WO2015019382A1 - Two-stage methane gas generating system having front end aggregation step - Google Patents

Two-stage methane gas generating system having front end aggregation step Download PDF

Info

Publication number
WO2015019382A1
WO2015019382A1 PCT/JP2013/004732 JP2013004732W WO2015019382A1 WO 2015019382 A1 WO2015019382 A1 WO 2015019382A1 JP 2013004732 W JP2013004732 W JP 2013004732W WO 2015019382 A1 WO2015019382 A1 WO 2015019382A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
sludge
methane
methane gas
stage
Prior art date
Application number
PCT/JP2013/004732
Other languages
French (fr)
Japanese (ja)
Inventor
祝 王
田中 裕之
睦雄 及川
Original Assignee
国立大学法人 東京工業大学
協和化工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京工業大学, 協和化工株式会社 filed Critical 国立大学法人 東京工業大学
Priority to JP2015530553A priority Critical patent/JPWO2015019382A1/en
Priority to PCT/JP2013/004732 priority patent/WO2015019382A1/en
Publication of WO2015019382A1 publication Critical patent/WO2015019382A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/106Removal of contaminants of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a system for processing organic waste having a high water content such as sewage and livestock excrement.
  • the present invention relates to a system that efficiently obtains methane gas by separating raw material biomass into sludge and treated water by a coagulation process, and then methanating the sludge portion in a dry manner.
  • the raw material biomass is generally first treated by the activated sludge treatment apparatus 6, and the remaining sludge is treated by a method such as fermentation.
  • the activated sludge treatment apparatus 6 used in this requires a large aeration tank 62 and a sedimentation basin 63, and requires a large amount of power for aeration, which is a problem in terms of initial construction cost, operation cost, operating energy, and site area. There is.
  • the treated water 102 of the activated sludge treatment apparatus 6 and the treated water at the time of solid-liquid separation of the concentrated sludge 104 have high BOD and COD, and there is a problem that advanced water treatment is necessary.
  • the concentrated sludge 104 discharged from the activated sludge method treatment apparatus 6 passes through the coagulation tank 81 and passes through the solid-liquid separation / dehydration apparatus 82, it becomes a sludge cake 106 and is sent to the next stage process.
  • the activated sludge method the amount of sludge increases due to assimilation of microorganisms, but on the other hand, there is also a phenomenon that the amount of sludge decreases due to the generation of carbon dioxide and water by the decomposition of microorganisms.
  • the production load of compost / methane 111 by the fermentation process 91 of the next stage, the production of incinerated ash / charcoal 112 by the incineration / carbonization treatment 92, and the production of the soil conditioner 113 by the drying treatment 93 are reduced. Therefore, the amount of sludge is aimed at minimization.
  • the BOD flowing into the activated sludge treatment apparatus is 110 mg / l and SS is 64 mg / l (January 2013).
  • 35 to 45% of the removed BOD is sludge (Non-patent Document 1).
  • the generated sludge can be methanated by anaerobic fermentation.
  • the generated methane gas can be used as fuel.
  • the fermentation residue can be used as a fertilizer.
  • the larger the amount of sludge the larger the amount of methane gas that can be obtained.
  • the throughput can be significantly reduced.
  • the volume reduction rate and the weight loss rate are about 1/10.
  • methane yield methane production per unit raw material biomass
  • an organic wastewater containing organic solids was separated in this coagulation sedimentation tank by solid-liquid separation treatment by adding an inorganic coagulant.
  • Proposed a processing system comprising an acid generation tank that causes an acid fermentation reaction of organic components contained in the processing liquid, and an anaerobic processing tank that anaerobically treats the processing liquid processed in the acid generation tank (Patent Document 2).
  • the conventional coagulation method using the coagulant has the following problems.
  • inorganic flocculants such as aluminum sulfate and iron chloride are used in combination with polymer flocculants, and natural or artificial zeolite is added, multiple raw material sources and production processes
  • problems such as complication, complication process, increase in agglomeration cost, low tendency to dewater, and adverse effect of flocculant on the environment.
  • the BOD of the supernatant liquid after aggregation does not sufficiently decrease, and it is necessary to add advanced water treatment in order to discharge it outside the treatment facility.
  • the problem to be solved by the present invention is that in the treatment of organic waste with a high water content such as sewage and livestock excrement, the environmental impact of the generated treated water and products (residues) is low and the yield of raw material sludge that can be converted to energy is reduced.
  • a processing system with high yield of methane gas generation, relatively small equipment, low construction cost, and easy operation.
  • the present invention is a system for generating and recovering methane gas by treating raw water biomass such as sewage and livestock excreta, and mixing and aggregating the flocculant with the raw material biomass, so that the solid floating in the raw material biomass
  • a coagulating sedimentation tank to obtain sludge by coagulating and sedimenting the product and lysate, optionally with adsorption, ion exchange or adsorption and ion exchange
  • a solubilization tank that is mechanically sealed from the outside air, includes a stirring means, a hot air generation means, and an aeration means, and solubilizes the precipitated sludge by aerobic fermentation
  • a methane production tank that is mechanically sealed from the outside air, provided with stirring means and heat exchange means, and anaerobic methane fermentation of the solubilized sludge
  • a two-stage methane gas generation system comprising a transfer device for connecting the coagulation sedimentation tank, the solubilization tank, and the methane generation tank
  • the basic idea of the present invention is that in a two-stage methane gas generation apparatus in which a methane generation tank that performs anaerobic methane fermentation is connected to the next stage of a solubilization tank that performs aerobic fermentation, It is arranged.
  • An appropriate dehydrator can be added to the coagulation sedimentation tank.
  • the raw material biomass Since the moisture content of the raw material biomass can be lowered by the coagulation sedimentation tank and the dehydrator, the raw material biomass is reduced in volume and processed in the front and rear fermentation tanks. Therefore, compared with the case where the volume is reduced by heating and drying, the required energy can be reduced and the energy efficiency is improved.
  • the flocculant of the present invention is a flocculant containing a multifunctional inorganic carbide as a main component in order to solve the conventional problems.
  • the multi-function has the ability as a fungus bed to grow and propagate fermented fungi on the surface even in the fermentation process of separated sludge, adjust the pH of the fermentation process, anaerobic It refers to possessing multiple functions that suppress the generation of hydrogen sulfide generated in methane fermentation and that the final residue can be used for land improvement.
  • a multifunctional inorganic carbide When a multifunctional inorganic carbide is used as a flocculant, the cost and the coagulation sedimentation rate are the same as those of conventional flocculants, but the coagulation efficiency is excellent due to the effects of adsorption and ion exchange functions. At the same time, the environmental load is low and the dehydration tendency is excellent.
  • the process of attaching sludge to the periphery of the multifunctional inorganic carbide by an operation called coagulation sedimentation in advance realizes further increase in efficiency of the fermentation process.
  • the solubilization rate by aerobic fermentation is increased, and the acidity that becomes an inhibitory factor for the subsequent anaerobic methane fermentation Since the conditions are relaxed, the rate of methane production by anaerobic methane fermentation increases.
  • ammonia which is an anaerobic fermentation inhibitor
  • the multifunctional inorganic carbide referred to in the present invention the presence of microorganisms exhibiting a branched cell morphology found in the Cellulomones genus and the like that secrete cellulolytic enzymes can be increased by the SEM microscope. Since it was confirmed from the measurement experiment, when the multifunctional inorganic carbide is introduced into the aerobic solubilization fermentation process, the multifunctional inorganic carbide increases the solubilization efficiency by the aerobic fermentation (Non-patent Document 4).
  • the multifunctional inorganic carbide suppresses a decrease in pH due to organic acid even in methane production by anaerobic methane fermentation at the later stage due to the alkaline maintenance function of the surface and inside. Reduces the inhibition of the activity of fermenting bacteria. Furthermore, the multifunctional inorganic carbide is generated with anaerobic fermentation and suppresses hydrogen sulfide that causes device corrosion. In order to enhance these functions, the multifunctional inorganic carbide can be additionally supplied in the solubilization tank and / or the methane production tank.
  • the multifunctional inorganic carbide added as a coagulant in the coagulation settling tank can of course perform these functions other than coagulation in the subsequent fermentation tank, but is additionally added in the solubilization tank and / or methane production tank as necessary. Thus, a desired function can be enhanced.
  • a part of the residue remaining in the methane production tank can be recycled to the solubilization tank. This is to return part or all of the sludge from the methane production tank to the solubilization tank as appropriate, and to further ferment the unfermented sludge.
  • a horizontal drum type is desirable.
  • the torque for rotation is large due to the viscosity of the raw biomass having a low water content, so that the mechanical load on the rotating blade is large and the power consumption for driving is also large.
  • the mechanical load on the rotating blade is large and the power consumption for driving is also large.
  • the center fixed shaft is fixed, and the body portion is rotatably supported.
  • the drum fermenter rotates, the internal raw material biomass is reversed, and the drum rotates.
  • solubilization tank that performs the aerobic fermentation in the previous stage
  • solubilization is high. Speed can be increased. Since the stirring efficiency is also high in the latter methane generation tank, the methane gas generation rate can be increased.
  • the addition of multifunctional inorganic carbides increases the solubilization rate and relaxes the acidic conditions that are the inhibiting factors of the subsequent anaerobic methane fermentation, so the production of methane gas Increases speed. Furthermore, the corrosive hydrogen sulfide generated with methane generation is suppressed.
  • FIG. 1 is a process diagram of a two-stage methane gas generation system having a pre-aggregation process according to the present invention. A process flow will be described with reference to FIG.
  • the raw material biomass which is organic waste with a high water content such as sewage and livestock excrement received by the methane gas generation system 1, passes through the raw material inlet 51 and is the first stage of the coagulation / dehydration apparatus 20. to go into.
  • the flocculant containing a multifunctional inorganic carbide is mixed and stirred in the raw material biomass, and the solid suspended matter and the dissolved matter in the raw material biomass are coagulated and precipitated.
  • the coagulated and settled sludge is extracted from the lower side of the coagulation sedimentation tank 21, passed through the sedimentation sludge transfer pump 23, and charged into the dehydrator 22.
  • an appropriate method such as a centrifugal dehydrator method or a belt press method can be selected.
  • the treated water after the coagulation sedimentation is discarded from the treated water pipe 25 without performing a special treatment. Or you may put the simple process process which is not illustrated.
  • the sludge is dehydrated by the dehydrator 22 and the water content becomes 70 wt% or less.
  • a drying apparatus can be disposed after the dehydrator 22 to further reduce the moisture content of the raw material biomass to be introduced into the solubilization tank 31.
  • the entire amount of treated water generated by dehydration is returned to the coagulation sedimentation tank 21 through the return water pipe 24.
  • the remaining sludge after dehydration is sent to the solubilization tank 31 via the transfer device 52.
  • the solubilization tank 31 is mechanically sealed and includes stirring means, hot air generating means, and aeration means.
  • Hot air generated by hot air generating means can be blown into the tank of the solubilization tank 31 by the ventilation means to keep the inside of the tank at a desired temperature.
  • the transferred sludge is agitated by agitation means to come into contact with oxygen in the air and aerobic fermentation at a desired temperature. Solubilization proceeds. Further, the odor generated with the fermentation can be deodorized by the exhaust means and the deodorizing means (not shown in FIG. 1) before being diffused to the atmosphere.
  • solubilization tank 31 is mechanically sealed is that the heat energy in the tank is not dissipated and used for heating the methane generation tank in the next stage, and the generated ammonia odor is dissipated. This is to prevent it from happening.
  • the high-molecular polysaccharides, fats, and proteins contained therein are decomposed into low-molecular monosaccharides, fatty acids, and amino acids, respectively. Furthermore, these single molecules are rapidly decomposed into organic acids. This is sent to the methane production tank 41 through the transfer device 53.
  • the methane production tank 41 is mechanically sealed and includes stirring means and heat exchange means.
  • the heat exchange means guides the exhaust heat of the solubilization tank 31 to the methane generation tank 41 and warms the sludge as the contents.
  • the sludge is agitated in a timely manner by agitation means, and anaerobic methane fermentation proceeds, and the produced methane is easily released from the sludge.
  • the reason for mechanically sealing the methane generation tank 41 is to maintain the anaerobic environment necessary for methane generation, and to recover the methane gas generated through the anaerobic methane fermentation of the sludge through the gas pipe 13 and accumulate it in the gas tank 11. It is.
  • the accumulated gas is used as fuel for hot air generating means, a power generation gas engine, and the like.
  • the portion that becomes a residue in the methane generation tank 41 is recycled to the solubilization tank 31 through a transfer device 55 within a necessary range. Since the residue of the methane production tank 41 includes a portion where the methane fermentation has not been completed, the residue may be recycled to the inlet of the methane production tank 41 through the transfer device 55.
  • the flocculant used in the coagulation sedimentation tank 21 placed at the beginning of the process will be described.
  • the flocculant is a multifunctional inorganic carbide or a multifunctional inorganic carbide added with an existing flocculant.
  • Multifunctional inorganic carbides as shown in Table 1 and Table 2, refer to those having raw materials, production methods and functions different from those of general charcoal and activated carbon.
  • the multifunctional inorganic carbide is produced by firing the raw material at a high temperature that is about 200 ° C. higher than that for producing general coal used as a normal fuel, blocking oxygen at all. Therefore, it is almost completely made of carbon, the specific gravity is very light as 0.28 to 0.3, the specific surface area is 300 m2 / g or more, which is larger than 50 m2 / g of ordinary steam coal, and is particularly conductive. There is.
  • activated carbon requires a two-stage manufacturing process in which the material is steamed at 200 to 600 ° C. and then activated at a high temperature of 600 to 1000 ° C. Since it can be manufactured by only one-stage baking process, the process is simple and the required energy can be reduced.
  • multifunctional inorganic carbides are weakly alkaline and advantageous for fermentation, whereas activated carbon is strongly alkaline and microorganisms such as fermenting bacteria stop their activities or die.
  • activated carbon is produced from wood, coconut shells, coal, etc. as raw materials, but it is general biomass that can be produced from multifunctional inorganic carbides, for example, from sludge residues generated after sewage treatment. It will be a countermeasure.
  • multifunctional inorganic carbide high-performance inorganic charcoal manufactured by Venture Visor Pro Co., Ltd. is used as a powder, and a portion having a particle size range of 250 to 600 ⁇ m is selected with a metal sieve.
  • This multifunctional inorganic carbide was subjected to an experiment on the coagulation function according to the following method.
  • (1) Multifunctional inorganic carbides that have been pulverized in advance in a mortar and arranged to a particle size of 250 to 600 microns using a metal sieve.
  • (2) The target wastewater used is a dilution of concentrated sludge produced in an activated sludge aeration tank at a domestic wastewater treatment plant in Chikusei City, Ibaraki Prefecture.
  • the multifunctional inorganic carbide has almost the same aggregating function as that of the natural zeolite, Parklein, which is a commercially available flocculant. This is because the multifunctional inorganic carbide has a positive charge and is electrically conductive, so that the negative charge of the sludge fine particles is neutralized and the solid suspended matter and dissolved matter are adsorbed, ion-exchanged or adsorbed and ionized. This is considered to promote aggregation in some cases with exchange.
  • the gravity dehydration tendency of multifunctional inorganic carbides was not inferior to that of commercially available flocculants such as natural zeolite and parklean.
  • Table 4 shows a comparison between the multifunctional inorganic carbide and Pulclean regarding the BOD of the supernatant liquid after the coagulation sedimentation by the above experiment.
  • the measurement of BOD of the supernatant was entrusted to Oosumi Co., Ltd. This measurement showed that the BOD of the supernatant liquid was low when the multifunctional inorganic carbide was used.
  • the BOD is set to 160 mg / l or less for the industrial wastewater (water discharged to areas other than the sea and lakes), and is set by the Ministry of the Environment. Therefore, the supernatant liquid of the coagulation sedimentation tank 21 in the present invention has a sufficiently low BOD due to the coagulation ability of the multifunctional inorganic carbide, and can be discharged almost as it is without any other treatment.
  • the BOD removal rate of the supernatant when the multifunctional inorganic carbide is used as the flocculant is 99.6% or more.
  • the inflow water flowing into the activated sludge process that is, the BOD of the raw wastewater is about 110 ppm in January 2013. Since the BOD of the discharged water subjected to the advanced water treatment after the activated sludge method is 0.9 ppm, the BOD removal rate is about 99.2%.
  • the multifunctional inorganic carbide is used as a flocculant for the influent water, and it has the same removal rate of 99.6% for the inflow water, the BOD of the supernatant after the coagulation sedimentation is It can be suppressed to 0.5 ppm or less. This indicates that advanced water treatment is not always necessary after coagulation sedimentation.
  • a desired function such as maintaining alkalinity or suppressing generation of hydrogen sulfide is enhanced by additionally supplying a multifunctional inorganic carbide as necessary. You can also.
  • FIG. 2 is a conceptual diagram of a horizontal drum type fermenter.
  • the solubilization tank and the methane production tank constituting the two-stage fermentation tank are of a horizontal drum type. This is because if the moisture content is 70 wt% or less in order to achieve a dry process, the sludge has a viscosity that does not flow, so that a large stirring torque is required in an apparatus having rotating stirring blades.
  • the solubilization tank 31 and the methane generation tank 41 have the same basic structure except that the length of the horizontal drum is different.
  • the same reference numerals in both tanks denote the same numbers, and the subscript “a” indicates that it is a part of the solubilization tank 31, and the subscript “b” indicates a part of the methane generation tank 41. Indicates that there is. In the following description and drawings, subscripts may be omitted when common to both tanks.
  • a cylindrical drum body 121 is rotatably supported by a front chamber 122 and a rear chamber 123 fixed on the base 120.
  • a rotary sealing mechanism is provided between the fixed front chamber 122 and rear chamber 123 and the drum body 121, and is mechanically sealed from the outside air.
  • the solubilization tank 31 is provided with a stirring means, a hot air generation means, and an aeration means, and the methane generation tank 41 is provided with a stirring means and a heat exchange means.
  • Both tanks are provided with a center fixed shaft 124 fixedly supported by the front chamber 122 and the rear chamber 123.
  • Both tanks are provided with shutters that block airflow between the two tanks, and are connected in the order shown in FIG. 1 by a transfer device 53 sealed from the outside air. Further, at the outlet of the methane production tank 41, a cutting machine 54 for discharging the fermentation residue is installed, from which the fermentation residue is recycled to the solubilization tank 31.
  • a gas holder for storing the generated methane gas and other attached devices is omitted.
  • Both tanks are equipped with three types of paddle-shaped stirring blades as stirring means.
  • FIG. 2 only one symbol is attached to the same stirring blade to avoid the drawing from becoming complicated.
  • a plurality of transfer blades 126 which are first stirring blades, are arranged in a spiral pattern on the inner wall of the tank and are arranged upright, and each blade moves the contents in the tank outlet direction as the tank rotates (see FIG. 2) Proceed and transfer toward the right).
  • the reversing blades 127 which are the second stirring blades, are also arranged in a row parallel to the center fixed shaft 124 at each of the upper, lower, left and right positions of the inner wall of the tank, and each blade is accompanied by the rotation of the tank. Then scoop up the contents in the direction of rotation and invert the contents.
  • the fixed blade 125 which is the third stirring blade, is attached to the center fixed shaft 124 in a cross shape.
  • the fixed blade 125 generates a force for transferring the contents in the front direction (left direction in FIG. 2). This stirs the contents against the driving force by the transfer vanes 126.
  • the second embodiment is the same as the first embodiment.
  • the solubilization tank 31 and the methane generation tank 41 have basically the same structure, the cost for manufacturing and maintaining the apparatus is low.
  • the solubilization tank 31 and the methane generation tank 41 into a horizontal drum type, the contents of the tank can be agitated with small power, and there are few parts that are not agitated.
  • the present invention contributes to the development of various industries that discharge raw material biomass, in particular, many industries such as agriculture, fisheries, livestock, food processing, and sales distribution, and can contribute to the activities of local governments that handle garbage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

[Problem] To achieve an easily operated treatment system for treatment of organic waste with a high water content such as sewage and livestock waste, that has little treated water and a low residual environmental impact, is efficient with a high yield for methane gas generation, has comparatively small equipment, and has inexpensive construction costs. [Solution] A two-stage methane gas generating system has an aggregation step disposed in a preliminary stage of a fermentation step formed from a solubilization tank in which sludge is solubilized by aerobic fermentation and a methane generating tank in which the solubilized sludge is made to undergo anaerobic methane fermentation, and the water content of the sludge is made 70 wt% or less so that a drying treatment can be carried out.

Description

前置凝集工程を有する2段型メタンガス生成システムTwo-stage methane gas generation system with pre-flocculation process
本発明は、下水・家畜排泄物などの高含水率の有機性廃棄物を処理するシステムに関する。とくに、原料バイオマスを、凝集工程により汚泥と処理水に分離したうえで、汚泥の部分を乾式でメタン化処理し、メタンガスを効率的に得るシステムに関する。 The present invention relates to a system for processing organic waste having a high water content such as sewage and livestock excrement. In particular, the present invention relates to a system that efficiently obtains methane gas by separating raw material biomass into sludge and treated water by a coagulation process, and then methanating the sludge portion in a dry manner.
図3に工程図で示すように、従来、原料バイオマスは、一般的にまず活性汚泥処理装置6によって処理され、残った汚泥は発酵などの方法で処理されている。この中で使われる活性汚泥処理装置6は、大型の曝気槽62や沈殿池63を必要とし、また曝気の為の電力が大きく、初期建設コスト、運転コスト、操業エネルギー、敷地面積の面で課題がある。 As shown in the process diagram of FIG. 3, conventionally, the raw material biomass is generally first treated by the activated sludge treatment apparatus 6, and the remaining sludge is treated by a method such as fermentation. The activated sludge treatment apparatus 6 used in this requires a large aeration tank 62 and a sedimentation basin 63, and requires a large amount of power for aeration, which is a problem in terms of initial construction cost, operation cost, operating energy, and site area. There is.
また、活性汚泥処理装置6の処理水102ならびに、濃縮汚泥104の固液分離時の処理水はBOD、CODが高く、高度水処理が必要であるという問題がある。 Moreover, the treated water 102 of the activated sludge treatment apparatus 6 and the treated water at the time of solid-liquid separation of the concentrated sludge 104 have high BOD and COD, and there is a problem that advanced water treatment is necessary.
活性汚泥法処理装置6から排出される濃縮汚泥104が、凝集槽81を経て固液分離・脱水装置82を通った後は汚泥ケーキ106となり、次段の工程に送られる。活性汚泥法では、微生物の同化により汚泥量が増加する反面、微生物の分解によって炭酸ガスと水が生成し、汚泥量が減少する現象も起こる。従来の処理では、次段の発酵処理91による堆肥・メタン111の生産、焼却・炭化処理92による焼却灰・炭112の生産、ならびに乾燥処理93による土壌改良剤113の生産の工程の負荷を小さくするために、この汚泥量は最小化をめざしている。たとえば、茨城県筑西市明野西部農業集落排水施設では、活性汚泥処理装置に流入するBODは110mg/l、SSは64mg/lである(2013年1月)。通常家庭排水では、除去BODの35~45%が汚泥となる(非特許文献1)。仮に除去BODの40%が汚泥となる場合、SS分が余剰の汚泥になったとすると、110x0.4=44mg/lのSSが余剰の汚泥になったことになる。実際はBODの部分の中に、SS以外の溶存成分の寄与があるので、元のBODに寄与する有機物のうち、多くても約2/3が汚泥となったと考えられる。 After the concentrated sludge 104 discharged from the activated sludge method treatment apparatus 6 passes through the coagulation tank 81 and passes through the solid-liquid separation / dehydration apparatus 82, it becomes a sludge cake 106 and is sent to the next stage process. In the activated sludge method, the amount of sludge increases due to assimilation of microorganisms, but on the other hand, there is also a phenomenon that the amount of sludge decreases due to the generation of carbon dioxide and water by the decomposition of microorganisms. In the conventional treatment, the production load of compost / methane 111 by the fermentation process 91 of the next stage, the production of incinerated ash / charcoal 112 by the incineration / carbonization treatment 92, and the production of the soil conditioner 113 by the drying treatment 93 are reduced. Therefore, the amount of sludge is aimed at minimization. For example, in an agricultural settlement drainage facility in western Akeno, Chikusei City, Ibaraki Prefecture, the BOD flowing into the activated sludge treatment apparatus is 110 mg / l and SS is 64 mg / l (January 2013). In ordinary household wastewater, 35 to 45% of the removed BOD is sludge (Non-patent Document 1). If 40% of the removed BOD is sludge, assuming that the SS is surplus sludge, 110 × 0.4 = 44 mg / l SS is surplus sludge. Actually, since there is a contribution of dissolved components other than SS in the BOD portion, it is considered that at most about 2/3 of the organic matter contributing to the original BOD has become sludge.
これは、汚泥を資源として捉えると資源を浪費していることになるという問題があることを示している。したがって資源を有効に使うという点で、活性汚泥法以外の方法が提案されている。たとえば、発生する汚泥を嫌気発酵でメタン化することができる。その場合、発生するメタンガスは燃料として用いることができる。さらに、発酵残渣は肥料として用いることができる。この場合は汚泥の量が多いほど、大量のメタンガスなどを得られる。 This indicates that there is a problem that resources are wasted if sludge is regarded as a resource. Therefore, methods other than the activated sludge method have been proposed in terms of effective use of resources. For example, the generated sludge can be methanated by anaerobic fermentation. In that case, the generated methane gas can be used as fuel. Furthermore, the fermentation residue can be used as a fertilizer. In this case, the larger the amount of sludge, the larger the amount of methane gas that can be obtained.
しかし、メタンガスを生成することを目的とすると別の課題もある。メタン発酵には嫌気性環境が必要であるが、それはほとんどの場合、原料バイオマスを大量の水に浸漬して酸素を遮断する湿式(または水封式)で実現される。この結果として、発酵残渣と水の混合物が嫌気発酵の生成物として得られる。 However, there is another problem with the aim of producing methane gas. An anaerobic environment is required for methane fermentation, but in most cases, it is realized by a wet method (or a water seal type) in which raw material biomass is immersed in a large amount of water to block oxygen. As a result, a mixture of fermentation residue and water is obtained as a product of anaerobic fermentation.
これをそのまま液肥として消費できる条件があれば好都合である。しかし液肥の用途が無い環境では、この混合物の固液分離操作と水処理が、さらに必要になるという課題があった。 It would be advantageous if there were conditions that could be used as liquid fertilizer. However, in an environment where there is no use for liquid fertilizer, there is a problem that solid-liquid separation operation and water treatment of this mixture are further required.
それを避けるために、湿式ではなく、原料バイオマスの水分を減少させ含水率を70wt%以下として発酵させる乾式法が有った。本願発明者らは、既に原料バイオマスの水分を減少させるために乾燥する手段として、嫌気発酵槽の直前に好気発酵乾燥槽を配置し、さらに、嫌気発酵工程の残渣を好気発酵乾燥槽にリサイクルする方法を提案した(特許文献1)。 In order to avoid this, there was a dry method in which the moisture content of the raw material biomass was reduced and the water content was reduced to 70 wt% or less instead of being wet. The inventors of the present application have already placed an aerobic fermentation drying tank immediately before the anaerobic fermentation tank as a means for drying to reduce the moisture of the raw material biomass, and further, the residue of the anaerobic fermentation process is placed in the aerobic fermentation drying tank. A recycling method was proposed (Patent Document 1).
この方法によれば、嫌気発酵工程に投入される原料バイオマスの含水率を70wt%以下に低下させ、乾式嫌気発酵を行うので、処理量を大幅に低下できる。たとえば、97wt%の含水率の原料バイオマスを70wt%の含水率にした場合、減容率及び減量率は、約1/10となる。また、嫌気発酵工程の残渣のリサイクルによりメタン収率(単位原料バイオマスあたりのメタン生成量)が高まる。 According to this method, since the moisture content of the raw material biomass input to the anaerobic fermentation process is reduced to 70 wt% or less and dry anaerobic fermentation is performed, the throughput can be significantly reduced. For example, when the raw material biomass having a moisture content of 97 wt% is set to a moisture content of 70 wt%, the volume reduction rate and the weight loss rate are about 1/10. In addition, methane yield (methane production per unit raw material biomass) is increased by recycling the residue in the anaerobic fermentation process.
しかし、原料バイオマスの好気発酵熱を使用する乾燥工程のために原料バイオマスの持つエネルギーが消費されてしまうという課題が残った。 However, the problem that the energy which raw material biomass has consumed for the drying process which uses the aerobic fermentation heat of raw material biomass remained.
また別の例で、凝集沈殿と発酵を組み合わせる方法として、有機性固形物を含有する有機性廃水を無機凝集剤の添加により固液分離処理する凝集沈殿槽と、この凝集沈殿槽で分離された処理液に含まれている有機性成分を酸発酵反応させる酸生成槽と、酸発生槽で処理された処理液を嫌気性処理する嫌気性処理槽とを備えることを特徴としている処理システムが提案されている(特許文献2)。 In another example, as a method of combining coagulation sedimentation and fermentation, an organic wastewater containing organic solids was separated in this coagulation sedimentation tank by solid-liquid separation treatment by adding an inorganic coagulant. Proposed a processing system comprising an acid generation tank that causes an acid fermentation reaction of organic components contained in the processing liquid, and an anaerobic processing tank that anaerobically treats the processing liquid processed in the acid generation tank (Patent Document 2).
この例においては、有機性廃水に含まれている懸濁物質のような微細な有機性固形物を凝集沈殿槽により凝集沈殿させることで取り除くため、後段での嫌気性処理槽を通過することはなく、処理水の水質が向上するとしているが、凝集沈殿した有機性固形物の資源化が目的でなく、後段での嫌気性処理水の処理の効率化が目的である。 In this example, in order to remove fine organic solids such as suspended solids contained in organic wastewater by coagulating sedimentation in the coagulation sedimentation tank, passing through the anaerobic treatment tank in the latter stage is not However, the quality of the treated water is improved, but the purpose is not to recycle the organic solids that have been coagulated and precipitated, but to improve the efficiency of the treatment of the anaerobic treated water in the subsequent stage.
一般に有機性廃棄物処理においては汚泥資源のエネルギー化の最大化は実現されていない。 In general, in the organic waste treatment, maximization of energy conversion of sludge resources has not been realized.
ところで、従来の凝集剤を用いた凝集法には次の問題点があった。つまり、硫酸アルミニウム、塩化鉄のような無機系凝集剤と、高分子凝集剤を併用している上に、天然又は人口ゼオライトを添加しているために、複数の原料調達元、生産のプロセスの複雑化、凝集プロセスの複雑化、凝集コストの増大、脱水性向の低さ、凝集剤の環境への悪影響という問題があった。また凝集後の上澄み液のBODも十分に低下せず、処理設備外に放流するためには、高度水処理の追加も必要である。
 
By the way, the conventional coagulation method using the coagulant has the following problems. In other words, since inorganic flocculants such as aluminum sulfate and iron chloride are used in combination with polymer flocculants, and natural or artificial zeolite is added, multiple raw material sources and production processes There have been problems such as complication, complication process, increase in agglomeration cost, low tendency to dewater, and adverse effect of flocculant on the environment. Further, the BOD of the supernatant liquid after aggregation does not sufficiently decrease, and it is necessary to add advanced water treatment in order to discharge it outside the treatment facility.
PCT/JP2011/002270PCT / JP2011 / 002270 特開2005-125202号公報JP 2005-125202 A
本発明の解決課題は、下水・家畜排泄物などの高含水率の有機性廃棄物の処理にあたって、発生する処理水や生成物(残渣)の環境負荷が低く、エネルギー化できる原料汚泥の収量を増やすことにより、メタンガス生成の収量が高く、設備が比較的小型で建設コストが低廉であり、運転も容易な処理システムを実現することである。 The problem to be solved by the present invention is that in the treatment of organic waste with a high water content such as sewage and livestock excrement, the environmental impact of the generated treated water and products (residues) is low and the yield of raw material sludge that can be converted to energy is reduced. By increasing the number, it is possible to realize a processing system with high yield of methane gas generation, relatively small equipment, low construction cost, and easy operation.
本発明は、下水・家畜排泄物等の、高含水率の原料バイオマスを処理してメタンガスを生成し回収するシステムであって、該原料バイオマスに凝集剤を混合撹拌し、原料バイオマス中の固形浮遊物および溶解物を、吸着、イオン交換または吸着およびイオン交換を場合によっては伴って、凝集沈殿させて汚泥を得る凝集沈殿槽と、
機械的に外気から密封され、撹拌手段、熱風発生手段および通気手段を具え、沈殿した該汚泥を好気発酵によって可溶化する可溶化槽と、
機械的に外気から密封され、撹拌手段および熱交換手段を備え、可溶化した該汚泥を嫌気メタン発酵させるメタン生成槽と、
該凝集沈殿槽、該可溶化槽ならびに該メタン生成槽を記載の順に接続して、各槽の間に、該汚泥を移送する移送装置を具えたことを特徴とする2段型メタンガス生成システムである。
The present invention is a system for generating and recovering methane gas by treating raw water biomass such as sewage and livestock excreta, and mixing and aggregating the flocculant with the raw material biomass, so that the solid floating in the raw material biomass A coagulating sedimentation tank to obtain sludge by coagulating and sedimenting the product and lysate, optionally with adsorption, ion exchange or adsorption and ion exchange;
A solubilization tank that is mechanically sealed from the outside air, includes a stirring means, a hot air generation means, and an aeration means, and solubilizes the precipitated sludge by aerobic fermentation;
A methane production tank that is mechanically sealed from the outside air, provided with stirring means and heat exchange means, and anaerobic methane fermentation of the solubilized sludge;
A two-stage methane gas generation system comprising a transfer device for connecting the coagulation sedimentation tank, the solubilization tank, and the methane generation tank in the order described, and transferring the sludge between the tanks. is there.
本発明の基本的考え方は、好気発酵を行う可溶化槽の次段に嫌気メタン発酵を行うメタン生成槽を連結してなる2段式のメタンガス生成装置において、その前工程として凝集沈殿槽を配置したものである。凝集沈殿槽には適宜な脱水機を追加することができる。 The basic idea of the present invention is that in a two-stage methane gas generation apparatus in which a methane generation tank that performs anaerobic methane fermentation is connected to the next stage of a solubilization tank that performs aerobic fermentation, It is arranged. An appropriate dehydrator can be added to the coagulation sedimentation tank.
凝集沈殿槽及び脱水機によって、原料バイオマスの含水率を低下できるので、前後段の発酵槽において、原料バイオマスは減容減量されて処理される。よって、加熱乾燥して減容する場合に比べて、必要なエネルギーを低減でき、エネルギー効率が改善される。 Since the moisture content of the raw material biomass can be lowered by the coagulation sedimentation tank and the dehydrator, the raw material biomass is reduced in volume and processed in the front and rear fermentation tanks. Therefore, compared with the case where the volume is reduced by heating and drying, the required energy can be reduced and the energy efficiency is improved.
本発明の凝集剤は、従来の問題を解決するために、主成分として多機能無機炭化物を含んだ凝集剤である。多機能とは、凝集機能の他に、分離された汚泥の発酵工程においても発酵菌類を表面に着生させ繁殖させる菌床としての能力を有したり、発酵工程のpHを調整したり、嫌気メタン発酵において発生する硫化水素の発生を抑制したり、最終残渣が土地改良に使用できたりする、複数の機能を保有していることを指す。 The flocculant of the present invention is a flocculant containing a multifunctional inorganic carbide as a main component in order to solve the conventional problems. In addition to the aggregating function, the multi-function has the ability as a fungus bed to grow and propagate fermented fungi on the surface even in the fermentation process of separated sludge, adjust the pH of the fermentation process, anaerobic It refers to possessing multiple functions that suppress the generation of hydrogen sulfide generated in methane fermentation and that the final residue can be used for land improvement.
多機能無機炭化物を凝集剤として使用すると、従来の凝集剤に比較して、コストや凝集沈殿速度は同等であるが、吸着およびイオン交換機能の効果も加わって、凝集効率は優れている。同時に、環境負荷が低く、脱水性向も優れている。あらかじめ凝集沈殿という操作によって汚泥を多機能無機炭化物の周囲に付着させておく処理は発酵工程の一層の効率化を実現する。 When a multifunctional inorganic carbide is used as a flocculant, the cost and the coagulation sedimentation rate are the same as those of conventional flocculants, but the coagulation efficiency is excellent due to the effects of adsorption and ion exchange functions. At the same time, the environmental load is low and the dehydration tendency is excellent. The process of attaching sludge to the periphery of the multifunctional inorganic carbide by an operation called coagulation sedimentation in advance realizes further increase in efficiency of the fermentation process.
2段の発酵工程の内、前段の好気発酵を行う可溶化槽に多機能無機炭化物を加えることにより、好気発酵による可溶化速度を高め、また、続く嫌気メタン発酵の阻害要因となる酸性条件を緩和するので嫌気メタン発酵によるメタン生成速度が上昇する。 By adding multifunctional inorganic carbide to the solubilization tank that performs the aerobic fermentation of the previous stage in the two-stage fermentation process, the solubilization rate by aerobic fermentation is increased, and the acidity that becomes an inhibitory factor for the subsequent anaerobic methane fermentation Since the conditions are relaxed, the rate of methane production by anaerobic methane fermentation increases.
また、前記好気発酵による可溶化工程(ここでは加水分解を伴う低分子化プロセス)に続く、有機酸を生成する酸生成工程において嫌気発酵阻害物質であるアンモニアを除去できるので、後段の嫌気メタン発酵を促進できる(非特許文献2)。 In addition, ammonia, which is an anaerobic fermentation inhibitor, can be removed in the acid production step for producing an organic acid following the solubilization step by aerobic fermentation (here, a low molecular weight process involving hydrolysis). Fermentation can be accelerated (Non-patent Document 2).
また、前段の好気発酵による可溶化における加水分解過程及び酸生成過程が進行し、後段の嫌気メタン発酵過程ではそれら生成された有機酸がほとんどメタン発酵に利用されて消費されることが、実証実験によって示されている(非特許文献3)。 In addition, it has been demonstrated that the hydrolysis and acid generation processes in solubilization by aerobic fermentation in the previous stage proceed, and that the organic acids produced in the latter stage are used and consumed for methane fermentation. It has been shown by experiments (Non-Patent Document 3).
また、本発明で言う多機能無機炭化物の表面において、セルロース分解酵素を分泌するCellulomones属等に見られる分枝型の細胞形態を示す微生物の存在がSEM顕微鏡で、菌数が増大することがATP測定実験から確認されたので、好気可溶化発酵プロセスに多機能無機炭化物を投入すると、多機能無機炭化物は好気発酵による可溶化効率を上昇させることになる(非特許文献4)。 In addition, on the surface of the multifunctional inorganic carbide referred to in the present invention, the presence of microorganisms exhibiting a branched cell morphology found in the Cellulomones genus and the like that secrete cellulolytic enzymes can be increased by the SEM microscope. Since it was confirmed from the measurement experiment, when the multifunctional inorganic carbide is introduced into the aerobic solubilization fermentation process, the multifunctional inorganic carbide increases the solubilization efficiency by the aerobic fermentation (Non-patent Document 4).
また、多機能無機炭化物は、表1のpHの欄に示すように、表面及び内部のアルカリ性維持機能により、後段の嫌気メタン発酵によるメタン生成においても、有機酸によるpHの低下を抑制してメタン発酵菌の活動が阻害されることを減少させる。さらに、多機能無機炭化物は、嫌気性発酵に伴い発生し、装置腐食の原因となる硫化水素を抑制する。これらの機能を強化するため、多機能無機炭化物を可溶化槽および/またはメタン生成槽において追加供給することもできる。
Figure JPOXMLDOC01-appb-I000001
In addition, as shown in the pH column of Table 1, the multifunctional inorganic carbide suppresses a decrease in pH due to organic acid even in methane production by anaerobic methane fermentation at the later stage due to the alkaline maintenance function of the surface and inside. Reduces the inhibition of the activity of fermenting bacteria. Furthermore, the multifunctional inorganic carbide is generated with anaerobic fermentation and suppresses hydrogen sulfide that causes device corrosion. In order to enhance these functions, the multifunctional inorganic carbide can be additionally supplied in the solubilization tank and / or the methane production tank.
Figure JPOXMLDOC01-appb-I000001
凝集沈殿槽で凝集剤として加えた多機能無機炭化物は勿論後段の発酵槽においても凝集以外のこれらの機能を発揮するが、必要に応じて可溶化槽および/またはメタン生成槽において追加して加えることによって、所望の機能を強化することもできる。 The multifunctional inorganic carbide added as a coagulant in the coagulation settling tank can of course perform these functions other than coagulation in the subsequent fermentation tank, but is additionally added in the solubilization tank and / or methane production tank as necessary. Thus, a desired function can be enhanced.
本発明のシステムにおいて、メタン生成槽において残った残渣の一部を、可溶化槽にリサイクルすることもできる。これは、適宜メタン生成槽の汚泥の一部または全部を可溶化槽に戻して、未発酵の汚泥をさらに発酵させるためである。 In the system of the present invention, a part of the residue remaining in the methane production tank can be recycled to the solubilization tank. This is to return part or all of the sludge from the methane production tank to the solubilization tank as appropriate, and to further ferment the unfermented sludge.
可溶化槽およびメタン生成槽の構造としては、横置ドラム型が望ましい。回転する撹拌羽根を利用する構造であると、低含水率の原料バイオマスの粘性のため回転のためのトルクが大きいので回転羽根への機械的な負荷が大きく、駆動のための消費電力も大きい。さらに回転羽根による撹拌が及ばない原料バイオマスも存在する。 As the structure of the solubilization tank and the methane production tank, a horizontal drum type is desirable. In the structure using the rotating stirring blade, the torque for rotation is large due to the viscosity of the raw biomass having a low water content, so that the mechanical load on the rotating blade is large and the power consumption for driving is also large. There are also raw material biomass that cannot be stirred by rotating blades.
それに対して、横置ドラム型は、中心固定軸が固定されて、胴部が回転自在に支持されており、ドラム発酵槽の回転に伴って内部の原料バイオマスが反転され、ドラムの回転のためのトルクが小さく、さらに内部の撹拌羽根による効果によって、撹拌が及ばない部分が少ない。
 
On the other hand, in the horizontal drum type, the center fixed shaft is fixed, and the body portion is rotatably supported. As the drum fermenter rotates, the internal raw material biomass is reversed, and the drum rotates. In addition, there are few parts that cannot be stirred due to the effect of the stirring blades inside.
原料バイオマスの処理にあたって、活性汚泥法ならびに高度水処理を用いないで、生成汚泥の資源化を促進する。エネルギーを消費する熱乾燥でなく、凝集ならびに脱水工程によって原料バイオマスの含水率を低下させる。このために前後段の発酵は処理時間が短くなる。以上の理由によってメタンガスの収量が多くコンパクトなメタンガス生成システムを実現できる。 In processing raw biomass, promote the recycling of produced sludge without using the activated sludge method and advanced water treatment. The moisture content of the raw material biomass is reduced not by thermal drying that consumes energy but by agglomeration and dehydration processes. For this reason, the fermentation time in the front and rear stages shortens the processing time. For these reasons, a compact methane gas generation system with a high yield of methane gas can be realized.
さらに、前段の好気発酵を行う可溶化槽に横置ドラム型の構造を用いれば、可溶化槽自体の回転により原料バイオマスが反転して撹拌されるために、撹拌効率が高いので、可溶化速度を高めることができる。後段のメタン生成槽についても、同様に撹拌効率が高いので、メタンガス生成速度を高めることができる。 Furthermore, if a horizontal drum-type structure is used for the solubilization tank that performs the aerobic fermentation in the previous stage, since the raw material biomass is reversed and stirred by the rotation of the solubilization tank itself, solubilization is high. Speed can be increased. Since the stirring efficiency is also high in the latter methane generation tank, the methane gas generation rate can be increased.
また、前段の好気発酵を行う可溶化槽において、多機能無機炭化物を追加して加えることにより、可溶化速度を高め、続く嫌気メタン発酵の阻害要因である酸性条件を緩和するのでメタンガスの生成速度が増加する。さらに、メタン生成と共に発生する腐食性の硫化水素を抑制する。
 
In addition, in the solubilization tank that performs the aerobic fermentation of the previous stage, the addition of multifunctional inorganic carbides increases the solubilization rate and relaxes the acidic conditions that are the inhibiting factors of the subsequent anaerobic methane fermentation, so the production of methane gas Increases speed. Furthermore, the corrosive hydrogen sulfide generated with methane generation is suppressed.
前置凝集工程を有する2段型メタンガス生成システムの工程図Process diagram of two-stage methane gas generation system with pre-flocculation process 横置ドラム型の発酵槽の概念図Conceptual diagram of horizontal drum type fermenter 活性汚泥法を使う高含水率の原料バイオマス処理システムの工程図Process diagram of raw water biomass treatment system using activated sludge method
以下、本発明による前置凝集工程を有する2段型メタンガス生成システムについて実施例をあげて説明する。 Hereinafter, a two-stage methane gas generation system having a pre-aggregation process according to the present invention will be described with reference to examples.
図1は本発明による前置凝集工程を有する2段型メタンガス生成システムの工程図である。この図1に沿って、工程の流れを説明する。メタンガス生成システム1に受け入れられた下水・家畜排泄物などの高含水率の有機性廃棄物である原料バイオマスは、原料入口51を通って凝集・脱水装置20の最初の段階である凝集沈殿槽21に入る。 FIG. 1 is a process diagram of a two-stage methane gas generation system having a pre-aggregation process according to the present invention. A process flow will be described with reference to FIG. The raw material biomass, which is organic waste with a high water content such as sewage and livestock excrement received by the methane gas generation system 1, passes through the raw material inlet 51 and is the first stage of the coagulation / dehydration apparatus 20. to go into.
ここで、多機能無機炭化物を含む凝集剤を原料バイオマスに混合撹拌して、原料バイオマス中の固形浮遊物および溶解物の凝集沈殿を行う。凝集沈殿した汚泥は凝集沈殿槽21の下側から抜き取られ、沈殿汚泥移送ポンプ23を通過して脱水機22に投入される。脱水機22は遠心脱水機方式、ベルトプレス方式など適宜な方式を選定することができる。凝集沈殿後の処理水は、特別な処理を行うことなく、処理水配管25から廃棄される。または、図示しない簡易な処理工程を置いても良い。 Here, the flocculant containing a multifunctional inorganic carbide is mixed and stirred in the raw material biomass, and the solid suspended matter and the dissolved matter in the raw material biomass are coagulated and precipitated. The coagulated and settled sludge is extracted from the lower side of the coagulation sedimentation tank 21, passed through the sedimentation sludge transfer pump 23, and charged into the dehydrator 22. As the dehydrator 22, an appropriate method such as a centrifugal dehydrator method or a belt press method can be selected. The treated water after the coagulation sedimentation is discarded from the treated water pipe 25 without performing a special treatment. Or you may put the simple process process which is not illustrated.
汚泥は、脱水機22によって脱水され、含水率を70wt%以下となる。脱水機22の後段に乾燥装置を配置して、可溶化槽31に投入する原料バイオマスの含水率をさらに下げることもできる。脱水によって発生する処理水は、戻水配管24を通って全量が凝集沈殿槽21に戻される。脱水後の残余の汚泥は、移送装置52を経て可溶化槽31に送られる。 The sludge is dehydrated by the dehydrator 22 and the water content becomes 70 wt% or less. A drying apparatus can be disposed after the dehydrator 22 to further reduce the moisture content of the raw material biomass to be introduced into the solubilization tank 31. The entire amount of treated water generated by dehydration is returned to the coagulation sedimentation tank 21 through the return water pipe 24. The remaining sludge after dehydration is sent to the solubilization tank 31 via the transfer device 52.
可溶化槽31は機械的に密封されており、撹拌手段、熱風発生手段および通気手段を備えている。図1に図示しない熱風発生手段で発生した熱風を通気手段によって可溶化槽31の槽内に吹き込んで、槽内を所望の温度に保持しておくこともできる。可溶化槽31にあらかじめ加温された、好気発酵を行う種菌を投入しておくと、移送された汚泥は、撹拌手段によって撹拌されて空気中の酸素と触れ、所望の温度で好気発酵して可溶化が進む。また、図1に図示しない排気手段、脱臭手段により、発酵に伴って発生する臭気を脱臭してから大気に放散することができる。 The solubilization tank 31 is mechanically sealed and includes stirring means, hot air generating means, and aeration means. Hot air generated by hot air generating means (not shown in FIG. 1) can be blown into the tank of the solubilization tank 31 by the ventilation means to keep the inside of the tank at a desired temperature. When inoculated bacteria to be aerobically fermented that have been preheated in the solubilization tank 31, the transferred sludge is agitated by agitation means to come into contact with oxygen in the air and aerobic fermentation at a desired temperature. Solubilization proceeds. Further, the odor generated with the fermentation can be deodorized by the exhaust means and the deodorizing means (not shown in FIG. 1) before being diffused to the atmosphere.
可溶化槽31を機械的に密封する理由は、槽内の熱エネルギーを放散しないようにして、次段のメタン生成槽を加温することに使用するためであり、また発生するアンモニア臭を放散しないようにするためである。 The reason why the solubilization tank 31 is mechanically sealed is that the heat energy in the tank is not dissipated and used for heating the methane generation tank in the next stage, and the generated ammonia odor is dissipated. This is to prevent it from happening.
可溶化槽31で好気発酵した汚泥においては、含まれていた高分子の多糖類、脂肪、タンパク質が、それぞれ、低分子である、単糖、脂肪酸類、アミノ酸類に分解される。さらに、これらの単分子は有機酸に速やかに分解される。これを、移送装置53を経て、メタン生成槽41に送る。 In the sludge that has been aerobically fermented in the solubilization tank 31, the high-molecular polysaccharides, fats, and proteins contained therein are decomposed into low-molecular monosaccharides, fatty acids, and amino acids, respectively. Furthermore, these single molecules are rapidly decomposed into organic acids. This is sent to the methane production tank 41 through the transfer device 53.
メタン生成槽41は機械的に密封されており、撹拌手段および熱交換手段を備えている。熱交換手段は可溶化槽31の排気熱をメタン生成槽41に導き、内容物である汚泥を加温する。汚泥は撹拌手段によって適時に撹拌され、嫌気メタン発酵が進み、また生成されたメタンが汚泥から放出されやすくする。メタン生成槽41を機械的に密封する理由はメタン生成に必要な嫌気環境を維持し、汚泥の嫌気メタン発酵が進んで発生したメタンガスを、ガス配管13を経て回収し、ガスタンク11に蓄積するためである。蓄積されたガスは、熱風発生手段や発電用ガスエンジンなどの燃料として使用される。 The methane production tank 41 is mechanically sealed and includes stirring means and heat exchange means. The heat exchange means guides the exhaust heat of the solubilization tank 31 to the methane generation tank 41 and warms the sludge as the contents. The sludge is agitated in a timely manner by agitation means, and anaerobic methane fermentation proceeds, and the produced methane is easily released from the sludge. The reason for mechanically sealing the methane generation tank 41 is to maintain the anaerobic environment necessary for methane generation, and to recover the methane gas generated through the anaerobic methane fermentation of the sludge through the gas pipe 13 and accumulate it in the gas tank 11. It is. The accumulated gas is used as fuel for hot air generating means, a power generation gas engine, and the like.
メタン生成槽41で残渣となった部分は、移送装置55を通って、必要な範囲で可溶化槽31にリサイクルされる。メタン生成槽41の残渣は、メタン発酵が終了しなかった部分を含んでいるので、移送装置55を通って、メタン生成槽41の入口にリサイクルしてもよい。 The portion that becomes a residue in the methane generation tank 41 is recycled to the solubilization tank 31 through a transfer device 55 within a necessary range. Since the residue of the methane production tank 41 includes a portion where the methane fermentation has not been completed, the residue may be recycled to the inlet of the methane production tank 41 through the transfer device 55.
ここで、工程の最初に置かれた凝集沈殿槽21で使われる凝集剤について説明する。凝集剤は多機能無機炭化物、もしくは多機能無機炭化物に既存の凝集剤を加えたものである。多機能無機炭化物というのは表1および表2に示したように、一般炭および活性炭と異なる原料、製法、機能を有するものを指す。
Figure JPOXMLDOC01-appb-I000002
Here, the flocculant used in the coagulation sedimentation tank 21 placed at the beginning of the process will be described. The flocculant is a multifunctional inorganic carbide or a multifunctional inorganic carbide added with an existing flocculant. Multifunctional inorganic carbides, as shown in Table 1 and Table 2, refer to those having raw materials, production methods and functions different from those of general charcoal and activated carbon.
Figure JPOXMLDOC01-appb-I000002
具体的には、表1に示した通り、多機能無機炭化物は、通常の燃料として使う一般炭を製造するよりも200℃程度高い高温で、酸素を一切遮断して原料を焼成して製造するので、ほぼ完全に炭素からなっており、比重が0.28~0.3と極めて軽く、比表面積は300m2/g以上と、通常の一般炭の50m2/g以下に比べ大きく、また特に通電性がある。 Specifically, as shown in Table 1, the multifunctional inorganic carbide is produced by firing the raw material at a high temperature that is about 200 ° C. higher than that for producing general coal used as a normal fuel, blocking oxygen at all. Therefore, it is almost completely made of carbon, the specific gravity is very light as 0.28 to 0.3, the specific surface area is 300 m2 / g or more, which is larger than 50 m2 / g of ordinary steam coal, and is particularly conductive. There is.
一方、表2に示した通り、活性炭は材料を200~600℃で蒸し焼きにした上で、600~1000℃の高温で賦活するという2段階の製造工程が必要であるが、多機能無機炭化物は1段階の焼成工程のみで製造できるので、工程が簡易で所要エネルギーを下げることができる。また、多機能無機炭化物は弱アルカリ性であり発酵に有利であるのに対して、活性炭は強アルカリ性であって、発酵菌をはじめとする微生物は活動を停止するか死滅してしまう。また、活性炭が木、ヤシ殻、石炭などを原料として製造されるのにたいして、多機能無機炭化物の原料となるのはバイオマス全般であり、たとえば下水処理後に発生する汚泥残渣からも製造できるので、環境対策ともなる。 On the other hand, as shown in Table 2, activated carbon requires a two-stage manufacturing process in which the material is steamed at 200 to 600 ° C. and then activated at a high temperature of 600 to 1000 ° C. Since it can be manufactured by only one-stage baking process, the process is simple and the required energy can be reduced. In addition, multifunctional inorganic carbides are weakly alkaline and advantageous for fermentation, whereas activated carbon is strongly alkaline and microorganisms such as fermenting bacteria stop their activities or die. In addition, activated carbon is produced from wood, coconut shells, coal, etc. as raw materials, but it is general biomass that can be produced from multifunctional inorganic carbides, for example, from sludge residues generated after sewage treatment. It will be a countermeasure.
多機能無機炭化物の具体的な例としては、株式会社ベンチャーバイザーズ・プロ製の高機能無機炭を粉末として、金属篩により250~600μmの粒径範囲の部分を選別したものである。 As a specific example of the multifunctional inorganic carbide, high-performance inorganic charcoal manufactured by Venture Visor Pro Co., Ltd. is used as a powder, and a portion having a particle size range of 250 to 600 μm is selected with a metal sieve.
この多機能無機炭化物について、以下の方法にしたがって凝集機能の実験を行った。(1)あらかじめ乳鉢で粉砕して粉末とした多機能無機炭化物を、金属篩によって250~600ミクロンの粒経に揃えておく。(2)対象排水は、茨城県筑西市の生活排水処理場において活性汚泥法の曝気槽で生成された濃縮汚泥を希釈したものを用いる。(3)凝集剤として多機能無機炭化物を1リットルにつき0.1gを用いて、撹拌モーターで撹拌後、メスシリンダーに移し、上澄み液と汚泥層の境界の位置の時間的変化から凝集沈降速度を測定する。(4)一定時間後の汚泥をろ過し、ろ過後の汚泥の含水量を測定する。(5)上澄み液のCODをパックテストで測定する。 This multifunctional inorganic carbide was subjected to an experiment on the coagulation function according to the following method. (1) Multifunctional inorganic carbides that have been pulverized in advance in a mortar and arranged to a particle size of 250 to 600 microns using a metal sieve. (2) The target wastewater used is a dilution of concentrated sludge produced in an activated sludge aeration tank at a domestic wastewater treatment plant in Chikusei City, Ibaraki Prefecture. (3) Using 0.1 g per liter of multifunctional inorganic carbide as a flocculant, stirring with a stirring motor, transferring to a graduated cylinder, and determining the coagulation sedimentation rate from the temporal change in the position of the supernatant liquid and sludge layer. taking measurement. (4) The sludge after a certain time is filtered, and the water content of the sludge after filtration is measured. (5) The COD of the supernatant is measured by a pack test.
表3に、多機能無機炭化物、天然ゼオライト、市販の無機系凝集剤パルクリーン(シエエス化学工業株式会社製造の商品名)をそれぞれ単独で凝集剤として用いた場合、及び、多機能無機炭化物に天然ゼオライト、硫化アルミニウムをそれぞれ加えた凝集剤を用いた場合の凝集実験結果を示す。パルクリーン以外の撹拌回転数は650rpmで撹拌時間は5分間で行った。パルクリーンについては、650rpmで2.5分間、ついで150rpmで2.5分間撹拌を行った。撹拌後、1000ccのメスシリンダーに移して、沈降速度を凝集汚泥の上面の高さの時間変化によって測定した。表3に凝集汚泥の上面以下の体積の測定結果を示してある。
 
Figure JPOXMLDOC01-appb-I000003
In Table 3, when multifunctional inorganic carbide, natural zeolite, and commercially available inorganic flocculant Pulclean (trade name manufactured by Sies Chemical Industry Co., Ltd.) are used alone as flocculants, they are natural for multifunctional inorganic carbides. The agglomeration experiment results when using a flocculant added with zeolite and aluminum sulfide are shown. Stirring speeds other than Pulclean were 650 rpm and the stirring time was 5 minutes. For Pulclean, stirring was performed at 650 rpm for 2.5 minutes and then at 150 rpm for 2.5 minutes. After stirring, the mixture was transferred to a 1000 cc graduated cylinder, and the sedimentation rate was measured by the time change of the height of the upper surface of the coagulated sludge. Table 3 shows the measurement results of the volume below the upper surface of the coagulated sludge.

Figure JPOXMLDOC01-appb-I000003
表3に示した沈降速度の実験結果より、多機能無機炭化物は、市販の凝集剤である天然ゼオライト、パルクリーンとほぼ同じ凝集機能を有することが示された。これは多機能無機炭化物が正電荷を持ち、且つ導電性を有するため、汚泥の微粒子の持つ負電荷を面的に中和させ、固形浮遊物および溶解物を、吸着、イオン交換または吸着およびイオン交換を場合によっては伴って凝集を促進するためと考えられる。多機能無機炭化物の重力脱水性向も天然ゼオライト、パルクリーンなど市販凝集剤等に劣らなかった。 From the sedimentation rate experimental results shown in Table 3, it was shown that the multifunctional inorganic carbide has almost the same aggregating function as that of the natural zeolite, Parklein, which is a commercially available flocculant. This is because the multifunctional inorganic carbide has a positive charge and is electrically conductive, so that the negative charge of the sludge fine particles is neutralized and the solid suspended matter and dissolved matter are adsorbed, ion-exchanged or adsorbed and ionized. This is considered to promote aggregation in some cases with exchange. The gravity dehydration tendency of multifunctional inorganic carbides was not inferior to that of commercially available flocculants such as natural zeolite and parklean.
次に、表4に、上記実験による凝集沈殿後の上澄み液のBODについて、多機能無機炭化物とパルクリーンの比較を示してある。上澄み液のBODの測定は株式会社オオスミに委託した。この測定により、多機能無機炭化物を使った場合の上澄み液のBODが低いことが示された。事業場排水(海域及び湖沼以外への排出水)に対し、BODは160mg/l以下と、環境省によって定められている。したがって、本発明における凝集沈殿槽21の上澄み液は、多機能無機炭化物による凝集能力によってBODが十分に低いので、別段の処理をすることなく、ほとんどそのまま放流することも可能である。 Next, Table 4 shows a comparison between the multifunctional inorganic carbide and Pulclean regarding the BOD of the supernatant liquid after the coagulation sedimentation by the above experiment. The measurement of BOD of the supernatant was entrusted to Oosumi Co., Ltd. This measurement showed that the BOD of the supernatant liquid was low when the multifunctional inorganic carbide was used. The BOD is set to 160 mg / l or less for the industrial wastewater (water discharged to areas other than the sea and lakes), and is set by the Ministry of the Environment. Therefore, the supernatant liquid of the coagulation sedimentation tank 21 in the present invention has a sufficiently low BOD due to the coagulation ability of the multifunctional inorganic carbide, and can be discharged almost as it is without any other treatment.
上記実験によれば、表4に示すように、多機能無機炭化物を凝集剤として使ったときの上澄み液のBOD除去率は99.6%以上である。前記、茨城県筑西市の生活排水処理場においては、活性汚泥法に流入する流入水、つまり原排水のBODは2013年1月において、約110ppmである。活性汚泥法の後に、高度水処理を行った放流水のBODは0.9ppmであるので、BOD除去率は約99.2%である。仮に流入水に対して多機能無機炭化物を凝集剤として使ったとき、この流入水に対して同じ除去率である99.6%を有しているとすると、凝集沈殿後の上澄み液のBODを0.5ppm以下に抑えることができることになる。このことは凝集沈殿後に高度水処理が必ずしも必要でないことを示している。
Figure JPOXMLDOC01-appb-I000004
According to the above experiment, as shown in Table 4, the BOD removal rate of the supernatant when the multifunctional inorganic carbide is used as the flocculant is 99.6% or more. In the domestic wastewater treatment plant in Chikusei City, Ibaraki Prefecture, the inflow water flowing into the activated sludge process, that is, the BOD of the raw wastewater is about 110 ppm in January 2013. Since the BOD of the discharged water subjected to the advanced water treatment after the activated sludge method is 0.9 ppm, the BOD removal rate is about 99.2%. If the multifunctional inorganic carbide is used as a flocculant for the influent water, and it has the same removal rate of 99.6% for the inflow water, the BOD of the supernatant after the coagulation sedimentation is It can be suppressed to 0.5 ppm or less. This indicates that advanced water treatment is not always necessary after coagulation sedimentation.
Figure JPOXMLDOC01-appb-I000004
活性汚泥化法では、有機物は好気性微生物群による吸着、同化を経て、フロック化(粒子の粗大化)し、汚泥を生成するので、処理には比較的長い時間を要する。それに対し、多機能無機炭化物による凝集沈殿においては、物理化学的相互作用により凝集が起こるので凝集速度が大きく、かつフロック化した粒子が大きいので沈殿速度も大きい。また、凝集剤のランニングコストは活性汚泥法における曝気の電気代と比べると安価である。さらに、凝集沈殿汚泥はそのほとんどが資源化の原料となるので、資源化の観点からみても本発明は活性汚泥法を用いた場合より優れている。 In the activated sludge process, organic matter undergoes adsorption and assimilation by an aerobic microorganism group, and then flocks (particles become coarse) to generate sludge. Therefore, the treatment takes a relatively long time. On the other hand, in the coagulation sedimentation by the multifunctional inorganic carbide, the aggregation occurs due to the physicochemical interaction, so the aggregation rate is high, and the precipitation rate is also large because the floculated particles are large. In addition, the running cost of the flocculant is lower than the electricity cost for aeration in the activated sludge method. Furthermore, since most of the aggregated sludge is a raw material for recycling, the present invention is superior to the case using the activated sludge method from the viewpoint of recycling.
以上の実験から以下の結論が得られた。多機能無機炭化物は、既存の凝集剤と比較して、他の凝集機能は同等の効果を示し、BOD除去に優れた効果を示した。よって、多機能無機炭化物の単独の使用により、既存の複数成分の凝集剤のデメリットを改善できることがわかった。 The following conclusions were obtained from the above experiment. Compared with the existing flocculant, the multifunctional inorganic carbide showed the same effect in other flocculating functions, and showed an excellent effect in removing BOD. Therefore, it was found that the disadvantage of the existing multi-component flocculant can be improved by using the multifunctional inorganic carbide alone.
また、必要に応じて可溶化槽および/またはメタン生成槽において、多機能無機炭化物を追加供給することによって、アルカリ性を維持したり、硫化水素の発生を抑制したりするなど所望の機能を強化することもできる。 In addition, in a solubilization tank and / or a methane generation tank, a desired function such as maintaining alkalinity or suppressing generation of hydrogen sulfide is enhanced by additionally supplying a multifunctional inorganic carbide as necessary. You can also.
図2は横置ドラム型の発酵槽の概念図である。本発明である前置凝集工程を有する2段型メタンガス生成システムにおいては、2段型発酵槽をなしている可溶化槽ならびにメタン生成槽は横置ドラム型であることが望ましい。なぜなら、乾式の工程とするために含水率を70wt%以下とすると、汚泥は流動しない粘度状になるので、回転する撹拌羽根を持った装置では大きな撹拌トルクが必要となるからである。 FIG. 2 is a conceptual diagram of a horizontal drum type fermenter. In the two-stage methane gas production system having the pre-flocculation process according to the present invention, it is desirable that the solubilization tank and the methane production tank constituting the two-stage fermentation tank are of a horizontal drum type. This is because if the moisture content is 70 wt% or less in order to achieve a dry process, the sludge has a viscosity that does not flow, so that a large stirring torque is required in an apparatus having rotating stirring blades.
図2において見てとれるように、可溶化槽31とメタン生成槽41は横置ドラムの長手方向の長さ寸法が異なるだけで基本的構造は同じである。両槽の同じ部分の符号は同じ番号としてあり、添え字がaであるのは可溶化槽31の一部であることを示し、添え字がbであるのはメタン生成槽41の一部であることを示す。以下の説明および図において、両槽に共通な場合は、添え字を省略することがある。 As can be seen in FIG. 2, the solubilization tank 31 and the methane generation tank 41 have the same basic structure except that the length of the horizontal drum is different. The same reference numerals in both tanks denote the same numbers, and the subscript “a” indicates that it is a part of the solubilization tank 31, and the subscript “b” indicates a part of the methane generation tank 41. Indicates that there is. In the following description and drawings, subscripts may be omitted when common to both tanks.
可溶化槽31およびメタン生成槽41の両槽とも、ベース120の上に固定された前面チャンバー122および後面チャンバー123によって、円筒形をしたドラムの胴部121が回転自在に支持されている。 In both the solubilization tank 31 and the methane generation tank 41, a cylindrical drum body 121 is rotatably supported by a front chamber 122 and a rear chamber 123 fixed on the base 120.
固定されている前面チャンバー122および後面チャンバー123とドラムの胴部121の間には回転シール機構を有し、機械的に外気から密封されている。また、可溶化槽31は撹拌手段、熱風発生手段および通気手段を備えており、メタン生成槽41は、撹拌手段および熱交換手段を備えている。 A rotary sealing mechanism is provided between the fixed front chamber 122 and rear chamber 123 and the drum body 121, and is mechanically sealed from the outside air. Moreover, the solubilization tank 31 is provided with a stirring means, a hot air generation means, and an aeration means, and the methane generation tank 41 is provided with a stirring means and a heat exchange means.
両槽とも前面チャンバー122および後面チャンバー123に固定されて支持されている中心固定軸124を備えている。 Both tanks are provided with a center fixed shaft 124 fixedly supported by the front chamber 122 and the rear chamber 123.
両槽は、両槽の間の通気を遮断するシャッターを備え、外気から密封された移送装置53によって、図1に示す順に接続されている。またメタン生成槽41の出口には発酵残滓を排出する切出機54が設置され、そこから発酵の残滓が可溶化槽31へリサイクルされる。
図2では、生成したメタンガスを貯留するガスホルダーその他の付属装置の図示を省略してある。
Both tanks are provided with shutters that block airflow between the two tanks, and are connected in the order shown in FIG. 1 by a transfer device 53 sealed from the outside air. Further, at the outlet of the methane production tank 41, a cutting machine 54 for discharging the fermentation residue is installed, from which the fermentation residue is recycled to the solubilization tank 31.
In FIG. 2, illustration of a gas holder for storing the generated methane gas and other attached devices is omitted.
両槽とも撹拌手段として、3種類のパドル状の撹拌羽根を内部に備えている。図2においては、図面が煩雑になることを避けて、同じ撹拌羽根については1つだけ符号をつけてある。
第1の撹拌羽根である移送羽根126は槽の内壁上に螺旋曲線を描いて多数が配列されて立設されており、各羽根が槽の回転に伴って内容物を槽の出口方向(図2で右方向)へ向かって推進移送する。
Both tanks are equipped with three types of paddle-shaped stirring blades as stirring means. In FIG. 2, only one symbol is attached to the same stirring blade to avoid the drawing from becoming complicated.
A plurality of transfer blades 126, which are first stirring blades, are arranged in a spiral pattern on the inner wall of the tank and are arranged upright, and each blade moves the contents in the tank outlet direction as the tank rotates (see FIG. 2) Proceed and transfer toward the right).
第2の撹拌羽根である反転羽根127は同じく槽の内壁の上下左右の各位置において中心固定軸124に平行な各1列をなして配列立設されており、各羽根が槽の回転に伴って内容物を回転方向にすくい上げて、内容物を反転撹拌する。 The reversing blades 127, which are the second stirring blades, are also arranged in a row parallel to the center fixed shaft 124 at each of the upper, lower, left and right positions of the inner wall of the tank, and each blade is accompanied by the rotation of the tank. Then scoop up the contents in the direction of rotation and invert the contents.
第3の撹拌羽根である固定羽根125は、中心固定軸124に十字型にクロスして取り付けられている。固定羽根125は、前面方向(図2で左方向)に内容物を移送する力を発生する。これは、移送羽根126による推進力に抗して内容物を攪拌する。 The fixed blade 125, which is the third stirring blade, is attached to the center fixed shaft 124 in a cross shape. The fixed blade 125 generates a force for transferring the contents in the front direction (left direction in FIG. 2). This stirs the contents against the driving force by the transfer vanes 126.
以上の点以外は実施例1と同様である。 Except for the above points, the second embodiment is the same as the first embodiment.
本実施例によれば、可溶化槽31とメタン生成槽41を基本的に同じ構造としてあるので、装置の製作や保守にかかる費用が少ない。
可溶化槽31ならびにメタン生成槽41を横置ドラム型とすることにより、小さな動力で槽内容物の撹拌が可能になり、また撹拌されない部分が少ない。
According to the present embodiment, since the solubilization tank 31 and the methane generation tank 41 have basically the same structure, the cost for manufacturing and maintaining the apparatus is low.
By making the solubilization tank 31 and the methane generation tank 41 into a horizontal drum type, the contents of the tank can be agitated with small power, and there are few parts that are not agitated.
可溶化槽31の内部では撹拌手段により、吹き込まれる熱風と槽内容物との接触が良好になり好気発酵が早く進む。メタン生成槽41の内部では、撹拌手段により嫌気発酵進行中のバイオマス塊が砕かれてメタンガスの汚泥からの放散が良好になる。
 
Inside the solubilization tank 31, the contact between the hot air blown and the contents of the tank is improved by the stirring means, and the aerobic fermentation proceeds quickly. Inside the methane production tank 41, the biomass mass in the course of anaerobic fermentation is crushed by the stirring means, and the emission of methane gas from the sludge is improved.
 本発明は、原料バイオマスを排出するあらゆる産業、特に農漁業・畜産・食品加工・同販売流通等多くの産業の発達に寄与すると共に、生ごみ処理に当たる自治体等の活動に貢献することができる。
 
The present invention contributes to the development of various industries that discharge raw material biomass, in particular, many industries such as agriculture, fisheries, livestock, food processing, and sales distribution, and can contribute to the activities of local governments that handle garbage.
1   メタンガス生成システム
11  ガスタンク
12  横置ドラム型発酵槽
120a、120b ベース
121a、121b 胴部
122a、122b 前面チャンバー
123a、123b 後面チャンバー
124a、124b 中心固定軸
125a、125b 固定羽根
126a、126b 移送羽根
127a、127b 反転羽根
13  ガス配管
20  凝集・脱水装置
21  凝集沈殿槽
22  脱水機
23  沈殿汚泥移送ポンプ
24  戻水配管
25  処理水配管
31  可溶化槽
41  メタン生成槽
51  原料入口
52  移送装置
53  移送装置
54  切出機
55  移送装置
6   活性汚泥処理装置
61  最初沈殿池
62  曝気槽
63  沈殿池
7   高度水処理
81  凝集槽
82  固液分離・脱水装置
91  発酵処理
92  焼却・炭化処理
93  乾燥処理
101 原水
102 処理水
103 高度処理水
104 濃縮汚泥
105 返送汚泥
106 汚泥ケーキ
111 堆肥・メタン
112 焼却灰・炭
113 土壌改良剤
DESCRIPTION OF SYMBOLS 1 Methane gas production system 11 Gas tank 12 Horizontal drum type fermenter 120a, 120b Base 121a, 121b Body part 122a, 122b Front chamber 123a, 123b Rear chamber 124a, 124b Center fixed shaft 125a, 125b Fixed blade 126a, 126b Transfer blade 127a, 127b Inverting blade 13 Gas pipe 20 Coagulation / dehydration apparatus 21 Coagulation sedimentation tank 22 Dehydrator 23 Precipitation sludge transfer pump 24 Return water pipe 25 Treated water pipe 31 Solubilization tank 41 Methane generation tank 51 Raw material inlet 52 Transfer apparatus 53 Transfer apparatus 54 Cutting Unloader 55 Transfer device 6 Activated sludge treatment device 61 Initial sedimentation basin 62 Aeration tank 63 Sedimentation basin 7 Advanced water treatment 81 Coagulation tank 82 Solid-liquid separation / dehydration device 91 Fermentation treatment 92 Incineration / carbonization treatment 93 Drying treatment 101 Raw water 102 Treatment Water 103 Highly treated water 104 Concentrated sludge 105 Return sludge 106 Sludge cake 111 Compost, methane 112 Incinerated ash, charcoal 113 Soil conditioner

Claims (6)

  1. 下水・家畜排泄物等の、高含水率の原料バイオマスを処理してメタンガスを生成し回収するシステムであって、
    該原料バイオマスに凝集剤を、混合撹拌し、原料バイオマス中の固形浮遊物および溶解物を吸着、イオン交換または吸着およびイオン交換を場合によっては伴って、凝集沈殿させて汚泥を得る凝集沈殿槽と、
    機械的に外気から密封され、撹拌手段、熱風発生手段および通気手段を具え、沈殿した該汚泥を好気発酵によって可溶化する可溶化槽と、
    機械的に外気から密封され、撹拌手段および熱交換手段を備え、可溶化した該汚泥を嫌気メタン発酵させるメタン生成槽と、
    該凝集沈殿槽、該可溶化槽ならびに該メタン生成槽を記載の順に接続して、各槽の間に、該汚泥を移送する移送装置を具えたことを特徴とする前置凝集工程を有する2段型メタンガス生成システム。
    A system that generates and recovers methane gas by processing high moisture content raw material biomass such as sewage and livestock excreta,
    A flocculant that mixes and stirs the raw material biomass with solid flocculent and dissolved matter in the raw material biomass, adsorbs, ion-exchanges or adsorbs and ion-exchanges in some cases, and coagulates and precipitates to obtain sludge ,
    A solubilization tank that is mechanically sealed from the outside air, includes a stirring means, a hot air generation means, and an aeration means, and solubilizes the precipitated sludge by aerobic fermentation;
    A methane production tank that is mechanically sealed from the outside air, provided with stirring means and heat exchange means, and anaerobic methane fermentation of the solubilized sludge;
    2 having a pre-flocculation step characterized in that the coagulation sedimentation tank, the solubilization tank and the methane generation tank are connected in the order described, and a transfer device for transferring the sludge is provided between the tanks. Stage type methane gas generation system.
  2. 請求項1に記載の前置凝集工程を有する2段型メタンガス生成システムであって、凝集剤は多機能無機炭化物を含むことを特徴とする2段型メタンガス生成システム。 The two-stage methane gas generation system having the pre-aggregation step according to claim 1, wherein the flocculant contains a multifunctional inorganic carbide.
  3. 請求項1に記載の前置凝集工程を有する2段型メタンガス生成システムであって、該可溶化槽および/または該メタン生成槽に多機能無機炭化物を追加供給することを特徴とする2段型メタンガス生成システム。 A two-stage methane gas generation system having a pre-aggregation step according to claim 1, wherein the solubilization tank and / or the methane generation tank is additionally supplied with a multifunctional inorganic carbide. Methane gas generation system.
  4. 請求項1に記載の前置凝集工程を有する2段型メタンガス生成システムであって、該メタン生成槽で発生した汚泥の一部を該可溶化槽および/または該メタン生成槽へリサイクルすることを特徴とする2段型メタンガス生成システム。 A two-stage methane gas generation system having a pre-aggregation step according to claim 1, wherein a part of sludge generated in the methane generation tank is recycled to the solubilization tank and / or the methane generation tank. Characteristic two-stage methane gas generation system.
  5. 請求項1に記載の前置凝集工程を有する2段型メタンガス生成システムであって、該可溶化槽ならびに該メタン生成槽は、中心固定軸が固定されて、胴部が回転自在に支持されて、機械的に外気から密封された横置ドラム型の槽であることを特徴とする2段型メタンガス生成システム。 A two-stage methane gas generation system having a pre-aggregation process according to claim 1, wherein the solubilization tank and the methane generation tank have a center fixed shaft fixed and a trunk portion rotatably supported. A two-stage methane gas generation system characterized by being a horizontal drum type tank mechanically sealed from outside air.
  6. 請求項1に記載の前置凝集工程を有する2段型メタンガス生成システムであって、汚泥を脱水する脱水機をさらに備え、凝縮沈殿槽内の該濃縮汚泥を脱水したあと、該可溶化槽へ移送することを特徴とする2段型メタンガス生成装置。 A two-stage methane gas generation system having a pre-flocculation step according to claim 1, further comprising a dehydrator for dewatering sludge, and after dewatering the concentrated sludge in the condensation sedimentation tank, to the solubilization tank A two-stage methane gas generator characterized by transporting.
PCT/JP2013/004732 2013-08-05 2013-08-05 Two-stage methane gas generating system having front end aggregation step WO2015019382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015530553A JPWO2015019382A1 (en) 2013-08-05 2013-08-05 Two-stage methane gas generation system with pre-flocculation process
PCT/JP2013/004732 WO2015019382A1 (en) 2013-08-05 2013-08-05 Two-stage methane gas generating system having front end aggregation step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/004732 WO2015019382A1 (en) 2013-08-05 2013-08-05 Two-stage methane gas generating system having front end aggregation step

Publications (1)

Publication Number Publication Date
WO2015019382A1 true WO2015019382A1 (en) 2015-02-12

Family

ID=52460756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004732 WO2015019382A1 (en) 2013-08-05 2013-08-05 Two-stage methane gas generating system having front end aggregation step

Country Status (2)

Country Link
JP (1) JPWO2015019382A1 (en)
WO (1) WO2015019382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110595A (en) * 2015-09-18 2015-12-02 成都乐维斯科技有限公司 System for resource reuse through anaerobic fermentation technology
CN106047431A (en) * 2016-04-13 2016-10-26 华电郑州机械设计研究院有限公司 Skid-mounted liquefied natural gas device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000837A (en) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd Anaerobic treatment method for organic waste and treatment system using the same
JP2005230624A (en) * 2004-02-17 2005-09-02 Ohbayashi Corp Dry methane fermentation method
JP2005254199A (en) * 2004-03-15 2005-09-22 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for wastewater treatment
JP2010075809A (en) * 2008-09-25 2010-04-08 Kawasaki Plant Systems Ltd Water treatment method and water treatment system
JP2011224500A (en) * 2010-04-21 2011-11-10 Tokyo Institute Of Technology Continuous drying biomass gasification plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000837A (en) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd Anaerobic treatment method for organic waste and treatment system using the same
JP2005230624A (en) * 2004-02-17 2005-09-02 Ohbayashi Corp Dry methane fermentation method
JP2005254199A (en) * 2004-03-15 2005-09-22 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for wastewater treatment
JP2010075809A (en) * 2008-09-25 2010-04-08 Kawasaki Plant Systems Ltd Water treatment method and water treatment system
JP2011224500A (en) * 2010-04-21 2011-11-10 Tokyo Institute Of Technology Continuous drying biomass gasification plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUJI YOSHIZAWA ET AL.: "Promotion effect of various charcoals on the proliferation of composting microorganisms", TANSO, vol. 2006, no. 224, pages 261 - 265 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110595A (en) * 2015-09-18 2015-12-02 成都乐维斯科技有限公司 System for resource reuse through anaerobic fermentation technology
CN106047431A (en) * 2016-04-13 2016-10-26 华电郑州机械设计研究院有限公司 Skid-mounted liquefied natural gas device

Also Published As

Publication number Publication date
JPWO2015019382A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
CN106746200B (en) Advanced treatment system for urban sewage
KR20060059919A (en) The process and operation of using enzymatic pre- treatment of the suspended solids for the anaerobic bioreactor of food wastes using hammer milling and centrifuge
US10472809B2 (en) System for disposal of waste containing food waste or livestock manure and production of energy and method therefor
JP5997755B2 (en) Sludge treatment method and carbide utilization method
CN106434296B (en) Integrated dry-wet anaerobic digestion device
CN102976575A (en) Sludge treatment system and method in cement kiln
CN114850170A (en) Kitchen garbage resource and energy recovery pollution-reducing carbon-reducing cooperative device
KR101123854B1 (en) Wet-dry serial parallel anaerobic digestion apparatus and method for treating organic waste
KR101700707B1 (en) Food waste Recycling System and Method thereof
Syahin et al. Decolourisation of palm oil mill effluent (POME) treatment technologies: A review
CN105621806B (en) A kind of biological coagulation oxidation technology of quick processing kitchen garbage, waste-water
JP2020157261A (en) Organic sludge treatment method and treatment apparatus
WO2015019382A1 (en) Two-stage methane gas generating system having front end aggregation step
CN103739144A (en) Detergent synthesis wastewater treatment technology
CN106316050B (en) The method for improving biomass sludge mass dryness fraction
CN202945130U (en) Sludge treating system utilizing cement kiln
KR101262192B1 (en) Device of manufacturing bio-fuel made of solid separated from livestock wastewater
CN104973747A (en) Electro-osmosis sludge dewatering system
JP2018171606A (en) System for making organic waste methane gas with rotary axis
CN211255600U (en) Municipal wastewater treatment equipment
CN1821128A (en) Method for treating high concentration organic waste water
CN210030377U (en) Sludge and kitchen waste co-processing system
CN1270982C (en) Process for comprensive treating waste water of paper making by grass pulp
CN108929003B (en) Urban wastewater treatment system and method
WO2012168341A1 (en) Waste digestion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891133

Country of ref document: EP

Kind code of ref document: A1