WO2015018083A1 - 一种双转子电机及使用这种电机的风扇、压缩机 - Google Patents

一种双转子电机及使用这种电机的风扇、压缩机 Download PDF

Info

Publication number
WO2015018083A1
WO2015018083A1 PCT/CN2013/081220 CN2013081220W WO2015018083A1 WO 2015018083 A1 WO2015018083 A1 WO 2015018083A1 CN 2013081220 W CN2013081220 W CN 2013081220W WO 2015018083 A1 WO2015018083 A1 WO 2015018083A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
stator core
phase
dual
Prior art date
Application number
PCT/CN2013/081220
Other languages
English (en)
French (fr)
Inventor
漆亚梅
Original Assignee
深圳市配天电机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市配天电机技术有限公司 filed Critical 深圳市配天电机技术有限公司
Priority to PCT/CN2013/081220 priority Critical patent/WO2015018083A1/zh
Priority to CN201380078546.2A priority patent/CN105453394B/zh
Publication of WO2015018083A1 publication Critical patent/WO2015018083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/222Flywheel magnetos

Definitions

  • the present invention relates to an electric machine, and more particularly to a dual rotor motor and a fan and a compressor using the same.
  • the present invention solves the problems of large iron loss caused by the slotted structure of the stator of the prior art permanent magnet brushless DC motor.
  • the present invention provides a dual rotor motor in which a stator and a rotor are mounted in a hollow cavity formed by a front end cover, a rear end cover and a casing, wherein the stator core of the stator is a first end An open cylindrical structure, wherein at least two phase windings are wound on the inner and outer surfaces of the stator core;
  • the rotor includes a yoke steel sleeve, and the yoke steel sleeve is a double-tube type with a second end opening a structure, an inner rotor magnetic steel is disposed on an outer surface of the inner layer of the yoke steel sleeve, and an outer rotor magnetic steel is disposed on an inner surface of the outer layer of the yoke steel sleeve;
  • the first end of the stator core is The second end of the yoke steel sleeve is inserted between the inner layer and the outer layer such that the stator core is located between
  • the second end of the stator core is mounted on a stator base, and the stator seat is further mounted on the inner side of the rear end cover; the inner surface of the inner layer of the yoke steel sleeve is set a first end of the rotor shaft is mounted on the front end cover by a front bearing and protrudes outwardly from the front end cover to form an output shaft of the motor, and the second end of the rotor shaft is mounted through the rear bearing On the end cap.
  • the shaft is wound and translated in the circumferential direction of the stator core.
  • the U, V, W three-phase windings are connected in a midpoint to form a Y connection mode, or the U, V, W three-phase windings form a three-phase independent coil winding.
  • the stator core is laminated by a ring-shaped silicon steel sheet having a thickness of 0.35 to 0.5 mm.
  • the motor of the present invention can be used in products such as fans and compressors.
  • the fan therein includes a blade and a driving motor, which is the dual rotor motor of the present invention.
  • the compressor therein includes a fuselage, a cylinder portion, a transmission portion, and a drive motor connected to the transmission portion.
  • the drive motor is the dual rotor motor of the present invention.
  • the double-rotor magnetic steel of the double-rotor motor of the present invention adopts a repulsive magnetic field design, and the slotless stator core ensures that most of the magnetic lines of force vertically enter the stator core and generate an effective torque, and then form and rotate with the motor.
  • the tangential magnetic field has the same direction, so that the property of the iron loss becomes the eddy current loss on the surface of the iron core, and the value of the iron loss is greatly reduced.
  • the stator winding of the motor of the invention is wound in a ring shape, and the end portion of the winding is reduced by several times, so that the copper loss at the end portion is greatly reduced.
  • the dual-rotor motor of the invention has large power density, small volume, good space utilization, and a power density increase of 100% under constant volume.
  • the three-phase winding wound by the motor of the invention can balance the armature reaction generated by the three-phase current in principle, and improves the load capacity of the motor.
  • FIG. 1 is a cross-sectional view of a stator and a rotor of a dual rotor motor in a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing magnetic lines of force generated by a repulsive magnetic field of the dual rotor motor shown in FIG. 1;
  • FIG. 3 is a schematic view of a magnetic field of a stator and a rotor of a conventional permanent magnet brushless DC motor
  • Figure 4a is a schematic view of a stator around a U-phase winding
  • Figure 4b is a schematic view showing the spatial relationship of the three-phase winding after being expanded
  • Figure 5 is a left side structural view of the stator core shown in Figure 1;
  • Figure 6 is a three-phase independent bridge drive circuit for the dual rotor motor of the present invention.
  • Figure 7 is a potential zero detection circuit for the dual rotor motor of the present invention.
  • Fig. 8 is a diagram showing the correspondence relationship between the three-phase potential waveform and the potential zero detection signal of the dual rotor motor.
  • FIG. 1, FIG. 2 and FIG. 4 A preferred embodiment of the present invention is shown in FIG. 1, FIG. 2 and FIG. 4, and the main components of the dual-rotor motor are described as follows: 1 is a rear end cover, 2 is a rear bearing, 3 is a stator seat, and 4 is a stator core. 5 is a stator winding, 61 is an inner rotor magnet, 62 is an outer rotor magnet, 7 is a yoke steel sleeve, 8 is a front end cover, 9 is a front bearing, and 10 is a rotor shaft.
  • 1 is a rear end cover
  • 2 is a rear bearing
  • 3 is a stator seat
  • 4 is a stator core.
  • 5 is a stator winding
  • 61 is an inner rotor magnet
  • 62 is an outer rotor magnet
  • 7 is a yoke steel sleeve
  • 8 is a front end cover
  • 9 is a front bearing
  • 10 is a
  • the stator of the dual rotor motor comprises a stator base 3, a stator core 4, and a three-phase winding 5 disposed on the stator core 4; wherein the stator core 4 is formed by laminating annular silicon steel sheets, and both ends are mounted a first insulated end plate and a second insulated end plate.
  • the second end (left end) of the cylindrical stator core 4 is mounted on the stator base 3, and the stator is a cylindrical structure in which the first end (right end) is open.
  • the rotor of the double-rotor motor comprises a yoke steel sleeve 7, which is a double-tube structure with a second end (left end) opening, and an inner rotor magnet 61 is mounted on the outer surface of the inner layer of the yoke steel sleeve 7
  • the inner surface of the outer layer of the yoke steel sleeve 7 is provided with an outer rotor magnet 62.
  • the first end of the stator core 4 is inserted between the inner layer and the outer layer via the second end of the yoke steel sleeve 7, so that the stator core 4 is located between the inner rotor magnet 61 and the outer rotor magnet 62.
  • the inner rotor magnet 61 is located at the lower portion of the stator core 4, and the outer rotor magnet 62 is located at the upper portion of the stator core 4, the inner rotor magnet 61, the outer rotor magnet 62 and the stator core 4 There is a suitable gap between them; from this partial cross-sectional view, the inner rotor magnet 61, the outer rotor magnet 62, and the yoke bush 7 constitute a nested structure and are fitted over the stator core 4.
  • the rotor composed of the inner rotor magnet 61, the outer rotor magnet 62, and the yoke bush 7 is mounted on the rotor shaft 10, specifically, the inner surface of the inner layer of the yoke steel sleeve 7 is fitted over the rotor shaft 10.
  • the second end (left end) of the rotor shaft 10 is mounted on the rear end cover 1 through the rear bearing 2, and the first end of the rotor shaft 10 is attached to the front end cover 8 through the front bearing 9, and protrudes outward from the front end cover 8.
  • the "double rotor” referred to in the present invention means the above-described double-layer rotor structure composed of the inner rotor magnet 61 and the outer rotor magnet 62.
  • the stator core 4 is located between the inner rotor magnet 61 and the outer rotor magnet 62.
  • the rotor composed of the inner rotor magnet 61, the outer rotor magnet 62, and the yoke bush 7 is rotatable, and the stator core is stationary.
  • FIG. 4a is a schematic view of the winding of the U-phase winding, which is equivalent to the structure of the stator core 4 shown in FIG. 1 rotated 90 degrees counterclockwise, and then deployed between two adjacent coil windings. Spaces for winding additional V-phase windings, W-phase windings.
  • Figure 4b shows a schematic diagram of the spatial relationship of the U, V, W three-phase windings after deployment. The three-phase windings are evenly distributed along the circumference at an electrical angle of 120°.
  • each phase winding is wound on the surface of the stator core 4, specifically, the inner and outer surfaces of the cylindrical stator core are wound parallel to the rotor shaft, and each virtual winding is wound again.
  • the stator core 4 has no groove on the surface, and only has slots on the upper and lower ends of the stator core 4 (in specific implementation, adjacent windings can be formed by insulating protrusions to form a slot shape to achieve separation Effect), used to define the position of the three-phase winding.
  • the stator core 4 is laminated by a ring-shaped silicon steel sheet; as shown in FIG. 4a, the stator core 4 is provided with a first insulating end plate 301 and a second insulating end plate 302, first and second.
  • the number of magnetic pole pairs of the inner rotor and the outer rotor is P
  • the number of magnetic poles is 2P
  • the basic parameters of the motor should satisfy: ⁇ D/2P ⁇ 40mm, Where D is the outer diameter of the cylindrical stator.
  • the motor is a three-phase permanent magnet motor
  • the three-phase permanent magnet motor of m 3 in the embodiment described above in FIGS. 4a and 4b, at this time
  • U, V, W three-phase windings are wound on the inner and outer surfaces of the stator core parallel to the rotor shaft, and are translated along the circumferential direction of the stator core, and the midpoints of the three-phase windings are connected to form a Y connection mode
  • the U, V, W three-phase windings may also be three-phase independent coil windings.
  • m 2
  • the two-phase windings of A and B are parallel to the rotor on the inner and outer surfaces of the stator core.
  • the shaft is wound and translated in the circumferential direction of the stator core to form a two-phase independent coil winding.
  • stator core 4 is formed by laminating annular silicon steel sheets, and the thickness of the silicon steel sheets is 0.35 to 0.5 mm.
  • the magnetic steel piece has a magnetic pole number of 2P, and each inner magnetic steel sheet is opposite to an outer magnetic steel sheet, and the magnetic poles of the two have the same polarity, that is, the inner magnetic steel sheet and
  • the outer magnetic steel sheet is a "repulsive magnetic field". Since the magnetic poles of the inner rotor and the outer rotor are opposite poles, for example, the leftmost side in FIG. 2 is an N pole, thereby ensuring that most of the magnetic lines of force vertically enter the stator core, and the magnetic lines of force enter the stator core. Only a short stroke of 90° is deflected to form a tangential magnetic field consistent with the direction of rotation of the motor.
  • the windings on the surface of the stator core cut the vertical magnetic lines 402 to produce an effective torque.
  • the stroke of the magnetic lines of the motor of the present invention in the vertical direction is greatly shortened, so that the property of the iron loss of the motor becomes the eddy current loss of the core surface.
  • the stator core 4 is made of silicon steel sheet, the eddy current loss on the surface of the iron core can be suppressed; and the magnetic flux lines inside the iron core are consistent with the direction of rotation of the motor, and no eddy current loss is generated, so the iron loss of the double rotor motor of the present invention is compared with the conventional motor.
  • the value will drop significantly, and the end of the motor is very small, and all the windings of the motor can generate torque.
  • the dual-rotor motor of the invention has large power density, small volume, good space utilization, and the power density can be increased by 100% compared with the conventional motor under the same volume.
  • the stator winding design reduces the end size of the winding by half, thereby reducing the copper loss by about 30%, and the winding winding method is simpler, and it is easy to realize full-automatic winding, so that the reliability of the motor and Increased consistency.
  • the thickness of the stator core silicon steel sheet is 0.35 mm, which can further reduce the surface iron loss and make the motor adapt to high-speed high-frequency operation.
  • the number of motor poles 2P may also be 8 or 10.
  • the number of turns per phase winding may also be set according to the size of the motor. In general, such motors have a small number of turns and are more suitable for low pressure and/or high speed operation.
  • FIG. 6 is a driving circuit of the dual-rotor electron of the present invention
  • FIG. 7 is a potential zero detecting circuit
  • the driving circuit is a three-phase independent bridge driving circuit, that is, the U, V, respectively are controlled by three H-bridge driving circuits.
  • W three-phase winding, the phase relationship between the three-phase windings is realized by the peripheral circuit controlling the on and off of each switch tube. Only the potential zero detection circuit of one of the phases is illustrated in Fig. 7, and the other two phases of the potential zero detection circuit are the same.
  • the corresponding relationship between the three-phase potential waveform and the three-phase potential zero detection signal is shown in FIG. 8.
  • the air gap of the motor is a directional magnetic field.
  • the magnetic field usually has strong 3, 5, and 7 harmonic components.
  • the 3rd, 5th, and 7th harmonic current components interact with the harmonics to generate harmonic drive torque.
  • the resultant torque makes the average torque of the motor more stable, and the torque is greatly increased, which can theoretically increase by 1.73 times.
  • the three-phase independent winding is more conducive to the detection of the zero potential of the back EMF, which improves the reliability of the operation of the position sensorless, and theoretically ensures the start of the motor without failure.
  • the present invention is a dual-rotor motor in which a rotor is disposed on the inner side of the stator and on the outer side of the stator, and the magnetic plates of the inner rotor and the outer rotor are magnetically opposite to each other, thereby ensuring most of the The magnetic lines of force enter the stator core vertically.
  • the winding cutting magnetic lines on the surface of the stator core generate effective torque, and the magnetic lines entering the stator core are deflected by 90° to form a tangential magnetic field consistent with the direction of rotation of the motor.
  • the invention makes the property of the iron loss of the motor into the eddy current loss of the core surface.
  • the iron core adopts a silicon steel sheet, the eddy current loss on the surface of the iron core is suppressed, and the magnetic flux line inside the iron core is consistent with the rotation direction of the motor, and no eddy current loss is generated, so the iron loss of the double rotor motor of the present invention is numerically compared with the conventional motor. There is a large drop, and the end of the motor is very small, and all the windings of the motor can generate torque.
  • the dual-rotor motor of the invention has high power density, small volume, good space utilization, and a constant volume power density increase of 100%.
  • the invention adopts a double stator motor design with a repulsive magnetic field, and winds the inner and outer surfaces of the stator core to form a motor winding, so that the end size of the winding is halved, and the copper consumption can be reduced by about 30% compared with the conventional motor.
  • the three-phase winding wound by the motor of the invention can balance the armature reaction generated by the three-phase current in principle, and improves the load capacity of the motor.
  • the winding method of the winding of the invention is simpler, and the automatic winding is easy to realize, so that the reliability and consistency of the motor are improved.
  • the motor of the present invention can be used in products such as fans and compressors.
  • the fan therein includes a blade and a driving motor, which is the dual rotor motor of the present invention.
  • the compressor therein includes a fuselage, a cylinder portion, a transmission portion, and a drive motor connected to the transmission portion.
  • the drive motor is the dual rotor motor of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种双转子电机,其定子铁芯为筒型结构,其内转子磁钢、外转子磁钢、磁轭钢套构成双层筒型结构,并与所述定子铁芯相互套合,使定子铁芯位于内转子磁钢与外转子磁钢之间;每一个内磁钢片与一个外磁钢片正对、且两者的磁极极性相同。筒型定子铁芯上绕有沿圆周分布的至少两相绕组。该结构可减小铁损、铜耗,提高电机性能。该电机可用于风扇、压缩机等产品中。

Description

一种双转子电机及使用这种电机的风扇、压缩机 技术领域
本发明涉及电机,尤其涉及一种双转子电机及使用这种电机的风扇、压缩机。
背景技术
现有永磁无刷直流电机,定子开槽,存在齿槽定位力矩,电机绕组端部产生铜耗、定子铁芯产生铁耗、定子三相电流产生电枢反应、定子的三相互感使电机的内阻变大。上述原因制约了电机性能提高。
以其中的定子铁芯铁耗为例,如图3所示,传统永磁无刷直流电机中,每一个定子齿内的垂直磁力线401较长,导致定子铁芯产生的铁耗较大。
发明内容
针对现有技术的上述缺陷,本发明要解决现有永磁无刷直流电机由于定子开槽结构而产生的铁耗大等问题。
为解决上述技术问题,本发明提供一种双转子电机,其中在由前端盖、后端盖和机壳构成的中空腔内装有定子和转子,其中,所述定子的定子铁芯为第一端开口的筒型结构,在所述定子铁芯内、外表面绕制有至少两相绕组;所述转子包括一个磁轭钢套,所述磁轭钢套为第二端开口的双层筒型结构,在所述磁轭钢套内层的外表面装有内转子磁钢,在所述磁轭钢套外层的内表面装有外转子磁钢;所述定子铁芯的第一端经所述磁轭钢套的第二端插入其内层与外层之间,使定子铁芯位于内转子磁钢与外转子磁钢之间;所述内转子磁钢和外转子磁钢分别包含磁极数为2P的内磁钢片和外磁钢片,每一个内磁钢片与一个外磁钢片正对、且两者的磁极极性相同,其中P为磁极对数。
本发明双转子电机优选方案中,所述定子铁芯的第二端安装在定子座上,所述定子座再装于所述后端盖内侧;所述磁轭钢套内层的内表面套装在转子轴上;所述转子轴的第一端通过前轴承装在前端盖上、并从前端盖向外伸出形成电机的输出轴,所述转子轴的第二端通过后轴承装在后端盖上。
本发明双转子电机优选方案中,所述定子铁芯的两端装有第一绝缘端板和第二绝缘端板;所述第一、第二绝缘端板上均布Z=2Pm个突起,用于分隔和定位各相绕组,其中Z是电机的虚槽数,m是电机的相数。
本发明双转子电机优选方案中,所述磁极对数P应满足πD/2P≤40mm,其中D是所述定子铁芯的外径;所述定子铁芯的筒厚H的取值范围为H=(πD/4P~πD/20P)。
本发明双转子电机优选方案中,所述电机是相数m=3的三相永磁电机;其中U、V、W三相绕组在所述定子铁芯的内、外表面平行于所述转子轴绕制,并沿所述定子铁芯的圆周方向平移。其中,所述U、V、W三相绕组中点相联形成Y连接方式,或者,所述U、V、W三相绕组形成三相独立线圈绕组。优选地,所述电机极数可为2P=12,其中绕组每极每相取4匝,每相48匝。
本发明双转子电机优选方案中,所述电机是相数m=2的两相永磁电机,其中A、B两相绕组在所述定子铁芯的内、外表面平行于所述转子轴绕制,并沿所述定子铁芯的圆周方向平移,形成两相独立线圈绕组。
本发明双转子电机优选方案中,所述定子铁芯由环形硅钢片叠压而成,所述硅钢片的厚度为0.35~0.5mm。
本发明的电机可用于风扇、压缩机等产品中。其中的风扇包括叶片及驱动电机,所述驱动电机即为本发明的双转子电机。其中的压缩机,包括机身、汽缸部分、传动部分,以及与所述传动部分连接的驱动电机,同样,所述驱动电机即为本发明的双转子电机。
由上述技术方案可以看出,本发明的双转子电机中采用斥力磁场的双转子磁钢设计,无槽定子铁芯,保证大部分磁力线垂直进入定子铁芯并产生有效力矩,然后形成与电机旋转方向一致的切向磁场,从而使铁损的性质成为铁芯表面涡流损耗,铁损的数值有大幅下降。本发明电机的定子绕组采用环形绕制,绕组端部减小数倍,使端部铜耗大幅减小。
本发明双转子电机的功率密度大、体积小,空间利用好,体积不变下功率密度增加100%。本发明电机环形绕制的三相绕组,可以从原理上平衡三相电流产生的电枢反应,提高了电机的带负载能力。
附图说明
图1是本发明一个优选实施例中双转子电机的定子及转子的截面视图;
图2是本发明图1所示双转子电机的相斥磁场产生的磁力线示意图;
图3是传统永磁无刷直流电机的定子及转子磁力线示意图;
图4a是绕了U相绕组的定子示意图;
图4b是三相绕组展开后的表示其空间关系的示意图;
图5是图1中所示定子铁芯的左视结构示意图;
图6是针对本发明双转子电机的三相独立桥驱动电路;
图7是针对本发明双转子电机的电势零点检测电路;
图8是双转子电机的三相电势波形及电势零点检测信号对应关系图。
具体实施方式
本发明的一个优选实施例如图1、图2及图4所示,该双转子电机的主要部件标号说明:1是后端盖,2是后轴承,3是定子座,4是定子铁芯,5是定子绕组,61是内转子磁钢,62是外转子磁钢,7是磁轭钢套,8是前端盖,9是前轴承,10是转子轴。
该双转子电机的定子包括定子座3、定子铁芯4、以及设在定子铁芯4上的三相绕组5;其中的定子铁芯4由环形硅钢片叠压而成,其两端装有第一绝缘端板和第二绝缘端板。从图1中可以看出,筒型定子铁芯4的第二端(左端)安装在定子座3上,构成的定子是一个第一端(右端)开口的筒型结构。
该双转子电机的转子包括磁轭钢套7,它是一个第二端(左端)开口的双层筒型结构,在磁轭钢套7内层的外表面装有内转子磁钢61,在磁轭钢套7外层的内表面装有外转子磁钢62。定子铁芯4的第一端经磁轭钢套7的第二端插入其内层与外层之间,使定子铁芯4位于内转子磁钢61与外转子磁钢62之间。
在图1的局部剖视图中,内转子磁钢61位于定子铁芯4的下部,外转子磁钢62位于定子铁芯4的上部,内转子磁钢61、外转子磁钢62与定子铁芯4之间有适当的间隙;从这个局部剖视图来看,内转子磁钢61、外转子磁钢62、磁轭钢套7构成一个嵌套结构,并套装在定子铁芯4上。
内转子磁钢61、外转子磁钢62、磁轭钢套7构成的转子装在转子轴10上,具体是磁轭钢套7内层的内表面套装在转子轴10上。转子轴10的第二端(左端)通过后轴承2装在后端盖1上,转子轴10的第一端通过前轴承9装在前端盖8上、并从前端盖8向外伸出成为电机的输出轴。
本发明中提及的“双转子”,就是指上述由内转子磁钢61、外转子磁钢62构成的双层转子结构。如图2所示,定子铁芯4位于内转子磁钢61与外转子磁钢62之间。内转子磁钢61、外转子磁钢62、磁轭钢套7构成的转子是可转动的,而定子铁芯是固定不动的。
如图4a所示为绕了U相绕组的示意图,它相当于将图1中所示的定子铁芯4逆时针旋转90度之后再展开的结构示意图,相邻两组线圈绕组之间有两个空格,用于绕制另外的V相绕组、W相绕组。如图4b所示为U、V、W三相绕组展开后的空间关系的示意图,三相绕组沿圆周按120°电角度均匀分布。从图4a可以看出,各相绕组是绕制在定子铁芯4表面的,具体是沿筒型定子铁芯的内、外表面平行于转子轴绕制,每绕制好一个虚槽再跳转至下一个虚槽;定子铁芯4表面无槽,仅在定子铁芯4的上下端部有开槽(具体实施时相邻绕组之间可通过绝缘凸起形成槽形以达到隔开的效果),用于限定三相绕组的位置。
如图5所示,定子铁芯4由环形硅钢片叠压而成;如图4a所示,定子铁芯4上设有第一绝缘端板301、第二绝缘端板302,第一、第二绝缘端板上均布有Z=2Pm个突起,用于分隔和定位各相绕组,其中Z是电机的虚槽数,m是电机的相数。
本发明中,内转子和外转子的磁极对数为P,磁极数为2P,筒型定子铁芯沿圆周有Z个虚槽,Z=2Pm,电机基本参数应满足:πD/2P≤40mm,其中D是筒型定子的外径。筒型定子的筒厚H的取值范围:H=(πD/4P~πD/20P)。
本发明的优选实施例中,m=3,电机为三相永磁电机,前面图4a、图4b所述的实施例中即为m=3的三相永磁电机,此时Z=2Pm=6P,U、V、W三相绕组在定子铁芯的内、外表面平行于转子轴绕制,并沿定子铁芯的圆周方向平移,三相绕组中点相联,形成Y连接方式;当然,其中的U、V、W三相绕组也可以是三相独立线圈绕组。
本发明的另一种优选实施例中,可取m=2,此时电机为两相永磁电机,Z=2Pm=4P;A、B两相绕组在定子铁芯的内、外表面平行于转子轴绕制,并沿定子铁芯的圆周方向平移,形成两相独立线圈绕组。
具体实施时,定子铁芯4由环形硅钢片叠压而成,硅钢片的厚度为0.35~0.5mm。
如图2所示,其中的磁钢片的磁极数为2P,每一个内磁钢片与一个外磁钢片正对、且两者的磁极极性相同,也就是说,内磁钢片与外磁钢片呈“相斥磁场”。由于内转子与外转子的磁钢片的磁极为同极相对,例如图2中最左侧都是N极,从而可保证绝大部分磁力线垂直进入定子铁芯,且磁力线在进入定子铁芯之后只有一小段行程即偏转90°,形成与电机旋转方向一致的切向磁场,位于定子铁芯表面的绕组会切割垂直磁力线402产生有效力矩。与图3所示的传统永磁无刷直流电机中的垂直磁力线401相比,本发明这种电机的磁力线在垂直方向的行程大大缩短,使电机铁损的性质成为铁芯表面涡流损耗。由于定子铁芯4采用硅钢片,可抑制铁芯表面涡流损耗;而铁芯内部的磁力线又与电机旋转方向一致,不产生涡流损耗,所以本发明双转子电机的铁损与传统电机相比在数值上会有大幅下降,并且电机的端部非常小,电机的全部绕组都可以产生力矩。本发明双转子电机的功率密度大、体积小,空间利用好,在体积不变的情况下相比传统电机其功率密度可增加100%。
如图4a所示,这种定子绕组设计使绕组的端部尺寸减半,从而减少铜损30%左右,且绕组的绕制方法更加简便,容易实现全自动绕线,使电机的可靠性和一致性提高。本实施例中,定子铁芯硅钢片的厚度为0.35mm,可以进一步减少表面铁损,使电机适应高速高频运行。
本发明的优选实施例中,电机极数2P=12,其中绕组每极每相取4匝,则每相有48匝。在其他实施例中,电机极数2P也可为8或10,当然每相绕组匝数也可根据电机大小设定。总的来说这种电机的匝数较小,更适于低压和/或高速运行。
图6所示为本发明双转子电子的驱动电路,图7所示为电势零点检测电路,其中的驱动电路为三相独立桥驱动电路,即通过三个H桥驱动电路分别控制U、V、W三相绕组,三相绕组之间的相位关系则通过外围电路控制各开关管的通断来实现。图7中仅示意出了其中一相的电势零点检测电路,其他两相的电势零点检测电路与此相同。其中三相电势波形及三相电势零点检测信号的对应关系如图8所示。
由于高速电机极数比较少,电机气隙为方向磁场,磁场中通常有较强的3、5、7次谐波分量,采用三相独立绕组后,可以利用正弦波或方波电流驱动,使3、5、7次谐波电流分量与谐波共同作用,同时产生谐波驱动转矩。合成力矩使电机的平均转矩更加平稳,且力矩大幅增加,理论上可提高1.73倍。三相独立绕组更有利于反电势零点的检测,使无位置传感器运行的可靠性提高,理论上可以确保无失败的电机启动。
由上述实施例可以看出,本发明是一种双转子电机,采用在定子内侧和定子外侧均设置一个转子,且内转子与外转子的磁钢片的磁极为同极相对,从而保证大部分磁力线垂直进入定子铁芯。位于定子铁芯表面的绕组切割磁力线产生有效力矩,而进入定子铁芯的磁力线,即偏转90°,形成与电机旋转方向一致的切向磁场。本发明使电机铁损的性质成为铁芯表面涡流损耗。由于铁芯采用硅钢片,抑制了铁芯表面涡流损耗,而铁芯内部的磁力线与电机旋转方向一致,不产生涡流损耗,所以本发明双转子电机的铁损的与传统电机相比,数值上有大幅下降,并且电机的端部非常小,电机的全部绕组都可以产生力矩。本发明双转子电机的功率密度大、体积小,空间利用好,体积不变的功率密度增加100%。
本发明采用相斥磁场的双定子电机设计,在定子铁芯内、外表面绕制形成电机绕组,使绕组的端部尺寸减半,与传统电机相比,可以减少铜耗30%左右。本发明电机环形绕制的三相绕组,可以从原理上平衡三相电流产生的电枢反应,提高了电机的带负载能力。本发明绕组的绕制方法更加简便,容易实现全自动绕线,使电机的可靠性和一致性提高。
本发明的电机可用于风扇、压缩机等产品中。其中的风扇包括叶片及驱动电机,所述驱动电机即为本发明的双转子电机。其中的压缩机,包括机身、汽缸部分、传动部分,以及与所述传动部分连接的驱动电机,同样,所述驱动电机即为本发明的双转子电机。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种双转子电机,其中在由前端盖、后端盖和机壳构成的中空腔内装有定子和转子,其特征在于,所述定子的定子铁芯为第一端开口的筒型结构,在所述定子铁芯内、外表面绕制有至少两相绕组;所述转子包括一个磁轭钢套,所述磁轭钢套为第二端开口的双层筒型结构,在所述磁轭钢套内层的外表面装有内转子磁钢,在所述磁轭钢套外层的内表面装有外转子磁钢;所述定子铁芯的第一端经所述磁轭钢套的第二端插入其内层与外层之间,使定子铁芯位于内转子磁钢与外转子磁钢之间;所述内转子磁钢和外转子磁钢分别包含磁极数为2P的内磁钢片和外磁钢片,每一个内磁钢片与一个外磁钢片正对、且两者的磁极极性相同,其中P为磁极对数。
  2. 根据权利要求1所述的双转子电机,其特征在于,所述定子铁芯的第二端安装在定子座上,所述定子座再装于所述后端盖内侧;所述磁轭钢套内层的内表面套装在转子轴上;所述转子轴的第一端通过前轴承装在前端盖上、并从前端盖向外伸出形成电机的输出轴,所述转子轴的第二端通过后轴承装在后端盖上。
  3. 根据权利要求1所述的双转子电机,其特征在于,所述定子铁芯的两端装有第一绝缘端板和第二绝缘端板;所述第一、第二绝缘端板上均布Z=2Pm个突起,用于分隔和定位各相绕组,其中Z是电机的虚槽数,m是电机的相数。
  4. 根据权利要求3所述的双转子电机,其特征在于,所述磁极对数P应满足πD/2P≤40mm,其中D是所述定子铁芯的外径;所述定子铁芯的筒厚H的取值范围为H=(πD/4P~πD/20P)。
  5. 根据权利要4所述的双转子电机,其特征在于,所述电机是相数m=3的三相永磁电机;其中U、V、W三相绕组在所述定子铁芯的内、外表面平行于所述转子轴绕制,并沿所述定子铁芯的圆周方向平移。
  6. 根据权利要求5所述的双转子电机,其特征在于,所述U、V、W三相绕组中点相联形成Y连接方式。
  7. 根据权利要求6所述的双转子电机,其特征在于,所述电机极数2P=12,其中绕组每极每相取4匝,每相48匝。
  8. 根据权利要求5所述的双转子电机,其特征在于,所述U、V、W三相绕组形成三相独立线圈绕组。
  9. 根据权利要求4所述的双转子电机,其特征在于,所述电机是相数m=2的两相永磁电机,其中A、B两相绕组在所述定子铁芯的内、外表面平行于所述转子轴绕制,并沿所述定子铁芯的圆周方向平移,形成两相独立线圈绕组。
  10. 根据权利要求1-9中任一项所述的双转子电机,其特征在于,所述定子铁芯由环形硅钢片叠压而成,所述硅钢片的厚度为0.35~0.5mm。
  11. 一种风扇,包括叶片及驱动电机,其特征在于,所述驱动电机为权利要求1-10中任一项所述的双转子电机。
  12. 一种压缩机,包括机身、汽缸部分、传动部分,以及与所述传动部分连接的驱动电机,其特征在于,所述驱动电机为权利要求1-10中任一项所述的双转子电机。
PCT/CN2013/081220 2013-08-09 2013-08-09 一种双转子电机及使用这种电机的风扇、压缩机 WO2015018083A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/081220 WO2015018083A1 (zh) 2013-08-09 2013-08-09 一种双转子电机及使用这种电机的风扇、压缩机
CN201380078546.2A CN105453394B (zh) 2013-08-09 2013-08-09 一种双转子电机及使用这种电机的风扇、压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/081220 WO2015018083A1 (zh) 2013-08-09 2013-08-09 一种双转子电机及使用这种电机的风扇、压缩机

Publications (1)

Publication Number Publication Date
WO2015018083A1 true WO2015018083A1 (zh) 2015-02-12

Family

ID=52460573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081220 WO2015018083A1 (zh) 2013-08-09 2013-08-09 一种双转子电机及使用这种电机的风扇、压缩机

Country Status (2)

Country Link
CN (1) CN105453394B (zh)
WO (1) WO2015018083A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049792A1 (zh) * 2014-09-29 2016-04-07 贾茂军 磁电无极自动变速器
CN106803710A (zh) * 2017-04-06 2017-06-06 宁德时代电机科技有限公司 一种体积超小高功率密度永磁外转子电机装置
CN106972719A (zh) * 2017-05-19 2017-07-21 宁德时代电机科技有限公司 一种高功率密度永磁双外转子空压机电机装置
CN107070176A (zh) * 2017-05-16 2017-08-18 深圳市赫瑞科技有限公司 一种磁齿轮
CN108233608A (zh) * 2018-03-22 2018-06-29 宁德时代电机科技有限公司 一种集成无损自动制动的永磁电机装置
CN109301977A (zh) * 2018-11-30 2019-02-01 重庆长基科技有限公司 一种外转子无刷无槽电机
WO2020118819A1 (zh) * 2018-12-14 2020-06-18 微控物理储能研究开发(深圳)有限公司 基于双层转子结构的电机及双层储能飞轮
CN112977186A (zh) * 2021-03-01 2021-06-18 宁波精成车业有限公司 一种具有翻转温控功能的电机驱动设备
AU2020286169B1 (en) * 2020-05-29 2021-07-22 Shenzhen Yiji Manufacturing Co., Ltd. New two-stator and four-rotor combined energy-saving motor
AU2020286173B1 (en) * 2020-05-29 2021-07-22 Shenzhen Yiji Manufacturing Co., Ltd. Mixed-wave permanent magnet motor
EP3916971A1 (en) * 2020-05-29 2021-12-01 Shenzhen Yiji Manufacturing Co., Ltd. New two-stator and two-rotor combined energy-saving motor
EP3916973A1 (en) * 2020-05-29 2021-12-01 Shenzhen Yiji Manufacturing Co., Ltd. New four-stator and four-rotor combined energy-saving motor
CN114362465A (zh) * 2022-01-11 2022-04-15 郑余德 共线圈双转子永磁电动机
CN114844307A (zh) * 2022-05-25 2022-08-02 中车永济电机有限公司 直驱风力发电机模块化定子绕组的绕制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645719A (zh) * 2004-12-30 2005-07-27 山东大学 一种双转子永磁电机
JP2006345682A (ja) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp 環状巻線電動機
JP2010284034A (ja) * 2009-06-05 2010-12-16 Toshiba Corp 永久磁石回転電機
CN102290936A (zh) * 2011-08-11 2011-12-21 国电联合动力技术有限公司 大型双转子直驱永磁风力发电机及其组成的发电机组
CN102497074A (zh) * 2011-12-26 2012-06-13 北京理工大学 一种基于双转子结构的多相容错永磁电机
CN202856473U (zh) * 2012-07-20 2013-04-03 林贵生 可无级变矩和调速的直驱式电动机或发电机
CN203482057U (zh) * 2013-08-09 2014-03-12 深圳市配天电机技术有限公司 一种双转子电机及使用这种电机的风扇、压缩机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133260C (zh) * 2001-12-25 2003-12-31 江西喜泰电机有限公司 套圈式绕组内外转子无槽电机
CN101272064A (zh) * 2008-05-06 2008-09-24 南京航空航天大学 大容量轻型永磁径向/轴向转子结构直驱风力发电机
CN102035321B (zh) * 2010-11-29 2013-09-04 深圳市大族激光科技股份有限公司 一种双边直驱无槽力矩电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645719A (zh) * 2004-12-30 2005-07-27 山东大学 一种双转子永磁电机
JP2006345682A (ja) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp 環状巻線電動機
JP2010284034A (ja) * 2009-06-05 2010-12-16 Toshiba Corp 永久磁石回転電機
CN102290936A (zh) * 2011-08-11 2011-12-21 国电联合动力技术有限公司 大型双转子直驱永磁风力发电机及其组成的发电机组
CN102497074A (zh) * 2011-12-26 2012-06-13 北京理工大学 一种基于双转子结构的多相容错永磁电机
CN202856473U (zh) * 2012-07-20 2013-04-03 林贵生 可无级变矩和调速的直驱式电动机或发电机
CN203482057U (zh) * 2013-08-09 2014-03-12 深圳市配天电机技术有限公司 一种双转子电机及使用这种电机的风扇、压缩机

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049792A1 (zh) * 2014-09-29 2016-04-07 贾茂军 磁电无极自动变速器
CN106803710A (zh) * 2017-04-06 2017-06-06 宁德时代电机科技有限公司 一种体积超小高功率密度永磁外转子电机装置
CN107070176A (zh) * 2017-05-16 2017-08-18 深圳市赫瑞科技有限公司 一种磁齿轮
CN107070176B (zh) * 2017-05-16 2023-05-02 深圳市赫瑞科技有限公司 一种磁齿轮
CN106972719A (zh) * 2017-05-19 2017-07-21 宁德时代电机科技有限公司 一种高功率密度永磁双外转子空压机电机装置
CN108233608A (zh) * 2018-03-22 2018-06-29 宁德时代电机科技有限公司 一种集成无损自动制动的永磁电机装置
CN108233608B (zh) * 2018-03-22 2023-09-15 宁德时代电机科技有限公司 一种集成无损自动制动的永磁电机装置
CN109301977A (zh) * 2018-11-30 2019-02-01 重庆长基科技有限公司 一种外转子无刷无槽电机
CN109301977B (zh) * 2018-11-30 2024-03-08 重庆长基科技有限公司 一种外转子无刷无槽电机
WO2020118819A1 (zh) * 2018-12-14 2020-06-18 微控物理储能研究开发(深圳)有限公司 基于双层转子结构的电机及双层储能飞轮
AU2020286169B1 (en) * 2020-05-29 2021-07-22 Shenzhen Yiji Manufacturing Co., Ltd. New two-stator and four-rotor combined energy-saving motor
EP3916971A1 (en) * 2020-05-29 2021-12-01 Shenzhen Yiji Manufacturing Co., Ltd. New two-stator and two-rotor combined energy-saving motor
EP3916972A1 (en) * 2020-05-29 2021-12-01 Shenzhen Yiji Manufacturing Co., Ltd. New two-stator and four-rotor combined energy-saving motor
EP3916973A1 (en) * 2020-05-29 2021-12-01 Shenzhen Yiji Manufacturing Co., Ltd. New four-stator and four-rotor combined energy-saving motor
EP3916974A1 (en) * 2020-05-29 2021-12-01 Shenzhen Yiji Manufacturing Co., Ltd. Mixed-wave permanent magnet motor
AU2020286173B1 (en) * 2020-05-29 2021-07-22 Shenzhen Yiji Manufacturing Co., Ltd. Mixed-wave permanent magnet motor
CN112977186B (zh) * 2021-03-01 2021-11-23 宁波精成车业有限公司 一种具有翻转温控功能的电机驱动设备
CN112977186A (zh) * 2021-03-01 2021-06-18 宁波精成车业有限公司 一种具有翻转温控功能的电机驱动设备
CN114362465A (zh) * 2022-01-11 2022-04-15 郑余德 共线圈双转子永磁电动机
CN114362465B (zh) * 2022-01-11 2024-01-16 郑余德 共线圈双转子永磁电动机
CN114844307A (zh) * 2022-05-25 2022-08-02 中车永济电机有限公司 直驱风力发电机模块化定子绕组的绕制方法
CN114844307B (zh) * 2022-05-25 2024-05-14 中车永济电机有限公司 直驱风力发电机模块化定子绕组的绕制方法

Also Published As

Publication number Publication date
CN105453394A (zh) 2016-03-30
CN105453394B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2015018083A1 (zh) 一种双转子电机及使用这种电机的风扇、压缩机
CN105245073B (zh) 定子永磁型双凸极盘式电机
CN103490572B (zh) 一种三自由度磁悬浮开关磁阻电机
CN101980433B (zh) 周向移相轴向分段的楔形定子铁芯外永磁转子同步电机
CN106505818B (zh) 分段移相式外转子永磁同步电动机
CN112186921A (zh) 用于异步起动永磁电机的转子及异步起动永磁电机
CN203482057U (zh) 一种双转子电机及使用这种电机的风扇、压缩机
JP2002369473A (ja) 永久磁石を使用したシンクロナスモーター
CN108683313A (zh) 一种高功率密度高效率的轴向磁通永磁电机
CN106374705B (zh) 轴向磁通永磁电机
WO2020253194A1 (zh) 直接起动同步磁阻电机转子结构及具有其的电机
CN110034649A (zh) 一种轴向磁场磁通切换式横向磁通永磁电机
JP4576873B2 (ja) 永久磁石電動機並びにその駆動方法及び製造方法、圧縮機、送風機及び空気調和機
CN105119454A (zh) Halbach阵列式永磁直流无刷电机
CN103580428A (zh) 半磁片外转子式异步起动永磁同步电动机
CN111835107A (zh) 旋转电机的转子
CN204858923U (zh) 一种用于锻压机的直驱式永磁交流伺服电机
CN109038871B (zh) 一种分段转子开关磁阻电机
CN218005992U (zh) 一种永磁辅助同步磁阻电机转子和电机
CN107579638B (zh) 一种双定子聚磁-磁阻混合转子电机
CN206650564U (zh) 一种磁悬浮磁通切换电机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
CN104113174B (zh) 一种单层鼠笼式双定子无刷双馈电机
CN203537202U (zh) 半磁片外转子式异步起动永磁同步电动机
CN209402272U (zh) 一种永磁聚磁式同步磁阻电机及其非对称转子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078546.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891130

Country of ref document: EP

Kind code of ref document: A1