JP2010028092A - Nanowire solar cell and producing method of the same - Google Patents

Nanowire solar cell and producing method of the same Download PDF

Info

Publication number
JP2010028092A
JP2010028092A JP2009106213A JP2009106213A JP2010028092A JP 2010028092 A JP2010028092 A JP 2010028092A JP 2009106213 A JP2009106213 A JP 2009106213A JP 2009106213 A JP2009106213 A JP 2009106213A JP 2010028092 A JP2010028092 A JP 2010028092A
Authority
JP
Japan
Prior art keywords
nanowire
semiconductor
solar cell
semiconductors
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009106213A
Other languages
Japanese (ja)
Inventor
Hajime Goto
肇 後藤
Tomoaki Ohashi
智昭 大橋
Junichi Motohisa
順一 本久
Takashi Fukui
孝志 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Hokkaido University NUC
Original Assignee
Honda Motor Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hokkaido University NUC filed Critical Honda Motor Co Ltd
Priority to US12/503,109 priority Critical patent/US20100012190A1/en
Publication of JP2010028092A publication Critical patent/JP2010028092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell for obtaining electrical power enough for actual use with an apparatus formed by providing an array of the nanowire semiconductors and also provide a producing method of the solar cell. <P>SOLUTION: The nanowire solar cells 1 and 11 are respectively provided with a semiconductor substrate 2 and a plurality of nanowire semiconductors 4 and 5 forming the pn-junction. The semiconductor substrate 2 and the nanowire semiconductors 4 and 5 are respectively formed of a single-crystal material. A gap between the semiconductors 4 and 5 is filled with a transparent insulating material 6. Along the front surface of the semiconductors 4 and 5, a passivation layer 10 is provided. In the producing method of the nanowire solar cell, a part of the front surface of the semiconductor substrate 2 is covered with an amorphous film 3 and the nanowire semiconductors 4 and 5 are formed on the front surface of the exposed semiconductor substrate 2 with epitaxial growth of crystals formed of the identical material. After embedding of the semiconductors 4 and 5 into the transparent insulating material 6, a gap between the semiconductors 4 and 5 is filled with the transparent insulating material 6 by removing a part of the transparent insulating material 6 to expose the front end parts of the semiconductors 4 and 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノワイヤ状の半導体を備えるナノワイヤ太陽電池及びその製造方法に関するものである。   The present invention relates to a nanowire solar cell including a nanowire-like semiconductor and a manufacturing method thereof.

一般に、太陽電池としては、基板面に平行な平面状のpn接合面を備えるものが知られている。近年、前記従来一般的であった太陽電池に対して、ナノワイヤ、ナノロッド等と呼ばれるナノオーダーの径を備える微細な線状の半導体を備える太陽電池(以下、ナノワイヤ太陽電池と記載する)が知られている。   Generally, a solar cell having a planar pn junction surface parallel to the substrate surface is known. In recent years, a solar cell including a fine linear semiconductor having a nano-order diameter called a nanowire, a nanorod, or the like (hereinafter, referred to as a nanowire solar cell) is known compared to the conventional solar cell. ing.

また、前記ナノワイヤ太陽電池において、pn接合面に凹凸を設けることにより光電変換効率を向上させる技術が提案されている。前記pn接合面に凹凸を設けたナノワイヤ太陽電池によれば、該pn接合面の面積が受光面積よりも大きくなるため、再結合で失われるキャリア等を低減する効果が得られ、光電変換効率が向上するとされている。   In the nanowire solar cell, a technique for improving photoelectric conversion efficiency by providing irregularities on the pn junction surface has been proposed. According to the nanowire solar cell in which irregularities are provided on the pn junction surface, since the area of the pn junction surface is larger than the light receiving area, an effect of reducing carriers lost due to recombination is obtained, and the photoelectric conversion efficiency is improved. It is supposed to improve.

例えば、金の微粒子を触媒として、p型Si半導体をナノワイヤ状に成長させた後、該p−型Si半導体上に、その形状に沿ってi型Si半導体層及びn型Si半導体層を形成したナノワイヤ太陽電池が提案されている(例えば非特許文献1,2参照)。   For example, after growing a p-type Si semiconductor into a nanowire using gold fine particles as a catalyst, an i-type Si semiconductor layer and an n-type Si semiconductor layer were formed on the p-type Si semiconductor along the shape. Nanowire solar cells have been proposed (see, for example, Non-Patent Documents 1 and 2).

前記非特許文献1,2記載のナノワイヤ太陽電池は、p型Si半導体のナノワイヤをコアとして、その上にシェルとしてのi型Si半導体層及びn型Si半導体層が積層されたコアシェル構造を備えており、受光面積よりも大きなpn接合面を備えている。しかし、前記ナノワイヤ太陽電池は、形成される前記ナノワイヤが1本だけに過ぎないので、実用的な電力を得る装置を製造することができないという問題がある。   The nanowire solar cell described in Non-Patent Documents 1 and 2 includes a core-shell structure in which a p-type Si semiconductor nanowire is used as a core, and an i-type Si semiconductor layer and an n-type Si semiconductor layer are stacked thereon. And has a pn junction surface larger than the light receiving area. However, since the nanowire solar cell is formed with only one nanowire, there is a problem that a device for obtaining practical power cannot be manufactured.

また、前記ナノワイヤ太陽電池は、前記ナノワイヤの成長に金等の触媒を用いるため、成長中に触媒金属元素が不純物として該ナノワイヤ中に取り込まれる虞がある。取り込まれた触媒金属元素は、前記半導体としての前記ナノワイヤ内で深い準位を形成し、非発光性の再結合を促すために、前記ナノワイヤ太陽電池の光電変換効率を悪化させる。   In addition, since the nanowire solar cell uses a catalyst such as gold for the growth of the nanowire, a catalytic metal element may be incorporated into the nanowire as an impurity during the growth. The incorporated catalytic metal element forms a deep level in the nanowire as the semiconductor and promotes non-luminous recombination, thereby deteriorating the photoelectric conversion efficiency of the nanowire solar cell.

さらに、前記ナノワイヤ太陽電池は、シェルとしてのi型Si半導体層及びn型Si半導体層を形成するときに、エピタキシャル成長できるまで温度を上げることができないために、i型Si半導体層及びn型Si半導体層が多結晶化するという問題がある。前記問題は、エピタキシャル成長する温度までに加熱すると、コアとしてのp型Si半導体層のナノワイヤ中に前記触媒金属が完全に取り込まれてしまうことによるものである。前記低温で成長させる結果として、前記シェルとしてのi型Si半導体層及びn型Si半導体層は結晶粒界を含む構造となり、該結晶粒界に存在する多数のダングリングボンドが励起子の再結合を促すため、十分な光電変換効率を得ることができない。   Furthermore, since the nanowire solar cell cannot raise the temperature until it can be epitaxially grown when forming the i-type Si semiconductor layer and the n-type Si semiconductor layer as the shell, the i-type Si semiconductor layer and the n-type Si semiconductor There is a problem that the layer is polycrystallized. The problem is due to the catalyst metal being completely taken into the nanowire of the p-type Si semiconductor layer as the core when heated to the temperature for epitaxial growth. As a result of growing at the low temperature, the i-type Si semiconductor layer and the n-type Si semiconductor layer as the shell have a structure including a crystal grain boundary, and many dangling bonds existing in the crystal grain boundary are recombination of excitons. Therefore, sufficient photoelectric conversion efficiency cannot be obtained.

また、p型Si半導体をナノワイヤ状に成長させた後、該p−型Si半導体上に、その形状に沿ってn型Si半導体層を形成したナノワイヤ太陽電池が提案されている(例えば特許文献1参照)。前記太陽電池では、縮退ドープド多結晶質シリコン膜で被覆したガラス基板上に、ナノポーラス酸化アルミニウムからなる多孔質テンプレート層を設け、該多孔質テンプレート層から前記p−型Si半導体を成長させている。   Further, there has been proposed a nanowire solar cell in which a p-type Si semiconductor is grown in a nanowire shape and then an n-type Si semiconductor layer is formed on the p-type Si semiconductor along the shape (for example, Patent Document 1). reference). In the solar cell, a porous template layer made of nanoporous aluminum oxide is provided on a glass substrate covered with a degenerate doped polycrystalline silicon film, and the p-type Si semiconductor is grown from the porous template layer.

前記特許文献1記載のナノワイヤ太陽電池は、p型Si半導体のナノワイヤをコアとして、その上にシェルとしてのn型Si半導体層が積層されたコアシェル構造を備えており、受光面積よりも大きなpn接合面を備えている。しかし、前記ナノワイヤ太陽電池は、前記テンプレート層の細孔を利用して前記p型Si半導体のナノワイヤを形成してから下部接点を形成するため、該下部接点は金属または透明電極に限定され、単結晶半導体材料を用いることができない。   The nanowire solar cell described in Patent Document 1 includes a core-shell structure in which a p-type Si semiconductor nanowire is used as a core and an n-type Si semiconductor layer as a shell is stacked thereon, and a pn junction larger than the light receiving area. It has a surface. However, since the nanowire solar cell uses the pores of the template layer to form the nanowire of the p-type Si semiconductor and then forms the lower contact, the lower contact is limited to a metal or a transparent electrode. A crystalline semiconductor material cannot be used.

また、前記p型Si半導体のナノワイヤは、金属触媒を用いるVLS法により形成されるものであり、金属触媒がナノワイヤの両端に残っているために、半導体を接合して下部接点とすることができない。この場合、VLS成長後に金属触媒をエッチングで除去したり、電気化学的堆積法でナノワイヤを形成することなどによって、触媒金属を残さないナノワイヤを形成することはできる。しかし、前記ナノワイヤ太陽電池では、その後のエピタキシャル成長によって面状の単結晶半導体からなる下部接点を形成することはできない。   Further, the nanowire of the p-type Si semiconductor is formed by a VLS method using a metal catalyst, and the metal catalyst remains at both ends of the nanowire, so that the semiconductor cannot be joined to form a lower contact. . In this case, a nanowire that does not leave a catalytic metal can be formed by removing the metal catalyst by etching after VLS growth or by forming a nanowire by an electrochemical deposition method. However, in the nanowire solar cell, a lower contact made of a planar single crystal semiconductor cannot be formed by subsequent epitaxial growth.

さらに、前記ナノワイヤ太陽電池では、前記多孔質テンプレート層が基板上に位置していて、基板が下部接点を提供することは記載されているが、エピタキシャル成長の必要性については記載されていない。前記VLS法によれば、基板/ナノワイヤ界面に金属材料が残るという問題がある。また、前記電気化学的堆積法等によれば、基板/ナノワイヤ界面に金属材料は残らないが、基板とナノワイヤとが方位を維持したまま結晶として連続する保証はない。   Furthermore, in the nanowire solar cell, it is described that the porous template layer is located on the substrate and the substrate provides a lower contact, but the necessity for epitaxial growth is not described. The VLS method has a problem that a metal material remains at the substrate / nanowire interface. Also, according to the electrochemical deposition method or the like, no metal material remains at the substrate / nanowire interface, but there is no guarantee that the substrate and nanowires continue as crystals while maintaining the orientation.

また、ステンレス鋼からなる金属箔基板の上にTaN層を備え、該TaN層上にp型Si半導体のナノワイヤと、該p−型Si半導体上に、その形状に沿ってn型Si半導体層を形成したナノワイヤ太陽電池が提案されている(例えば非特許文献3参照)。前記p型Si半導体のナノワイヤは、前記TaN層上に金属触媒を用いるVLS法により形成されるものである。しかし、前記VLS法によれば、前述のように金属触媒がナノワイヤの両端に残っているという問題がある。 Further, a Ta 2 N layer is provided on a metal foil substrate made of stainless steel, a p-type Si semiconductor nanowire is formed on the Ta 2 N layer, and an n-type is formed on the p-type Si semiconductor along the shape thereof. A nanowire solar cell in which a Si semiconductor layer is formed has been proposed (see, for example, Non-Patent Document 3). The p-type Si semiconductor nanowire is formed on the Ta 2 N layer by a VLS method using a metal catalyst. However, the VLS method has a problem that the metal catalyst remains at both ends of the nanowire as described above.

さらに、上述の太陽電池では、いずれも実用的な電力を得ることができず、例えば前記非特許文献3記載の太陽電池の場合、Vocが0.13V、Iscが3mA/cm、FFが0.28、ηが0.06%に過ぎないという不都合がある。 Furthermore, none of the above-described solar cells can obtain practical power. For example, in the case of the solar cell described in Non-Patent Document 3, Voc is 0.13 V, Isc is 3 mA / cm 2 , and FF is 0. .28, η is only 0.06%.

特開2008−53730号公報JP 2008-53730 A

B.Tian, X.Zheng, T.J.Kempa, Y.Fang, N.Yu, G.Yu, J.Huang and C.M.Lieber, "CoaXial Silicon nanowaires as solar cells and nanoelectronic power sources", Nature 449, 885-890 (2007)B.Tian, X.Zheng, TJKempa, Y.Fang, N.Yu, G.Yu, J.Huang and CMLieber, "CoaXial Silicon nanowaires as solar cells and nanoelectronic power sources", Nature 449, 885-890 ( 2007) G.Zheng, W.Lu, S.Jin and C.M.Lieber, "Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors", Adv.Mater. 16, 1890-1893 (2004)G.Zheng, W.Lu, S.Jin and C.M.Lieber, "Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors", Adv.Mater. 16, 1890-1893 (2004) L.Tsakalakos, J.Balch, J.Fronheiser, B.A.KoreVaar, O.Sulima and J.Rand, "Silicon nanowire solar cells", APPLIED PHYSICS LETTERS 91, 233117 (2007)L.Tsakalakos, J.Balch, J.Fronheiser, B.A.KoreVaar, O.Sulima and J.Rand, "Silicon nanowire solar cells", APPLIED PHYSICS LETTERS 91, 233117 (2007)

本発明は、かかる不都合を解消して、多数のナノワイヤ状の半導体をアレイ状に配置した装置を構成することができ、実用的な電力を得ることができる太陽電池及びその製造方法を提供することを目的とする。   The present invention provides a solar cell capable of solving such inconvenience, forming a device in which a large number of nanowire semiconductors are arranged in an array, and obtaining practical power, and a method for manufacturing the solar cell. With the goal.

かかる目的を達成するために、本発明は、半導体基板と、該半導体基板上に成長されpn接合を構成する複数のナノワイヤ状の半導体とを備えるナノワイヤ太陽電池であって、該半導体基板と該ナノワイヤ状の半導体とが単一の単結晶からなることを特徴とする。   In order to achieve such an object, the present invention provides a nanowire solar cell comprising a semiconductor substrate and a plurality of nanowire-like semiconductors grown on the semiconductor substrate and constituting a pn junction, the semiconductor substrate and the nanowire The semiconductor is made of a single single crystal.

また、本発明のナノワイヤ太陽電池は、前記半導体基板と前記ナノワイヤ状の半導体とが単一の単結晶からなるので、触媒金属による汚染、ナノワイヤ状の半導体内部の結晶粒界等の欠陥、該半導体基板と該ナノワイヤ状の半導体との界面の欠陥等を排除することができる。従って、本発明のナノワイヤ太陽電池によれば、単位面積当たりの電気抵抗を低下させて光電変換効率を向上させることができ、実用的な電力を得ることができる。   In the nanowire solar cell of the present invention, since the semiconductor substrate and the nanowire-like semiconductor are made of a single single crystal, contamination by catalyst metal, defects such as crystal grain boundaries inside the nanowire-like semiconductor, the semiconductor Defects at the interface between the substrate and the nanowire semiconductor can be eliminated. Therefore, according to the nanowire solar cell of the present invention, the electrical resistance per unit area can be reduced, the photoelectric conversion efficiency can be improved, and practical power can be obtained.

また、本発明のナノワイヤ太陽電池は、前記複数のナノワイヤ状の半導体の間隙に充填された透明絶縁性材料を備えることが好ましい。   Moreover, it is preferable that the nanowire solar cell of this invention is equipped with the transparent insulating material with which the gap | interval of the said some nanowire-like semiconductor was filled.

前記構成を備える本発明のナノワイヤ太陽電池によれば、前記透明絶縁性材料を備えることにより、前記ナノワイヤ状の半導体と、該ナノワイヤ状の半導体に接続される電極との接触界面の面積を減らすことができるので、光起電力によって生じた電流経路上の欠陥の数を低減することができる。この結果、界面の欠陥に起因した再結合サイトを容易に飽和させることができ、光電変換効率を向上させることができる。   According to the nanowire solar cell of the present invention having the above configuration, by providing the transparent insulating material, the area of the contact interface between the nanowire semiconductor and the electrode connected to the nanowire semiconductor is reduced. Therefore, the number of defects on the current path caused by the photovoltaic power can be reduced. As a result, the recombination site resulting from the interface defect can be easily saturated, and the photoelectric conversion efficiency can be improved.

半導体材料は、表面構造や表面準位のために、表面付近でバンド構造の曲がりを生じることがある。この場合、電子は前記ナノワイヤ状の半導体の表面側に引き寄せられ、表面再結合によって励起子を失う可能性が高い。   A semiconductor material may bend a band structure in the vicinity of the surface due to the surface structure or surface level. In this case, electrons are attracted to the surface side of the nanowire-like semiconductor, and there is a high possibility that excitons are lost due to surface recombination.

そこで、本発明のナノワイヤ太陽電池は、さらに、前記ナノワイヤ状の半導体の表面に沿って、再結合を防止するパッシベーション層を備えることが好ましい。本発明のナノワイヤ太陽電池は、前記パッシベーション層を備えることにより、ヘテロ結合を形成することによって表面再結合を防止することができる。   Therefore, the nanowire solar cell of the present invention preferably further includes a passivation layer for preventing recombination along the surface of the nanowire-like semiconductor. By providing the passivation layer, the nanowire solar cell of the present invention can prevent surface recombination by forming a hetero bond.

本発明のナノワイヤ太陽電池は、半導体基板の表面の一部を非晶質膜で被覆する工程と、該非晶質膜から露出している該半導体基板の表面に、該半導体基板と同一材料からなる結晶をエピタキシャル成長させて複数のナノワイヤ状の半導体を形成する工程とを備える製造方法により有利に製造することができる。   The nanowire solar cell of the present invention comprises a step of coating a part of the surface of a semiconductor substrate with an amorphous film, and the surface of the semiconductor substrate exposed from the amorphous film is made of the same material as the semiconductor substrate. And a method of forming a plurality of nanowire-shaped semiconductors by epitaxially growing crystals.

前記製造方法では、前記非晶質膜に対してリソグラフやナノインプリントの手法を用いることにより、半導体基板を露出させる部分を自由に制御することができる。また、前記ナノワイヤ状の半導体の成長方向と基板の方位を適切に選ぶことにより、半導体基板切出しの誤差を除き、該半導体基板に完全に垂直なナノワイヤ状の半導体を得ることができる。さらに、前記製造方法では、エピタキシャル成長の成長条件を途中で変更することにより、前記ナノワイヤ状の半導体を横方向にもエピタキシャルに成長させることができる。   In the manufacturing method, a portion where the semiconductor substrate is exposed can be freely controlled by using a lithographic or nanoimprint technique on the amorphous film. Further, by appropriately selecting the growth direction of the nanowire-like semiconductor and the orientation of the substrate, a nanowire-like semiconductor that is completely perpendicular to the semiconductor substrate can be obtained without errors in cutting out the semiconductor substrate. Furthermore, in the manufacturing method, the nanowire-like semiconductor can be grown epitaxially in the lateral direction by changing the growth conditions for epitaxial growth in the middle.

従って、前記製造方法によれば、多数のナノワイヤ状の半導体を高密度のアレイ状に配置した装置を構成することができ、光吸収効率を向上することができる。   Therefore, according to the manufacturing method, a device in which a large number of nanowire-like semiconductors are arranged in a high-density array can be configured, and the light absorption efficiency can be improved.

また、前記製造方法では、前記複数のナノワイヤ状の半導体を透明絶縁性材料に埋設した後、該透明絶縁性材料の一部を除去して該複数のナノワイヤ状の半導体の先端を露出させることにより、該複数のナノワイヤ状の半導体の間隙に該透明絶縁性材料を充填する工程を備えることが好ましい。前記製造方法によれば、前記工程により、前記複数のナノワイヤ状の半導体の間隙に前記透明絶縁性材料を容易に充填することができる。   In the manufacturing method, after the plurality of nanowire-like semiconductors are embedded in a transparent insulating material, a part of the transparent insulating material is removed to expose the tips of the plurality of nanowire-like semiconductors. Preferably, the method comprises a step of filling the gap between the plurality of nanowire-like semiconductors with the transparent insulating material. According to the manufacturing method, the transparent insulating material can be easily filled in the gaps between the plurality of nanowire-like semiconductors by the step.

本発明のナノワイヤ太陽電池の第1の形態を示す説明的断面図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory sectional drawing which shows the 1st form of the nanowire solar cell of this invention. 本発明のナノワイヤ太陽電池の第1の形態の変形例を示す説明的断面図。Explanatory sectional drawing which shows the modification of the 1st form of the nanowire solar cell of this invention. 本発明のナノワイヤ太陽電池の第2の形態を示す説明的断面図。Explanatory sectional drawing which shows the 2nd form of the nanowire solar cell of this invention. 本発明のナノワイヤ太陽電池の第2の形態の変形例を示す説明的断面図。Explanatory sectional drawing which shows the modification of the 2nd form of the nanowire solar cell of this invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

まず、図1を参照して本発明の第1の実施形態のナノワイヤ太陽電池1について説明する。ナノワイヤ太陽電池1は、InP(111)A基板2上に形成された非晶質SiO被膜3と、非晶質SiO被膜3から露出するInP(111)A基板2上に形成された形成されたナノワイヤ状のp型InP半導体4とを備える。ナノワイヤ状のp型InP半導体4は、その表面形状に沿ってn型InP半導体5を備え、p型InP半導体4とn型InP半導体5との間には、図示しないi型InP半導体を備えている。ここで、ナノワイヤ太陽電池1は、p型InP半導体4をコアとし、前記i型InP半導体及びn型InP半導体5をシェルとするコアシェル構造を備えている。 First, a nanowire solar cell 1 according to a first embodiment of the present invention will be described with reference to FIG. The nanowire solar cell 1 includes an amorphous SiO 2 coating 3 formed on the InP (111) A substrate 2 and a formation formed on the InP (111) A substrate 2 exposed from the amorphous SiO 2 coating 3. The nanowire-shaped p-type InP semiconductor 4 is provided. The nanowire-shaped p-type InP semiconductor 4 includes an n-type InP semiconductor 5 along its surface shape, and an i-type InP semiconductor (not shown) is provided between the p-type InP semiconductor 4 and the n-type InP semiconductor 5. Yes. Here, the nanowire solar cell 1 has a core-shell structure in which the p-type InP semiconductor 4 is a core and the i-type InP semiconductor and the n-type InP semiconductor 5 are shells.

ナノワイヤ太陽電池1は、複数のナノワイヤ状のp型InP半導体4、前記i型InP半導体及びn型InP半導体5の間隙に充填された透明絶縁性材料6を備えると共に、透明絶縁性材料6上に透明電極7を備えている。透明絶縁性材料6としては、例えば、BCB樹脂(bis-benzocyclobutene、ダウ・ケミカル社製)からなるものを挙げることができる。また、透明電極7としては、例えば、インジウム−錫酸化物(ITO)等からなるものを挙げることができる。   The nanowire solar cell 1 includes a plurality of nanowire-shaped p-type InP semiconductors 4, a transparent insulating material 6 filled in a gap between the i-type InP semiconductor and the n-type InP semiconductor 5, and the transparent insulating material 6 is provided on the transparent insulating material 6. A transparent electrode 7 is provided. Examples of the transparent insulating material 6 include those made of BCB resin (bis-benzocyclobutene, manufactured by Dow Chemical Company). Moreover, as the transparent electrode 7, what consists of indium tin oxide (ITO) etc. can be mentioned, for example.

さらに、ナノワイヤ太陽電池1は、透明電極7上に形成された集電極8と、InP(111)A基板2の非晶質SiO被膜3と反対側の面に設けられた裏面電極9とを備えている。集電極8としては、例えば、AgとNiとを順に蒸着してなるもの挙げることができる。また、裏面電極9としては、例えば、AuZn合金を蒸着してなるもの挙げることができる。 Furthermore, the nanowire solar cell 1 includes a collecting electrode 8 formed on the transparent electrode 7 and a back electrode 9 provided on the surface opposite to the amorphous SiO 2 coating 3 of the InP (111) A substrate 2. I have. As the collector electrode 8, for example, an electrode obtained by sequentially depositing Ag and Ni can be used. Moreover, as the back electrode 9, the thing formed by vapor-depositing AuZn alloy can be mentioned, for example.

また、ナノワイヤ太陽電池1は、図2に示すように、ナノワイヤ状のp型InP半導体4、前記i型InP半導体及びn型InP半導体5の表面に、パッシベーション層10を備えていてもよい。   Further, as shown in FIG. 2, the nanowire solar cell 1 may include a passivation layer 10 on the surfaces of the nanowire-shaped p-type InP semiconductor 4, the i-type InP semiconductor, and the n-type InP semiconductor 5.

次に、図3を参照して本発明の第2の実施形態のナノワイヤ太陽電池11について説明する。ナノワイヤ太陽電池11は、ナノワイヤ状のp型InP半導体4に対して、n型InP半導体5がその長さ方向で接続されてpn接合を形成していることを除いて、図1に示すナノワイヤ太陽電池1と全く同一の構成を備えている。尚、p型InP半導体4とn型InP半導体5との間には、図示しないi型InP半導体を備えている。   Next, a nanowire solar cell 11 according to a second embodiment of the present invention will be described with reference to FIG. The nanowire solar cell 11 is the nanowire solar cell shown in FIG. 1 except that the n-type InP semiconductor 5 is connected to the nanowire-shaped p-type InP semiconductor 4 in the length direction to form a pn junction. The battery 1 has exactly the same configuration. An i-type InP semiconductor (not shown) is provided between the p-type InP semiconductor 4 and the n-type InP semiconductor 5.

また、ナノワイヤ太陽電池11は、図4に示すように、ナノワイヤ状のp型InP半導体4、前記i型InP半導体及びn型InP半導体5の表面に、パッシベーション層10を備えていてもよい。   In addition, as shown in FIG. 4, the nanowire solar cell 11 may include a passivation layer 10 on the surfaces of the nanowire-shaped p-type InP semiconductor 4, the i-type InP semiconductor, and the n-type InP semiconductor 5.

次に、図1に示すナノワイヤ太陽電池1の製造方法について説明する。   Next, the manufacturing method of the nanowire solar cell 1 shown in FIG. 1 is demonstrated.

まず、p型の半導体基板であるInP(111)A基板2を洗浄し、SiOターゲットを備えたRFスパッタ装置を用いて、InP(111)A基板2表面に非晶質SiO被膜3を約30nmの厚さに成膜する。 First, the InP (111) A substrate 2 which is a p-type semiconductor substrate is cleaned, and an amorphous SiO 2 coating 3 is formed on the surface of the InP (111) A substrate 2 using an RF sputtering apparatus equipped with a SiO 2 target. The film is formed to a thickness of about 30 nm.

次に、非晶質SiO被膜3上にポジレジストを塗布し、EB描画装置にInP(111)A基板2をセットし、該ポジレジストにパターンを描画する。前記パターンは、例えば、直径100nmの円形孔を400nmピッチで三角格子状に配列させたものとする。 Next, a positive resist is applied on the amorphous SiO 2 film 3, the InP (111) A substrate 2 is set in an EB drawing apparatus, and a pattern is drawn on the positive resist. In the pattern, for example, circular holes having a diameter of 100 nm are arranged in a triangular lattice pattern at a pitch of 400 nm.

前記描画後、レジストを現像して、50倍に希釈したBHF溶液にInP(111)A基板2を浸漬し、円形孔のSiOをエッチング除去する。そして、前記エッチング後、前記レジストを除去する。 After the drawing, the resist is developed, and the InP (111) A substrate 2 is immersed in a BHF solution diluted 50 times, and the SiO 2 in the circular holes is removed by etching. Then, after the etching, the resist is removed.

次に、非晶質SiO被膜3が形成されたInP(111)A基板2をMOVPE装置にセットし、チャンバーを真空排気した後にHガスに置換し、全圧が0.1atmで安定するように流量と排気速度を調整する。 Next, the InP (111) A substrate 2 on which the amorphous SiO 2 film 3 is formed is set in a MOVPE apparatus, and the chamber is evacuated and then replaced with H 2 gas, so that the total pressure is stabilized at 0.1 atm. Adjust the flow rate and exhaust speed so that.

次に、TBP(tertialybutylphospline)とキャリアガス(H)との混合ガス(全圧:0.1atm、TBP分圧:1.1×10−4atm)を流しながら、基板温度が660℃になるまで昇温する。そして、基板温度が660℃に達した後、流通ガスをTMI(trimetylindium)とDEZ(dietylzinc)とTBPとの混合ガスに切替え、該混合ガスを反応室に導入し、p型InP半導体4をナノワイヤ状にエピタキシャル成長させる。全圧は0.1atmのままとし、TMIの分圧が5×10−6atm、DEZの分圧が1×10−6atm、TBPの分圧が5×10−5atmになるように各有機金属ガスの流量を調整する。10分後に流通ガスをTBPとキャリアガスとの混合ガス(全圧:0.1atm、TBP分圧:1.1×10−4atm)に切替え、p型InP半導体4のエピタキシャル成長を終了する。 Next, the substrate temperature becomes 660 ° C. while flowing a mixed gas (total pressure: 0.1 atm, TBP partial pressure: 1.1 × 10 −4 atm) of TBP (tertialybutylphospline) and carrier gas (H 2 ). The temperature rises to Then, after the substrate temperature reaches 660 ° C., the flowing gas is switched to a mixed gas of TMI (trimetylindium), DEZ (dietylzinc), and TBP, the mixed gas is introduced into the reaction chamber, and the p-type InP semiconductor 4 is nanowired. Epitaxially grown in a shape. The total pressure remains at 0.1 atm so that the TMI partial pressure is 5 × 10 −6 atm, the DEZ partial pressure is 1 × 10 −6 atm, and the TBP partial pressure is 5 × 10 −5 atm. Adjust the flow rate of organometallic gas. After 10 minutes, the flow gas is switched to a mixed gas of TBP and carrier gas (total pressure: 0.1 atm, TBP partial pressure: 1.1 × 10 −4 atm), and the epitaxial growth of the p-type InP semiconductor 4 is completed.

次に、TBPとキャリアガスとの混合ガスを流通したまま、基板温度を660℃から600℃にまで低下させる。基板温度が600℃に到達した後、流通ガスをTMIとTBPとSiHとキャリアガスとの混合ガスに切替え、該混合ガスを反応室に10分間導入し、p型InP半導体4の表面に、n型InP半導体5をエピタキシャル成長させる。全圧は0.1atmのままとし、TMIの分圧が5×10−6atm、SiHの分圧が1×10−6atm、TBPの分圧が5×10−4atmになるように各有機金属ガスの流量を調整する。10分後に流通ガスをTBPとキャリアガスとの混合ガス(全圧:0.1atm、TBP分圧:1.1×10−4atm)に切替え、n型InP半導体5のエピタキシャル成長を終了する。 Next, the substrate temperature is lowered from 660 ° C. to 600 ° C. while the mixed gas of TBP and carrier gas is circulated. After the substrate temperature reaches 600 ° C., the flow gas is switched to a mixed gas of TMI, TBP, SiH 4 and carrier gas, the mixed gas is introduced into the reaction chamber for 10 minutes, and the surface of the p-type InP semiconductor 4 is An n-type InP semiconductor 5 is epitaxially grown. The total pressure remains at 0.1 atm so that the TMI partial pressure is 5 × 10 −6 atm, the SiH 4 partial pressure is 1 × 10 −6 atm, and the TBP partial pressure is 5 × 10 −4 atm. Adjust the flow rate of each organometallic gas. After 10 minutes, the flow gas is switched to a mixed gas of TBP and carrier gas (total pressure: 0.1 atm, TBP partial pressure: 1.1 × 10 −4 atm), and the epitaxial growth of the n-type InP semiconductor 5 is completed.

p型InP半導体4と、n型InP半導体5とのエピタキシャル成長終了後、TBPとキャリアガスとの混合ガス(全圧:0.1atm、TBP分圧:1.1×10−4atm)を流通しながら冷却し、InP(111)A基板2を取り出す。 After the epitaxial growth of the p-type InP semiconductor 4 and the n-type InP semiconductor 5, the mixed gas of TBP and carrier gas (total pressure: 0.1 atm, TBP partial pressure: 1.1 × 10 −4 atm) is circulated. Then, the InP (111) A substrate 2 is taken out.

このようにすることにより、p型InP半導体4をコアとし、n型InP半導体5をシェルとするコアシェル構造を備えるナノワイヤー状の半導体が得られる。尚、p型InP半導体4、n型InP半導体5をエピタキシャル成長させると、円柱状ではなく六角柱になることがある。この場合、前記ナノワイヤー状の半導体の直径は、断面の六角形に対する内接円の直径とする。   By doing so, a nanowire-like semiconductor having a core-shell structure with the p-type InP semiconductor 4 as a core and the n-type InP semiconductor 5 as a shell is obtained. Note that when the p-type InP semiconductor 4 and the n-type InP semiconductor 5 are epitaxially grown, they may be hexagonal columns instead of columnar shapes. In this case, the diameter of the nanowire-shaped semiconductor is a diameter of an inscribed circle with respect to a hexagonal cross section.

次に、p型InP半導体4、n型InP半導体5をナノワイヤ状にエピタキシャル成長させたInP(111)A基板2のp型InP半導体4、n型InP半導体5側に、BCB樹脂(ダウ・ケミカル社製)をスピンコートによって塗布する。次に、不活性ガス雰囲気下、250℃の温度に1時間保持するアニール処理を施して、BCB樹脂を硬化させ、硬化したBCB樹脂からなる透明絶縁材料6を形成する。   Next, a BCB resin (Dow Chemical Co., Ltd.) is formed on the p-type InP semiconductor 4 and n-type InP semiconductor 5 side of the InP (111) A substrate 2 obtained by epitaxially growing the p-type InP semiconductor 4 and the n-type InP semiconductor 5 in a nanowire shape. Are applied by spin coating. Next, an annealing process is performed in an inert gas atmosphere to maintain the temperature at 250 ° C. for 1 hour to cure the BCB resin, and the transparent insulating material 6 made of the cured BCB resin is formed.

次に、CFとOとの混合ガスを用いたRIE処理によって、過剰に塗布されたBCB樹脂をエッチングし、前記ナノワイヤ状の半導体の先端を150nmだけ露出させる。次に、ITOターゲットを備えたRFスパッタ装置を用いて、透明絶縁材料6上にITOからなる透明電極7を製膜する。透明電極7は、前記ナノワイヤ状の半導体に接続されている。 Next, the excessively applied BCB resin is etched by RIE using a mixed gas of CF 4 and O 2 to expose the tip of the nanowire-like semiconductor by 150 nm. Next, a transparent electrode 7 made of ITO is formed on the transparent insulating material 6 using an RF sputtering apparatus equipped with an ITO target. The transparent electrode 7 is connected to the nanowire-like semiconductor.

次に、InP(111)A基板2の非晶質SiO被膜3と反対側の面にAuZn合金を蒸着し、350℃の温度に5分間保持するアニール処理を施して、裏面電極9を形成する。そして、ITOからなる透明電極7の表面の一部に、AgとNiとを順に蒸着し、集電極8を形成することにより、ナノワイヤ太陽電池1を得る。 Next, an AuZn alloy is vapor-deposited on the surface of the InP (111) A substrate 2 opposite to the amorphous SiO 2 coating 3, and an annealing treatment is performed at a temperature of 350 ° C. for 5 minutes to form the back electrode 9. To do. And Ag and Ni are vapor-deposited in order on a part of surface of the transparent electrode 7 which consists of ITO, and the nanowire solar cell 1 is obtained by forming the collector electrode 8. FIG.

次に、ナノワイヤ太陽電池1において、p型InP半導体4をコアとし、n型InP半導体5をシェルとするコアシェル構造を備えるナノワイヤー状の半導体を、高さ1000nm、直径209nmとしたときの性能を評価した。性能の評価は、前記ナノワイヤ太陽電池1に対して、AM1.5に相当する疑似太陽光を照射し、そのI−V曲線を得ることにより行った。前記ナノワイヤ太陽電池1の性能を表1に示す。   Next, in the nanowire solar cell 1, when a nanowire-like semiconductor having a core-shell structure having the p-type InP semiconductor 4 as a core and the n-type InP semiconductor 5 as a shell has a height of 1000 nm and a diameter of 209 nm, the performance is as follows. evaluated. The evaluation of performance was performed by irradiating the nanowire solar cell 1 with pseudo-sunlight corresponding to AM1.5 and obtaining an IV curve thereof. The performance of the nanowire solar cell 1 is shown in Table 1.

Figure 2010028092
表1から、本実施形態のナノワイヤ太陽電池1によれば、実用的な電力を得ることができることが明らかである。
Figure 2010028092
From Table 1, it is clear that according to the nanowire solar cell 1 of this embodiment, practical electric power can be obtained.

1,11…ナノワイヤ太陽電池、 2…InP(111)A基板、 3…非晶質SiO被膜、 4…p型InP半導体、 5…n型InP半導体、 6…透明絶縁性材料、 10…パッシベーション層。 1,11 ... nanowire solar cell, 2 ... InP (111) A substrate, 3 ... an amorphous SiO 2 film, 4 ... p-type InP semiconductor, 5 ... n-type InP semiconductor, 6 ... transparent insulating material, 10 ... passivation layer.

Claims (5)

半導体基板と、該半導体基板上に成長されpn接合を構成する複数のナノワイヤ状の半導体とを備えるナノワイヤ太陽電池であって、該半導体基板と該ナノワイヤ状の半導体とが単一の単結晶からなることを特徴とするナノワイヤ太陽電池。   A nanowire solar cell comprising a semiconductor substrate and a plurality of nanowire-like semiconductors grown on the semiconductor substrate and constituting a pn junction, wherein the semiconductor substrate and the nanowire-like semiconductor are made of a single single crystal The nanowire solar cell characterized by the above-mentioned. 前記複数のナノワイヤ状の半導体の間隙に充填された透明絶縁性材料を備えることを特徴とする請求項1記載のナノワイヤ太陽電池。   The nanowire solar cell according to claim 1, further comprising a transparent insulating material filled in a gap between the plurality of nanowire-like semiconductors. 前記ナノワイヤ状の半導体の表面に沿って、再結合を防止するパッシベーション層を備えることを特徴とする請求項1または請求項2記載のナノワイヤ太陽電池。   The nanowire solar cell according to claim 1, further comprising a passivation layer that prevents recombination along a surface of the nanowire-like semiconductor. 半導体基板の表面の一部を非晶質膜で被覆する工程と、
該非晶質膜から露出している該半導体基板の表面に、該半導体基板と同一材料からなる結晶をエピタキシャル成長させて複数のナノワイヤ状の半導体を形成する工程とを備えることを特徴とするナノワイヤ太陽電池の製造方法。
Coating a part of the surface of the semiconductor substrate with an amorphous film;
And a step of epitaxially growing a crystal made of the same material as the semiconductor substrate on the surface of the semiconductor substrate exposed from the amorphous film to form a plurality of nanowire-shaped semiconductors. Manufacturing method.
前記複数のナノワイヤ状の半導体を透明絶縁性材料に埋設した後、該透明絶縁性材料の一部を除去して該複数のナノワイヤ状の半導体の先端を露出させることにより、該複数のナノワイヤ状の半導体の間隙に該透明絶縁性材料を充填する工程を備えることを特徴とする請求項4記載のナノワイヤ太陽電池の製造方法。   After embedding the plurality of nanowire-like semiconductors in a transparent insulating material, by removing a part of the transparent insulating material and exposing the tips of the plurality of nanowire-like semiconductors, the plurality of nanowire-like semiconductors The method for producing a nanowire solar cell according to claim 4, further comprising a step of filling the gap between the semiconductors with the transparent insulating material.
JP2009106213A 2008-07-16 2009-04-24 Nanowire solar cell and producing method of the same Pending JP2010028092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/503,109 US20100012190A1 (en) 2008-07-16 2009-07-15 Nanowire photovoltaic cells and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8125608P 2008-07-16 2008-07-16

Publications (1)

Publication Number Publication Date
JP2010028092A true JP2010028092A (en) 2010-02-04

Family

ID=41733589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106213A Pending JP2010028092A (en) 2008-07-16 2009-04-24 Nanowire solar cell and producing method of the same

Country Status (1)

Country Link
JP (1) JP2010028092A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135058A (en) * 2009-11-30 2011-07-07 Honda Motor Co Ltd Solar cell element, color sensor, and method of manufacturing light emitting element and light receiving element
JP2011224749A (en) * 2010-04-22 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> Nanostructure and method of manufacturing the same
KR101100414B1 (en) 2010-10-25 2011-12-30 서울대학교산학협력단 Solar cell and manufacturing method of the same
KR101120009B1 (en) 2011-08-03 2012-03-16 한국기계연구원 Solar cell having nano scale pillar, and fabricating method thereof
WO2012057504A2 (en) * 2010-10-25 2012-05-03 서울대학교산학협력단 Solar cell and method for manufacturing same
KR101142513B1 (en) 2010-04-27 2012-05-07 한양대학교 산학협력단 Solar cell comprising an epitaxial layer and method for manufacturing the same
JP2012182389A (en) * 2011-03-02 2012-09-20 Honda Motor Co Ltd Nanowire solar cell
WO2012124807A1 (en) * 2011-03-16 2012-09-20 本田技研工業株式会社 Multi-junction solar cell and manufacturing method therefor
KR101203116B1 (en) 2010-04-27 2012-11-20 한양대학교 산학협력단 Solar cell comprising an epitaxially grown semiconductor layer and method for manufacturing the same
JP2013534717A (en) * 2010-05-31 2013-09-05 インダストリー−ユニバーシティー コオペレーション ファウンデーション ハンヤン ユニバーシティー イーアールアイシーエー キャンパス Solar cell and method for manufacturing the same
JP2014529189A (en) * 2011-08-19 2014-10-30 ポハン工科大学校産学協力団Postech Academy−Industry Foundation Solar cell and manufacturing method thereof
WO2015016542A1 (en) * 2013-07-31 2015-02-05 국립대학법인 울산과학기술대학교 산학협력단 Dual element fusion-type tandem solar cell and method for manufacturing same
WO2015015694A1 (en) * 2013-08-01 2015-02-05 パナソニック株式会社 Photovoltaic device
JP2015509657A (en) * 2012-02-07 2015-03-30 コーニンクレッカ フィリップス エヌ ヴェ Solar cells based on flexible nanowires
KR101807877B1 (en) * 2011-06-30 2017-12-12 엘지디스플레이 주식회사 Nano structure, fabricating method of the nano structure, photoelectronic device and photoelectronic device package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331987A (en) * 1976-09-03 1978-03-25 Siemens Ag Solar battery and method of producing same
JPH04296060A (en) * 1991-03-26 1992-10-20 Hitachi Ltd Solar cell
JPH06104463A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Solar battery and manufacture thereof
JP2006261666A (en) * 2005-03-16 2006-09-28 General Electric Co <Ge> Efficient inorganic nano rod reinforcement light electromotive element
WO2008048233A2 (en) * 2005-08-22 2008-04-24 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331987A (en) * 1976-09-03 1978-03-25 Siemens Ag Solar battery and method of producing same
JPH04296060A (en) * 1991-03-26 1992-10-20 Hitachi Ltd Solar cell
JPH06104463A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Solar battery and manufacture thereof
JP2006261666A (en) * 2005-03-16 2006-09-28 General Electric Co <Ge> Efficient inorganic nano rod reinforcement light electromotive element
WO2008048233A2 (en) * 2005-08-22 2008-04-24 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN5009006712; Kuiqing Peng et al.: 'Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications' Small Volume.1, Issue.11, 2005, PP.1062-1067 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135058A (en) * 2009-11-30 2011-07-07 Honda Motor Co Ltd Solar cell element, color sensor, and method of manufacturing light emitting element and light receiving element
JP2011224749A (en) * 2010-04-22 2011-11-10 Nippon Telegr & Teleph Corp <Ntt> Nanostructure and method of manufacturing the same
KR101142513B1 (en) 2010-04-27 2012-05-07 한양대학교 산학협력단 Solar cell comprising an epitaxial layer and method for manufacturing the same
KR101203116B1 (en) 2010-04-27 2012-11-20 한양대학교 산학협력단 Solar cell comprising an epitaxially grown semiconductor layer and method for manufacturing the same
JP2013534717A (en) * 2010-05-31 2013-09-05 インダストリー−ユニバーシティー コオペレーション ファウンデーション ハンヤン ユニバーシティー イーアールアイシーエー キャンパス Solar cell and method for manufacturing the same
US8859890B2 (en) 2010-05-31 2014-10-14 Industry-University Cooperation Foundation Hanyang University Erica Campus Solar cell and method of manufacturing the same
US9419158B2 (en) 2010-10-25 2016-08-16 Snu R&Db Foundation Solar cell and method for manufacturing same
KR101142545B1 (en) 2010-10-25 2012-05-08 서울대학교산학협력단 Solar cell and manufacturing method of the same
WO2012057506A3 (en) * 2010-10-25 2012-07-26 서울대학교산학협력단 Solar cell and method for manufacturing same
WO2012057504A3 (en) * 2010-10-25 2012-07-26 서울대학교산학협력단 Solar cell and method for manufacturing same
WO2012057504A2 (en) * 2010-10-25 2012-05-03 서울대학교산학협력단 Solar cell and method for manufacturing same
US9324888B2 (en) 2010-10-25 2016-04-26 Snu R&Db Foundation Solar cell and method for manufacturing same
WO2012057506A2 (en) * 2010-10-25 2012-05-03 서울대학교산학협력단 Solar cell and method for manufacturing same
KR101100414B1 (en) 2010-10-25 2011-12-30 서울대학교산학협력단 Solar cell and manufacturing method of the same
JP2012182389A (en) * 2011-03-02 2012-09-20 Honda Motor Co Ltd Nanowire solar cell
JP5616522B2 (en) * 2011-03-16 2014-10-29 本田技研工業株式会社 Multi-junction solar cell and manufacturing method thereof
WO2012124807A1 (en) * 2011-03-16 2012-09-20 本田技研工業株式会社 Multi-junction solar cell and manufacturing method therefor
KR101807877B1 (en) * 2011-06-30 2017-12-12 엘지디스플레이 주식회사 Nano structure, fabricating method of the nano structure, photoelectronic device and photoelectronic device package
KR101120009B1 (en) 2011-08-03 2012-03-16 한국기계연구원 Solar cell having nano scale pillar, and fabricating method thereof
JP2014529189A (en) * 2011-08-19 2014-10-30 ポハン工科大学校産学協力団Postech Academy−Industry Foundation Solar cell and manufacturing method thereof
JP2015509657A (en) * 2012-02-07 2015-03-30 コーニンクレッカ フィリップス エヌ ヴェ Solar cells based on flexible nanowires
WO2015016542A1 (en) * 2013-07-31 2015-02-05 국립대학법인 울산과학기술대학교 산학협력단 Dual element fusion-type tandem solar cell and method for manufacturing same
WO2015015694A1 (en) * 2013-08-01 2015-02-05 パナソニック株式会社 Photovoltaic device

Similar Documents

Publication Publication Date Title
JP2010028092A (en) Nanowire solar cell and producing method of the same
US20100012190A1 (en) Nanowire photovoltaic cells and manufacture method thereof
JP2011138804A (en) Nanowire solar cell and method of manufacturing the same
US8389388B2 (en) Photonic device and method of making the same
US20060207647A1 (en) High efficiency inorganic nanorod-enhanced photovoltaic devices
US9231132B2 (en) Process for manufacturing solar cell equipped with electrode having mesh structure
KR101142545B1 (en) Solar cell and manufacturing method of the same
JP2008053730A (en) Single conformal junction nano-wire photovoltaic device
WO2013126432A1 (en) Axially-integrated epitaxially-grown tandem wire arrays
US9502240B2 (en) Preparation method of crystalline silicon film based on layer transfer
KR20110003751A (en) Solar cell utilizing p-i-n nanowire
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
KR101100414B1 (en) Solar cell and manufacturing method of the same
CN112489848A (en) Semiconductor radiation battery
WO2015025314A1 (en) Photovoltaic cell and method of fabricating the same
Kayes et al. Radial pn junction, wire array solar cells
JP2005064246A (en) Photoelectric conversion element and manufacturing method thereof, and solar cell
CN105304737A (en) Controllable array nano wire solar battery and preparation method thereof
CN210778633U (en) Nitride multi-junction solar cell
JP2012094761A (en) Method of manufacturing semiconductor wafer, method of manufacturing semiconductor device, and method of manufacturing sensor array
US8859310B2 (en) Methods of fabricating optoelectronic devices using semiconductor-particle monolayers and devices made thereby
KR101393092B1 (en) Ⅲ-ⅴ group compound solar cell and method for preparing the same
JP2015510681A (en) Method for manufacturing radially bonded semiconductor nanostructures at low temperatures, radial bonded devices, and solar cells comprising radially bonded nanostructures
KR101772694B1 (en) Method for fabricating nanostructure and method for fabricating electronic devices using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528