WO2015018992A1 - Structure en couches fonctionnalisee - Google Patents

Structure en couches fonctionnalisee Download PDF

Info

Publication number
WO2015018992A1
WO2015018992A1 PCT/FR2014/051690 FR2014051690W WO2015018992A1 WO 2015018992 A1 WO2015018992 A1 WO 2015018992A1 FR 2014051690 W FR2014051690 W FR 2014051690W WO 2015018992 A1 WO2015018992 A1 WO 2015018992A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polarizing
structure according
adhesive
Prior art date
Application number
PCT/FR2014/051690
Other languages
English (en)
Inventor
Jeanne MARCHAL
Montserrat BURGOS
Original Assignee
Essilor International (Compagnie Générale d'Optique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International (Compagnie Générale d'Optique) filed Critical Essilor International (Compagnie Générale d'Optique)
Priority to KR1020167003326A priority Critical patent/KR20160040570A/ko
Priority to US14/910,137 priority patent/US20160216425A1/en
Priority to CN201480043600.4A priority patent/CN105473330B/zh
Priority to EP14747073.6A priority patent/EP3030419A1/fr
Priority to JP2016532711A priority patent/JP2016527567A/ja
Publication of WO2015018992A1 publication Critical patent/WO2015018992A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the invention relates to a functionalized layered structure. It also relates to a functionalized layer structure comprising one or more functionalized films, associated or not with a basic optical element.
  • the basic optical element may be, in particular, an ophthalmic lens.
  • the invention is particularly advantageous in the case where the functionalized layer structure has a polarization functionality.
  • polarizing films are generally based on polyvinyl alcohol (PVA) or polyethylene terephthalate (PET).
  • the (PVA) films are generally interposed between two protective films which are in particular based on cellulose triacetate (TAC) or polycarbonate (PC), or cycloolefin copolymer (COC).
  • TAC cellulose triacetate
  • PC polycarbonate
  • COC cycloolefin copolymer
  • This protective film makes it possible to protect the polarizing film against external mechanical stresses when it is assembled with the basic optical element or finished glass, for example by involuntary tearing, scratching or diffusion of a foreign substance into the material.
  • the protective film facilitates handling during the manufacturing cycle of the polarizing optical element.
  • these protective films also make it possible to protect the latter against external aggression, the PVA having in particular a hygroscopic behavior.
  • FIG. 1A illustrates a layered structure 1 comprising a polarizing film 4 according to the prior art, composed of a TAC 2A protective film, a PVA-based adhesive layer 7A, a PVA polarization film 4, a second layer of glue 7B and a second TAC 2B protective film.
  • Figure 1B shows an assembly between the layered structure 1 of the prior art and a basic optical element 100 for producing a polarizing optical element.
  • One of the faces of the polarizing layer structure 1, corresponding to the free face of one of the two protective films 2B, is bonded to the optical surface of the base optical element 100 by means of a layer of adhesive 101.
  • the polarizing basic optical element can then be varnished and then cut off so that its contour is adapted to the shape of the frame that receives it.
  • the varnishing step may comprise surface preparations in the presence of water.
  • the peripheral machining step can implement a standard method comprising at least one grinding step in which the lens is subjected to mechanical stresses in the presence of water.
  • the polarizing layer structure as described above does not support such conditions (surface preparation, machining) which generally results in detachments at the interfaces of the layers.
  • the PVA-based glue which gives a good adhesion between the polarizing film and the protective films is unfortunately soluble in water and the assembly TAC // glue // PVA / glue // film separates most of time during the stages comprising water, such as the steps of preparation of surfaces before varnish, or following a mechanical effort in the presence of water (clipping).
  • An object of the present invention is therefore to provide a functionalized layer structure comprising at least one functionalized film, which can be implemented simply, while giving the structure a strong and durable adhesion during the successive stages of manufacture of the optical element, and especially the ophthalmic lens, especially when using post-treatment in the presence of water, (example: surface preparation, varnish, ophthalmic lens trimming).
  • the invention proposes a functionalized layer structure comprising
  • a first element representing a first monolayer or multilayer functional film
  • the surfaces of said first element and second element intended to be brought into contact with said at least one layer of adhesive are subjected, prior to contacting, to a surface treatment so that the decrease between the peel force in dry condition and the peel force in wet condition is at least 35% or less inclusive.
  • the surfaces of said first element and second element having been subjected to a surface treatment have a surface energy of at least 60 mN / m.
  • the surface treatment is carried out a plasma treatment in inert nitrogen atmosphere, with a dosage of 40 to 100 W.min / m 2.
  • the surface treatment is a corona treatment carried out in ambient air, with a dosage of 40 to 50 W.min / m 2.
  • the first element represents a multilayer functional film, in which at least two layers are assembled by means of a layer of pressure-sensitive adhesive, the surfaces of the said at least two layers are subjected, prior to their assembly. to a surface treatment.
  • the first element represents a functional film comprising at least one functionality chosen from among hue, polarization, photochromic, electrochromic, shockproof, anti-abrasion, antistatic, antireflection, anti-fouling, antifog, anti-rain, spectral filter on a band of determined wavelength, for example a blue light filter.
  • the first element is a polarizing multilayer film comprising at least two films, respectively representing a polarizing film and a protective film.
  • the polarizing film and the protective film are then assembled by means of a first layer of pressure-sensitive adhesive.
  • the second element is a basic optical element.
  • the second element is a second functional film such as a protective film.
  • the structure further comprises a second second element representing a basic optical element, said second second element being brought into contact with the first second element, by means of a second layer of adhesive.
  • this second adhesive layer is a layer of pressure-sensitive adhesive as defined above or an adhesive comprising at least one layer of adhesive material chosen from a layer of latex and a layer of adhesive material hot melt (HMA).
  • said second adhesive layer is a pressure-sensitive adhesive layer.
  • said second adhesive layer, selected as a pressure-sensitive adhesive layer is further selected to be identical to said first pressure-sensitive adhesive layer, i.e. to say of the same chemical composition.
  • the structure defining a polarization functionality comprises: a first element representing a protective film and a polarizing film,
  • a second element comprising a protective film
  • the protective film prevents the polarizing film from being degraded and facilitates the manipulation of the polarizing structure. This makes it possible to better preserve the polarizing film when the latter is not yet applied against a basic optical element or when it is applied to the optical element when the glass is worn.
  • This protective film may be based on cellulose triacetate (TAC), cellulose acetate butyrate (CAB), polyethylene terephthalate (PET), polycarbonate, polyamide, cycloolefin copolymer (COC) or cycloolefin polymer (COP).
  • TAC cellulose triacetate
  • CAB cellulose acetate butyrate
  • PET polyethylene terephthalate
  • COC cycloolefin copolymer
  • COP cycloolefin polymer
  • this layered structure comprising a polarizing film is also called a polarizing structure.
  • the use of pressure-sensitive adhesive material or PSA "Pressure Sensitive Adhesive" for bonding the PVA polarizing film with a TAC protective film and plasma or corona treatment is particularly advantageous compared to a conventional structure because it makes it possible to produce the polarizing structure in a simple manner while preserving the polarization quality of the polarizing film. Furthermore, it is remarkable that the specific combination of this adhesive material with a plasma-like surface treatment with a well-adjusted dosage of the surface energies of the films makes it possible to create strong bonds at the interfaces of the films and to guarantee strong cohesion. within the structure, and that cohesion is preserved even in the presence of water.
  • the inventors have found that it is necessary to maximize the surface energy of the films, so that there is effective cooperation between the surface treatment and the adhesive material (PSA) interposed between the treated surfaces. They have found that this cooperation is effective when the polarizing structure has a decrease between the peel force in dry condition and the wet peel force of less than 35%.
  • This new polarizing structure makes it possible to avoid the phenomenon of separation between the polarizing film and the protective film during the trimming of a polarizing optical element provided with such a structure as well as during the surface preparation steps for varnish deposit.
  • pressure-sensitive adhesive does not require the use of ultraviolet radiation or intensive heating to achieve permanent bonding.
  • the polarizing film is not altered or degraded by such irradiation or heating.
  • the polarizing film has a treated surface energy of at least 56 mN / m 2 and the protective film has a surface energy when treated of at least 46 mN / m 2.
  • the polarizing structure comprises a single protective film disposed on one side of the polarizing film, the face of the polarizing film opposite to said protective film being covered by a conditioning film or not.
  • the pressure-sensitive adhesive material is preferably a polyacrylate-based compound.
  • the pressure-sensitive adhesive layer has a thickness of between 5 ⁇ and 150 ⁇ , preferably between 10 and 50 ⁇ in order to ensure effective bonding while maintaining a uniform thickness.
  • the polarizing film is based on polyvinyl alcohol (PVA), with a thickness typically between 20 ⁇ ⁇ .
  • PVA polyvinyl alcohol
  • it may be based on polyethylene terephthalate or PET with a thickness typically between 15 and 100 ⁇ .
  • the method of producing a polarizing structure as described above comprises the following steps:
  • This method further comprises an additional step before step c) in which the surfaces of said films intended to be brought into contact with said pressure-sensitive adhesive layer are subjected, prior to contact, to a surface treatment so that that the decrease between the peel force in dry condition and the peel strength in wet condition is less than 35%.
  • step c) comprises the following steps:
  • step c) is carried out by a centrifugation, coating, dipping or other deposition method.
  • the structure can also define a polarizing ophthalmic lens comprising:
  • the surfaces of said films intended to be brought into contact with said first layer of adhesive are subjected, prior to contacting, to a surface treatment so that the decrease between the peel force in dry condition and the wet coat peel strength is at least 35% or less inclusive.
  • the second adhesive layer has a three-layer structure comprising a layer of hot melt adhesive material (HMA) interposed between two layers of latex.
  • HMA hot melt adhesive material
  • Such an ophthalmic lens may further comprise at least one functional film disposed on the outer face of the protective film, on one side of the polarizing film opposite to the basic optical element.
  • a film can give the optical element additional functions, such as suppression of light reflections, protection against shocks or scratches, protection against dirt, fogging or tint
  • TAC protective film
  • FIGS. 1A and 1B respectively represent a sectional view of a layered structure comprising a polarizing film according to the prior art and that of a polarizing optical element comprising such a structure;
  • Figures 2A and 2B show sectional views of two polarizing structures according to the two embodiments of the invention
  • Figures 3A and 3B show sectional views of a polarizing optical element comprising polarizing structures according to the two embodiments of the invention.
  • the examples above define a polarizing structure.
  • a polarizing film 4 is interposed between two protective films 2A, 2B.
  • This polarizing film 4 may consist mainly of polyvinyl alcohol, or PVA. It can have a thickness of between 20 and 80 ⁇ .
  • the protective films may have a thickness of between 40 ⁇ and 200 ⁇ .
  • a layer of pressure-sensitive adhesive material 5A, 5B is interposed respectively between the first protective film 2A and the polarizing film 4 as well as between the second protective film 2B and the polarizing film 4
  • This layer of adhesive material may be polyacrylate, and has a thickness of 5 ⁇ to 150 ⁇ . It ensures a permanent maintenance of the protective film on the polarizing film.
  • the surfaces of the films 4, 2A, 2B which are intended to be brought into contact with the adhesive material layer 5A, 5B have been subjected to a plasma treatment.
  • This surface treatment makes it possible to maximize the surface energy of the films that will be in contact with the adhesive material and to maximize the adhesion of the films.
  • maximizing film adhesion is meant the determination of the maximum surface energy that achieves maximum film peel strength under dry conditions.
  • the difference between the peel force in dry condition and the peel strength in wet condition must be at least 35% or less.
  • this new structure allows the manufacture of a glass (varnish, trimming %) in the presence of water without inducing separation defects between the films in the polarizing structure.
  • one of the faces of the polarizing film 4 is covered with a protective film 2A.
  • the opposite side of the polarizing film is covered or not with a conditioning film 6 specific to the polarizing film (called "liner").
  • a layer of adhesive material 5 is interposed between the polarizing film 4 and the protective film 2. In this way, the two faces of the polarizing film are protected on one side by the protective film 2 and on the other by a film conditioning 6.
  • FIG. 2A A first method of producing a polarizing structure according to the invention illustrated in FIG. 2A is now described.
  • the pressure-sensitive adhesive material layer 5A, 5B, the polarizing film 4 and the protective film 2A, 2B are initially each in the form of a continuous film sandwiched between two laminating films (called "liner” in English) or without liner.
  • the three films 4, 2A, 2B are subjected to a plasma treatment separately or simultaneously.
  • a plasma treatment it is removed beforehand.
  • the treated face is intended to be subsequently brought into contact with the layer of adhesive material.
  • the method for producing the polarizing structure comprises the following steps :
  • Steps a) to d) thus allow the realization of the polarizing structure comprising a single protective film (FIG 2B).
  • steps a) to d) are repeated so as to add the second TAC 2B protective film.
  • the adhesive material being conditioned in the form of a liquid, step c) is carried out by a technique known to those skilled in the art such as centrifugation (spin-coating). in English), coating, dipping or otherwise on one side of the protective film or on one side of the polarizing film, the two faces being pretreated with plasma.
  • This embodiment makes it possible to control the thickness of the layer of adhesive material and to optimize it.
  • a functionalized layer structure comprising such a polarizing structure and a basic optical element, is now described above.
  • a functionalized layer structure comprises two main components: a basic optical element represented by a base lens, and a first element comprising the polarizing structure comprising at least one functional film.
  • the base lens is obtained from a Semi-finished lens with two surfaces that are opposite to each other. One of these two surfaces, called the first optical surface, is made directly with a final curvature during the step of manufacturing the semi-finished lens.
  • this first optical surface may be the anterior convex surface of the base lens in the final ophthalmic lens, and is determined by the shape of the mold, the molding technique or the injection technique.
  • the other surface of the semi-finished lens is temporary and intended to be subsequently scaled to the optical correction of the lens wearer.
  • the semi-finished or finished lens material may be a thermosetting material with a reflection index of between 1.5 and 1.7. It can also be a thermoplastic material with a reflection index of between 1.5 and 1.6.
  • the polarizing structure as described above and illustrated in Figures 2A and 2B may be thermoformed so that the shape of its curvature is compatible with one of the optical surfaces of the semi-finished or finished lens. This method of preforming the polarizing structure is well known. This polarizing structure has a technical advantage over polarizing structures known by the presence of the two protective films, to facilitate the thermoforming of the polarizing structure.
  • the polarizing structure is then applied by a lamination process to the first optical surface of the semi-finished or finished lens.
  • a layered structure of adhesive material which may be an adhesive material (PSA) or a latex // HMA // latex trilayer is interposed between the polarizing structure and the base optical element to achieve permanent adhesion.
  • this layered structure of adhesive material interposed between the polarizing structure and the base lens is also called adhesive structure.
  • this adhesive structure can consist of a monolayer of material pressure sensitive adhesive (PSA).
  • PSA material pressure sensitive adhesive
  • This layer is particularly advantageous because it makes it possible to apply the polarizing structure simply to the optical surface of the basic optical element while preserving the dioptric properties of the optical element.
  • the surfaces which are intended to be brought into contact with the layer of pressure-sensitive adhesive material have also been subjected to a plasma or corona surface treatment.
  • the method of producing the polarizing optical element shown in FIG. 3A comprises the following steps:
  • a plasma or corona treatment is applied on this uncovered face and on the convex or concave face of the basic optical element; c) peeling one of the two conditioning films from the layer of adhesive material 201 and applying this layer against the plasma-treated face of the base optical element 200 through the conditioning film of the layer of adhesive material
  • the polarizing structure is deposited on the convex face of the basic optical element.
  • this layer of adhesive material 201 is between 5 and 150 ⁇ so as not to alter the power nominal of the optical element.
  • the adhesive structure is first pressed against the exposed and plasma-treated face of the polarizing structure 2.
  • the polarizing structure 2 is preformed before being pressed against the convex or concave face of the basic optical element.
  • This preforming can be done in different ways. It comprises in particular a thermoforming step during which it is heated before being deformed. The thermoforming temperature is limited so as not to alter the integrity of the polarizing film and so that it can easily fit the shape of the convex face. or concave of the basic optical element.
  • the polarizing structure is preformed with the adhesive structure before the assembly is pressed against the convex or concave face of the basic optical element through the polarizing structure
  • the procedure is similar: a) the conditioning film 6 of the polarizing film of the polarizing structure 3 is peeled so as to reveal a face of the polarizing film, the other side being covered by a protective film 2;
  • the polarizing optical element can also be realized when the adhesive material is in the form of a liquid.
  • the adhesive structure 201, 301 may be a stack of three-layer Latex / Hot Melt Adhesive Material (HMA) / Latex.
  • HMA Hot Melt Adhesive Material
  • the method of transferring the polarizing structure no longer requires the plasma treatment step.
  • Deposition of such an adhesive structure on the convex face of the base optical element 200, 300 is known. It consists of a set of deposition steps by spin-coating and heating.
  • Such an adhesive structure is described in WO 201 1/053329.
  • the polarizing films are protected on one side by a protective film and on the other side by the optical base element, against any dirt or scratch that may occur during the use of the optical element.
  • polarizing structure In the case where the polarizing structure is applied on the convex face of the optical element, functional coatings may be placed on the protective film on the outer face thereof, namely the face furthest from the eyes of the optical element. carrier of ophthalmic lenses. These coatings thus make it possible to confer, in addition to the optical element, an anti-shock function, an antireflection function, an anti-abrasion, anti-fouling, anti-fogging or colored function.
  • the peel test consists of rolling a 25 x 70 mm strip of pressure-sensitive adhesive material onto a protective film strip.
  • This tape protective film + adhesive material
  • This test makes it possible to test the adhesion between the polarizing film and the protective film.
  • the glass is conditioned at least 24 h (at 23 ° C ⁇ 3 ° C, 50% RH ⁇ 10%) before peeling.
  • the film is peeled at a 90 ° angle at a speed of 2.54 cm / min.
  • a quantity of water is added to the interface to measure the peel force in a humid environment. The force is expressed in N / 25mm.
  • calibrated inks are applied on the surface of the untreated films and then a second time on the treated material (plasma or corona). If the applied ink is stable, the substrate surface voltage is at least the value of the test ink.
  • the ink is contracted, is repeated the test with an ink showing a lower surface tension.
  • the surface energy of the material is equal to the value of the last ink tested which showed good wetting for several seconds.
  • the protective films and the polarizing film are subjected to an oxidizing plasma (vacuum or atmospheric plasma), or a corona (atmospheric plasma), just before the films are assembled together. with the adhesive.
  • oxidizing plasma vacuum or atmospheric plasma
  • corona atmospheric plasma
  • the plasma parameters used in the examples below are as follows: Vacuum plasma machine reference: M4L, pressure 376 mTorr, gas flow 200 sccm O2, Power 390 W, exposure time 30 seconds.
  • TAC films and PVA film are provided by FUJI and ONBITT respectively
  • This polarizing layer structure is then laminated on an optical element marketed under the name Ormix basic index 1 .6.
  • the lamination process is described in WO / 2012/078152.
  • the samples are inspected to determine if there are cosmetic defects such as the separation of films in the polarizing structure.
  • cosmetic defects such as the separation of films in the polarizing structure.
  • the polarizing structure of the sample 1 was carried out without surface treatment on the TAC and PVA films before assembly of the layers, in the sample 2, only the PVA film was treated and in the sample 3 only the TAC film has been processed.
  • the surface energy is not maximum, the peel force decreases when passing from a test performed in a dry condition to a test performed in a wet condition drastically.
  • this decrease is between 57% and 69%.
  • the stack exhibits delamination type defects, namely a separation between the films in the polarizing structure.
  • the surface treatment is applied only to the TAC film face, ie the protective film which has a maximum surface energy of 50mN / m.
  • the PVA film which has not been subjected to a surface treatment then has a low surface energy, 40 mN / m. Although the decrease between the dry peel strength and the wet peel force is small, on the order of 9%, this sample has delamination defects after the clipping step. This result shows that it is necessary to treat both sides of the films to be contacted with the adhesive material to have effective cooperation between the treated films and the adhesive material and a peel force in the maximum dry condition. In Table 1, this peel force in dry condition is 16.6 N / 25mm (Sample # 4).
  • the samples are made under the same conditions as samples 1 to 6.
  • the polarizing structure TAC // PVA // TAC, treated on all the film interfaces before assembly, assembled with a 3M adhesive ref. 8146-X, (of suitable chemical composition) has different thicknesses of 5 ⁇ (sample 7), 15 ⁇ (sample 8), 25 ⁇ (sample 9), 50 ⁇ (sample 10), 75 ⁇ (sample 1 1), 150 ⁇ (sample 12).
  • the plasma treatment is applied to the TAC and PVA films so that their surface energy is maximum, equal to 50 and 58 mN / m respectively.
  • the polarizing structure then presents no defects
  • the polarizing structure is assembled based on an adhesive material sold by Panac, reference PD S1, of different thicknesses: from 5 ⁇ (sample 13), 10 ⁇ (sample 14), 15 ⁇ (sample 15), 25 ⁇ (sample 16).
  • This table shows that the system does not work with a pressure sensitive adhesive whose chemical composition is inadequate and therefore does not cooperate with the plasma treatment even if the surface energy is maximum. This non-cooperation between the adhesive material and the plasma treatment therefore induces a significant difference between the peel strength in dry condition and the peel force in wet condition. It varies between 77% and 89%, regardless of the thickness of the adhesive.
  • the samples have defects after the different glass manufacturing steps.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne une structure en couches fonctionnalisée (2, 3, 20, 30) comprenant - un premier élément représentant un premier film fonctionnel monocouche ou multicouche (2A, 4); - au moins un second élément choisi parmi un second film fonctionnel (2B) et un élément optique de base (200, 300); -au moins une première couche d'adhésif sensible à la pression (5A, 5B, 5) mise en contact avec au moins une surface dudit premier élément et au moins une surface dudit second élément. Selon l'invention, les surfaces desdits premier élément et second élément destinées à être mises en contact avec ladite couche d'adhésif sont soumises, préalablement à la mise en contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.

Description

STRUCTURE EN COUCHES FONCTIONNALISEE
L'invention concerne une structure en couches fonctionnalisée. Elle concerne également une structure en couche fonctionnalisée comprenant un ou plusieurs films fonctionnalisés, associés ou non à un élément optique de base. L'élément optique de base peut être, en particulier, une lentille ophtalmique. L'invention est particulièrement avantageuse dans le cas où la structure en couche fonctionnalisée présente une fonctionnalité de polarisation.
II est connu de reporter, c'est-à-dire d'assembler par collage notamment, un film polarisant de qualité optique sur la surface optique d'une lentille de base pour réaliser une lentille ophtalmique polarisée. Ce film polarisant a pour fonction d'éliminer du champ de vision des réflexions parasites qui proviennent de surfaces planes ou quasi-planes horizontales, par exemple, telle qu'un plan d'eau, permettant ainsi une réduction de l'éblouissement et une amélioration du contraste pour le porteur des lentilles ophtalmiques polarisantes.
Ces films polarisants sont généralement à base d'alcool polyvinylique (PVA), ou de polyéthylène téréphtalate (PET). Les films de (PVA) sont généralement interposés entre deux films de protection qui sont notamment à base de triacétate de cellulose (TAC) ou de polycarbonate (PC), ou cyclo olefin copolymere (COC). Ce film de protection permet de protéger le film polarisant contre des sollicitations mécaniques externes lors de son assemblage avec l'élément optique de base ou verre fini, par exemple, par déchirement involontaire, par rayure ou par diffusion d'une substance étrangère dans le matériau du film polarisant. En outre le film de protection facilite la manipulation lors du cycle de fabrication de l'élément optique polarisant. Ces films de protection permettent aussi, dans le cas du PVA, de protéger celui-ci des agressions externes, le PVA ayant notamment un comportement hygroscopique.
Une couche de colle à base de PVA est interposée entre le film polarisant et le(s) film(s) de protection pour assurer la cohésion de cet assemblage. La figure 1A illustre une structure en couches 1 comprenant un film polarisant 4 selon l'art antérieur, composé d'un film de protection TAC 2A, d'une couche de colle 7A à base PVA, d'un film polarisant PVA 4, d'une deuxième couche de colle 7B et d'un deuxième film de protection TAC 2B. La figure 1 B représente un assemblage entre la structure en couches 1 de l'art antérieur et un élément optique de base 100 pour réaliser un élément optique polarisant. L'une des faces de la structure en couches polarisante 1 , correspondant à la face libre de l'un des deux films de protection 2B est collée sur la surface optique de l'élément optique de base 100 au moyen d'une couche d'adhésif 101 .
L'élément optique de base polarisant peut ensuite être verni puis détouré afin que son contour soit adapté à la forme de la monture qui le reçoit. L'étape de vernissage peut comporter des préparations de surfaces en présence d'eau. L'étape d'usinage périphérique peut mettre en œuvre un procédé standard comprenant au moins une étape à la meule dans lequel la lentille est soumise à des sollicitations mécaniques en présence d'eau. La structure en couches polarisante telle que décrite ci-dessus ne supporte pas de telles conditions (préparation de surface, usinage) qui entraîne généralement des décollements aux interfaces des couches. En effet, la colle à base de PVA qui confère une bonne adhésion entre le film polarisant et les films protecteurs est malheureusement soluble dans l'eau et l'assemblage TAC //colle//PVA /colle//film se sépare la plupart du temps pendant les étapes comportant de l'eau, tel que les étapes de préparation de surfaces avant vernis, ou suite à un effort mécanique en présence d'eau (détourage).
Un but de la présente invention consiste donc à proposer une structure en couches fonctionnalisée comprenant au moins un film fonctionnalisé, qui peut être mis en œuvre simplement, tout en conférant à la structure une adhésion résistante et durable durant les étapes successives de fabrication de l'élément optique, et notamment de la lentille ophtalmique, notamment lors de l'utilisation de post-traitement en présence d'eau, (exemple : préparation de surface, vernis, détourage du verre ophtalmique). Pour cela, l'invention propose une structure en couches fonctionnalisée comprenant
un premier élément représentant un premier film fonctionnel monocouche ou multicouche;
- au moins un second élément choisi parmi un second film fonctionnel et un élément optique de base ;
- au moins une première couche d'adhésif sensible à la pression, mise en contact avec au moins une surface dudit premier élément et au moins une surface dudit second élément. Selon l'invention, les surfaces desdits premier élément et second élément destinées à être mises en contact avec ladite au moins une couche d'adhésif sont soumises, préalablement à la mise en contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.
Selon l'invention, les surfaces desdits premier élément et second élément ayant été soumises à un traitement de surface présentent une énergie de surface d'au moins 60 mN/m.
Selon l'invention, le traitement de surface est un traitement de plasma réalisé en atmosphère d'azote inerte, avec un dosage compris entre 40 et 100 W.min/m2.
Selon l'invention, le traitement de surface est un traitement de Corona réalisé à l'air ambiant, avec un dosage compris entre 40 et 50 W.min/m2.
Selon l'invention, le premier élément représente un film fonctionnel multicouche, dans lequel au moins deux couches sont assemblées au moyen d'une couche d'adhésif sensible à la pression, les surfaces desdites au moins deux couches sont soumises, préalablement à leur assemblage à un traitement de surface.
De préférence, le premier élément représente un film fonctionnel comprenant au moins une fonctionnalité choisie parmi teinte, polarisation, photochromique, éléctrochromique, antichoc, anti-abrasion, antistatique, antireflet, antisalissure, antifog, anti-pluie, filtre spectral sur une bande de longueur d'onde déterminée, par exemple un filtre de lumière bleue.
Selon un mode de réalisation préféré de l'invention, le premier élément est un film multicouche polarisant comprenant au moins deux films, représentant respectivement un film polarisant et un film de protection. Le film polarisant et le film de protection sont alors assemblés au moyen d'une première couche d'adhésif sensible à la pression.
Selon un mode de réalisation de l'invention, le second élément est un élément optique de base.
Selon un mode de réalisation de l'invention, le second élément est un second film fonctionnel tel qu'un filme de protection. Selon un autre mode de réalisation de l'invention, la structure comprend en outre un deuxième second élément représentant un élément optique de base, ledit deuxième second élément étant mise en contact avec le premier second élément, au moyen d'une seconde couche d'adhésif. Selon l'invention, cette seconde couche d'adhésif est une couche d'adhésif sensible à la pression telle que définie ci-dessus ou un adhésif comprenant au moins une couche de matériau adhésif choisi parmi une couche de latex et une couche de matériau adhésif thermofusible (HMA).
De préférence, ladite seconde couche d'adhésif est une couche d'adhésif sensible à la pression. De manière particulièrement préférée, ladite seconde couche d'adhésif, choisie comme étant une couche d'adhésif sensible à la pression, est de plus choisie comme étant identique à ladite première couche d'adhésif sensible à la pression, c'est-à-dire de même composition chimique.
Selon un mode de réalisation préféré de l'invention, la structure définissant une fonctionnalité de polarisation comprend : - un premier élément représentant un film de protection et un film polarisant,
- un deuxième élément comprenant un film de protection ;
- une couche d'adhésif sensible à la pression interposée entre lesdits films ;
- les surfaces desdits premier élément et seconde élément destinées à être mises en contact avec ladite couche d'adhésif étant soumises, préalablement à la mise en contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.
Dans cette structure, le film de protection évite que le film polarisant ne soit dégradé et facilite la manipulation de la structure polarisante. Ceci permet de mieux conserver le film polarisant lorsque ce dernier n'est pas encore appliqué contre un élément optique de base ou une fois appliqué sur l'élément optique lorsque le verre est porté.
Ce film de protection peut être à base de triacétate de cellulose (TAC), d'acétate-butyrate de cellulose (CAB), de polyéthylène téréphatalate (PET), de polycarbonate, de polyamide, de copolymère cyclo-oléfine (COC) ou de polymère cyclo-oléfine (COP).
Dans le reste de la description, cette structure en couches comprenant un film polarisant est également dénommé structure polarisante.
Selon l'invention, l'utilisation du matériau adhésif sensible à la pression ou PSA « Pressure Sensitive Adhésive » pour coller le film polarisant PVA avec un film de protection TAC et le traitement plasma ou corona est particulièrement avantageuse par rapport à une structure classique car elle permet de réaliser la structure polarisante de façon simple tout en préservant la qualité de polarisation du film polarisant. En outre, il est remarquable que la combinaison spécifique entre ce matériau adhésif avec un traitement de surface de type plasma avec un dosage bien ajusté des énergies de surfaces des films, permette de créer des liaisons fortes aux interfaces des films et de garantir une cohésion forte au sein de la structure, et que cette cohésion soit préservée même en présence d'eau. Les inventeurs ont trouvé qu'il est nécessaire de maximiser l'énergie de surface des films, pour qu'il y ait une coopération effective entre le traitement de surface et le matériau adhésif (PSA) interposé entre les surfaces traités. Ils ont ainsi trouvé que cette coopération est efficace lorsque la structure polarisante présente une diminution entre la force de pelage en condition sèche et la force de pelage en condition humide inférieure à 35%.
Cette nouvelle structure polarisante permet d'éviter le phénomène de séparation entre le film polarisant et le film de protection lors du détourage à la meule d'un élément optique polarisant muni d'une telle structure ainsi que pendant les étapes de préparation de surface pour le dépôt de vernis.
L'utilisation d'adhésif sensible à la pression ne nécessite pas d'utiliser une irradiation, de type rayonnement ultraviolet, ni de chauffage intensif pour obtenir un collage permanent. Ainsi le film polarisant n'est pas altéré ni dégradé par une telle irradiation ou chauffage.
De préférence, le film polarisant présente une énergie de surface une fois traitée d'au moins 56 mN/m et le film de protection présente une énergie de surface une fois traitée d'au moins 46 mN/m.
Selon une forme alternative de l'invention, la structure polarisante comprend un seul film de protection disposé sur un côté du film polarisant, la face du film polarisant opposée audit film de protection étant couvert par un film de conditionnement ou pas.
Plusieurs adhésifs sensibles à la pression peuvent être utilisés pour assembler la structure polarisante. Le matériau adhésif sensible à la pression est de préférence un composé à base de polyacrylate.
Préférentiellement, la couche d'adhésif sensible à la pression possède une épaisseur comprise entre 5 μιτι et 150μηη, préférentiellement entre 10 et 50 μιτι afin d'assurer un collage efficace tout en conservant une épaisseur homogène.
De préférence, le film polarisant est à base de polyvinyle alcool (PVA), avec une épaisseur typiquement comprise entre 20 βί δθμηη. Selon une forme alternative, il peut être à base de polyéthylène téréphtalate ou de PET avec une épaisseur typiquement comprise entre 15 et 100 μιτι. Le procédé de réalisation d'une structure polarisante telle que décrite ci-dessus comprend les étapes suivantes :
- a) obtenir un film polarisant ;
- b) obtenir un film de protection et le disposer sur chaque face du film polarisant ;
- c) interposer une couche d'adhésif sensible à la pression entre les films ;
- d) presser les films ensemble de manière à obtenir un assemblage permanent.
Ce procédé comprend en outre une étape supplémentaire avant l'étape c) dans laquelle les surfaces desdits films destinées à être mises en contact avec ladite couche d'adhésif sensible à la pression sont soumises, préalablement au contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide soit inférieure à 35%.
Lorsque la couche d'adhésif sensible à la pression est disposée entre deux films de conditionnements pelables, l'étape c) comprend les étapes suivantes :
d ) peler l'un des deux films de conditionnement pelables de façon à découvrir une face de la couche d'adhésif sensible à la pression ;
c2) presser la face découverte de la couche de matériau adhésif sur la face traitée du film polarisant, à travers l'autre film de conditionnement de ladite couche de matériau adhésif ;
c3) peler l'autre film de conditionnement de façon à découvrir l'autre face de la couche de matériau adhésif, et
d) presser le film de protection sur ladite face découverte de la couche d'adhésif, avec la face traitée du film de protection en regard de la couche de matériau adhésif.
Lorsque le matériau adhésif est sous forme de liquide, l'étape c) est réalisée par un procédé de centrifugation, enduction, trempage ou autre mode de dépôt. Selon l'invention, la structure peut définir également une lentille ophtalmique polarisante comprenant :
- un premier élément représentant un film de protection et un film polarisant,
- un deuxième élément représentant un film de protection ;
- un second deuxième élément représentant un élément optique de base ;
- une première couche d'adhésif sensible à la pression interposée entre lesdits films,
- une seconde couche d'adhésif interposée entre le film de protection et l'élément optique de base.
Selon l'invention, les surfaces desdits films destinées à être mises en contact avec ladite première couche d'adhésif sont soumises, préalablement à la mise en contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.
Selon une forme préférée de l'invention, la seconde couche d'adhésif possède une structure en trois couches comportant une couche de matériau adhésif thermofusible (HMA), intercalées entre deux couches de latex. Une telle structure adhésive est décrite dans WO201 1 /053329.
Une telle lentille ophtalmique peut comprendre en outre au moins un film fonctionnel disposé sur la face externe du film de protection, d'un côté du film polarisant opposé à l'élément optique de base. Un tel film peut conférer à l'élément optique des fonctions supplémentaires, telles qu'une suppression de réflexions lumineuses, une protection contre des chocs ou les rayures, une protection contre les salissures, contre la buée ou une teinte Ces films peuvent être disposés facilement sur le film de protection (TAC).
D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de réalisation non limitatifs, en référence aux dessins annexés, dans lesquels:
Figures 1 A et 1 B représentent respectivement une vue en coupe d'une structure en couches comprenant un film polarisant selon l'art antérieur et celle d'un élément optique polarisant comprenant une telle structure;
Figures 2A et 2B représentent des vues en coupe de deux structures polarisantes selon les deux modes de réalisation de l'invention ;
Figures 3A er 3B représentent des vues en coupe d'un élément optique polarisant comprenant des structures polarisantes selon les deux modes de réalisation de l'invention.
Les exemples ci-dessus définissent une structure polarisante.
Conformément à la figure 2A, un film polarisant 4 est interposé entre deux films de protections 2A, 2B. Ce film polarisant 4 peut être constitué principalement de polyvinyle alcool, ou PVA. Il peut avoir une épaisseur comprise entre 20 et 80 μιτι. Les films de protection peuvent posséder une épaisseur compris entre 40 μιτι et 200 μιτι.
Pour assurer la cohésion de cet assemblage, une couche de matériau adhésif sensible à la pression 5A, 5B est interposée respectivement entre le premier film de protection 2A et le film polarisant 4 ainsi qu'entre le deuxième film de protection 2B et le film polarisant 4. Cette couche de matériau adhésif peut être en polyacrylate, et présente une épaisseur de 5μηη à 150μηη. Elle assure un maintient permanent du film protecteur sur le film polarisant.
Selon l'invention, les surfaces des films 4, 2A, 2B qui sont destinées à être mises en contact avec la couche de matériau adhésif 5A, 5B ont été soumises à un traitement plasma.
Ce traitement de surface permet de maximiser l'énergie de surface des films qui vont être en contact avec le matériau adhésif et de maximiser l'adhésion des films. On entend par "maximiser l'adhésion des films", le fait de déterminer l'énergie de surface maximale qui permet d'atteinte une force de pelage des films maximale en condition sèche.
De manière surprenante, cette coopération entre le matériau adhésif sensible à la pression et le traitement de surface permet de créer des liaisons fortes aux interfaces des films et de garantir une cohésion forte au sein de la structure même en condition humide. Pour cela toutes les conditions suivantes doivent être réalisées :
- les énergies de surface doivent être maximales
- la force de pelage en condition sèche doit être maximale
- la différence entre la force de pelage en condition sèche et la force de pelage en condition humide doit être au moins inférieure ou égale à une diminution de 35%.
Contrairement à une structure polarisante classique, cette nouvelle structure permet la fabrication d'un verre (vernis, détourage... ) en présence d'eau sans induire de défauts de séparation entre les films dans la structure polarisante.
Dans la structure polarisante 3 représentée sur la figure 2B, une des faces du film polarisant 4 est recouvert d'un film de protection 2A. Le côté opposé du film polarisant est recouvert ou non par un film de conditionnement 6 propre au film polarisant (dénommé « liner »). Une couche de matériau adhésif 5 est interposée entre le film polarisant 4 et le film de protection 2. De cette façon les deux faces du film polarisant sont protégées, d'un côté par le film de protection 2 et de l'autre par un film de conditionnement 6.
Un premier procédé de réalisation d'une structure polarisante selon l'invention illustrée à la figure 2A est maintenant décrit.
Selon une première forme de réalisation de l'invention, la couche de matériau adhésif sensible à la pression 5A, 5B, le film polarisant 4 et le film de protection 2A, 2B se présentent initialement chacun sous la forme d'une pellicule continue enserrée entre deux films de conditionnement pelables (dénommés « liner » en anglais) ou sans liner.
Avant d'interposer la couche de matériau adhésif 5A, 5B entre le film polarisant 4 et le film de protection 2A, 2B, les trois films 4, 2A, 2B sont soumis à un traitement plasma séparément ou simultanément. Pour faire ce plasma ou corona, s'il y a un film de conditionnement, on l'enlève préalablement. La face traitée est destinée à venir ultérieurement être mise en contact avec la couche de matériau adhésif.
Le procédé de réalisation de la structure polarisante comporte les étapes suivantes :
a) peler l'un des deux films de conditionnement du film polarisant 4 de façon à découvrir une face du film polarisant,
b) peler l'un des deux films de conditionnement du film de protection 2A de façon à découvrir une face du film de protection 2A,
b1 ) on applique un traitement plasma sur ces deux faces découvertes,
c) peler l'un des deux films de conditionnement de la couche de matériau adhésif et on applique cette couche contre la face traitée au plasma du film de protection au travers du film de conditionnement de la couche de matériau adhésif
d) peler le deuxième film de conditionnement de la couche de matériau adhésif et on applique l'empilement film de protection + matériau adhésif contre la face traitée au plasma du film polarisant.
Les étapes a) à d) permettent ainsi la réalisation de la structure polarisante comportant un seul film de protection (FIG. 2B). Dans le cadre de la réalisation de la structure polarisante de la figure 2A, les étapes a) à d) sont répétées de manière à ajouter le deuxième film de protection TAC 2B.
Selon une autre forme de réalisation de l'invention, le matériau adhésif étant conditionné sous forme de liquide, l'étape c) est réalisée par une technique connue de l'homme de l'art telle que la centrifugation (« spin- coating » en anglais), enduction, trempage ou autre soit sur une face du film de protection soit sur une face du film polarisant, les deux faces étant traitées au préalable au plasma. Cette forme de réalisation permet de contrôler l'épaisseur de la couche de matériau adhésif et de l'optimiser.
Une structure en couches fonctionnalisée comprenant une telle structure polarisante et un élément optique de base, est décrite maintenant ci-dessus.
Une structure en couche fonctionnalisée comprend deux principaux composants : un élément optique de base représentée par une lentille de base, et un premier élément comprenant la structure polarisante comprenant au moins un film fonctionnel. La lentille de base est obtenue à partie d'une lentille semi-finie avec deux surfaces qui sont opposées l'une à l'autre. Une de ces deux surfaces, nommée première surface optique, est réalisée directement avec une courbure finale pendant l'étape de fabrication de la lentille semi-finie. De manière générale, cette première surface optique peut être la surface convexe antérieure de la lentille de base dans la lentille finale ophtalmique, et elle est déterminée par la forme du moule la technique de moulage ou la technique d'injection. L'autre surface de la lentille semi-finie est temporaire et destinée à être surfacée ultérieurement à la correction optique du porteur des lentilles.
Le matériau de la lentille semi-finie ou fini peut être un matériau thermodurcissable avec un indice de réflexion compris entre 1 .5 et 1 .76. Il peut être également un matériau thermoplastique avec un indice de réflexion compris entre 1 .5 et 1 .6.
La structure polarisante telle que décrite ci-dessus et illustrée sur les Figures 2A et 2B peut être thermoformée de sorte que la forme de sa courbure soit compatible avec l'une des surfaces optique de la lentille semi- finie ou fini. Ce procédé de préformage de la structure polarisante est bien connu. Cette structure polarisante présente un avantage technique par rapport aux structures polarisantes connues par la présence des deux films de protection, permettant de faciliter le thermoformage de la structure polarisante.
La structure polarisante est ensuite appliquée par un procédé de lamination sur la première surface optique de la lentille semi-finie ou fini. Une structure en couches de matériau adhésif qui peut être un matériau adhésif (PSA) ou une tricouche latex//HMA//latex est interposée entre la structure polarisante et l'élément optique de base pour obtenir une adhésion permanente.
Dans le reste de la description cette structure en couches de matériau adhésif interposée entre la structure polarisante et la lentille de base est également dénommé structure adhésive.
Selon une forme avantageuse de réalisation de l'invention, cette structure adhésive peut être constituée d'une monocouche de matériau adhésif sensible à la pression (PSA). Cette couche est particulièrement avantageuse car elle permet d'appliquer sur la surface optique de l'élément optique de base la structure polarisante de façon simple, tout en préservant les propriétés dioptriques de l'élément optique. Afin d'augmenter la force d'adhésion entre la structure polarisante et l'élément optique, avant d'interposer la couche de matériau sensible à la pression entre la structure polarisante et la surface optique de l'élément optique de base, les surfaces qui sont destinées à être mises en contact avec la couche de matériau adhésif sensible à la pression ont été soumises également à un traitement de surface au plasma ou corona.
On décrit maintenant un procédé d'assemblage entre un élément optique polarisant et une structure polarisante selon l'invention telle que décrite ci-dessus et illustrée sur la figure 3A.
Le procédé de réalisation de l'élément optique polarisant représenté sur la figure 3A comporte les étapes suivantes :
a) peler l'un des deux films de conditionnement, s'il y en a un, du film de protection, de la structure polarisante 2
b) on applique un traitement plasma ou corona sur cette face découverte et sur la face convexe ou concave de l'élément optique de base ; c) peler l'un des deux films de conditionnement de la couche de matériau adhésif 201 et on applique cette couche contre la face traitée au plasma de l'élément optique de base 200 au travers du film de conditionnement de la couche de matériau adhésif
d) peler le deuxième film de conditionnement de la couche de matériau adhésif 201 et on presse la structure polarisante 2 contre la face convexe ou concave de l'élément optique de base de manière à obtenir un assemblage définitif, la face traitée au plasma de la structure polarisante 2 en regard avec la face découverte de la couche de matériau adhésif 201 . De préférence, la structure polarisante est déposée sur la face convexe de l'élément optique de base.
De préférence l'épaisseur de cette couche de matériau adhésif 201 est comprise entre 5 et 150μηη de façon à ne pas altérer la puissance nominale de l'élément optique.
Dans une variante de la réalisation de l'invention, la structure adhésive est d'abord pressée contre la face découverte et traitée au plasma de la structure polarisante 2.
Avant l'étape a), la structure polarisante 2 est préformée avant d'être pressée contre la face convexe ou concave de l'élément optique de base. Ce préformage peut être réalisé de différentes façons. Il comprend notamment une étape de thermoformage lors de laquelle elle est chauffée avant d'être déformée La température de thermoformage est limitée de manière à ne pas altérer l'intégrité du film polarisant et de manière à pouvoir venir épouser facilement la forme de la face convexe ou concave de l'élément optique de base. Dans le cas où la structure adhésive est d'abord pressée contre la structure polarisante, la structure polarisante est préformée avec la structure adhésive avant que l'ensemble soit pressé contre face convexe ou concave de l'élément optique de base à travers la structure polarisante
Pour appliquer la structure polarisante munie d'un seul film de protection 3 sur l'élément optique de base, on procède de façon similaire : a) on pèle le film de conditionnement 6 du film polarisant de la structure polarisante 3 de manière à découvrir une face du film polarisante, l'autre face étant couverte par un film de protection 2 ;
b) on applique un traitement plasma sur cette face découverte et sur la face convexe ou concave de l'élément optique de base 300 ;
c) peler l'un des deux films de conditionnement de la couche de matériau adhésif 301 et on applique cette couche contre la face traité au plasma ou corona de l'élément optique de base 300 au travers du film de conditionnement de la couche de matériau adhésif
d) peler le deuxième film de conditionnement de la couche de matériau adhésif 301 et on presse la structure polarisante 3 contre la face convexe ou concave de l'élément optique de base 300 de manière à obtenir un assemblage définitif 30 avec la face traitée au plasma de la structure polarisante 3 en regard de la face découverte du matériau adhésif 301 .
Ces deux procédés de transfert concernent le cas où la couche de matériau adhésif sensible à la pression est conditionnée sous forme de film. Bien entendu, l'élément optique polarisant peut être également réalisé lorsque le matériau adhésif se présente sous forme de liquide.
Dans une autre forme de réalisation de l'invention, la structure adhésive 201 , 301 peut être un empilement de trois couches Latex/matériau adhésif thermofusible (HMA)/Latex. Le procédé de transfert de la structure polarisante ne nécessite plus l'étape de traitement au plasma. Le dépôt d'une telle structure adhésive sur la face convexe de l'élément optique de base 200, 300 est connu. Il consiste en un ensemble d'étapes de dépôt par spin-coating et de chauffage. Une telle structure adhésive est décrite dans le document WO 201 1/053329.
Dans les éléments optiques polarisants ainsi obtenus 20, 30, les films polarisants sont protégés d'un côté par un film de protection et de l'autre côté par l'élément optique de base, contre toute salissure ou rayure qui pourrait survenir pendant l'utilisation de l'élément optique.
Dans le cas où la structure polarisante est appliquée sur la face convexe de l'élément optique, des revêtements fonctionnels peuvent être disposés sur le film de protection, sur la face externe de celui-ci, à savoir la face la plus éloignée des yeux du porteur des verres ophtalmiques. Ces revêtements permettent de conférer ainsi en plus à l'élément optique une fonction antichoc, une fonction antireflet, une fonction antiabrasion, ou antisalissure, anti-buée, ou coloré.
Protocole de mesure de la force de pelage
Le test de pelage consiste à laminer une bande de matériau adhésif sensible à la pression de dimension 25 x 70 mm sur une bande de film de protection. Cette bande (film protection + matériaux adhésif) est collée sur un support plan sur lequel est fixé au préalable un film polarisant. Ce test permet de tester l'adhésion entre le film polarisant et le film de protection. Le verre est conditionné minimum 24 h (à 23°C ±3°C, 50%HR ± 10%) avant pelage. Le pelage du film s'effectue à un angle de 90°, à la vitesse de 2.54 cm/mn. A la moitié de l'essai, une quantité d'eau est ajoutée à l'interface pour mesurer la force de pelage en milieu humide. La force est exprimée en N/25mm.
Un logiciel mesure en continu la force de pelage en fonction du déplacement. Cette force est moyennée sur une longueur de 10 mm pour le pelage à sec et 15 mm pour le pelage humide.
Protocole de mesure d'énergie de surface
Pour mesurer la tension de surface des films polariseurs et de protection, des encres calibrées sont appliquée en surface des films non traités, puis une seconde fois sur le matériau traité (plasma ou corona). Si l'encre appliquée est stables, la tension de surface du substrat correspond au moins à la valeur de l'encre de test.
Si l'encre se contracte, on renouvelle l'essai avec une encre indiquant une tension de surface inférieure. L'énergie de surface du matériau est égale à la valeur de la dernière encre testée qui a montré un bon mouillage pendant plusieurs secondes.
Protocole du traitement de surface dans les exemples ci-dessous Les films de protection et le film polarisant sont soumis à un plasma oxydant (sous vide ou plasma atmosphérique), ou un corona (plasma atmosphérique), juste avant l'assemblage des films entre eux avec l'adhésif. Les paramètres du plasma utilisés dans les exemples plus bas sont les suivants : Référence de la machine plasma sous vide : M4L, pression 376 mTorr, débit de gaz 200 sccm de O2, Puissance 390 W, durée d'exposition 30 secondes.
Exemples de comparaison :
Echantillons 1 - 6 :
Ces échantillons sont tous composés d'une structure en couches TAC//PVA//TAC, assemblées avec une couche de matériau adhésif vendue par 3M sous la référence 8146-1 . Cette couche de matériau adhésif a une épaisseur de 25 μιτι. Les films TAC et le film PVA sont fournis par FUJI et ONBITT respectivement
Cette structure en couches polarisante est ensuite laminée sur un élément optique commercialisé sous le nom Ormix de base d'indice 1 .6. Le procédé de lamination est décrit dans le document WO/2012/078152.
Pour chacun des échantillons à l'exception de l'échantillon 1 , les surface traitées avant assemblage sont explicitée dans la colonne « traitement de surface ».
Les échantillons sont ensuite lavés, vernis et enfin détourés avec une machine de détourage Kappa (nom commercial)
Une fois détourés, les échantillons sont inspectés pour déterminer s'il y a des défauts cosmétiques tels que la séparation entre films dans la structure polarisante. Lorsque l'empilement présente des défauts, cela est indiqué dans la colonne « Fabrication du verre» du tableau, par une croix. Quand le détourage ne présente pas de défaut, cela est indiqué dans cette même colonne par « ok ».
Echantillons 1 -6 (Tableau 1 )
Tableau 1
N° Energie de Traitement de Force de Force de % Fabrication
Echantillon surface surface pelage à pelage entre du verre
TAC//PVA sec humide pelage (Vernis,
(mN/m) (N/25mm) (N/25mm) humide Détourage)
TAC/PSA TAC/PSA et
PVA PVA pelage
à sec
1 44/40 Pas de 1 1 4.7 57% X
traitement
2 44/58 Sur film PVA 1 1.5 3.9 66% X
3 50/40 Sur film TAC 10.4 9.5 9% X 4 50/58 Sur film TAC + 16.6 15.5 7% Ok
Sur film PVA
5 44/40 Sur l'adhésif 12.7 4 69% X
6 44/58 Sur film PVA+ 12.6 4 68% X
Sur l'adhésif
Dans le tableau 1 , la structure polarisante de l'échantillon 1 a été réalisée sans traitement de surface sur les films TAC et PVA avant assemblage des couches, dans l'échantillon 2, seul le film PVA à été traité et dans l'échantillon 3, seul le film TAC à été traité. Dans ces configurations, l'énergie de surface n'est pas maximale, la force de pelage diminue lorsque l'on passe d'un test réalisé en condition sèche à un test réalisé en condition humide de manière drastique. Pour les échantillons 1 , 2, 5 et 6, cette diminution est comprise entre 57% et 69 %. Après avoir soumis ces échantillons aux différentes étapes de fabrication du verre, l'empilement présente des défauts de type délamination, à savoir une séparation entre les films dans la structure polarisante. Concernant l'échantillon 3, le traitement de surface est appliqué uniquement sur la face du film TAC, à savoir le film de protection qui présente une énergie de surface maximale, 50mN/m. Le film PVA qui n'a pas été soumis à un traitement de surface présente alors une énergie de surface faible, 40 mN/m. Bien que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est faible, de l'ordre de 9%, cet échantillon présente des défauts de délamination après l'étape de détourage. Ce résultat montre qu'il est nécessaire de traiter les deux faces des films destinées à être mis en contact avec le matériau adhésif pour avoir une coopération efficace entre les films traités et le matériau adhésif ainsi qu'une force de pelage en condition sèche maximum. Dans le tableau 1 , cette force de pelage en condition sèche est de 16.6 N/25mm (Echantillon n° 4).
La seule configuration qui fonctionne est l'échantillon 4 dans laquelle toutes les interfaces de film TAC et PVA, ont été traités avant la réalisation de la structure polarisante. Il ne délamine pas au cours des différentes étapes de fabrication du verre. L'énergie de surface est alors maximum, les surfaces traitées des films TAC et PVA présentent respectivement 50 mN/m et 58 mN/m. Cette très bonne tenue se traduit par une très faible diminution entre la force de pelage en condition sèche et la force de pelage en condition humide, elle est de l'ordre de 7%.
Echantillons 7-12 (Tableau 2)
Les échantillons sont réalisés dans les mêmes conditions que les échantillons 1 à 6.
La structure polarisante TAC//PVA//TAC, traité sur toutes les interfaces de film avant assemblage, assemblé avec un adhésif 3M réf 8146- X, (de composition chimique adaptée) présente différentes épaisseurs de 5μηη (échantillon 7), 15μηη (échantillon 8), 25μηη (échantillon 9), 50μηη (échantillon 10), 75μηη (échantillon 1 1 ), 150μηη (échantillon 12). Pour tous ces échantillons, le traitement plasma est appliqué sur les films TAC et PVA de sorte que leur énergie de surface est maximum, égale respectivement à 50 et 58 mN/m.
Tableau 2
Figure imgf000021_0001
Ce tableau permet de montrer que les échantillons passent les différentes étapes de fabrication du verre (conditions humides) quelque soit les épaisseurs d'adhésif. Ces résultats de test montrent que lorsqu'un matériau adhésif sensible à la pression présentant les bonnes caractéristiques physiques et chimiques coopère avec un traitement de surface (plasma ou corona) qui permet de maximiser les énergies de surface, la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est très faible, elle est comprise entre 5% et 12%. Pour les fines épaisseurs, à savoir inférieures à 25μηη, elle est au maximum de 35% et de l'ordre de 10% pour les adhésifs dépassant l'épaisseur de 25μηη.
La structure polarisante ne présente alors pas de défauts
(décollement, bulles bord, déformations, ...) après les étapes de fabrication du verre.
Echantillons 13 - 16 (Tableau 3)
Les échantillons 13 à 16 sont réalisés dans les mêmes conditions que les échantillons ci-dessus. La seule différence réside dans la nature du matériau adhésif sensible à la pression. Tableau 3
Figure imgf000022_0001
Pour ces échantillons de test, la structure polarisante est assemblée à base d'un matériau adhésif vendu par Panac, référence PD S1 , de différentes épaisseurs : de 5μηη (échantillon 13), 10μηη (échantillon 14), 15μηη (échantillon 15), 25μηη (échantillon 16). Ce tableau montre que le système ne fonctionne pas avec un adhésif sensible à la pression dont la composition chimique est inadéquate et ne permet donc pas de coopérer avec le traitement plasma même si l'énergie de surface est maximale. Cette non coopération entre le matériau adhésif et le traitement plasma induit par conséquent une différence importante entre la force de pelage en condition sèche et la force de pelage en condition humide. Elle varie entre 77% à 89%, et cela quelque soit les épaisseurs d'adhésif. Les échantillons présentent des défauts après les différentes étapes de fabrication du verre.

Claims

REVENDICATIONS
1 . Structure en couches fonctionnalisée (2, 3, 20, 30) comprenant un premier élément représentant un premier film fonctionnel monocouche ou multicouche (2A, 4);
- au moins un second élément choisi parmi un second film fonctionnel (2B) et un élément optique de base (200, 300) ;
- au moins une première couche d'adhésif sensible à la pression (5A, 5B, 5) mise en contact avec au moins une surface dudit premier élément et au moins une surface dudit second élément, caractérisée en ce que
les surfaces desdits premier élément et second élément destinées à être mises en contact avec ladite au moins une couche d'adhésif, sont soumises, préalablement à la mise en contact, à un traitement de surface choisi parmi un traitement de plasma réalisé en atmosphère d'azote inerte avec un dosage compris entre 40 et 100 W. min/m2 et un traitement de Corona réalisé à l'air ambiant avec un dosage compris entre 40 et 50 W. min/m2, de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.
2. Structure selon la revendication 1 , caractérisée en ce que le premier élément représente un film fonctionnel multicouche, dans lequel au moins deux couches sont assemblées au moyen d'une couche d'adhésif sensible à la pression, les surfaces desdites au moins deux couches sont soumises, préalablement à leur assemblage à un traitement de surface.
3. Structure selon la revendication 1 , caractérisée en ce que le premier élément représente un film fonctionnel comprenant au moins une fonctionnalité choisie parmi teinte, polarisation, photochromique, éléctrochromique, antichoc, anti-abrasion, antistatique, antireflet, antisalissure, antifog, anti pluie et filtre spectral sur une bande de longueur d'onde déterminée.
4. Structure selon la revendication 2, caractérisée en ce que le premier élément est un film multicouche polarisant comprenant au moins deux films, représentant respectivement un film polarisant (4) et un film de protection (2A) et en ce que le film polarisant (4) et le film de protection (2A) sont assemblés au moyen d'une couche d'adhésif sensible à la pression.
5. Structure selon l'une des revendications 1 à 4, caractérisée en ce que le second élément est un élément optique de base (200, 300).
6. Structure selon l'une des revendications 1 à 4, caractérisée en ce que le second élément est un second film fonctionnel (2B).
7. Structure selon la revendication 6, caractérisée en ce qu'elle comprend en outre un deuxième second élément représentant un élément optique de base (200, 300) ledit deuxième étant mise en contact avec le premier second élément, au moyen d'une seconde couche d'adhésif (201 , 301 ).
8. Structure selon la revendication 7, caractérisée en ce que ladite seconde couche d'adhésif (201 , 301 ) est une couche d'adhésif sensible à la pression définie selon la revendication 1 ou un adhésif comprenant au moins une couche de matériau adhésif choisi parmi une couche de latex et une couche de matériau adhésif thermofusible (HMA).
9. Structure selon l'une des revendications 1 à 8, caractérisée en ce que les surfaces desdits premier élément et second élément ayant été soumises à un traitement de surface présentent une énergie de surface d'au moins 60 mN/m.
10. Structure selon la revendication 4, caractérisée en ce que le film polarisant présente une énergie de surface une fois traitée d'au moins 56 mN/m et le film de protection présente une énergie de surface une fois traité d'au moins 46 mN/m.
1 1 . Structure selon l'une des revendications 1 à 10, caractérisée en ce que ladite première couche d'adhésif sensible à la pression (5A, 5B, 5) et la seconde couche d'adhésif (201 , 301 ) possèdent une épaisseur comprise entre 5 μιτι et 150μηη.
12. Structure selon l'une des revendications 7 à 9 ou 1 1 , caractérisée en ce que ladite première couche d'adhésif sensible à la pression (5A, 5B, 5), et ladite seconde couche d'adhésif (201 , 301 ) sont identiques.
13. Structure selon l'une des revendications 1 à 12, caractérisée en ce que le matériau adhésif sensible à la pression est choisi parmi un composé à base de polyacrylate.
14. Structure selon l'une des revendications 1 à 13, caractérisée en ce que le film polarisant est à base de polyvinyle alcool (PVA) ou de polyéthylène téréphtalate (PET).
15. Structure selon l'une des revendications 1 à 14, caractérisée en ce que le film de protection est à base de triacétate de cellulose, d'acétate- butyrate de cellulose, de polyéthylène téréphatalate, de polycarbonate, de polyamide, de copolymère cyclo-oléfine (COC) ou de polymère cyclo-oléfine (COP).
16. Structure selon l'une des revendications 1 à 15, caractérisée en ce qu'elle comprend :
- un premier élément représentant un film de protection (2A) et un film polarisant (4),
- un deuxième élément comprenant un film de protection (2B) ; - une couche d'adhésif sensible à la pression (5A, 5B) interposée entre lesdits films, caractérisée en ce que les surfaces desdits premier élément et seconde élément destinées à être mises en contact avec ladite couche d'adhésif sont soumises, préalablement à la mise en contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.
17. Structure selon l'une des revendications 1 à 15, caractérisée en ce qu'elle définit une lentille ophtalmique polarisante.
18. Structure selon la revendication 17, caractérisée en ce qu'elle comprend:
- un premier élément représentant un premier film de protection (2A) et un film polarisant (4),
- un deuxième élément représentant un deuxième film de protection
(2B) ;
- un second deuxième élément représentant un élément optique de base (200) ;
- une première couche d'adhésif sensible à la pression (5A, 5B) interposée entre lesdits films,
- une seconde couche d'adhésif (201 ) interposée entre le deuxième film de protection (2B) et l'élément optique de base (200), caractérisée en ce que les surfaces desdits films (2A, 2B, 4) destinées à être mises en contact avec ladite première couche d'adhésif (5A, 5B) sont soumises, préalablement à la mise en contact, à un traitement de surface de sorte que la diminution entre la force de pelage en condition sèche et la force de pelage en condition humide est au moins inférieure ou égale à 35 % inclus.
PCT/FR2014/051690 2013-08-05 2014-07-01 Structure en couches fonctionnalisee WO2015018992A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167003326A KR20160040570A (ko) 2013-08-05 2014-07-01 기능화된 층 구조
US14/910,137 US20160216425A1 (en) 2013-08-05 2014-07-01 Functionalised layered structure
CN201480043600.4A CN105473330B (zh) 2013-08-05 2014-07-01 功能化层状结构
EP14747073.6A EP3030419A1 (fr) 2013-08-05 2014-07-01 Structure en couches fonctionnalisee
JP2016532711A JP2016527567A (ja) 2013-08-05 2014-07-01 機能化層構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1357770 2013-08-05
FR1357770A FR3009234B1 (fr) 2013-08-05 2013-08-05 Structure en couches fonctionnalisee

Publications (1)

Publication Number Publication Date
WO2015018992A1 true WO2015018992A1 (fr) 2015-02-12

Family

ID=49713197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051690 WO2015018992A1 (fr) 2013-08-05 2014-07-01 Structure en couches fonctionnalisee

Country Status (7)

Country Link
US (1) US20160216425A1 (fr)
EP (1) EP3030419A1 (fr)
JP (1) JP2016527567A (fr)
KR (1) KR20160040570A (fr)
CN (1) CN105473330B (fr)
FR (1) FR3009234B1 (fr)
WO (1) WO2015018992A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483592A (zh) * 2015-08-24 2017-03-08 日东电工株式会社 带表面保护膜的光学构件
EP3757663A4 (fr) * 2018-02-23 2022-03-23 Tokuyama Corporation Corps multicouche fonctionnel et lentille fonctionnelle utilisant un corps multicouche fonctionnel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200223188A1 (en) * 2016-07-20 2020-07-16 Nippon Sheet Glass Company, Limited Antifog film
EP3392700A1 (fr) * 2017-04-19 2018-10-24 Essilor Italia Societa per Azioni Article ophtalmique
CN108724871A (zh) * 2017-04-19 2018-11-02 可口可乐公司 一种含有偏振膜的包装复合材料及含有该材料的包装
WO2024022948A1 (fr) 2022-07-28 2024-02-01 Essilor International Structure stratifiée optique fonctionnalisée, article optique fonctionnalisé, lunettes les contenant, et leurs procédés de fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512562B1 (en) * 1999-04-15 2003-01-28 Konica Corporation Protective film for polarizing plate
FR2897693A1 (fr) * 2006-02-23 2007-08-24 Essilor Int Element optique polarisant comprenant un film polariseur et procede de farbrication d'un tel element
US20110151146A1 (en) * 2008-08-29 2011-06-23 Konica Minolta Opto, Inc. Optical film, anti-reflection film, polarizing plate and liquid crystal display device
US20120076956A1 (en) * 2010-09-29 2012-03-29 Fujifilm Corporation Polarizing plate, liquid crystal display device using the same and moisture- and heat-resistant protective film for polarizing plate
US20130052434A1 (en) * 2011-08-31 2013-02-28 Fujifilm Corporation Antistatic hard coat layer forming composition, optical film, optical film manufacturing method, polarization plate, and image display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482489B1 (en) * 1998-10-20 2002-11-19 Dai Nippon Printing Co., Ltd. Hologram laminates
JP4688116B2 (ja) * 1999-04-15 2011-05-25 コニカミノルタホールディングス株式会社 偏光板用保護フィルム
WO2001025826A1 (fr) * 1999-10-04 2001-04-12 Sekisui Chemical Co., Ltd. Couche mince protectrice pour plaque polarisante et plaque polarisante
JP2003121646A (ja) * 2001-10-12 2003-04-23 Nitto Denko Corp 粘着型偏光板の製造方法、粘着型偏光板および液晶表示装置
US7038746B2 (en) * 2003-03-31 2006-05-02 Sumitomo Chemical Company, Limited Laminated polarizing film
JP4121030B2 (ja) * 2004-08-19 2008-07-16 日東電工株式会社 保護フィルム付位相差板、その製造方法、保護フィルム付粘着型位相差板および保護フィルム付粘着型光学素材
US8221855B2 (en) * 2005-09-30 2012-07-17 Fujifilm Corporation Cellulose derivative film, optical compensation film, polarizing plate, and liquid crystal device
CN101490601B (zh) * 2006-08-10 2011-11-23 三井化学株式会社 塑料偏光透镜及其制造方法
JP6136093B2 (ja) * 2011-05-31 2017-05-31 住友化学株式会社 複合偏光板および液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512562B1 (en) * 1999-04-15 2003-01-28 Konica Corporation Protective film for polarizing plate
FR2897693A1 (fr) * 2006-02-23 2007-08-24 Essilor Int Element optique polarisant comprenant un film polariseur et procede de farbrication d'un tel element
US20110151146A1 (en) * 2008-08-29 2011-06-23 Konica Minolta Opto, Inc. Optical film, anti-reflection film, polarizing plate and liquid crystal display device
US20120076956A1 (en) * 2010-09-29 2012-03-29 Fujifilm Corporation Polarizing plate, liquid crystal display device using the same and moisture- and heat-resistant protective film for polarizing plate
US20130052434A1 (en) * 2011-08-31 2013-02-28 Fujifilm Corporation Antistatic hard coat layer forming composition, optical film, optical film manufacturing method, polarization plate, and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483592A (zh) * 2015-08-24 2017-03-08 日东电工株式会社 带表面保护膜的光学构件
EP3757663A4 (fr) * 2018-02-23 2022-03-23 Tokuyama Corporation Corps multicouche fonctionnel et lentille fonctionnelle utilisant un corps multicouche fonctionnel
US11988808B2 (en) 2018-02-23 2024-05-21 Tokuyama Corporation Functional laminate and functional lens comprising the functional laminate

Also Published As

Publication number Publication date
CN105473330A (zh) 2016-04-06
KR20160040570A (ko) 2016-04-14
FR3009234B1 (fr) 2017-09-29
CN105473330B (zh) 2018-04-17
US20160216425A1 (en) 2016-07-28
FR3009234A1 (fr) 2015-02-06
JP2016527567A (ja) 2016-09-08
EP3030419A1 (fr) 2016-06-15

Similar Documents

Publication Publication Date Title
EP3030419A1 (fr) Structure en couches fonctionnalisee
EP1987380B1 (fr) Element optique polarisant comprenant un film polariseur et procede de fabrication d'un tel element
EP2304493B1 (fr) Procede de transfert d'une portion de film fonctionnel
EP2753973B1 (fr) Élément optique polarisant teinté et procédé de fabrication d'un tel élément
EP0758583A2 (fr) Vitrage feuilleté à propriétés de réflexion du rayonnement infrarouge
FR2902105A1 (fr) Procede de collage d'un film sur un substrat courbe
FR2946461A1 (fr) Dispositif d'encapsulation flexible d'une micro-batterie
FR2903196A1 (fr) Element optique a cellules fermees au moyen d'une couche de materiau adhesif
FR2907922A1 (fr) Procede de fabrication d'une serie de verres ophtalmiques et feuille de film utilisee dans un tel procede.
WO2007141440A1 (fr) Pastille de modification d'une puissance d'un composant optique
EP2652545B1 (fr) Verre de lunettes comprenant un verre de base et une structure mince
CA3020218A1 (fr) Procede d'impression d'email pour vitrage feuillete a couches fonctionnelles
EP3469634B1 (fr) Procede de fabrication d'un module photovoltaïque
FR2910642A1 (fr) Composant optique transparent a deux ensembles de cellules
EP2466339B1 (fr) Lentille ophtalmique anti-choc et son procede de fabrication
EP2574977B1 (fr) Procédé d'encapsulation d'un dispositif électro-optique
EP2196302B1 (fr) Procédé d'application d'une structure multicouche sur un substrat courbe
FR3095093A3 (fr) Procédé de réparation de panneaux photovoltaïques
FR2729476A1 (fr) Procede de scellement d'une plaque transparente sur un dispositif optique et assemblages optiques ainsi obtenus
WO2020234126A1 (fr) Composite laminé pour éléments de couches à propriétés thermiques et transparents aux radiofréquences
FR3135550A1 (fr) Procédé de fabrication d’un ensemble pour carte et d’une carte comportant un film métallisé, carte à microcircuit et ensemble pour carte
FR2900588A1 (fr) Pastille electrostatique pour blocage d'un verre optique sur un support et procede d'utilisation d'une pastille
FR3080301A1 (fr) Dispositif de masquage
WO1997018531A1 (fr) Carte a circuit integre et module a circuit integre

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043600.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14747073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014747073

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016532711

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910137

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167003326

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE