WO2015016542A1 - Dual element fusion-type tandem solar cell and method for manufacturing same - Google Patents

Dual element fusion-type tandem solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2015016542A1
WO2015016542A1 PCT/KR2014/006834 KR2014006834W WO2015016542A1 WO 2015016542 A1 WO2015016542 A1 WO 2015016542A1 KR 2014006834 W KR2014006834 W KR 2014006834W WO 2015016542 A1 WO2015016542 A1 WO 2015016542A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
charge transport
tco
substrate
Prior art date
Application number
PCT/KR2014/006834
Other languages
French (fr)
Korean (ko)
Inventor
최경진
박종혁
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단, 성균관대학교산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Publication of WO2015016542A1 publication Critical patent/WO2015016542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2072Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells comprising two or more photoelectrodes sensible to different parts of the solar spectrum, e.g. tandem cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dual device fused tandem solar cell and a method of manufacturing the same, and more particularly, to a dual device fused tandem solar cell using a semiconductor nanowire and a method of manufacturing the same.
  • a solar cell is a semiconductor device that converts solar energy directly into electrical energy. It has a junction type of a p-type semiconductor and an n-type semiconductor, and its basic structure is similar to a diode. Most solar cells in mass production are silicon based solar cells. As a semiconductor substrate, silicon (Si) is used, which is an indirect interband transition semiconductor, in which light having energy above the band gap of silicon can generate electron-hole pairs. There is this.
  • the solar cell using silicon has a problem that light having energy below the bandgap of silicon does not generate electron-hole pairs and is lost in the form of thermal energy, so that light absorption is low. Since more than 30% of the incident light is reflected on the surface of the silicon wafer as the substrate, the efficiency of the solar cell is reduced.
  • solar cells using the III-V compound have various bandgaps, and thus, use these characteristics to form compound cells having different wavelength bands.
  • a tandem structure bonded by tunnel junctions is used to achieve higher energy conversion efficiency than silicon solar cells.
  • the present invention provides a method for manufacturing a III-V compound solar cell based on a silicon substrate.
  • the III-V compound solar cell manufactured according to the present invention has a high photoelectric conversion efficiency but has a disadvantage of high cell price.
  • the solar cell has the disadvantage of low price of the cell itself but low photoelectric conversion efficiency.
  • the present invention has been made to overcome the disadvantages of the prior art as described above, and an object thereof is to provide a dual device fused tandem solar cell of high photoelectric conversion efficiency and low cost.
  • the present invention in the dual device fused tandem solar cell, Nanowire solar cell; A junction layer of the tunnel junction formed on the nanowire solar cell; And a dye-sensitized solar cell formed at an upper end of the tunnel junction.
  • the nanowire solar cell comprises: a silicon substrate; A back electrode formed on the back surface of the substrate; A plurality of nanowires formed perpendicular to the upper surface of the substrate; A polymer layer formed to expose the nanowires on a portion where the nanowires are not formed on the upper surface of the substrate; And a first TCO layer in which the nanowire ends are electrically connected to each other, wherein the first TCO layer is bonded to the bottom of the junction layer.
  • the polymer layer is characterized in that at least one selected from PS (polystyrene), PMMA (polymethyl methacrylate) and BCB (benzocyclobutene).
  • the substrate is a p-type semiconductor
  • the nanowire is characterized in that the n-type semiconductor.
  • the dye-sensitized solar cell comprises: a glass layer; A second TCO layer formed at the bottom of the glass layer; A light absorption layer formed on the bottom of the second TCO layer; And a dye coating the particles of the light absorbing layer, wherein the light absorbing layer further includes an electrolyte, and a lower end of the light absorbing layer is bonded to the junction layer.
  • components of the light absorption layer are TiO 2, SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 It is characterized in that the nano-powder made of any one or more materials selected from Fe 2 O 3 and GeO 2 .
  • the present invention provides a method for manufacturing a dual device fusion tandem solar cell, the polymer layer coating step of forming a polymer layer on the silicon substrate formed nanowires; An electrode forming step of forming a back electrode on the back surface of the substrate; A polymer layer etching step of etching the polymer layer such that nanowires protrude from the polymer layer formed on the substrate; Depositing a first TCO layer to form a TCO layer for electrically connecting the nanowire ends to each other; Forming a junction layer for tunnel junction on top of the first TCO layer; A second TCO layer deposition step of forming a TCO layer on the bottom of the separately provided glass layer; A light absorption layer forming step of forming a light absorption layer by using the light absorption nanopowder at the bottom of the second TCO layer; A dye coating step of coating a dye on a delivery surface of the light absorption layer; Bonding the light absorption layer formed at the bottom of the glass layer to the junction layer formed at the end of the nano
  • the silicon substrate is p-type, characterized in that the nanowires are n-type.
  • the polymer layer is characterized in that any one or more selected from PS (polystyrene), PMMA (polymethyl methacrylate) and BCB (benzocyclobutene).
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • BCB benzocyclobutene
  • components of the light absorption layer are TiO 2, SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti ) O 3 ), Nb 2 O 5 , Fe 3 O 4 It is characterized in that the nano-powder consisting of any one or more materials selected from Fe 2 O 3 and GeO 2 .
  • the dual device fused tandem solar cell and a method for manufacturing the same according to the present invention are formed by forming a nanowire solar cell at the bottom and fusing a dye-sensitized solar cell on the nanowire solar cell, and the manufacturing is possible at a low price. There is a possible effect, and also has the effect of showing a high photoelectric conversion efficiency by the dual element.
  • FIG. 1 is a structural diagram of a dual device fused tandem solar cell according to the present invention
  • FIG. 1 is a procedural diagram of a manufacturing method for manufacturing FIG. 1,
  • FIG. 3 is a schematic diagram of the polymer layer coating step of FIG.
  • FIG. 4 is a schematic diagram of the back electrode forming step of FIG.
  • FIG. 5 is a schematic diagram of the polymer layer etching step of FIG.
  • FIG. 6 is a schematic diagram of the first TCO layer deposition step of FIG. 2;
  • FIG. 7 is a schematic diagram of the junction layer forming step of FIG.
  • FIG. 8 is a schematic diagram of the deposition of the second TCO layer of FIG. 2;
  • FIG. 9 is a schematic diagram of the TiO 2 layer forming step of FIG.
  • FIG. 11 is a schematic view of the bonding step of FIG.
  • FIG. 12 is a schematic diagram of the electrolyte injection step of FIG.
  • FIG. 13 is a current-voltage characteristic curve of the solar cell of FIG. 1.
  • the dual element fused tandem solar cell 100 is a dye-sensitized dye-sensitized solar cell 40 on top of a nanowire solar cell (NW-SC) as shown in FIG. 1.
  • Solar cell: DSSC is characterized in that the junction 20 is fused with the nanowire solar cell 10 is configured.
  • the nanowire solar cell 10 includes a p-type silicon substrate 11, and a bottom electrode 12, a back-side contact, is formed at the bottom of the substrate 11 for electrical connection to the outside.
  • the substrate 11 may be replaced with another material if necessary.
  • the nanowire 13 is formed on the substrate 11, the nanowire 13 is made of a material of the n-type semiconductor characteristics, the material is not limited.
  • the formation of the nanowires 13 on the substrate 11 may be configured by any method.
  • the polymer layer 14 is formed on a portion of the substrate 11 where the nanowires 13 are not formed, thereby fixing the nanowires 13 to prevent device short circuits.
  • the polymer layer 14 is made of a high molecular material, preferably may be made of PS (polystyrene), PMMA (polymethyl methacrylate), BCB (benzocyclobutene) and combinations thereof, and most preferably made of BCB.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • BCB benzocyclobutene
  • a first TCO layer 15 is formed at the end of the nanowire 13 so that all the nanowires 13 are electrically connected.
  • the dye-sensitized solar cell 40 has a glass layer 41 is formed on the top.
  • the glass layer 41 may be replaced with another transparent insulating material.
  • a second TCO layer 42 is formed at the bottom of the glass layer 41 to provide an electrical connection function to the outside.
  • a charge transport layer TiO 2 layer 43 is formed below the second TCO layer 42, and each TiO 2 particle surface of the TiO 2 layer 43 includes a coated dye 44.
  • the TiO 2 layer 43 may include SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 , Fe 2 O 3 It may be composed of one or more selected from GeO 2 .
  • the TiO 2 layer 43 is formed by applying TiO 2 nanoparticles and then heat treatment.
  • the TiO 2 layer 43 further includes an electrolyte to impart the function of a solar cell.
  • junction 20 is a tunnel junction junction formed on an upper portion of the first TCO layer 15. It is implemented as a layer 21, the junction layer 21 is a configuration for connecting the first TCO layer 15 and the TiO 2 layer 43, it is preferably composed of platinum (Pt).
  • the method of manufacturing a dual device fused tandem solar cell includes a polymer layer coating step (S1), a back electrode forming step (S2), a polymer layer etching step (S3), and a first TCO.
  • Layer deposition step (S4), junction layer forming step (S5), second TCO layer deposition step (S6), charge transport layer forming step (S7), dye coating step (S8), bonding step (S9) and electrolyte injection step ( S10) is configured to include.
  • the polymer layer 14 is coated on the substrate 11 on which the nanowires 13 made of n-type semiconductors are formed on the p-type semiconductor substrate 11.
  • the polymer layer 14 is preferably BCB, and the polymer layer 14 is formed by heat treatment at 200 ° C. for 2 hours after coating by spin coating.
  • the back electrode 12 is formed on the bottom surface of the substrate 11 on which the polymer layer 14 is formed through e-beam evaporation vacuum deposition. / Au to form a thickness of 20 and 300nm, respectively.
  • the RIE reactive
  • the etching is performed through an ion etching process. After the polymer layer etching step S3 is performed, as shown in FIG. 5, each of the nanowires 13 protrudes from the polymer layer 14.
  • a TCO deposition process is performed to form the first TCO layer 15 on the polymer layer 14.
  • the substrate 11 is illustrated in FIG. 6. As shown, the first TCO layer 15 is electrically connected to the top of each nanowire 13.
  • the second TCO layer deposition step (S6) is a step for manufacturing the dye-sensitized solar cell 40, as shown in FIG. 7, first through a TCO deposition process on the bottom of the glass layer 41. 42).
  • a charge transport layer forming step S7 is performed to serve as an exclusive transport layer for the photo-excited charges to reach the lower end of the second TCO layer 42 formed in the step S6.
  • a 550 ° C. high temperature heat treatment process is performed. As shown in FIG. 1 , a TiO 2 layer 43, which is a charge transport layer, is formed.
  • TiO 2 layer 43 When the TiO 2 layer 43 is necessary to increase the charge transport efficiency SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 , Fe 2 O 3 and GeO 2 may be composed of any one or more selected.
  • the glass layer 41 formed up to the TiO 2 layer 43 is finally used as a dye for coating a dye which is a light absorber on the surface of the TiO 2 particles, soaked in a 30 mM N719 solution for 18 hours to adsorb the dye and then taken out. Washing with ethanol completes the dye-sensitized solar cell 40 device, as shown in FIG.
  • the nanowire solar cell 10 and the dye-sensitized solar cell 40 manufactured through the above steps are coated with surlyn on the edges of two solar cells, and then bonded by heat treatment at 130 ° C. for 90 seconds to be tandem as shown in FIG. 10. Manufacture a solar cell.
  • the electrolyte composition used to inject the electrolyte into the TiO 2 layer for complete operation of the dye-sensitized solar cell is 0.5M 4-tert-butylpyridine, 0.6M 1-butyl-3-methylimidazolium iodide (BMII), 0.03MI 2 , 0.1 M guanidinium thiocyanate, solvent, using acetonitrile and valeronitrile (volume ratio 85:15) to finally complete the tandem solar cell shown in FIG.
  • S1 to S5 are steps for manufacturing the nanowire solar cell 10
  • S6 to S8 are steps for manufacturing the dye-sensitized solar cell 40, and thus may be independently performed. Even if it is performed first and then S1 to S5 corresponds to the same manufacturing method.
  • the last electrolyte injection step S10 may be performed immediately after the step S8.
  • FIG. 12 shows nanowire solar cell 10 (NWSC), dye-sensitized solar cell 40 (DSSC), and 1-sun of the tandem solar cell 100 (NWSC / DSSC Tandem Cells) according to the present invention.
  • NWSC nanowire solar cell 10
  • DSSC dye-sensitized solar cell 40
  • 1-sun of the tandem solar cell 100 NWSC / DSSC Tandem Cells
  • the current in the current-voltage characteristic curve of the tandem solar cell 100 has a lower current value among the lower cells constituting the tandem solar cell, and the voltage has a sum value of two lower cells.
  • tandem solar cell 100 has a current value of DSSC, but it can be seen that the voltage coincides with the sum of the DSSC and the NWSC.
  • the two cells are organically coupled well, and in particular the junction layer 21 between the two elements works well.
  • the photoelectric conversion efficiency of the nanowire solar cell 10 is 7.7%
  • the dye-sensitized solar cell 40 is 9.28%
  • the tandem solar cell 100 is 11.67%.

Abstract

The objective of the present invention is to provide a dual element fusion-type tandem solar cell having high photoelectric conversion efficiency and a low price. To this end, the present invention relates to a dual element fusion-type tandem solar cell comprising: a nanowire solar cell; a junction layer of a tunnel junction, provided on top of the nanowire solar cell; and a dye-sensitized solar cell formed on top of the tunnel junction.

Description

이중 소자 융합형 텐덤 태양 전지 및 그 제조 방법Dual device fused tandem solar cell and method for manufacturing same
본 발명은 이중 소자 융합형 텐덤 태양전지 및 그 제조 방법에 관한 것으로 더욱 상세하게는 반도체 나노와이어를 이용한 이중 소자 융합형 텐덤 태양 전지 및 그 제조 방법에 관한 것이다.The present invention relates to a dual device fused tandem solar cell and a method of manufacturing the same, and more particularly, to a dual device fused tandem solar cell using a semiconductor nanowire and a method of manufacturing the same.
세계적으로 화석연료에 대한 의존도를 줄이기 위해, 환경에 악영향을 끼치지 않으면서도 고갈될 염려도 없는 새로운 에너지원인 대체에너지 및 청정에너지에 대한 연구 및 개발이 활발히 진행 중이다.In order to reduce the dependence on fossil fuels worldwide, research and development are being actively conducted on alternative and clean energy sources, which are new sources of energy without adversely affecting the environment.
한때, 원자력발전이 현실성 있는 대체에너지로 개발되어 높은 기여도를 보이기도 하였지만, 불안정성과 사고로 인한 심각한 피해 등의 문제가 제기됨으로써, 점차 이에 대한 의존도를 줄이는 추세이며, 그 대신 청정의 무한한 에너지원이라는 측면에서 태양 전지(solar cell)를 이용한 태양에너지를 전기적으로 변환하는 발전이 현실적으로 활용할 수 있는 방안으로 더욱 각광받고 있다.At one time, although nuclear power was developed as a viable alternative energy, it showed a high contribution, but problems such as instability and serious damage caused by accidents have been raised, and it is gradually decreasing its dependence on it. In recent years, the development of the electrical conversion of solar energy using solar cells is getting more and more attention as a practical method.
태양 전지는 태양광 에너지를 직접 전기에너지로 변환하는 반도체 소자로서, p형 반도체와 n형 반도체의 접합 형태를 가지며 그 기본구조는 다이오드와 유사하며, 현재 양산되고 있는 대부분의 태양 전지는 실리콘계 태양 전지로서, 반도체 기판으로서 실리콘(Si)을 사용하는데, 이 실리콘은 간접 밴드 사이의 천이 반도체(Indirect interband transition semiconductor)로서, 실리콘의 밴드갭 이상의 에너지를 갖는 빛만이 전자-정공쌍을 발생시킬 수 있는 단점이 있다.A solar cell is a semiconductor device that converts solar energy directly into electrical energy. It has a junction type of a p-type semiconductor and an n-type semiconductor, and its basic structure is similar to a diode. Most solar cells in mass production are silicon based solar cells. As a semiconductor substrate, silicon (Si) is used, which is an indirect interband transition semiconductor, in which light having energy above the band gap of silicon can generate electron-hole pairs. There is this.
또한, 실리콘을 이용한 태양 전지는 실리콘의 밴드갭 이하의 에너지를 갖는 빛은 전자-정공 쌍을 발생시키지 못하고 열 에너지 등의 형태로 손실되어 광의 흡수율이 낮은 문제점이 있어서 실리콘계 태양전지는 태양 전지 내부로 입사되는 빛 중 30% 이상을 기판인 실리콘 웨이퍼 표면에서 반사시키므로 태양 전지의 효율이 저하된다.In addition, the solar cell using silicon has a problem that light having energy below the bandgap of silicon does not generate electron-hole pairs and is lost in the form of thermal energy, so that light absorption is low. Since more than 30% of the incident light is reflected on the surface of the silicon wafer as the substrate, the efficiency of the solar cell is reduced.
이와 대비하여 Ⅲ-Ⅴ 화합물을 이용한 태양 전지는 다양한 밴드갭(bandgap)을 가지므로 이러한 특성을 이용하여 각각 흡수하는 파장 대역을 달리하는 화합물 셀(cell)을 구성하고, 각각의 셀을 터널 접합(tunnel junction)으로 결합한 텐덤(tandem) 구조를 이용하여 실리콘 태양 전지보다 높은 에너지 변환 효율을 달성하고 있다.In contrast, solar cells using the III-V compound have various bandgaps, and thus, use these characteristics to form compound cells having different wavelength bands. A tandem structure bonded by tunnel junctions is used to achieve higher energy conversion efficiency than silicon solar cells.
예를 들면, 등록특허 제1149768호에 개시된 Ⅲ-Ⅴ 화합물을 이용한 텐덤 구조의 태양 전지의 제조 방법을 들 수 있다.For example, the manufacturing method of the tandem structure solar cell using the III-V compound disclosed by the patent No. 1149768 is mentioned.
상기 발명은 실리콘 기판 기반의 Ⅲ-Ⅴ화합물 태양 전지의 제조 방법으로서, a) 표면을 에칭한 후 유기금속화학증착 반응관에서 미리 설정된 임의의 온도로 가열하여 자연 산화막을 제거한 결정성을 갖는 실리콘 기판을 제공하는 단계; b) 상기 a) 단계에서 제공된 실리콘 기판상에 Ⅲ-Ⅴ화합물의 시드층을 형성한 후 그 위에 금속재의 전극 및 유전체 층을 증착시키고, 상기 증착된 전극 및 유전체 층을 패터닝 한 후 상기 유기금속화학증착 반응관의 온도, 압력 가스량을 조절하여 상기 Ⅲ-Ⅴ화합물을 막대 형상의 태양 전지셀로 성장시키는 단계; 및 c) 상기 b) 단계에서의 패터닝에 따라 수직형 막대로 선택적으로 성장한 Ⅲ-Ⅴ화합물의 태양 전지셀 외부에 시트저항이 감소되도록 투명 전극을 형성하는 단계를 포함하여 구성된다.The present invention provides a method for manufacturing a III-V compound solar cell based on a silicon substrate. Providing a; b) forming a seed layer of the III-V compound on the silicon substrate provided in step a), depositing an electrode and a dielectric layer of a metal material thereon, patterning the deposited electrode and the dielectric layer, and then organizing the organometallic chemistry. Growing the III-V compound into a rod-shaped solar cell by controlling the temperature of the deposition reaction tube and the amount of pressure gas; And c) forming a transparent electrode on the outside of the solar cell of the III-V compound selectively grown as a vertical bar according to the patterning in the step b) to reduce sheet resistance.
상기 발명에 의하여 제조된 Ⅲ-Ⅴ화합물 태양 전지는 높은 광전 변환 효율을 가지지만 셀 가격이 높은 단점이 있다.The III-V compound solar cell manufactured according to the present invention has a high photoelectric conversion efficiency but has a disadvantage of high cell price.
한편, 또 다른 방식으로 무정형(amorphous) 실리콘 기반의 태양 전지를 둘 수 있다.On the other hand, it is possible to have an amorphous silicon-based solar cell in another way.
상기 태양 전지는 전지 자체의 가격은 저렴하지만 광전 변환 효율이 낮은 단점이 있다.The solar cell has the disadvantage of low price of the cell itself but low photoelectric conversion efficiency.
따라서, 높은 광전 변환 효율과 낮은 가격을 제공하는 새로운 형태의 텐덤 태양 전지가 필요한 실정이다.Therefore, there is a need for a new type of tandem solar cell that provides high photoelectric conversion efficiency and low cost.
본 발명은 상기와 같은 종래 기술의 단점을 극복하기 위하여 안출된 것으로, 높은 광전 변환 효율과 낮은 가격의 이중 소자 융합형 텐덤 태양 전지를 제공하는 것을 그 목적으로 한다.The present invention has been made to overcome the disadvantages of the prior art as described above, and an object thereof is to provide a dual device fused tandem solar cell of high photoelectric conversion efficiency and low cost.
또한 높은 광전 변환 효율과 낮은 가격의 이중 소자 융합형 탠덤 태양 전지의 제조 방법을 제공하는 것을 그 목적으로 한다.It is also an object of the present invention to provide a method for manufacturing a dual device fusion tandem solar cell of high photoelectric conversion efficiency and low cost.
상기의 목적을 달성하기 위하여 본 발명은, 이중 소자 융합형 텐덤 태양 전지에 있어서, 나노와이어 태양 전지; 상기 나노와이어 태양 전지 상단에 형성되는 터널 정션의 정션층; 및 상기 터널 정션 상단에 형성되는 염료 감응형 태양 전지가 배치되는 것을 특징으로 한다.In order to achieve the above object, the present invention, in the dual device fused tandem solar cell, Nanowire solar cell; A junction layer of the tunnel junction formed on the nanowire solar cell; And a dye-sensitized solar cell formed at an upper end of the tunnel junction.
바람직하게는, 상기 나노와이어 태양 전지는: 실리콘 기판; 상기 기판 이면에 형성되는 이면 전극; 상기 기판 상면에 수직으로 형성되는 다수의 나노와이어; 상기 기판 상면에 나노와이어가 형성되지 않은 부분에, 상기 나노와이어가 노출되도록 형성되는 고분자층; 및 상기 나노와이어 끝단들이 전기적으로 연결되게 형성되는 제1 TCO층을 포함하며, 상기 제1 TCO층이 상기 정션층 하부에 접합하는 것을 특징으로 한다.Preferably, the nanowire solar cell comprises: a silicon substrate; A back electrode formed on the back surface of the substrate; A plurality of nanowires formed perpendicular to the upper surface of the substrate; A polymer layer formed to expose the nanowires on a portion where the nanowires are not formed on the upper surface of the substrate; And a first TCO layer in which the nanowire ends are electrically connected to each other, wherein the first TCO layer is bonded to the bottom of the junction layer.
더욱 바람직하게는, 상기 고분자층은 PS(polystyrene), PMMA(polymethyl methacrylate) 및 BCB(benzocyclobutene) 중 선택된 어느 하나 이상인 것을 특징으로 한다.More preferably, the polymer layer is characterized in that at least one selected from PS (polystyrene), PMMA (polymethyl methacrylate) and BCB (benzocyclobutene).
더욱 바람직하게는, 상기 기판은 p형 반도체이고, 상기 나노와이어는 n형 반도체인 것을 특징으로 한다.More preferably, the substrate is a p-type semiconductor, the nanowire is characterized in that the n-type semiconductor.
바람직하게는, 상기 염료 감응형 태양 전지는: 유리층; 상기 유리층 하단에 형성되는 제2 TCO층; 상기 제2 TCO층 하단에 형성되는 광흡수층; 및 상기 광흡수층의 입자를 코팅하는 염료를 포함하고, 상기 광흡수층은 전해질을 더 포함하며, 상기 광습수층의 하단이 상기 정션층에 접합하는 것을 특징으로 한다.Preferably, the dye-sensitized solar cell comprises: a glass layer; A second TCO layer formed at the bottom of the glass layer; A light absorption layer formed on the bottom of the second TCO layer; And a dye coating the particles of the light absorbing layer, wherein the light absorbing layer further includes an electrolyte, and a lower end of the light absorbing layer is bonded to the junction layer.
더욱 바람직하게는, 상기 광흡수층의 성분은 TiO2, SiO2, Al2O3, ZrO2, Y2O3-ZrO2, CuO, Cu2O, Ta2O5, PZT(Pb(Zr,Ti)O3), Nb2O5, Fe3O4, Fe2O3 및 GeO2 에서 선택된 어느 하나 이상의 재질로 이루어진 나노 분말인 것을 특징으로 한다.More preferably, components of the light absorption layer are TiO 2, SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 It is characterized in that the nano-powder made of any one or more materials selected from Fe 2 O 3 and GeO 2 .
또한 본 발명은 이중 소자 융합형 텐덤 태양 전지의 제조 방법에 있어서, 나노와이어가 형성된 실리콘 기판에 고분자층을 형성하는 고분자층 코팅 단계; 상기 기판 이면에 이면 전극을 형성하는 전극 형성 단계; 상기 기판 상면에 형성된 고분자층을 나노와이어가 돌출 형성되도록 고분자층을 에칭하는 고분자층 에칭 단계; 상기 나노와이어 끝단을 서로 전기적 연결을 위한 TCO층을 형성하는 제1 TCO층 증착 단계; 상기 제1 TCO 층 상단에 터널 정션을 위한 정션층 형성 단계; 별도로 구비된 유리층 하단에 TCO 층을 형성하는 제2 TCO층 증착 단계; 상기 제2 TCO층 하단에 광흡수용 나노분말을 이용하여 광흡수층을 형성하는 광흡수층 형성 단계; 상기 광흡수층의 분만 표면에 염료를 코팅하는 염료 코팅 단계; 상기 나노와이어 끝단에 형성된 정션층 상단에 상기 유리층 하단에 형성된 광흡수층을 접합하는 접합 단계; 및 상기 광흡수층에 전해질을 주입하는 전해질 주입 단계를 포함하는 것을 특징으로 한다.In another aspect, the present invention provides a method for manufacturing a dual device fusion tandem solar cell, the polymer layer coating step of forming a polymer layer on the silicon substrate formed nanowires; An electrode forming step of forming a back electrode on the back surface of the substrate; A polymer layer etching step of etching the polymer layer such that nanowires protrude from the polymer layer formed on the substrate; Depositing a first TCO layer to form a TCO layer for electrically connecting the nanowire ends to each other; Forming a junction layer for tunnel junction on top of the first TCO layer; A second TCO layer deposition step of forming a TCO layer on the bottom of the separately provided glass layer; A light absorption layer forming step of forming a light absorption layer by using the light absorption nanopowder at the bottom of the second TCO layer; A dye coating step of coating a dye on a delivery surface of the light absorption layer; Bonding the light absorption layer formed at the bottom of the glass layer to the junction layer formed at the end of the nanowire; And an electrolyte injection step of injecting an electrolyte into the light absorption layer.
바람직하게는, 상기 실리콘 기판은 p형이며, 상기 나노와이어는 n형인 것을 특징으로 한다.Preferably, the silicon substrate is p-type, characterized in that the nanowires are n-type.
바람직하게는, 상기 고분자층은 PS(polystyrene), PMMA(polymethyl methacrylate) 및 BCB(benzocyclobutene) 중 선택된 어느 하나 이상인 것을 특징으로 한다.Preferably, the polymer layer is characterized in that any one or more selected from PS (polystyrene), PMMA (polymethyl methacrylate) and BCB (benzocyclobutene).
바람직하게는, 상기 광흡수층의 성분은 TiO2, SiO2, Al2O3, ZrO2, Y2O3-ZrO2, CuO, Cu2O, Ta2O5, PZT(Pb(Zr,Ti)O3), Nb2O5, Fe3O4, Fe2O3 및 GeO2 에서 선택된 어느 하나 이상의 재질로 이루어진 나노 분말인 것을 특징으로 한다.Preferably, components of the light absorption layer are TiO 2, SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti ) O 3 ), Nb 2 O 5 , Fe 3 O 4 It is characterized in that the nano-powder consisting of any one or more materials selected from Fe 2 O 3 and GeO 2 .
본 발명에 따른 이중 소자 융합형 텐덤 태양 전지 및 그 제조 방법은 나노와이어 태양 전지를 하부에 형성하고, 상기 나노와이어 태양 전지 상부에 염료감응형 태양 전지를 융합하여 구성되는 것으로, 낮은 가격으로 제조가 가능한 효과가 있으며, 더불어 이중 소자에 의한 높은 광전 변환 효율을 나타내는 효과가 있다.The dual device fused tandem solar cell and a method for manufacturing the same according to the present invention are formed by forming a nanowire solar cell at the bottom and fusing a dye-sensitized solar cell on the nanowire solar cell, and the manufacturing is possible at a low price. There is a possible effect, and also has the effect of showing a high photoelectric conversion efficiency by the dual element.
도 1은 본 발명에 따른 이중 소자 융합형 텐덤 태양 전지의 구조도이며,1 is a structural diagram of a dual device fused tandem solar cell according to the present invention,
도 2는 도 1을 제조하기 위한 제조 방법의 절차도이며,2 is a procedural diagram of a manufacturing method for manufacturing FIG. 1,
도 3은 도 2의 고분자층 코팅 단계의 모식도이며,3 is a schematic diagram of the polymer layer coating step of FIG.
도 4는 도 2의 이면 전극 형성 단계의 모식도이며,4 is a schematic diagram of the back electrode forming step of FIG.
도 5는 도 2의 고분자층 에칭 단계의 모식도이며,5 is a schematic diagram of the polymer layer etching step of FIG.
도 6은 도 2의 제1 TCO층 증착 단계의 모식도이며,FIG. 6 is a schematic diagram of the first TCO layer deposition step of FIG. 2;
도 7은 도 2의 정션층 형성 단계의 모식도이며,7 is a schematic diagram of the junction layer forming step of FIG.
도 8은 도 2의 제2 TCO층 증착 단계의 모식도이며,FIG. 8 is a schematic diagram of the deposition of the second TCO layer of FIG. 2;
도 9는 도 2의 TiO2층 형성 단계의 모식도이며,9 is a schematic diagram of the TiO 2 layer forming step of FIG.
도 10은 도 2의 염료 코팅 단계의 모식도이며,10 is a schematic diagram of the dye coating step of Figure 2,
도 11은 도 2의 접합 단계의 모식도이며,11 is a schematic view of the bonding step of FIG.
도 12는 도 2의 전해질 주입 단계의 모식도이며,12 is a schematic diagram of the electrolyte injection step of FIG.
도 13은 도 1 태양 전지의 전류-전압 특성 곡선이다.13 is a current-voltage characteristic curve of the solar cell of FIG. 1.
이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 구체적으로 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 이중 소자 융합형 텐덤 태양 전지(100)는 도 1에 도시된 바와 같은 나노와이어 태양 전지(10, nonowire solar cell:NW-SC) 상단에 염료 감응형 태양 전지(40, dye-sensitized solar cell: DSSC)가 접합부(20)에 의하여 상기 나노와이어 태양 전지(10)와 융합되어 구성되는 것을 특징으로 한다.The dual element fused tandem solar cell 100 according to the present invention is a dye-sensitized dye-sensitized solar cell 40 on top of a nanowire solar cell (NW-SC) as shown in FIG. 1. Solar cell: DSSC is characterized in that the junction 20 is fused with the nanowire solar cell 10 is configured.
먼저 상기 나노와이어 태양 전지(10)는 p형 실리콘 재질의 기판(11)을 포함하며, 상기 기판(11) 하단에는 외부로 전기적 연결을 위한 이면 전극(12, back-side contact)이 형성된다.First, the nanowire solar cell 10 includes a p-type silicon substrate 11, and a bottom electrode 12, a back-side contact, is formed at the bottom of the substrate 11 for electrical connection to the outside.
상기 기판(11)은 필요한 경우 다른 재질로 치환 가능하다.The substrate 11 may be replaced with another material if necessary.
그리고 상기 기판(11) 상단에는 나노와이어(13)가 형성되며, 상기 나노와이어(13)는 n형 반도체 특성의 재질로 구성되며, 상기 재질은 제한되지 않는다.And the nanowire 13 is formed on the substrate 11, the nanowire 13 is made of a material of the n-type semiconductor characteristics, the material is not limited.
상기 기판(11) 상에 나노와이어(13)의 형성은 어떠한 방법으로 구성하더라도 무방하다.The formation of the nanowires 13 on the substrate 11 may be configured by any method.
그리고 상기 기판(11) 중 나노와이어(13)가 형성되지 않은 부분에는 고분자층(14)이 형성되어 나노와이어(13)를 고정하여 소자 단락을 방지한다.In addition, the polymer layer 14 is formed on a portion of the substrate 11 where the nanowires 13 are not formed, thereby fixing the nanowires 13 to prevent device short circuits.
상기 고분자층(14)은 고분자 물질로 이루어지며, 바람직하게는 PS(polystyrene), PMMA(polymethyl methacrylate), BCB(benzocyclobutene) 및 이들의 조합으로 이루어질 수 있으며, BCB로 이루어지는 것이 가장 바람직하다.The polymer layer 14 is made of a high molecular material, preferably may be made of PS (polystyrene), PMMA (polymethyl methacrylate), BCB (benzocyclobutene) and combinations thereof, and most preferably made of BCB.
상기 나노와이어(13)의 끝단에는 제1 TCO층(15)이 형성되어 모든 나노와이어(13)가 전기적으로 연결된다.A first TCO layer 15 is formed at the end of the nanowire 13 so that all the nanowires 13 are electrically connected.
한편, 상기 염료 감응형 태양 전지(40)는 상단에 유리층(41)이 형성된다. 상기 유리층(41)은 다른 투명의 절연 재질로 치환 가능하다.On the other hand, the dye-sensitized solar cell 40 has a glass layer 41 is formed on the top. The glass layer 41 may be replaced with another transparent insulating material.
상기 유리층(41)의 하단에는 제2 TCO층(42)이 형성되어 외부로 전기적 연결 기능을 부여한다.A second TCO layer 42 is formed at the bottom of the glass layer 41 to provide an electrical connection function to the outside.
상기 제2 TCO층(42) 하단에는 전하수송층인 TiO2층(43)이 형성되며, 상기 TiO2층(43)의 각 TiO2입자 표면에는 코팅된 염료(44)를 포함한다.A charge transport layer TiO 2 layer 43 is formed below the second TCO layer 42, and each TiO 2 particle surface of the TiO 2 layer 43 includes a coated dye 44.
상기 TiO2층(43)은 필요한 경우 SiO2, Al2O3, ZrO2, Y2O3-ZrO2, CuO, Cu2O, Ta2O5, PZT(Pb(Zr,Ti)O3), Nb2O5, Fe3O4, Fe2O3 및 GeO2 에서 선택된 어느 하나 이상으로 구성할 수 있다.The TiO 2 layer 43 may include SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 , Fe 2 O 3 It may be composed of one or more selected from GeO 2 .
상기 TiO2층(43)은 TiO2나노 입자를 도포한 후 열처리 하여 형성한다.The TiO 2 layer 43 is formed by applying TiO 2 nanoparticles and then heat treatment.
상기 TiO2층(43)에는 전해질이 추가로 포함되어 태양 전지의 기능을 부여한다.The TiO 2 layer 43 further includes an electrolyte to impart the function of a solar cell.
상기 염료 감응형 태양 전지(40)와 상기 나노와이어 태양 전지(10)는 접합부(20)에 의하여 서로 융합되며, 상기 접합부(20)는 제1 TCO층(15) 상단에 형성되는 터널 정션용 정션층(21)으로 구현되며, 상기 정션층(21)은 제1 TCO층(15)과 TiO2층(43)을 연결하는 구성이며, 백금(Pt)으로 구성되는 것이 바람직하다.The dye-sensitized solar cell 40 and the nanowire solar cell 10 are fused to each other by a junction 20, and the junction 20 is a tunnel junction junction formed on an upper portion of the first TCO layer 15. It is implemented as a layer 21, the junction layer 21 is a configuration for connecting the first TCO layer 15 and the TiO 2 layer 43, it is preferably composed of platinum (Pt).
상기와 같은 구성에 의하여 나노와이어 태양 전지(10)와 염료 감응형 태양 전지(40)의 템덤 구조가 완성된다.By such a configuration, the temperal structure of the nanowire solar cell 10 and the dye-sensitized solar cell 40 is completed.
다음은 본 발명에 따른 이중 소자 융합형 텐덤 태양 전지의 제조 방법에 관하여 단계별로 구체적으로 설명한다.The following is a detailed step-by-step description of the method for manufacturing a dual device fused tandem solar cell according to the present invention.
본 발명에 따른 이중 소자 융합형 텐덤 태양 전지의 제조 방법은 도 2에 도시된 바와 같이, 고분자층 코팅 단계(S1), 이면 전극 형성 단계(S2), 고분자층 에칭 단계(S3), 제1 TCO층 증착 단계(S4), 정션층 형성 단계(S5), 제2 TCO층 증착 단계(S6), 전하수송층 형성 단계(S7), 염료 코팅 단계(S8), 접합 단계(S9) 및 전해질 주입 단계(S10)를 포함하여 구성된다.As shown in FIG. 2, the method of manufacturing a dual device fused tandem solar cell according to the present invention includes a polymer layer coating step (S1), a back electrode forming step (S2), a polymer layer etching step (S3), and a first TCO. Layer deposition step (S4), junction layer forming step (S5), second TCO layer deposition step (S6), charge transport layer forming step (S7), dye coating step (S8), bonding step (S9) and electrolyte injection step ( S10) is configured to include.
(1) 고분자층 코팅 단계(S1)(1) polymer layer coating step (S1)
먼저 도 3에 도시된 바와 같이, p형 반도체 기판(11) 상에 n형 반도체로 이루어진 나노와이어(13)가 형성된 기판(11) 상단에 고분자층(14)을 코팅한다.First, as shown in FIG. 3, the polymer layer 14 is coated on the substrate 11 on which the nanowires 13 made of n-type semiconductors are formed on the p-type semiconductor substrate 11.
상기 고분자층(14)은 BCB가 바람직하며, 스핀 코팅 방식으로 코팅 후 200℃에서 2시간 열처리하여 고분자층(14)을 형성한다.The polymer layer 14 is preferably BCB, and the polymer layer 14 is formed by heat treatment at 200 ° C. for 2 hours after coating by spin coating.
(2) 이면 전극 형성 단계(S2)(2) back electrode forming step (S2)
상기 고분자층(14)이 형성된 기판(11)의 하면에는 도 4에 도시된 바와 같이 이면 전극(12)을 이-빔 이베포레이션(e-beam evaporation) 진공 증착을 통하여 형성하는데 이면 전극은 Ti/Au로 각각 20, 300nm 두께로 형성한다.As shown in FIG. 4, the back electrode 12 is formed on the bottom surface of the substrate 11 on which the polymer layer 14 is formed through e-beam evaporation vacuum deposition. / Au to form a thickness of 20 and 300nm, respectively.
(3) 고분자층 에칭 단계(S3)(3) polymer layer etching step (S3)
이면 전극(12)까지 형성한 기판(11)에는 고분자층(14)이 나노와이어(13) 를 완전히 덮어 형성되어 있으므로, 나노와이어(13) 상단이 고분자층(14)에 돌출 형성되도록 RIE(reactive ion etching) 공정을 통하여 에칭을 수행한다. 상기 고분자층 에칭 단계(S3)가 수행된 후에 기판(11)은 도 5에 도시된 바와 같이, 각 나노와이어(13)가 고분자층(14)에 돌출된다.Since the polymer layer 14 completely covers the nanowires 13 on the substrate 11 formed up to the back electrode 12, the RIE (reactive) is formed so that the top of the nanowires 13 protrudes from the polymer layer 14. The etching is performed through an ion etching process. After the polymer layer etching step S3 is performed, as shown in FIG. 5, each of the nanowires 13 protrudes from the polymer layer 14.
(4) 제1 TCO층 증착 단계(S4)(4) depositing the first TCO layer (S4)
상기 고분자층 에칭 단계(S3) 후에 상기 고분자층(14) 상단에 제1TCO층(15) 형성을 위하여 TCO 증착 공정을 수행하며, 상기 단계(S4)가 수행된 후에 기판(11)은 도 6에 도시된 바와 같이 각 나노와이어(13)의 상단에 상기 제1TCO층(15)에 의하여 전기적으로 연결된다.After the polymer layer etching step S3, a TCO deposition process is performed to form the first TCO layer 15 on the polymer layer 14. After the step S4 is performed, the substrate 11 is illustrated in FIG. 6. As shown, the first TCO layer 15 is electrically connected to the top of each nanowire 13.
(5) 정션층 형성 단계(S5)(5) junction layer forming step (S5)
상기 제1 TCO층 증착 단계(S4) 수행 후에는 상기 제1TCO층(15) 상단에 Pt 정션층 형성하는 단계로 Pt 전구체로는 H2PtCl6를 2-propanol에 녹여 10 mM의 Pt 전구체 용액을 제조한 후, 상기 S4 공정에서 준비된 나노와이어 태양전지 위에 스핀코팅 방식으로 도포한 후, 400℃에서 10분간 열처리하여 Pt성분의 정션층(21)을 형성하며, 상기 단계(S5) 후에는 도 6에 도시된 바와 같이 나노와이어 태양 전지(10) 소자가 완성된다.After performing the first TCO layer deposition step (S4) to form a Pt junction layer on top of the first TCO layer 15 as a Pt precursor H 2 PtCl 6 dissolved in 2-propanol to a 10 mM Pt precursor solution After manufacturing, after coating by spin coating method on the nanowire solar cell prepared in the S4 process, heat treatment at 400 ℃ for 10 minutes to form a junction layer 21 of the Pt component, after the step (S5) Figure 6 As shown in the nanowire solar cell 10 device is completed.
(6) 제2 TCO층 증착 단계(S6)(6) second TCO layer deposition step (S6)
제2 TCO층 증착 단계(S6)는 염료 감응형 태양 전지(40)를 제조하기 위한 단계로 도 7에 도시된 바와 같이, 먼저 유리층(41) 하단에 TCO 증착 공정을 통하여 제2 TCO층(42)을 형성한다.The second TCO layer deposition step (S6) is a step for manufacturing the dye-sensitized solar cell 40, as shown in FIG. 7, first through a TCO deposition process on the bottom of the glass layer 41. 42).
(7) 전하수송층 형성 단계(S7)(7) charge transport layer forming step (S7)
상기 단계(S6)에서 형성된 제2 TCO층(42) 하단에 광여기된 전하가 적극에 도달하기 위한 전한수송층 역할을 하는 전하수송층 형성 단계(S7)가 수행된다. A charge transport layer forming step S7 is performed to serve as an exclusive transport layer for the photo-excited charges to reach the lower end of the second TCO layer 42 formed in the step S6.
상기 유리층(41) 하단에 형성된 제2 TCO층(42) 하단에 전하수송층 나노 입자(여기서는 TiO2를 사용) 페이스트를 독터 블레이드(doctor blade)로 도포한 후 550℃ 고온 열처리 공정을 통하여 도 8에 도시된 바와 같이 전하수송층인 TiO2층(43)을 형성한다.After applying the charge transport layer nanoparticles (in this case, TiO 2 ) paste with a doctor blade on the bottom of the second TCO layer 42 formed on the bottom of the glass layer 41, a 550 ° C. high temperature heat treatment process is performed. As shown in FIG. 1 , a TiO 2 layer 43, which is a charge transport layer, is formed.
상기 TiO2층(43)은 전하수송효율을 높이기 위한 구성으로 필요한 경우 SiO2, Al2O3, ZrO2, Y2O3-ZrO2, CuO, Cu2O, Ta2O5, PZT(Pb(Zr,Ti)O3), Nb2O5, Fe3O4, Fe2O3 및 GeO2 에서 선택된 어느 하나 이상으로 구성할 수 있다.When the TiO 2 layer 43 is necessary to increase the charge transport efficiency SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 , Fe 2 O 3 and GeO 2 may be composed of any one or more selected.
(8) 염료 코팅 단계(S8)(8) dye coating step (S8)
상기 TiO2층(43)까지 형성된 유리층(41)은 마지막으로 TiO2 입자 표면에 광흡수체인 염료를 코팅하는데 사용되는 염료로는 30 mM 농도의 N719 용액에 18시간 담궈 염료를 흡착시킨 후 꺼내어 에탄올로 세척하여 도 9에 도시된 바와 같이, 염료 감응형 태양 전지(40) 소자를 완성한다.The glass layer 41 formed up to the TiO 2 layer 43 is finally used as a dye for coating a dye which is a light absorber on the surface of the TiO 2 particles, soaked in a 30 mM N719 solution for 18 hours to adsorb the dye and then taken out. Washing with ethanol completes the dye-sensitized solar cell 40 device, as shown in FIG.
(9) 접합 단계(S9)(9) bonding step (S9)
상기 단계를 통하여 제조된 나노와이어 태양 전지(10)와 염료 감응형 태양 전지(40)는 surlyn을 두 태양전지 테두리에 도포 후, 130℃에서 90초간 열처리하여 접합함으로써 도 10에 도시된 바와 같이 텐덤형 태양 전지를 제조한다.The nanowire solar cell 10 and the dye-sensitized solar cell 40 manufactured through the above steps are coated with surlyn on the edges of two solar cells, and then bonded by heat treatment at 130 ° C. for 90 seconds to be tandem as shown in FIG. 10. Manufacture a solar cell.
(10) 전해질 주입 단계(S10)(10) electrolyte injection step (S10)
마지막으로 염료 감응형 태양 전지의 완전한 구동을 위하여 상기 TiO2층에 전해질을 주입하는데 사용되는 전해질 조성은 0.5M 4-tert-butylpyridine, 0.6M 1-butyl-3-methylimidazolium iodide(BMII), 0.03M I2, 0.1M guanidinium thiocyanate, 용매는 acetonitrile과 valeronitrile (부피비 85:15) 사용하여 최종적으로 도 11에 도시된 탠덤형 태양 전지를 완성한다.Finally, the electrolyte composition used to inject the electrolyte into the TiO 2 layer for complete operation of the dye-sensitized solar cell is 0.5M 4-tert-butylpyridine, 0.6M 1-butyl-3-methylimidazolium iodide (BMII), 0.03MI 2 , 0.1 M guanidinium thiocyanate, solvent, using acetonitrile and valeronitrile (volume ratio 85:15) to finally complete the tandem solar cell shown in FIG.
여기서 S1 내지 S5는 나노와이어 태양 전지(10)를 제조하기 위한 단계들이며, S6 내지 S8은 염료 감응형 태양 전지(40)를 제조하기 위한 단계들이므로, 서로 독립적으로 수행될 수 있어 S6 내지 S8을 먼저 수행하고 이후 S1 내지 S5를 수행하더라도 동일한 제조 방법에 해당한다.Here, S1 to S5 are steps for manufacturing the nanowire solar cell 10, and S6 to S8 are steps for manufacturing the dye-sensitized solar cell 40, and thus may be independently performed. Even if it is performed first and then S1 to S5 corresponds to the same manufacturing method.
또한 마지막 전해질 주입 단계(S10)는 S8 단계 이후에 바로 수행될 수도 있다.Also, the last electrolyte injection step S10 may be performed immediately after the step S8.
한편, 도 12에는 나노와이어 태양 전지(10)(NWSC), 염료 감응형 태양 전지(40)(DSSC), 본 발명에 따른 템덤 태양 전지(100)(NWSC/DSSC Tandem Cell)들의 1-sun 및 air mass(AM) 1.5 조건 하에서의 전류-전압 특성 곡선이 도시되어 있다.Meanwhile, FIG. 12 shows nanowire solar cell 10 (NWSC), dye-sensitized solar cell 40 (DSSC), and 1-sun of the tandem solar cell 100 (NWSC / DSSC Tandem Cells) according to the present invention. Current-voltage characteristic curves under air mass (AM) 1.5 conditions are shown.
상기 곡선에서 텐덤형 태양 전지(100)의 전류-전압 특성 곡선에서 전류는 템덤형 태양 전지를 구성하는 하부 셀 중에서 낮은 전류값을 가지게 되고, 전압은 두 하부 셀의 합의 값을 가진다.In the curve, the current in the current-voltage characteristic curve of the tandem solar cell 100 has a lower current value among the lower cells constituting the tandem solar cell, and the voltage has a sum value of two lower cells.
즉, 템덤 태양 전지(100)는 DSSC의 전류값을 가지나, 전압은 DSSC와 NWSC의 합과 일치함을 알 수 있다.In other words, the tandem solar cell 100 has a current value of DSSC, but it can be seen that the voltage coincides with the sum of the DSSC and the NWSC.
이러한 점으로부터, 두 셀이 유기적으로 잘 결합되었고, 특히 두 소자 사이에 존재하는 정션층(21)이 잘 작동함을 알 수 있다.From this, it can be seen that the two cells are organically coupled well, and in particular the junction layer 21 between the two elements works well.
또한 나노와이어 태양 전지(10)의 광전 변환 효율은 7.7%, 염료 감응형 태양 전지(40)는 9.28% 그리고 템덤 태양 전지(100)는 11.67%로 높은 효율을 나타낸다.In addition, the photoelectric conversion efficiency of the nanowire solar cell 10 is 7.7%, the dye-sensitized solar cell 40 is 9.28%, and the tandem solar cell 100 is 11.67%.
이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

Claims (10)

  1. 이중 소자 융합형 텐덤 태양 전지에 있어서,A dual element fused tandem solar cell,
    나노와이어 태양 전지;Nanowire solar cells;
    상기 나노와이어 태양 전지 상단에 형성되는 터널 정션의 정션층; 및A junction layer of the tunnel junction formed on the nanowire solar cell; And
    상기 터널 정션 상단에 형성되는 염료 감응형 태양 전지;가 배치되는 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지.And a dye-sensitized solar cell formed at an upper end of the tunnel junction.
  2. 청구항 1에 있어서, 상기 나노와이어 태양 전지는:The method of claim 1, wherein the nanowire solar cell is:
    실리콘 기판;Silicon substrates;
    상기 기판 이면에 형성되는 이면 전극;A back electrode formed on the back surface of the substrate;
    상기 기판 상면에 수직으로 형성되는 다수의 나노와이어;A plurality of nanowires formed perpendicular to the upper surface of the substrate;
    상기 기판 상면에 나노와이어가 형성되지 않은 부분에, 상기 나노와이어가 노출되도록 형성되는 고분자층; 및A polymer layer formed to expose the nanowires on a portion where the nanowires are not formed on the upper surface of the substrate; And
    상기 나노와이어 끝단들이 전기적으로 연결되게 형성되는 제1 TCO층;을 포함하며,And a first TCO layer formed to electrically connect the nanowire ends.
    상기 제1 TCO층이 상기 정션층 하부에 접합하는 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지.And the first TCO layer is bonded to the bottom of the junction layer.
  3. 청구항 2에 있어서, 상기 고분자층은 PS(polystyrene), PMMA(polymethyl methacrylate) 및 BCB(benzocyclobutene) 중 선택된 어느 하나 이상인 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지.The dual device fusion tandem solar cell of claim 2, wherein the polymer layer is any one or more selected from polystyrene (PS), polymethyl methacrylate (PMMA), and benzocyclobutene (BCB).
  4. 청구항 3에 있어서, 상기 기판은 p형 반도체이고, 상기 나노와이어는 n형 반도체인 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지.The dual device fusion tandem solar cell of claim 3, wherein the substrate is a p-type semiconductor, and the nanowires are an n-type semiconductor.
  5. 청구항 1에 있어서, 상기 염료 감응형 태양 전지는:The method of claim 1, wherein the dye-sensitized solar cell is:
    유리층;Glass layer;
    상기 유리층 하단에 형성되는 제2 TCO층;A second TCO layer formed at the bottom of the glass layer;
    상기 제2 TCO층 하단에 형성되는 나노입자 기반의 전하수송층; 및A charge transport layer based on nanoparticles formed under the second TCO layer; And
    상기 전하수송층의 입자 표면에 코팅된 광흡수 염료를 포함하고,It includes a light absorption dye coated on the surface of the particle of the charge transport layer,
    상기 전하수송층은 전해질을 더 포함하며, 상기 전하수송층의 하단이 상기 정션층에 접합하는 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지.The charge transport layer further comprises an electrolyte, the lower element of the charge transport layer is a dual element fusion tandem solar cell, characterized in that bonded to the junction layer.
  6. 청구항 5에 있어서, 상기 전하수송층의 성분은 TiO2, SiO2, Al2O3, ZrO2, Y2O3-ZrO2, CuO, Cu2O, Ta2O5, PZT(Pb(Zr,Ti)O3), Nb2O5, Fe3O4, Fe2O3 및 GeO2 에서 선택된 어느 하나 이상의 재질로 이루어진 나노 분말인 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지.The method of claim 5, wherein the components of the charge transport layer is TiO 2, SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3), Nb 2 O 5, Fe 3 O 4, Fe 2 O 3 and GeO 2 dual element fuse tandem solar cell, characterized in that the nano powder consisting of one or more materials selected from the.
  7. 이중 소자 융합형 텐덤 태양 전지의 제조 방법에 있어서,In the manufacturing method of a dual element fusion tandem solar cell,
    나노와이어가 형성된 실리콘 기판에 고분자층을 형성하는 고분자층 코팅 단계;A polymer layer coating step of forming a polymer layer on the silicon substrate on which the nanowires are formed;
    상기 기판 이면에 이면 전극을 형성하는 전극 형성 단계;An electrode forming step of forming a back electrode on the back surface of the substrate;
    상기 기판 상면에 형성된 고분자층을 나노와이어가 돌출 형성되도록 고분자층을 에칭하는 고분자층 에칭 단계;A polymer layer etching step of etching the polymer layer such that nanowires protrude from the polymer layer formed on the substrate;
    상기 나노와이어 끝단을 서로 전기적 연결을 위한 TCO층을 형성하는 제1 TCO층 증착 단계;Depositing a first TCO layer to form a TCO layer for electrically connecting the nanowire ends to each other;
    상기 제1 TCO 층 상단에 터널 정션을 위한 정션층 형성 단계;Forming a junction layer for tunnel junction on top of the first TCO layer;
    별도로 구비된 유리층 하단에 TCO 층을 형성하는 제2 TCO층 증착 단계;A second TCO layer deposition step of forming a TCO layer on the bottom of the separately provided glass layer;
    상기 제2 TCO층 하단에 광흡수용 나노분말을 이용하여 전하수송층을 형성하는 전하수송층 형성 단계;A charge transport layer forming step of forming a charge transport layer by using light-absorbing nanopowders under the second TCO layer;
    상기 전하수송층의 나노입자 표면에 광흡수 역할을 수행하는 염료를 코팅하는 염료 코팅 단계;A dye coating step of coating a dye that performs a light absorption role on the surface of the nanoparticles of the charge transport layer;
    상기 나노와이어 끝단에 형성된 정션층 상단에 상기 유리층 하단에 형성된 전하수송층을 접합하는 접합 단계; 및 Bonding the charge transport layer formed at the bottom of the glass layer to the junction layer formed at the end of the nanowire; And
    상기 전하수송층에 전해질을 주입하는 전해질 주입 단계;를 포함하는 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지의 제조 방법.Electrolyte injection step of injecting an electrolyte into the charge transport layer; manufacturing method of a dual element fused tandem solar cell comprising a.
  8. 청구항 7에 있어서, 상기 실리콘 기판은 p형이며, 상기 나노와이어는 n형인 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지의 제조 방법.8. The method of claim 7, wherein the silicon substrate is p-type and the nanowires are n-type.
  9. 청구항 7에 있어서, 상기 고분자층은 PS(polystyrene), PMMA(polymethyl methacrylate) 및 BCB(benzocyclobutene) 중 선택된 어느 하나 이상인 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지의 제조 방법.The method of claim 7, wherein the polymer layer is any one or more selected from polystyrene (PS), polymethyl methacrylate (PMMA), and benzocyclobutene (BCB).
  10. 청구항 7에 있어서, 상기 전하수송층의 성분은 TiO2, SiO2, Al2O3, ZrO2, Y2O3-ZrO2, CuO, Cu2O, Ta2O5, PZT(Pb(Zr,Ti)O3), Nb2O5, Fe3O4, Fe2O3 및 GeO2 에서 선택된 어느 하나 이상의 재질로 이루어진 나노 분말인 것을 특징으로 하는 이중 소자 융합형 텐덤 태양 전지의 제조 방법.The method of claim 7, wherein the charge transport layer comprises TiO 2, SiO 2 , Al 2 O 3 , ZrO 2 , Y 2 O 3 -ZrO 2, CuO, Cu 2 O, Ta 2 O 5 , PZT (Pb (Zr, Ti) O 3 ), Nb 2 O 5 , Fe 3 O 4 , Fe 2 O 3 and a method for producing a dual element fused tandem solar cell, characterized in that the nano-powder consisting of at least one material selected from GeO 2 .
PCT/KR2014/006834 2013-07-31 2014-07-25 Dual element fusion-type tandem solar cell and method for manufacturing same WO2015016542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130091138A KR101431817B1 (en) 2013-07-31 2013-07-31 Double device merged tandem solar cell and its production method
KR10-2013-0091138 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016542A1 true WO2015016542A1 (en) 2015-02-05

Family

ID=51750835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006834 WO2015016542A1 (en) 2013-07-31 2014-07-25 Dual element fusion-type tandem solar cell and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101431817B1 (en)
WO (1) WO2015016542A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400535A (en) * 2018-03-01 2018-08-14 深圳众厉电力科技有限公司 Distributed board outdoor with solar power generation function
CN108413339A (en) * 2018-03-01 2018-08-17 深圳市晟达机械设计有限公司 A kind of Solar Street Lighting System
CN108539068A (en) * 2018-04-02 2018-09-14 梧州井儿铺贸易有限公司 A kind of tea storage box
CN108505699A (en) * 2018-04-02 2018-09-07 深圳明创自控技术有限公司 Utilize the construction railing panel of solar power generation
KR102624394B1 (en) 2020-11-27 2024-01-15 한국과학기술연구원 Collored tandem solar cell module
KR20220139497A (en) 2021-04-07 2022-10-17 한화솔루션 주식회사 Perovskite solar cell and tandem solar cell including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034258A (en) * 2006-07-28 2008-02-14 Sharp Corp Dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element module
KR20090052696A (en) * 2007-11-21 2009-05-26 한국전자통신연구원 Dye-sensitized solar cells having substrate including p-n junction diode
JP2010028092A (en) * 2008-07-16 2010-02-04 Honda Motor Co Ltd Nanowire solar cell and producing method of the same
KR20110124239A (en) * 2009-03-11 2011-11-16 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 Dye-sensitized solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722085B1 (en) * 2005-09-12 2007-05-25 삼성전자주식회사 Photovoltaic cell comprising CNTs formed by using electrophoretic deposition and its fabrication method
KR20100072784A (en) * 2008-12-22 2010-07-01 웅진케미칼 주식회사 High efficient semiconductor electrode for dye-sensitized solar cell and dye-sensitized solar cell comprising them
KR101139923B1 (en) * 2010-08-19 2012-04-30 한국과학기술연구원 Multi-layered dyes-sensitized solar cells and method for preparing the same
US20120073635A1 (en) 2010-09-28 2012-03-29 Jong-Jan Lee Tandem Dye-Sensitized Solar Cell and Method for Making Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034258A (en) * 2006-07-28 2008-02-14 Sharp Corp Dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element module
KR20090052696A (en) * 2007-11-21 2009-05-26 한국전자통신연구원 Dye-sensitized solar cells having substrate including p-n junction diode
JP2010028092A (en) * 2008-07-16 2010-02-04 Honda Motor Co Ltd Nanowire solar cell and producing method of the same
KR20110124239A (en) * 2009-03-11 2011-11-16 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 Dye-sensitized solar cell

Also Published As

Publication number Publication date
KR101431817B1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
Abate et al. Perovskite solar cells: from the laboratory to the assembly line
Asghar et al. Device stability of perovskite solar cells–A review
EP3172776B9 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
WO2015016542A1 (en) Dual element fusion-type tandem solar cell and method for manufacturing same
Xu et al. A power pack based on organometallic perovskite solar cell and supercapacitor
Hu et al. Two‐terminal perovskites tandem solar cells: recent advances and perspectives
Zhu et al. Impact of high charge-collection efficiencies and dark energy-loss processes on transport, recombination, and photovoltaic properties of dye-sensitized solar cells
KR101117127B1 (en) Tandem solar cell using amorphous silicon solar cell and organic solar cell
WO2017105053A1 (en) Monolithic-type module of perovskite solar cell, and manufacturing method therefor
Jasim Natural dye-sensitized solar cell based on nanocrystalline TiO2
WO2011090336A2 (en) Solar cell, the photoelectric conversion efficiency of which is improved by means of enhanced electric fields
CN106057919A (en) Solar cell with metal grid fabricated by electroplating
Zhang et al. Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation
WO2021107184A1 (en) Monolithic tandem solar cell and method for producing same
KR101694803B1 (en) Perovskite solar cells comprising metal nanowire as photoelectrode, and the preparation method thereof
Pramono et al. Organic Solar Cell based on extraction of Papaya (Carica papaya) and jatropha (Ricinus communis) leaves in DSSC (Dye Sensitized Solar Cell)
CN104934226B (en) Sensitization solar battery based on ferro-electricity single crystal substrate and its anode
Que et al. Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells
KR101791801B1 (en) Perovskite solar cells containing N-type semiconductors modified with chalcogens, and fabricating method therof
CN102005308A (en) Ti(l-x)SnxO2 solar cell and production method thereof
Lim et al. Hole transport behaviour of various polymers and their application to perovskite-sensitized solid-state solar cells
Arifin et al. Characteristics of ZnO nanofiber in double Layer (TiO2/ZnO) DSSC results of direct deposition electrospinning manufacturing: Variation of tip to collector distance
KR100670331B1 (en) Plastic electrode and solar cells using the same
Wang et al. The fabrication of TiO 2 nanoparticle/ZnO nanowire arrays bi-filmed photoanode and their effect on dye-sensitized solar cells
KR101706175B1 (en) Ppreparation method of light absorbing layer for compound semiconductor solar cell and light absorbing layer for compound semiconductor solar cell prepared by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832133

Country of ref document: EP

Kind code of ref document: A1