WO2015018008A1 - 信令传输方法和相关设备及通信系统 - Google Patents

信令传输方法和相关设备及通信系统 Download PDF

Info

Publication number
WO2015018008A1
WO2015018008A1 PCT/CN2013/081000 CN2013081000W WO2015018008A1 WO 2015018008 A1 WO2015018008 A1 WO 2015018008A1 CN 2013081000 W CN2013081000 W CN 2013081000W WO 2015018008 A1 WO2015018008 A1 WO 2015018008A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
downlink
downlink signaling
signaling
Prior art date
Application number
PCT/CN2013/081000
Other languages
English (en)
French (fr)
Inventor
陈君
郭房富
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/081000 priority Critical patent/WO2015018008A1/zh
Priority to CN201380000928.3A priority patent/CN104737617A/zh
Publication of WO2015018008A1 publication Critical patent/WO2015018008A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a signaling transmission method, a related device, and a communication system. Background technique
  • the Universal Mobile Telecommunications System (UMTS) is one of the global 3G standards developed by the 3rd Generation Partnership Project (3GPP).
  • the signaling in the UMTS can be used to control the establishment/modification and mobility management of the service bearer of the user equipment (UE, User Equipment).
  • the High Speed Downlink Packet Access (HSDPA) technology is introduced in the Release-5 version to improve the transmission rate of downlink data and reduce the transmission delay of user data, so that users can be in the UMTS network. Have a better experience.
  • the downlink signaling can be divided into a radio signalling bearer (SRB, Signalling Radio Bearer) over dedicated channel (DCH, Dedicated Channel) and SRB over HSDPA according to the bearer mode.
  • SRB Radio Signalling Radio Bearer
  • DCH dedicated Channel
  • HSDPA dedicated Channel
  • the advantage of SRB over HSDPA is shorter packet delay. And higher downlink rates, so its application will become more and more extensive.
  • the network side only transmits the downlink signaling from the serving cell of the High Speed Downlink Shared Channel (HS-DSCH) to the UE.
  • HS-DSCH High Speed Downlink Shared Channel
  • the UE may not receive the downlink signaling correctly, which may result in handover failure or dropped calls.
  • the reconfiguration signaling needs to be sent to the UE, for example, radio bearer (RB) reconfiguration, when the current serving cell signal of the UE is not good. It is also possible that the downlink signaling may not be received correctly, resulting in a failure of the reconfiguration process or dropped calls.
  • RB radio bearer
  • the embodiments of the present invention provide a signaling transmission method, a related device, and a communication system, so as to improve the success rate of receiving downlink signaling by the UE.
  • a first aspect of the embodiments of the present invention provides a signaling transmission method, which may include:
  • the radio network controller RNC generates downlink signaling to be transmitted to the user equipment UE;
  • the UE moves to an overlapping area of the first cell and the second cell, and the serving base stations of the first cell and the second cell are both the first base station, send the downlink to the first base station Signaling, so that the first base station sends, by using the first cell, the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling to the UE, so that the first base station passes the
  • the second cell sends a second HS-PDSCH subframe that carries the downlink signaling to the UE, where the frequency of the second cell and the first cell are the same, and the first cell is connected to the UE.
  • the second base station sends the downlink signaling, so that the second base station sends a third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, and sends the third HS-PDSCH subframe to the third base station.
  • the third base station sends, by using the second cell, the fourth HS-PDSCH subframe that carries the downlink signaling to the UE; the frequency of the second cell and the first cell
  • the first cell is a serving HS-DSCH cell accessed by the UE.
  • the method further includes: sending, by the first base station, a first configuration instruction, to configure the first cell as a multiple signaling transmission SDT primary cell,
  • the second cell is configured as an SDT assisted cell;
  • the method further includes: sending, by the second base station, a second configuration command, to configure the first cell as an SDT primary cell; and sending the signal to the third base station
  • the downlink signaling further includes: sending, by the third base station, a third configuration instruction, to configure the second cell as an SDT-assisted cell.
  • the serving base station of the first cell is the second base station
  • the serving base station of the second cell is The third base station
  • the sending the downlink signaling to the third base station includes:
  • the third base station After the downlink signaling is sent to the second base station, delaying a set duration, sending the downlink signaling to the third base station; or, after receiving the second command from the second base station, The third base station sends the downlink signaling, where the second command is sent by the second base station to the UE by using the first cell, and a third HS that carries the downlink signaling.
  • the first command is used to instruct the UE to activate monitoring of the downlink high speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell.
  • the first cell is a macro cell or a low power a node cell
  • the second cell is a macro cell or a low power node cell
  • a second aspect of the embodiments of the present invention provides a signaling transmission method, which may include:
  • the base station obtains downlink signaling to be transmitted to the user equipment UE;
  • the first high-frequency physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling is sent to the UE by using the first cell, And transmitting, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, where the first cell is a serving high-speed downlink shared channel HS-DSCH cell accessed by the UE
  • the frequency of the second cell and the first cell is the same.
  • the obtaining the downlink signaling to be transmitted to the user equipment UE includes: generating downlink signaling to be transmitted to the UE or receiving a request from the radio network controller RNC Downlink signaling transmitted by the UE.
  • the method further includes: after receiving the first configuration instruction from the RNC, The first cell is configured to transmit the SDT primary cell by multiple signaling, and the second cell is configured as an SDT assisted cell.
  • the method further includes:
  • the UE is activated to monitor the downlink high speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell;
  • a fourth possible implementation And sending, by the first HS-PDSCH subframe and the second HS-PDSCH subframe, a timing offset ranging from 0 chips to 38400 chips.
  • a third aspect of the present invention provides a signaling transmission method, which may include:
  • the UE When the user equipment UE moves to an overlapping area of the first cell and the second cell, the UE receives a first high-speed physical downlink shared channel HS-PDSCH subframe carrying downlink signaling from the first cell; Receiving, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling, where the second cell and the first cell have the same frequency, and the first cell is the UE The accessed service high speed downlink shared channel HS-DSCH cell.
  • the first cell is configured to transmit a SDT primary cell by multiple signaling
  • the second cell is configured as an SDT assisted cell.
  • the method further includes:
  • the UE sends a first downlink transmission error indication to the serving base station of the first cell, and does not send a second downlink transmission error indication to the serving base station of the second cell; where the first downlink transmission error indication is used to indicate Whether the UE correctly decodes the received first HS-PDSCH subframe, and the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second
  • the first HS-PDSCH subframe is received
  • the timing deviation from the second HS-PDSCH subframe ranges from 0 chips to 38400 chips.
  • the method further includes:
  • the UE Before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell, the UE starts to listen to the downlink high-speed shared control channel HS of the second cell after reporting the 1D measurement report.
  • the UE Before receiving the second HS-PDSCH subframe carrying the downlink signaling from the second cell, after receiving the first command from the serving base station of the first cell by using the first cell, the UE And starting to monitor the downlink high speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell, where the first command is used to instruct the UE to activate the HS-SCCH and/or the HS- of the second cell.
  • the UE before receiving, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling, receiving, by using an enhanced dedicated channel mode of the second cell, a relative grant channel E-RGCH
  • the UE starts to listen to the HS-SCCH and/or the HS-PDSCH of the second cell, where the third command is used to indicate that the UE activates the Monitoring of HS-SCCH and/or HS-PDSCH of the two cells.
  • a fourth aspect of the present invention provides a radio network controller, which may include:
  • a generator configured to generate downlink signaling to be transmitted to the user equipment UE;
  • a transmitter configured to: if it is determined that the UE moves to an overlapping area of the first cell and the second cell, and the serving base stations of the first cell and the second cell are both the first base station, to the first The base station sends the downlink signaling, so that the first base station sends, by using the first cell, the first high-speed physical downlink shared channel HS-PDSCH subframe carrying the downlink signaling to the UE, so that the first Transmitting, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE by using the second cell, where the frequency of the second cell and the first cell is the same, the first cell Serving a high speed downlink shared channel HS-DSCH cell for the UE access;
  • the second base station sends the downlink signaling, so that the second base station sends a third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, and sends the third HS-PDSCH subframe to the third base station.
  • the third base station sends, by using the second cell, the fourth HS-PDSCH subframe that carries the downlink signaling to the UE; the frequency of the second cell and the first cell
  • the first cell is a serving HS-DSCH cell accessed by the UE.
  • the transmitter is further configured to: before sending the downlink signaling to the second base station, send a second configuration instruction to the second base station, to configure the first cell as an SDT primary cell; Before the sending, by the third base station, the downlink signaling, the method further includes: sending, by the third base station, a third configuration command, to configure the second cell as an SDT assisting cell;
  • the transmitter is further configured to send, by the first base station, the first configuration command to the first base station, before configuring the downlink signaling, to configure the first cell to be a multiple signaling transmission SDT.
  • the primary cell configures the second cell as an SDT assisted cell.
  • the serving base station of the first cell is the second base station
  • the serving base station of the second cell is a third base station
  • the transmitter is specifically configured to send the downlink signaling to the third base station
  • the third base station After the downlink signaling is sent to the second base station, delaying a set duration, sending the downlink signaling to the third base station; or, after receiving the second command from the second base station, The third base station sends the downlink signaling, where the second command is sent by the second base station to the UE by using the first cell, and a third HS that carries the downlink signaling.
  • the first command is used to instruct the UE to activate monitoring of the downlink high speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell.
  • the first cell is a macro cell or a low power a node cell
  • the second cell is a macro cell or a low power node cell.
  • a fifth aspect of the present invention provides a base station, which may include:
  • a signaling obtainer configured to obtain downlink signaling to be transmitted to the user equipment UE
  • a transmitter configured to: if the UE is determined to move to an overlapping area of the first cell and the second cell, send, by the first cell, the first high-speed physical downlink shared channel HS that carries the downlink signaling to the UE a PDSCH subframe, and transmitting, by the second cell, a second HS-PDSCH subframe carrying the downlink signaling to the UE, where the first cell is a high-speed downlink sharing service of the UE accessing
  • the channel HS-DSCH cell has the same frequency point of the second cell and the first cell.
  • the signaling obtainer is specifically configured to: generate downlink signaling to be transmitted to the UE or receive downlink signaling to be transmitted from the radio network controller RNC to the UE.
  • the base station further includes: a configurator, configured to receive the first configuration command from the RNC Thereafter, the first cell is configured as a multiple signaling transmission SDT primary cell, and the second cell is configured as an SDT assisted cell.
  • the transmitter is further configured to: before the sending, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, send, by using the first cell, the UE a command, where the first command is used to instruct the UE to activate monitoring of a downlink high speed shared control channel HS-SCCH and/or an HS-PDSCH of the second cell; or Before the cell sends the second HS-PDSCH subframe that carries the downlink signaling to the UE, the third command is sent to the UE by using the relative grant channel E-RGCH in the enhanced dedicated channel mode of the second cell. The third command is used to instruct the UE to activate monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell.
  • a sixth aspect of the embodiments of the present invention provides a user equipment, which may include:
  • a receiver configured to receive, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe carrying downlink signaling, if the UE moves to an overlapping area of the first cell and the second cell;
  • the second cell receives the second HS-PDSCH subframe that carries the downlink signaling, where the frequency of the second cell and the first cell are the same, and the first cell is accessed by the UE.
  • a decoder configured to decode the first HS-PDSCH subframe and the second HS-PDSCH subframe.
  • the first cell is configured to transmit a SDT primary cell by using multiple signaling
  • the second cell is configured as an SDT assisted cell.
  • the user equipment further includes:
  • a transmitter configured to send a first downlink transmission error indication to the serving base station of the first cell, and not to send a second downlink transmission error indication to the serving base station of the second cell; the first downlink transmission error indication is used to indicate Whether the UE correctly decodes the received first HS-PDSCH subframe, and the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS- PDSCH subframe.
  • the receiver receives the first HS- The timing deviation of the PDSCH subframe and the second HS-PDSCH subframe ranges from 0 chips to 38400 chips.
  • the user equipment further includes:
  • a listener configured to receive, at the second cell, a second that carries the downlink signaling
  • the downlink high-speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell is started to be monitored after reporting the 1D measurement report;
  • the first command is used to instruct the UE to activate monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell;
  • the HS-SCCH and/or the HS-PDSCH of the second cell are started to be monitored, where the third command is used to instruct the UE to activate the HS- of the second cell. Monitoring of SCCH and/or HS-PDSCH.
  • a seventh aspect of the embodiments of the present invention provides a radio network controller, which may include:
  • At least one bus At least one bus, at least one processor coupled to the bus, and at least one memory coupled to the bus.
  • the processor by using the bus, to call the code stored in the memory, to generate: downlink signaling to be transmitted to the user equipment UE;
  • the UE moves to an overlapping area of the first cell and the second cell, and the serving base stations of the first cell and the second cell are both the first base station, send the downlink to the first base station Signaling, so that the first base station sends, by using the first cell, the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling to the UE, so that the first base station passes the
  • the second cell sends a second HS-PDSCH subframe that carries the downlink signaling to the UE, where the frequency of the second cell and the first cell are the same, and the first cell is connected to the UE.
  • the second base station sends the downlink signaling, so that the second base station sends a third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, and sends the third HS-PDSCH subframe to the third base station.
  • a fourth HS-PDSCH subframe; the second cell and the first cell have the same frequency, and the first cell is a serving HS-DSCH cell accessed by the UE.
  • the processor is further configured to: before sending the downlink signaling to the second base station, send a second configuration instruction to the second base station, to configure the first cell as an SDT primary cell; Before the sending, by the third base station, the downlink signaling, the method further includes: sending, by the third base station, a third configuration command, to configure the second cell as an SDT assisting cell;
  • the processor configured to send, by the first base station, the first configuration command to the first base station, to configure the first cell as a multiple signaling transmission SDT.
  • the primary cell configures the second cell as an SDT assisted cell.
  • the serving base station of the first cell is the second base station
  • the serving base station of the second cell is a third base station
  • the processor is specifically configured to send the downlink signaling to the third base station
  • the third base station After the downlink signaling is sent to the second base station, delaying a set duration, sending the downlink signaling to the third base station; or, after receiving the second command from the second base station, The third base station sends the downlink signaling, where the second command is sent by the second base station to the UE by using the first cell, and a third HS that carries the downlink signaling.
  • the first command is used to instruct the UE to activate monitoring of the downlink high speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell.
  • the first possible implementation manner of the seventh aspect, or the second possible implementation manner of the seventh aspect, in a third possible implementation manner is a macro cell or a low power a node cell, where the second cell is a macro cell or a low power node cell.
  • the eighth aspect of the embodiments of the present invention further provides a base station, which may include:
  • At least one bus At least one bus, at least one processor coupled to the bus, and at least one memory coupled to the bus.
  • the processor by using the bus, to call the code stored in the memory, to: obtain downlink signaling to be transmitted to the user equipment UE; If it is determined that the UE moves to an overlapping area of the first cell and the second cell, the first high-frequency physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling is sent to the UE by using the first cell, And transmitting, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, where the first cell is a serving high-speed downlink shared channel HS-DSCH cell accessed by the UE The frequency of the second cell and the first cell is the same.
  • the processor is specifically configured to: generate downlink signaling to be transmitted to the UE, or to obtain downlink signaling to be transmitted to the UE Receiving downlink signaling from the radio network controller RNC to be transmitted to the UE.
  • the processor is further configured to: after receiving the first configuration command from the RNC, The first cell is configured to transmit a SDT primary cell by using multiple signaling, and the second cell is configured as an SDT assisted cell.
  • the processor is further configured to: Before the second cell sends the second HS-PDSCH subframe that carries the downlink signaling to the UE, sending, by using the first cell, a first command to the UE, where the first command is used by Instructing the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell; or transmitting, by the second cell, the downlink information to the UE Before the second HS-PDSCH subframe, the third command is sent to the UE by using the relative grant channel E-RGCH in the enhanced dedicated channel mode of the second cell, where the third command is used to indicate that the UE is activated. Listening to the HS-SCCH and/or HS-PDSCH of the second cell.
  • the timing offset of the first HS-PDSCH subframe and the second HS-PDSCH subframe sent by the processor ranges from 0 chips to 38400 chips.
  • the first cell is a macro cell or a low power a node cell
  • the second cell is a macro cell or a low power node cell
  • the ninth aspect of the embodiment of the present invention further provides a user equipment, which may include:
  • At least one bus At least one bus, at least one processor coupled to the bus, and at least one memory coupled to the bus.
  • the processor by using the bus, to call the code stored in the memory, to: receive, if the UE moves to an overlapping area of the first cell and the second cell, receive a downlink message from the first cell a first high-speed physical downlink shared channel HS-PDSCH subframe, and a second HS-PDSCH subframe that carries the downlink signaling, where the second cell and the first cell are received
  • the frequency points are the same, and the first cell is a serving high speed downlink shared channel HS-DSCH cell accessed by the UE.
  • the first cell is configured to transmit a SDT primary cell by using multiple signaling
  • the second cell is configured as an SDT assisted cell.
  • the processor is further configured to: send, to the serving base station of the first cell, a first downlink transmission A positive or negative indication is that the second downlink transmission error indication is not sent to the serving base station of the second cell; the first downlink transmission positive indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH a subframe, the second downlink transmission positive indication is used to indicate whether the UE correctly decodes the received second HS-PDSCH subframe.
  • the processor receives the first HS-PDSCH subframe and the second HS-PDSCH sub-
  • the timing offset of the frame ranges from 0 chips to 38400 chips.
  • the processor is further configured to start listening to the downlink high speed of the second cell after reporting the 1D measurement report before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell.
  • a second HS-PDSCH subframe carrying the downlink signaling And, after receiving the first command from the serving base station of the first cell by using the first cell, starting to monitor the HS-SCCH and/or the HS-PDSCH of the second cell, where the first command is used to indicate
  • the UE activates monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell;
  • the HS-SCCH and/or the HS-PDSCH of the second cell are started to be monitored, where the third command is used to instruct the UE to activate the HS- of the second cell. Monitoring of SCCH and/or HS-PDSCH.
  • the first cell is a macro cell or a low power node cell
  • the second cell is a macro cell or a low power node cell
  • a tenth aspect of the embodiments of the present invention provides a computer storage medium, wherein the computer storage medium stores a program, and the program includes some or all of the steps of any one of the signaling transmission methods provided by the foregoing embodiments.
  • An eleventh embodiment of the present invention provides a communication system, which may include:
  • the RNC is configured to: generate downlink signaling to be transmitted to the user equipment UE; if it is determined that the UE moves to an overlapping area of the first cell and the second cell, and the first cell and the second The serving base stations of the cell are all the first base station, and the downlink signaling is sent to the first base station;
  • the first base station is configured to receive the downlink signaling from the RNC, and send, by using the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling to the UE. Transmitting, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, where the frequency of the second cell and the first cell are the same, the first The cell is a serving high speed downlink shared channel HS-DSCH cell accessed by the UE.
  • the first base station is further configured to: when receiving the first configuration command from the radio network controller 1310, the first base station may receive the wireless After the first configuration command of the network controller 1310, the first cell is configured as an SDT primary cell, and the second cell is configured as an SDT assisted cell.
  • the first base station is further configured to: send, by using the second cell, a bearer to the UE Before the second HS-PDSCH subframe of the downlink signaling, the first command is sent to the UE by using the first cell, where the first command is used to instruct the UE to activate the downlink high-speed shared control channel HS of the second cell. - monitoring of SCCH and/or HS-PDSCH;
  • the second cell before sending, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, sending a third command to the UE by using an E-RGCH of the second cell, where the third The command is used to instruct the UE to activate monitoring of the downlink high speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell.
  • the first base station sends the first
  • the timing deviation range of the HS-PDSCH subframe and the second HS-PDSCH subframe may be, for example, 0 chips to 38400 chips.
  • the first cell is a macro cell or a low power node cell
  • the second cell is a macro cell or a low power node cell
  • a twelfth aspect of the embodiments of the present invention provides a communication system, which may include:
  • a radio network controller RNC for controlling the transmission of a radio access network
  • RNC radio network controller
  • the RNC is configured to: generate downlink signaling to be transmitted to the user equipment UE; if it is determined that the UE moves to an overlapping area of the first cell and the second cell, and the serving base station of the first cell is the first a second base station, the serving base station of the second cell is a third base station, and the downlink signaling is sent to the second base station; and the downlink signaling is sent to the third base station;
  • the second base station is configured to receive the downlink signaling from the RNC, and send, by using the first cell, a third high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling to the UE. ;
  • the third base station is configured to receive the downlink signaling from the RNC, and send, by using the second cell, a fourth HS-PDSCH subframe that carries the downlink signaling to the UE, where
  • the second cell and the first cell have the same frequency, and the first cell is a serving high speed downlink shared channel HS-DSCH cell accessed by the UE.
  • the RNC is further configured to: before sending the downlink signaling to the first base station, send a first configuration instruction to the first base station, to configure the first cell to be a multiple signaling transmission SDT primary cell, Configuring the second cell as an SDT assisted cell;
  • the third configuration instruction is sent to the third base station to configure the second cell as an SDT assisted cell.
  • the RNC is in the aspect of sending the downlink signaling to the third base station Specifically, after the sending the downlink signaling to the second base station, delaying a set duration, sending the downlink signaling to the third base station; or receiving a second command from the second base station And sending the downlink signaling to the third base station, where the second command is sent by the second base station to the UE by using the first cell, and carrying the downlink signaling
  • the first command is used to instruct the UE to activate monitoring of the downlink high-speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell.
  • the first cell is a macro cell Or a low power node cell
  • the second cell is a macro cell or a low power node cell.
  • the RNC after the RNC generates the downlink signaling to be transmitted to the UE, if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the first cell and The serving base station of the second cell is the first base station, and the downlink signaling is sent to the first base station, so that the first base station sends the first HS-PDSCH carrying the downlink signaling to the UE by using the first cell.
  • the first base station sends the second HS-PDSCH subframe carrying the downlink signaling to the UE by using the second cell; if the serving base station of the first cell is the second base station, the serving base station of the second cell is the third The base station sends the downlink signaling to the second base station, so that the second base station sends the third HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station, so that The third base station sends a fourth HS-PDSCH subframe carrying the downlink signaling to the UE by using the second cell.
  • the RNC sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell, and the second cell and the first cell have the same frequency, and the first cell is the UE.
  • the serving HS-DSCH cell can be used to enable the UE to receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improving the UE receiving the downlink signal. The success rate of the order.
  • the base station obtains downlink signaling to be transmitted to the UE, and if it is determined that the UE moves to the overlapping region of the first cell and the second cell, sends the first cell to the UE by using the first cell.
  • a first HS-PDSCH subframe carrying the downlink signaling, and transmitting, by using the second cell, a second HS-PDSCH subframe that carries the downlink signaling to the UE, where the first cell is a service HS accessed by the UE - DSCH cell, the frequency of the second cell and the first cell are the same.
  • the base station sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell, respectively, and the frequency of the second cell and the first cell is the same, and the first cell is accessed by the UE.
  • Serving the HS-DSCH cell so that the UE can receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improve the success of receiving the downlink signaling by the UE. rate.
  • the UE when the UE moves to an overlapping area of the first cell and the second cell, the UE receives the first high-speed physical downlink shared channel HS that carries downlink signaling from the first cell. And the second UE receives the second HS-PDSCH subframe that carries the downlink signaling from the second cell, where the second cell and the first cell have the same frequency, and the first cell is accessed by the UE. Serving a high speed downlink shared channel HS-DSCH cell.
  • the HS-PDSCH subframe that is sent by the network side and carries the same downlink signaling may be received in the first cell and the second cell, respectively, and the second cell
  • the frequency of the first cell is the same as that of the first cell
  • the first cell is a serving HS-DSCH cell that is accessed by the UE, so that the UE can be made from the first
  • the cell and the second cell receive the same downlink signaling, and the mechanism of the embodiment of the present invention is beneficial to improve the success rate of receiving the downlink signaling by the UE.
  • FIG. 1 is a schematic flowchart of a signaling transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another signaling transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of another signaling transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of another signaling transmission method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a network architecture according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another signaling transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another UE measurement report in another UE according to an embodiment of the present invention;
  • d is a schematic diagram of a modular network architecture provided by an embodiment of the present invention;
  • FIG. 5-a is a schematic diagram of another network architecture according to an embodiment of the present disclosure.
  • FIG. 5-b is a schematic flowchart of another signaling transmission method according to an embodiment of the present invention
  • FIG. 5-c is a schematic diagram of another UE reporting a measurement report during mobile handover according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a radio network controller according to an embodiment of the present invention
  • 7-a is a schematic diagram of a base station according to an embodiment of the present invention.
  • 7-b is a schematic diagram of another base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another radio network controller according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another user equipment according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of another communication system according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of another radio network controller according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of another user equipment according to an embodiment of the present invention. detailed description
  • the embodiments of the present invention provide a signaling transmission method, a related device, and a communication system, so as to improve the success rate of receiving downlink signaling by the UE.
  • the signaling transmission method may include: a radio network controller (RNC) generates downlink signaling to be transmitted to the user equipment UE; if it is determined that the UE moves to An overlapping area of the first cell and the second cell, and the first cell And the serving base station of the second cell is the first base station, and the downlink signaling is sent to the first base station, so that the first base station sends, by using the first cell, the first high-speed physical downlink shared channel (HS) carrying the downlink signaling to the UE.
  • RNC radio network controller
  • the first cell is a service high speed downlink shared channel (HS-DSCH) cell accessed by the UE; or if the UE is determined to move to an overlapping area of the first cell and the second cell, and the first
  • the serving base station of the cell is the second base station, and the serving base station of the second cell is the third base station, and the downlink signaling is sent to the second base station, so that the second base station sends the first downlink signaling to the UE by using the first cell.
  • HS-DSCH service high speed downlink shared channel
  • FIG. 1-a and FIG. 1-b are schematic flowcharts of two signaling transmission methods according to an embodiment of the present invention, as shown in FIG. 1-a and FIG. 1-b.
  • the signaling transmission method provided by an embodiment of the present invention may include the following content:
  • the RNC generates downlink signaling to be transmitted to the user equipment UE.
  • the downlink signaling generated by the RNC to be transmitted to the UE may be, for example, radio bearer reconfiguration signaling (eg, parameters for reconfiguring at least one radio bearer), transport channel reconfiguration signaling (eg, Physical channel reconfiguration signaling (eg, parameters for reconfiguring the physical channel).
  • radio bearer reconfiguration signaling eg, parameters for reconfiguring at least one radio bearer
  • transport channel reconfiguration signaling eg, Physical channel reconfiguration signaling (eg, parameters for reconfiguring the physical channel).
  • FIG. 1-a shows a signaling transmission method in a scenario where the serving base stations of the first cell and the second cell are the same base station.
  • Figure 1-b shows a signaling transmission method in the scenario where the serving base stations of the first cell and the second cell are different base stations.
  • the RNC determines that the UE moves to the overlapping area of the first cell and the second cell, and the serving base stations of the first cell and the second cell are both the first base station, the RNC sends the generated downlink signaling to the first base station. So that the first base station sends the first HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, so that the first base station sends the second HS-PDSCH carrying the downlink signaling to the UE by using the second cell. a subframe; wherein, the frequency of the second cell and the first cell are the same, the first small The area is a serving HS-DSCH cell accessed by the UE.
  • the RNC may further send a first configuration instruction to the first base station to configure the first cell as multiple signaling transmission.
  • SDT Signalling Duplication Transmission
  • the primary cell configures the second cell as an SDT assisted cell.
  • the RNC determines that the UE moves to an overlapping area of the first cell and the second cell, and the serving base station of the first cell is the second base station, and the serving base station of the second cell is the third base station, the RNC sends the second base station to the second base station.
  • the downlink signaling so that the second base station sends the third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell; the RNC sends the downlink signaling to the third base station, so that the third base station passes the second
  • the cell sends a fourth HS-PDSCH subframe carrying the downlink signaling to the UE; the second cell and the first cell have the same frequency, and the first cell is the serving HS-DSCH cell accessed by the UE.
  • the first cell may be a macro cell or a low power node cell
  • the second cell may be a macro cell or a low power node cell.
  • the RNC may also send a second configuration command to the second base station before or after transmitting the downlink signaling to the second base station to configure the first cell as an SDT primary cell.
  • the RNC may also send a third configuration command to the third base station before or after transmitting the downlink signaling to the third base station to configure the second cell as an SDT assisted cell.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report the support for those SDT modes.
  • the RNC performs SDT cell configuration accordingly.
  • the RNC can also support some or all SDT modes by the UE and the base station by default.
  • the RNC after the RNC generates the downlink signaling to be transmitted to the UE, if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the serving base stations of the first cell and the second cell are both And transmitting, by the first base station, the downlink signaling to the first base station, so that the first base station sends, by using the first cell, the first HS-PDSCH subframe that carries the downlink signaling to the UE, so that the first base station passes the second cell to Transmitting, by the UE, a second HS-PDSCH subframe that carries the downlink signaling;
  • the serving base station of the cell is the second base station
  • the serving base station of the second cell is the third base station, and the downlink signaling is sent to the second base station, so that the second base station sends the first downlink signaling to the UE by using the first cell.
  • the third HS-PDSCH subframe is sent to the third base station, so that the third base station sends the fourth HS-PDSCH subframe carrying the downlink signaling to the UE by using the second cell.
  • the RNC sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell, and the second cell and the first cell have the same frequency, and the first cell is the UE.
  • the serving HS-DSCH cell can be used to enable the UE to receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improving the UE receiving the downlink signal. The success rate of the order.
  • an SDT cell (such as an SDT primary cell, an SDT assisted cell) may also be referred to as a Signaling Robustness Optimization (SRO) cell, or may be referred to as a signaling transport optimization (STO, Signalling).
  • SRO Signaling Robustness Optimization
  • STO signaling transport optimization
  • Transmission Optimization A cell, or may also be referred to as a DST Duplication Signalling Transmission cell, or may also be referred to as a Coordinated Scheduling for downlink Signaling (CSS) cell or may have other names.
  • the network side may configure at least two cells for the UE, and establish an HS-DSCH on the cells.
  • the cells may be in the cells. Send to the UE at the same time.
  • the cells that can transmit signaling through the HS-DSCH can be referred to as an HS-DSCH cell, where one cell is called a primary cell (a serving cell accessed by the UE), and other cells are called an assisted cell.
  • the primary cell can be configured as an SDT primary cell
  • the assisted cell can be configured as an SDT coordinated cell.
  • the SDT primary cell and the SDT assisted cell have the same frequency, and the SDT assisted cell is configured to simultaneously monitor the downlink high-speed shared control channel (HS-SCCH, High-Speed Shared Control Channel) and the cell receiving the HS-DSCH.
  • HS-SCCH High-Speed Shared Control Channel
  • the sending the downlink signaling to the third base station includes: receiving at the second base station After the second command, the downlink signaling is sent to the third base station, where the second command is sent by the second base station after sending the first command to the UE by using the first cell and the third HS-PDSCH subframe carrying the downlink signaling.
  • the first command is used to instruct the UE to activate the downlink of the second cell.
  • the sending the downlink signaling to the third base station may include: After the second base station delays the set duration (for example, 0.5 milliseconds, 1 millisecond, or other duration) after transmitting the downlink signaling, the base station sends the downlink signaling to the third base station.
  • the set duration may be greater than or equal to the transmission delay difference between the second base station and the Iub interface of the RNC.
  • Another embodiment of the signaling transmission method of the present invention may include: the base station obtaining downlink signaling to be transmitted to the UE; and determining, if the UE moves to the first cell and the second cell And transmitting, by the first cell, the first HS-PDSCH subframe that carries the downlink signaling to the UE, and sends a second HS-PDSCH subframe that carries the downlink signaling to the UE by using the second cell, where
  • the first cell is a serving HS-DSCH cell accessed by the UE, and the frequency of the second cell and the first cell are the same.
  • FIG. 2 is a schematic flowchart of another signaling transmission method according to another embodiment of the present invention, where, as shown in FIG. 2, a signaling transmission method provided by another embodiment of the present invention may include The following:
  • the base station obtains downlink signaling to be transmitted to the UE.
  • the obtaining, by the base station, the downlink signaling to be transmitted to the UE may include: generating downlink signaling to be transmitted to the UE or receiving a downlink to be transmitted from the RNC (or the core network device or other device) to the UE. Signaling.
  • the base station may send the first HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and may pass the The second cell sends a second HS-PDSCH subframe carrying the downlink signaling to the UE, where the first cell is a serving HS-DSCH cell accessed by the UE, and the frequency of the second cell and the first cell are the same.
  • the obtaining, by the base station, the downlink signaling to be transmitted to the UE includes: generating downlink signaling to be transmitted to the UE or receiving downlink signaling to be transmitted from the RNC to the UE.
  • the base station receives the first configuration command from the RNC (the first A configuration command may be used to indicate that the first cell of the base station is configured as an SDT primary cell, and the second cell is configured as an SDT assisted cell, and the base station may configure the first cell as an SDT after receiving the first configuration command from the RNC.
  • the primary cell configures the second cell as an SDT assisted cell.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report the support for those SDT modes.
  • the RNC performs SDT cell configuration accordingly.
  • the RNC can also support some or all SDT modes by the UE and the base station by default.
  • the method before the sending, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, the method further includes: sending, by the first cell, the first command to the UE by using the first cell, where The first command is used to instruct the UE to activate the monitoring of the downlink high speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • the method before the sending, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, the method further includes: the base station adopts a relative grant channel in the enhanced dedicated channel mode of the second cell (E- The third command is sent to the UE, where the third command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • E- The third command is sent to the UE, where the third command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • the timing offset of the base station transmitting the first HS-PDSCH subframe and the second HS-PDSCH subframe may be, for example, 0 chips to 38400 chips (for example, may be 0 chips to 7680 chips) or other range.
  • the base station sends the first HS-PDSCH subframe and the second
  • the timing deviation of the HS-PDSCH subframe may not necessarily be limited. In this way, the coupling limitation of the transmission time of the first HS-PDSCH subframe and the second HS-PDSCH subframe can be released to some extent, which facilitates the packetization transmission control mechanism.
  • the base station obtains the downlink signaling to be transmitted to the UE; if it is determined that the UE moves to the overlapping area of the first cell and the second cell, the first cell sends the downlink signaling to the UE by using the first cell.
  • the frequency of the second cell and the first cell is the same in the HS-DSCH cell. Since the base station is in the first cell And the second cell sends an HS-PDSCH subframe carrying the same downlink signaling to the UE, and the second cell and the first cell have the same frequency, and the first cell is the serving HS-DSCH cell accessed by the UE,
  • the UE may be configured to receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improving the success rate of receiving the downlink signaling by the UE. The scenario description is made below from the perspective of the UE.
  • Another embodiment of the signaling transmission method of the present invention wherein another signaling transmission method may include: when the UE moves to an overlapping area of the first cell and the second cell, the UE receives and carries the downlink from the first cell a first high-speed physical downlink shared channel (HS-PDSCH) subframe that is signaled; and, the UE receives, from the second cell, a second HS-PDSCH subframe that carries the downlink signaling, where the frequency of the second cell and the first cell The same point, the first cell is a serving high speed downlink shared channel HS-DSCH cell accessed by the UE.
  • HS-PDSCH physical downlink shared channel
  • FIG. 3 is a schematic flowchart of another signaling transmission method according to another embodiment of the present invention, where, as shown in FIG. 3, a signaling transmission method provided by another embodiment of the present invention may include The following:
  • the foregoing UE receives, from the first cell, a first HS-PDSCH subframe that carries downlink signaling;
  • the UE receives, from the second cell, a second HS-PDSCH subframe that carries the downlink signaling, where the second cell and the first cell have the same frequency, and the first cell is the serving high-speed downlink shared channel HS accessed by the UE. - DSCH cell.
  • the first cell is configured as an SDT primary cell and the second cell is configured as an SDT assisted cell.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report the support for those SDT modes.
  • the RNC performs SDT cell configuration accordingly.
  • the RNC can also support some or all SDT modes by the UE and the base station by default.
  • the method further includes: the UE sending a first downlink transmission error indication to the serving base station of the first cell, and not transmitting the second downlink transmission to the serving base station of the second cell.
  • the first downlink transmission positive error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe
  • the second downlink transmission positive error indication is used to indicate whether the UE is correctly decoded.
  • the received second HS-PDSCH subframe is received. In this way, the coupling relationship between the second HS-PDSCH subframe and the corresponding uplink feedback information can be cancelled to some extent, which is beneficial to the centralized signaling transmission control mechanism.
  • the timing offset of receiving the first HS-PDSCH subframe and the second HS-PDSCH subframe ranges from 0 chips to 38400 chips (for example, may be 0 chips to 7680 codes) Tablet) or other range.
  • the timing offset of receiving the first HS-PDSCH subframe and the second HS-PDSCH subframe may not be necessarily limited. In this way, the coupling limitation of the transmission time of the first HS-PDSCH subframe and the second HS-PDSCH subframe can be released to some extent, which facilitates the packetization transmission control mechanism.
  • the method may further include: before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell, the UE starts to monitor the downlink of the second cell after reporting the 1D measurement report.
  • the control channel HS-SCCH and/or HS-PDSCH are shared at high speed and stop listening to the HS-SCCH and/or HS-PDSCH of the second cell after completing the serving cell handover.
  • the method may further include: receiving, by the first cell, the serving base station from the first cell before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell.
  • the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell is started to be monitored, where the first command is used to instruct the UE to activate the HS-SCCH and/or the HS- of the second cell.
  • PDSCH monitoring is used to instruct the UE to activate the HS-SCCH and/or the HS- of the second cell.
  • the method may further include: before the receiving, by the second cell, the second HS-PDSCH subframe carrying the downlink signaling, the relative grant channel in the enhanced dedicated channel mode of the second cell
  • the E-RGCH starts to listen to the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell, where the third command is used to indicate that the UE is activated.
  • the UE when the UE moves to an overlapping area of the first cell and the second cell, the UE receives, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries downlink signaling; The UE receives the second HS-PDSCH sub-carrier that carries the downlink signaling from the second cell. a frame, where the frequency of the second cell and the first cell are the same, and the first cell is a serving high speed downlink shared channel HS-DSCH cell accessed by the UE.
  • the HS-PDSCH subframe that is sent by the network side and carries the same downlink signaling may be received in the first cell and the second cell, respectively, and the second cell
  • the first cell is the serving HS-DSCH cell accessed by the UE, and therefore, the UE can receive the same downlink signaling from the first cell and the second cell, respectively.
  • the mechanism of the embodiment of the present invention is beneficial to improve the success rate of receiving downlink signaling by the UE. To facilitate a better understanding and implementation of the foregoing solution of the embodiments of the present invention, the following describes the specific application scenarios.
  • FIG. 4-a is a schematic diagram of a network architecture according to another embodiment of the present invention.
  • FIG. 4-a illustrates that the serving cell of the first cell and the second cell are different.
  • the serving base station of the first cell is the second base station, and the serving base station of the second cell is the third base station, and the frequency of the second cell and the first cell are the same.
  • FIG. 4b is a schematic flowchart of another signaling transmission method according to another embodiment of the present invention.
  • the signaling transmission method provided by another embodiment of the present invention may include the following content:
  • the RNC generates downlink signaling to be transmitted to the UE.
  • the downlink signaling generated by the RNC to be transmitted to the UE may be, for example, radio bearer reconfiguration signaling (eg, parameters for reconfiguring at least one radio bearer), transport channel reconfiguration signaling (eg, Physical channel reconfiguration signaling (eg, parameters for reconfiguring the physical channel).
  • radio bearer reconfiguration signaling eg, parameters for reconfiguring at least one radio bearer
  • transport channel reconfiguration signaling eg, Physical channel reconfiguration signaling (eg, parameters for reconfiguring the physical channel).
  • the RNC determines that the UE moves to the overlapping area of the first cell and the second cell, and sends a configuration command to the second base station and the third base station respectively, the first cell is configured as an SDT primary cell, and the second cell is configured. Help the community for SDT.
  • the first cell is a serving HS-DSCH cell accessed by the UE, and the frequency of the second cell and the first cell are the same.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report and support those SDT modes.
  • RNC According to this, the SDT cell configuration is performed.
  • the RNC can also support some or all SDT modes by default for the UE and the base station.
  • the RNC sends the downlink signaling to the second base station.
  • the second base station sends, by using the first cell, a third HS-PDSCH subframe that carries the downlink signaling to the UE.
  • the UE receives the third HS-PDSCH subframe, and may send a first downlink transmission error indication to the second base station.
  • the first downlink transmission error indication is used to indicate whether the UE correctly decodes the received Third HS-PDSCH subframe.
  • the second base station may retransmit the downlink signaling to the UE by using the first cell. Third HS-PDSCH subframe.
  • the RNC sends the downlink signaling to the third base station.
  • the third base station sends, by using the second cell, the fourth HS-PDSCH subframe that carries the downlink signaling to the UE.
  • the UE receives the fourth HS-PDSCH subframe, and the UE may not send the second downlink transmission error indication to the third base station.
  • the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received fourth.
  • HS-PDSCH subframe The third base station periodically sends a fourth HS-PDSCH subframe carrying the downlink signaling to the UE through the second cell to ensure that the UE correctly receives the fourth HS-PDSCH subframe.
  • the timing offset of the second base station transmitting the first HS-PDSCH subframe and the third base station transmitting the second HS-PDSCH subframe may be, for example, 0 chips to 38400 chips (for example, It is 0 chips to 7680 chips) or other range.
  • the timing deviation of the first base station transmitting the first HS-PDSCH subframe and the third base station transmitting the second HS-PDSCH subframe may not be necessarily limited.
  • the sending, by the RNC, the downlink signaling to the third base station includes: the RNC transmitting the downlink signaling to the third base station after receiving the second command from the second base station, where the second command is Sending a first command to the UE by using the first cell, and transmitting the downlink signaling After the three HS-PDSCH subframes are sent, the first command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • the sending, by the RNC, the downlink signaling to the third base station includes: after the RNC delays the set duration (for example, 0.5 milliseconds, 1 millisecond, or other duration) after transmitting the downlink signaling to the second base station. And transmitting the downlink signaling to the third base station.
  • the second base station may send a first command to the UE after receiving the downlink signaling from the RNC, where the first command is used to instruct the UE to activate the downlink high speed shared control channel HS-SCCH and/or the second cell. Or HS-PDSCH monitoring.
  • the second base station may also send a command to the UE to instruct the UE to deactivate the listening of the HS-SCCH and/or the HS-PDSCH of the second cell, when needed.
  • the UE is automatically deactivated, and the duration of the SDT-assisted cell can be sent or used at the time of the SDT cell configuration or the default value is used.
  • the third base station may further include: the third base station passes the E-RGCH of the second cell.
  • the HOLD/DOWN commands correspond to 0, -1
  • the "UP" command corresponds to +1.
  • the HOLD/DOWN command is indicated by the identifier of the existing protocol, and the "UP" command corresponds to +0.
  • the UE may start to listen to the HS-SCCH of the SDT assisted cell (the second cell).
  • the UE may stop listening to the HS-SCCH of the SDT assisted cell.
  • 1A measurement event is defined as a cell entering the reporting range, and the 1A measurement message carries the 1A measurement identifier and trigger 1A.
  • the 1B measurement event is defined as a cell leaving the reporting range, and the 1B measurement report carries the 1B measurement identifier and the cell measurement result of the trigger 1B.
  • the 1D measurement event is defined as the best cell change, that is, when the signal quality of a non-serving cell is better than the signal quality of the current serving cell, the 1D measurement is triggered, and the 1D measurement report carries the 1D measurement target. Identify and trigger the cell measurement results of the ID.
  • the UE may report the measurement event 1A at the B point, where the network side (such as the RNC, the base station, etc.) may add the second cell to The activation of the UE is centralized, and the network side may configure the first cell as an SDT primary cell and the second cell as an SDT assisted cell. If the UE reports the measurement event 1D at the C point position, then the measurement event 1B is reported at the D point position, so that the UE can make the UE in multiple cells (the first cell) through the SDT characteristic during the B point position to the D point position movement. And the second cell) receives signaling.
  • the network side such as the RNC, the base station, etc.
  • FIG. 4-d is a schematic diagram of a module architecture corresponding to the network architecture shown in FIG. 4-a according to an embodiment of the present invention.
  • the radio network controller may include, for example, a packet data convergence protocol layer unit for performing Packet Data Convergence Protocol (PDCP) layer processing, and a Radio Link Control Protocol (RLC) layer unit.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC-d medium-access control-dedicated
  • the downlink signaling to be transmitted to the UE is sent to the second base station and the third base station.
  • the MAC-ehs in the second base station and the third base station perform an SDT operation, and send the HS-PDSCH subframe carrying the downlink signaling to the UE through the first cell and the second cell, respectively.
  • the UE side has two physical layers and two medium access control (MAC) layer units, and the data received by the two MAC layer units in the UE is aggregated at the RLC layer.
  • MAC medium access control
  • the RNC in this embodiment may also be combined with the second base station or the third base station into one entity, and the merged entity may still be referred to as a base station.
  • the RNC after the RNC generates the downlink signaling to be transmitted to the UE, if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the serving base stations of the first cell and the second cell are both And transmitting, by the first base station, the downlink signaling to the first base station, so that the first base station sends, by using the first cell, the first HS-PDSCH subframe that carries the downlink signaling to the UE, so that the first base station passes the second cell to
  • the UE sends a second HS-PDSCH subframe carrying the downlink signaling; if the serving base station of the first cell is the second base station, and the serving base station of the second cell is the third base station, the downlink signaling is sent to the second base station,
  • the second base station sends the third HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station, so that the third base station,
  • the RNC sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell, and the second cell and the first cell have the same frequency, and the first cell is the UE.
  • the serving HS-DSCH cell can be used to enable the UE to receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improving the UE receiving the downlink signal. The success rate of the order.
  • FIG. 5-a and FIG. 5-b FIG. 5-a is a schematic diagram of a network architecture provided by another embodiment of the present invention, where the service base stations of the first cell and the second cell are illustrated in FIG. 5-a. First base station.
  • FIG. 5-b is a schematic flowchart of another signaling transmission method according to another embodiment of the present invention.
  • another signaling transmission method provided by another embodiment of the present invention may include the following content:
  • the RNC generates downlink signaling to be transmitted to the UE.
  • the downlink signaling generated by the RNC to be transmitted to the UE may be, for example, radio bearer reconfiguration signaling (eg, parameters for reconfiguring at least one radio bearer), transport channel reconfiguration signaling (eg, Physical channel reconfiguration signaling (eg, parameters for reconfiguring the physical channel).
  • radio bearer reconfiguration signaling eg, parameters for reconfiguring at least one radio bearer
  • transport channel reconfiguration signaling eg, Physical channel reconfiguration signaling (eg, parameters for reconfiguring the physical channel).
  • the RNC determines that the UE moves to the overlapping area of the first cell and the second cell, and sends a configuration command to the first base station, the first cell is configured as an SDT primary cell, and the second cell is configured as an SDT assisted cell. .
  • the first cell is a serving HS-DSCH cell accessed by the UE.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report the support for those SDT modes.
  • the RNC performs SDT cell configuration accordingly.
  • the RNC can also support some or all SDT modes by the UE and the base station by default.
  • the RNC sends the downlink signaling to the first base station.
  • the first base station sends, by using the first cell, a first HS-PDSCH subframe that carries the downlink signaling to the UE. 505.
  • the UE may receive the first HS-PDSCH subframe, and may send a first downlink transmission error indication to the first base station.
  • the first downlink transmission error indication is used to indicate whether the UE is correctly decoded and received.
  • the first HS-PDSCH subframe is used to indicate whether the UE is correctly decoded and received.
  • the first base station may retransmit the downlink signaling to the UE by using the first cell. First HS-PDSCH subframe.
  • the first base station sends, by using the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE.
  • the UE receives the second HS-PDSCH subframe, and the UE may not send the second downlink transmission error indication to the first base station.
  • the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second identifier.
  • HS-PDSCH subframe The first base station periodically sends a second HS-PDSCH subframe carrying the downlink signaling to the UE through the second cell to ensure that the UE correctly receives the second HS-PDSCH subframe.
  • the first base station sends the first HS-PDSCH subframe and the second
  • the timing offset of the HS-PDSCH subframe may range, for example, from 0 chips to 38400 chips (e.g., may range from 0 chips to 7680 chips) or other ranges.
  • the timing deviation of the first HS-PDSCH subframe and the second HS-PDSCH subframe sent by the first base station may not be necessarily limited.
  • the first base station may first send, by using the first cell, a first command to the UE, and a first HS-PDSCH subframe that carries the downlink signaling, where the first command is used to indicate that the UE is activated.
  • the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH is monitored by the second cell, and then the second HS-PDSCH subframe carrying the downlink signaling is sent to the UE through the second cell.
  • the first base station may further include: the first base station passes the E-RGCH of the second cell.
  • the HOLD/DOWN commands correspond to 0, -1, "UP" respectively.
  • the instruction corresponds to +1.
  • the HOLD/DOWN command is indicated by the identifier of the existing protocol, and the "UP" command corresponds to +0.
  • the UE may start to monitor the HS-SCCH of the SDT assisted cell (the second cell).
  • the UE may stop assisting the SDT by itself. Monitoring of the HS-SCCH of the cell.
  • FIG. 5-c is a schematic diagram of a module architecture corresponding to the network architecture shown in FIG. 5-a according to an embodiment of the present invention.
  • the radio network controller may include, for example, a PDCP layer unit for performing PDCP layer processing, an RLC layer unit for performing RLC layer processing, and two MAC-d entities for performing MAC layer processing.
  • the MAC-ehs in the first base station performs an SDT operation, and sends an HS-PDSCH subframe carrying the downlink signaling to the UE through the first cell and the second cell, respectively.
  • the UE side has two physical layers and two MAC layer units, and data received by two physical layer units in the UE is aggregated at the RLC layer.
  • the base station obtains the downlink signaling to be transmitted to the UE from the RNC; if it is determined that the UE moves to the overlapping area of the first cell and the second cell, the first cell sends the downlink to the UE by using the first cell. Transmitting a first HS-PDSCH subframe, and transmitting, by the second cell, a second HS-PDSCH subframe that carries the downlink signaling to the UE, where the first cell is a serving HS-DSCH cell accessed by the UE The frequency of the second cell and the first cell are the same.
  • the first cell and the second cell respectively send the HS-PDSCH subframe carrying the same downlink signaling to the UE, and the second cell and the first cell have the same frequency, and the first cell is accessed by the UE.
  • Serving the HS-DSCH cell so that the UE can receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improve the UE receiving the downlink signaling. Success rate.
  • the SDT may include the following modes.
  • SDT naming can be done as follows:
  • SF-2F Single Frequency 2 ( Signalling ) Flows.
  • SF-2S Single Frequency 2 (Signalling) Streams.
  • the SDT cell is Cell 11 and Cell 12 in Figure 5-d.
  • the SDT can be named SF-3F or SF-3 SDT or SF-3S.
  • the SDT can be named SF-4F or SF-4 SDT or SF-4S.
  • the SDT can be named SF-NF or SF-N SDT or SF-NS.
  • the SDT naming can be performed as follows:
  • DF-2F Dual Frequency 2 ( Signalling ) Flows.
  • DF-2 SDT Dual Frequency 2 Signalling Duplication Transmission
  • DF-2S Dual Frequency 2 (Signalling) Streamsong, as shown in Figure 5-d.
  • the DC-HSDPA cells are Cell 11 and Cell 21, and the SDT cells are Cell 11 and Cell 12.
  • the SDT can be named DF-3F or DF-3 SDT or DF-3S; if the number of SDT cells is 4, the SDT can be named DF-4F or DF- 4 SDT or DF-4S. More generally, if the number of SDT cells is N, the SDT can be named as DF-NF or DF-N SDT or the multi-carrier feature in the standard can support a maximum number of carriers of 8, which is 8C-HSDPA ( 8 Carrier HSDPA) features.
  • 8C-HSDPA 8 Carrier HSDPA
  • the RNC and the first base station in this embodiment may also be combined into one entity, and the merged entity may still be referred to as a base station.
  • the RNC and the first base station in this embodiment may also be combined into one entity, and the merged entity may still be referred to as a base station.
  • related apparatus and communication systems for implementing the above-described embodiments are also provided below.
  • a radio network controller 600 may include: a generator 610 and a transmitter 620.
  • the generator 610 is configured to generate downlink signaling to be transmitted to the UE.
  • the transmitter 620 is configured to: if it is determined that the UE moves to an overlapping area of the first cell and the second cell, And the serving base station of the first cell and the second cell are both the first base station, and the downlink signaling is sent to the first base station, so that the first base station sends, by using the first cell, the first HS-PDSCH carrying the downlink signaling to the UE. a subframe, so that the first base station sends, by using the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, where the second cell and the first cell have the same frequency, and the first cell is the UE Incoming service HS-DSCH cell;
  • the serving base station of the first cell is the second base station
  • the serving base station of the second cell is the third base station, sending the downlink signaling to the second base station.
  • the second base station sends the third HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station, so that the third base station sends the downlink signaling to the UE by using the second cell.
  • the fourth HS-PDSCH subframe carrying the downlink signaling; the second cell and the first cell have the same frequency, and the first cell is the serving HS-DSCH cell accessed by the UE.
  • the transmitter 620 is further configured to: before sending the downlink signaling to the second base station, send a second configuration command to the second base station, to configure the first cell as an SDT primary cell; Before the sending the downlink signaling to the third base station, the method further includes: sending, by the third base station, a third configuration command, to configure the second cell as an SDT assisting cell;
  • the transmitter 620 is further configured to send, by the first base station, the first configuration command to the first base station to send the first cell to the multiple signaling transmission before sending the downlink signaling to the first base station.
  • the SDT primary cell configures the second cell as an SDT assisted cell.
  • the transmitter 620 is configured to send the downlink signaling to the third base station. Specifically used,
  • the downlink signaling is delayed, and the downlink signaling is sent to the third base station; or the downlink signaling is sent to the third base station after receiving the second command from the second base station.
  • the second command is sent by the second base station after sending the first command to the UE by using the first cell and the third HS-PDSCH subframe carrying the downlink signaling, where the first command is used to indicate that the UE is activated to the second
  • the downlink high speed of the cell shares the monitoring of the control channel HS-SCCH and/or HS-PDSCH.
  • the first cell is a macro cell or a low power node cell
  • the second cell is a macro cell or a low power node cell.
  • radio network controller 600 of the present embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be according to the method in the foregoing method embodiment.
  • the functions of the functional modules may be according to the method in the foregoing method embodiment.
  • the radio network controller 600 After the radio network controller 600 generates the downlink signaling to be transmitted to the UE, if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the first cell and the second cell
  • the serving base station is the first base station, and sends the downlink signaling to the first base station, so that the first base station sends the first HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, so that the first base station passes the first base station.
  • the second cell sends a second HS-PDSCH subframe carrying the downlink signaling to the UE; if the serving base station of the first cell is the second base station, the serving base station of the second cell is the third base station, and the downlink is sent to the second base station. Signaling, so that the second base station sends the third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell; and sending the downlink signaling to the third base station, so that the third base station passes the second cell to the foregoing
  • the UE sends a fourth HS-PDSCH subframe carrying the downlink signaling.
  • a base station 700 may include:
  • the signaling obtainer 710 is configured to obtain downlink signaling to be transmitted to the user equipment UE, and the transmitter 720 is configured to: if determining that the UE moves to an overlapping area of the first cell and the second cell, by using the first cell Transmitting, to the UE, a first HS-PDSCH subframe that carries the downlink signaling, and transmitting, by using the second cell, a second HS-PDSCH subframe that carries the downlink signaling, where the first cell is accessed by the UE Serving the HS-DSCH cell, the frequency of the second cell and the first cell are the same.
  • the signaling obtainer 710 is specifically configured to: generate a to-be-transmitted UE Downlink signaling or receiving downlink signaling from the RNC to be transmitted to the UE.
  • the base station 700 further includes a configurator 730, configured to configure the first cell as a multiple signaling transmission after receiving the first configuration command from the RNC.
  • the SDT primary cell configures the second cell as an SDT assisted cell.
  • the transmitter 720 is further configured to send, by using the first cell, the first cell to the UE, before sending, by using the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE.
  • a command where the first command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell; or send the downlink to the UE by using the second cell.
  • the third command is sent to the UE by using the relative grant channel E-RGCH in the enhanced dedicated channel mode of the second cell, where the third command is used to indicate that the UE activates the second cell. Monitoring of HS-SCCH and/or HS-PDSCH.
  • the transmitter 720 transmits the first HS-PDSCH subframe and the second
  • the timing offset of the HS-PDSCH subframe ranges from 0 chips to 38400 chips, for example, 0 chips to 7680 chips or other ranges.
  • the base station 700 of this embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the process reference may be made to the related description of the foregoing method embodiments, and details are not described herein again.
  • the base station 700 obtains the downlink signaling to be transmitted to the UE. If it is determined that the UE moves to the overlapping area of the first cell and the second cell, the first cell sends the downlink message to the UE by using the first cell. And transmitting, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE by using the second cell, where the first cell is a serving HS-DSCH cell that is accessed by the UE, The frequency of the second cell and the first cell are the same.
  • a user equipment 800 provided by an embodiment of the present invention may include: Receiver 810 and decoder 820.
  • the receiver 810 is configured to: if the UE moves to an overlapping area of the first cell and the second cell, receive, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries downlink signaling; and from the second cell Receiving a second HS-PDSCH subframe carrying the downlink signaling, where the second cell and the first cell have the same frequency, and the first cell is a serving high-speed downlink shared channel HS-DSCH cell accessed by the UE;
  • the decoder 820 is configured to decode the first HS-PDSCH subframe and the second HS-PDSCH subframe.
  • the first cell is configured to transmit multiple SDT primary cells and the second cell is configured as an SDT assisted cell.
  • the user equipment 800 further includes:
  • the transmitter 830 is configured to send a first downlink transmission error indication to the serving base station of the first cell, and not send a second downlink transmission error indication to the serving base station of the second cell; the first downlink transmission error indication is used to indicate the foregoing Whether the UE correctly decodes the received first HS-PDSCH subframe, and the second downlink transmission positive indication is used to indicate whether the UE correctly decodes the received second HS-PDSCH subframe.
  • the receiver 810 receives the timing offset of the first HS-PDSCH subframe and the second HS-PDSCH subframe from 0 chips to 38400 chips.
  • the user equipment 800 may further include:
  • the listener 840 is configured to start listening to the downlink high-speed shared control channel HS-SCCH of the second cell and/or after reporting the 1D measurement report before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell. Or HS-PDSCH;
  • the first command is used to indicate that the foregoing UE activates monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell;
  • the command is used to instruct the UE to activate monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell.
  • the user equipment 900 of this embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the UE when the user equipment 900 moves to the overlapping area of the first cell and the second cell, the UE receives the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling from the first cell. And the UE receives the second HS-PDSCH subframe that carries the downlink signaling from the second cell, where the frequency of the second cell and the first cell are the same, and the first cell is the high-speed downlink of the service accessed by the UE. Shared channel HS-DSCH cell.
  • a radio network controller 1000 may include: at least one bus 1001, at least one processor 1002 connected to the bus 1001, and at least one memory 1003 connected to the bus 1001.
  • the processor 1002 invokes the code stored in the memory 1003 through the bus 1001 to use:
  • the serving base stations of the first cell and the second cell are both the first base station, send the downlink signaling to the first base station, so that the first base station passes Transmitting, by the first cell, the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling, to the first base station, so that the first base station sends the downlink to the UE by using the second cell a second HS-PDSCH subframe of the signaling; wherein the second cell and the first cell have the same frequency, and the first cell is a serving high-speed downlink shared channel HS-DSCH cell accessed by the UE;
  • the serving base station of the first cell is the second base station
  • the serving base station of the second cell is the third base station, sending the downlink signaling to the second base station.
  • the second base station sends the third HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station, so that the third base station sends the downlink signaling to the UE by using the second cell.
  • the fourth HS-PDSCH subframe carrying the downlink signaling; the second cell and the first cell have the same frequency, and the first cell is the serving HS-DSCH cell accessed by the UE.
  • the processor 1002 is further configured to: before sending the downlink signaling to the second base station, send a second configuration command to the second base station, to configure the first cell as an SDT primary cell; Before the sending the downlink signaling to the third base station, the method further includes: sending, by the third base station, a third configuration command, to configure the second cell as an SDT assisting cell;
  • the processor 1002 is further configured to: before sending the downlink signaling to the first base station, send a first configuration command to the first base station, to configure the first cell to be a multi-signal transmission SDT primary cell, and configure the second cell Help the community for SDT.
  • the processor 1002 is configured to send the downlink signaling to the third base station.
  • the processor 1002 is configured to send the downlink signaling to the third base station.
  • the downlink signaling is delayed, and the downlink signaling is sent to the third base station; or the downlink signaling is sent to the third base station after receiving the second command from the second base station.
  • the second command is sent by the second base station after sending the first command to the UE by using the first cell and the third HS-PDSCH subframe carrying the downlink signaling, where the first command is used to indicate that the UE is activated to the second
  • the downlink high speed of the cell shares the monitoring of the control channel HS-SCCH and/or HS-PDSCH.
  • the first cell is a macro cell or a low power node cell
  • the second cell is a macro cell or a low power node cell
  • radio network controller 1000 of this embodiment can be used to implement the foregoing method implementation.
  • the functions of the respective functional modules may be specifically implemented according to the method in the foregoing method embodiment, and the specific implementation process may refer to the related description of the foregoing method embodiments, where Let me repeat.
  • the radio network controller 1000 after the radio network controller 1000 generates the downlink signaling to be transmitted to the UE, if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the first cell and the second cell
  • the serving base station is the first base station, and sends the downlink signaling to the first base station, so that the first base station sends the first HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, so that the first base station passes the first base station.
  • the second cell sends a second HS-PDSCH subframe carrying the downlink signaling to the UE; if the serving base station of the first cell is the second base station, the serving base station of the second cell is the third base station, and the downlink is sent to the second base station. Signaling, so that the second base station sends the third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell; and sending the downlink signaling to the third base station, so that the third base station passes the second cell to the foregoing
  • the UE sends a fourth HS-PDSCH subframe carrying the downlink signaling.
  • a base station 1100 may include:
  • the processor 1102 calls the code stored in the memory 1103 through the bus 1101 to:
  • the frequency of the second cell and the first cell are the same.
  • downlink signaling to be transmitted to the user equipment UE is obtained in the foregoing manner.
  • the processor 1102 is specifically configured to: generate downlink signaling to be transmitted to the UE or receive downlink signaling to be transmitted to the UE from the radio network controller RNC.
  • the processor 1102 is further configured to: after receiving the first configuration command from the RNC, configuring the first cell as a multiple signaling transmission SDT primary cell, and configuring the second cell as an SDT Assist the community.
  • the processor 1102 is further configured to send, by using the first cell, the first cell to the UE, before sending, by using the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE.
  • a command where the first command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell; or send the downlink to the UE by using the second cell.
  • the third command is sent to the UE by using the relative grant channel E-RGCH in the enhanced dedicated channel mode of the second cell, where the third command is used to indicate that the UE activates the second cell. Monitoring of HS-SCCH and/or HS-PDSCH.
  • the timing offset of the first HS-PDSCH subframe and the second HS-PDSCH subframe transmitted by the processor 1102 ranges from 0 chips to 38400 chips.
  • the base station 1100 of this embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the process reference may be made to the related description of the foregoing method embodiments, and details are not described herein again.
  • the base station 1100 obtains the downlink signaling to be transmitted to the UE. If it is determined that the UE moves to the overlapping area of the first cell and the second cell, the first cell sends the downlink message to the UE by using the first cell. And transmitting, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE by using the second cell, where the first cell is a serving HS-DSCH cell that is accessed by the UE, The frequency of the second cell and the first cell are the same.
  • a user equipment 1200 may include: At least one bus 1201, at least one processor 1202 connected to the bus 1201, and at least one memory 1203 connected to the bus 1201.
  • the processor 1202 by using the bus 1201, invokes the code stored in the memory 1203 to: receive the downlink signaling from the first cell if the UE moves to the overlapping area of the first cell and the second cell. a high-speed physical downlink shared channel HS-PDSCH subframe; receiving, from the second cell, a second HS-PDSCH subframe carrying the downlink signaling, where the second cell and the first cell have the same frequency, and the first cell is the foregoing
  • the service accessed by the UE is a high speed downlink shared channel HS-DSCH cell.
  • the first cell is configured to transmit multiple SDT primary cells and the second cell is configured as an SDT assisted cell.
  • the processor 1202 is further configured to: send a first downlink transmission error indication to the serving base station of the first cell, and not send a second downlink transmission error indication to the serving base station of the second cell;
  • the downlink transmission error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe
  • the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS. - PDSCH subframe.
  • processor 1202 receives a first HS-PDSCH subframe and a second
  • the timing offset of the HS-PDSCH subframe ranges from 0 chips to 38400 chips.
  • the processor 1202 is further configured to start monitoring the second cell after reporting the 1D measurement report before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell.
  • the first command is used to indicate that the foregoing UE activates monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell;
  • the third serving base station Before receiving the second HS-PDSCH subframe carrying the downlink signaling from the second cell, receiving the third serving base station from the second cell by using the relative grant channel E-RGCH in the enhanced dedicated channel mode of the second cell After the command, start listening to the HS-SCCH and I of the second cell or The HS-PDSCH, where the third command is used to instruct the UE to activate monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell.
  • the user equipment 1200 of the embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the UE when the user equipment 1200 moves to the overlapping area of the first cell and the second cell, the UE receives the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling from the first cell. And the UE receives the second HS-PDSCH subframe that carries the downlink signaling from the second cell, where the frequency of the second cell and the first cell are the same, and the first cell is the high-speed downlink of the service accessed by the UE. Shared channel HS-DSCH cell.
  • an embodiment of the present invention further provides a communication system, which may include:
  • the radio network controller 1310 and the first base station 1320 are The radio network controller 1310 and the first base station 1320.
  • the radio network controller 1310 is configured to: generate downlink signaling to be transmitted to the user equipment UE; if it is determined that the UE moves to an overlapping area of the first cell and the second cell, and services of the first cell and the second cell
  • the base stations are all the first base stations, and the downlink signaling is sent to the first base station;
  • the first base station 1320 is configured to receive the downlink signaling from the radio network controller 1310, and send, by using the first cell, the first high-speed physical downlink shared channel HS-PDSCH subframe carrying the downlink signaling to the UE, and pass the
  • the second cell sends a second HS-PDSCH subframe carrying the downlink signaling to the UE.
  • the second cell and the first cell have the same frequency, and the first cell is the service high-speed downlink shared channel HS- accessed by the UE. DSCH cell.
  • the first base station 1320 receives the first configuration command from the radio network controller 1310.
  • the first configuration command may be used to indicate that the first base station 1320 is configured as the SDT.
  • the primary cell configured as the SDT assisted cell
  • the first base station 1320 may configure the first cell as the SDT primary cell and the second cell after receiving the first configuration command from the radio network controller 1310. Configured as an SDT-assisted cell.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the first base station 1320 that supports the SDT feature can report the SDT capability to the RNC.
  • the first base station 1320 can report and support those SDT modes.
  • the RNC performs SDT cell configuration accordingly.
  • the RNC may also support some or all SDT modes by default for the UE and the first base station 1320.
  • the method before the sending, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, the method further includes: sending, by the first base station 1320, the first cell to the UE by using the first cell.
  • the command where the first command is used to instruct the UE to activate monitoring of the downlink high speed shared control channel HS-SCCH and/or HS-PDSCH of the second cell.
  • the method before the sending, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE, the method further includes: sending, by the first base station 1320, the E-RGCH of the second cell to the UE And a third command, where the third command is used to instruct the UE to activate the monitoring of the downlink high speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • the timing deviation range of the first base station 1320 for transmitting the first HS-PDSCH subframe and the second HS-PDSCH subframe may be, for example, 0 chips to 38400 chips (for example, 0 may be 0) Chips to 7680 chips) or other ranges.
  • the timing deviation of the first base station 1320 transmitting the first HS-PDSCH subframe and the second HS-PDSCH subframe may not be necessarily limited. In this way, the coupling limitation of the transmission time of the first HS-PDSCH subframe and the second HS-PDSCH subframe can be cancelled to a certain extent, which facilitates the packetization transmission control mechanism.
  • first base station 1320 of the present embodiment may be used to implement some or all of the functions of the first base station in the foregoing method embodiments
  • the RNC 1310 may be used to implement some or all of the functions of the RNC in the foregoing method embodiments.
  • reference may be made to the related description of the foregoing method embodiments, and details are not described herein again.
  • the UE may be further configured to: receive, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries downlink signaling; and receive from the second cell, carry the downlink.
  • the second HS-PDSCH subframe of the signaling may be further configured to: receive, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries downlink signaling; and receive from the second cell, carry the downlink.
  • the second HS-PDSCH subframe of the signaling may be further configured to: receive, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries downlink signaling.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report the support for those SDT modes.
  • the RNC performs SDT cell configuration accordingly.
  • the RNC can also support some or all SDT modes by the UE and the base station by default.
  • the UE may be further configured to: send a first downlink transmission error indication to the serving base station of the first cell, and not send a second downlink transmission error indication to the serving base station of the second cell; where, the first The line transmission error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe, and the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS- PDSCH subframe.
  • the coupling relationship between the second HS-PDSCH subframe and the corresponding uplink feedback information can be cancelled to some extent, which facilitates the centralized signaling transmission control mechanism.
  • the UE receives the first HS-PDSCH subframe and the second HS-PDSCH subframe with a timing offset ranging from 0 chips to 38400 chips (eg, 0 chips to 7680). One chip) or other range.
  • the timing offset of receiving the first HS-PDSCH subframe and the second HS-PDSCH subframe may not be necessarily limited. In this way, the coupling limitation of the transmission time of the first HS-PDSCH subframe and the second HS-PDSCH subframe can be released to some extent, which facilitates the packetization transmission control mechanism.
  • the UE may be further configured to start monitoring downlink high-speed sharing of the second cell after reporting the 1D measurement report before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell.
  • the control channel HS-SCCH and/or HS-PDSCH and stops listening to the HS-SCCH and/or HS-PDSCH of the second cell after completing the serving cell handover.
  • the UE may be further configured to: before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell, receive the serving base station from the first cell by using the first cell. After the first command, the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell is started to be monitored, where the first command is used to instruct the UE to activate the HS-SCCH and/or the HS- of the second cell. PDSCH monitoring.
  • the UE may be further configured to receive the foregoing from the second cell.
  • the relative grant channel E-RGCH starts to monitor the second cell.
  • the first base station 1320 obtains the downlink signaling to be transmitted to the UE from the RNC 1310. If it is determined that the UE moves to the overlapping area of the first cell and the second cell, the first cell is used to the UE. Transmitting a first HS-PDSCH subframe that carries the downlink signaling, and sending, by using the second cell, a second HS-PDSCH subframe that carries the downlink signaling to the UE, where the first cell is a service accessed by the UE The frequency of the second cell and the first cell is the same in the HS-DSCH cell.
  • the first base station 1320 sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell, respectively, and the frequency of the second cell and the first cell is the same, and the first cell is the UE.
  • the serving HS-DSCH cell is accessed, so that the UE can receive the same downlink signaling from the first cell and the second cell, respectively, and the mechanism of the embodiment of the present invention is beneficial to improve the UE receiving downlink.
  • the success rate of signaling Referring to FIG. 14, an embodiment of the present invention further provides a communication system, which may include:
  • the radio network controller 1410 the second base station 1420, and the third base station 1430.
  • the radio network controller 1410 is configured to: generate downlink signaling to be transmitted to the user equipment UE; if it is determined that the UE moves to an overlapping area of the first cell and the second cell, and the serving base station of the first cell is the second The base station 1420, the serving base station of the second cell is the third base station 1430, and sends the downlink signaling to the third base station 1420; and sends the downlink signaling to the third base station 1430.
  • the second base station 1420 is configured to receive the downlink signaling from the RNC, and send, by using the first cell, a third HS-PDSCH subframe that carries the downlink signaling to the UE.
  • the third base station 1430 is configured to receive the downlink signaling from the radio network controller 1410, and send, by using the second cell, a fourth HS-PDSCH subframe that carries the downlink signaling to the UE, where the second cell and the first The frequency of the cell is the same, and the first cell is the serving HS-DSCH cell accessed by the UE.
  • the radio network controller 1410 may also send the radio network controller 1410 to the second base station 1420 before or after or simultaneously transmitting the downlink signaling to the second base station 1420.
  • the second configuration instruction is to configure the first cell as an SDT primary cell.
  • the radio network controller 1410 may also send a third configuration command to the third base station 1430 to configure the second cell as an SDT-assisted cell before or after or simultaneously transmitting the downlink signaling to the third base station 1430.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station supporting the SDT feature can report the SDT capability to the radio network controller 1410.
  • the radio network controller 1410 performs SDT cell configuration accordingly.
  • the radio network controller 1410 may also support partial or full SDT mode for the UE and the base station by default.
  • the sending the downlink signaling to the third base station 1430 includes: receiving at the After the second command of the second base station 1420, the downlink signaling is sent to the third base station 1430, where the second command is sent by the second base station 1420 to the UE by using the first cell and the third HS carrying the downlink signaling.
  • the first command is used to instruct the UE to activate the monitoring of the downlink high speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • the sending the downlink signaling to the third base station 1430 may include: After transmitting the downlink signaling to the second base station 1420 and delaying the set duration (for example, 0.5 milliseconds, 1 millisecond, or other duration), the downlink signaling is transmitted to the third base station 1430.
  • the foregoing designation length may be greater than or equal to a transmission delay difference between the second base station 1420 and the Iub interface of the radio network controller 1410.
  • the UE may be further configured to: receive, from the first cell, a first high-speed physical downlink shared channel HS-PDSCH subframe that carries downlink signaling; and receive, from the second cell, a second that carries the downlink signaling. HS-PDSCH subframe.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • the base station that supports the SDT feature can report the SDT capability to the RNC.
  • the base station can report and support those SDT modes.
  • the RNC performs SDT cell configuration according to this.
  • the RNC can also support some or all SDT modes by default for the UE and the base station.
  • the UE may be further configured to: send a first downlink transmission error indication to the serving base station of the first cell, and not send a second downlink transmission error indication to the serving base station of the second cell; where, the first The line transmission error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe, and the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS- PDSCH subframe.
  • the coupling relationship between the second HS-PDSCH subframe and the corresponding uplink feedback information can be cancelled to some extent, which facilitates the centralized signaling transmission control mechanism.
  • the UE receives the first HS-PDSCH subframe and the second HS-PDSCH subframe with a timing offset ranging from 0 chips to 38400 chips (eg, 0 chips to 7680). One chip) or other range.
  • the timing offset of receiving the first HS-PDSCH subframe and the second HS-PDSCH subframe may not be necessarily limited. In this way, the coupling limitation of the transmission time of the first HS-PDSCH subframe and the second HS-PDSCH subframe can be released to some extent, which facilitates the packetization transmission control mechanism.
  • the UE may be further configured to start monitoring downlink high-speed sharing of the second cell after reporting the 1D measurement report before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell.
  • the control channel HS-SCCH and/or HS-PDSCH and stops listening to the HS-SCCH and/or HS-PDSCH of the second cell after completing the serving cell handover.
  • the UE may be further configured to: before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell, receive the serving base station from the first cell by using the first cell. After the first command, the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell is started to be monitored, where the first command is used to instruct the UE to activate the HS-SCCH and/or the HS- of the second cell. PDSCH monitoring.
  • the UE may be further configured to: before the receiving, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling, the relative grant channel in the enhanced dedicated channel mode of the second cell.
  • the E-RGCH After receiving the third command from the serving base station of the second cell, the E-RGCH starts to listen to the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell, where the third command is used to indicate that the UE is activated.
  • the second base station 1420 of this embodiment can be used to implement the foregoing method embodiments.
  • the third base station 1430 may be used to implement some or all of the functions of the third base station in the foregoing method embodiment;
  • the RNC 1410 may be used to implement some or all of the functions of the RNC in the foregoing method embodiment,
  • the radio network controller 1410 After the radio network controller 1410 generates the downlink signaling to be transmitted to the UE, if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the first cell and the second cell
  • the serving base station is the first base station, and sends the downlink signaling to the first base station, so that the first base station sends the first HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, so that the first base station passes the first base station.
  • the second cell sends a second HS-PDSCH subframe carrying the downlink signaling to the UE; if the serving base station of the first cell is the second base station 1420, the serving base station of the second cell is the third base station 1430, and the second base station 1420 Sending the downlink signaling, so that the second base station 1420 sends the third HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station 1430, so that the third base station 1430 And transmitting, by the second cell, the fourth HS-PDSCH subframe that carries the downlink signaling to the UE.
  • the radio network controller 1410 sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell by using the base station, and the second cell and the first cell have the same frequency, the first cell.
  • the serving HS-DSCH cell that is accessed by the UE may be configured to enable the UE to receive the same downlink signaling from the first cell and the second cell, respectively, and the mechanism of the embodiment of the present invention is beneficial to improve the UE. Receive success rate of downlink signaling.
  • an embodiment of the present invention further provides a user equipment 1500.
  • the user equipment 1500 shown in FIG. 15 can be any user equipment such as a mobile phone, a tablet computer, a personal digital assistant (PDA), a car-mounted computer, and the like.
  • PDA personal digital assistant
  • the mobile phone includes: a radio frequency (RF) circuit 1510, a memory 1520, an input unit 1530, a wireless fidelity (WiFi) module 1570, a display unit 1540, a sensor 1550, an audio circuit 1560, and a processor 1580. , and components such as the power supply 1590.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 15 does not constitute a limitation to the mobile phone, and may include more or less components than those illustrated, or combine some components, or different component arrangements.
  • the RF circuit 1510 can be used for receiving and transmitting signals during the transmission and reception of information or during a call. Specifically, after receiving the downlink information of the base station, the processor 1580 processes the data; and, in addition, transmits the designed uplink data to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • the RF circuit 1510 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), and code division multiple access ( Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), e-mail, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Messaging Service
  • the memory 1520 can be used to store software programs and modules.
  • the processor 1580 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1520.
  • the memory 1520 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1520 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1530 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the handset 1500.
  • the input unit 1530 may include a touch panel 1531 and other input devices 1532.
  • the touch panel 1531 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1531 or near the touch panel 1531. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1531 may include a touch detection device and Touch the two parts of the controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information
  • the processor 1580 is provided and can receive commands from the processor 1580 and execute them.
  • the touch panel 1531 can be implemented in various types such as a resistive type, a capacitive type, an infrared ray, and a surface acoustic wave.
  • the input unit 1530 may also include other input devices 1532.
  • other input devices 1532 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1540 can be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 1540 can include a display panel 1541.
  • the display panel 1541 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1531 can cover the display panel 1541. After the touch panel 1531 detects a touch operation thereon or nearby, the touch panel 1531 transmits to the processor 1580 to determine the type of the touch event, and then the processor 1580 according to the touch event. The type provides a corresponding visual output on display panel 1541.
  • the touch panel 1531 and the display panel 1541 are used as two independent components to implement the input function of the mobile phone. However, in some embodiments, the touch panel 1531 and the display panel 1541 may be integrated to implement the mobile phone. Input and output functions.
  • the handset 1500 can also include at least one type of sensor 1550, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1541 according to the brightness of the ambient light, and the proximity sensor may close the display panel 1541 and/or when the mobile phone moves to the ear. Backlighting.
  • the accelerometer sensor can detect the acceleration of each direction (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • An audio circuit 1560, a speaker 1561, and a microphone 1562 can provide an audio interface between the user and the handset.
  • the audio circuit 1560 can transmit the converted electrical signal of the received audio data to the speaker. 1561, converted into a sound signal output by the speaker 1561; on the other hand, the microphone 1562 converts the collected sound signal into an electrical signal, which is received by the audio circuit 1560 and converted into audio data, and then processed by the audio data output processor 1580.
  • the RF circuit 1510 is sent to, for example, another handset, or the audio data is output to the memory 1520 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone through the WiFi module 1570 can help users to send and receive e-mail, browse the web and access streaming media, etc. It provides users with wireless broadband Internet access.
  • FIG. 15 shows the WiFi module 1570, it can be understood that it does not belong to the essential configuration of the mobile phone 1500, and can be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 1580 is a control center for the handset that connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1520, and invoking data stored in the memory 1520, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1580 may include one or more processing units.
  • the processor 1580 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1580.
  • the handset 1500 also includes a power source 1590 (such as a battery) for powering various components.
  • a power source 1590 such as a battery
  • the power source can be logically coupled to the processor 1580 via a power management system to enable management of charging, discharging, and power management functions through the power management system.
  • the mobile phone 1500 may also include a camera, a Bluetooth module, etc., and will not be described herein.
  • the processor 1580 included in the mobile phone further has the following functions: if the UE moves to an overlapping area of the first cell and the second cell, receiving the first high speed that carries the downlink signaling from the first cell. a physical downlink shared channel HS-PDSCH subframe; receiving, from the second cell, a second HS-PDSCH subframe that carries the downlink signaling, where the second cell and the first cell have the same frequency, and the first cell is the UE The incoming service high speed downlink shared channel HS-DSCH cell.
  • the first cell is configured as an SDT primary cell and the second cell is configured as an SDT assisted cell.
  • the UE supporting the SDT feature may first provide its own SDT capability to the network side, for example, the UE may report support for those SDT modes.
  • base stations supporting SDT characteristics The SDT capability can be reported to the RNC.
  • the base station can report and support those SDT modes.
  • the RNC performs SDT cell configuration according to this.
  • the RNC can also support some or all SDT modes by default for the UE and the base station.
  • the processor 1580 is further configured to: send a first downlink transmission error indication to the serving base station of the first cell, and not send a second downlink transmission error indication to the serving base station of the second cell; A downlink transmission error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe, and the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS-PDSCH subframe.
  • a downlink transmission error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe
  • the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS-PDSCH subframe.
  • the processor 1580 receives the timing offset of the first HS-PDSCH subframe and the second HS-PDSCH subframe from 0 chips to 38400 chips (eg, may be 0 chips to 7680 chips) or other range.
  • the timing offset of receiving the first HS-PDSCH subframe and the second HS-PDSCH subframe may not be necessarily limited. In this way, the coupling limitation of the transmission time of the first HS-PDSCH subframe and the second HS-PDSCH subframe can be released to some extent, which facilitates the packetization transmission control mechanism.
  • the processor 1580 may be further configured to: after receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell, start monitoring the downlink of the second cell after reporting the 1D measurement report.
  • the control channel HS-SCCH and/or HS-PDSCH are shared at high speed and stop listening to the HS-SCCH and/or HS-PDSCH of the second cell after completing the serving cell handover.
  • the processor 1580 is further configured to: before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell, receive the service from the first cell by using the first cell. After the first command of the base station, the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell is started to be monitored, where the first command is used to instruct the UE to activate the HS-SCCH and/or the second cell. HS-PDSCH monitoring.
  • the processor 1580 is further configured to: before receiving, by the second cell, the second HS-PDSCH subframe that carries the downlink signaling, in an enhanced dedicated channel mode that passes the second cell.
  • the grant channel E-RGCH receives the third command from the serving base station of the second cell Afterwards, the HS-SCCH and/or the HS-PDSCH of the second cell are started to be monitored, where the third command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell.
  • the UE when the mobile phone 1500 moves to the overlapping area of the first cell and the second cell, the UE receives the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling from the first cell. And the UE receives the second HS-PDSCH subframe that carries the downlink signaling from the second cell, where the frequency of the second cell and the first cell are the same, and the first cell is the high-speed downlink of the service accessed by the UE. Shared channel HS-DSCH cell.
  • Figure 16 is a block diagram showing the structure of a radio network controller 1600 which is further provided by another embodiment of the present invention.
  • the wireless network controller 1600 can include:
  • Communication bus 1602 is used to implement connection communication between these components.
  • the wireless network controller 16000 optionally includes a user interface 1603, including a display (such as a touch screen, LCD, CRT, Holographic or Projector, etc.), a click device (such as a mouse, a trackball). Touch panel or touch screen, etc.), camera and/or sound pickup device, etc.
  • the memory 1602 can include a read only memory and a random access memory, and provides instructions and data to the processor 1601. A portion of the memory 1602 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1605 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the operating system 16051 which contains various system programs for implementing various basic services and processing hardware-based tasks;
  • Application module 16052 which contains various applications for implementing various application services.
  • the application module 16052 includes, but is not limited to, the generator 610 and the transmitter 620 shown in FIG.
  • the processor 1601 is configured to generate downlink signaling to be transmitted to the user equipment UE by using a program or an instruction stored in the memory 1605.
  • the first cell sends a first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling to the UE, so that the first base station sends the second HS-PDSCH sub-carrier that carries the downlink signaling to the UE by using the second cell.
  • a frame wherein the second cell and the first cell have the same frequency, and the first cell is a serving high speed downlink shared channel HS-DSCH cell accessed by the UE;
  • the serving base station of the first cell is the second base station
  • the serving base station of the second cell is the third base station, sending the downlink signaling to the second base station.
  • the second base station sends the third HS-PDSCH subframe that carries the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station, so that the third base station sends the downlink signaling to the UE by using the second cell.
  • the fourth HS-PDSCH subframe carrying the downlink signaling; the second cell and the first cell have the same frequency, and the first cell is the serving HS-DSCH cell accessed by the UE.
  • the processor 1601 is further configured to: before sending the downlink signaling to the second base station, send a second configuration command to the second base station, to configure the first cell as an SDT primary cell; Before the sending the downlink signaling to the third base station, the method further includes: sending, by the third base station, a third configuration command, to configure the second cell as an SDT assisting cell;
  • the processor 1601 is further configured to: before sending the downlink signaling to the first base station, send a first configuration command to the first base station, to configure the first cell as a multiple signaling transmission SDT primary cell, and configure the second cell Help the community for SDT.
  • the processor 1601 is configured to send the downlink signaling to the third base station. Can be used specifically,
  • the downlink signaling is delayed, and the downlink signaling is sent to the third base station; or the downlink signaling is sent to the third base station after receiving the second command from the second base station.
  • the second command is sent by the second base station after sending the first command to the UE by using the first cell and the third HS-PDSCH subframe carrying the downlink signaling, where the first command is used to indicate that the UE is activated to the second
  • the downlink high speed of the cell shares the monitoring of the control channel HS-SCCH and/or HS-PDSCH.
  • the first cell is a macro cell or a low power node cell
  • the second cell is a macro cell or a low power node cell
  • radio network controller 1600 of the present embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be according to the method in the foregoing method embodiment.
  • the functions of the functional modules may be according to the method in the foregoing method embodiment.
  • the radio network controller 1600 generates the downlink signaling to be transmitted to the UE; if it is determined that the UE moves to the overlapping region of the first cell and the second cell, and the services of the first cell and the second cell
  • the base station is the first base station, and sends the downlink signaling to the first base station, so that the first base station sends the first HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, so that the first base station passes the second
  • the cell sends a second HS-PDSCH subframe carrying the downlink signaling to the UE; if the serving base station of the first cell is the second base station, and the serving base station of the second cell is the third base station, sending the downlink information to the second base station So that the second base station sends the third HS-PDSCH subframe carrying the downlink signaling to the UE by using the first cell, and sends the downlink signaling to the third base station, so that the third base station sends the
  • FIG. 17 is a structural block diagram of a base station 1700 according to another embodiment of the present invention.
  • the base station 1700 can include:
  • the wireless network controller 17000 optionally includes a user interface 1703, including a display (such as a touch screen, LCD, CRT, Holographic or Projector), a click device (eg, a mouse, a trackball). Touch panel or touch screen, etc.), camera and/or sound pickup device, etc.
  • a display such as a touch screen, LCD, CRT, Holographic or Projector
  • a click device eg, a mouse, a trackball
  • Touch panel or touch screen, etc. e.g, a trackball
  • camera and/or sound pickup device etc.
  • the memory 1702 can include a read only memory and a random access memory, and
  • the 1701 provides instructions and data.
  • a portion of memory 1702 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • memory 1705 stores the following elements, executable modules or data structures, or a subset thereof, or their extension set:
  • Operating system 17051 which contains various system programs for implementing various basic services and handling hardware-based tasks;
  • the application module 17052 includes various applications for implementing various application services.
  • the application module 17052 may include, but is not limited to, the signaling obtainer 710, the transmitter 720, and the configurator 730 shown in Figure 7-a or Figure 7-b.
  • the processor is stored by calling a program or instruction stored in the memory 1705.
  • the 1701 is configured to: obtain downlink signaling to be transmitted to the user equipment UE; if it is determined that the UE moves to the overlapping area of the first cell and the second cell, send, by using the first cell, the first that carries the downlink signaling to the UE a high-speed physical downlink shared channel HS-PDSCH subframe, and a second HS-PDSCH subframe carrying the downlink signaling is sent to the UE by using the second cell, where the first cell is a serving high-speed downlink shared channel accessed by the UE The frequency of the second cell and the first cell is the same in the HS-DSCH cell.
  • the processor 1701 is specifically configured to: generate downlink signaling to be transmitted to the UE or receive the RNC from the radio network controller, in the aspect of obtaining the downlink signaling to be transmitted to the user equipment UE. Downlink signaling to be transmitted to the UE. In some embodiments of the present invention, the processor 1701 is further configured to, after receiving the first configuration instruction from the RNC, configure the first cell as a multiple signaling transmission SDT primary cell, and configure the second cell as an SDT Assist the community.
  • the processor 1701 is further configured to send, by using the first cell, the first cell to the UE, before sending, by using the second cell, the second HS-PDSCH subframe that carries the downlink signaling to the UE.
  • a command where the first command is used to instruct the UE to activate the monitoring of the downlink high-speed shared control channel HS-SCCH and/or the HS-PDSCH of the second cell; or send the downlink to the UE by using the second cell.
  • the third command is sent to the UE by using the relative grant channel E-RGCH in the enhanced dedicated channel mode of the second cell, where the third command is used to indicate that the UE activates the second cell. Monitoring of HS-SCCH and/or HS-PDSCH.
  • the processor 1701 sends the first HS-PDSCH subframe and the second HS-PDSCH subframe with a timing offset ranging from 0 chips to 38400 chips.
  • the base station 1700 of this embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the process reference may be made to the related description of the foregoing method embodiments, and details are not described herein again.
  • the base station 1700 obtains the downlink signaling to be transmitted to the UE; if it is determined that the UE moves to the overlapping area of the first cell and the second cell, the first cell sends the downlink signaling to the UE by using the first cell.
  • the base station sends the HS-PDSCH subframe carrying the same downlink signaling to the UE in the first cell and the second cell, respectively, and the frequency of the second cell and the first cell is the same, and the first cell is accessed by the UE.
  • Serving the HS-DSCH cell so that the UE can receive the same downlink signaling from the first cell and the second cell, respectively. It can be seen that the mechanism of the embodiment of the present invention is beneficial to improve the success of receiving the downlink signaling by the UE. rate.
  • FIG. 18 is a structural block diagram of a user equipment 1800 according to another embodiment of the present invention.
  • the user equipment 1800 can include: At least one processor 1801, at least one network interface 1804 or other user interface 1803, a memory 1805, at least one communication bus 1802. Communication bus 1802 is used to implement connection communication between these components.
  • the wireless network controller 18000 optionally includes a user interface 1803, including a display (eg, a touch screen, an LCD, a CRT, a Holographic or Projector, a click device, such as a mouse, a trackball). Touch panel or touch screen, etc.), camera and/or sound pickup device, etc.
  • the memory 1802 can include read only memory and random access memory and provides instructions and data to the processor 1801.
  • a portion of memory 1802 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • memory 1805 stores the following elements, executable modules or data structures, or a subset thereof, or their extension set:
  • Operating system 18051 which contains various system programs for implementing various basic services and handling hardware-based tasks;
  • the application module 18052 includes various applications for implementing various application services.
  • the application module 18052 may include, but is not limited to, the receiver 810, the decoder 820, the transmitter 830, and the listener 840 shown in Fig. 8-a or Fig. 8-b or Fig. 9.
  • the processor 1801 is configured to receive the downlink signaling from the first cell if the UE moves to an overlapping area of the first cell and the second cell by using a program or an instruction stored in the memory 1805. a first high-speed physical downlink shared channel HS-PDSCH subframe; receiving, from the second cell, a second HS-PDSCH subframe carrying the downlink signaling, where the second cell and the first cell have the same frequency, the first cell Serving the high-speed downlink shared channel HS-DSCH cell for the UE access.
  • the first cell is configured to transmit multiple SDT primary cells and the second cell is configured as an SDT assisted cell.
  • the processor 1801 is further configured to: send a first downlink transmission error indication to the serving base station of the first cell, and not send a second downlink transmission error indication to the serving base station of the second cell;
  • the downlink transmission error indication is used to indicate whether the UE correctly decodes the received first HS-PDSCH subframe
  • the second downlink transmission error indication is used to indicate whether the UE correctly decodes the received second HS. - PDSCH subframe.
  • the processor 1801 receives the timing offset of the first HS-PDSCH subframe and the second HS-PDSCH subframe from 0 chips to 38400 chips (eg, 0 chips to 7680). Chips).
  • the processor 1801 is further configured to start monitoring the second cell after reporting the 1D measurement report before receiving the second HS-PDSCH subframe that carries the downlink signaling from the second cell.
  • the first command is used to indicate that the foregoing UE activates monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell;
  • the HS-SCCH and/or the HS-PDSCH of the second cell are started to be monitored, and the third command is used to instruct the UE to activate the monitoring of the HS-SCCH and/or the HS-PDSCH of the second cell.
  • the user equipment 1200 of the embodiment may be used to implement some or all of the functions of any one of the foregoing method embodiments, and the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the functions of the functional modules may be specifically implemented according to the method in the foregoing method embodiment.
  • the UE when the user equipment 1200 moves to the overlapping area of the first cell and the second cell, the UE receives the first high-speed physical downlink shared channel HS-PDSCH subframe that carries the downlink signaling from the first cell; And the UE receives the second HS-PDSCH subframe that carries the downlink signaling from the second cell, where the frequency of the second cell and the first cell are the same, and the first cell is the high-speed downlink sharing of the service accessed by the UE.
  • Channel HS-DSCH cell Channel HS-DSCH cell.
  • the HS-PDSCH subframe that is sent by the network side and carries the same downlink signaling may be received in the first cell and the second cell, respectively, and the second cell Same as the frequency of the first cell, the first cell
  • the serving HS-DSCH cell that is accessed by the foregoing UE, so that the UE can receive the same downlink signaling from the first cell and the second cell, respectively, and the mechanism of the embodiment of the present invention is improved compared with the existing mechanism.
  • the UE receives the success rate of downlink signaling.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, and the program includes some or all of the steps of the signaling transmission method described in the foregoing method embodiments.
  • the disclosed apparatus can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as the units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信令传输方法和相关设备及通信系统。其中,一种信令传输方法可以包括:无线网络控制器 RNC生成待向用户设备 UE传输的下行信令;若确定 UE 移动到第一小区和第二小区的交叠区域,并且第一小区和第二小区的服务基站均为第一基站,向第一基站发送下行信令,以便第一基站通过第一小区向 UE 发送携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧,以便第一基站通过第二小区向 UE发送携带下行信令的第二 HS-PDSCH子帧;其中,第二小区和第一小区的频点相同,第一小区为 UE接入的服务高速下行共享信道 HS-DSCH小区。本发明实施例提供的技术方案有利于提高 UE接收下行信令的成功率。

Description

信令传输方法和相关设备及通信系统
技术领域
本发明涉及通信技术领域, 具体涉及信令传输方法和相关设备及通信系 统。 背景技术
通用移动通信系统 ( UMTS, Universal Mobile Telecommunications System ) 是第三代合作伙伴计划 ( 3GPP, 3rd Generation Partnership Project )组织制定 的全球 3G标准之一。
UMTS中信令可用于控制用户设备 ( UE, User Equipment ) 的业务承载的 建立 /修改、 移动性管理等操作。 在 Release-5版本中引入了高速下行链路分组 接入 ( HSDPA, High Speed Downlink Packet Access )技术, 用以提高下行数据 的传输速率, 减少用户数据的传输时延, 以便让用户在 UMTS网络中有更好的 体验。下行信令按照承载方式可分无线信令承载( SRB , Signalling Radio Bearer ) over专用信道(DCH, Dedicated Channel )和 SRB over HSDPA, 其中, 通常情 况下 SRB over HSDPA的优势为更短数传时延和更高下行速率, 因而其应用会 越来越广泛。
在目前的 SRB over HSDPA场景下, 网络侧只是将下行信令从高速下行共 享信道( HS-DSCH, High Speed Downlink Shared Channel )服务小区向 UE进 行发送, 此时, 当 UE在 HS-DSCH服务小区切换时, 由于当前服务小区信号的 快速波动, 因此, UE可能无法正确接收下行信令, 从而会导致切换失败或者 掉话。 另外, 当 UE处于小区边缘时, 网络侧发起重配置流程时需要下发重配 置信令给 UE, 比如做无线承载(RB, Radio Bearer )重配置, 此时当 UE当前 服务小区信号不好时,也可能无法正确接收下行信令,从而导致重配置过程失 败或者掉话等。 发明内容
本发明实施例提供信令传输方法和相关设备及通信系统, 以期提高 UE接 收下行信令的成功率。 本发明实施例第一方面提供一种信令传输方法, 可包括:
无线网络控制器 RNC生成待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 并且所述第一小 区和所述第二小区的服务基站均为第一基站,向所述第一基站发送所述下行信 令, 以便所述第一基站通过所述第一小区向所述 UE发送携带所述下行信令的 第一高速物理下行共享信道 HS-PDSCH子帧, 以便所述第一基站通过所述第二 小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其中, 所述第 二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速 下行共享信道 HS-DSCH小区;
或者,
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基 站发送所述下行信令, 以便于所述第二基站通过所述第一小区向所述 UE发送 携带所述下行信令的第三 HS-PDSCH子帧; 向所述第三基站发送所述下行信 令, 以便所述第三基站通过所述第二小区向所述 UE发送携带所述下行信令的 第四 HS-PDSCH子帧; 所述第二小区和所述第一小区的频点相同, 所述第一小 区为所述 UE接入的服务 HS-DSCH小区。
结合第一方面, 在第一种可能的实施方式中,
所述向所述第一基站发送所述下行信令之前还包括:向所述第一基站发送 第一配置指令, 以将所述第一小区配置为多重信令传输 SDT主小区, 将所述第 二小区配置为 SDT协助小区;
或者,
在所述向第二基站发送所述下行信令之前还包括:向所述第二基站发送第 二配置指令, 以将所述第一小区配置为 SDT主小区; 在所述向第三基站发送所 述下行信令之前还包括: 向所述第三基站发送第三配置指令, 以将所述第二小 区配置为 SDT协助小区。
结合第一方面或第一方面的第一种可能的实施方式,在第二种可能的实施 方式中, 若所述第一小区的服务基站为第二基站, 所述第二小区的服务基站为 第三基站, 所述向所述第三基站发送所述下行信令, 包括:
在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
结合第一方面或第一方面的第一种可能的实施方式或第一方面的第二种 可能的实施方式,在第三种可能的实施方式中, 所述第一小区为宏小区或低功 率节点小区, 所述第二小区为宏小区或低功率节点小区。
本发明实施例第二方面提供一种信令传输方法, 可包括:
基站获得待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 通过所述第一小 区向所述 UE发送携带所述下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第一小区为所述 UE接入的服务高速下行共享信 道 HS-DSCH小区, 所述第二小区和所述第一小区的频点相同。
结合第二方面, 在第一种可能的实施方式中, 所述获得待向用户设备 UE 传输的下行信令包括: 生成待向 UE传输的下行信令或接收来自无线网络控制 器 RNC的待向 UE传输的下行信令。
结合第二方面或第二方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述方法还包括: 在接收到来自所述 RNC的第一配置指令之后, 将所 述第一小区配置为多重信令传输 SDT主小区, 将所述第二小区配置为 SDT协助 小区。
结合第二方面或第二方面的第一种可能的实施方式或第二方面的第二种 可能的实施方式,在第三种可能的实施方式中, 所述通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之前还包括:
通过所述第一小区向所述 UE发送第一命令, 其中, 所述第一命令用于指 示所述 UE激活对所述第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH向所述 UE发送第三命令, 其中, 所述第三命令用于指示所述 UE激活对所述第二小区 的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
结合第二方面或第二方面的第一种可能的实施方式或第二方面的第二种 可能的实施方式或第二方面的第三种可能的实施方式,在第四种可能的实施方 式中, 发送所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的定时偏差范 围为 0个码片至 38400个码片。
本发明第三方面提供一种信令传输方法, 可包括:
当用户设备 UE移动到第一小区和第二小区的交叠区域, 所述 UE从所述第 一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 所述 UE从所述第二小区接收携带所述下行信令的第二 HS-PDSCH 子帧, 其中, 所述第二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速下行共享信道 HS-DSCH小区。
结合第三方面, 在第一种可能的实施方式中,
所述第一小区被配置为多重信令传输 SDT主小区,所述第二小区被配置为 SDT协助小区。
结合第三方面或第三方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述方法还包括:
所述 UE向第一小区的服务基站发送第一下行传输正误指示, 不向第二小 区的服务基站发送第二下行传输正误指示; 其中, 所述第一下行传输正误指示 用于指示出所述 UE是否正确译码出接收到的所述第一 HS-PDSCH子帧, 所述 第二下行传输正误指示用于指示出所述 UE是否正确译码出接收到的所述第二
HS-PDSCH子帧。
结合第三方面或第三方面的第一种可能的实施方式或第三方面的第二种 可能的实施方式, 在第三种可能的实施方式中, 接收所述第一 HS-PDSCH子帧 和所述第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
结合第三方面或第三方面的第一种可能的实施方式或第三方面的第二种 可能的实施方式或第三方面的第三种可能的实施方式,在第四种可能的实施方 式中, 所述方法还包括:
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前, 所述 UE在上报 1D测量报告之后开始监听所述第二小区的下行高速共享控 制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前,在通过所述第一小区接收来自第一小区的服务基站的第一命令之后, 所述 UE开始监听所述第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 所述第一命令用于指示所述 UE激活对所述第二小区的 HS-SCCH 和 /或 HS-PDSCH的监听;
或者,在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子 帧之前, 在通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH接 收来自第二小区的服务基站的第三命令之后, 所述 UE开始监听所述第二小区 的 HS-SCCH和 /或 HS-PDSCH, 其中, 所述第三命令用于指示所述 UE激活对所 述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
本发明第四方面提供一种无线网络控制器, 可包括:
生成器, 用于生成待向用户设备 UE传输的下行信令;
传输器, 用于若确定所述 UE移动到第一小区和第二小区的交叠区域, 且 所述第一小区和所述第二小区的服务基站均为第一基站,向所述第一基站发送 所述下行信令, 以便所述第一基站通过所述第一小区向所述 UE发送携带所述 下行信令的第一高速物理下行共享信道 HS-PDSCH子帧, 以便所述第一基站通 过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其 中, 所述第二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入 的服务高速下行共享信道 HS-DSCH小区;
或者, 若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基 站发送所述下行信令, 以便于所述第二基站通过所述第一小区向所述 UE发送 携带所述下行信令的第三 HS-PDSCH子帧; 向所述第三基站发送所述下行信 令, 以便所述第三基站通过所述第二小区向所述 UE发送携带所述下行信令的 第四 HS-PDSCH子帧; 所述第二小区和所述第一小区的频点相同, 所述第一小 区为所述 UE接入的服务 HS-DSCH小区。
结合第四方面, 在第一种可能的实施方式中,
所述传输器,还用于在所述向第二基站发送所述下行信令之前, 向所述第 二基站发送第二配置指令, 以将所述第一小区配置为 SDT主小区; 在所述向第 三基站发送所述下行信令之前还包括: 向所述第三基站发送第三配置指令, 以 将所述第二小区配置为 SDT协助小区;
或者, 所述传输器, 还用于向所述第一基站发送所述下行信令之前, 向所 述第一基站发送第一配置指令,以将所述第一小区配置为多重信令传输 SDT主 小区, 将所述第二小区配置为 SDT协助小区。
结合第四方面或第四方面的第一种可能的实施方式,在第二种可能的实施 方式中, 若所述第一小区的服务基站为第二基站, 所述第二小区的服务基站为 第三基站, 则在所述向所述第三基站发送所述下行信令的方面, 所述传输器具 体用于,
在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
结合第四方面或第四方面的第一种可能的实施方式或第四方面的第二种 可能的实施方式,在第三种可能的实施方式中, 所述第一小区为宏小区或低功 率节点小区, 所述第二小区为宏小区或低功率节点小区。 本发明第五方面提供一种基站, 可包括:
信令获得器, 用于获得待向用户设备 UE传输的下行信令;
传输器, 用于若确定所述 UE移动到第一小区和第二小区的交叠区域, 通 过所述第一小区向所述 UE发送携带所述下行信令的第一高速物理下行共享信 道 HS-PDSCH子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的 第二 HS-PDSCH子帧, 其中, 所述第一小区为所述 UE接入的服务高速下行共 享信道 HS-DSCH小区, 所述第二小区和所述第一小区的频点相同。
结合第五方面, 在第一种可能的实施方式中,
所述信令获得器具体用于: 生成待向 UE传输的下行信令或接收来自无线 网络控制器 RNC的待向 UE传输的下行信令。
结合第五方面或第五方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述基站还包括: 配置器, 用于在接收到来自所述 RNC的第一配置指 令之后, 将所述第一小区配置为多重信令传输 SDT主小区, 将所述第二小区配 置为 SDT协助小区。
结合第五方面或第五方面的第一种可能的实施方式或第五方面的第二种 可能的实施方式, 在第三种可能的实施方式中,
所述传输器还用于, 在所述通过所述第二小区向所述 UE发送携带所述下 行信令的第二 HS-PDSCH子帧之前, 通过所述第一小区向所述 UE发送第一命 令, 其中, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速共 享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在所述通过所述第二小区 向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之前, 通过所述第二 小区的增强专用信道模式中相对授权信道 E-RGCH向所述 UE发送第三命令,所 述第三命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
结合第五方面或第五方面的第一种可能的实施方式或第五方面的第二种 可能的实施方式或第五方面的第三种可能的实施方式,在第四种可能的实施方 式中, 所述传输器发送所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的 定时偏差范围为 0个码片至 38400个码片。 本发明实施例第六方面提供一种用户设备, 可包括:
接收器, 用于若所述 UE移动到第一小区和第二小区的交叠区域, 从所述 第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从 所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第二 小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速下 行共享信道 HS-DSCH小区;
译码器, 用于对所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧进行 译码。
结合第六方面,在第一种可能的实施方式中, 所述第一小区被配置为多重 信令传输 SDT主小区, 所述第二小区被配置为 SDT协助小区。
结合第六方面或第六方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述用户设备还包括:
发射器, 用于向第一小区的服务基站发送第一下行传输正误指示, 不向第 二小区的服务基站发送第二下行传输正误指示;所述第一下行传输正误指示用 于指示出所述 UE是否正确译码出接收到的所述第一 HS-PDSCH子帧, 所述第 二下行传输正误指示用于指示出所述 UE是否正确译码出接收到的所述第二 HS-PDSCH子帧。
结合第六方面或第六方面的第一种可能的实施方式或第六方面的第二种 可能的实施方式, 在第三种可能的实施方式中, 所述接收器接收所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
结合第六方面或第六方面的第一种可能的实施方式或第六方面的第二种 可能的实施方式或第六方面的第三种可能的实施方式,在第四种可能的实施方 式中, 所述用户设备还包括:
监听器, 用于在所述从所述第二小区接收携带所述下行信令的第二
HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听所述第二小区的下行高 速共享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者, 在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前,在通过所述第一小区接收来自第一小区的服务基站的第一命令之后, 开始 监听所述第二小区的 HS-SCCH和 /或 HS-PDSCH, 所述第一命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前, 在通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来 自第二小区的服务基站的第三命令之后, 开始监听所述第二小区的 HS-SCCH 和 /或 HS-PDSCH, 其中, 所述第三命令用于指示所述 UE激活对所述第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
本发明实施例第七方面提供一种无线网络控制器, 可包括:
至少一个总线、与所述总线相连的至少一个处理器以及与所述总线相连的 至少一个存储器。
其中, 所述处理器通过所述总线调用所述存储器中存储的代码以用于: 生成待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 和所述第二小区的服务基站均为第一基站, 向所述第一基站发送所述下行信 令, 以便所述第一基站通过所述第一小区向所述 UE发送携带所述下行信令的 第一高速物理下行共享信道 HS-PDSCH子帧, 以便所述第一基站通过所述第二 小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其中, 所述第 二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速 下行共享信道 HS-DSCH小区;
或者,
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基 站发送所述下行信令, 以便于所述第二基站通过所述第一小区向所述 UE发送 携带所述下行信令的第三 HS-PDSCH子帧; 向所述第三基站发送所述下行信 令, 以便所述第三基站通过所述第二小区向所述 UE发送携带所述下行信令的 第四 HS-PDSCH子帧; 所述第二小区和所述第一小区的频点相同, 所述第一小 区为所述 UE接入的服务 HS-DSCH小区。
结合第七方面, 在第一种可能的实施方式中,
所述处理器,还用于在所述向第二基站发送所述下行信令之前, 向所述第 二基站发送第二配置指令, 以将所述第一小区配置为 SDT主小区; 在所述向第 三基站发送所述下行信令之前还包括: 向所述第三基站发送第三配置指令, 以 将所述第二小区配置为 SDT协助小区;
或者, 所述处理器, 还用于向所述第一基站发送所述下行信令之前, 向所 述第一基站发送第一配置指令,以将所述第一小区配置为多重信令传输 SDT主 小区, 将所述第二小区配置为 SDT协助小区。
结合第七方面或第七方面的第一种可能的实施方式,在第二种可能的实施 方式中, 若所述第一小区的服务基站为第二基站, 所述第二小区的服务基站为 第三基站, 则在所述向所述第三基站发送所述下行信令的方面, 所述处理器具 体用于,
在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
结合第七方面或第七方面的第一种可能的实施方式或第七方面的第二种 可能的实施方式,在第三种可能的实施方式中, 所述第一小区为宏小区或低功 率节点小区, 所述第二小区为宏小区或低功率节点小区。
本发明实施例第八方面还提供一种基站, 可包括:
至少一个总线、与所述总线相连的至少一个处理器以及与所述总线相连的 至少一个存储器。
其中, 所述处理器通过所述总线调用所述存储器中存储的代码以用于: 获得待向用户设备 UE传输的下行信令; 若确定所述 UE移动到第一小区和第二小区的交叠区域, 通过所述第一小 区向所述 UE发送携带所述下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第一小区为所述 UE接入的服务高速下行共享信 道 HS-DSCH小区, 所述第二小区和所述第一小区的频点相同。
结合第八方面, 在第一种可能的实施方式中, 在所述获得待向用户设备 UE传输的下行信令的方面, 所述处理器具体用于: 生成待向 UE传输的下行信 令或接收来自无线网络控制器 RNC的待向 UE传输的下行信令。
结合第八方面或第八方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述处理器还用于, 在接收到来自所述 RNC的第一配置指令之后, 将 所述第一小区配置为多重信令传输 SDT主小区, 将所述第二小区配置为 SDT协 助小区。
结合第八方面或第八方面的第一种可能的实施方式或第八方面的第二种 可能的实施方式, 在第三种可能的实施方式中, 所述处理器还用于, 在所述通 过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之 前, 通过所述第一小区向所述 UE发送第一命令, 其中, 所述第一命令用于指 示所述 UE激活对所述第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在所述通过所述第二小区向所述 UE发送携带所述下 行信令的第二 HS-PDSCH子帧之前,通过所述第二小区的增强专用信道模式中 相对授权信道 E-RGCH向所述 UE发送第三命令, 所述第三命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
结合第八方面或第八方面的第一种可能的实施方式或第八方面的第二种 可能的实施方式或第八方面的第三种可能的实施方式,在第四种可能的实施方 式中, 所述处理器发送所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的 定时偏差范围为 0个码片至 38400个码片。
结合第八方面或第八方面的第一种可能的实施方式或第八方面的第二种 可能的实施方式或第八方面的第三种可能的实施方式或第八方面的第四种可 能的实施方式,在第五种可能的实施方式中, 所述第一小区为宏小区或低功率 节点小区, 所述第二小区为宏小区或低功率节点小区。
本发明实施例第九方面还提供一种用户设备, 可包括:
至少一个总线、与所述总线相连的至少一个处理器以及与所述总线相连的 至少一个存储器。
其中, 所述处理器通过所述总线调用所述存储器中存储的代码以用于: 若所述 UE移动到第一小区和第二小区的交叠区域, 从所述第一小区接收 携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从所述第二小区 接收携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第二小区和所述第 一小区的频点相同, 所述第一小区为所述 UE接入的服务高速下行共享信道 HS-DSCH小区。
结合第九方面,在第一种可能的实施方式中, 所述第一小区被配置为多重 信令传输 SDT主小区, 所述第二小区被配置为 SDT协助小区。
结合第九方面或第九方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述处理器还用于, 向所述第一小区的服务基站发送第一下行传输正 误指示, 不向第二小区的服务基站发送第二下行传输正误指示; 所述第一下行 传输正误指示用于指示出所述 UE是否正确译码出接收到的所述第一 HS-PDSCH子帧, 所述第二下行传输正误指示用于指示出所述 UE是否正确译 码出接收到的所述第二 HS-PDSCH子帧。
结合第九方面或第九方面的第一种可能的实施方式,在第二种可能的实施 方式中, 所述处理器接收所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧 的定时偏差范围为 0个码片至 38400个码片。
结合第九方面或第九方面的第一种可能的实施方式或第九方面的第二种 可能的实施方式, 在第三种可能的实施方式中,
所述处理器还用于,在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听所述第二小区的下行高 速共享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前,在通过所述第一小区接收来自第一小区的服务基站的第一命令之后, 开始 监听所述第二小区的 HS-SCCH和 /或 HS-PDSCH, 所述第一命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前, 在通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来 自第二小区的服务基站的第三命令之后, 开始监听所述第二小区的 HS-SCCH 和 /或 HS-PDSCH, 其中, 所述第三命令用于指示所述 UE激活对所述第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
结合第九方面或第九方面的第一种可能的实施方式或第九方面的第二种 可能的实施方式或第九方面的第三种可能的实施方式,在第四种可能的实施方 式中, 所述第一小区为宏小区或低功率节点小区, 所述第二小区为宏小区或低 功率节点小区。
本发明实施例第十方面提供一种计算机存储介质,所述计算机存储介质存 储有程序,所述程序执行时包括上述实施例提供的任意一种信令传输方法的部 分或全部步骤。
本发明实施例第十一方面提供一种通信系统, 可包括:
无线网络控制器 RNC和第一基站;
其中, 所述 RNC用于, 生成待向用户设备 UE传输的下行信令; 若确定所 述 UE移动到第一小区和第二小区的交叠区域, 并且所述第一小区和所述第二 小区的服务基站均为第一基站 , 向所述第一基站发送所述下行信令;
所述第一基站,用于接收来自所述 RNC的所述下行信令,通过所述第一小 区向所述 UE发送携带所述下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其中, 所述第二小区和所述第一小区的频点相同, 所述第一 小区为所述 UE接入的服务高速下行共享信道 HS-DSCH小区。
结合第十一方面, 在第一种可能的实施方式中, 第一基站还用于, 若接收 到来自无线网络控制器 1310的第一配置指令,则第一基站可在接收到来自无线 网络控制器 1310的第一配置指令之后, 将第一小区配置为 SDT主小区, 将第二 小区配置为 SDT协助小区。
结合第十一方面或第十一方面的第一种可能的实施方式,在第二种可能的 实施方式中, 第一基站还用于, 在所述通过第二小区向所述 UE发送携带所述 下行信令的第二 HS-PDSCH子帧之前, 通过第一小区向所述 UE发送第一命令, 其中, 第一命令用于指示所述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听;
或者, 在所述通过第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之前, 通过第二小区的 E-RGCH向所述 UE发送第三命令, 其中 第三命令用于指示所述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH 和 /或 HS-PDSCH的监听。
结合第十一方面或第十一方面的第一种可能的实施方式或第十一方面的 第二种可能的实施方式,在第三种可能的实施方式中, 所述第一基站发送第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围例如可为 0个码片至 38400个码片。
结合第十一方面或第十一方面的第一种可能的实施方式或第十一方面的 第二种可能的实施方式或第十一方面的第三种可能的实施方式,在第四种可能 的实施方式中, 所述第一小区为宏小区或低功率节点小区, 所述第二小区为宏 小区或低功率节点小区。
本发明实施例第十二方面提供一种通信系统, 可包括:
无线网络控制器 RNC、 第二基站和第三基站;
其中, 所述 RNC用于, 生成待向用户设备 UE传输的下行信令; 若确定所 述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区的服务基站为 第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基站发送所述下 行信令; 向所述第三基站发送所述下行信令;
所述第二基站, 用于接收来自所述 RNC的所述下行信令, 通过所述第一 小区向所述 UE 发送携带所述下行信令的第三高速物理下行共享信道 HS-PDSCH子帧; 所述第三基站, 用于接收来自所述 RNC的所述下行信令, 通过所述第二 小区向所述 UE发送携带所述下行信令的第四 HS-PDSCH子帧; 其中, 所述 第二小区和所述第一小区的频点相同,所述第一小区为所述 UE接入的服务高 速下行共享信道 HS-DSCH小区。
结合第十二方面, 在第一种可能的实施方式中,
所述 RNC还用于, 向所述第一基站发送所述下行信令之前, 向所述第一基 站发送第一配置指令, 以将所述第一小区配置为多重信令传输 SDT主小区, 将 所述第二小区配置为 SDT协助小区;
或者,
在所述向第二基站发送所述下行信令之前,向所述第二基站发送第二配置 指令, 以将所述第一小区配置为 SDT主小区; 在所述向第三基站发送所述下行 信令之前, 向所述第三基站发送第三配置指令, 以将所述第二小区配置为 SDT 协助小区。
结合第十二方面或第十二方面的第一种可能的实施方式,在第二种可能的 实施方式中,在所述向所述第三基站发送所述下行信令的方面,所述 RNC具体 用于在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
结合第十二方面或第十二方面的第一种可能的实施方式或第十二方面的 第二种可能的实施方式,在第三种可能的实施方式中, 所述第一小区为宏小区 或低功率节点小区, 所述第二小区为宏小区或低功率节点小区。
由上可见, 在本发明的一些可行的实施方式中, RNC生成待向 UE传输的 下行信令之后; 若确定该 UE移动到第一小区和第二小区的交叠区域, 且第一 小区和第二小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以 便第一基站通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH 子帧, 以便第一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧; 若第一小区的服务基站为第二基站, 第二小区的服务基站为 第三基站, 向第二基站发送上述下行信令, 以便于第二基站通过第一小区向上 述 UE发送携带上述下行信令的第三 HS-PDSCH子帧; 向第三基站发送上述下 行信令, 以便第三基站通过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧。 由于 RNC通过基站分别在第一小区和第二小区向 UE下发携 带了同一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第 一小区为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一 小区和第二小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的 机制有利于提高 UE接收下行信令的成功率。
其中, 在本发明另一些可行的实施方式中, 基站获得待向 UE传输的下行 信令; 若确定上述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区 向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向 上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上 述 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的频点相同。 由于基站 分别在第一小区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子 帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此可使得 UE可以分别从第一小区和第二小区来接收同一下 行信令, 可见相对于现有机制, 本发明实施例的机制有利于提高 UE接收下行 信令的成功率。
其中, 在本发明又一些可行的实施方式中, 当 UE移动到第一小区和第二 小区的交叠区域, 上述 UE从第一小区接收携带下行信令的第一高速物理下行 共享信道 HS-PDSCH子帧; 以及, 上述 UE从第二小区接收携带上述下行信令 的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频点相同, 第一小区为 上述 UE接入的服务高速下行共享信道 HS-DSCH小区。由于 UE移动到第一小区 和第二小区的交叠区域时,可分别在第一小区和第二小区接收网络侧下发的携 带了同一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第 一小区为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一 小区和第二小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的 机制有利于提高 UE接收下行信令的成功率。 附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描 述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其它的附图。
图 1-a为本发明实施例提供的一种信令传输方法的流程示意图;
图 1-b为本发明实施例提供的另一种信令传输方法的流程示意图; 图 2为本发明实施例提供的另一种信令传输方法的流程示意图;
图 3为本发明实施例提供的另一种信令传输方法的流程示意图;
图 4-a为本发明实施例提供的一种网络架构示意图;
图 4-b为本发明实施例提供的另一种信令传输方法的流程示意图; 图 4-c为本发明实施例提供的另一种 UE移动中上 4艮测量报告的示意图; 图 4-d为本发明实施例提供的一种模块化的网络架构的示意图;
图 5-a为本发明实施例提供的另一种网络架构示意图;
图 5-b为本发明实施例提供的另一种信令传输方法的流程示意图; 图 5-c为本发明实施例提供的另一种 UE移动中上报测量报告的示意图; 图 5-d为本发明实施例提供的另一种模块化的网络架构的示意图; 图 6为本发明实施例提供的一种无线网络控制器的示意图;
图 7-a为本发明实施例提供的一种基站的示意图;
图 7-b为本发明实施例提供的另一种基站的示意图;
图 8-a为本发明实施例提供的一种用户设备的示意图;
图 8-b为本发明实施例提供的另一种用户设备的示意图;
图 9为本发明实施例提供的另一种用户设备的示意图;
图 10为本发明实施例提供的另一种无线网络控制器的示意图;
图 11为本发明实施例提供的另一种基站的示意图;
图 12为本发明实施例提供的另一种用户设备的示意图; 图 13为本发明实施例提供的一种通信系统的示意图;
图 14为本发明实施例提供的另一种通信系统的示意图;
图 15为本发明实施例提供的另一种用户设备的示意图;
图 16为本发明实施例提供的另一种无线网络控制器的示意图;
图 17为本发明实施例提供的另一种基站的示意图;
图 18为本发明实施例提供的另一种用户设备的示意图。 具体实施方式
本发明实施例提供信令传输方法和相关设备及通信系统, 以期提高 UE接 收下行信令的成功率。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明的实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地 描述, 显然, 下面所描述的实施例仅仅是本发明一部分实施例, 而非全部的实 施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语"第一"、 "第二"、 "第 三,,、 "第四,,等 (如果存在)是用于区别类似的对象, 而不必用于描述特定的 顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换, 以便这里 描述的本发明的实施例例如能够以除了在这里图示或者描述的那些以外的顺 序实施。 此外, 术语"包括"和"具有"以及他们的任何变形, 意图在于覆盖不排 他的包含, 例如, 包含了一系列步骤或单元的过程、 方法、 系统、 产品或设备 不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于 这些过程、 方法、 产品或设备固有的其它步骤或单元。
下面通过具体实施例, 分别进行详细的说明。 下面先从无线网络控制器的角度进行方案描述。
本发明信令传输方法的一个实施例, 其中一种信令传输方法可包括: 无线 网络控制器( RNC, Radio Network Controller )生成待向用户设备 UE传输的下 行信令; 若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区 和第二小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第 一基站通过第一小区向上述 UE发送携带上述下行信令的第一高速物理下行共 享信道( HS-PDSCH, High Speed Physical Downlink Shared Channel )子帧, 以 便第一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH 子帧, 第二小区和第一小区的频点相同, 第一小区为上述 UE接入的服务高速 下行共享信道( HS-DSCH, High Speed Downlink Shared Channel )小区; 或者 若确定上述 UE移动到第一小区和第二小区的交叠区域, 并且第一小区的服务 基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发送上述下行 信令, 以便于第二基站通过第一小区向上述 UE发送携带上述下行信令的第三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便第三基站通过第二小区 向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧; 第二小区和第一小 区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区。
参见图 1-a和图 1-b, 图 1-a和图 1-b是本发明的一个实施例提供的两种信令 传输方法的流程示意图, 如图 1-a和图 1-b所示, 本发明的一个实施例提供的信 令传输方法可包括以下内容:
101、 RNC生成待向用户设备 UE传输的下行信令。
在本发明一些实施例中, RNC生成的待向 UE传输的下行信令例如可为无 线承载重配置信令(例如用于重配置至少一个无线承载的参数)、 传输信道重 配置信令(例如用于重配置传输信道的参数)、 物理信道重配置信令(例如用 于重配置物理信道的参数)。
其中, 图 1-a示出了在第一小区和第二小区的服务基站为同一个基站的场 景下的一种信令传输方法。 图 1 -b示出了在第一小区和第二小区的服务基站为 不同基站的场景下的一种信令传输方法。
102a, RNC若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第 一小区和第二小区的服务基站均为第一基站, RNC向第一基站发送上述生成的 下行信令, 以便第一基站通过第一小区向上述 UE发送携带上述下行信令的第 一 HS-PDSCH子帧, 以便第一基站通过第二小区向上述 UE发送携带上述下行 信令的第二 HS-PDSCH子帧; 其中, 第二小区和第一小区的频点相同, 第一小 区为上述 UE接入的服务 HS-DSCH小区。
在本发明的一些实施例中,在上述向第一基站发送上述下行信令之前或之 后或同时, RNC还可向第一基站发送第一配置指令, 以将第一小区配置为多重 信令传输(SDT, Signalling Duplication Transmission )主小区, 将第二小区配 置为 SDT协助小区。
102b, RNC若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第 一小区的服务基站为第二基站,第二小区的服务基站为第三基站, RNC向第二 基站发送上述下行信令, 以便于第二基站通过第一小区向上述 UE发送携带上 述下行信令的第三 HS-PDSCH子帧; RNC向第三基站发送上述下行信令, 以便 第三基站通过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子 帧;第二小区和第一小区的频点相同,第一小区为上述 UE接入的服务 HS-DSCH 小区。
其中, 第一小区可为宏小区或低功率节点小区, 第二小区可为宏小区或低 功率节点小区。
在本发明的一些实施例中, RNC在向第二基站发送上述下行信令之前或之 后或同时, RNC还可向第二基站发送第二配置指令, 以将第一小区配置为 SDT 主小区。在向第三基站发送上述下行信令之前或之后或同时, RNC还可向第三 基站发送第三配置指令, 以将第二小区配置为 SDT协助小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
可以看出, 本实施例中 RNC生成待向 UE传输的下行信令之后; 若确定上 述 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第二小区的服务 基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基站通过第一小 区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以便第一基站通 过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧; 若第一 小区的服务基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发 送上述下行信令, 以便于第二基站通过第一小区向上述 UE发送携带上述下行 信令的第三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便第三基站通 过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧。 由于 RNC通过基站分别在第一小区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE接 入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小区来 接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。
在本发明一些实施例中, SDT小区 (如 SDT主小区、 SDT协助小区)也可 称为信令可靠性优化 ( SRO, Signalling Robustness Optimization ) 小区、 或可 称为信令传输优化(STO, Signalling Transmission Optimization )小区、 或也可 称为多重信令传输(DST Duplication Signalling Transmission )小区、 或也可称 为信令联合调度( CSS, Coordinated Scheduling for downlink Signalling ) 小区 或亦可采用其它名称。
在本发明一些实施例中, 网络侧 (如 RNC或基站)可为 UE配置至少两个 小区, 并在这些小区上建立 HS-DSCH, 当网络侧有下行信令要发送时, 可在 这些小区上同时向 UE发送。 其中, 这些可通过 HS-DSCH传送信令的小区可称 为 HS-DSCH小区, 其中一个小区称为主小区(UE接入的服务小区), 其他小区 称为协助小区。 其中, 主小区可配置为 SDT主小区, 协助小区可配置为 SDT协 助小区。 其中, SDT主小区和 SDT协助小区的频点相同, SDT协助小区被配置 为可以同时监听下行高速共享控制信道( HS-SCCH, High-Speed Shared Control Channel )和接收 HS-DSCH的小区。
在本发明的一些实施例中, 若第一小区的服务基站为第二基站, 第二小区 的服务基站为第三基站, 上述向第三基站发送上述下行信令包括: 在接收来自 第二基站的第二命令之后向第三基站发送上述下行信令,第二命令由第二基站 在通过第一小区向上述 UE发送第一命令和携带上述下行信令的第三 HS-PDSCH子帧之后发送, 第一命令用于指示上述 UE激活对第二小区的下行 高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明的另一些实施例中, 若第一小区的服务基站为第二基站, 第二小 区的服务基站为第三基站, 上述向第三基站发送上述下行信令, 可包括: 在向 第二基站发送上述下行信令之后延迟设定时长(例如 0.5毫秒、 1毫秒或其它的 时长)之后, 向第三基站发送上述下行信令。 其中, 上述设定时长可大于或等 于第二基站和 RNC的 Iub接口的传输时延差。 下面从基站的角度进行方案描述。
本发明信令传输方法的另一个实施例, 其中, 另一种信令传输方法, 可以 包括: 基站获得待向 UE传输的下行信令; 若确定上述 UE移动到第一小区和第 二小区的交叠区域, 通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服务 HS-DSCH小区, 第二 小区和第一小区的频点相同。
参见图 2 ,图 2是本发明的另一个实施例提供的另一种信令传输方法的流程 示意图, 其中, 如图 2所示, 本发明的另一个实施例提供的信令传输方法可包 括以下内容:
201、 基站获得待向 UE传输的下行信令。
在本发明一些实施例中, 基站获得待向 UE传输的下行信令可包括: 生成 待向 UE传输的下行信令或接收来自 RNC (或核心网设备或其它设备) 的待向 UE传输的下行信令。
202、 基站若确定上述 UE移动到第一小区和第二小区的交叠区域, 则基站 可通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 并 可通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧, 其 中第一小区为上述 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的频点 相同。
在本发明的一些实施例中, 基站获得待向 UE传输的下行信令包括: 生成 待向 UE传输的下行信令或接收来自 RNC的待向 UE传输的下行信令。
在本发明一些实施例中,基站若接收到来自上述 RNC的第一配置指令(第 一配置指令可用于指示基站第一小区配置为 SDT主小区, 将第二小区配置为 SDT协助小区), 则基站可在接收到来自上述 RNC的第一配置指令之后, 将第 一小区配置为 SDT主小区, 将第二小区配置为 SDT协助小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
在本发明一些实施例中, 上述通过第二小区向上述 UE发送携带上述下行 信令的第二 HS-PDSCH子帧之前, 还可包括: 基站通过第一小区向上述 UE发 送第一命令, 其中, 第一命令用于指示上述 UE激活对第二小区的下行高速共 享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明一些实施例中, 通过第二小区向上述 UE发送携带上述下行信令 的第二 HS-PDSCH子帧之前还包括:基站通过第二小区的增强专用信道模式中 相对授权信道( E-RGCH , Enhanced Dedicated Channels Relative Grant Channel ) 向上述 UE发送第三命令, 其中, 第三命令用于指示上述 UE激活对第二小区的 下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明一些实施例中, 基站发送第一 HS-PDSCH子帧和第二 HS-PDSCH 子帧的定时偏差范围例如可为 0个码片至 38400个码片 (例如可为 0个码片至 7680个码片 ) 或其它范围。 其中, 基站发送第一 HS-PDSCH子帧和第二
HS-PDSCH子帧的定时偏差可没有必然限制。 如此, 则可在一定程度上解除第 一 HS-PDSCH子帧和第二 HS-PDSCH子帧在发送时间上的耦合限制, 这有利于 筒化发送控制机制。
可以看出, 本实施例中基站获得待向 UE传输的下行信令; 若确定上述 UE 移动到第一小区和第二小区的交叠区域, 通过第一小区向上述 UE发送携带上 述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携带上述 下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服务
HS-DSCH小区, 第二小区和第一小区的频点相同。 由于基站分别在第一小区 和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区和 第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此可 使得 UE可以分别从第一小区和第二小区来接收同一下行信令, 可见相对于现 有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 下面从 UE的角度进行方案描述。
本发明信令传输方法的另一个实施例, 其中, 另一种信令传输方法, 可以 包括: 当 UE移动到第一小区和第二小区的交叠区域, 上述 UE从第一小区接收 携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 上述 UE 从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和 第一小区的频点相同, 第一小区为上述 UE接入的服务高速下行共享信道 HS-DSCH小区。
参见图 3 ,图 3是本发明的另一个实施例提供的另一种信令传输方法的流程 示意图, 其中, 如图 3所示, 本发明的另一个实施例提供的信令传输方法可包 括以下内容:
301、 当 UE移动到第一小区和第二小区的交叠区域, 上述 UE从第一小区 接收携带下行信令的第一 HS-PDSCH子帧;
302、 UE从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中 第二小区和第一小区的频点相同, 第一小区为上述 UE接入的服务高速下行共 享信道 HS-DSCH小区。
在本发明一些实施例中, 第一小区被配置为 SDT主小区, 第二小区被配置 为 SDT协助小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
在本发明一些实施例中, 上述方法还包括: 上述 UE向第一小区的服务基 站发送第一下行传输正误指示,不向第二小区的服务基站发送第二下行传输正 误指示; 其中, 第一下行传输正误指示用于指示出上述 UE是否正确译码出接 收到的第一 HS-PDSCH子帧, 第二下行传输正误指示用于指示出上述 UE是否 正确译码出接收到的第二 HS-PDSCH子帧。 如此, 则可在一定程度上解除第二 HS-PDSCH子帧和对应上行反馈信息的耦合关系,这有利于筒化信令传输控制 机制。
在本发明一些实施例中, 接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧 的定时偏差范围为 0个码片至 38400个码片(例如可为 0个码片至 7680个码片) 或其它范围。 其中, 接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏 差可没有必然限制。 如此, 则可在一定程度上解除第一 HS-PDSCH子帧和第二 HS-PDSCH子帧在发送时间上的耦合限制, 这有利于筒化发送控制机制。
在本发明一些实施例中, 方法还可包括: 在上述从第二小区接收携带上述 下行信令的第二 HS-PDSCH子帧之前, 上述 UE在上报 1D测量报告之后开始监 听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 并在完成服 务小区切换之后停止监听第二小区的 HS-SCCH和 /或 HS-PDSCH。
在本发明另一些实施例中, 方法还可包括: 在上述从第二小区接收携带上 述下行信令的第二 HS-PDSCH子帧之前,在通过第一小区接收来自第一小区的 服务基站的第一命令之后, 开始监听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中, 第一命令用于指示上述 UE激活对第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明又一些实施例中, 方法还可包括: 在上述从第二小区接收携带上 述下行信令的第二 HS-PDSCH子帧之前,在通过第二小区的增强专用信道模式 中相对授权信道 E-RGCH接收来自第二小区的服务基站的第三命令之后, 开始 监听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中第三 命令用于指示上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 / 或 HS-PDSCH的监听。
可以看出, 本实施例中当 UE移动到第一小区和第二小区的交叠区域, 上 述 UE从第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧; 以及, 上述 UE从第二小区接收携带上述下行信令的第二 HS-PDSCH子 帧, 其中, 第二小区和第一小区的频点相同, 第一小区为上述 UE接入的服务 高速下行共享信道 HS-DSCH小区。 由于 UE移动到第一小区和第二小区的交叠 区域时,可分别在第一小区和第二小区接收网络侧下发的携带了同一下行信令 的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE 接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小区 来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 为便于更好的理解和实施本发明实施例的上述方案,下面通过一些具体应 用场景进行举例描述。
参见图 4-a和图 4-b, 其中, 图 4-a本发明的另一个实施例提供的一种网络架 构示意图, 图 4-a中举例第一小区和第二小区的服务基站不同, 第一小区的服 务基站为第二基站, 第二小区的服务基站为第三基站, 第二小区和第一小区的 频点相同。 图 4-b是本发明的另一个实施例提供的另一种信令传输方法的流程 示意图。 其中, 如图 4-b所示, 本发明的另一个实施例提供的信令传输方法可 包括以下内容:
401、 RNC生成待向 UE传输的下行信令。
在本发明一些实施例中, RNC生成的待向 UE传输的下行信令例如可为无 线承载重配置信令(例如用于重配置至少一个无线承载的参数)、 传输信道重 配置信令(例如用于重配置传输信道的参数)、 物理信道重配置信令(例如用 于重配置物理信道的参数)。
402、 RNC若确定上述 UE移动到第一小区和第二小区的交叠区域, 向第二 基站和第三基站分别发送配置指令, 已将第一小区配置为 SDT主小区, 将第二 小区配置为 SDT协助小区。
其中, 第一小区为 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的 频点相同。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
403、 RNC向第二基站发送上述下行信令;
404、 第二基站通过第一小区向 UE发送携带上述下行信令的第三 HS-PDSCH子帧;
405、 UE接收第三 HS-PDSCH子帧, 并可向第二基站发送第一下行传输正 误指示; 其中, 第一下行传输正误指示用于指示出上述 UE是否正确译码出接 收到的第三 HS-PDSCH子帧。
当然, 若第一下行传输正误指示指示出上述 UE未正确译码出接收到的第 三 HS-PDSCH子帧, 则第二基站还可通过第一小区向 UE重新发送携带上述下 行信令的第三 HS-PDSCH子帧。
406、 RNC向第三基站发送上述下行信令;
407、 第三基站通过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧;
其中, UE接收第四 HS-PDSCH子帧, UE可不向第三基站发送第二下行传 输正误指示; 其中, 第二下行传输正误指示用于指示出上述 UE是否正确译码 出接收到的第四 HS-PDSCH子帧。 第三基站定期通过第二小区重新向上述 UE 发送携带上述下行信令的第四 HS-PDSCH子帧, 以确保 UE正确接收第四 HS-PDSCH子帧。
其中, 步骤 403~405和步骤 406~407之间没有必然的先后顺序。
在本发明一些实施例中,第二基站发送第一 HS-PDSCH子帧和第三基站发 送第二 HS-PDSCH子帧的定时偏差范围例如可为 0个码片至 38400个码片 (例 如可为 0个码片至 7680个码片 ) 或其它范围。 其中, 第二基站发送第一 HS-PDSCH子帧和第三基站发送第二 HS-PDSCH子帧的定时偏差可没有必然 限制。
在本发明一些实施例中, RNC向第三基站发送上述下行信令包括: RNC 在接收来自第二基站的第二命令之后向第三基站发送上述下行信令,第二命令 由第二基站在通过第一小区向上述 UE发送第一命令和携带上述下行信令的第 三 HS-PDSCH子帧之后发送, 其中, 第一命令用于指示上述 UE激活对第二小 区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明另一些实施例中, RNC向第三基站发送上述下行信令包括: RNC 在向第二基站发送上述下行信令之后延迟设定时长(例如 0.5毫秒、 1毫秒或其 它的时长)之后, 向第三基站发送上述下行信令。 其中, 第二基站可在接收到 来自 RNC的下行信令之后, 向 UE发送第一命令, 其中, 第一命令用于指示上 述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的 监听。 当然在需要时, 第二基站还可向 UE发送用于指示该 UE去激活对第二小 区的 HS-SCCH和 /或 HS-PDSCH的监听的命令。 或者, 当 UE开始监听 SDT协助 小区若干个时隙(ΤΉ )后, 自动去激活, 其中, 监听 SDT协助小区的 ΤΉ时长 可在进行 SDT小区配置的时下发或其它时候下发或采用默认值。
在本发明的另一些实施例中, 第三基站通过第二小区向上述 UE发送携带 上述下行信令的第二 HS-PDSCH子帧之前还可包括: 第三基站通过第二小区的 E-RGCH向上述 UE发送第三命令, 其中, 第三命令用于指示上述 UE激活对第 二小区的 HS-SCCH和 /或 HS-PDSCH的监听。 例如, 通过 E-RGCH上的 "UP"指 令,具体的,在非服务 E-DCH RLS上, HOLD/DOWN指令分别对应 0, -1 , "UP" 指令对应 +1。 或者, 在非服务 E-DCH RLS上, HOLD/DOWN指令按现有协议 的标识指示, "UP"指令对应 +0。
在本发明另一些实施例中,当 UE上报 1D测量报告后,可自行开始监听 SDT 协助小区(第二小区)的 HS-SCCH。 当 UE的服务小区切换完成时, UE可自行 停止对 SDT协助小区的 HS-SCCH的监听。
下面对一些测量事件和测量报告进行筒单介绍。
基于标准协议 TS 25.331的章节 14.1中的描述, 1A、 ID和 IB测量事件和测 量报告的定义可以如下: 1A测量事件定义为一个小区进入上报范围, 1A测量 告中会携带 1A测量标识和触发 1A的小区测量结果。 1B测量事件定义为一个 小区离开上报范围, 1B测量报告中会携带 1B测量标识和触发 1B的小区测量结 果。 1D测量事件定义为最好小区改变, 也即一个非服务小区的信号质量好于 当前服务小区的信号质量时, 会触发 1D测量, 1D测量报告中会携带 1D测量标 识和触发 ID的小区测量结果。
以图 4-c为例, 当 UE从第一小区向第二小区移动时, UE可在 B点位置上报 测量事件 1A, 其中, 网络侧 (如 RNC、 基站等)可将第二小区添加到 UE的激 活集中,并且,网络侧可将第一小区配置为 SDT主小区,将第二小区配置为 SDT 协助小区。 假如, UE在 C点位置上报测量事件 1D, 然后, 在 D点位置上报测量 事件 1B,这样 UE在 B点位置到 D点位置移动期间,通过 SDT特性可以让 UE在多 个小区 (第一小区和第二小区)接收信令。
参见图 4-d,图 4-d为本发明实施例提供的一种对应图 4-a所示网络架构的模 块架构的示意图。 其中, 无线网络控制器例如可包括: 用于进行分组数据汇集 协议( PDCP, Packet Data Convergence Protocol )层处理的分组数据汇聚协议 层单元、 无线链路控制协议(RLC, Radio Link Control Protocol )层单元, 用 于进行无线链路控制协议层处理、 用于进行 MAC层处理的两个专用媒介接入 控制 (MAC-d, Medium Access Control - dedicated ) 实体, 其中, RLC层单元 可执行 SDT操作, 如将待向 UE传输的下行信令发送给第二基站和第三基站。 第二基站和第三基站的中的 MAC-ehs执行 SDT操作,分别通过第一小区和第二 小区向 UE发送携带上述下行信令的 HS-PDSCH子帧。 对应地, UE侧有两个物 理层和两个媒介接入控制 (MAC, Medium Access Control )层单元, UE中两 个 MAC层单元接收的数据在 RLC层进行汇聚。
可以理解的是,本实施例中的 RNC与第二基站或第三基站也可合并为一个 实体, 合并的实体仍可称之为基站。
可以看出, 本实施例中 RNC生成待向 UE传输的下行信令之后; 若确定上 述 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第二小区的服务 基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基站通过第一小 区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以便第一基站通 过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧; 若第一 小区的服务基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发 送上述下行信令, 以便于第二基站通过第一小区向上述 UE发送携带上述下行 信令的第三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便第三基站通 过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧。 由于 RNC通过基站分别在第一小区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE接 入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小区来 接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 参见图 5-a和图 5-b, 其中, 图 5-a本发明的另一个实施例提供的一种网络架 构示意图, 图 5-a中举例第一小区和第二小区的服务基站均为第一基站。 图 5-b 是本发明的另一个实施例提供的另一种信令传输方法的流程示意图。
其中, 如图 5-b所示, 本发明的另一个实施例提供的另一种信令传输方法 可包括以下内容:
501、 RNC生成待向 UE传输的下行信令。
在本发明一些实施例中, RNC生成的待向 UE传输的下行信令例如可为无 线承载重配置信令(例如用于重配置至少一个无线承载的参数)、 传输信道重 配置信令(例如用于重配置传输信道的参数)、 物理信道重配置信令(例如用 于重配置物理信道的参数)。
502、 RNC若确定上述 UE移动到第一小区和第二小区的交叠区域, 向第一 基站分别发送配置指令, 已将第一小区配置为 SDT主小区, 将第二小区配置为 SDT协助小区。
其中, 第一小区为 UE接入的服务 HS-DSCH小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
503、 RNC向第一基站发送上述下行信令;
504、 第一基站通过第一小区向 UE发送携带上述下行信令的第一 HS-PDSCH子帧; 505、 UE可接收第一 HS-PDSCH子帧, 并可向第一基站发送第一下行传输 正误指示; 其中, 第一下行传输正误指示用于指示出上述 UE是否正确译码出 接收到的第一 HS-PDSCH子帧。
当然, 若第一下行传输正误指示指示出上述 UE未正确译码出接收到的第 一 HS-PDSCH子帧, 则第一基站还可通过第一小区向 UE重新发送携带上述下 行信令的第一 HS-PDSCH子帧。
506、 第一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧;
其中, UE接收第二 HS-PDSCH子帧, UE可不向第一基站发送第二下行传 输正误指示; 其中, 第二下行传输正误指示用于指示出上述 UE是否正确译码 出接收到的第二 HS-PDSCH子帧。 第一基站定期通过第二小区重新向上述 UE 发送携带上述下行信令的第二 HS-PDSCH子帧, 以确保 UE正确接收第二 HS-PDSCH子帧。
其中, 步骤 504~505和步骤 506之间没有必然的先后顺序。
在本发明一些实施例中, 第一基站发送第一 HS-PDSCH子帧和第二
HS-PDSCH子帧的定时偏差范围例如可为 0个码片至 38400个码片(例如可为 0 个码片至 7680个码片)或其它范围。 其中, 第一基站发送第一 HS-PDSCH子帧 和第二 HS-PDSCH子帧的定时偏差可没有必然限制。
在本发明一些实施例中, 第一基站可先通过第一小区向上述 UE发送第一 命令和携带上述下行信令的第一 HS-PDSCH子帧, 其中, 第一命令用于指示上 述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的 监听, 而后再向通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧。
在本发明的另一些实施例中, 第一基站通过第二小区向上述 UE发送携带 上述下行信令的第二 HS-PDSCH子帧之前还可包括: 第一基站通过第二小区的 E-RGCH向上述 UE发送第三命令, 其中, 第三命令用于指示上述 UE激活对第 二小区的 HS-SCCH和 /或 HS-PDSCH的监听。 例如, 通过 E-RGCH上的 "UP"指 令,具体的,在非服务 E-DCH RLS上, HOLD/DOWN指令分别对应 0, -1 , "UP" 指令对应 +1。 或者, 在非服务 E-DCH RLS上, HOLD/DOWN指令按现有协议 的标识指示, "UP"指令对应 +0。
在本发明另一些实施例中,当 UE上报 1D测量报告后,可自行开始监听 SDT 协助小区(第二小区)的 HS-SCCH, 当 UE的服务小区切换完成时, UE可自行 停止对 SDT协助小区的 HS-SCCH的监听。
参见图 5-c , 图 5-c为本发明实施例提供的一种对应图 5-a所示网络架构的模 块架构的示意图。 其中, 无线网络控制器例如可包括: 用于进行 PDCP层处理 的 PDCP层单元、 用于进行 RLC层处理 RLC层单元、 用于进行 MAC层处理的两 个 MAC-d实体。 第一基站中的 MAC-ehs执行 SDT操作, 分别通过第一小区和第 二小区向 UE发送携带上述下行信令的 HS-PDSCH子帧。 对应地, UE侧有两个 物理层和两个 MAC层单元, UE中两个物理层单元接收的数据在 RLC层进行汇 聚。
可以看出, 本实施例中基站从 RNC获得待向 UE传输的下行信令; 若确定 上述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区向上述 UE发送 携带上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携 带上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服 务 HS-DSCH小区, 第二小区和第一小区的频点相同。 由于基站分别在第一小 区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区 和第一小区的频点相同,第一小区为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小区来接收同一下行信令, 可见相对于 现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。
在本发明的一些实施例中, SDT可包含如下模式。
对于非多载波场景, 可按照如下方式进行 SDT命名:
SF-2F: Single Frequency 2 ( Signalling ) Flows。
或者 , 称为 SF-2 SDT: Single Frequency 2 Signalling Duplication
Transmission;
或者, 称为 SF-2S: Single Frequency 2 (Signalling) Streams„ 比如 SDT小区 是图 5-d中的 Cell 11和 Cell 12。 对应地, 如果 SDT小区(SDT主小区和 SDT协助小区)个数为 3 , 可将 SDT 命名为 SF-3F或 SF-3 SDT或 SF-3S。 如果 SDT小区个数为 4 , 可将 SDT命名为 SF-4F或 SF-4 SDT或 SF-4S。 更一般地, 如果 SDT小区个数为 N, 则可将 SDT命 名为 SF-NF或 SF-N SDT或 SF-NS。
进一步地, 当 DC-HSDPA特性(多载波场景)和 SDT—起使用时, 可按照 如下方式进行 SDT命名:
DF-2F: Dual Frequency 2 ( Signalling ) Flows。
或者 , 称为 DF-2 SDT: Dual Frequency 2 Signalling Duplication Transmission,
或者, 称为 DF-2S: Dual Frequency 2 (Signalling) Streams„ 比如图 5-d中的
DC-HSDPA小区是 Cell 11和 Cell 21 , SDT小区是 Cell 11和 Cell 12。
对应地, 如果此时 SDT小区个数为 3 , 可将 SDT命名为 DF-3F或 DF-3 SDT 或 DF-3S; 如果 SDT小区个数为 4,可将 SDT命名为 DF-4F或 DF-4 SDT或 DF-4S。 更一般地, 如果 SDT小区个数为 N, 则可将 SDT命名为 DF-NF或 DF-N SDT或 标准中的多载波特性可支持的载波个数最大假设为 8, 也即 8C-HSDPA ( 8 Carrier HSDPA )特性。 更一般地, 考虑 XC-HSDPA, 其中 X<=8, 与 SDT—起 使用时, 其命名可以为: XF-NF或 XF-N SDT或 XF-NS, 其中, X为多载波时工 作载波的个数, N为 SDT小区的个数。
可以理解, 上述 SDT命名方式进行举例, 在实际应用可适应性变化。
可以理解,本实施例中的 RNC和第一基站也可合并为一个实体,合并的实 体仍可称之为基站。 为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方 案的相关装置和通信系统。
参见图 6, 本发明实施例提供的一种无线网络控制器 600, 可包括: 生成器 610和传输器 620。
其中, 生成器 610, 用于生成待向 UE传输的下行信令。
传输器 620, 用于若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第二小区的服务基站均为第一基站,向第一基站发送上述下行信 令, 以便第一基站通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以便第一基站通过第二小区向上述 UE发送携带上述下行信 令的第二 HS-PDSCH子帧; 其中, 第二小区和第一小区的频点相同, 第一小区 为上述 UE接入的服务 HS-DSCH小区;
或者,
若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区的服 务基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发送上述下 行信令, 以便于第二基站通过第一小区向上述 UE发送携带上述下行信令的第 三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便第三基站通过第二小 区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧; 第二小区和第一 小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区。
在本发明的一些实施例中, 传输器 620, 还用于在上述向第二基站发送上 述下行信令之前, 向第二基站发送第二配置指令, 以将第一小区配置为 SDT主 小区; 在上述向第三基站发送上述下行信令之前还包括: 向第三基站发送第三 配置指令, 以将第二小区配置为 SDT协助小区;
在本发明的另一些实施例中, 传输器 620还用于向第一基站发送上述下行 信令之前, 向第一基站发送第一配置指令, 以将第一小区配置为多重信令传输
SDT主小区, 将第二小区配置为 SDT协助小区。
在本发明的一些实施例中, 若第一小区的服务基站为第二基站, 第二小区 的服务基站为第三基站, 则在上述向第三基站发送上述下行信令的方面,传输 器 620具体用于,
在上述向第二基站发送上述下行信令之后延迟设定时长,向第三基站发送 上述下行信令; 或者,在接收来自第二基站的第二命令之后向第三基站发送上 述下行信令, 其中, 第二命令由第二基站在通过第一小区向上述 UE发送第一 命令和携带上述下行信令的第三 HS-PDSCH子帧之后发送, 第一命令用于指示 上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH 的监听。 在本发明的一些实施例中, 第一小区为宏小区或低功率节点小区, 第二小 区为宏小区或低功率节点小区。
可以理解的是, 本实施例的无线网络控制器 600可用于实现上述方法实施 例中的任意一个无线网络控制器的部分或全部功能,其各功能模块的功能可根 据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施 例的相关描述, 此处不再赘述。
可以看出,本实施例中无线网络控制器 600生成待向 UE传输的下行信令之 后; 若确定 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第二小 区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基站通 过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以便第 一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子 帧; 若第一小区的服务基站为第二基站, 第二小区的服务基站为第三基站, 向 第二基站发送上述下行信令, 以便于第二基站通过第一小区向上述 UE发送携 带上述下行信令的第三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便 第三基站通过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子 帧。 由于 RNC通过基站分别在第一小区和第二小区向 UE下发携带了同一下行 信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小 区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于提 高 UE接收下行信令的成功率。 参见图 7-a, 本发明实施例提供的一种基站 700, 可包括:
信令获得器 710和传输器 720。
其中, 信令获得器 710, 用于获得待向用户设备 UE传输的下行信令; 传输器 720, 用于若确定上述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 并通 过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧, 第一小 区为上述 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的频点相同。
在本发明的一些实施例中, 信令获得器 710具体用于: 生成待向 UE传输的 下行信令或接收来自 RNC的待向 UE传输的下行信令。
参见图 7-b, 在本发明的一些实施例中, 基站 700还包括配置器 730, 用于 在接收到来自上述 RNC的第一配置指令之后,将第一小区配置为多重信令传输
SDT主小区, 将第二小区配置为 SDT协助小区。
在本发明的一些实施例中, 传输器 720还用于, 在上述通过第二小区向上 述 UE发送携带上述下行信令的第二 HS-PDSCH子帧之前, 通过第一小区向上 述 UE发送第一命令, 其中, 第一命令用于指示上述 UE激活对第二小区的下行 高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在上述通过第二小 区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧之前, 通过第二小 区的增强专用信道模式中相对授权信道 E-RGCH向上述 UE发送第三命令,第三 命令用于指示上述 UE激活对第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明的一些实施例中, 传输器 720发送第一 HS-PDSCH子帧和第二
HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片, 例如可为 0个码片 至 7680个码片或其它范围。
可以理解的是, 本实施例的基站 700可用于实现上述方法实施例中的任意 一个基站的部分或全部功能,其各功能模块的功能可根据上述方法实施例中的 方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描述, 此处不 再赘述。
可以看出, 本实施例中基站 700获得待向 UE传输的下行信令; 若确定上述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区向上述 UE发送携带 上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携带上 述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的频点相同。 由于基站分别在第一小区 和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区和 第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此可 使得 UE可以分别从第一小区和第二小区来接收同一下行信令, 可见相对于现 有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 参见图 8-a, 本发明实施例提供的一种用户设备 800, 可包括: 接收器 810和译码器 820。
接收器 810, 用于若上述 UE移动到第一小区和第二小区的交叠区域, 从第 一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从第 二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一 小区的频点相同, 第一小区为上述 UE接入的服务高速下行共享信道 HS-DSCH 小区;
译码器 820, 用于对第一 HS-PDSCH子帧和第二 HS-PDSCH子帧进行译码。 在本发明的一些实施例中, 第一小区被配置为多重信令传输 SDT主小区, 第二小区被配置为 SDT协助小区。
参见图 8-b, 在本发明的一些实施例中, 用户设备 800还包括:
发射器 830, 用于向第一小区的服务基站发送第一下行传输正误指示, 不 向第二小区的服务基站发送第二下行传输正误指示;第一下行传输正误指示用 于指示出上述 UE是否正确译码出接收到的第一 HS-PDSCH子帧, 第二下行传 输正误指示用于指示出上述 UE是否正确译码出接收到的第二 HS-PDSCH子 帧。
在本发明的一些实施例中, 接收器 810接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
参见图 9, 在本发明的一些实施例中, 用户设备 800还可包括:
监听器 840 , 用于在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听第二小区的下行高速共 享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在 通过第一小区接收来自第一小区的服务基站的第一命令之后,开始监听第二小 区的 HS-SCCH和 /或 HS-PDSCH, 第一命令用于指示上述 UE激活对第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在 通过第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来自第二小 区的服务基站的第三命令之后, 开始监听第二小区的 HS-SCCH和 I或 HS-PDSCH, 其中, 第三命令用于指示上述 UE激活对第二小区的 HS-SCCH和 / 或 HS-PDSCH的监听。
可以理解的是, 本实施例的用户设备 900可用于实现上述方法实施例中的 任意一个用户设备的部分或全部功能,其各功能模块的功能可根据上述方法实 施例中的方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描 述, 此处不再赘述。
可以看出, 本实施例中当用户设备 900移动到第一小区和第二小区的交叠 区域, 上述 UE从第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 上述 UE从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频点相同, 第一小区为上述 UE 接入的服务高速下行共享信道 HS-DSCH小区。 由于 UE移动到第一小区和第二 小区的交叠区域时,可分别在第一小区和第二小区接收网络侧下发的携带了同 一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区 为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和 第二小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有 利于提高 UE接收下行信令的成功率。 参见图 10, 本发明实施例提供的一种无线网络控制器 1000, 可包括: 至少一个总线 1001、与上述总线 1001相连的至少一个处理器 1002以及与上 述总线 1001相连的至少一个存储器 1003。
其中,上述处理器 1002通过上述总线 1001调用上述存储器 1003中存储的代 码以用于:
生成待向用户设备 UE传输的下行信令;
若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第 二小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基 站通过第一小区向上述 UE发送携带上述下行信令的第一高速物理下行共享信 道 HS-PDSCH子帧, 以便第一基站通过第二小区向上述 UE发送携带上述下行 信令的第二 HS-PDSCH子帧; 其中, 第二小区和第一小区的频点相同, 第一小 区为上述 UE接入的服务高速下行共享信道 HS-DSCH小区;
或者,
若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区的服 务基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发送上述下 行信令, 以便于第二基站通过第一小区向上述 UE发送携带上述下行信令的第 三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便第三基站通过第二小 区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧; 第二小区和第一 小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区。
在本发明的一些实施例中, 处理器 1002,还用于在上述向第二基站发送上 述下行信令之前, 向第二基站发送第二配置指令, 以将第一小区配置为 SDT主 小区; 在上述向第三基站发送上述下行信令之前还包括: 向第三基站发送第三 配置指令, 以将第二小区配置为 SDT协助小区;
或者, 处理器 1002, 还用于向第一基站发送上述下行信令之前, 向第一基 站发送第一配置指令, 以将第一小区配置为多重信令传输 SDT主小区, 将第二 小区配置为 SDT协助小区。
在本发明的一些实施例中, 若第一小区的服务基站为第二基站, 第二小区 的服务基站为第三基站, 则在上述向第三基站发送上述下行信令的方面, 处理 器 1002可具体用于,
在上述向第二基站发送上述下行信令之后延迟设定时长,向第三基站发送 上述下行信令; 或者,在接收来自第二基站的第二命令之后向第三基站发送上 述下行信令, 其中, 第二命令由第二基站在通过第一小区向上述 UE发送第一 命令和携带上述下行信令的第三 HS-PDSCH子帧之后发送, 第一命令用于指示 上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH 的监听。
在本发明的一些实施例中, 第一小区为宏小区或低功率节点小区, 第二小 区为宏小区或低功率节点小区。
可以理解的是,本实施例的无线网络控制器 1000可用于实现上述方法实施 例中的任意一个无线网络控制器的部分或全部功能,其各功能模块的功能可根 据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施 例的相关描述, 此处不再赘述。
可以看出, 本实施例中无线网络控制器 1000生成待向 UE传输的下行信令 之后; 若确定 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第二 小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基站 通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以便 第一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子 帧; 若第一小区的服务基站为第二基站, 第二小区的服务基站为第三基站, 向 第二基站发送上述下行信令, 以便于第二基站通过第一小区向上述 UE发送携 带上述下行信令的第三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便 第三基站通过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子 帧。 由于 RNC通过基站分别在第一小区和第二小区向 UE下发携带了同一下行 信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小 区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于提 高 UE接收下行信令的成功率。 参见图 11 , 本发明实施例提供的一种基站 1100, 可包括:
至少一个总线 1101、与上述总线 1101相连的至少一个处理器 1102以及与上 述总线 1101相连的至少一个存储器 1103。
其中,上述处理器 1102通过上述总线 1101调用上述存储器 1103中存储的代 码以用于:
获得待向用户设备 UE传输的下行信令; 若确定上述 UE移动到第一小区和 第二小区的交叠区域, 通过第一小区向上述 UE发送携带上述下行信令的第一 高速物理下行共享信道 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携带 上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服务 高速下行共享信道 HS-DSCH小区, 第二小区和第一小区的频点相同。
在本发明的一些实施例中, 在上述获得待向用户设备 UE传输的下行信令 的方面, 处理器 1102具体用于: 生成待向 UE传输的下行信令或接收来自无线 网络控制器 RNC的待向 UE传输的下行信令。
在本发明的一些实施例中, 处理器 1102还用于, 在接收到来自上述 RNC 的第一配置指令之后, 将第一小区配置为多重信令传输 SDT主小区, 将第二小 区配置为 SDT协助小区。
在本发明的一些实施例中, 处理器 1102还用于, 在上述通过第二小区向上 述 UE发送携带上述下行信令的第二 HS-PDSCH子帧之前, 通过第一小区向上 述 UE发送第一命令, 其中, 第一命令用于指示上述 UE激活对第二小区的下行 高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在上述通过第二小 区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧之前, 通过第二小 区的增强专用信道模式中相对授权信道 E-RGCH向上述 UE发送第三命令,第三 命令用于指示上述 UE激活对第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明的一些实施例中, 处理器 1102发送第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
可以理解的是,本实施例的基站 1100可用于实现上述方法实施例中的任意 一个基站的部分或全部功能,其各功能模块的功能可根据上述方法实施例中的 方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描述, 此处不 再赘述。
可以看出, 本实施例中基站 1100获得待向 UE传输的下行信令; 若确定上 述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区向上述 UE发送携 带上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携带 上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的频点相同。 由于基站分别在第一小区 和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区和 第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小区来接收同一下行信令, 可见相对于 现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 参见图 12, 本发明实施例提供的一种用户设备 1200, 可包括: 至少一个总线 1201、与上述总线 1201相连的至少一个处理器 1202以及与上 述总线 1201相连的至少一个存储器 1203。
其中,上述处理器 1202通过上述总线 1201调用上述存储器 1203中存储的代 码以用于: 若上述 UE移动到第一小区和第二小区的交叠区域, 从第一小区接 收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从第二小区接 收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频 点相同, 第一小区为上述 UE接入的服务高速下行共享信道 HS-DSCH小区。
在本发明的一些实施例中, 第一小区被配置为多重信令传输 SDT主小区, 第二小区被配置为 SDT协助小区。
在本发明的一些实施例中, 处理器 1202还用于, 向第一小区的服务基站发 送第一下行传输正误指示,不向第二小区的服务基站发送第二下行传输正误指 示; 第一下行传输正误指示用于指示出上述 UE是否正确译码出接收到的第一 HS-PDSCH子帧, 第二下行传输正误指示用于指示出上述 UE是否正确译码出 接收到的第二 HS-PDSCH子帧。
在本发明的一些实施例中, 处理器 1202接收第一 HS-PDSCH子帧和第二
HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
在本发明的一些实施例中, 处理器 1202还用于,在上述从第二小区接收携 带上述下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听 第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在 通过第一小区接收来自第一小区的服务基站的第一命令之后,开始监听第二小 区的 HS-SCCH和 /或 HS-PDSCH, 第一命令用于指示上述 UE激活对第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在 通过第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来自第二小 区的服务基站的第三命令之后, 开始监听第二小区的 HS-SCCH和 I或 HS-PDSCH, 其中, 第三命令用于指示上述 UE激活对第二小区的 HS-SCCH和 / 或 HS-PDSCH的监听。
可以理解的是,本实施例的用户设备 1200可用于实现上述方法实施例中的 任意一个用户设备的部分或全部功能,其各功能模块的功能可根据上述方法实 施例中的方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描 述, 此处不再赘述。
可以看出,本实施例中当用户设备 1200移动到第一小区和第二小区的交叠 区域, 上述 UE从第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 上述 UE从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频点相同, 第一小区为上述 UE 接入的服务高速下行共享信道 HS-DSCH小区。 由于 UE移动到第一小区和第二 小区的交叠区域时,可分别在第一小区和第二小区接收网络侧下发的携带了同 一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区 为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和 第二小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有 利于提高 UE接收下行信令的成功率。 参见图 13、 本发明实施例还提供一种通信系统, 可包括:
无线网络控制器 1310和第一基站 1320。
其中, 无线网络控制器 1310用于, 生成待向用户设备 UE传输的下行信令; 若确定上述 UE移动到第一小区和第二小区的交叠区域, 并且第一小区和第二 小区的服务基站均为第一基站, 向第一基站发送上述下行信令;
第一基站 1320, 用于接收来自无线网络控制器 1310的上述下行信令,通过 第一小区向上述 UE发送携带上述下行信令的第一高速物理下行共享信道 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧; 其中, 第二小区和第一小区的频点相同, 第一小区为上述 UE 接入的服务高速下行共享信道 HS-DSCH小区。
在本发明一些实施例中,第一基站 1320若接收到来自无线网络控制器 1310 的第一配置指令(第一配置指令可用于指示第一基站 1320第一小区配置为 SDT 主小区, 将第二小区配置为 SDT协助小区), 则第一基站 1320可在接收到来自 无线网络控制器 1310的第一配置指令之后, 将第一小区配置为 SDT主小区, 将 第二小区配置为 SDT协助小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的第一 基站 1320可以向 RNC上报 SDT能力, 比如第一基站 1320可以上报支持那些 SDT 模式。 相应的, RNC据此进行 SDT小区配置, 当然, RNC也可默认为 UE和第 一基站 1320支持部分或全部 SDT模式。
在本发明一些实施例中, 上述通过第二小区向上述 UE发送携带上述下行 信令的第二 HS-PDSCH子帧之前, 还可包括: 第一基站 1320通过第一小区向上 述 UE发送第一命令, 其中, 第一命令用于指示上述 UE激活对第二小区的下行 高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明一些实施例中, 通过第二小区向上述 UE发送携带上述下行信令 的第二 HS-PDSCH子帧之前还包括: 第一基站 1320通过第二小区的 E-RGCH向 上述 UE发送第三命令, 其中, 第三命令用于指示上述 UE激活对第二小区的下 行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明一些实施例中, 第一基站 1320发送第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围例如可为 0个码片至 38400个码片 (例如可为 0个码片至 7680个码片)或其它范围。其中,第一基站 1320发送第一 HS-PDSCH 子帧和第二 HS-PDSCH子帧的定时偏差可没有必然限制。 如此, 则可在一定程 度上解除第一 HS-PDSCH子帧和第二 HS-PDSCH子帧在发送时间上的耦合限 制, 这有利于筒化发送控制机制。
可以理解的是,本实施例的第一基站 1320可用于实现上述方法实施例中的 第一基站的部分或全部功能, RNC1310可用于实现上述方法实施例中的 RNC 的部分或全部功能, 其具体实现过程可参照上述方法实施例的相关描述, 此处 不再赘述。
在本发明的一些实施例中, UE还可用于, 从第一小区接收携带下行信令 的第一高速物理下行共享信道 HS-PDSCH子帧;从第二小区接收携带上述下行 信令的第二 HS-PDSCH子帧。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
在本发明一些实施例中, UE还可用于, 向第一小区的服务基站发送第一 下行传输正误指示, 不向第二小区的服务基站发送第二下行传输正误指示; 其 中, 第一下行传输正误指示用于指示出上述 UE是否正确译码出接收到的第一 HS-PDSCH子帧, 第二下行传输正误指示用于指示出上述 UE是否正确译码出 接收到的第二 HS-PDSCH子帧。 如此, 则可在一定程度上解除第二 HS-PDSCH 子帧和对应上行反馈信息的耦合关系, 这有利于筒化信令传输控制机制。
在本发明的一些实施例中, UE接收第一 HS-PDSCH子帧和第二 HS-PDSCH 子帧的定时偏差范围为 0个码片至 38400个码片 (例如可为 0个码片至 7680个 码片 )或其它范围。 其中, 接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的 定时偏差可没有必然限制。 如此, 则可在一定程度上解除第一 HS-PDSCH子帧 和第二 HS-PDSCH子帧在发送时间上的耦合限制, 这有利于筒化发送控制机 制。
在本发明一些实施例中, UE还可用于, 在上述从第二小区接收携带上述 下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听第二小 区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 并在完成服务小区切 换之后停止监听第二小区的 HS-SCCH和 /或 HS-PDSCH。
在本发明另一些实施例中, UE还可用于, 在上述从第二小区接收携带上 述下行信令的第二 HS-PDSCH子帧之前,在通过第一小区接收来自第一小区的 服务基站的第一命令之后, 开始监听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中, 第一命令用于指示上述 UE激活对第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明又一些实施例中, UE还可用于在上述从第二小区接收携带上述 下行信令的第二 HS-PDSCH子帧之前,在通过第二小区的增强专用信道模式中 相对授权信道 E-RGCH接收来自第二小区的服务基站的第三命令之后, 开始监 听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中, 第三 命令用于指示上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 / 或 HS-PDSCH的监听。
可以看出, 本实施例中第一基站 1320从 RNC 1310获得待向 UE传输的下行 信令; 若确定上述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区 向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向 上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上 述 UE接入的服务 HS-DSCH小区, 第二小区和第一小区的频点相同。 由于第一 基站 1320分别在第一小区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上述 UE接 入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二小区来 接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 参见图 14、 本发明实施例还提供一种通信系统, 可包括:
无线网络控制器 1410、 第二基站 1420和第三基站 1430。
其中, 无线网络控制器 1410用于, 生成待向用户设备 UE传输的下行信令; 若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区的服务基 站为第二基站 1420, 第二小区的服务基站为第三基站 1430, 向第三基站 1420 发送上述下行信令; 向第三基站 1430发送上述下行信令;
第二基站 1420, 用于接收来自上述 RNC的上述下行信令, 通过第一小区 向上述 UE发送携带上述下行信令的第三 HS-PDSCH子帧;
第三基站 1430,用于接收来自无线网络控制器 1410的上述下行信令,通过 第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧; 其中, 第 二小区和第一小区的频点相同,第一小区为上述 UE接入的服务 HS-DSCH小区。
在本发明的一些实施例中,无线网络控制器 1410在向第二基站 1420发送上 述下行信令之前或之后或同时,无线网络控制器 1410还可向第二基站 1420发送 第二配置指令, 以将第一小区配置为 SDT主小区。 在向第三基站 1430发送上述 下行信令之前或之后或同时,无线网络控制器 1410还可向第三基站 1430发送第 三配置指令, 以将第二小区配置为 SDT协助小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向无线网络控制器 1410上报 SDT能力, 比如基站可以上报支持那些 SDT模 式。 相应的, 无线网络控制器 1410据此进行 SDT小区配置, 当然, 无线网络控 制器 1410也可默认为 UE和基站支持部分或全部 SDT模式。
在本发明的一些实施例中, 若第一小区的服务基站为第二基站 1420, 第二 小区的服务基站为第三基站 1430, 上述向第三基站 1430发送上述下行信令包 括:在接收来自第二基站 1420的第二命令之后向第三基站 1430发送上述下行信 令, 第二命令由第二基站 1420在通过第一小区向上述 UE发送第一命令和携带 上述下行信令的第三 HS-PDSCH子帧之后发送, 第一命令用于指示上述 UE激 活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明另一些实施例中, 若第一小区的服务基站为第二基站 1420, 第二 小区的服务基站为第三基站 1430, 上述向第三基站 1430发送上述下行信令, 可 包括: 在向第二基站 1420发送上述下行信令之后延迟设定时长(如 0.5毫秒、 1 毫秒或其它的时长)之后, 向第三基站 1430发送上述下行信令。 其中, 上述设 定时长可大于或等于第二基站 1420和无线网络控制器 1410的 Iub接口的传输时 延差。
在本发明的一些实施例中, UE还可用于, 从第一小区接收携带下行信令 的第一高速物理下行共享信道 HS-PDSCH子帧;从第二小区接收携带上述下行 信令的第二 HS-PDSCH子帧。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。 在本发明一些实施例中, UE还可用于, 向第一小区的服务基站发送第一 下行传输正误指示, 不向第二小区的服务基站发送第二下行传输正误指示; 其 中, 第一下行传输正误指示用于指示出上述 UE是否正确译码出接收到的第一 HS-PDSCH子帧, 第二下行传输正误指示用于指示出上述 UE是否正确译码出 接收到的第二 HS-PDSCH子帧。 如此, 则可在一定程度上解除第二 HS-PDSCH 子帧和对应上行反馈信息的耦合关系, 这有利于筒化信令传输控制机制。
在本发明的一些实施例中, UE接收第一 HS-PDSCH子帧和第二 HS-PDSCH 子帧的定时偏差范围为 0个码片至 38400个码片 (例如可为 0个码片至 7680个 码片)或其它范围。 其中, 接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的 定时偏差可没有必然限制。 如此, 则可在一定程度上解除第一 HS-PDSCH子帧 和第二 HS-PDSCH子帧在发送时间上的耦合限制, 这有利于筒化发送控制机 制。
在本发明一些实施例中, UE还可用于, 在上述从第二小区接收携带上述 下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听第二小 区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 并在完成服务小区切 换之后停止监听第二小区的 HS-SCCH和 /或 HS-PDSCH。
在本发明另一些实施例中, UE还可用于, 在上述从第二小区接收携带上 述下行信令的第二 HS-PDSCH子帧之前,在通过第一小区接收来自第一小区的 服务基站的第一命令之后, 开始监听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中, 第一命令用于指示上述 UE激活对第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明又一些实施例中, UE还可用于, 在上述从第二小区接收携带上 述下行信令的第二 HS-PDSCH子帧之前,在通过第二小区的增强专用信道模式 中相对授权信道 E-RGCH接收来自第二小区的服务基站的第三命令之后, 开始 监听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中第三 命令用于指示上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 / 或 HS-PDSCH的监听。
可以理解的是,本实施例的第二基站 1420可用于实现上述方法实施例中的 第二基站的部分或全部功能,第三基站 1430可用于实现上述方法实施例中的第 三基站的部分或全部功能; RNC 1410可用于实现上述方法实施例中的 RNC的 部分或全部功能, 其具体实现过程可参照上述方法实施例的相关描述, 此处不 再赘述。
可以看出, 本实施例中无线网络控制器 1410生成待向 UE传输的下行信令 之后; 若确定上述 UE移动到第一小区和第二小区的交叠区域且第一小区和第 二小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基 站通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以 便第一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH 子帧; 若第一小区的服务基站为第二基站 1420, 第二小区的服务基站为第三基 站 1430, 向第二基站 1420发送上述下行信令, 以便于第二基站 1420通过第一小 区向上述 UE发送携带上述下行信令的第三 HS-PDSCH子帧; 向第三基站 1430 发送上述下行信令, 以便第三基站 1430通过第二小区向上述 UE发送携带上述 下行信令的第四 HS-PDSCH子帧。 由于无线网络控制器 1410通过基站分别在第 一小区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二 小区和第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此可使得 UE可以分别从第一小区和第二小区来接收同一下行信令, 可见相 对于现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 参见图 15 , 本发明实施例还提供一种用户设备 1500。
如图 15所示, 为了便于说明, 仅示出了与本发明实施例相关的部分, 具 体技术细节未揭示的,请参照本发明实施例方法部分。图 15所示用户设备 1500 可以为手机、 平板电脑、 个人数字助理(PDA, Personal Digital Assistant ), 车 载电脑等任意用户设备, 下面主要以用户设备 900为手机为例:
其中, 图 15示出的是与本发明实施例提供的终端相关的手机的部分结构 的框图。 参考图 15, 手机包括: 射频(Radio Frequency, RF ) 电路 1510、 存 储器 1520、 输入单元 1530、 无线保真 ( wireless fidelity, WiFi )模块 1570、 显示单元 1540、 传感器 1550、 音频电路 1560、 处理器 1580、 以及电源 1590 等部件。 其中, 本领域技术人员可以理解, 图 15中示出的手机结构并不构成对手 机的限定, 可以包括比图示更多或更少的部件, 或者组合某些部件, 或者不同 的部件布置。
下面结合图 15对手机的各个构成部件进行具体的介绍:
RF电路 1510可用于在收发信息或通话过程中,信号的接收和发送,特别 地, 将基站的下行信息接收后, 给处理器 1580处理; 另外, 将设计上行的数 据发送给基站。 通常, RF电路包括但不限于天线、 至少一个放大器、 收发信 机、 耦合器、 低噪声放大器(Low Noise Amplifier, LNA )、 双工器等。 此外, RF电路 1510还可以通过无线通信与网络和其他设备通信。上述无线通信可以 使用任一通信标准或协议,包括但不限于全球移动通讯系统 ( Global System of Mobile communication , GSM )、 通用分组无线月良务 ( General Packet Radio Service, GPRS )、 码分多址( Code Division Multiple Access, CDMA ), 宽带码 分多址( Wideband Code Division Multiple Access, WCDMA ),长期演进 ( Long Term Evolution, LTE ) )、 电子邮件、 短消息服务( Short Messaging Service, SMS )等。
其中,存储器 1520可用于存储软件程序以及模块, 处理器 1580通过运行 存储在存储器 1520的软件程序以及模块, 从而执行手机的各种功能应用以及 数据处理。 存储器 1520可主要包括存储程序区和存储数据区, 其中, 存储程 序区可存储操作系统、 至少一个功能所需的应用程序(如声音播放功能、 图像 播放功能等 )等; 存储数据区可存储根据手机的使用所创建的数据 (如音频数 据、 电话本等)等。 此外, 存储器 1520可以包括高速随机存取存储器, 还可 以包括非易失性存储器, 例如至少一个磁盘存储器件、 闪存器件、 或其他易失 性固态存储器件。
输入单元 1530可用于接收输入的数字或字符信息, 以及产生与手机 1500 的用户设置以及功能控制有关的键信号输入。 具体地, 输入单元 1530可包括 触控面板 1531以及其他输入设备 1532。 触控面板 1531 , 也称为触摸屏, 可收 集用户在其上或附近的触摸操作 (比如用户使用手指、触笔等任何适合的物体 或附件在触控面板 1531上或在触控面板 1531附近的操作 ), 并根据预先设定 的程式驱动相应的连接装置。 可选的, 触控面板 1531可包括触摸检测装置和 触摸控制器两个部分。 其中, 触摸检测装置检测用户的触摸方位, 并检测触摸 操作带来的信号,将信号传送给触摸控制器; 触摸控制器从触摸检测装置上接 收触摸信息, 并将它转换成触点坐标, 再送给处理器 1580, 并能接收处理器 1580发来的命令并加以执行。 此外, 可以采用电阻式、 电容式、 红外线以及 表面声波等多种类型实现触控面板 1531。 除了触控面板 1531 , 输入单元 1530 还可以包括其他输入设备 1532。 具体地, 其他输入设备 1532可以包括但不限 于物理键盘、 功能键(比如音量控制按键、 开关按键等)、 轨迹球、 鼠标、 操 作杆等中的一种或多种。
其中, 显示单元 1540可用于显示由用户输入的信息或提供给用户的信息 以及手机的各种菜单。 显示单元 1540可包括显示面板 1541 , 可选的, 可以采 用液晶显示器 (Liquid Crystal Display , LCD )、 有机发光二极管 (Organic Light-Emitting Diode, OLED )等形式来配置显示面板 1541。 进一步的, 触控 面板 1531可覆盖显示面板 1541 , 当触控面板 1531检测到在其上或附近的触 摸操作后,传送给处理器 1580以确定触摸事件的类型, 随后处理器 1580根据 触摸事件的类型在显示面板 1541上提供相应的视觉输出。 虽然在图 15中,触 控面板 1531与显示面板 1541是作为两个独立的部件来实现手机的输入功能, 但是在某些实施例中,可以将触控面板 1531与显示面板 1541集成而实现手机 的输入和输出功能。
其中, 手机 1500还可包括至少一种传感器 1550, 如光传感器、 运动传感 器以及其他传感器。 具体地, 光传感器可包括环境光传感器及接近传感器, 其 中环境光传感器可根据环境光线的明暗来调节显示面板 1541的亮度, 接近传 感器可在手机移动到耳边时, 关闭显示面板 1541和 /或背光。 作为运动传感器 的一种, 加速计传感器可检测各个方向上(一般为三轴)加速度的大小, 静止 时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、 相关游戏、 磁力计姿态校准)、 振动识别相关功能(比如计步器、 敲击)等; 至 于手机还可配置的陀螺仪、 气压计、 湿度计、 温度计、 红外线传感器等其他传 感器, 在此不再赘述。
音频电路 1560、扬声器 1561 ,传声器 1562可提供用户与手机之间的音频 接口。 音频电路 1560可将接收到的音频数据转换后的电信号, 传输到扬声器 1561 , 由扬声器 1561转换为声音信号输出; 另一方面, 传声器 1562将收集的 声音信号转换为电信号, 由音频电路 1560接收后转换为音频数据, 再将音频 数据输出处理器 1580处理后, 经 RF电路 1510以发送给比如另一手机, 或者 将音频数据输出至存储器 1520以便进一步处理。
WiFi属于短距离无线传输技术, 手机通过 WiFi模块 1570可以帮助用户 收发电子邮件、浏览网页和访问流式媒体等, 它为用户提供了无线的宽带互联 网访问。 虽然图 15示出了 WiFi模块 1570, 但是可以理解的是, 其并不属于 手机 1500的必须构成, 完全可以根据需要在不改变发明的本质的范围内而省 略。
处理器 1580是手机的控制中心, 利用各种接口和线路连接整个手机的各 个部分, 通过运行或执行存储在存储器 1520内的软件程序和 /或模块, 以及调 用存储在存储器 1520内的数据, 执行手机的各种功能和处理数据, 从而对手 机进行整体监控。 可选的, 处理器 1580可包括一个或多个处理单元; 优选的, 处理器 1580可集成应用处理器和调制解调处理器, 其中, 应用处理器主要处 理操作系统、 用户界面和应用程序等, 调制解调处理器主要处理无线通信。 可 以理解的是, 上述调制解调处理器也可以不集成到处理器 1580中。
手机 1500还包括给各个部件供电的电源 1590 (比如电池), 优选的, 电 源可以通过电源管理系统与处理器 1580逻辑相连, 从而通过电源管理系统实 现管理充电、 放电、 以及功耗管理等功能。 尽管未示出, 手机 1500还可以包 括摄像头、 蓝牙模块等, 在此不再赘述。
在本发明实施例中, 该手机所包括的处理器 1580还具有以下功能: 若上 述 UE移动到第一小区和第二小区的交叠区域,从第一小区接收携带下行信令 的第一高速物理下行共享信道 HS-PDSCH子帧; 从第二小区接收携带上述下 行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频点相同, 第 一小区为上述 UE接入的服务高速下行共享信道 HS-DSCH小区。
在本发明一些实施例中, 第一小区被配置为 SDT主小区, 第二小区被配置 为 SDT协助小区。
在本发明的一些实施例中, 支持 SDT特性的 UE可先向网络侧上 ·¾υΕ自身 的 SDT能力, 比如 UE可以上报支持那些 SDT模式。 另外, 支持 SDT特性的基站 可以向 RNC上报 SDT能力,比如基站可以上报支持那些 SDT模式。相应的, RNC 据此进行 SDT小区配置, 当然, RNC也可默认为 UE和基站支持部分或全部 SDT 模式。
在本发明一些实施例中, 处理器 1580还可用于, 向第一小区的服务基站发 送第一下行传输正误指示,不向第二小区的服务基站发送第二下行传输正误指 示; 其中, 第一下行传输正误指示用于指示出上述 UE是否正确译码出接收到 的第一 HS-PDSCH子帧, 第二下行传输正误指示用于指示出上述 UE是否正确 译码出接收到的第二 HS-PDSCH子帧。 如此, 则可在一定程度上解除第二 HS-PDSCH子帧和对应上行反馈信息的耦合关系,这有利于筒化信令传输控制 机制。
在本发明一些实施例中, 处理器 1580接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片 (例如可为 0个码 片至 7680个码片 ) 或其它范围。 其中, 接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差可没有必然限制。 如此, 则可在一定程度上解除第 一 HS-PDSCH子帧和第二 HS-PDSCH子帧在发送时间上的耦合限制, 这有利于 筒化发送控制机制。
在本发明一些实施例中, 处理器 1580还可用于, 在上述从第二小区接收携 带上述下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听 第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 并在完成服务 小区切换之后停止监听第二小区的 HS-SCCH和 /或 HS-PDSCH。
在本发明另一些实施例中, 处理器 1580还可用于,在上述从第二小区接收 携带上述下行信令的第二 HS-PDSCH子帧之前,在通过第一小区接收来自第一 小区的服务基站的第一命令之后,开始监听第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 其中, 第一命令用于指示上述 UE激活对第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明又一些实施例中, 处理器 1580还可用于,在上述从第二小区接收 携带上述下行信令的第二 HS-PDSCH子帧之前,在通过第二小区的增强专用信 道模式中相对授权信道 E-RGCH接收来自第二小区的服务基站的第三命令之 后, 开始监听第二小区的 HS-SCCH和 /或 HS-PDSCH, 其中, 第三命令用于指 示上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
可以理解的是,本实施例的手机 1500的部分器件的功能可根据上述方法实 施例中的方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描 述, 此处不再赘述。
可以看出, 本实施例中, 当手机 1500移动到第一小区和第二小区的交叠区 域, 上述 UE从第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 上述 UE从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频点相同, 第一小区为上述 UE 接入的服务高速下行共享信道 HS-DSCH小区。 由于 UE移动到第一小区和第二 小区的交叠区域时,可分别在第一小区和第二小区接收网络侧下发的携带了同 一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区 为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和 第二小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有 利于提高 UE接收下行信令的成功率。 参见图 16,图 16是本发明的另一实施例还提供的无线网络控制器 1600的结 构框图。
其中, 无线网络控制器 1600可以包括:
至少一个处理器 1601 , 至少一个网络接口 1604或者其他用户接口 1603,存 储器 1605, 至少一个通信总线 1602。通信总线 1602用于实现这些组件之间的连 接通信。 其中, 该无线网络控制器 16000可选的包含用户接口 1603, 包括显示 器(例如触摸屏、 LCD, CRT, 全息成像(Holographic )或者投影(Projector ) 等)、 点击设备(例如鼠标, 轨迹球(trackball )触感板或触摸屏等)、 摄像头 和 /或拾音装置等。
其中, 存储器 1602可以包括只读存储器和随机存取存储器, 并向处理器 1601提供指令和数据。存储器 1602中的一部分还可以包括非易失性随机存取存 储器( NVRAM )。 在一些实施方式中,存储器 1605存储了如下的元素, 可执行模块或者数据 结构, 或者他们的子集, 或者他们的扩展集:
操作系统 16051 , 包含各种系统程序, 用于实现各种基础业务以及处理 基于硬件的任务;
应用程序模块 16052, 包含各种应用程序, 用于实现各种应用业务。 应用程序模块 16052中包括但不限于图 6所示生成器 610和传输器 620。 在本发明实施例中,通过调用存储器 1605存储的程序或指令,处理器 1601 用于, 生成待向用户设备 UE传输的下行信令;
若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第 二小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基 站通过第一小区向上述 UE发送携带上述下行信令的第一高速物理下行共享信 道 HS-PDSCH子帧, 以便第一基站通过第二小区向上述 UE发送携带上述下行 信令的第二 HS-PDSCH子帧; 其中, 第二小区和第一小区的频点相同, 第一小 区为上述 UE接入的服务高速下行共享信道 HS-DSCH小区;
或者,
若确定上述 UE移动到第一小区和第二小区的交叠区域, 且第一小区的服 务基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发送上述下 行信令, 以便于第二基站通过第一小区向上述 UE发送携带上述下行信令的第 三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以便第三基站通过第二小 区向上述 UE发送携带上述下行信令的第四 HS-PDSCH子帧; 第二小区和第一 小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区。
在本发明的一些实施例中,处理器 1601还可用于在上述向第二基站发送上 述下行信令之前, 向第二基站发送第二配置指令, 以将第一小区配置为 SDT主 小区; 在上述向第三基站发送上述下行信令之前还包括: 向第三基站发送第三 配置指令, 以将第二小区配置为 SDT协助小区;
或者, 处理器 1601 , 还用于向第一基站发送上述下行信令之前, 向第一基 站发送第一配置指令, 以将第一小区配置为多重信令传输 SDT主小区, 将第二 小区配置为 SDT协助小区。 在本发明的一些实施例中, 若第一小区的服务基站为第二基站, 第二小区 的服务基站为第三基站, 则在上述向第三基站发送上述下行信令的方面, 处理 器 1601可具体用于,
在上述向第二基站发送上述下行信令之后延迟设定时长,向第三基站发送 上述下行信令; 或者,在接收来自第二基站的第二命令之后向第三基站发送上 述下行信令, 其中, 第二命令由第二基站在通过第一小区向上述 UE发送第一 命令和携带上述下行信令的第三 HS-PDSCH子帧之后发送, 第一命令用于指示 上述 UE激活对第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH 的监听。
在本发明的一些实施例中, 第一小区为宏小区或低功率节点小区, 第二小 区为宏小区或低功率节点小区。
可以理解的是,本实施例的无线网络控制器 1600可用于实现上述方法实施 例中的任意一个无线网络控制器的部分或全部功能,其各功能模块的功能可根 据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施 例的相关描述, 此处不再赘述。
可见, 采用上述方案后, 无线网络控制器 1600生成待向 UE传输的下行信 令之后; 若确定 UE移动到第一小区和第二小区的交叠区域, 且第一小区和第 二小区的服务基站均为第一基站, 向第一基站发送上述下行信令, 以便第一基 站通过第一小区向上述 UE发送携带上述下行信令的第一 HS-PDSCH子帧, 以 便第一基站通过第二小区向上述 UE发送携带上述下行信令的第二 HS-PDSCH 子帧; 若第一小区的服务基站为第二基站, 第二小区的服务基站为第三基站, 向第二基站发送上述下行信令, 以便于第二基站通过第一小区向上述 UE发送 携带上述下行信令的第三 HS-PDSCH子帧; 向第三基站发送上述下行信令, 以 便第三基站通过第二小区向上述 UE发送携带上述下行信令的第四 HS-PDSCH 子帧。 由于 RNC通过基站分别在第一小区和第二小区向 UE下发携带了同一下 行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区为上 述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和第二 小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有利于 提高 UE接收下行信令的成功率。 参见图 17, 图 17是本发明的另一实施例还提供的基站 1700的结构框图。 其中, 基站 1700可以包括:
至少一个处理器 1701 , 至少一个网络接口 1704或者其他用户接口 1703,存 储器 1705, 至少一个通信总线 1702。通信总线 1702用于实现这些组件之间的连 接通信。 其中, 该无线网络控制器 17000可选的包含用户接口 1703, 包括显示 器(例如触摸屏、 LCD, CRT, 全息成像(Holographic )或者投影(Projector ) 等)、 点击设备(例如鼠标, 轨迹球(trackball )触感板或触摸屏等)、 摄像头 和 /或拾音装置等。
其中, 存储器 1702可以包括只读存储器和随机存取存储器, 并向处理器
1701提供指令和数据。存储器 1702中的一部分还可以包括非易失性随机存取存 储器( NVRAM )。
在一些实施方式中,存储器 1705存储了如下的元素, 可执行模块或者数据 结构, 或者他们的子集, 或者他们的扩展集:
操作系统 17051 , 包含各种系统程序, 用于实现各种基础业务以及处理 基于硬件的任务;
应用程序模块 17052, 包含各种应用程序, 用于实现各种应用业务。 应用程序模块 17052中可以包括但不限于图 7-a或图 7-b所示的信令获得 器 710、 传输器 720和配置器 730。
在本发明的实施例中, 通过调用存储器 1705存储的程序或指令, 处理器
1701用于, 获得待向用户设备 UE传输的下行信令; 若确定上述 UE移动到第一 小区和第二小区的交叠区域, 通过第一小区向上述 UE发送携带上述下行信令 的第一高速物理下行共享信道 HS-PDSCH子帧, 并通过第二小区向上述 UE发 送携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入 的服务高速下行共享信道 HS-DSCH小区, 第二小区和第一小区的频点相同。
在本发明的一些实施例中, 在上述获得待向用户设备 UE传输的下行信令 的方面, 处理器 1701具体用于: 生成待向 UE传输的下行信令或接收来自无线 网络控制器 RNC的待向 UE传输的下行信令。 在本发明的一些实施例中, 处理器 1701还用于, 在接收到来自上述 RNC 的第一配置指令之后, 将第一小区配置为多重信令传输 SDT主小区, 将第二小 区配置为 SDT协助小区。
在本发明的一些实施例中, 处理器 1701还用于,在上述通过第二小区向上 述 UE发送携带上述下行信令的第二 HS-PDSCH子帧之前, 通过第一小区向上 述 UE发送第一命令, 其中, 第一命令用于指示上述 UE激活对第二小区的下行 高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在上述通过第二小 区向上述 UE发送携带上述下行信令的第二 HS-PDSCH子帧之前, 通过第二小 区的增强专用信道模式中相对授权信道 E-RGCH向上述 UE发送第三命令,第三 命令用于指示上述 UE激活对第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
在本发明的一些实施例中, 处理器 1701发送第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
可以理解的是,本实施例的基站 1700可用于实现上述方法实施例中的任意 一个基站的部分或全部功能,其各功能模块的功能可根据上述方法实施例中的 方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描述, 此处不 再赘述。
可见, 采用上述方案后, 基站 1700获得待向 UE传输的下行信令; 若确定 上述 UE移动到第一小区和第二小区的交叠区域, 通过第一小区向上述 UE发送 携带上述下行信令的第一 HS-PDSCH子帧, 并通过第二小区向上述 UE发送携 带上述下行信令的第二 HS-PDSCH子帧, 其中, 第一小区为上述 UE接入的服 务 HS-DSCH小区, 第二小区和第一小区的频点相同。 由于基站分别在第一小 区和第二小区向 UE下发携带了同一下行信令的 HS-PDSCH子帧, 且第二小区 和第一小区的频点相同, 第一小区为上述 UE接入的服务 HS-DSCH小区, 因此 可使得 UE可以分别从第一小区和第二小区来接收同一下行信令, 可见相对于 现有机制, 本发明实施例的机制有利于提高 UE接收下行信令的成功率。 参见图 18, 图 18是本发明的另一实施例还提供的用户设备 1800的结构框 图。
其中, 用户设备 1800可以包括: 至少一个处理器 1801 , 至少一个网络接口 1804或者其他用户接口 1803,存 储器 1805, 至少一个通信总线 1802。通信总线 1802用于实现这些组件之间的连 接通信。 其中, 该无线网络控制器 18000可选的包含用户接口 1803, 包括显示 器(例如触摸屏、 LCD, CRT, 全息成像(Holographic )或者投影(Projector ) 等)、 点击设备(例如鼠标, 轨迹球(trackball )触感板或触摸屏等)、 摄像头 和 /或拾音装置等。
其中, 存储器 1802可以包括只读存储器和随机存取存储器, 并向处理器 1801提供指令和数据。存储器 1802中的一部分还可以包括非易失性随机存取存 储器( NVRAM )。
在一些实施方式中,存储器 1805存储了如下的元素, 可执行模块或者数据 结构, 或者他们的子集, 或者他们的扩展集:
操作系统 18051 , 包含各种系统程序, 用于实现各种基础业务以及处理 基于硬件的任务;
应用程序模块 18052, 包含各种应用程序, 用于实现各种应用业务。 应用程序模块 18052中可以包括但不限于图 8-a或图 8-b或图 9所示的接 收器 810、 译码器 820、 发射器 830和监听器 840。
在本发明的实施例中, 通过调用存储器 1805存储的程序或指令, 处理器 1801用于, 若上述 UE移动到第一小区和第二小区的交叠区域, 从第一小区接 收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从第二小区接 收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频 点相同, 第一小区为上述 UE接入的服务高速下行共享信道 HS-DSCH小区。
在本发明的一些实施例中, 第一小区被配置为多重信令传输 SDT主小区, 第二小区被配置为 SDT协助小区。
在本发明的一些实施例中, 处理器 1801还用于, 向第一小区的服务基站发 送第一下行传输正误指示,不向第二小区的服务基站发送第二下行传输正误指 示; 第一下行传输正误指示用于指示出上述 UE是否正确译码出接收到的第一 HS-PDSCH子帧, 第二下行传输正误指示用于指示出上述 UE是否正确译码出 接收到的第二 HS-PDSCH子帧。 在本发明的一些实施例中, 处理器 1801接收第一 HS-PDSCH子帧和第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片 (例如 0个码片至 7680个码片)。
在本发明的一些实施例中, 处理器 1801还用于,在上述从第二小区接收携 带上述下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听 第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在 通过第一小区接收来自第一小区的服务基站的第一命令之后,开始监听第二小 区的 HS-SCCH和 /或 HS-PDSCH, 第一命令用于指示上述 UE激活对第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在上述从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧之前,在 通过第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来自第二小 区的服务基站的第三命令之后, 开始监听第二小区的 HS-SCCH和 /或 HS-PDSCH, 其中, 第三命令用于指示上述 UE激活对第二小区的 HS-SCCH和 / 或 HS-PDSCH的监听。
可以理解的是,本实施例的用户设备 1200可用于实现上述方法实施例中的 任意一个用户设备的部分或全部功能,其各功能模块的功能可根据上述方法实 施例中的方法具体实现, 其具体实现过程可以参照上述方法实施例的相关描 述, 此处不再赘述。
可见, 采用上述方案后, 当用户设备 1200移动到第一小区和第二小区的交 叠区域, 上述 UE从第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 上述 UE从第二小区接收携带上述下行信令的第二 HS-PDSCH子帧, 其中, 第二小区和第一小区的频点相同, 第一小区为上述 UE 接入的服务高速下行共享信道 HS-DSCH小区。 由于 UE移动到第一小区和第二 小区的交叠区域时,可分别在第一小区和第二小区接收网络侧下发的携带了同 一下行信令的 HS-PDSCH子帧, 且第二小区和第一小区的频点相同, 第一小区 为上述 UE接入的服务 HS-DSCH小区, 因此, 可使得 UE可以分别从第一小区和 第二小区来接收同一下行信令, 可见相对于现有机制, 本发明实施例的机制有 利于提高 UE接收下行信令的成功率。
本发明实施例还提供一种计算机存储介质, 其中, 该计算机存储介质可存 储有程序,该程序执行时包括上述方法实施例中记载的信令传输方法的部分或 全部步骤。
需要说明的是, 对于前述的各方法实施例, 为了筒单描述, 故将其都表述 为一系列的动作组合,但是本领域技术人员应该知悉, 本发明并不受所描述的 动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。 其次, 本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例, 所涉及的动作和模块并不一定是本发明所必须的。 在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置, 可通过其 它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如所述单 元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例 如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽 略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通信连 接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性或其 它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的 形式实现。 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可为个人计算机、 服务器或 者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的 存储介质包括: U盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存 储器(RAM, Random Access Memory ), 移动硬盘、 磁碟或者光盘等各种可以 存储程序代码的介质。
以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽 管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理 解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分 技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱 离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种信令传输方法, 其特征在于, 包括:
无线网络控制器 RNC生成待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 并且所述第一小 区和所述第二小区的服务基站均为第一基站,向所述第一基站发送所述下行信 令, 以便所述第一基站通过所述第一小区向所述 UE发送携带所述下行信令的 第一高速物理下行共享信道 HS-PDSCH子帧, 以便所述第一基站通过所述第二 小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其中, 所述第 二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速 下行共享信道 HS-DSCH小区;
或者,
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基 站发送所述下行信令, 以便于所述第二基站通过所述第一小区向所述 UE发送 携带所述下行信令的第三 HS-PDSCH子帧; 向所述第三基站发送所述下行信 令, 以便所述第三基站通过所述第二小区向所述 UE发送携带所述下行信令的 第四 HS-PDSCH子帧; 所述第二小区和所述第一小区的频点相同, 所述第一小 区为所述 UE接入的服务 HS-DSCH小区。
2、 根据权利要求 1所述的方法, 其特征在于,
所述向所述第一基站发送所述下行信令之前还包括:向所述第一基站发送 第一配置指令, 以将所述第一小区配置为多重信令传输 SDT主小区, 将所述第 二小区配置为 SDT协助小区;
或者,
在所述向第二基站发送所述下行信令之前还包括:向所述第二基站发送第 二配置指令, 以将所述第一小区配置为 SDT主小区; 在所述向第三基站发送所 述下行信令之前还包括: 向所述第三基站发送第三配置指令, 以将所述第二小 区配置为 SDT协助小区。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 若所述第一小区的服务 基站为第二基站, 所述第二小区的服务基站为第三基站, 所述向所述第三基站 发送所述下行信令, 包括:
在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
4、 根据权利要求 1至 3任意一项所述的方法, 其特征在于,
所述第一小区为宏小区或低功率节点小区,所述第二小区为宏小区或低功 率节点小区。
5、 一种信令传输方法, 其特征在于, 包括:
基站获得待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 通过所述第一小 区向所述 UE发送携带所述下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第一小区为所述 UE接入的服务高速下行共享信 道 HS-DSCH小区, 所述第二小区和所述第一小区的频点相同。
6、 根据权利要求 5所述的方法, 其特征在于, 所述获得待向用户设备 UE 传输的下行信令包括: 生成待向 UE传输的下行信令或接收来自无线网络控制 器 RNC的待向 UE传输的下行信令。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 所述方法还包括: 在接 收到来自所述 RNC的第一配置指令之后,将所述第一小区配置为多重信令传输 SDT主小区, 将所述第二小区配置为 SDT协助小区。
8、 根据权利要求 5至 7任意一项所述的方法, 其特征在于, 所述通过所述 第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之前还包 括:
通过所述第一小区向所述 UE发送第一命令, 其中, 所述第一命令用于指 示所述 UE激活对所述第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH向所述 UE发送第三命令, 其中, 所述第三命令用于指示所述 UE激活对所述第二小区 的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
9、 根据权利要求 5至 8任意一项所述的方法, 其特征在于, 发送所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
10、 一种信令传输方法, 其特征在于, 包括:
当用户设备 UE移动到第一小区和第二小区的交叠区域, 所述 UE从所述第 一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧; 以及, 所述 UE从所述第二小区接收携带所述下行信令的第二 HS-PDSCH 子帧, 其中, 所述第二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速下行共享信道 HS-DSCH小区。
11、 根据权利要求 10所述的方法, 其特征在于,
所述第一小区被配置为多重信令传输 SDT主小区,所述第二小区被配置为 SDT协助小区。
12、 根据权利要求 10或 11所述的方法, 其特征在于,
所述方法还包括:
所述 UE向第一小区的服务基站发送第一下行传输正误指示, 不向第二小 区的服务基站发送第二下行传输正误指示; 其中, 所述第一下行传输正误指示 用于指示出所述 UE是否正确译码出接收到的所述第一 HS-PDSCH子帧, 所述 第二下行传输正误指示用于指示出所述 UE是否正确译码出接收到的所述第二 HS-PDSCH子帧。
13、 根据权利要求 10至 12任意一项所述的方法, 其特征在于,
接收所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的定时偏差范 围为 0个码片至 38400个码片。
14、 根据权利要求 10至 13任意一项所述的方法, 其特征在于, 所述方法还包括:
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前, 所述 UE在上报 1D测量报告之后开始监听所述第二小区的下行高速共享控 制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前,在通过所述第一小区接收来自第一小区的服务基站的第一命令之后, 所述 UE开始监听所述第二小区的下行高速共享控制信道 HS-SCCH和 /或 HS-PDSCH, 所述第一命令用于指示所述 UE激活对所述第二小区的 HS-SCCH 和 /或 HS-PDSCH的监听;
或者,在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子 帧之前, 在通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH接 收来自第二小区的服务基站的第三命令之后, 所述 UE开始监听所述第二小区 的 HS-SCCH和 /或 HS-PDSCH, 其中, 所述第三命令用于指示所述 UE激活对所 述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
15、 一种无线网络控制器, 其特征在于, 包括:
生成器, 用于生成待向用户设备 UE传输的下行信令;
传输器, 用于若确定所述 UE移动到第一小区和第二小区的交叠区域, 且 所述第一小区和所述第二小区的服务基站均为第一基站,向所述第一基站发送 所述下行信令, 以便所述第一基站通过所述第一小区向所述 UE发送携带所述 下行信令的第一高速物理下行共享信道 HS-PDSCH子帧, 以便所述第一基站通 过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其 中, 所述第二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入 的服务高速下行共享信道 HS-DSCH小区;
或者,
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基 站发送所述下行信令, 以便于所述第二基站通过所述第一小区向所述 UE发送 携带所述下行信令的第三 HS-PDSCH子帧; 向所述第三基站发送所述下行信 令, 以便所述第三基站通过所述第二小区向所述 UE发送携带所述下行信令的 第四 HS-PDSCH子帧; 所述第二小区和所述第一小区的频点相同, 所述第一小 区为所述 UE接入的服务 HS-DSCH小区。
16、 根据权利要求 15所述的无线网络控制器, 其特征在于,
所述传输器,还用于在所述向第二基站发送所述下行信令之前, 向所述第 二基站发送第二配置指令, 以将所述第一小区配置为 SDT主小区; 在所述向第 三基站发送所述下行信令之前还包括: 向所述第三基站发送第三配置指令, 以 将所述第二小区配置为 SDT协助小区;
或者, 所述传输器, 还用于向所述第一基站发送所述下行信令之前, 向所 述第一基站发送第一配置指令,以将所述第一小区配置为多重信令传输 SDT主 小区, 将所述第二小区配置为 SDT协助小区。
17、 根据权利要求 15或 16所述的无线网络控制器, 其特征在于, 若所述第 一小区的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 则在所 述向所述第三基站发送所述下行信令的方面, 所述传输器具体用于,
在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
18、 根据权利要求 15至 17任一项所述的无线网络控制器, 其特征在于, 所述第一小区为宏小区或低功率节点小区,所述第二小区为宏小区或低功 率节点小区。
19、 一种基站, 其特征在于, 包括:
信令获得器, 用于获得待向用户设备 UE传输的下行信令;
传输器, 用于若确定所述 UE移动到第一小区和第二小区的交叠区域, 通 过所述第一小区向所述 UE发送携带所述下行信令的第一高速物理下行共享信 道 HS-PDSCH子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的 第二 HS-PDSCH子帧, 其中, 所述第一小区为所述 UE接入的服务高速下行共 享信道 HS-DSCH小区, 所述第二小区和所述第一小区的频点相同。
20、 根据权利要求 19所述的基站, 其特征在于,
所述信令获得器具体用于: 生成待向 UE传输的下行信令或接收来自无线 网络控制器 RNC的待向 UE传输的下行信令。
21、 根据权利要求 18或 19所述的基站, 其特征在于,
所述基站还包括: 配置器,用于在接收到来自所述 RNC的第一配置指令之 后, 将所述第一小区配置为多重信令传输 SDT主小区, 将所述第二小区配置为 SDT协助小区。
22、 根据权利要求 19至 21任意一项所述的基站, 其特征在于,
所述传输器还用于, 在所述通过所述第二小区向所述 UE发送携带所述下 行信令的第二 HS-PDSCH子帧之前, 通过所述第一小区向所述 UE发送第一命 令, 其中, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速共 享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在所述通过所述第二小区 向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之前, 通过所述第二 小区的增强专用信道模式中相对授权信道 E-RGCH向所述 UE发送第三命令,所 述第三命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
23、 根据权利要求 19至 22任意一项所述的基站, 其特征在于, 所述传输器 发送所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
24、 一种用户设备, 其特征在于, 包括:
接收器, 用于若所述 UE移动到第一小区和第二小区的交叠区域, 从所述 第一小区接收携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从 所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第二 小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速下 行共享信道 HS-DSCH小区;
译码器, 用于对所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧进行 译码。
25、 根据权利要求 24所述的用户设备, 其特征在于,
所述第一小区被配置为多重信令传输 SDT主小区,所述第二小区被配置为
SDT协助小区。
26、 根据权利要求 24或 25所述的用户设备, 其特征在于,
所述用户设备还包括:
发射器, 用于向第一小区的服务基站发送第一下行传输正误指示, 不向第 二小区的服务基站发送第二下行传输正误指示;所述第一下行传输正误指示用 于指示出所述 UE是否正确译码出接收到的所述第一 HS-PDSCH子帧, 所述第 二下行传输正误指示用于指示出所述 UE是否正确译码出接收到的所述第二 HS-PDSCH子帧。
27、 根据权利要求 24至 26任意一项所述的用户设备, 其特征在于, 所述接收器接收所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的 定时偏差范围为 0个码片至 38400个码片。
28、 根据权利要求 24至 27任意一项所述的用户设备, 其特征在于, 所述用户设备还包括:
监听器, 用于在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听所述第二小区的下行高 速共享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前,在通过所述第一小区接收来自第一小区的服务基站的第一命令之后, 开始 监听所述第二小区的 HS-SCCH和 /或 HS-PDSCH, 所述第一命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前, 在通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来 自第二小区的服务基站的第三命令之后, 开始监听所述第二小区的 HS-SCCH 和 /或 HS-PDSCH, 其中, 所述第三命令用于指示所述 UE激活对所述第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
29、 一种无线网络控制器, 其特征在于, 包括:
至少一个总线、与所述总线相连的至少一个处理器以及与所述总线相连的 至少一个存储器。
其中, 所述处理器通过所述总线调用所述存储器中存储的代码以用于: 生成待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 和所述第二小区的服务基站均为第一基站, 向所述第一基站发送所述下行信 令, 以便所述第一基站通过所述第一小区向所述 UE发送携带所述下行信令的 第一高速物理下行共享信道 HS-PDSCH子帧, 以便所述第一基站通过所述第二 小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其中, 所述第 二小区和所述第一小区的频点相同, 所述第一小区为所述 UE接入的服务高速 下行共享信道 HS-DSCH小区;
或者,
若确定所述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区 的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基 站发送所述下行信令, 以便于所述第二基站通过所述第一小区向所述 UE发送 携带所述下行信令的第三 HS-PDSCH子帧; 向所述第三基站发送所述下行信 令, 以便所述第三基站通过所述第二小区向所述 UE发送携带所述下行信令的 第四 HS-PDSCH子帧; 所述第二小区和所述第一小区的频点相同, 所述第一小 区为所述 UE接入的服务 HS-DSCH小区。
30、 根据权利要求 29所述的无线网络控制器, 其特征在于,
所述处理器,还用于在所述向第二基站发送所述下行信令之前, 向所述第 二基站发送第二配置指令, 以将所述第一小区配置为 SDT主小区; 在所述向第 三基站发送所述下行信令之前还包括: 向所述第三基站发送第三配置指令, 以 将所述第二小区配置为 SDT协助小区;
或者, 所述处理器, 还用于向所述第一基站发送所述下行信令之前, 向所 述第一基站发送第一配置指令,以将所述第一小区配置为多重信令传输 SDT主 小区, 将所述第二小区配置为 SDT协助小区。
31、 根据权利要求 29或 30所述的无线网络控制器, 其特征在于, 若所述第 一小区的服务基站为第二基站, 所述第二小区的服务基站为第三基站, 则在所 述向所述第三基站发送所述下行信令的方面, 所述处理器具体用于,
在所述向所述第二基站发送所述下行信令之后延迟设定时长,向所述第三 基站发送上述下行信令; 或者,在接收来自所述第二基站的第二命令之后向所 述第三基站发送所述下行信令, 其中, 所述第二命令由所述第二基站在通过所 述第一小区向所述 UE发送第一命令和携带所述下行信令的第三 HS-PDSCH子 帧之后发送, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速 共享控制信道 HS-SCCH和 /或 HS-PDSCH的监听。
32、 根据权利要求 29至 31任一项所述的无线网络控制器, 其特征在于, 所述第一小区为宏小区或低功率节点小区,所述第二小区为宏小区或低功 率节点小区。
33、 一种基站, 其特征在于, 包括:
至少一个总线、与所述总线相连的至少一个处理器以及与所述总线相连的 至少一个存储器。
其中, 所述处理器通过所述总线调用所述存储器中存储的代码以用于: 获得待向用户设备 UE传输的下行信令;
若确定所述 UE移动到第一小区和第二小区的交叠区域, 通过所述第一小 区向所述 UE发送携带所述下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第一小区为所述 UE接入的服务高速下行共享信 道 HS-DSCH小区, 所述第二小区和所述第一小区的频点相同。
34、 根据权利要求 33所述的基站, 其特征在于, 在所述获得待向用户设备 UE传输的下行信令的方面, 所述处理器具体用于: 生成待向 UE传输的下行信 令或接收来自无线网络控制器 RNC的待向 UE传输的下行信令。
35、 根据权利要求 33或 34所述的基站, 其特征在于,
所述处理器还用于,在接收到来自所述 RNC的第一配置指令之后,将所述 第一小区配置为多重信令传输 SDT主小区, 将所述第二小区配置为 SDT协助小 区。
36、 根据权利要求 33至 35任意一项所述的基站, 其特征在于,
所述处理器还用于, 在所述通过所述第二小区向所述 UE发送携带所述下 行信令的第二 HS-PDSCH子帧之前, 通过所述第一小区向所述 UE发送第一命 令, 其中, 所述第一命令用于指示所述 UE激活对所述第二小区的下行高速共 享控制信道 HS-SCCH和 /或 HS-PDSCH的监听; 或者在所述通过所述第二小区 向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧之前, 通过所述第二 小区的增强专用信道模式中相对授权信道 E-RGCH向所述 UE发送第三命令,所 述第三命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听。
37、 根据权利要求 33至 36任意一项所述的基站, 其特征在于, 所述处理器 发送所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的定时偏差范围为 0个码片至 38400个码片。
38、 一种用户设备, 其特征在于, 包括:
至少一个总线、与所述总线相连的至少一个处理器以及与所述总线相连的 至少一个存储器。
其中, 所述处理器通过所述总线调用所述存储器中存储的代码以用于: 若所述 UE移动到第一小区和第二小区的交叠区域, 从所述第一小区接收 携带下行信令的第一高速物理下行共享信道 HS-PDSCH子帧;从所述第二小区 接收携带所述下行信令的第二 HS-PDSCH子帧, 其中, 所述第二小区和所述第 一小区的频点相同, 所述第一小区为所述 UE接入的服务高速下行共享信道 HS-DSCH小区。
39、 根据权利要求 38所述的用户设备, 其特征在于,
所述第一小区被配置为多重信令传输 SDT主小区,所述第二小区被配置为 SDT协助小区。
40、 根据权利要求 38或 39所述的用户设备, 其特征在于,
所述处理器还用于,向所述第一小区的服务基站发送第一下行传输正误指 示, 不向第二小区的服务基站发送第二下行传输正误指示; 所述第一下行传输 正误指示用于指示出所述 UE是否正确译码出接收到的所述第一 HS-PDSCH子 帧, 所述第二下行传输正误指示用于指示出所述 UE是否正确译码出接收到的 所述第二 HS-PDSCH子帧。
41、 根据权利要求 38至 40任意一项所述的用户设备, 其特征在于, 所述处理器接收所述第一 HS-PDSCH子帧和所述第二 HS-PDSCH子帧的 定时偏差范围为 0个码片至 38400个码片。
42、 根据权利要求 38至 41任意一项所述的用户设备, 其特征在于, 所述处理器还用于,在所述从所述第二小区接收携带所述下行信令的第二
HS-PDSCH子帧之前,在上报 1D测量报告之后开始监听所述第二小区的下行高 速共享控制信道 HS-SCCH和 /或 HS-PDSCH;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前,在通过所述第一小区接收来自第一小区的服务基站的第一命令之后, 开始 监听所述第二小区的 HS-SCCH和 /或 HS-PDSCH, 所述第一命令用于指示所述 UE激活对所述第二小区的 HS-SCCH和 /或 HS-PDSCH的监听;
或者,
在所述从所述第二小区接收携带所述下行信令的第二 HS-PDSCH子帧之 前, 在通过所述第二小区的增强专用信道模式中相对授权信道 E-RGCH接收来 自第二小区的服务基站的第三命令之后, 开始监听所述第二小区的 HS-SCCH 和 /或 HS-PDSCH, 其中, 所述第三命令用于指示所述 UE激活对所述第二小区 的 HS-SCCH和 /或 HS-PDSCH的监听。
43、 一种计算机存储介质, 其特征在于,
所述计算机存储介质存储有程序,所述程序执行时包括权利要求 1~14任意 一项所述的部分或全部步骤。
44、 一种通信系统, 其特征在于, 包括:
无线网络控制器 RNC和第一基站;
其中, 所述 RNC用于, 生成待向用户设备 UE传输的下行信令; 若确定所 述 UE移动到第一小区和第二小区的交叠区域, 并且所述第一小区和所述第二 小区的服务基站均为第一基站, 向所述第一基站发送所述下行信令;
所述第一基站,用于接收来自所述 RNC的所述下行信令,通过所述第一小 区向所述 UE发送携带所述下行信令的第一高速物理下行共享信道 HS-PDSCH 子帧, 并通过所述第二小区向所述 UE发送携带所述下行信令的第二 HS-PDSCH子帧; 其中, 所述第二小区和所述第一小区的频点相同, 所述第一 小区为所述 UE接入的服务高速下行共享信道 HS-DSCH小区。
45、 一种通信系统, 其特征在于, 包括:
无线网络控制器 RNC、 第二基站和第三基站;
其中, 所述 RNC用于, 生成待向用户设备 UE传输的下行信令; 若确定所 述 UE移动到第一小区和第二小区的交叠区域, 且所述第一小区的服务基站为 第二基站, 所述第二小区的服务基站为第三基站, 向所述第二基站发送所述下 行信令; 向所述第三基站发送所述下行信令;
所述第二基站, 用于接收来自所述 RNC的所述下行信令, 通过所述第一 小区向所述 UE 发送携带所述下行信令的第三高速物理下行共享信道 HS-PDSCH子帧;
所述第三基站, 用于接收来自所述 RNC的所述下行信令, 通过所述第二 小区向所述 UE发送携带所述下行信令的第四 HS-PDSCH子帧; 其中, 所述 第二小区和所述第一小区的频点相同,所述第一小区为所述 UE接入的服务高 速下行共享信道 HS-DSCH小区。
PCT/CN2013/081000 2013-08-07 2013-08-07 信令传输方法和相关设备及通信系统 WO2015018008A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/081000 WO2015018008A1 (zh) 2013-08-07 2013-08-07 信令传输方法和相关设备及通信系统
CN201380000928.3A CN104737617A (zh) 2013-08-07 2013-08-07 信令传输方法和相关设备及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/081000 WO2015018008A1 (zh) 2013-08-07 2013-08-07 信令传输方法和相关设备及通信系统

Publications (1)

Publication Number Publication Date
WO2015018008A1 true WO2015018008A1 (zh) 2015-02-12

Family

ID=52460512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081000 WO2015018008A1 (zh) 2013-08-07 2013-08-07 信令传输方法和相关设备及通信系统

Country Status (2)

Country Link
CN (1) CN104737617A (zh)
WO (1) WO2015018008A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966628A (zh) * 2021-07-07 2022-01-21 北京小米移动软件有限公司 用于非地面网络的sdt处理方法、通信装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433124A (zh) * 2006-04-27 2009-05-13 摩托罗拉公司 蜂窝通信系统中的高速下行链路分组接入通信
CN101467353A (zh) * 2006-06-15 2009-06-24 诺基亚公司 利用用户设备标识向共享控制信道添加信令信息
WO2012134733A1 (en) * 2011-03-28 2012-10-04 Alcatel Lucent Method and apparatus for carrier selection and scheduling in wireless systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433124A (zh) * 2006-04-27 2009-05-13 摩托罗拉公司 蜂窝通信系统中的高速下行链路分组接入通信
CN101467353A (zh) * 2006-06-15 2009-06-24 诺基亚公司 利用用户设备标识向共享控制信道添加信令信息
WO2012134733A1 (en) * 2011-03-28 2012-10-04 Alcatel Lucent Method and apparatus for carrier selection and scheduling in wireless systems

Also Published As

Publication number Publication date
CN104737617A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
US11096200B2 (en) Methods, devices and systems for device to device (D2D) data transmission and retransmission
JP7106580B2 (ja) 通信処理方法および通信装置
WO2021052424A1 (zh) 非连续接收参数配置方法及设备
JP7216804B2 (ja) アップリンク情報の送信方法及び端末
JP2021517434A (ja) 情報報告方法、端末及びネットワーク機器
WO2020063674A1 (zh) 旁链路的链路失败检测方法及终端
WO2017080378A1 (zh) 一种授权频谱辅助接入方法,网络设备及终端设备
US11706655B2 (en) Data transmission method and terminal
WO2018082435A1 (zh) 终端设备移动性的处理方法、终端设备和基站
WO2019214601A1 (zh) 处理csi处理单元、资源的方法、装置及系统
WO2019019895A1 (zh) 能力指示方法、移动终端及网络侧设备
WO2019095088A1 (zh) 一种切换的方法以及设备
WO2018082693A1 (zh) Csi上报方法、装置以及设备
WO2017166034A1 (zh) 来电处理方法、用户设备以及存储介质
WO2014113958A1 (zh) 一种测量方法、用户设备、基站及无线通信系统
JP2022554221A (ja) 情報伝送方法及び機器
WO2020140689A1 (zh) 带宽部分切换方法及装置、通信设备
WO2019242482A1 (zh) 一种命令处理方法及终端设备
WO2019184701A1 (zh) 上行传输方法及终端
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2015018008A1 (zh) 信令传输方法和相关设备及通信系统
WO2020164515A1 (zh) 信号传输方法、设备及系统
WO2016179773A1 (zh) 信号传输方法、基站及用户设备
KR20230035102A (ko) 멀티캐스트 서비스의 수신 방법, 구성 방법, 단말 및 네트워크 측 기기
KR20220084151A (ko) 서비스 품질 파라미터의 설정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891159

Country of ref document: EP

Kind code of ref document: A1