外吸収バンドの面積と、前記2つの正規分布の面積の総和との差の絶対値が最小となるように、A1(ピーク位置1656cm-1、半値幅47cm-1)、A2(ピーク位置1656cm-1、半値幅82cm-1)の2つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.27以上となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、A1、A2及びA3の3つの正規分布に波形分離し、A2の面積をA1及びA3の面積の総和で割った値であり、
前記波形分離は、前記リパーゼ由来の赤外吸収バンドの面積と、前記3つの正規分布の面積の総和との差の絶対値が最小となるように、A1(ピーク位置1680cm-1、半値幅50cm-1)、A2(ピーク位置1656cm-1、半値幅50cm-1)及びA3(ピーク位置1631cm-1、半値幅50cm-1)の3つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.9以上となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、A1、A2、A3、A4及びA5の5つの正規分布に波形分離し、A3の面積をA1、A2、A4及びA5の面積の総和で割った値であり、
前記波形分離は、前記リパーゼ由来の赤外吸収バンドの面積と、前記5つの正規分布の面積の総和との差の絶対値が最小となるように、A1(ピーク位置1685cm-1、半値幅30cm-1)、A2(ピーク位置1670cm-1、半値幅30cm-1)、A3(ピーク位置1656cm-1、半値幅30cm-1)、A4(ピーク位置1641cm-1、半値幅30cm-1)及びA5(ピーク位置1626cm-1、半値幅30cm-1)の5つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.35以上となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、A1、A2、A3、A4、A5、A6、A7及びA8の8つの正規分布に波形分離し、A4及びA5の面積の総和をA1、A2、A3、A6、A7及びA8の面積の総和で割った値であり、
前記波形分離は、前記リパーゼ由来の赤外吸収バンドの面積と、前記8つの正規分布の面積の総和との差の絶対値が最小となるように、A1(ピーク位置1692cm-1、半値幅19cm-1)、A2(ピーク位置1682cm-1、半値幅19cm-1)、A3(ピーク位置1670cm-1、半値幅19cm-1)、A4(ピーク位置1658cm-1、半値幅19cm-1)、A5(ピーク位置1648cm-1、半値幅19cm-1)、A6(ピーク位置1638cm-1、半値幅19cm-1)、A7(ピーク位置1629cm-1、半値幅19cm-1)及びA8(ピーク位置1619cm-1、半値幅19cm-1)の8つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.6以上となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、A1、A2、A3、A4、A5、A6、A7及びA8の8つの正規分布に波形分離し、A4及びA5の面積の総和をA2、A3及びA8の面積の総和で割った値であり、
前記波形分離は、前記リパーゼ由来の赤外吸収バンドの面積と、前記8つの正規分布の面積の総和との差の絶対値が最小となるように、A1(ピーク位置1692cm-1、半値幅19cm-1)、A2(ピーク位置1682cm-1、半値幅19cm-1)、A3(ピーク位置1670cm-1、半値幅19cm-1)、A4(ピーク位置1658cm-1、半値幅19cm-1)、A5(ピーク位置1648cm-1、半値幅19cm-1)、A6(ピーク位置1638cm-1、半値幅19cm-1)、A7(ピーク位置1629cm-1、半値幅19cm-1)及びA8(ピーク位置1619cm-1、半値幅19cm-1)の8つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が1.2以上となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1500~1600cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、単一の正規分布で近似したときの当該正規分布の半値幅であり、
前記選抜するステップにおいて、前記指標値が44cm-1以下となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記指標値が、1500~1600cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、B1、B2及びB3の3つの正規分布に波形分離し、B2の面積をB1及びB3の面積の総和で割った値であり、
前記波形分離は、前記リパーゼ由来の赤外吸収バンドの面積と、前記3つの正規分布の面積の総和との差の絶対値が最小となるように、B1(ピーク位置1570cm-1、半値幅31cm-1)、B2(ピーク位置1545cm-1、半値幅31cm-1)及びB3(ピーク位置1518cm-1、半値幅31cm-1)の3つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が1.2以上となる固定化リパーゼを良品として選抜する、請求項6に記載の製造方法。 - 前記固定化リパーゼが、エステル交換活性又はエステル加水分解活性を有する、請求項6~14のいずれか一項に記載の製造方法。
- 前記リパーゼが、バルクホルデリア・セパシア(Burkholderia cepacia)又はカンジダ・アンタークティカ(Candida antarctica)由来のリパーゼである、請求項6~15のいずれか一項に記載の製造方法。
- 前記タンパク質が、シリカ担体にペルオキシダーゼが固定化されてなる固定化ペルオキシダーゼである、請求項1に記載の製造方法。
- 前記指標値が、1500~1600cm-1付近に現れるペルオキシダーゼ由来の赤外吸収バンドを、単一の正規分布で近似したときの当該正規分布の半値幅であり、
前記選抜するステップにおいて、前記指標値が75cm-1以下となる固定化ペルオキシダーゼを良品として選抜する、請求項17に記載の製造方法。 - 前記指標値が、1500~1600cm-1付近に現れるペルオキシダーゼ由来の赤外吸収バンドを、B1、B2及びB3の3つの正規分布に波形分離し、B2の面積をB1及びB3の面積の総和で割った値であり、
前記波形分離は、前記ペルオキシダーゼ由来の赤外吸収バンドの面積と、前記3つの正規分布の面積の総和との差の絶対値が最小となるように、B1(ピーク位置1570cm-1、半値幅31cm-1)、B2(ピーク位置1545cm-1、半値幅31cm-1)及びB3(ピーク位置1518cm-1、半値幅31cm-1)の3つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.45以上となる固定化ペルオキシダーゼを良品として選抜する、請求項17に記載の製造方法。 - 前記タンパク質が、抗体である、請求項1に記載の製造方法。
- 前記指標値が、1600~1700cm-1付近に現れる抗体由来の赤外吸収バンドを、単一の正規分布で近似したときの当該正規分布の半値幅であり、
前記選抜するステップにおいて、前記指標値が65cm-1以下となる抗体を良品として選抜する、請求項20に記載の製造方法。 - 前記指標値が、1600~1700cm-1付近に現れる抗体由来の赤外吸収バンドを、A1、A2、A3、A4、A5、A6、A7及びA8の8つの正規分布に波形分離し、A4及びA5の面積の総和をA2、A3及びA8の面積の総和で割った値であり、
前記波形分離は、前記抗体由来の赤外吸収バンドの面積と、前記8つの正規分布の面積の総和との差の絶対値が最小となるように、A1(ピーク位置1692cm-1、半値幅19cm-1)、A2(ピーク位置1682cm-1、半値幅19cm-1)、A3(ピーク位置1670cm-1、半値幅19cm-1)、A4(ピーク位置1658cm-1、半値幅19cm-1)、A5(ピーク位置1648cm-1、半値幅19cm-1)、A6(ピーク位置1638cm-1、半値幅19cm-1)、A7(ピーク位置1629cm-1、半値幅19cm-1)及びA8(ピーク位置1619cm-1、半値幅19cm-1)の8つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.98以上となる抗体を良品として選抜する、請求項20に記載の製造方法。 - 前記指標値が、1500~1600cm-1付近に現れる抗体由来の赤外吸収バンドを、B1、B2及びB3の3つの正規分布に波形分離し、B2の面積をB1及びB3の面積の総和で割った値であり、
前記波形分離は、前記抗体由来の赤外吸収バンドの面積と、前記3つの正規分布の面積の総和との差の絶対値が最小となるように、B1(ピーク位置1570cm-1、半値幅31cm-1)、B2(ピーク位置1545cm-1、半値幅31cm-1)及びB3(ピーク位置1518cm-1、半値幅31cm-1)の3つの正規分布に波形分離するものであり、
前記選抜するステップにおいて、前記指標値が0.85以上となる抗体を良品として選抜する、請求項20に記載の製造方法。 - 前記赤外吸収スペクトルが、減衰全反射法により測定されたものである、請求項1~23のいずれか一項に記載の製造方法。
- リパーゼ活性が減少した固定化リパーゼから、リパーゼ活性の一部又は全部が再生された再生固定化リパーゼを製造する製造方法であって、
固定化リパーゼは、樹脂担体にリパーゼが固定化されたものであり、
前記リパーゼ活性が減少した固定化リパーゼの赤外吸収スペクトルにおいて、1500~1600cm-1付近又は1600~1700cm-1付近に現れるリパーゼ由来の赤外吸収バンドを、1又は複数の正規分布に近似するステップと、
前記正規分布に基づいて前記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、
前記指標値を予め設定された閾値と比較し、前記閾値よりも前記赤外吸収バンドの広がりの度合いが小さい前記リパーゼ活性が減少した固定化リパーゼをリパーゼ活性が再生する可能性のあるものとして選抜するステップと、を含む選抜工程を備える、再生固定化リパーゼの製造方法。 - タンパク質の赤外吸収スペクトルにおいて、1500~1600cm-1付近又は1600~1700cm-1付近に現れるタンパク質由来の赤外吸収バンドを、1又は複数の正規分布に近似するステップと、
前記正規分布に基づいて前記赤外吸収バンドの広がりの度合いを示す指標値を算出するステップと、
前記指標値を予め設定された閾値と比較し、前記閾値よりも前記赤外吸収バンドの広がりの度合いが小さいタンパク質を活性のあるタンパク質と評価するステップと、を含む評価工程を備える、タンパク質活性評価方法。 - 前記指標値が、前記赤外吸収バンドを単一の正規分布で近似したときの当該正規分布の半値幅である、請求項26に記載のタンパク質活性評価方法。
- 前記指標値が、前記赤外吸収バンドを複数の正規分布に波形分離し、前記赤外吸収バンドのピークトップ位置付近の1又は複数の正規分布の面積の総和を、前記赤外吸収バンドの端付近の1又は複数の正規分布の面積の総和で割った値である、請求項26に記載のタンパク質活性評価方法。
- 前記指標値が、前記赤外吸収バンドを、いずれも前記赤外吸収バンドのピークトップ位置付近に頂点を有し、かつ、互いに異なる半値幅を有する2つの正規分布に波形分離し、前記2つの正規分布のうち半値幅が小さい方の正規分布の面積を、半値幅が大きい方の正規分布の面積で割った値である、請求項26に記載のタンパク質活性評価方法。
- 前記指標値が、前記赤外吸収バンドをA1~Anのn個(nは3以上の整数)の正規分布に波形分離し、
前記nが偶数のとき、An/2及びAn/2+1の少なくとも一方又は両方の面積の総和をA1~An/2-1及びAn/2+2~Anからなる群より選択される少なくとも一つの面積の総和で割った値であり、
前記nが奇数のとき、A(n+1)/2の面積をA1~A(n+1)/2-1及びA(n-1)/2+2~Anからなる群より選択される少なくとも一つの面積の総和で割った値である、請求項26に記載のタンパク質活性評価方法。 - 前記タンパク質が、樹脂担体にリパーゼが固定化されてなる固定化リパーゼである、請求項26~30のいずれか一項に記載のタンパク質活性評価方法。
- 前記タンパク質が、シリカ担体にペルオキシダーゼが固定化されてなる固定化ペルオキシダーゼである、請求項26~30のいずれか一項に記載のタンパク質活性評価方法。
- 前記タンパク質が、抗体である、請求項26~30のいずれか一項に記載のタンパク質活性評価方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015530959A JP6245264B2 (ja) | 2013-08-09 | 2014-08-07 | タンパク質及びその製造方法、並びにタンパク質活性評価方法 |
US14/895,356 US20160102301A1 (en) | 2013-08-09 | 2014-08-07 | Protein, method for manufacturing same, and method for evaluating protein activity |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-166686 | 2013-08-09 | ||
JP2013166686 | 2013-08-09 | ||
JP2014-053718 | 2014-03-17 | ||
JP2014053718 | 2014-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015020159A1 true WO2015020159A1 (ja) | 2015-02-12 |
Family
ID=52461488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070917 WO2015020159A1 (ja) | 2013-08-09 | 2014-08-07 | タンパク質及びその製造方法、並びにタンパク質活性評価方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160102301A1 (ja) |
JP (1) | JP6245264B2 (ja) |
WO (1) | WO2015020159A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6359891A (ja) * | 1986-08-29 | 1988-03-15 | Oriental Yeast Co Ltd | 物質の固定化方法 |
JPH0956379A (ja) * | 1995-08-18 | 1997-03-04 | Fuji Spinning Co Ltd | 固定化リパーゼの再生方法 |
JP2004045390A (ja) * | 2002-05-14 | 2004-02-12 | Shigeori Takenaka | 分光法を利用した分子アレイによる検体の分析方法 |
JP2009011321A (ja) * | 2007-07-06 | 2009-01-22 | Evonik Goldschmidt Gmbh | 酵素製剤 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120021486A1 (en) * | 2009-01-16 | 2012-01-26 | Cerasela Zoica Dinu | Enzyme-based nanoscale decontaminating composites |
-
2014
- 2014-08-07 US US14/895,356 patent/US20160102301A1/en not_active Abandoned
- 2014-08-07 WO PCT/JP2014/070917 patent/WO2015020159A1/ja active Application Filing
- 2014-08-07 JP JP2015530959A patent/JP6245264B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6359891A (ja) * | 1986-08-29 | 1988-03-15 | Oriental Yeast Co Ltd | 物質の固定化方法 |
JPH0956379A (ja) * | 1995-08-18 | 1997-03-04 | Fuji Spinning Co Ltd | 固定化リパーゼの再生方法 |
JP2004045390A (ja) * | 2002-05-14 | 2004-02-12 | Shigeori Takenaka | 分光法を利用した分子アレイによる検体の分析方法 |
JP2009011321A (ja) * | 2007-07-06 | 2009-01-22 | Evonik Goldschmidt Gmbh | 酵素製剤 |
Non-Patent Citations (5)
Also Published As
Publication number | Publication date |
---|---|
JP6245264B2 (ja) | 2017-12-13 |
JPWO2015020159A1 (ja) | 2017-03-02 |
US20160102301A1 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Uyanik et al. | Improvement of catalytic activity of lipase from Candida rugosa via sol–gel encapsulation in the presence of calix (aza) crown | |
Vescovi et al. | Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino-glutaraldehyde spacer arms | |
Palocci et al. | Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles | |
Sánchez-Bayo et al. | Biodiesel production (FAEEs) by heterogeneous combi-lipase biocatalysts using wet extracted lipids from microalgae | |
Vlakh et al. | Flow‐through immobilized enzyme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts | |
Wu et al. | DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor | |
Ponomareva et al. | Monolithic bioreactors: effect of chymotrypsin immobilization on its biocatalytic properties | |
Reichardt et al. | Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material | |
Li et al. | Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme | |
Brito et al. | Lipase immobilization on activated and functionalized carbon for the aroma ester synthesis | |
Li et al. | Improving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1-phenylethanol in non-aqueous medium | |
Gholamzadeh et al. | Immobilization of lipases onto the SBA-15 mesoporous silica | |
Chen et al. | Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading | |
Li et al. | Conformation studies on Burkholderia cenocepacia lipase via resolution of racemic 1-phenylethanol in non-aqueous medium and its process optimization | |
Kumar et al. | Effective immobilisation of lipase to enhance esterification potential and reusability | |
Erdemir et al. | Catalytic effect of calix [n] arene based sol–gel encapsulated or covalent immobilized lipases on enantioselective hydrolysis of (R/S)-naproxen methyl ester | |
Tentori et al. | Immobilization of old yellow enzymes via covalent or coordination bonds | |
Sousa et al. | Immobilisation of pig liver esterase in hollow fibre membranes | |
Gonçalves et al. | Stabilization and operational selectivity alteration of Lipozyme 435 by its coating with polyethyleneimine: Comparison of the biocatalyst performance in the synthesis of xylose fatty esters | |
Silva et al. | Immobilization of Thermomyces lanuginosus lipase on a new hydrophobic support (Streamline phenyl™): Strategies to improve stability and reusability | |
Yildiz et al. | A comparative study: Immobilization of yeast cells and invertase in poly (ethyleneoxide) electrodes | |
Liu et al. | Improved performance of Yarrowia lipolytica lipase-catalyzed kinetic resolution of (R, S)-2-octanol by an integrated strategy of interfacial activation, bioimprinting and immobilization | |
Stigter et al. | Development of an open-tubular trypsin reactor for on-line digestion of proteins | |
Carstens et al. | Evaluation of the efficiency of enological procedures on lysozyme depletion in wine by an indirect ELISA method | |
Vitola et al. | Influence of lipase immobilization mode on ethyl acetate hydrolysis in a continuous solid–gas biocatalytic membrane reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14833839 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015530959 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14895356 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14833839 Country of ref document: EP Kind code of ref document: A1 |