WO2015018064A1 - 一种动态资源块分配方法、装置、基站及系统 - Google Patents

一种动态资源块分配方法、装置、基站及系统 Download PDF

Info

Publication number
WO2015018064A1
WO2015018064A1 PCT/CN2013/081180 CN2013081180W WO2015018064A1 WO 2015018064 A1 WO2015018064 A1 WO 2015018064A1 CN 2013081180 W CN2013081180 W CN 2013081180W WO 2015018064 A1 WO2015018064 A1 WO 2015018064A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
base station
macro base
weight
abrb
Prior art date
Application number
PCT/CN2013/081180
Other languages
English (en)
French (fr)
Inventor
刘坚能
刘安
陈俊挺
肖登坤
吴彤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003166.2A priority Critical patent/CN105264986B/zh
Priority to PCT/CN2013/081180 priority patent/WO2015018064A1/zh
Publication of WO2015018064A1 publication Critical patent/WO2015018064A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a dynamic resource block allocation method, apparatus, base station, and system.
  • HetNet The next generation of mobile wireless communication network technology based on LTE (Long Term Evolution) and LTE-A proposes to improve system throughput by laying out heterogeneous networks (HetNet).
  • HetNet consists of a macro base station ( macro BS ) with large transmit power and wide coverage, and a low power node (LPN ) with small transmit power and limited coverage but flexible distribution (such as micro base station pico, relay station relay, radio remote RRH, etc. ).
  • LPN low power node
  • the Pico node is usually deployed in a user-intensive area of the coverage of the macro base station as an access hotspot to improve system capacity; that is, the main purpose of the macro base station is to perform network coverage and low power nodes.
  • the introduction is to increase the throughput of the system.
  • the operator hopes that low-power nodes, such as pico nodes, can connect users in the network to the Pico station as much as possible, thereby generating cell edge expansion (Cell range).
  • CRE cell edge expansion
  • the CRE offset value can reach 9 dB, that is, in the CRE area, even if the signal strength from the Pico base station is 9 dB less than the signal strength from the macro base station, the user terminal still selects the Pico base station as the serving cell.
  • This kind of cell edge expansion network deployment mode has a good extension and can provide a large network capacity, which is the development direction of future wireless network deployment.
  • wireless networks are also required to have strict delay control. This is because the data transmission delay is more easily perceived by the user, thereby affecting the user experience. For example, a mobile terminal establishes a 100 Mbps wireless connection with a base station, but due to resource scheduling, the user is polled every 500 ms, even though the user's peak transmission speed The rate can reach hundreds of megabytes, and the data transmission delay will still reach at least 500ms. Such delay is unacceptable for applications such as real-time video calls. Based on this, next-generation wireless communication networks will need to increasingly focus on reducing latency.
  • the enhanced inter-cell-interference-cancellation (elCIC) technology based on blank sub-frame (ABS) proposed in recent years does not directly reduce the delay as the fundamental goal.
  • the macro base station fixes a blank subframe in some subframes within a certain time window, does not schedule the user under the macro base station, and notifies the location of the blank subframe to the following.
  • the Pico base station is subjected to strong interference, so that the Pico base station can schedule the users in the CRE area at the time when the macro base station transmits the blank subframe, and reduce the co-channel interference from the network.
  • blank sub-frames are sent at a pre-configured, constant rate (such as sending a blank sub-frame every 8 sub-frames). Then, users in the CRE area can only be called once every 8 subframe slots. This is because when the macro base station is transmitting data sub-frames, the CRE area users will be greatly interfered, so that the CRE area cannot occur. User data transmission; In this case, if the CRE area user has a large amount of data waiting to be transmitted, it will experience a great delay and even packet loss.
  • the inventors have found in the process of implementing the present invention that: from the existing standards, the allocation of blank subframes is static or semi-static, that is, the blank subframes are statically configured by the macro base station;
  • the service requirement of the Pico node requires the macro base station to perform corresponding adjustment of the blank subframe, thereby implementing semi-static blank subframe allocation.
  • This fixed blank sub-frame allocation method almost completely ignores the delay requirement between each node, ignoring the actual transmission requirements of the user, and the adaptive performance of the delay control is not good, and the anti-delay of the whole network is reduced. performance.
  • the embodiments of the present invention provide a method, a device, a base station, and a system for allocating a dynamic resource block, so as to solve the problem that the adaptive performance of the delay control caused by the fixed blank subframe allocation mode in the prior art is not good.
  • the problem of anti-delay performance of the whole network is reduced.
  • the embodiment of the present invention provides the following technical solutions:
  • an embodiment of the present invention provides a dynamic resource block allocation method, which is applied to a radio resource management server (RRMS), where the method includes: Receiving a first resource block weight value fed back by the low power node LPN, and receiving a second resource block weight value fed back by the macro base station;
  • RRMS radio resource management server
  • the LPN calculates the transmission rate corresponding to each resource block of each user in the LPN, Calculating, according to the calculated difference of the transmission rate, the weight of the first resource block that is weighted by the length of the user queue to which the LPN belongs, and calculating the weight of the first resource block that matches the preset number of the first resource block weights Feedback to RRMS;
  • the macro base station calculates a transmission rate corresponding to each resource block of each user under the macro base station when the ABRB is not transmitted, and calculates a weight of the second resource block weighted by the length of the user queue to which the macro base station belongs according to the calculated transmission rate, All calculated second resource block weights are fed back to the RRMS.
  • the determining, by the difference of the calculated transmission rate, the weight of the first resource block that is weighted by the length of the user queue to which the LPN belongs includes:
  • the calculating, according to the calculated transmission rate, the second resource block weights weighted by the user queue length to which the macro base station belongs includes:
  • a represents a first resource block m ⁇ macro base station via a macro base station of the second resource block weight weighted queue length after the user belongs; indicates when the macro base station does not transmit AbrB, the macro base station in the i th user n
  • the transmission rate on the mth resource block, ⁇ nie indicates the length of the user queue to which the macro base station ⁇ belongs;
  • the first resource block weight corresponding to the preset condition number among the calculated first resource block weights Feedback to RRMS includes:
  • M is the number of preset resource blocks allocated to ABRB, ;; is the feedback ratio.
  • the determining process of the M includes:
  • the determining process of the ratio of the ABRB to the total resource block sent by the macro base station includes:
  • the calculating, according to the first resource block weight value of the first number, and all the second resource block weight values include:
  • - n L n , a n , w:, calculate the macro base station "the integrated resource block weight on the resource block is A", indicating the combination of all LPNs under the coverage of the nth macro base station, ⁇ «' indicates a LPN node, the factor related to the interference.
  • the embodiment of the present invention further provides a dynamic resource block allocation apparatus, which is applied to a radio resource management server RRMS, where the apparatus includes:
  • a first receiving module configured to receive a first resource block weight of the low power node LPN feedback
  • a second receiving module configured to receive a second resource block weight value fed back by the macro base station
  • An integrated resource block weight calculation module configured to calculate, according to the first resource block weight received by the first receiving module and the second resource block weight received by the second receiving module, on any resource block in the macro base station Comprehensive resource block weight;
  • an ABRB allocation module configured to indicate, according to the integrated resource block weight, a macro base station to perform an ABRB allocation
  • the LPN calculates the transmission rate corresponding to each resource block of each user in the LPN when the macro base station transmits the ABRB and does not send the ABRB, and calculates the weight of the user queue length after the LPN belongs according to the calculated difference of the calculated transmission rate.
  • the first resource block weight value, and the first resource block weight value in the calculated first resource block weight value that meets the preset condition number is fed back to the RRMS;
  • the macro base station calculates a transmission rate corresponding to each resource block of each user under the macro base station when the ABRB is not transmitted, and calculates a second resource block weight weighted by the length of the user queue to which the macro base station belongs according to the calculated transmission rate. Then, all the calculated second resource block weights are fed back to the second receiving module.
  • the integrated resource block weight calculation module includes:
  • the macro base station indicates that the integrated resource block weight on the resource block indicates that one of the resource blocks m of the nth macro base station received by the second receiving module is weighted by the length of the user queue to which the macro base station belongs.
  • a second resource block weight indicating that the first resource block weight of the resource block on the nth LPN received by the first receiving module is weighted by the length of the user queue to which the LPN belongs, and
  • A) indicates that the resource block
  • the combination of all LPNs under the coverage of a macro base station, «chir, represents a factor related to the interference experienced by the LPN node n.
  • the device further includes:
  • an embodiment of the present invention further provides a base station, including the foregoing dynamic resource block. With the device.
  • the embodiment of the present invention further provides a dynamic resource block allocation system, including: a low power node LPN, a macro base station, and a radio resource management server RRMS;
  • the LPN is configured to calculate a transmission rate corresponding to each resource block of each user in the LPN when the macro base station sends the ABRB and does not send the blank resource block ABRB, and calculates the LPN to be associated according to the calculated difference of the transmission rate.
  • the weight of the first resource block weighted by the user queue length, and the first resource block weight corresponding to the preset number of conditions in the calculated first resource block weight is fed back to the RRMS; the macro base station is used in the macro base When the station does not send the ABRB, the transmission rate corresponding to each resource block of each user under the macro base station is calculated, and the weight of the second resource block weighted by the length of the user queue to which the macro base station belongs is calculated according to the calculated transmission rate. Calculating all the second resource block weights to the RRMS;
  • the RRMS is configured to receive a first resource block weight of the LPN feedback, and receive a second resource block weight value fed back by the macro base station, according to the received first resource block weight and the second resource block weight And calculating an integrated resource block weight on any resource block in the macro base station, and instructing the macro base station to perform ABRB allocation according to the integrated resource block weight.
  • an embodiment of the present invention further provides a base station, including: a communication interface, a memory, a processor, and a communication bus;
  • processor, the communication interface, and the memory complete communication with each other through the communication bus;
  • the communication interface is configured to receive a first resource block weight value fed back by the low power node LPN, and receive a second resource block weight value fed back by the macro base station;
  • the LPN calculates the transmission rate corresponding to each resource block of each user in the LPN, and calculates the user queue that belongs to the LPN according to the calculated difference of the transmission rate.
  • the length-weighted first resource block weight value, and the first resource block weight value corresponding to the preset condition number in the calculated first resource block weight value is fed back to the RRMS; the macro base station calculates the macro base station when the ABRB is not sent.
  • the transmission rate corresponding to each resource block of each user is calculated according to the calculated transmission rate, and the weight of the second resource block weighted by the length of the user queue to which the macro base station belongs is calculated, and all the calculated second resource block weights are calculated.
  • Feedback to the communication interface the processor, configured to execute a program;
  • the memory is configured to store a program;
  • the program is used to:
  • the macro base station is instructed to perform the allocation of the ABRB according to the integrated resource block weight.
  • the allocation of blank resource blocks makes full use of the diversity of the user channel in the frequency domain, and increases the system optimization dimension of the radio resource management. Compared with the traditional blank subframe scheme, the system throughput can be further improved;
  • the calculation of the weight of the first resource block is determined by the length of the user queue to which the LPN belongs
  • the calculation of the weight of the second resource block is determined by the length of the user queue to which the macro base station belongs, and the integrated resource block right of the macro base station for performing ABRB allocation.
  • the value is determined by the first resource block weight and the second resource block weight.
  • the blank resource block allocation scheme in the embodiment of the present invention dynamically performs priority dynamic scheduling according to the length of the user queue, thereby effectively controlling the length of the user queue.
  • the inter-grounding controls the queuing delay, thereby effectively reducing the average transmission delay and the maximum transmission delay of the users of the entire network; and the change speed of the state of the user data transmission queue is much smaller than the time granularity of the existing blank sub-frames, so that the present invention
  • the dynamic resource block allocation method provided by the embodiment is not sensitive to signaling delay and has good Robustness.
  • the dynamic resource block allocation method provided by the embodiment of the present invention can allocate a resource block according to the actual transmission requirement of the user, and has a good delay control of 4 ⁇ compared to the existing allocation method of the fixed blank subframe.
  • the adaptive capability improves the anti-delay performance of the entire network.
  • FIG. 1 is a flowchart of a dynamic resource block allocation method according to an embodiment of the present invention
  • FIG. 2 is another flowchart of a dynamic resource block allocation method according to an embodiment of the present invention
  • 4 is a structural block diagram of a dynamic resource block allocation apparatus according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an integrated resource block weight calculation module according to an embodiment of the present invention
  • FIG. 6 is an ABRB allocation module according to an embodiment of the present invention
  • Block diagram of the structure
  • FIG. 7 is a block diagram showing another structure of a dynamic resource block allocating apparatus according to an embodiment of the present invention
  • FIG. 8 is a structural block diagram of a dynamic resource block allocating system according to an embodiment of the present invention
  • FIG. 9 is a hardware structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for allocating a dynamic resource block according to an embodiment of the present invention.
  • the method is applied to a RRMS (Radio Resource Management Server), and the RRMS may be a brand new implementation of the embodiment of the present invention.
  • the network node of the dynamic resource block allocation method may also be embedded in an existing LTE, 3G or 2G base station in the form of a network module; referring to FIG. 1, the method may include:
  • Step S100 Receive a first resource block weight value fed back by the low power node LPN, and receive a second resource block weight value fed back by the macro base station;
  • the process of the LPN feeding back the weight of the first resource block may be: LPN calculates each user under the LPN when the macro base station sends an ABRB (an almost blank resource block) and does not send an ABRB (the user under the LPN may be an edge)
  • the transmission rate corresponding to each resource block of the user such as the CRE area user, calculates the weight of the resource block weighted by the length of the user queue to which the LPN belongs, based on the calculated difference of the transmission rate, where the user queue belongs to the LPN.
  • the length-weighted resource block weight is the first resource block weight, and the first resource block weight corresponding to the preset condition number in the calculated first resource block weight is fed back to the RRMS.
  • the first resource block weight indicates a maximum weighted rate gain that the LPN can obtain on the resource block when the macro base station transmits the ABRB on a resource block; where the weight of the first resource block that meets the preset condition number is selected mainly Is to consider the network overhead and the transmission obtained Rate gain, in general, the greater the weight of the first resource block, the greater the transmission rate gain that can be obtained from the resource block of the allocated ABRB; therefore, the first resource block weight that meets the preset number of conditions
  • the selection may be performed by selecting a plurality of first resource block weights with the largest weight from the calculated first resource block weights, and the selected number of first resource block weights must satisfy the network.
  • the cost is determined by the embodiment of the present invention.
  • the selection of the weight of the first resource block that meets the preset number of conditions may be determined by the actual network situation and the actual calculation of the first resource block weight. It can be seen that the first resource block weight received by the RRMS in the embodiment of the present invention is the first resource block weight selected by the LPN from the calculated first resource block weights that meets the preset condition number.
  • the process of the macro base station feeding back the weight of the second resource block may be: when the macro base station does not send the ABRB, the macro base station calculates a transmission rate corresponding to each resource block of each user under the macro base station, and calculates an Acer according to the calculated transmission rate.
  • the weight of the resource block weighted by the user queue length to which the station belongs, where the resource block weight weighted by the user queue length to which the macro base station belongs is the second resource block weight
  • the macro base station calculates all the second Resource block weights are fed back to the RRMS.
  • the second resource block weight represents the value of the maximum queue weighting rate available to the macro base station on a certain resource block of all macro users. It can be seen that, in the embodiment of the present invention, the second resource block weight received by the RRMS is all the second resource block weights calculated by the macro base station.
  • Step S110 Calculate, according to the received first resource block weight and the second resource block weight, an integrated resource block weight on any resource block in the macro base station;
  • the integrated resource block weight indicates that the macro base station loses the macro UE rate loss due to the allocation of the ABRB and the network transmission rate gain reflected by the user rate gain at the LPN site.
  • Step S120 Instruct the macro base station to perform allocation of the ABRB according to the weight of the integrated resource block.
  • the blank resource block (ABRB) is a new concept introduced in the embodiment of the present invention.
  • the LPN is The interference is small.
  • the LPN can schedule the edge users at the position corresponding to the ABRB to reduce the average waiting delay of the edge user data packet transmission and reception.
  • the dynamic resource block allocation method uses a macro base station to allocate blank resource blocks, fully utilizes the difference (division) of the user channel in the frequency domain, and increases the system optimization dimension of the wireless resource management, compared with The traditional blank subframe scheme can further improve system throughput;
  • the calculation of the weight of the first resource block is determined by the length of the user queue to which the LPN belongs
  • the calculation of the weight of the second resource block is determined by the length of the user queue to which the macro base station belongs, and the integrated resource block right indicating the allocation of the ABRB by the macro base station.
  • the value is determined by the first resource block weight and the second resource block weight.
  • the blank resource block allocation scheme in the embodiment of the present invention dynamically performs priority dynamic scheduling according to the length of the user queue, thereby effectively controlling the length of the user queue.
  • the inter-grounding controls the queuing delay, thereby effectively reducing the average transmission delay and the maximum transmission delay of the users of the entire network; and the change speed of the state of the user data transmission queue is much smaller than the time granularity of the existing blank sub-frames, so that
  • the dynamic resource block allocation method provided by the embodiment of the invention is not sensitive to signaling delay and has good robustness.
  • the dynamic resource block allocation method provided by the embodiment of the present invention can allocate resource blocks according to the actual transmission requirement of the user, and has a good delay control of 4 ⁇ , compared with the existing allocation method of the fixed blank subframe.
  • the adaptive capability improves the anti-delay performance of the entire network.
  • the dynamic resource block allocation method provided by the embodiment of the present invention is described from the data interaction level between the LPN, the macro base station and the RRMS, and is introduced in the description.
  • the optional parameters and formulas are used to make the implementation of the dynamic resource block allocation method provided by the embodiment of the present invention easier to understand; only the parameters and restrictions appearing below need to be noted.
  • Step S200 The LPN calculates a transmission rate corresponding to each resource block of each user in the LPN when the macro base station sends the ABRB and does not send the ABRB.
  • the specific implementation of the step S200 may be: the LPN calculates a SINR (Signal Interference plus Noise Ratio) corresponding to the macro base station when transmitting the ABRB and not transmitting the ABRB; and correspondingly when the macro base station sends the ABRB.
  • the SINR is used to calculate the transmission rate corresponding to each resource block of each user in the LPN when the ABB is transmitted by the macro base station; and the SINR corresponding to the macro base station when the ABRB is not transmitted, and calculate the user of the LPN under the LPN when the macro base station does not send the ABRB.
  • the transmission rate corresponding to each resource block may be: the LPN calculates a SINR (Signal Interference plus Noise Ratio) corresponding to the macro base station when transmitting the ABRB and not transmitting the ABRB; and correspondingly when the macro base station sends the ABRB.
  • the SINR is used to calculate the transmission rate corresponding to each resource block of each user in the LPN when the
  • the LPN can be set to ",, the macro base station is ", then the macro base station transmits the ABRB, the transmission rate of the user on the first resource block in the LPN can be expressed as « , ' , where afc represents the macro base station The case of sending ABRB; the macro base station is not transmitting ABRB
  • the transmission rate of the user on the first resource block in the LPN may be expressed as m , where "afc" indicates that the macro base station does not send the ABRB.
  • Step S210 The LPN calculates, according to the calculated difference of the transmission rate, a weight of the first resource block weighted by the length of the user queue to which the LPN belongs;
  • the length of the user queue to which the LPN belongs may be the number of waiting for data services arranged under the LPN.
  • w can be calculated by the following formula: w:, two legs U — d where ⁇ "represents [eta], a queue length LPN user belongs, the first resource block can be expressed as the weight when the macro base station n ABRB transmitted on the resource block m, the first n, th LPN available maximum weight gain rate.
  • ma Xl ( ) is a maximum value indicating the following expression, and represents a user number.
  • Step S220 The LPN feeds back the weight of the first resource block with the largest weight to the RRMS;
  • the maximum number of weights can be considered as the number of preset conditions described by the method shown in FIG. 1, that is, for step S220, the one with the largest weight can be selected from the calculated first resource block weights.
  • the ratio of ABRB to the total resource block is simply referred to as the transmission ratio of ABRB.
  • Step S230 The macro base station calculates a transmission rate corresponding to each resource block of each user under the macro base station when the ABRB is not sent.
  • the specific implementation may be as follows:
  • the macro base station calculates a SINR corresponding to when the ABRB is not sent, and calculates, by using the SINR, a transmission rate corresponding to each resource block of each user under the macro base station when the macro base station sends the ABRB.
  • the transmission rate of the first user of the macro base station on the resource block m may be set when the macro base station does not transmit the ABRB.
  • Step S240 The macro base station calculates, according to the calculated transmission rate, a weight of the second resource block weighted by the length of the user queue to which the macro base station belongs;
  • Step S250 The macro base station feeds back all the calculated second resource block weights to the RRMS. It is to be noted that the steps S200 to S220 and the steps S230 to S250 are respectively the operations corresponding to the LPN and the macro base station, and there is no sequence between the steps S200 and S220 and the steps S230 to S250.
  • Step S260 The RRMS calculates the weight of the integrated resource block on any resource block in the macro base station according to the first resource block weight value and all the second resource block weight values.
  • the macro base station can be set to "the total resource block weight on the resource block,
  • ⁇ ; - + ⁇ character ⁇ (ruc) « ⁇ ⁇ , which indicates the combination of all LPNs under the coverage of the “macro base station,” “, indicating a factor related to the interference of the LPN node”.
  • the value oftown is the reciprocal of the number of macro base stations that are adjacent to the LPN node and that cause strong interference to users in the CRE area.
  • Step S270 the weighting of the integrated resource block weights is performed, if the descending order is right If the value is greater than zero, it indicates that the macro base station allocates all resource block transmission ABRBs, and if the weighted value after descending order is not greater than zero, it indicates that the macro base station has the largest weighted value and the positive resource does not exceed ⁇ resources.
  • Step S270 can be considered as a specific implementation of step S120 shown in FIG. The following describes the implementation of step S270 in the form of parameters: If the macro resource block n has a weighted value of W n m on the resource block m , then the descending order is sorted, and the descended weight is obtained.
  • FIG. 3 is a flowchart of a method for determining a transmission ratio of an ABRB according to an embodiment of the present invention. Referring to FIG. 3, the method may include:
  • Step S300 Each macro base station and the LPN record an average queue length of the user to which the user belongs;
  • Step S310 Each macro base station and the LPN feed back the average queue length information of the user to the RRMS; that is, the RRMS receives the average queue length information of the user that is calculated by each macro base station and the LPN;
  • each macro base station and LPN feed back the average user queue length information to the RRMS after a certain time span.
  • Step S320 The RRMS calculates the macro base station user queue length of the whole network ⁇ and the LPN cell user queue length.
  • t. 3 ⁇ 4 is the adjustment threshold.
  • the adjustment threshold reflects the queue length tolerance of the macro base station user and the LPN cell user in the steady state.
  • the dynamic resource block allocation method provided by the embodiment of the present invention can allocate resource blocks according to the actual transmission requirements of the user, and has a good delay control adaptive capability, thereby improving the anti-delay performance of the entire network.
  • the dynamic resource block allocating apparatus provided by the embodiment of the present invention is described below.
  • the dynamic resource block allocating apparatus described below corresponds to the dynamic resource block allocating method described above, and the two can refer to each other.
  • the device is applied to the RRMS, and the RRMS may be a brand new network node for implementing the dynamic resource block allocation method provided by the embodiment of the present invention.
  • the form of the network module is embedded in an existing LTE, 3G or 2G base station; referring to FIG. 4, the dynamic resource block allocating device may include:
  • the first receiving module 100 is configured to receive the first resource block weight value of the low power node LPN feedback.
  • the timing of the first receiving module 100 receiving the first resource block weight may be: when the macro base station sends the ABRB and does not send the ABRB.
  • the second receiving module 200 is configured to receive a second resource block weight value fed back by the macro base station
  • the timing at which the second receiving module 200 receives the second resource block weight may be: the macro base station calculates, according to the calculated transmission rate, a transmission rate corresponding to each resource block of each user under the macro base station when the ABRB is not transmitted. After the weight of the second resource block weighted by the user queue length to which the macro base station belongs, the calculated second resource block weights are fed back to the second receiving module 200.
  • the integrated resource block weight calculation module 300 is configured to calculate, according to the first resource block weight received by the first receiving module 100 and the second resource block weight received by the second receiving module 200, on any resource block in the macro base station. Comprehensive resource block weights.
  • An ABRB allocation module 400 configured to indicate, according to the integrated resource block weight, a macro base station
  • the dynamic resource block allocating device provided by the embodiment of the present invention can perform resource block allocation according to the actual transmission requirement of the user, has a good delay control adaptive capability, and improves the anti-delay performance of the whole network.
  • FIG. 5 shows the structure of the integrated resource block weight calculation module 300.
  • the integrated resource block weight calculation module 300 may include:
  • the weight indicates a second resource block weight weight weighted by the user queue length of the nth macro base station received by the second receiving module 200, and w represents the first receiving module 100.
  • the first resource block weight of the received resource block m on the LPN that is weighted by the user queue length to which the LPN belongs, A) indicates that the first macro base station is The combination of all LPNs under the coverage, ", represents a factor related to the interference received by the LPN node.”
  • Figure 6 shows the structure of the ABRB allocation module 400. Referring to Figure 6, the ABRB allocation module 400 may include:
  • a descending processing unit 410 configured to perform a descending processing on the weight of the integrated resource block
  • the macro base station n have an integrated resource block weight of 5 on the resource block m, and then sort the descending order about m to obtain the descending weight! ⁇ (m) .
  • the first allocating unit 420 is configured to: when the weighted value after the descending order is greater than zero, instruct the macro base station to allocate all resource block transmission ABRBs;
  • the second allocation unit 430 is configured to: when the weighted value after the descending order is not greater than zero, instruct the macro base station to allocate, by the macro base station, the resource block with the largest weighted value and the positive one or more, as the resource block for transmitting the ABRB. among them, ), M is the number of preset resource blocks for assigning ABRB, ⁇ feedback ratio.
  • FIG. 7 is a block diagram of another structure of a dynamic resource block allocating apparatus according to an embodiment of the present invention. As shown in FIG. 4 and FIG. 7, the dynamic resource block allocating apparatus may further include:
  • is the adjustment step size, which is the preset transmission ratio of ABRB
  • is the transmission ratio of the ABRB to be determined.
  • the RRMS can be embedded in an existing LTE, 3G or 2G base station. Therefore, the embodiment of the present invention further provides a base station, which includes the dynamic resource block allocating device described above.
  • the embodiment of the present invention further provides a dynamic resource block allocation system.
  • the dynamic resource block allocation system described below corresponds to the dynamic resource block allocation method and apparatus described above, and can be referred to each other.
  • FIG. 8 is a structural block diagram of a dynamic resource block allocation system according to an embodiment of the present invention.
  • the system may include: an LPN 10, a macro base station 20, and an RRMS 30; wherein the RRMS 30 can be embedded into an existing LTE, 3G or In a 2G base station.
  • the LPN 10 is configured to calculate a transmission rate corresponding to each resource block of each user in the LPN when the macro base station sends the ABRB and does not send the ABRB, and calculates a length of the user queue that belongs to the LPN according to the calculated difference of the transmission rate.
  • the weighted first resource block weight value, and the first resource block weight value of the calculated first resource block weight value that meets the preset condition number is fed back to the RRMS 30;
  • the macro base station 20 is configured to: when the macro base station does not send the ABRB, calculate a transmission rate corresponding to each resource block of each user under the macro base station, and calculate, according to the calculated transmission rate, a weight of the user queue length weighted by the macro base station. Two resource block weights, and all calculated second resource block weights are fed back to the RRMS 30;
  • the RRMS 30 is configured to receive the first resource block weight value of the LPN 10 feedback, and receive the second resource block weight value fed back by the macro base station 20, and calculate according to the received first resource block weight value and the second resource block weight value.
  • the integrated resource block weights on any of the resource blocks in the macro base station indicate that the macro base station performs the ABRB allocation according to the integrated resource block weights.
  • the dynamic resource block allocation system provided by the embodiment of the present invention can allocate resource blocks according to the actual transmission requirements of the user, has a good delay control adaptive capability, and improves the anti-delay performance of the entire network.
  • FIG. 9 is a hardware structural diagram of a base station according to an embodiment of the present invention.
  • the base station is embedded with the RRMS provided by the embodiment of the present invention.
  • the base station may include a communication interface 1, a memory 2, a processor 3, and a communication bus 4.
  • the communication interface 1 can be an interface of the communication module, such as an interface of the network card, for receiving and transmitting signals during the process of transmitting and receiving information between the base station and the external device.
  • the memory 2 can be used to store software programs and modules, and the processor 3 executes various functional applications and data processing of the base station by running software programs and modules stored in the memory 2.
  • the memory 2 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the access server (such as audio data, phone book, etc.).
  • the memory 2 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 3 is a control center of the base station, and connects various base stations by using various interfaces and lines. In part, the base station is monitored overall by running or executing software programs and/or modules stored in the memory 2, as well as invoking data stored in the memory 2, performing various functions and processing data of the base station.
  • the processor 3 may include one or more processing units.
  • the processor 3 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, an application, and the like, and modulates The demodulation processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 3.
  • the communication interface 1 is configured to receive a first resource block weight value fed back by the low power node LPN, and receive a second resource block weight value fed back by the macro base station;
  • the LPN calculates the transmission rate corresponding to each resource block of each user in the LPN when the macro base station sends the ABRB and does not send the ABRB, and calculates the weight of the user queue length after the LPN belongs according to the calculated difference of the calculated transmission rate.
  • the first resource block weight value, and the first resource block weight value of the calculated first resource block weight value that meets the preset condition number is fed back to the communication interface 1;
  • the macro base station calculates a transmission rate corresponding to each resource block of each user under the macro base station, and calculates a weight of the second resource block weighted by the length of the user queue to which the macro base station belongs according to the calculated transmission rate. All the calculated second resource block weights are fed back to the communication interface 1; the processor 3 is configured to execute the program;
  • Memory 2 used to store the program
  • the program is used to:
  • the macro base station is instructed to perform the allocation of the ABRB according to the integrated resource block weight.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种动态资源块分配方法、装置、基站及系统,其中方法包括:接收LPN反馈的第一资源块权值,及接收宏基站反馈的第二资源块权值;根据所接收的第一资源块权值和第二资源块权值,计算宏基站中任一资源块上的综合资源块权值;根据综合资源块权值进行ABRB的分配;LPN在宏基站发送及不发送ABRB时,分别计算LPN下的用户的资源块的传输速率,根据传输速率的差值计算第一资源块权值,将符合预设条件数目的第一资源块权值进行反馈;宏基站计算在不发送ABRB时,宏基站下的用户的资源块的传输速率,根据传输速率计算第二资源块权值,将计算的所有的第二资源块权值进行反馈。本发明实施例具有时延控制自适应能力。

Description

一种动态资源块分配方法、 装置、 基站及系统
技术领域 本发明涉及通信技术领域, 更具体地说, 涉及一种动态资源块分配方法、 装置、 基站及系统。
背景技术
下一代基于 LTE ( Long Term Evolution, 长期演进)及 LTE-A的移动无 线通信网络技术提出了通过布局异构网络( HetNet )来提高系统吞吐量。 HetNet 由发射功率大、 覆盖范围广的宏基站( macro BS )和发射功率小、 覆盖范围有 限但分布灵活的低功率节点(LPN )构成(如微基站 pico、 中继站 relay、 射频 拉远 RRH等等)。 一般的, 以微基站 Pico为例, Pico节点通常部署于宏基站 的覆盖范围内用户密集的地方,作为接入热点以提高系统容量; 即宏基站的主 要目的是做网络覆盖, 而低功率节点的引入是提高系统的吞吐量。在宏基站的 负载过重的情况下, 运营商希望低功率节点, 如 pico节点, 能尽可能多地将 网络中的用户接入到 Pico 站下, 为此就产生了小区边缘拓展 ( Cell range extension, CRE ) 的概念。 在 3GPP LTE R11版本中, CRE的偏置值可达 9dB, 即在 CRE 区域, 即使来自 Pico基站的信号强度比来自宏基站的信号强度小 9dB, 用户终端依然会选择 Pico基站作为服务小区。 这种小区边缘拓展的网络 部署方式具有很好的延伸性, 能提供较大的网络容量,是未来无线网络部署的 发展方向。
随着移动终端多媒体应用 (这些应用包括实时语音、 视频通话, 基于流媒 体的多媒体点播, 多人在线游戏等)的数据通信需求的迅猛增长, 所带来的数 据通信需求除了要求无线接入端提供巨大的吞吐量以外,还要求无线网络具有 严格的时延控制。这是由于数据传输时延更容易被用户察觉,从而影响用户体 验。 例如, 一个移动终端与基站建立了 100Mbps的无线连接, 但是由于资源 调度的关系, 该用户每 500ms 才被轮询一遍, 这样尽管该用户的峰值传输速 率可达上百兆 bps, 其数据传输时延还是会达到至少 500ms, 这样的时延对于 诸如实时视频通话这样的应用来说是难以接受的。基于此, 下一代无线通信网 络将需要越来越多地把设计出发点放在减少时延上。
然而, 现行的无线网络设计都是以提高吞吐量为出发点。 例如, 近年提出 的基于空白子帧 ( ABS ) 的增强型小 区 间干扰消除 ( enhanced inter-cell-interference-cancellation, elCIC )技术, 其并没有直接地以降低时延为 根本目标。 在标准里现有的空白子帧方案中, 宏基站在一定的时间窗内, 固定 在某些子帧发送空白子帧, 不调度宏基站下面的用户, 同时将空白子帧的位置 通知给下面受到强干扰的 Pico基站, 从而可让 Pico基站在宏基站发送空白子帧 的时刻, 去调度处于 CRE区域的用户, 降低来自网络的同频干扰。 不过, 空白 子帧是按照预先配置好的不变的速率发送的 (比如每 8个子帧里发送一个空白 子帧)。 那么处于 CRE区域的用户, 最多也只能每 8个子帧时隙被调用一次, 这 是由于当宏基站在发送数据子帧时, CRE区域用户将会受到极大干扰, 从而不 可能发生 CRE区域用户数据传输; 在这种情况下, 若该 CRE区域用户有大量数 据等待传输, 它将经历极大的时延, 甚至出现丟包。
基于上述描述, 本发明人在实现本发明的过程中发现: 从现有标准来看, 空白子帧的分配是静态或者半静态的方式, 即空白子帧是由宏基站静态配置 的; 或者由于 Pico节点的业务需求, 要求宏基站进行空白子帧相应的调整, 从而实现半静态的空白子帧分配。这种采用固定的空白子帧分配方式几乎完全 忽略了各个节点间对时延的要求, 忽略了用户的实际传输需求,对时延控制的 自适应性能不好, 降低了全网的抗时延性能。
发明内容
有鉴于此, 本发明实施例提供一种动态资源块分配方法、 装置、基站及系 统,以解决现有技术采用固定的空白子帧分配方式所带来的时延控制的自适应 性能不好, 降低了全网的抗时延性能的问题。
为实现上述目的, 本发明实施例提供如下技术方案:
第一方面, 本发明实施例提供一种动态资源块分配方法,应用于无线资源 管理服务器 RRMS, 所述方法包括: 接收低功率节点 LPN反馈的第一资源块权值, 及接收宏基站反馈的第二 资源块权值;
根据所接收的第一资源块权值和第二资源块权值,计算宏基站中任一资源 块上的综合资源块权值;
根据所述综合资源块权值指示宏基站进行空白资源块 ABRB的分配; 其中, LPN在宏基站发送 ABRB及不发送 ABRB时, 分别计算 LPN下的 各用户的各资源块所对应的传输速率,根据所计算的传输速率的差值计算经过 LPN 所属的用户队列长度加权后的第一资源块权值, 将所计算的第一资源块 权值中符合预设条件数目的第一资源块权值反馈给 RRMS;
宏基站计算在不发送 ABRB 时, 宏基站下的各用户的各资源块所对应的 传输速率,根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值, 将所计算的所有的第二资源块权值反馈给 RRMS。
结合第一方面,在第一方面的第一种可能的实现方式中, 所述根据所计算 的传输速率的差值计算经过 LPN所属的用户队列长度加权后的第一资源块权 值包括:
根据公式 ; = maX i , , fc^— ' 计算第一资源块权值; 其中, 表示第《, 个 LPN上的资源块 的一个经过 LPN所属的用户队 列长度加权后的第一资源块权值; d 'm 表示宏基站在发送 ABRB时,第《, 个 LPN中用户 在第 个资源块上的传输速率; r n n ' m 表示宏基站在未发 送 ABRB时, 第《, 个 LPN中用户 在第 个资源块上的传输速率; ρ„,表示 第《, 个 LPN所属的用户队列长度;
所述根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值包括:
根据公式 = max . Qn , ¾计算第二资源块权值;
其中, 表示第 η个宏基站的资源块 m上的一个经过宏基站所属的用户 队列长度加权后的第二资源块权值; 表示在宏基站不发送 ABRB时,宏基 站 n的第 i个用户在第 m个资源块上的传输速率, ρ„表示宏基站 η所属的用 户队列长度;
所述将所计算的第一资源块权值中符合预设条件数目的第一资源块权值 反馈给 RRMS包括:
从所计算的第一资源块权值中选取出权值最大的 个, 将所选取的权值 最大的 Λ ^个第一资源块权值反馈给 RRMS;
其中, M^ roimdl M ) , M 为分配 ABRB 的预设资源块数目, ;;为反 馈比例。
结合第一方面的第一种可能的实现方式,在第二种可能实现方式中, 所述 M 的确定过程包括:
根据 M = ro 确定 M , 其中 N£为宏基站发送的总的资源块数目, ^表示宏基站发送的 ABRB占总资源块的比例。
结合第一方面的第二种可能的实现方式,在第三种可能实现方式中, 所述 宏基站发送的 ABRB占总资源块的比例 的确定过程包括:
接收每个宏基站和 LPN所计算的所属用户的平均队列长度信息; 根据所述平均队列长度信息, 计算出全网平均的宏基站用户队列长度 和 LPN小区用户队列长度 ;
若 (1 + ) , 则确定 = 若 + D , 则确定 β - β0 - Αβ , 其中 t为调节阈值, Δ 为调节步长, ^为预设的 ABRB的发送 比例。
结合第一方面的第三种可能实现方式,在第四种可能实现方式中, 所述根 据所述第一个数的第一资源块权值和所述所有的第二资源块权值,计算宏基站 中任一资源块上的综合资源块权值包括:
根据^ = -
Figure imgf000006_0001
n L n、an,w:,计算宏基站"在资源块 上的综合资 源块权值为 其中 A )表示处于第 n个宏基站覆盖范围下的所有 LPN的结 合, α«'表示一个与 LPN节点《, 受到的干扰有关的因子。
第二方面, 本发明实施例还提供一种动态资源块分配装置,应用于无线资 源管理服务器 RRMS, 所述装置包括:
第一接收模块, 用于接收低功率节点 LPN反馈的第一资源块权值; 第二接收模块, 用于接收宏基站反馈的第二资源块权值;
综合资源块权值计算模块,用于根据所述第一接收模块接收的第一资源块 权值和所述第二接收模块接收的第二资源块权值 ,计算宏基站中任一资源块上 的综合资源块权值;
空白资源块 ABRB分配模块, 用于根据所述综合资源块权值指示宏基站 进行 ABRB的分配;
其中, LPN在宏基站发送 ABRB及不发送 ABRB时, 分别计算 LPN下的 各用户的各资源块所对应的传输速率,根据所计算的传输速率的差值计算经过 LPN 所属的用户队列长度加权后的第一资源块权值, 将所计算的第一资源块 权值中符合预设条件数目的第一资源块权值反馈给 RRMS;
宏基站计算在不发送 ABRB 时, 宏基站下的各用户的各资源块所对应的 传输速率,在根据所计算的传输速率计算经过宏基站所属的用户队列长度加权 后的第二资源块权值后,将所计算的所有的第二资源块权值反馈给所述第二接 收模块。
结合第二方面,在第二方面的第一种可能的实现方式中, 所述综合资源块 权值计算模块包括:
第一计算单元, 用于根据公式 = -< +∑„,eA 计算宏基站 中任一资源块上的综合资源块权值;
其中, 表示宏基站"在资源块 上的综合资源块权值, 表示所述 第二接收模块所接收的第 n个宏基站的资源块 m上的一个经过宏基站所属的 用户队列长度加权后的第二资源块权值, 表示所述第一接收模块所接收的 第 n, 个 LPN上的资源块 的一个经过 LPN所属的用户队列长度加权后的第 一资源块权值, A )表示处于第 个宏基站覆盖范围下的所有 LPN的结合, «„,表示一个与 LPN节点 n, 受到的干扰有关的因子。
结合第二方面,在第二方面的第二种可能的实现方式中,所述装置还包括:
ABRB发送比例确定单元, 用于接收每个宏基站和 LPN所计算的所属用 户的平均队列长度信息,根据所述平均队列长度信息计算出全网平均的宏基站 用户队列长度 ^和 LPN 小区用户队列长度 若 (1 + ) , 则确定 β = β0 + Αβ , 若 1 + U , 则确定 = Α -△ , 其中 ^为调节阈值, △ 为 调节步长, A为预设的 ABRB的发送比例, 为所要确定的 ABRB的发送比 例。
第三方面, 本发明实施例还提供一种基站, 包括上述所述的动态资源块分 配装置。
第四方面, 本发明实施例还提供一种动态资源块分配系统, 包括: 低功率 节点 LPN, 宏基站和无线资源管理服务器 RRMS;
所述 LPN, 用于在宏基站发送 ABRB及不发送空白资源块 ABRB时, 分 别计算 LPN下的各用户的各资源块所对应的传输速率, 根据所计算的传输速 率的差值计算经过 LPN所属的用户队列长度加权后的第一资源块权值, 将所 计算的第一资源块权值中符合预设条件数目的第一资源块权值反馈给 RRMS; 所述宏基站, 用于在宏基站不发送 ABRB 时, 计算宏基站下的各用户的 各资源块所对应的传输速率,根据所计算的传输速率计算经过宏基站所属的用 户队列长度加权后的第二资源块权值,将所计算的所有的第二资源块权值反馈 给所述 RRMS;
所述 RRMS, 用于接收所述 LPN反馈的第一资源块权值, 及接收所述宏 基站反馈的第二资源块权值, 根据所接收的第一资源块权值和第二资源块权 值,计算宏基站中任一资源块上的综合资源块权值,根据所述综合资源块权值 指示宏基站进行 ABRB的分配。
第五方面, 本发明实施例还提供一种基站, 包括: 通信接口, 存储器, 处 理器和通信总线;
其中所述处理器、所述通信接口、所述存储器通过所述通信总线完成相互 间的通信;
所述通信接口, 用于接收低功率节点 LPN反馈的第一资源块权值, 及接 收宏基站反馈的第二资源块权值;
其中, LPN在宏基站发送空白资源块 ABRB及不发送 ABRB时, 分别计 算 LPN下的各用户的各资源块所对应的传输速率, 根据所计算的传输速率的 差值计算经过 LPN所属的用户队列长度加权后的第一资源块权值, 将所计算 的第一资源块权值中符合预设条件数目的第一资源块权值反馈给 RRMS; 宏基站在不发送 ABRB 时, 计算宏基站下的各用户的各资源块所对应的 传输速率,根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值 , 将所计算的所有的第二资源块权值反馈给所述通信接口; 所述处理器, 用于执行程序; 所述存储器, 用于存放程序;
其中程序用于:
根据所接收的第一资源块权值和第二资源块权值,计算宏基站中任一资源 块上的综合资源块权值;
根据所述综合资源块权值指示宏基站进行 ABRB的分配。 进行空白资源块的分配, 充分利用了用户信道在频域上的差异性(diversity ), 增加了无线资源管理的系统优化维度,相比于传统的空白子帧方案, 可进一步 提高系统吞吐量; 同时, 由于第一资源块权值的计算由 LPN所属的用户队列 长度决定, 第二资源块权值的计算由宏基站所属的用户队列长度决定, 而指示 宏基站进行 ABRB分配的综合资源块权值由第一资源块权值和第二资源块权 值决定,因此本发明实施例中的空白资源块分配方案是根据用户队列长度进行 优先级的动态规划的,从而有效地控制了用户队列长度, 间接地控制了排队时 延,从而有效地降低全网用户的平均传输时延和最大传输时延; 而且用户数据 传输队列状态的变化速度远小于现有空白子帧的时间粒度 ,使得本发明实施例 提供的动态资源块分配方法对信令时延并不敏感, 具有很好的鲁棒性。可以看 出,相比现有采用固定的空白子帧的分配方式, 本发明实施例提供的动态资源 块分配方法能够根据用户的实际传输需求进行资源块的分配,具有 4艮好的时延 控制自适应能力, 提高了全网的抗时延性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的动态资源块分配方法的流程图;
图 2为本发明实施例提供的动态资源块分配方法的另一流程图; 图 4为本发明实施例提供的动态资源块分配装置的结构框图; 图 5为本发明实施例提供的综合资源块权值计算模块的结构框图; 图 6为本发明实施例提供的 ABRB分配模块的结构框图;
图 7为本发明实施例提供的动态资源块分配装置的另一结构框图; 图 8为本发明实施例提供的动态资源块分配系统的结构框图;
图 9为本发明实施例提供的基站的硬件结构图。
具体实施方式 为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例 ,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1为本发明实施例提供的动态资源块分配方法的流程图,该方法应用于 RRMS ( Radio Resource Management Server , 无线资源管理服务器), RRMS可 以是一个全新的用于实现本发明实施例提供的动态资源块分配方法的网络节 点,也可以网络模块的形式嵌入到现有的 LTE, 3G或者 2G基站中;参照图 1 , 该方法可以包括:
步骤 S100、 接收低功率节点 LPN反馈的第一资源块权值, 及接收宏基站 反馈的第二资源块权值;
LPN反馈第一资源块权值的过程可以为: LPN在宏基站发送 ABRB( almost blank resource block , 空白资源块)及不发送 ABRB时, 分别计算 LPN下的各 用户 (LPN下的用户可以为边缘用户, 如 CRE区域用户) 的各资源块所对应 的传输速率, 根据所计算的传输速率的差值计算经过 LPN所属的用户队列长 度加权后的资源块权值, 此处经过 LPN所属的用户队列长度加权后的资源块 权值即为第一资源块权值,将所计算的第一资源块权值中符合预设条件数目的 第一资源块权值反馈给 RRMS。第一资源块权值表示宏基站在某一资源块上传 输 ABRB时, LPN在该资源块上可以获得的最大加权速率增益; 此处符合预 设条件数目的第一资源块权值的选取主要是考虑网络的开销及所获得的传输 速率增益, 一般情况下, 第一资源块权值越大表示的能够从所分配的 ABRB 的资源块上获得的传输速率增益也越大;因此符合预设条件数目的第一资源块 权值的选取可以在满足网络开销的情况下,从所计算的第一资源块权值中选取 若干权值最大的第一资源块权值,所选取的若干数目的第一资源块权值必须满 足网络的开销;至于具体的符合预设条件数目的第一资源块权值的选取可视实 际网络情况和实际的第一资源块权值的计算情况而定,本发明实施例不作严格 限制。 可见, 本发明实施例 RRMS所接收的第一资源块权值为 LPN从所计算 的第一资源块权值中选取的符合预设条件数目的第一资源块权值。
宏基站反馈第二资源块权值的过程可以为: 在宏基站不发送 ABRB 时, 宏基站计算宏基站下的各用户的各资源块所对应的传输速率,根据所计算的传 输速率计算经过宏基站所属的用户队列长度加权后的资源块权值,此处经过宏 基站所属的用户队列长度加权后的资源块权值即为第二资源块权值,宏基站将 所计算的所有的第二资源块权值反馈给 RRMS。第二资源块权值表示宏基站在 所有宏用户中的某一资源块上可获得的最大队列加权速率的值。可见, 本发明 实施例 RRMS所接收的第二资源块权值为宏基站所计算的所有的第二资源块 权值。
步骤 S110、 根据所接收的第一资源块权值和第二资源块权值, 计算宏基 站中任一资源块上的综合资源块权值;
综合资源块权值表示的是, 同时考虑了宏基站由于分配 ABRB所带来的 宏 UE速率损失, 以及 LPN站点下的用户速率增益所体现的全网传输速率增 益的综合。
步骤 S120、 根据所述综合资源块权值指示宏基站进行 ABRB的分配。 值得注意的是,空白资源块(ABRB, almost blank resource block)是本发明 实施例引入的一个新概念,宏基站发送空白资源块时, 空白资源块上不存有任 何的数据 , 因此对 LPN的干扰较小 , 此时 LPN可在对应 ABRB的位置调度边 缘用户, 以降低边缘用户数据包接发的平均等待时延。
本发明实施例提供的动态资源块分配方法使用宏基站进行空白资源块的 分配, 充分利用了用户信道在频域上的差异性( diversity ), 增加了无线资源管 理的系统优化维度, 相比于传统的空白子帧方案, 可进一步提高系统吞吐量; 同时, 由于第一资源块权值的计算由 LPN所属的用户队列长度决定, 第二资 源块权值的计算由宏基站所属的用户队列长度决定,而指示宏基站进行 ABRB 分配的综合资源块权值由第一资源块权值和第二资源块权值决定,因此本发明 实施例中的空白资源块分配方案是根据用户队列长度进行优先级的动态规划 的, 从而有效地控制了用户队列长度, 间接地控制了排队时延, 从而有效地降 低了全网用户的平均传输时延和最大传输时延;而且用户数据传输队列状态的 变化速度远小于现有空白子帧的时间粒度,使得本发明实施例提供的动态资源 块分配方法对信令时延并不敏感, 具有很好的鲁棒性。 可以看出, 相比现有采 用固定的空白子帧的分配方式,本发明实施例提供的动态资源块分配方法能够 根据用户的实际传输需求进行资源块的分配, 具有 4艮好的时延控制自适应能 力, 提高了全网的抗时延性能。
为使本发明提供的动态资源块分配方法更易理解, 现从 LPN, 宏基站和 RRMS三者之间的数据交互层面,对本发明实施例提供的动态资源块分配方法 进行描述, 同时在描述中引入可选的参数、 公式, 以使得本发明实施例提供的 动态资源块分配方法的实现更易理解; 只是需要注意的是, 下文出现的参数、 限制。
步骤 S200、 LPN在宏基站发送 ABRB及不发送 ABRB时 ,分别计算 LPN 下的各用户的各资源块所对应的传输速率;
步骤 S200在具体实现上可以是: LPN计算宏基站在发送 ABRB及不发送 ABRB时分别对应的 SINR ( Signalto Interferenceplus Noise Ratio, 信号与干 4尤 加噪声比); 通过宏基站在发送 ABRB 时对应的 SINR, 计算宏基站在发送 ABRB时 LPN下的各用户的各资源块所对应的传输速率; 通过宏基站在不发 送 ABRB时对应的 SINR, 计算宏基站在不发送 ABRB时 LPN下的各用户的 各资源块所对应的传输速率。 此处可设 LPN为《,, 宏基站为《, 则宏基站在 发送 ABRB时, 第《, 个 LPN中用户 在第 个资源块上的传输速率可以表 示为 « , ' ,其中 afc表示宏基站发送 ABRB的情况;宏基站在未发送 ABRB 时,第《,个 LPN中用户 在第 个资源块上的传输速率可以表示为 , m , 其中 "afc表示宏基站未发送 ABRB的情况。
步骤 S210、 LPN根据所计算的传输速率的差值计算经过 LPN所属的用户 队列长度加权后的第一资源块权值;
LPN所属的用户队列长度可以为, 在 LPN下排列的等待进行数据业务的
CRE用户的队列长度。 则第《, 个 LPN上的资源块 的一个经过 LPN所属的 用户队列长度加权后的第一资源块权值可设为 , w 可通过下式计算得出 w:, 二 腿 U —d 其中 ρ„,表示第 η, 个 LPN所属的用户队 列长度,该第一资源块权值 可表示为当宏基站 n在资源块 m上传输 ABRB 时, 第 n, 个 LPN可以获得的最大加权速率增益。 在本发明实施例中, maXl ( )是表示取后面这个表达式的最大值, 代表的是用户编号。
步骤 S220、 LPN将权值最大的 个第一资源块权值反馈给 RRMS;
此处权值最大的 个可认为是图 1所示方法描述的符合预设条件数目, 即对于步骤 S220 而言, 可从所计算的第一资源块权值中选取出权值最大的 个, 将所选取的权值最大的 个第一资源块权值反馈给 RRMS; 常数 为 LPN向 RRMS反馈第一资源块权值的个数, 可表示为 1^ = round^M0 abs ) , 其 中 M 为本发明实施例分配 ABRB的预设资源块数目,;7≤1为反馈比例;其中, M s = round{ Nc ) , N£为宏基站发送的总的资源块数目, 表示宏基站发送的 ABRB占总资源块的比例 , 简称为 ABRB的发送比例。
步骤 S230、 宏基站计算在不发送 ABRB时, 宏基站下的各用户的各资源 块所对应的传输速率;
步骤 S230在具体实现上可以为: 宏基站计算在不发送 ABRB 时对应的 SINR, 通过该 SINR计算宏基站在发送 ABRB时, 宏基站下的各用户的各资 源块所对应的传输速率。可设在宏基站不发送 ABRB时,宏基站《的第 个用 户在资源块 m上的传输速率为 。
步骤 S240、 宏基站根据所计算的传输速率, 计算经过宏基站所属的用户 队列长度加权后的第二资源块权值;
在第 n个宏基站的资源块 m上的一个经过宏基站所属的用户队列长度加 权后的第二资源块权值可设为 , 则 = max. Qn , ir , 其中 表示在 宏基站不发送 ABRB时, 宏基站 n的第 i个用户在第 m个资源块上的传输速 率; β„表示宏基站"所属的用户队列长度; 该第二资源块权值 可表示为宏 基站 n在所有宏用户中的资源块 m上可获得的最大队列加权速率的值。
步骤 S250、 宏基站将所计算的所有的第二资源块权值反馈给 RRMS。 值得注意的是,步骤 S200〜步骤 S220,及步骤 S230〜步骤 S250分别为 LPN 及宏基站对应的操作, 步骤 S200〜步骤 S220, 与步骤 S230〜步骤 S250之间不 存在先后顺序。
步骤 S260、 RRMS根据 个的第一资源块权值,及所有的第二资源块权 值, 计算宏基站中任一资源块上的综合资源块权值;
可设宏基站《在 资源 块 上的 综合资源 块权值为 ,
^; = - +∑„^(„)«ΛΜ , 其中 表示处于第《个宏基站覆盖范围下 的所有 LPN的结合, 《„,表示一个与 LPN节点《, 受到的干扰有关的因子, 《„,的 取值为与 LPN节点《' 相临近并对其 CRE区域用户造成强干扰的宏基站数目的 倒数。 (比如, 如果有 3个临近宏基站对其 CRE区域用户有强干扰, 那么" "'的 取值为 1/3。 ) 步骤 S270、 对综合资源块权值做降序处理, 若降序后的权值恒大于零, 则指示宏基站分配所有的资源块传输 ABRB, 若降序后的权值不恒大于零, 则 指示宏基站将降序后的权值最大的并且为正的不超过^个的资源块, 分配为 传输 ABRB的资源块。
步骤 S270可认为是图 1所示步骤 S120的一种具体实现。下面以参数形式 对步骤 S270的实现进行说明: 若宏基站 n在资源块 m上的综合资源块权值为 Wn m , 则对 作关于 的降序排序, 得到降序后的权值^ 其中 为排 序索引; 若 „ ( 恒大于零, 则指示宏基站分配所有的资源块传输 ABRB, 值 得注意的是, ( 恒大于零意味着宏基站没有数据需要传输, 这时最优的策 略是将所有资源块都分配给 LPN使用; 如果 ( 不恒大于零, 则指示宏基站 将 ,)中权值最大的并且为正的不超过 个的资源块用于进行 ABRB的传 输, 值得注意的是, 权值为正表明资源块分配给 LPN更优, 否则资源块保留 给宏基站更优。
前文提到过预设资源块数目 M 的计算方式为: M =醒 ndi 3Nc ) ,可见确 定 M 主要是确定 ABRB 的发送比例 下面对本发明实施例提供的确定 ABRB的发送比例的方法进行介绍。 图 3 为本发明实施例提供的确定 ABRB 的发送比例的方法流程图, 参照图 3 , 该方法可以包括:
步骤 S300、 每个宏基站和 LPN记录所属用户的平均队列长度;
步骤 S310、 每个宏基站和 LPN将用户平均队列长度信息反馈给 RRMS; 即 RRMS将接收每个宏基站和 LPN所计算的所属用户的平均队列长度信 息;
可选的, 可在每经过一定的时间跨度后, 每个宏基站和 LPN将用户平均 队列长度信息反馈给 RRMS。
步骤 S320、RRMS计算出全网平均的宏基站用户队列长度 ^和 LPN小区 用户队列长度
步骤 S330、 若 (1 + ^) , β = βϋ β ' 若 1 + U , 则 β = β - β。
其中, t。¾为调节阈值, 调节阈值反应了在稳定状态下宏基站用户和 LPN 小区用户的队列长度容差, 阈值越小, 目标容差越小; Δ 为调节步长, Δ 权 衡网络系统达到稳态时对应的收敛速度和调节精度,调节步长越小,精度越高, 但收敛时间越长; βϋ为预设的 ABRB的发送比例。
本发明实施例提供的动态资源块分配方法能够根据用户的实际传输需求 进行资源块的分配, 具有 4艮好的时延控制自适应能力,提高了全网的抗时延性 能。 下面对本发明实施例提供的动态资源块分配装置进行描述,下文描述的动 态资源块分配装置与上文描述的动态资源块分配方法对应, 两者可相互参照。
图 4为本发明实施例提供的动态资源块分配装置的结构框图,该装置应用 于 RRMS, RRMS可以是一个全新的用于实现本发明实施例提供的动态资源块 分配方法的网络节点, 也可以网络模块的形式嵌入到现有的 LTE, 3G或者 2G 基站中; 参照图 4, 动态资源块分配装置可以包括: 第一接收模块 100, 用于接收低功率节点 LPN反馈的第一资源块权值; 第一接收模块 100接收第一资源块权值的时机可以是: LPN在宏基站发 送 ABRB及不发送 ABRB时,分别计算 LPN下的各用户的各资源块所对应的 传输速率, 根据所计算的传输速率的差值计算经过 LPN所属的用户队列长度 加权后的第一资源块权值,将所计算的第一资源块权值中符合预设条件数目的 第一资源块权值反馈给第一接收模块 100。
第二接收模块 200, 用于接收宏基站反馈的第二资源块权值;
第二接收模块 200接收第二资源块权值的时机可以是:宏基站计算在不发 送 ABRB 时, 宏基站下的各用户的各资源块所对应的传输速率, 在根据所计 算的传输速率计算经过宏基站所属的用户队列长度加权后的第二资源块权值 后, 将所计算的所有的第二资源块权值反馈给第二接收模块 200。
综合资源块权值计算模块 300, 用于根据第一接收模块 100接收的第一资 源块权值和第二接收模块 200接收的第二资源块权值,计算宏基站中任一资源 块上的综合资源块权值。
ABRB 分配模块 400 , 用于根据所述综合资源块权值指示宏基站进行
ABRB的分配。
本发明实施例提供的动态资源块分配装置能够根据用户的实际传输需求 进行资源块的分配, 具有 4艮好的时延控制自适应能力,提高了全网的抗时延性 能。
图 5示出了综合资源块权值计算模块 300的结构, 参照图 5, 综合资源块 权值计算模块 300可以包括:
第一计算单元 310, 用于根据公式 = - + Σ η',β^η 计算宏 基站中任一资源块上的综合资源块权值, 其中 表示宏基站 η在资源块 m上 的综合资源块权值, 表示第二接收模块 200所接收的第 n个宏基站的资源 块 m上的一个经过宏基站所属的用户队列长度加权后的第二资源块权值, w 表示第一接收模块 100所接收的第 ", 个 LPN上的资源块 m的一个经过 LPN 所属的用户队列长度加权后的第一资源块权值, A )表示处于第 "个宏基站 覆盖范围下的所有 LPN的结合, 《„,表示一个与 LPN节点《, 受到的干扰有关 的因子。 图 6示出了 ABRB分配模块 400的结构, 参照图 6, ABRB分配模块 400 可以包括:
降序处理单元 410, 用于对综合资源块权值做降序处理;
设宏基站 n在资源块 m上的综合资源块权值为 5 , 则可对 作关于 m 的降序排序, 得到降序后的权值! ^(m)
第一分配单元 420, 用于在降序后的权值恒大于零时, 指示宏基站分配所 有的资源块传输 ABRB;
第二分配单元 430, 用于在降序后的权值不恒大于零时, 指示宏基站将降 序后的权值最大的并且为正的不超过 个的资源块,分配为传输 ABRB的资 源块, 其中,
Figure imgf000017_0001
) , M 为分配 ABRB 的预设资源块数目, η 反馈比例。
图 7为本发明实施例提供的动态资源块分配装置的另一结构框图,结合图 4和图 7所示, 动态资源块分配装置还可以包括:
ABRB发送比例确定单元 500,用于接收每个宏基站和 LPN所计算的所属 用户的平均队列长度信息,根据所述平均队列长度信息计算出全网平均的宏基 站用户队列长度 和 LPN 小区用户队列长度 若 (1 + ^) , 则确定 β = β0 + Αβ , 若 1 + ^) , 则确定 = Α _ Δ ;
其中, t为调节阈值, Δ 为调节步长, 为预设的 ABRB的发送比例,
^为所要确定的 ABRB的发送比例。
前文已述 RRMS可以嵌入到现有的 LTE, 3G或者 2G基站中, 因此本发 明实施例还提供一种基站, 该基站包括上述所述的动态资源块分配装置。 本发明实施例还提供一种动态资源块分配系统,下文描述的动态资源块分 配系统与上文描述的动态资源块分配方法及装置对应, 可相互参照。
图 8为本发明实施例提供的动态资源块分配系统的结构框图, 参照图 8, 该系统可以包括: LPN 10, 宏基站 20和 RRMS 30; 其中 RRMS 30可以嵌入 到现有的 LTE , 3G或者 2G基站中。 LPN 10, 用于在宏基站发送 ABRB及不发送 ABRB时, 分别计算 LPN下 的各用户的各资源块所对应的传输速率,根据所计算的传输速率的差值计算经 过 LPN所属的用户队列长度加权后的第一资源块权值, 将所计算的第一资源 块权值中符合预设条件数目的第一资源块权值反馈给 RRMS 30;
宏基站 20, 用于在宏基站不发送 ABRB时, 计算宏基站下的各用户的各 资源块所对应的传输速率,根据所计算的传输速率计算经过宏基站所属的用户 队列长度加权后的第二资源块权值,将所计算的所有的第二资源块权值反馈给 RRMS 30;
RRMS 30, 用于接收 LPN 10反馈的第一资源块权值, 及接收宏基站 20 反馈的第二资源块权值,根据所接收的第一资源块权值和第二资源块权值,计 算宏基站中任一资源块上的综合资源块权值 ,根据所述综合资源块权值指示宏 基站进行 ABRB的分配。
本发明实施例提供的动态资源块分配系统能够根据用户的实际传输需求 进行资源块的分配, 具有 4艮好的时延控制自适应能力,提高了全网的抗时延性 能。
图 9为本发明实施例提供的基站的硬件结构图,该基站嵌入有本发明实施 例提供的 RRMS, 参照图 9, 基站可以包括通信接口 1 , 存储器 2, 处理器 3 和通信总线 4。
下面结合图 9对基站的各个构成部件进行具体的介绍:
通信接口 1可以为通信模块的接口,如网卡的接口, 用于在基站与外部设 备之间进行信息收发过程中, 实现信号的接收和发送。
存储器 2可用于存储软件程序以及模块,处理器 3通过运行存储在存储器 2的软件程序以及模块, 从而执行基站的各种功能应用以及数据处理。 存储器 2可主要包括存储程序区和存储数据区, 其中, 存储程序区可存储操作系统、 至少一个功能所需的应用程序(比如声音播放功能、 图像播放功能等)等; 存 储数据区可存储根据接入服务器的使用所创建的数据 (比如音频数据、 电话本 等)等。 此外, 存储器 2可以包括高速随机存取存储器, 还可以包括非易失性 存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器 3 是基站的控制中心, 利用各种接口和线路连接整个基站的各个 部分, 通过运行或执行存储在存储器 2 内的软件程序和 /或模块, 以及调用存 储在存储器 2内的数据,执行基站的各种功能和处理数据,从而对基站进行整 体监控。 可选的, 处理器 3 可包括一个或多个处理单元; 优选的, 处理器 3 可集成应用处理器和调制解调处理器, 其中, 应用处理器主要处理操作系统、 和应用程序等, 调制解调处理器主要处理无线通信。 可以理解的是, 上述调制 解调处理器也可以不集成到处理器 3中。
通信接口 1 , 存储器 2, 处理器 3通过通信总线 4完成相互间的通信。 在本发明实施例中, 通信接口 1 , 用于接收低功率节点 LPN反馈的第一 资源块权值, 及接收宏基站反馈的第二资源块权值;
其中, LPN在宏基站发送 ABRB及不发送 ABRB时, 分别计算 LPN下 的各用户的各资源块所对应的传输速率,根据所计算的传输速率的差值计算经 过 LPN所属的用户队列长度加权后的第一资源块权值, 将所计算的第一资源 块权值中符合预设条件数目的第一资源块权值反馈给通信接口 1 ;
宏基站在不发送 ABRB 时, 计算宏基站下的各用户的各资源块所对应的 传输速率,根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值, 将所计算的所有的第二资源块权值反馈给通信接口 1 ; 处理器 3 , 用于执行程序;
存储器 2, 用于存放程序;
其中程序用于:
根据所接收的第一资源块权值和第二资源块权值,计算宏基站中任一资源 块上的综合资源块权值;
根据所述综合资源块权值指示宏基站进行 ABRB的分配。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 简单, 相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例 的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为 了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描 述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范 围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处 理器执行的软件模块, 或者二者的结合来实施。软件模块可以置于随机存储器 ( RAM )、内存、只读存储器 ( ROM )、电可编程 ROM、电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM、 或技术领域内所公知的任意其它形式 的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种动态资源块分配方法, 其特征在于, 应用于无线资源管理服务器 RRMS , 所述方法包括:
接收低功率节点 LPN反馈的第一资源块权值, 及接收宏基站反馈的第二 资源块权值;
根据所接收的第一资源块权值和第二资源块权值,计算宏基站中任一资源 块上的综合资源块权值;
根据所述综合资源块权值指示宏基站进行空白资源块 ABRB的分配; 其中, LPN在宏基站发送 ABRB及不发送 ABRB时, 分别计算 LPN下的 各用户的各资源块所对应的传输速率,根据所计算的传输速率的差值计算经过 LPN 所属的用户队列长度加权后的第一资源块权值, 将所计算的第一资源块 权值中符合预设条件数目的第一资源块权值反馈给 RRMS;
宏基站计算在不发送 ABRB 时, 宏基站下的各用户的各资源块所对应的 传输速率,根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值, 将所计算的所有的第二资源块权值反馈给 RRMS。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所计算的传输速 率的差值计算经过 LPN所属的用户队列长度加权后的第一资源块权值包括: 根据公式 ; = maX i ¾, , ^^— ' 计算第一资源块权值; 其中, 表示第《, 个 LPN上的资源块 的一个经过 LPN所属的用户队 列长度加权后的第一资源块权值; 'm 表示宏基站在发送 ABRB时,第《, 个 LPN中用户 在第 个资源块上的传输速率; rn s ' m 表示宏基站在未发 送 ABRB时, 第《, 个 LPN中用户 在第 m个资源块上的传输速率; ρ„,表示 第《, 个 LPN所属的用户队列长度;
所述根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值包括:
根据公式
Figure imgf000021_0001
, ¾计算第二资源块权值;
其中, 表示第 η个宏基站的资源块 m上的一个经过宏基站所属的用户 队列长度加权后的第二资源块权值; 表示在宏基站不发送 ABRB时,宏基 站 n的第 i个用户在第 m个资源块上的传输速率, ρ„表示宏基站 η所属的用 户队列长度;
所述将所计算的第一资源块权值中符合预设条件数目的第一资源块权值 反馈给 RRMS包括:
从所计算的第一资源块权值中选取出权值最大的 个, 将所选取的权值 最大的 个第一资源块权值反馈给 RRMS;
其中, ]^ =購 ≠4 、, M。 为分配 ABRB 的预设资源块数目, /;为反 馈比例。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 M 的确定过程包括: 根据 M = ro 确定 M , 其中 N£为宏基站发送的总的资源块数目, 表示宏基站发送的 ABRB占总资源块的比例。
4、 根据权利要求 3所述的方法, 其特征在于, 所述宏基站发送的 ABRB 占总资源块的比例 的确定过程包括:
接收每个宏基站和 LPN所计算的所属用户的平均队列长度信息; 根据所述平均队列长度信息, 计算出全网平均的宏基站用户队列长度 和 LPN小区用户队列长度 ;
若 (1 + ^) , 则确定 = 若 ¾^ (1 + ^) , 则确定 β - β0 - Αβ , 其中 t为调节阈值, Δ 为调节步长, ^为预设的 ABRB的发送 比例。
5、 根据权利要求 2-4任一项所述的方法, 其特征在于, 所述根据所述第 一个数的第一资源块权值和所述所有的第二资源块权值,计算宏基站中任一资 源块上的综合资源块权值包括:
根据^ = - +∑ n L n、c n,w:,计算宏基站"在资源块 上的综合资 源块权值为 其中 A )表示处于第 n个宏基站覆盖范围下的所有 LPN的结 合, α "'表示一个与 LPN节点《, 受到的干扰有关的因子。
6、 根据权利要求 2-4任一项所述的方法, 其特征在于, 所述根据所述综 合资源块权值指示宏基站进行 ABRB的分配包括:
对综合资源块权值做降序处理;
若降序后的权值恒大于零, 则指示宏基站分配所有的资源块传输 ABRB; 若降序后的权值不恒大于零,则指示宏基站将降序后的权值最大的并且为 正的不超过 k F个的资源块, 分配为传输 ABRB的资源块。
7、 一种动态资源块分配装置, 其特征在于, 应用于无线资源管理服务器 RRMS , 所述装置包括:
第一接收模块, 用于接收低功率节点 LPN反馈的第一资源块权值; 第二接收模块, 用于接收宏基站反馈的第二资源块权值;
综合资源块权值计算模块,用于根据所述第一接收模块接收的第一资源块 权值和所述第二接收模块接收的第二资源块权值,计算宏基站中任一资源块上 的综合资源块权值;
空白资源块 ABRB分配模块, 用于根据所述综合资源块权值指示宏基站 进行 ABRB的分配;
其中, LPN在宏基站发送 ABRB及不发送 ABRB时, 分别计算 LPN下的 各用户的各资源块所对应的传输速率,根据所计算的传输速率的差值计算经过 LPN 所属的用户队列长度加权后的第一资源块权值, 将所计算的第一资源块 权值中符合预设条件数目的第一资源块权值反馈给 RRMS;
宏基站计算在不发送 ABRB 时, 宏基站下的各用户的各资源块所对应的 传输速率,在根据所计算的传输速率计算经过宏基站所属的用户队列长度加权 后的第二资源块权值后,将所计算的所有的第二资源块权值反馈给所述第二接 收模块。
8、 根据权利要求 7所述的装置, 其特征在于, 所述综合资源块权值计算 模块包括:
第一计算单元, 用于根据公式 = - +∑ n,e/n、c n,w:计算宏基站 中任一资源块上的综合资源块权值;
其中, 表示宏基站"在资源块 上的综合资源块权值, 表示所述 第二接收模块所接收的第 n个宏基站的资源块 m上的一个经过宏基站所属的 用户队列长度加权后的第二资源块权值, 表示所述第一接收模块所接收的 第 n, 个 LPN上的资源块 的一个经过 LPN所属的用户队列长度加权后的第 一资源块权值, 表示处于第 η个宏基站覆盖范围下的所有 LPN的结合, «„,表示一个与 LPN节点 η, 受到的干扰有关的因子。
9、 根据权利要求 7或 8所述的装置, 其特征在于, 所述 ABRB分配模块 包括:
降序处理单元, 用于对综合资源块权值做降序处理;
第一分配单元, 用于在降序后的权值恒大于零时,指示宏基站分配所有的 资源块传输 ABRB;
第二分配单元, 用于在降序后的权值不恒大于零时,指示宏基站将降序后 的权值最大的并且为正的不超过^个的资源块,分配为传输 ABRB的资源块, 其中,
Figure imgf000024_0001
, M 为分配 ABRB 的预设资源块数目, ;;为反馈比 例。
10、 根据权利要求 7或 8所述的装置, 其特征在于, 所述装置还包括: ABRB发送比例确定单元, 用于接收每个宏基站和 LPN所计算的所属用 户的平均队列长度信息,根据所述平均队列长度信息计算出全网平均的宏基站 用户队列长度 ^和 LPN 小区用户队列长度 若 (1 + ^) , 则确定 β = β0 + Αβ , 若 1 + U , 则确定 = ¾ - Δ 其中 ^为调节阈值, Δ 为 调节步长, 为预设的 ABRB的发送比例, 为所要确定的 ABRB的发送比 例。
11、 一种基站, 其特征在于, 包括权利要求 7-10任一项所述的动态资源 块分配装置。
12、 一种动态资源块分配系统, 其特征在于, 包括: 低功率节点 LPN, 宏基站和无线资源管理服务器 RRMS;
所述 LPN, 用于在宏基站发送 ABRB及不发送空白资源块 ABRB时, 分 别计算 LPN下的各用户的各资源块所对应的传输速率, 根据所计算的传输速 率的差值计算经过 LPN所属的用户队列长度加权后的第一资源块权值, 将所 计算的第一资源块权值中符合预设条件数目的第一资源块权值反馈给 RRMS; 所述宏基站, 用于在宏基站不发送 ABRB 时, 计算宏基站下的各用户的 各资源块所对应的传输速率,根据所计算的传输速率计算经过宏基站所属的用 户队列长度加权后的第二资源块权值,将所计算的所有的第二资源块权值反馈 给所述 RRMS;
所述 RRMS, 用于接收所述 LPN反馈的第一资源块权值, 及接收所述宏 基站反馈的第二资源块权值, 根据所接收的第一资源块权值和第二资源块权 值,计算宏基站中任一资源块上的综合资源块权值,根据所述综合资源块权值 指示宏基站进行 ABRB的分配。
13、 一种基站, 其特征在于, 包括: 通信接口, 存储器, 处理器和通信总 线;
其中所述处理器、所述通信接口、所述存储器通过所述通信总线完成相互 间的通信;
所述通信接口, 用于接收低功率节点 LPN反馈的第一资源块权值, 及接 收宏基站反馈的第二资源块权值;
其中, LPN在宏基站发送空白资源块 ABRB及不发送 ABRB时, 分别计 算 LPN下的各用户的各资源块所对应的传输速率, 根据所计算的传输速率的 差值计算经过 LPN所属的用户队列长度加权后的第一资源块权值, 将所计算 的第一资源块权值中符合预设条件数目的第一资源块权值反馈给 RRMS; 宏基站在不发送 ABRB 时, 计算宏基站下的各用户的各资源块所对应的 传输速率,根据所计算的传输速率计算经过宏基站所属的用户队列长度加权后 的第二资源块权值, 将所计算的所有的第二资源块权值反馈给所述通信接口; 所述处理器, 用于执行程序;
所述存储器, 用于存放程序;
其中程序用于:
根据所接收的第一资源块权值和第二资源块权值,计算宏基站中任一资源 块上的综合资源块权值;
根据所述综合资源块权值指示宏基站进行 ABRB的分配。
PCT/CN2013/081180 2013-08-09 2013-08-09 一种动态资源块分配方法、装置、基站及系统 WO2015018064A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003166.2A CN105264986B (zh) 2013-08-09 2013-08-09 一种动态资源块分配方法、装置、基站及系统
PCT/CN2013/081180 WO2015018064A1 (zh) 2013-08-09 2013-08-09 一种动态资源块分配方法、装置、基站及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/081180 WO2015018064A1 (zh) 2013-08-09 2013-08-09 一种动态资源块分配方法、装置、基站及系统

Publications (1)

Publication Number Publication Date
WO2015018064A1 true WO2015018064A1 (zh) 2015-02-12

Family

ID=52460556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081180 WO2015018064A1 (zh) 2013-08-09 2013-08-09 一种动态资源块分配方法、装置、基站及系统

Country Status (2)

Country Link
CN (1) CN105264986B (zh)
WO (1) WO2015018064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630423A (zh) * 2020-12-10 2022-06-14 中国联合网络通信集团有限公司 资源分配方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256332A (zh) * 2011-07-22 2011-11-23 新邮通信设备有限公司 一种干扰协调方法和系统
CN102655681A (zh) * 2011-03-01 2012-09-05 普天信息技术研究院有限公司 一种调度方法
CN102984767A (zh) * 2011-09-02 2013-03-20 普天信息技术研究院有限公司 一种异构网中abs模式的调整方法
US20130121191A1 (en) * 2011-11-14 2013-05-16 Qualcomm Incorporated Methods and apparatus for reducing interference in a heterogeneous network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655681A (zh) * 2011-03-01 2012-09-05 普天信息技术研究院有限公司 一种调度方法
CN102256332A (zh) * 2011-07-22 2011-11-23 新邮通信设备有限公司 一种干扰协调方法和系统
CN102984767A (zh) * 2011-09-02 2013-03-20 普天信息技术研究院有限公司 一种异构网中abs模式的调整方法
US20130121191A1 (en) * 2011-11-14 2013-05-16 Qualcomm Incorporated Methods and apparatus for reducing interference in a heterogeneous network

Also Published As

Publication number Publication date
CN105264986B (zh) 2019-03-26
CN105264986A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
US11350405B2 (en) Enabling exchange of information on radio frame configuration in neighbor cells
CN102917367B (zh) 用于自组织无线网络的灵活媒体接入控制(mac)方法
WO2015062542A1 (zh) 载波分配装置和方法、以及终端
US8903405B2 (en) Communication method of macro base station and micro base station for interference control
WO2014101674A1 (zh) 负载均衡的方法和网络控制节点
TW200818943A (en) Wireless communication method and apparatus for assigning cell and resource blocks
US10003548B2 (en) Data transmission method using multiple wireless networks
JP6475333B2 (ja) エアインタフェース容量密度を調整する方法及び装置
CN111740768A (zh) 一种通信方法及设备
CN104871577A (zh) 业务切换的方法、网络设备和用户设备
WO2018018377A1 (zh) 一种调度方法、功率控制方法及基站
CN116349334A (zh) 用于侧链路传输的资源分配技术,以及基于侧链路通信可靠性的资源分配技术之间的动态选择
CN110891306A (zh) 下行覆盖自适应调整的方法、基站和存储介质
EP4228309A1 (en) Call method and device
KR102053766B1 (ko) 중첩된 무선네트워크 환경에서 모바일 데이터의 전송속도를 향상하기 위한 복수개 셀 선택 및 데이터 분산 전송 방법
CN101297570A (zh) 使用资源利用消息的多载波mac
CN102711258B (zh) 避免小区间干扰的方法和装置
CN114449531A (zh) 频谱共享资源的分配方法、设备、装置及存储介质
WO2015018064A1 (zh) 一种动态资源块分配方法、装置、基站及系统
CN105557010A (zh) 资源分配方法、基站及系统
WO2015135205A1 (zh) 信道借用方法和接入点设备
JP5745443B2 (ja) 無線スケジューラ処理装置、無線スケジューリング方法およびコンピュータプログラム
WO2016149916A1 (zh) 一种数据传输的方法及装置
JP5011142B2 (ja) 無線基地局及びスケジューリング方法
CN112512106A (zh) 一种上行功率分配方法、装置、终端设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380003166.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891157

Country of ref document: EP

Kind code of ref document: A1